xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 81113b04)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204 
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209  * is currently generally designed assuming the largest 16M size is used such
210  * that the overflow cases are unlikely in normal operation.
211  */
212 #define OA_BUFFER_SIZE		SZ_16M
213 
214 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
215 
216 /**
217  * DOC: OA Tail Pointer Race
218  *
219  * There's a HW race condition between OA unit tail pointer register updates and
220  * writes to memory whereby the tail pointer can sometimes get ahead of what's
221  * been written out to the OA buffer so far (in terms of what's visible to the
222  * CPU).
223  *
224  * Although this can be observed explicitly while copying reports to userspace
225  * by checking for a zeroed report-id field in tail reports, we want to account
226  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227  * redundant read() attempts.
228  *
229  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230  * in the OA buffer, starting from the tail reported by the HW until we find a
231  * report with its first 2 dwords not 0 meaning its previous report is
232  * completely in memory and ready to be read. Those dwords are also set to 0
233  * once read and the whole buffer is cleared upon OA buffer initialization. The
234  * first dword is the reason for this report while the second is the timestamp,
235  * making the chances of having those 2 fields at 0 fairly unlikely. A more
236  * detailed explanation is available in oa_buffer_check_unlocked().
237  *
238  * Most of the implementation details for this workaround are in
239  * oa_buffer_check_unlocked() and _append_oa_reports()
240  *
241  * Note for posterity: previously the driver used to define an effective tail
242  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244  * This was flawed considering that the OA unit may also automatically generate
245  * non-periodic reports (such as on context switch) or the OA unit may be
246  * enabled without any periodic sampling.
247  */
248 #define OA_TAIL_MARGIN_NSEC	100000ULL
249 #define INVALID_TAIL_PTR	0xffffffff
250 
251 /* The default frequency for checking whether the OA unit has written new
252  * reports to the circular OA buffer...
253  */
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256 
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
259 
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261  * of the 64bit timestamp bits to trigger reports from) but there's currently
262  * no known use case for sampling as infrequently as once per 47 thousand years.
263  *
264  * Since the timestamps included in OA reports are only 32bits it seems
265  * reasonable to limit the OA exponent where it's still possible to account for
266  * overflow in OA report timestamps.
267  */
268 #define OA_EXPONENT_MAX 31
269 
270 #define INVALID_CTX_ID 0xffffffff
271 
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK           0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
275 #define OAREPORT_REASON_SHIFT          19
276 #define OAREPORT_REASON_TIMER          (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
279 
280 
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282  *
283  * The highest sampling frequency we can theoretically program the OA unit
284  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285  *
286  * Initialized just before we register the sysctl parameter.
287  */
288 static int oa_sample_rate_hard_limit;
289 
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291  * allow that by default unless root...
292  *
293  * The default threshold of 100000Hz is based on perf's similar
294  * kernel.perf_event_max_sample_rate sysctl parameter.
295  */
296 static u32 i915_oa_max_sample_rate = 100000;
297 
298 /* XXX: beware if future OA HW adds new report formats that the current
299  * code assumes all reports have a power-of-two size and ~(size - 1) can
300  * be used as a mask to align the OA tail pointer.
301  */
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
304 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
305 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
306 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
308 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
309 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
310 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
311 };
312 
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
318 };
319 
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322 };
323 
324 #define SAMPLE_OA_REPORT      (1<<0)
325 
326 /**
327  * struct perf_open_properties - for validated properties given to open a stream
328  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329  * @single_context: Whether a single or all gpu contexts should be monitored
330  * @hold_preemption: Whether the preemption is disabled for the filtered
331  *                   context
332  * @ctx_handle: A gem ctx handle for use with @single_context
333  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334  * @oa_format: An OA unit HW report format
335  * @oa_periodic: Whether to enable periodic OA unit sampling
336  * @oa_period_exponent: The OA unit sampling period is derived from this
337  * @engine: The engine (typically rcs0) being monitored by the OA unit
338  * @has_sseu: Whether @sseu was specified by userspace
339  * @sseu: internal SSEU configuration computed either from the userspace
340  *        specified configuration in the opening parameters or a default value
341  *        (see get_default_sseu_config())
342  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343  * data availability
344  *
345  * As read_properties_unlocked() enumerates and validates the properties given
346  * to open a stream of metrics the configuration is built up in the structure
347  * which starts out zero initialized.
348  */
349 struct perf_open_properties {
350 	u32 sample_flags;
351 
352 	u64 single_context:1;
353 	u64 hold_preemption:1;
354 	u64 ctx_handle;
355 
356 	/* OA sampling state */
357 	int metrics_set;
358 	int oa_format;
359 	bool oa_periodic;
360 	int oa_period_exponent;
361 
362 	struct intel_engine_cs *engine;
363 
364 	bool has_sseu;
365 	struct intel_sseu sseu;
366 
367 	u64 poll_oa_period;
368 };
369 
370 struct i915_oa_config_bo {
371 	struct llist_node node;
372 
373 	struct i915_oa_config *oa_config;
374 	struct i915_vma *vma;
375 };
376 
377 static struct ctl_table_header *sysctl_header;
378 
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380 
381 void i915_oa_config_release(struct kref *ref)
382 {
383 	struct i915_oa_config *oa_config =
384 		container_of(ref, typeof(*oa_config), ref);
385 
386 	kfree(oa_config->flex_regs);
387 	kfree(oa_config->b_counter_regs);
388 	kfree(oa_config->mux_regs);
389 
390 	kfree_rcu(oa_config, rcu);
391 }
392 
393 struct i915_oa_config *
394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395 {
396 	struct i915_oa_config *oa_config;
397 
398 	rcu_read_lock();
399 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 	if (oa_config)
401 		oa_config = i915_oa_config_get(oa_config);
402 	rcu_read_unlock();
403 
404 	return oa_config;
405 }
406 
407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408 {
409 	i915_oa_config_put(oa_bo->oa_config);
410 	i915_vma_put(oa_bo->vma);
411 	kfree(oa_bo);
412 }
413 
414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415 {
416 	struct intel_uncore *uncore = stream->uncore;
417 
418 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 	       GEN12_OAG_OATAILPTR_MASK;
420 }
421 
422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423 {
424 	struct intel_uncore *uncore = stream->uncore;
425 
426 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 }
428 
429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 	struct intel_uncore *uncore = stream->uncore;
432 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433 
434 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435 }
436 
437 /**
438  * oa_buffer_check_unlocked - check for data and update tail ptr state
439  * @stream: i915 stream instance
440  *
441  * This is either called via fops (for blocking reads in user ctx) or the poll
442  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443  * if there is data available for userspace to read.
444  *
445  * This function is central to providing a workaround for the OA unit tail
446  * pointer having a race with respect to what data is visible to the CPU.
447  * It is responsible for reading tail pointers from the hardware and giving
448  * the pointers time to 'age' before they are made available for reading.
449  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450  *
451  * Besides returning true when there is data available to read() this function
452  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453  * object.
454  *
455  * Note: It's safe to read OA config state here unlocked, assuming that this is
456  * only called while the stream is enabled, while the global OA configuration
457  * can't be modified.
458  *
459  * Returns: %true if the OA buffer contains data, else %false
460  */
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462 {
463 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 	int report_size = stream->oa_buffer.format_size;
465 	unsigned long flags;
466 	bool pollin;
467 	u32 hw_tail;
468 	u64 now;
469 
470 	/* We have to consider the (unlikely) possibility that read() errors
471 	 * could result in an OA buffer reset which might reset the head and
472 	 * tail state.
473 	 */
474 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475 
476 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477 
478 	/* The tail pointer increases in 64 byte increments,
479 	 * not in report_size steps...
480 	 */
481 	hw_tail &= ~(report_size - 1);
482 
483 	now = ktime_get_mono_fast_ns();
484 
485 	if (hw_tail == stream->oa_buffer.aging_tail &&
486 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 		/* If the HW tail hasn't move since the last check and the HW
488 		 * tail has been aging for long enough, declare it the new
489 		 * tail.
490 		 */
491 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 	} else {
493 		u32 head, tail, aged_tail;
494 
495 		/* NB: The head we observe here might effectively be a little
496 		 * out of date. If a read() is in progress, the head could be
497 		 * anywhere between this head and stream->oa_buffer.tail.
498 		 */
499 		head = stream->oa_buffer.head - gtt_offset;
500 		aged_tail = stream->oa_buffer.tail - gtt_offset;
501 
502 		hw_tail -= gtt_offset;
503 		tail = hw_tail;
504 
505 		/* Walk the stream backward until we find a report with dword 0
506 		 * & 1 not at 0. Since the circular buffer pointers progress by
507 		 * increments of 64 bytes and that reports can be up to 256
508 		 * bytes long, we can't tell whether a report has fully landed
509 		 * in memory before the first 2 dwords of the following report
510 		 * have effectively landed.
511 		 *
512 		 * This is assuming that the writes of the OA unit land in
513 		 * memory in the order they were written to.
514 		 * If not : (╯°□°)╯︵ ┻━┻
515 		 */
516 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518 
519 			if (report32[0] != 0 || report32[1] != 0)
520 				break;
521 
522 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 		}
524 
525 		if (OA_TAKEN(hw_tail, tail) > report_size &&
526 		    __ratelimit(&stream->perf->tail_pointer_race))
527 			DRM_NOTE("unlanded report(s) head=0x%x "
528 				 "tail=0x%x hw_tail=0x%x\n",
529 				 head, tail, hw_tail);
530 
531 		stream->oa_buffer.tail = gtt_offset + tail;
532 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 		stream->oa_buffer.aging_timestamp = now;
534 	}
535 
536 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 			  stream->oa_buffer.head - gtt_offset) >= report_size;
538 
539 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540 
541 	return pollin;
542 }
543 
544 /**
545  * append_oa_status - Appends a status record to a userspace read() buffer.
546  * @stream: An i915-perf stream opened for OA metrics
547  * @buf: destination buffer given by userspace
548  * @count: the number of bytes userspace wants to read
549  * @offset: (inout): the current position for writing into @buf
550  * @type: The kind of status to report to userspace
551  *
552  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553  * into the userspace read() buffer.
554  *
555  * The @buf @offset will only be updated on success.
556  *
557  * Returns: 0 on success, negative error code on failure.
558  */
559 static int append_oa_status(struct i915_perf_stream *stream,
560 			    char __user *buf,
561 			    size_t count,
562 			    size_t *offset,
563 			    enum drm_i915_perf_record_type type)
564 {
565 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566 
567 	if ((count - *offset) < header.size)
568 		return -ENOSPC;
569 
570 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 		return -EFAULT;
572 
573 	(*offset) += header.size;
574 
575 	return 0;
576 }
577 
578 /**
579  * append_oa_sample - Copies single OA report into userspace read() buffer.
580  * @stream: An i915-perf stream opened for OA metrics
581  * @buf: destination buffer given by userspace
582  * @count: the number of bytes userspace wants to read
583  * @offset: (inout): the current position for writing into @buf
584  * @report: A single OA report to (optionally) include as part of the sample
585  *
586  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587  * properties when opening a stream, tracked as `stream->sample_flags`. This
588  * function copies the requested components of a single sample to the given
589  * read() @buf.
590  *
591  * The @buf @offset will only be updated on success.
592  *
593  * Returns: 0 on success, negative error code on failure.
594  */
595 static int append_oa_sample(struct i915_perf_stream *stream,
596 			    char __user *buf,
597 			    size_t count,
598 			    size_t *offset,
599 			    const u8 *report)
600 {
601 	int report_size = stream->oa_buffer.format_size;
602 	struct drm_i915_perf_record_header header;
603 	u32 sample_flags = stream->sample_flags;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (sample_flags & SAMPLE_OA_REPORT) {
618 		if (copy_to_user(buf, report, report_size))
619 			return -EFAULT;
620 	}
621 
622 	(*offset) += header.size;
623 
624 	return 0;
625 }
626 
627 /**
628  * Copies all buffered OA reports into userspace read() buffer.
629  * @stream: An i915-perf stream opened for OA metrics
630  * @buf: destination buffer given by userspace
631  * @count: the number of bytes userspace wants to read
632  * @offset: (inout): the current position for writing into @buf
633  *
634  * Notably any error condition resulting in a short read (-%ENOSPC or
635  * -%EFAULT) will be returned even though one or more records may
636  * have been successfully copied. In this case it's up to the caller
637  * to decide if the error should be squashed before returning to
638  * userspace.
639  *
640  * Note: reports are consumed from the head, and appended to the
641  * tail, so the tail chases the head?... If you think that's mad
642  * and back-to-front you're not alone, but this follows the
643  * Gen PRM naming convention.
644  *
645  * Returns: 0 on success, negative error code on failure.
646  */
647 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
648 				  char __user *buf,
649 				  size_t count,
650 				  size_t *offset)
651 {
652 	struct intel_uncore *uncore = stream->uncore;
653 	int report_size = stream->oa_buffer.format_size;
654 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
655 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
656 	u32 mask = (OA_BUFFER_SIZE - 1);
657 	size_t start_offset = *offset;
658 	unsigned long flags;
659 	u32 head, tail;
660 	u32 taken;
661 	int ret = 0;
662 
663 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
664 		return -EIO;
665 
666 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
667 
668 	head = stream->oa_buffer.head;
669 	tail = stream->oa_buffer.tail;
670 
671 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
672 
673 	/*
674 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
675 	 * while indexing relative to oa_buf_base.
676 	 */
677 	head -= gtt_offset;
678 	tail -= gtt_offset;
679 
680 	/*
681 	 * An out of bounds or misaligned head or tail pointer implies a driver
682 	 * bug since we validate + align the tail pointers we read from the
683 	 * hardware and we are in full control of the head pointer which should
684 	 * only be incremented by multiples of the report size (notably also
685 	 * all a power of two).
686 	 */
687 	if (drm_WARN_ONCE(&uncore->i915->drm,
688 			  head > OA_BUFFER_SIZE || head % report_size ||
689 			  tail > OA_BUFFER_SIZE || tail % report_size,
690 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
691 			  head, tail))
692 		return -EIO;
693 
694 
695 	for (/* none */;
696 	     (taken = OA_TAKEN(tail, head));
697 	     head = (head + report_size) & mask) {
698 		u8 *report = oa_buf_base + head;
699 		u32 *report32 = (void *)report;
700 		u32 ctx_id;
701 		u32 reason;
702 
703 		/*
704 		 * All the report sizes factor neatly into the buffer
705 		 * size so we never expect to see a report split
706 		 * between the beginning and end of the buffer.
707 		 *
708 		 * Given the initial alignment check a misalignment
709 		 * here would imply a driver bug that would result
710 		 * in an overrun.
711 		 */
712 		if (drm_WARN_ON(&uncore->i915->drm,
713 				(OA_BUFFER_SIZE - head) < report_size)) {
714 			drm_err(&uncore->i915->drm,
715 				"Spurious OA head ptr: non-integral report offset\n");
716 			break;
717 		}
718 
719 		/*
720 		 * The reason field includes flags identifying what
721 		 * triggered this specific report (mostly timer
722 		 * triggered or e.g. due to a context switch).
723 		 *
724 		 * This field is never expected to be zero so we can
725 		 * check that the report isn't invalid before copying
726 		 * it to userspace...
727 		 */
728 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 			  (IS_GEN(stream->perf->i915, 12) ?
730 			   OAREPORT_REASON_MASK_EXTENDED :
731 			   OAREPORT_REASON_MASK));
732 		if (reason == 0) {
733 			if (__ratelimit(&stream->perf->spurious_report_rs))
734 				DRM_NOTE("Skipping spurious, invalid OA report\n");
735 			continue;
736 		}
737 
738 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
739 
740 		/*
741 		 * Squash whatever is in the CTX_ID field if it's marked as
742 		 * invalid to be sure we avoid false-positive, single-context
743 		 * filtering below...
744 		 *
745 		 * Note: that we don't clear the valid_ctx_bit so userspace can
746 		 * understand that the ID has been squashed by the kernel.
747 		 */
748 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
749 		    INTEL_GEN(stream->perf->i915) <= 11)
750 			ctx_id = report32[2] = INVALID_CTX_ID;
751 
752 		/*
753 		 * NB: For Gen 8 the OA unit no longer supports clock gating
754 		 * off for a specific context and the kernel can't securely
755 		 * stop the counters from updating as system-wide / global
756 		 * values.
757 		 *
758 		 * Automatic reports now include a context ID so reports can be
759 		 * filtered on the cpu but it's not worth trying to
760 		 * automatically subtract/hide counter progress for other
761 		 * contexts while filtering since we can't stop userspace
762 		 * issuing MI_REPORT_PERF_COUNT commands which would still
763 		 * provide a side-band view of the real values.
764 		 *
765 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
766 		 * to normalize counters for a single filtered context then it
767 		 * needs be forwarded bookend context-switch reports so that it
768 		 * can track switches in between MI_REPORT_PERF_COUNT commands
769 		 * and can itself subtract/ignore the progress of counters
770 		 * associated with other contexts. Note that the hardware
771 		 * automatically triggers reports when switching to a new
772 		 * context which are tagged with the ID of the newly active
773 		 * context. To avoid the complexity (and likely fragility) of
774 		 * reading ahead while parsing reports to try and minimize
775 		 * forwarding redundant context switch reports (i.e. between
776 		 * other, unrelated contexts) we simply elect to forward them
777 		 * all.
778 		 *
779 		 * We don't rely solely on the reason field to identify context
780 		 * switches since it's not-uncommon for periodic samples to
781 		 * identify a switch before any 'context switch' report.
782 		 */
783 		if (!stream->perf->exclusive_stream->ctx ||
784 		    stream->specific_ctx_id == ctx_id ||
785 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
786 		    reason & OAREPORT_REASON_CTX_SWITCH) {
787 
788 			/*
789 			 * While filtering for a single context we avoid
790 			 * leaking the IDs of other contexts.
791 			 */
792 			if (stream->perf->exclusive_stream->ctx &&
793 			    stream->specific_ctx_id != ctx_id) {
794 				report32[2] = INVALID_CTX_ID;
795 			}
796 
797 			ret = append_oa_sample(stream, buf, count, offset,
798 					       report);
799 			if (ret)
800 				break;
801 
802 			stream->oa_buffer.last_ctx_id = ctx_id;
803 		}
804 
805 		/*
806 		 * Clear out the first 2 dword as a mean to detect unlanded
807 		 * reports.
808 		 */
809 		report32[0] = 0;
810 		report32[1] = 0;
811 	}
812 
813 	if (start_offset != *offset) {
814 		i915_reg_t oaheadptr;
815 
816 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
817 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
818 
819 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
820 
821 		/*
822 		 * We removed the gtt_offset for the copy loop above, indexing
823 		 * relative to oa_buf_base so put back here...
824 		 */
825 		head += gtt_offset;
826 		intel_uncore_write(uncore, oaheadptr,
827 				   head & GEN12_OAG_OAHEADPTR_MASK);
828 		stream->oa_buffer.head = head;
829 
830 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
831 	}
832 
833 	return ret;
834 }
835 
836 /**
837  * gen8_oa_read - copy status records then buffered OA reports
838  * @stream: An i915-perf stream opened for OA metrics
839  * @buf: destination buffer given by userspace
840  * @count: the number of bytes userspace wants to read
841  * @offset: (inout): the current position for writing into @buf
842  *
843  * Checks OA unit status registers and if necessary appends corresponding
844  * status records for userspace (such as for a buffer full condition) and then
845  * initiate appending any buffered OA reports.
846  *
847  * Updates @offset according to the number of bytes successfully copied into
848  * the userspace buffer.
849  *
850  * NB: some data may be successfully copied to the userspace buffer
851  * even if an error is returned, and this is reflected in the
852  * updated @offset.
853  *
854  * Returns: zero on success or a negative error code
855  */
856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 			char __user *buf,
858 			size_t count,
859 			size_t *offset)
860 {
861 	struct intel_uncore *uncore = stream->uncore;
862 	u32 oastatus;
863 	i915_reg_t oastatus_reg;
864 	int ret;
865 
866 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
867 		return -EIO;
868 
869 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
870 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
871 
872 	oastatus = intel_uncore_read(uncore, oastatus_reg);
873 
874 	/*
875 	 * We treat OABUFFER_OVERFLOW as a significant error:
876 	 *
877 	 * Although theoretically we could handle this more gracefully
878 	 * sometimes, some Gens don't correctly suppress certain
879 	 * automatically triggered reports in this condition and so we
880 	 * have to assume that old reports are now being trampled
881 	 * over.
882 	 *
883 	 * Considering how we don't currently give userspace control
884 	 * over the OA buffer size and always configure a large 16MB
885 	 * buffer, then a buffer overflow does anyway likely indicate
886 	 * that something has gone quite badly wrong.
887 	 */
888 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 		ret = append_oa_status(stream, buf, count, offset,
890 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 		if (ret)
892 			return ret;
893 
894 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 			  stream->period_exponent);
896 
897 		stream->perf->ops.oa_disable(stream);
898 		stream->perf->ops.oa_enable(stream);
899 
900 		/*
901 		 * Note: .oa_enable() is expected to re-init the oabuffer and
902 		 * reset GEN8_OASTATUS for us
903 		 */
904 		oastatus = intel_uncore_read(uncore, oastatus_reg);
905 	}
906 
907 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 		ret = append_oa_status(stream, buf, count, offset,
909 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 		if (ret)
911 			return ret;
912 
913 		intel_uncore_rmw(uncore, oastatus_reg,
914 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
915 				 GEN8_OASTATUS_REPORT_LOST,
916 				 IS_GEN_RANGE(uncore->i915, 8, 10) ?
917 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
918 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
919 	}
920 
921 	return gen8_append_oa_reports(stream, buf, count, offset);
922 }
923 
924 /**
925  * Copies all buffered OA reports into userspace read() buffer.
926  * @stream: An i915-perf stream opened for OA metrics
927  * @buf: destination buffer given by userspace
928  * @count: the number of bytes userspace wants to read
929  * @offset: (inout): the current position for writing into @buf
930  *
931  * Notably any error condition resulting in a short read (-%ENOSPC or
932  * -%EFAULT) will be returned even though one or more records may
933  * have been successfully copied. In this case it's up to the caller
934  * to decide if the error should be squashed before returning to
935  * userspace.
936  *
937  * Note: reports are consumed from the head, and appended to the
938  * tail, so the tail chases the head?... If you think that's mad
939  * and back-to-front you're not alone, but this follows the
940  * Gen PRM naming convention.
941  *
942  * Returns: 0 on success, negative error code on failure.
943  */
944 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
945 				  char __user *buf,
946 				  size_t count,
947 				  size_t *offset)
948 {
949 	struct intel_uncore *uncore = stream->uncore;
950 	int report_size = stream->oa_buffer.format_size;
951 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
952 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
953 	u32 mask = (OA_BUFFER_SIZE - 1);
954 	size_t start_offset = *offset;
955 	unsigned long flags;
956 	u32 head, tail;
957 	u32 taken;
958 	int ret = 0;
959 
960 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
961 		return -EIO;
962 
963 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
964 
965 	head = stream->oa_buffer.head;
966 	tail = stream->oa_buffer.tail;
967 
968 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
969 
970 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
971 	 * while indexing relative to oa_buf_base.
972 	 */
973 	head -= gtt_offset;
974 	tail -= gtt_offset;
975 
976 	/* An out of bounds or misaligned head or tail pointer implies a driver
977 	 * bug since we validate + align the tail pointers we read from the
978 	 * hardware and we are in full control of the head pointer which should
979 	 * only be incremented by multiples of the report size (notably also
980 	 * all a power of two).
981 	 */
982 	if (drm_WARN_ONCE(&uncore->i915->drm,
983 			  head > OA_BUFFER_SIZE || head % report_size ||
984 			  tail > OA_BUFFER_SIZE || tail % report_size,
985 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
986 			  head, tail))
987 		return -EIO;
988 
989 
990 	for (/* none */;
991 	     (taken = OA_TAKEN(tail, head));
992 	     head = (head + report_size) & mask) {
993 		u8 *report = oa_buf_base + head;
994 		u32 *report32 = (void *)report;
995 
996 		/* All the report sizes factor neatly into the buffer
997 		 * size so we never expect to see a report split
998 		 * between the beginning and end of the buffer.
999 		 *
1000 		 * Given the initial alignment check a misalignment
1001 		 * here would imply a driver bug that would result
1002 		 * in an overrun.
1003 		 */
1004 		if (drm_WARN_ON(&uncore->i915->drm,
1005 				(OA_BUFFER_SIZE - head) < report_size)) {
1006 			drm_err(&uncore->i915->drm,
1007 				"Spurious OA head ptr: non-integral report offset\n");
1008 			break;
1009 		}
1010 
1011 		/* The report-ID field for periodic samples includes
1012 		 * some undocumented flags related to what triggered
1013 		 * the report and is never expected to be zero so we
1014 		 * can check that the report isn't invalid before
1015 		 * copying it to userspace...
1016 		 */
1017 		if (report32[0] == 0) {
1018 			if (__ratelimit(&stream->perf->spurious_report_rs))
1019 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1020 			continue;
1021 		}
1022 
1023 		ret = append_oa_sample(stream, buf, count, offset, report);
1024 		if (ret)
1025 			break;
1026 
1027 		/* Clear out the first 2 dwords as a mean to detect unlanded
1028 		 * reports.
1029 		 */
1030 		report32[0] = 0;
1031 		report32[1] = 0;
1032 	}
1033 
1034 	if (start_offset != *offset) {
1035 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1036 
1037 		/* We removed the gtt_offset for the copy loop above, indexing
1038 		 * relative to oa_buf_base so put back here...
1039 		 */
1040 		head += gtt_offset;
1041 
1042 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1043 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1044 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1045 		stream->oa_buffer.head = head;
1046 
1047 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 /**
1054  * gen7_oa_read - copy status records then buffered OA reports
1055  * @stream: An i915-perf stream opened for OA metrics
1056  * @buf: destination buffer given by userspace
1057  * @count: the number of bytes userspace wants to read
1058  * @offset: (inout): the current position for writing into @buf
1059  *
1060  * Checks Gen 7 specific OA unit status registers and if necessary appends
1061  * corresponding status records for userspace (such as for a buffer full
1062  * condition) and then initiate appending any buffered OA reports.
1063  *
1064  * Updates @offset according to the number of bytes successfully copied into
1065  * the userspace buffer.
1066  *
1067  * Returns: zero on success or a negative error code
1068  */
1069 static int gen7_oa_read(struct i915_perf_stream *stream,
1070 			char __user *buf,
1071 			size_t count,
1072 			size_t *offset)
1073 {
1074 	struct intel_uncore *uncore = stream->uncore;
1075 	u32 oastatus1;
1076 	int ret;
1077 
1078 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1079 		return -EIO;
1080 
1081 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1082 
1083 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1084 	 * bits while the OA unit is enabled (while the tail pointer
1085 	 * may be updated asynchronously) so we ignore status bits
1086 	 * that have already been reported to userspace.
1087 	 */
1088 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1089 
1090 	/* We treat OABUFFER_OVERFLOW as a significant error:
1091 	 *
1092 	 * - The status can be interpreted to mean that the buffer is
1093 	 *   currently full (with a higher precedence than OA_TAKEN()
1094 	 *   which will start to report a near-empty buffer after an
1095 	 *   overflow) but it's awkward that we can't clear the status
1096 	 *   on Haswell, so without a reset we won't be able to catch
1097 	 *   the state again.
1098 	 *
1099 	 * - Since it also implies the HW has started overwriting old
1100 	 *   reports it may also affect our sanity checks for invalid
1101 	 *   reports when copying to userspace that assume new reports
1102 	 *   are being written to cleared memory.
1103 	 *
1104 	 * - In the future we may want to introduce a flight recorder
1105 	 *   mode where the driver will automatically maintain a safe
1106 	 *   guard band between head/tail, avoiding this overflow
1107 	 *   condition, but we avoid the added driver complexity for
1108 	 *   now.
1109 	 */
1110 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1111 		ret = append_oa_status(stream, buf, count, offset,
1112 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1113 		if (ret)
1114 			return ret;
1115 
1116 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1117 			  stream->period_exponent);
1118 
1119 		stream->perf->ops.oa_disable(stream);
1120 		stream->perf->ops.oa_enable(stream);
1121 
1122 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1123 	}
1124 
1125 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1126 		ret = append_oa_status(stream, buf, count, offset,
1127 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1128 		if (ret)
1129 			return ret;
1130 		stream->perf->gen7_latched_oastatus1 |=
1131 			GEN7_OASTATUS1_REPORT_LOST;
1132 	}
1133 
1134 	return gen7_append_oa_reports(stream, buf, count, offset);
1135 }
1136 
1137 /**
1138  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1139  * @stream: An i915-perf stream opened for OA metrics
1140  *
1141  * Called when userspace tries to read() from a blocking stream FD opened
1142  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1143  * OA buffer and wakes us.
1144  *
1145  * Note: it's acceptable to have this return with some false positives
1146  * since any subsequent read handling will return -EAGAIN if there isn't
1147  * really data ready for userspace yet.
1148  *
1149  * Returns: zero on success or a negative error code
1150  */
1151 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1152 {
1153 	/* We would wait indefinitely if periodic sampling is not enabled */
1154 	if (!stream->periodic)
1155 		return -EIO;
1156 
1157 	return wait_event_interruptible(stream->poll_wq,
1158 					oa_buffer_check_unlocked(stream));
1159 }
1160 
1161 /**
1162  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1163  * @stream: An i915-perf stream opened for OA metrics
1164  * @file: An i915 perf stream file
1165  * @wait: poll() state table
1166  *
1167  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1168  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1169  * when it sees data ready to read in the circular OA buffer.
1170  */
1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1172 			      struct file *file,
1173 			      poll_table *wait)
1174 {
1175 	poll_wait(file, &stream->poll_wq, wait);
1176 }
1177 
1178 /**
1179  * i915_oa_read - just calls through to &i915_oa_ops->read
1180  * @stream: An i915-perf stream opened for OA metrics
1181  * @buf: destination buffer given by userspace
1182  * @count: the number of bytes userspace wants to read
1183  * @offset: (inout): the current position for writing into @buf
1184  *
1185  * Updates @offset according to the number of bytes successfully copied into
1186  * the userspace buffer.
1187  *
1188  * Returns: zero on success or a negative error code
1189  */
1190 static int i915_oa_read(struct i915_perf_stream *stream,
1191 			char __user *buf,
1192 			size_t count,
1193 			size_t *offset)
1194 {
1195 	return stream->perf->ops.read(stream, buf, count, offset);
1196 }
1197 
1198 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1199 {
1200 	struct i915_gem_engines_iter it;
1201 	struct i915_gem_context *ctx = stream->ctx;
1202 	struct intel_context *ce;
1203 	struct i915_gem_ww_ctx ww;
1204 	int err = -ENODEV;
1205 
1206 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1207 		if (ce->engine != stream->engine) /* first match! */
1208 			continue;
1209 
1210 		err = 0;
1211 		break;
1212 	}
1213 	i915_gem_context_unlock_engines(ctx);
1214 
1215 	if (err)
1216 		return ERR_PTR(err);
1217 
1218 	i915_gem_ww_ctx_init(&ww, true);
1219 retry:
1220 	/*
1221 	 * As the ID is the gtt offset of the context's vma we
1222 	 * pin the vma to ensure the ID remains fixed.
1223 	 */
1224 	err = intel_context_pin_ww(ce, &ww);
1225 	if (err == -EDEADLK) {
1226 		err = i915_gem_ww_ctx_backoff(&ww);
1227 		if (!err)
1228 			goto retry;
1229 	}
1230 	i915_gem_ww_ctx_fini(&ww);
1231 
1232 	if (err)
1233 		return ERR_PTR(err);
1234 
1235 	stream->pinned_ctx = ce;
1236 	return stream->pinned_ctx;
1237 }
1238 
1239 /**
1240  * oa_get_render_ctx_id - determine and hold ctx hw id
1241  * @stream: An i915-perf stream opened for OA metrics
1242  *
1243  * Determine the render context hw id, and ensure it remains fixed for the
1244  * lifetime of the stream. This ensures that we don't have to worry about
1245  * updating the context ID in OACONTROL on the fly.
1246  *
1247  * Returns: zero on success or a negative error code
1248  */
1249 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1250 {
1251 	struct intel_context *ce;
1252 
1253 	ce = oa_pin_context(stream);
1254 	if (IS_ERR(ce))
1255 		return PTR_ERR(ce);
1256 
1257 	switch (INTEL_GEN(ce->engine->i915)) {
1258 	case 7: {
1259 		/*
1260 		 * On Haswell we don't do any post processing of the reports
1261 		 * and don't need to use the mask.
1262 		 */
1263 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1264 		stream->specific_ctx_id_mask = 0;
1265 		break;
1266 	}
1267 
1268 	case 8:
1269 	case 9:
1270 	case 10:
1271 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1272 			stream->specific_ctx_id_mask =
1273 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1274 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1275 		} else {
1276 			/*
1277 			 * When using GuC, the context descriptor we write in
1278 			 * i915 is read by GuC and rewritten before it's
1279 			 * actually written into the hardware. The LRCA is
1280 			 * what is put into the context id field of the
1281 			 * context descriptor by GuC. Because it's aligned to
1282 			 * a page, the lower 12bits are always at 0 and
1283 			 * dropped by GuC. They won't be part of the context
1284 			 * ID in the OA reports, so squash those lower bits.
1285 			 */
1286 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1287 
1288 			/*
1289 			 * GuC uses the top bit to signal proxy submission, so
1290 			 * ignore that bit.
1291 			 */
1292 			stream->specific_ctx_id_mask =
1293 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1294 		}
1295 		break;
1296 
1297 	case 11:
1298 	case 12: {
1299 		stream->specific_ctx_id_mask =
1300 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1301 		/*
1302 		 * Pick an unused context id
1303 		 * 0 - BITS_PER_LONG are used by other contexts
1304 		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1305 		 */
1306 		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1307 		break;
1308 	}
1309 
1310 	default:
1311 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1312 	}
1313 
1314 	ce->tag = stream->specific_ctx_id;
1315 
1316 	drm_dbg(&stream->perf->i915->drm,
1317 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1318 		stream->specific_ctx_id,
1319 		stream->specific_ctx_id_mask);
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1326  * @stream: An i915-perf stream opened for OA metrics
1327  *
1328  * In case anything needed doing to ensure the context HW ID would remain valid
1329  * for the lifetime of the stream, then that can be undone here.
1330  */
1331 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1332 {
1333 	struct intel_context *ce;
1334 
1335 	ce = fetch_and_zero(&stream->pinned_ctx);
1336 	if (ce) {
1337 		ce->tag = 0; /* recomputed on next submission after parking */
1338 		intel_context_unpin(ce);
1339 	}
1340 
1341 	stream->specific_ctx_id = INVALID_CTX_ID;
1342 	stream->specific_ctx_id_mask = 0;
1343 }
1344 
1345 static void
1346 free_oa_buffer(struct i915_perf_stream *stream)
1347 {
1348 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1349 				   I915_VMA_RELEASE_MAP);
1350 
1351 	stream->oa_buffer.vaddr = NULL;
1352 }
1353 
1354 static void
1355 free_oa_configs(struct i915_perf_stream *stream)
1356 {
1357 	struct i915_oa_config_bo *oa_bo, *tmp;
1358 
1359 	i915_oa_config_put(stream->oa_config);
1360 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1361 		free_oa_config_bo(oa_bo);
1362 }
1363 
1364 static void
1365 free_noa_wait(struct i915_perf_stream *stream)
1366 {
1367 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1368 }
1369 
1370 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1371 {
1372 	struct i915_perf *perf = stream->perf;
1373 
1374 	BUG_ON(stream != perf->exclusive_stream);
1375 
1376 	/*
1377 	 * Unset exclusive_stream first, it will be checked while disabling
1378 	 * the metric set on gen8+.
1379 	 *
1380 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1381 	 */
1382 	WRITE_ONCE(perf->exclusive_stream, NULL);
1383 	perf->ops.disable_metric_set(stream);
1384 
1385 	free_oa_buffer(stream);
1386 
1387 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1388 	intel_engine_pm_put(stream->engine);
1389 
1390 	if (stream->ctx)
1391 		oa_put_render_ctx_id(stream);
1392 
1393 	free_oa_configs(stream);
1394 	free_noa_wait(stream);
1395 
1396 	if (perf->spurious_report_rs.missed) {
1397 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1398 			 perf->spurious_report_rs.missed);
1399 	}
1400 }
1401 
1402 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1403 {
1404 	struct intel_uncore *uncore = stream->uncore;
1405 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1406 	unsigned long flags;
1407 
1408 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1409 
1410 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1411 	 * before OASTATUS1, but after OASTATUS2
1412 	 */
1413 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1414 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1415 	stream->oa_buffer.head = gtt_offset;
1416 
1417 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1418 
1419 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1420 			   gtt_offset | OABUFFER_SIZE_16M);
1421 
1422 	/* Mark that we need updated tail pointers to read from... */
1423 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1424 	stream->oa_buffer.tail = gtt_offset;
1425 
1426 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1427 
1428 	/* On Haswell we have to track which OASTATUS1 flags we've
1429 	 * already seen since they can't be cleared while periodic
1430 	 * sampling is enabled.
1431 	 */
1432 	stream->perf->gen7_latched_oastatus1 = 0;
1433 
1434 	/* NB: although the OA buffer will initially be allocated
1435 	 * zeroed via shmfs (and so this memset is redundant when
1436 	 * first allocating), we may re-init the OA buffer, either
1437 	 * when re-enabling a stream or in error/reset paths.
1438 	 *
1439 	 * The reason we clear the buffer for each re-init is for the
1440 	 * sanity check in gen7_append_oa_reports() that looks at the
1441 	 * report-id field to make sure it's non-zero which relies on
1442 	 * the assumption that new reports are being written to zeroed
1443 	 * memory...
1444 	 */
1445 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1446 }
1447 
1448 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1449 {
1450 	struct intel_uncore *uncore = stream->uncore;
1451 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1452 	unsigned long flags;
1453 
1454 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1455 
1456 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1457 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1458 	stream->oa_buffer.head = gtt_offset;
1459 
1460 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1461 
1462 	/*
1463 	 * PRM says:
1464 	 *
1465 	 *  "This MMIO must be set before the OATAILPTR
1466 	 *  register and after the OAHEADPTR register. This is
1467 	 *  to enable proper functionality of the overflow
1468 	 *  bit."
1469 	 */
1470 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1471 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1472 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1473 
1474 	/* Mark that we need updated tail pointers to read from... */
1475 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1476 	stream->oa_buffer.tail = gtt_offset;
1477 
1478 	/*
1479 	 * Reset state used to recognise context switches, affecting which
1480 	 * reports we will forward to userspace while filtering for a single
1481 	 * context.
1482 	 */
1483 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1484 
1485 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1486 
1487 	/*
1488 	 * NB: although the OA buffer will initially be allocated
1489 	 * zeroed via shmfs (and so this memset is redundant when
1490 	 * first allocating), we may re-init the OA buffer, either
1491 	 * when re-enabling a stream or in error/reset paths.
1492 	 *
1493 	 * The reason we clear the buffer for each re-init is for the
1494 	 * sanity check in gen8_append_oa_reports() that looks at the
1495 	 * reason field to make sure it's non-zero which relies on
1496 	 * the assumption that new reports are being written to zeroed
1497 	 * memory...
1498 	 */
1499 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1500 }
1501 
1502 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1503 {
1504 	struct intel_uncore *uncore = stream->uncore;
1505 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1509 
1510 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1511 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1512 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1513 	stream->oa_buffer.head = gtt_offset;
1514 
1515 	/*
1516 	 * PRM says:
1517 	 *
1518 	 *  "This MMIO must be set before the OATAILPTR
1519 	 *  register and after the OAHEADPTR register. This is
1520 	 *  to enable proper functionality of the overflow
1521 	 *  bit."
1522 	 */
1523 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1524 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1525 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1526 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1527 
1528 	/* Mark that we need updated tail pointers to read from... */
1529 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1530 	stream->oa_buffer.tail = gtt_offset;
1531 
1532 	/*
1533 	 * Reset state used to recognise context switches, affecting which
1534 	 * reports we will forward to userspace while filtering for a single
1535 	 * context.
1536 	 */
1537 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1538 
1539 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1540 
1541 	/*
1542 	 * NB: although the OA buffer will initially be allocated
1543 	 * zeroed via shmfs (and so this memset is redundant when
1544 	 * first allocating), we may re-init the OA buffer, either
1545 	 * when re-enabling a stream or in error/reset paths.
1546 	 *
1547 	 * The reason we clear the buffer for each re-init is for the
1548 	 * sanity check in gen8_append_oa_reports() that looks at the
1549 	 * reason field to make sure it's non-zero which relies on
1550 	 * the assumption that new reports are being written to zeroed
1551 	 * memory...
1552 	 */
1553 	memset(stream->oa_buffer.vaddr, 0,
1554 	       stream->oa_buffer.vma->size);
1555 }
1556 
1557 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1558 {
1559 	struct drm_i915_private *i915 = stream->perf->i915;
1560 	struct drm_i915_gem_object *bo;
1561 	struct i915_vma *vma;
1562 	int ret;
1563 
1564 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1565 		return -ENODEV;
1566 
1567 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1568 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1569 
1570 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1571 	if (IS_ERR(bo)) {
1572 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1573 		return PTR_ERR(bo);
1574 	}
1575 
1576 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1577 
1578 	/* PreHSW required 512K alignment, HSW requires 16M */
1579 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1580 	if (IS_ERR(vma)) {
1581 		ret = PTR_ERR(vma);
1582 		goto err_unref;
1583 	}
1584 	stream->oa_buffer.vma = vma;
1585 
1586 	stream->oa_buffer.vaddr =
1587 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1588 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1589 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1590 		goto err_unpin;
1591 	}
1592 
1593 	return 0;
1594 
1595 err_unpin:
1596 	__i915_vma_unpin(vma);
1597 
1598 err_unref:
1599 	i915_gem_object_put(bo);
1600 
1601 	stream->oa_buffer.vaddr = NULL;
1602 	stream->oa_buffer.vma = NULL;
1603 
1604 	return ret;
1605 }
1606 
1607 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1608 				  bool save, i915_reg_t reg, u32 offset,
1609 				  u32 dword_count)
1610 {
1611 	u32 cmd;
1612 	u32 d;
1613 
1614 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1615 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1616 	if (INTEL_GEN(stream->perf->i915) >= 8)
1617 		cmd++;
1618 
1619 	for (d = 0; d < dword_count; d++) {
1620 		*cs++ = cmd;
1621 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1622 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1623 						offset) + 4 * d;
1624 		*cs++ = 0;
1625 	}
1626 
1627 	return cs;
1628 }
1629 
1630 static int alloc_noa_wait(struct i915_perf_stream *stream)
1631 {
1632 	struct drm_i915_private *i915 = stream->perf->i915;
1633 	struct drm_i915_gem_object *bo;
1634 	struct i915_vma *vma;
1635 	const u64 delay_ticks = 0xffffffffffffffff -
1636 		i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1637 	const u32 base = stream->engine->mmio_base;
1638 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1639 	u32 *batch, *ts0, *cs, *jump;
1640 	int ret, i;
1641 	enum {
1642 		START_TS,
1643 		NOW_TS,
1644 		DELTA_TS,
1645 		JUMP_PREDICATE,
1646 		DELTA_TARGET,
1647 		N_CS_GPR
1648 	};
1649 
1650 	bo = i915_gem_object_create_internal(i915, 4096);
1651 	if (IS_ERR(bo)) {
1652 		drm_err(&i915->drm,
1653 			"Failed to allocate NOA wait batchbuffer\n");
1654 		return PTR_ERR(bo);
1655 	}
1656 
1657 	/*
1658 	 * We pin in GGTT because we jump into this buffer now because
1659 	 * multiple OA config BOs will have a jump to this address and it
1660 	 * needs to be fixed during the lifetime of the i915/perf stream.
1661 	 */
1662 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1663 	if (IS_ERR(vma)) {
1664 		ret = PTR_ERR(vma);
1665 		goto err_unref;
1666 	}
1667 
1668 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1669 	if (IS_ERR(batch)) {
1670 		ret = PTR_ERR(batch);
1671 		goto err_unpin;
1672 	}
1673 
1674 	/* Save registers. */
1675 	for (i = 0; i < N_CS_GPR; i++)
1676 		cs = save_restore_register(
1677 			stream, cs, true /* save */, CS_GPR(i),
1678 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1679 	cs = save_restore_register(
1680 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1681 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1682 
1683 	/* First timestamp snapshot location. */
1684 	ts0 = cs;
1685 
1686 	/*
1687 	 * Initial snapshot of the timestamp register to implement the wait.
1688 	 * We work with 32b values, so clear out the top 32b bits of the
1689 	 * register because the ALU works 64bits.
1690 	 */
1691 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1692 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1693 	*cs++ = 0;
1694 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1695 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1696 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1697 
1698 	/*
1699 	 * This is the location we're going to jump back into until the
1700 	 * required amount of time has passed.
1701 	 */
1702 	jump = cs;
1703 
1704 	/*
1705 	 * Take another snapshot of the timestamp register. Take care to clear
1706 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1707 	 * operations below.
1708 	 */
1709 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1710 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1711 	*cs++ = 0;
1712 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1713 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1714 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1715 
1716 	/*
1717 	 * Do a diff between the 2 timestamps and store the result back into
1718 	 * CS_GPR(1).
1719 	 */
1720 	*cs++ = MI_MATH(5);
1721 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1722 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1723 	*cs++ = MI_MATH_SUB;
1724 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1725 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1726 
1727 	/*
1728 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1729 	 * timestamp have rolled over the 32bits) into the predicate register
1730 	 * to be used for the predicated jump.
1731 	 */
1732 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1733 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1734 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1735 
1736 	/* Restart from the beginning if we had timestamps roll over. */
1737 	*cs++ = (INTEL_GEN(i915) < 8 ?
1738 		 MI_BATCH_BUFFER_START :
1739 		 MI_BATCH_BUFFER_START_GEN8) |
1740 		MI_BATCH_PREDICATE;
1741 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1742 	*cs++ = 0;
1743 
1744 	/*
1745 	 * Now add the diff between to previous timestamps and add it to :
1746 	 *      (((1 * << 64) - 1) - delay_ns)
1747 	 *
1748 	 * When the Carry Flag contains 1 this means the elapsed time is
1749 	 * longer than the expected delay, and we can exit the wait loop.
1750 	 */
1751 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1752 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1753 	*cs++ = lower_32_bits(delay_ticks);
1754 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1755 	*cs++ = upper_32_bits(delay_ticks);
1756 
1757 	*cs++ = MI_MATH(4);
1758 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1759 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1760 	*cs++ = MI_MATH_ADD;
1761 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1762 
1763 	*cs++ = MI_ARB_CHECK;
1764 
1765 	/*
1766 	 * Transfer the result into the predicate register to be used for the
1767 	 * predicated jump.
1768 	 */
1769 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1770 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1771 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1772 
1773 	/* Predicate the jump.  */
1774 	*cs++ = (INTEL_GEN(i915) < 8 ?
1775 		 MI_BATCH_BUFFER_START :
1776 		 MI_BATCH_BUFFER_START_GEN8) |
1777 		MI_BATCH_PREDICATE;
1778 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1779 	*cs++ = 0;
1780 
1781 	/* Restore registers. */
1782 	for (i = 0; i < N_CS_GPR; i++)
1783 		cs = save_restore_register(
1784 			stream, cs, false /* restore */, CS_GPR(i),
1785 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1786 	cs = save_restore_register(
1787 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1788 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1789 
1790 	/* And return to the ring. */
1791 	*cs++ = MI_BATCH_BUFFER_END;
1792 
1793 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1794 
1795 	i915_gem_object_flush_map(bo);
1796 	__i915_gem_object_release_map(bo);
1797 
1798 	stream->noa_wait = vma;
1799 	return 0;
1800 
1801 err_unpin:
1802 	i915_vma_unpin_and_release(&vma, 0);
1803 err_unref:
1804 	i915_gem_object_put(bo);
1805 	return ret;
1806 }
1807 
1808 static u32 *write_cs_mi_lri(u32 *cs,
1809 			    const struct i915_oa_reg *reg_data,
1810 			    u32 n_regs)
1811 {
1812 	u32 i;
1813 
1814 	for (i = 0; i < n_regs; i++) {
1815 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1816 			u32 n_lri = min_t(u32,
1817 					  n_regs - i,
1818 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1819 
1820 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1821 		}
1822 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1823 		*cs++ = reg_data[i].value;
1824 	}
1825 
1826 	return cs;
1827 }
1828 
1829 static int num_lri_dwords(int num_regs)
1830 {
1831 	int count = 0;
1832 
1833 	if (num_regs > 0) {
1834 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1835 		count += num_regs * 2;
1836 	}
1837 
1838 	return count;
1839 }
1840 
1841 static struct i915_oa_config_bo *
1842 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1843 		       struct i915_oa_config *oa_config)
1844 {
1845 	struct drm_i915_gem_object *obj;
1846 	struct i915_oa_config_bo *oa_bo;
1847 	size_t config_length = 0;
1848 	u32 *cs;
1849 	int err;
1850 
1851 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1852 	if (!oa_bo)
1853 		return ERR_PTR(-ENOMEM);
1854 
1855 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1856 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1857 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1858 	config_length += 3; /* MI_BATCH_BUFFER_START */
1859 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1860 
1861 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1862 	if (IS_ERR(obj)) {
1863 		err = PTR_ERR(obj);
1864 		goto err_free;
1865 	}
1866 
1867 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1868 	if (IS_ERR(cs)) {
1869 		err = PTR_ERR(cs);
1870 		goto err_oa_bo;
1871 	}
1872 
1873 	cs = write_cs_mi_lri(cs,
1874 			     oa_config->mux_regs,
1875 			     oa_config->mux_regs_len);
1876 	cs = write_cs_mi_lri(cs,
1877 			     oa_config->b_counter_regs,
1878 			     oa_config->b_counter_regs_len);
1879 	cs = write_cs_mi_lri(cs,
1880 			     oa_config->flex_regs,
1881 			     oa_config->flex_regs_len);
1882 
1883 	/* Jump into the active wait. */
1884 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1885 		 MI_BATCH_BUFFER_START :
1886 		 MI_BATCH_BUFFER_START_GEN8);
1887 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1888 	*cs++ = 0;
1889 
1890 	i915_gem_object_flush_map(obj);
1891 	__i915_gem_object_release_map(obj);
1892 
1893 	oa_bo->vma = i915_vma_instance(obj,
1894 				       &stream->engine->gt->ggtt->vm,
1895 				       NULL);
1896 	if (IS_ERR(oa_bo->vma)) {
1897 		err = PTR_ERR(oa_bo->vma);
1898 		goto err_oa_bo;
1899 	}
1900 
1901 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1902 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1903 
1904 	return oa_bo;
1905 
1906 err_oa_bo:
1907 	i915_gem_object_put(obj);
1908 err_free:
1909 	kfree(oa_bo);
1910 	return ERR_PTR(err);
1911 }
1912 
1913 static struct i915_vma *
1914 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1915 {
1916 	struct i915_oa_config_bo *oa_bo;
1917 
1918 	/*
1919 	 * Look for the buffer in the already allocated BOs attached
1920 	 * to the stream.
1921 	 */
1922 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1923 		if (oa_bo->oa_config == oa_config &&
1924 		    memcmp(oa_bo->oa_config->uuid,
1925 			   oa_config->uuid,
1926 			   sizeof(oa_config->uuid)) == 0)
1927 			goto out;
1928 	}
1929 
1930 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1931 	if (IS_ERR(oa_bo))
1932 		return ERR_CAST(oa_bo);
1933 
1934 out:
1935 	return i915_vma_get(oa_bo->vma);
1936 }
1937 
1938 static int
1939 emit_oa_config(struct i915_perf_stream *stream,
1940 	       struct i915_oa_config *oa_config,
1941 	       struct intel_context *ce,
1942 	       struct i915_active *active)
1943 {
1944 	struct i915_request *rq;
1945 	struct i915_vma *vma;
1946 	struct i915_gem_ww_ctx ww;
1947 	int err;
1948 
1949 	vma = get_oa_vma(stream, oa_config);
1950 	if (IS_ERR(vma))
1951 		return PTR_ERR(vma);
1952 
1953 	i915_gem_ww_ctx_init(&ww, true);
1954 retry:
1955 	err = i915_gem_object_lock(vma->obj, &ww);
1956 	if (err)
1957 		goto err;
1958 
1959 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1960 	if (err)
1961 		goto err;
1962 
1963 	intel_engine_pm_get(ce->engine);
1964 	rq = i915_request_create(ce);
1965 	intel_engine_pm_put(ce->engine);
1966 	if (IS_ERR(rq)) {
1967 		err = PTR_ERR(rq);
1968 		goto err_vma_unpin;
1969 	}
1970 
1971 	if (!IS_ERR_OR_NULL(active)) {
1972 		/* After all individual context modifications */
1973 		err = i915_request_await_active(rq, active,
1974 						I915_ACTIVE_AWAIT_ACTIVE);
1975 		if (err)
1976 			goto err_add_request;
1977 
1978 		err = i915_active_add_request(active, rq);
1979 		if (err)
1980 			goto err_add_request;
1981 	}
1982 
1983 	err = i915_request_await_object(rq, vma->obj, 0);
1984 	if (!err)
1985 		err = i915_vma_move_to_active(vma, rq, 0);
1986 	if (err)
1987 		goto err_add_request;
1988 
1989 	err = rq->engine->emit_bb_start(rq,
1990 					vma->node.start, 0,
1991 					I915_DISPATCH_SECURE);
1992 	if (err)
1993 		goto err_add_request;
1994 
1995 err_add_request:
1996 	i915_request_add(rq);
1997 err_vma_unpin:
1998 	i915_vma_unpin(vma);
1999 err:
2000 	if (err == -EDEADLK) {
2001 		err = i915_gem_ww_ctx_backoff(&ww);
2002 		if (!err)
2003 			goto retry;
2004 	}
2005 
2006 	i915_gem_ww_ctx_fini(&ww);
2007 	i915_vma_put(vma);
2008 	return err;
2009 }
2010 
2011 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2012 {
2013 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2014 }
2015 
2016 static int
2017 hsw_enable_metric_set(struct i915_perf_stream *stream,
2018 		      struct i915_active *active)
2019 {
2020 	struct intel_uncore *uncore = stream->uncore;
2021 
2022 	/*
2023 	 * PRM:
2024 	 *
2025 	 * OA unit is using “crclk” for its functionality. When trunk
2026 	 * level clock gating takes place, OA clock would be gated,
2027 	 * unable to count the events from non-render clock domain.
2028 	 * Render clock gating must be disabled when OA is enabled to
2029 	 * count the events from non-render domain. Unit level clock
2030 	 * gating for RCS should also be disabled.
2031 	 */
2032 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2033 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2034 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2035 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2036 
2037 	return emit_oa_config(stream,
2038 			      stream->oa_config, oa_context(stream),
2039 			      active);
2040 }
2041 
2042 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2043 {
2044 	struct intel_uncore *uncore = stream->uncore;
2045 
2046 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2047 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2048 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2049 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2050 
2051 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2052 }
2053 
2054 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2055 			      i915_reg_t reg)
2056 {
2057 	u32 mmio = i915_mmio_reg_offset(reg);
2058 	int i;
2059 
2060 	/*
2061 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2062 	 * Active' event. In the future it's anticipated that there
2063 	 * will be an explicit 'No Event' we can select, but not yet...
2064 	 */
2065 	if (!oa_config)
2066 		return 0;
2067 
2068 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2069 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2070 			return oa_config->flex_regs[i].value;
2071 	}
2072 
2073 	return 0;
2074 }
2075 /*
2076  * NB: It must always remain pointer safe to run this even if the OA unit
2077  * has been disabled.
2078  *
2079  * It's fine to put out-of-date values into these per-context registers
2080  * in the case that the OA unit has been disabled.
2081  */
2082 static void
2083 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2084 			       const struct i915_perf_stream *stream)
2085 {
2086 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2087 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2088 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2089 	i915_reg_t flex_regs[] = {
2090 		EU_PERF_CNTL0,
2091 		EU_PERF_CNTL1,
2092 		EU_PERF_CNTL2,
2093 		EU_PERF_CNTL3,
2094 		EU_PERF_CNTL4,
2095 		EU_PERF_CNTL5,
2096 		EU_PERF_CNTL6,
2097 	};
2098 	u32 *reg_state = ce->lrc_reg_state;
2099 	int i;
2100 
2101 	reg_state[ctx_oactxctrl + 1] =
2102 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2103 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2104 		GEN8_OA_COUNTER_RESUME;
2105 
2106 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2107 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2108 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2109 }
2110 
2111 struct flex {
2112 	i915_reg_t reg;
2113 	u32 offset;
2114 	u32 value;
2115 };
2116 
2117 static int
2118 gen8_store_flex(struct i915_request *rq,
2119 		struct intel_context *ce,
2120 		const struct flex *flex, unsigned int count)
2121 {
2122 	u32 offset;
2123 	u32 *cs;
2124 
2125 	cs = intel_ring_begin(rq, 4 * count);
2126 	if (IS_ERR(cs))
2127 		return PTR_ERR(cs);
2128 
2129 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2130 	do {
2131 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2132 		*cs++ = offset + flex->offset * sizeof(u32);
2133 		*cs++ = 0;
2134 		*cs++ = flex->value;
2135 	} while (flex++, --count);
2136 
2137 	intel_ring_advance(rq, cs);
2138 
2139 	return 0;
2140 }
2141 
2142 static int
2143 gen8_load_flex(struct i915_request *rq,
2144 	       struct intel_context *ce,
2145 	       const struct flex *flex, unsigned int count)
2146 {
2147 	u32 *cs;
2148 
2149 	GEM_BUG_ON(!count || count > 63);
2150 
2151 	cs = intel_ring_begin(rq, 2 * count + 2);
2152 	if (IS_ERR(cs))
2153 		return PTR_ERR(cs);
2154 
2155 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2156 	do {
2157 		*cs++ = i915_mmio_reg_offset(flex->reg);
2158 		*cs++ = flex->value;
2159 	} while (flex++, --count);
2160 	*cs++ = MI_NOOP;
2161 
2162 	intel_ring_advance(rq, cs);
2163 
2164 	return 0;
2165 }
2166 
2167 static int gen8_modify_context(struct intel_context *ce,
2168 			       const struct flex *flex, unsigned int count)
2169 {
2170 	struct i915_request *rq;
2171 	int err;
2172 
2173 	rq = intel_engine_create_kernel_request(ce->engine);
2174 	if (IS_ERR(rq))
2175 		return PTR_ERR(rq);
2176 
2177 	/* Serialise with the remote context */
2178 	err = intel_context_prepare_remote_request(ce, rq);
2179 	if (err == 0)
2180 		err = gen8_store_flex(rq, ce, flex, count);
2181 
2182 	i915_request_add(rq);
2183 	return err;
2184 }
2185 
2186 static int
2187 gen8_modify_self(struct intel_context *ce,
2188 		 const struct flex *flex, unsigned int count,
2189 		 struct i915_active *active)
2190 {
2191 	struct i915_request *rq;
2192 	int err;
2193 
2194 	intel_engine_pm_get(ce->engine);
2195 	rq = i915_request_create(ce);
2196 	intel_engine_pm_put(ce->engine);
2197 	if (IS_ERR(rq))
2198 		return PTR_ERR(rq);
2199 
2200 	if (!IS_ERR_OR_NULL(active)) {
2201 		err = i915_active_add_request(active, rq);
2202 		if (err)
2203 			goto err_add_request;
2204 	}
2205 
2206 	err = gen8_load_flex(rq, ce, flex, count);
2207 	if (err)
2208 		goto err_add_request;
2209 
2210 err_add_request:
2211 	i915_request_add(rq);
2212 	return err;
2213 }
2214 
2215 static int gen8_configure_context(struct i915_gem_context *ctx,
2216 				  struct flex *flex, unsigned int count)
2217 {
2218 	struct i915_gem_engines_iter it;
2219 	struct intel_context *ce;
2220 	int err = 0;
2221 
2222 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2223 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2224 
2225 		if (ce->engine->class != RENDER_CLASS)
2226 			continue;
2227 
2228 		/* Otherwise OA settings will be set upon first use */
2229 		if (!intel_context_pin_if_active(ce))
2230 			continue;
2231 
2232 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2233 		err = gen8_modify_context(ce, flex, count);
2234 
2235 		intel_context_unpin(ce);
2236 		if (err)
2237 			break;
2238 	}
2239 	i915_gem_context_unlock_engines(ctx);
2240 
2241 	return err;
2242 }
2243 
2244 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2245 				       struct i915_active *active)
2246 {
2247 	int err;
2248 	struct intel_context *ce = stream->pinned_ctx;
2249 	u32 format = stream->oa_buffer.format;
2250 	struct flex regs_context[] = {
2251 		{
2252 			GEN8_OACTXCONTROL,
2253 			stream->perf->ctx_oactxctrl_offset + 1,
2254 			active ? GEN8_OA_COUNTER_RESUME : 0,
2255 		},
2256 	};
2257 	/* Offsets in regs_lri are not used since this configuration is only
2258 	 * applied using LRI. Initialize the correct offsets for posterity.
2259 	 */
2260 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2261 	struct flex regs_lri[] = {
2262 		{
2263 			GEN12_OAR_OACONTROL,
2264 			GEN12_OAR_OACONTROL_OFFSET + 1,
2265 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2266 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2267 		},
2268 		{
2269 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2270 			CTX_CONTEXT_CONTROL,
2271 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2272 				      active ?
2273 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2274 				      0)
2275 		},
2276 	};
2277 
2278 	/* Modify the context image of pinned context with regs_context*/
2279 	err = intel_context_lock_pinned(ce);
2280 	if (err)
2281 		return err;
2282 
2283 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2284 	intel_context_unlock_pinned(ce);
2285 	if (err)
2286 		return err;
2287 
2288 	/* Apply regs_lri using LRI with pinned context */
2289 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2290 }
2291 
2292 /*
2293  * Manages updating the per-context aspects of the OA stream
2294  * configuration across all contexts.
2295  *
2296  * The awkward consideration here is that OACTXCONTROL controls the
2297  * exponent for periodic sampling which is primarily used for system
2298  * wide profiling where we'd like a consistent sampling period even in
2299  * the face of context switches.
2300  *
2301  * Our approach of updating the register state context (as opposed to
2302  * say using a workaround batch buffer) ensures that the hardware
2303  * won't automatically reload an out-of-date timer exponent even
2304  * transiently before a WA BB could be parsed.
2305  *
2306  * This function needs to:
2307  * - Ensure the currently running context's per-context OA state is
2308  *   updated
2309  * - Ensure that all existing contexts will have the correct per-context
2310  *   OA state if they are scheduled for use.
2311  * - Ensure any new contexts will be initialized with the correct
2312  *   per-context OA state.
2313  *
2314  * Note: it's only the RCS/Render context that has any OA state.
2315  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2316  */
2317 static int
2318 oa_configure_all_contexts(struct i915_perf_stream *stream,
2319 			  struct flex *regs,
2320 			  size_t num_regs,
2321 			  struct i915_active *active)
2322 {
2323 	struct drm_i915_private *i915 = stream->perf->i915;
2324 	struct intel_engine_cs *engine;
2325 	struct i915_gem_context *ctx, *cn;
2326 	int err;
2327 
2328 	lockdep_assert_held(&stream->perf->lock);
2329 
2330 	/*
2331 	 * The OA register config is setup through the context image. This image
2332 	 * might be written to by the GPU on context switch (in particular on
2333 	 * lite-restore). This means we can't safely update a context's image,
2334 	 * if this context is scheduled/submitted to run on the GPU.
2335 	 *
2336 	 * We could emit the OA register config through the batch buffer but
2337 	 * this might leave small interval of time where the OA unit is
2338 	 * configured at an invalid sampling period.
2339 	 *
2340 	 * Note that since we emit all requests from a single ring, there
2341 	 * is still an implicit global barrier here that may cause a high
2342 	 * priority context to wait for an otherwise independent low priority
2343 	 * context. Contexts idle at the time of reconfiguration are not
2344 	 * trapped behind the barrier.
2345 	 */
2346 	spin_lock(&i915->gem.contexts.lock);
2347 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2348 		if (!kref_get_unless_zero(&ctx->ref))
2349 			continue;
2350 
2351 		spin_unlock(&i915->gem.contexts.lock);
2352 
2353 		err = gen8_configure_context(ctx, regs, num_regs);
2354 		if (err) {
2355 			i915_gem_context_put(ctx);
2356 			return err;
2357 		}
2358 
2359 		spin_lock(&i915->gem.contexts.lock);
2360 		list_safe_reset_next(ctx, cn, link);
2361 		i915_gem_context_put(ctx);
2362 	}
2363 	spin_unlock(&i915->gem.contexts.lock);
2364 
2365 	/*
2366 	 * After updating all other contexts, we need to modify ourselves.
2367 	 * If we don't modify the kernel_context, we do not get events while
2368 	 * idle.
2369 	 */
2370 	for_each_uabi_engine(engine, i915) {
2371 		struct intel_context *ce = engine->kernel_context;
2372 
2373 		if (engine->class != RENDER_CLASS)
2374 			continue;
2375 
2376 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2377 
2378 		err = gen8_modify_self(ce, regs, num_regs, active);
2379 		if (err)
2380 			return err;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static int
2387 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2388 			     const struct i915_oa_config *oa_config,
2389 			     struct i915_active *active)
2390 {
2391 	struct flex regs[] = {
2392 		{
2393 			GEN8_R_PWR_CLK_STATE,
2394 			CTX_R_PWR_CLK_STATE,
2395 		},
2396 	};
2397 
2398 	return oa_configure_all_contexts(stream,
2399 					 regs, ARRAY_SIZE(regs),
2400 					 active);
2401 }
2402 
2403 static int
2404 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2405 			   const struct i915_oa_config *oa_config,
2406 			   struct i915_active *active)
2407 {
2408 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2409 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2410 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2411 	struct flex regs[] = {
2412 		{
2413 			GEN8_R_PWR_CLK_STATE,
2414 			CTX_R_PWR_CLK_STATE,
2415 		},
2416 		{
2417 			GEN8_OACTXCONTROL,
2418 			stream->perf->ctx_oactxctrl_offset + 1,
2419 		},
2420 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2421 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2422 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2423 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2424 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2425 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2426 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2427 	};
2428 #undef ctx_flexeuN
2429 	int i;
2430 
2431 	regs[1].value =
2432 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2433 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2434 		GEN8_OA_COUNTER_RESUME;
2435 
2436 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2437 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2438 
2439 	return oa_configure_all_contexts(stream,
2440 					 regs, ARRAY_SIZE(regs),
2441 					 active);
2442 }
2443 
2444 static int
2445 gen8_enable_metric_set(struct i915_perf_stream *stream,
2446 		       struct i915_active *active)
2447 {
2448 	struct intel_uncore *uncore = stream->uncore;
2449 	struct i915_oa_config *oa_config = stream->oa_config;
2450 	int ret;
2451 
2452 	/*
2453 	 * We disable slice/unslice clock ratio change reports on SKL since
2454 	 * they are too noisy. The HW generates a lot of redundant reports
2455 	 * where the ratio hasn't really changed causing a lot of redundant
2456 	 * work to processes and increasing the chances we'll hit buffer
2457 	 * overruns.
2458 	 *
2459 	 * Although we don't currently use the 'disable overrun' OABUFFER
2460 	 * feature it's worth noting that clock ratio reports have to be
2461 	 * disabled before considering to use that feature since the HW doesn't
2462 	 * correctly block these reports.
2463 	 *
2464 	 * Currently none of the high-level metrics we have depend on knowing
2465 	 * this ratio to normalize.
2466 	 *
2467 	 * Note: This register is not power context saved and restored, but
2468 	 * that's OK considering that we disable RC6 while the OA unit is
2469 	 * enabled.
2470 	 *
2471 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2472 	 * be read back from automatically triggered reports, as part of the
2473 	 * RPT_ID field.
2474 	 */
2475 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2476 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2477 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2478 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2479 	}
2480 
2481 	/*
2482 	 * Update all contexts prior writing the mux configurations as we need
2483 	 * to make sure all slices/subslices are ON before writing to NOA
2484 	 * registers.
2485 	 */
2486 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2487 	if (ret)
2488 		return ret;
2489 
2490 	return emit_oa_config(stream,
2491 			      stream->oa_config, oa_context(stream),
2492 			      active);
2493 }
2494 
2495 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2496 {
2497 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2498 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2499 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2500 }
2501 
2502 static int
2503 gen12_enable_metric_set(struct i915_perf_stream *stream,
2504 			struct i915_active *active)
2505 {
2506 	struct intel_uncore *uncore = stream->uncore;
2507 	struct i915_oa_config *oa_config = stream->oa_config;
2508 	bool periodic = stream->periodic;
2509 	u32 period_exponent = stream->period_exponent;
2510 	int ret;
2511 
2512 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2513 			   /* Disable clk ratio reports, like previous Gens. */
2514 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2515 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2516 			   /*
2517 			    * If the user didn't require OA reports, instruct
2518 			    * the hardware not to emit ctx switch reports.
2519 			    */
2520 			   oag_report_ctx_switches(stream));
2521 
2522 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2523 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2524 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2525 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2526 			    : 0);
2527 
2528 	/*
2529 	 * Update all contexts prior writing the mux configurations as we need
2530 	 * to make sure all slices/subslices are ON before writing to NOA
2531 	 * registers.
2532 	 */
2533 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2534 	if (ret)
2535 		return ret;
2536 
2537 	/*
2538 	 * For Gen12, performance counters are context
2539 	 * saved/restored. Only enable it for the context that
2540 	 * requested this.
2541 	 */
2542 	if (stream->ctx) {
2543 		ret = gen12_configure_oar_context(stream, active);
2544 		if (ret)
2545 			return ret;
2546 	}
2547 
2548 	return emit_oa_config(stream,
2549 			      stream->oa_config, oa_context(stream),
2550 			      active);
2551 }
2552 
2553 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2554 {
2555 	struct intel_uncore *uncore = stream->uncore;
2556 
2557 	/* Reset all contexts' slices/subslices configurations. */
2558 	lrc_configure_all_contexts(stream, NULL, NULL);
2559 
2560 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2561 }
2562 
2563 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2564 {
2565 	struct intel_uncore *uncore = stream->uncore;
2566 
2567 	/* Reset all contexts' slices/subslices configurations. */
2568 	lrc_configure_all_contexts(stream, NULL, NULL);
2569 
2570 	/* Make sure we disable noa to save power. */
2571 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2572 }
2573 
2574 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2575 {
2576 	struct intel_uncore *uncore = stream->uncore;
2577 
2578 	/* Reset all contexts' slices/subslices configurations. */
2579 	gen12_configure_all_contexts(stream, NULL, NULL);
2580 
2581 	/* disable the context save/restore or OAR counters */
2582 	if (stream->ctx)
2583 		gen12_configure_oar_context(stream, NULL);
2584 
2585 	/* Make sure we disable noa to save power. */
2586 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2587 }
2588 
2589 static void gen7_oa_enable(struct i915_perf_stream *stream)
2590 {
2591 	struct intel_uncore *uncore = stream->uncore;
2592 	struct i915_gem_context *ctx = stream->ctx;
2593 	u32 ctx_id = stream->specific_ctx_id;
2594 	bool periodic = stream->periodic;
2595 	u32 period_exponent = stream->period_exponent;
2596 	u32 report_format = stream->oa_buffer.format;
2597 
2598 	/*
2599 	 * Reset buf pointers so we don't forward reports from before now.
2600 	 *
2601 	 * Think carefully if considering trying to avoid this, since it
2602 	 * also ensures status flags and the buffer itself are cleared
2603 	 * in error paths, and we have checks for invalid reports based
2604 	 * on the assumption that certain fields are written to zeroed
2605 	 * memory which this helps maintains.
2606 	 */
2607 	gen7_init_oa_buffer(stream);
2608 
2609 	intel_uncore_write(uncore, GEN7_OACONTROL,
2610 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2611 			   (period_exponent <<
2612 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2613 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2614 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2615 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2616 			   GEN7_OACONTROL_ENABLE);
2617 }
2618 
2619 static void gen8_oa_enable(struct i915_perf_stream *stream)
2620 {
2621 	struct intel_uncore *uncore = stream->uncore;
2622 	u32 report_format = stream->oa_buffer.format;
2623 
2624 	/*
2625 	 * Reset buf pointers so we don't forward reports from before now.
2626 	 *
2627 	 * Think carefully if considering trying to avoid this, since it
2628 	 * also ensures status flags and the buffer itself are cleared
2629 	 * in error paths, and we have checks for invalid reports based
2630 	 * on the assumption that certain fields are written to zeroed
2631 	 * memory which this helps maintains.
2632 	 */
2633 	gen8_init_oa_buffer(stream);
2634 
2635 	/*
2636 	 * Note: we don't rely on the hardware to perform single context
2637 	 * filtering and instead filter on the cpu based on the context-id
2638 	 * field of reports
2639 	 */
2640 	intel_uncore_write(uncore, GEN8_OACONTROL,
2641 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2642 			   GEN8_OA_COUNTER_ENABLE);
2643 }
2644 
2645 static void gen12_oa_enable(struct i915_perf_stream *stream)
2646 {
2647 	struct intel_uncore *uncore = stream->uncore;
2648 	u32 report_format = stream->oa_buffer.format;
2649 
2650 	/*
2651 	 * If we don't want OA reports from the OA buffer, then we don't even
2652 	 * need to program the OAG unit.
2653 	 */
2654 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2655 		return;
2656 
2657 	gen12_init_oa_buffer(stream);
2658 
2659 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2660 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2661 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2662 }
2663 
2664 /**
2665  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2666  * @stream: An i915 perf stream opened for OA metrics
2667  *
2668  * [Re]enables hardware periodic sampling according to the period configured
2669  * when opening the stream. This also starts a hrtimer that will periodically
2670  * check for data in the circular OA buffer for notifying userspace (e.g.
2671  * during a read() or poll()).
2672  */
2673 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2674 {
2675 	stream->pollin = false;
2676 
2677 	stream->perf->ops.oa_enable(stream);
2678 
2679 	if (stream->periodic)
2680 		hrtimer_start(&stream->poll_check_timer,
2681 			      ns_to_ktime(stream->poll_oa_period),
2682 			      HRTIMER_MODE_REL_PINNED);
2683 }
2684 
2685 static void gen7_oa_disable(struct i915_perf_stream *stream)
2686 {
2687 	struct intel_uncore *uncore = stream->uncore;
2688 
2689 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2690 	if (intel_wait_for_register(uncore,
2691 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2692 				    50))
2693 		drm_err(&stream->perf->i915->drm,
2694 			"wait for OA to be disabled timed out\n");
2695 }
2696 
2697 static void gen8_oa_disable(struct i915_perf_stream *stream)
2698 {
2699 	struct intel_uncore *uncore = stream->uncore;
2700 
2701 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2702 	if (intel_wait_for_register(uncore,
2703 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2704 				    50))
2705 		drm_err(&stream->perf->i915->drm,
2706 			"wait for OA to be disabled timed out\n");
2707 }
2708 
2709 static void gen12_oa_disable(struct i915_perf_stream *stream)
2710 {
2711 	struct intel_uncore *uncore = stream->uncore;
2712 
2713 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2714 	if (intel_wait_for_register(uncore,
2715 				    GEN12_OAG_OACONTROL,
2716 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2717 				    50))
2718 		drm_err(&stream->perf->i915->drm,
2719 			"wait for OA to be disabled timed out\n");
2720 
2721 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2722 	if (intel_wait_for_register(uncore,
2723 				    GEN12_OA_TLB_INV_CR,
2724 				    1, 0,
2725 				    50))
2726 		drm_err(&stream->perf->i915->drm,
2727 			"wait for OA tlb invalidate timed out\n");
2728 }
2729 
2730 /**
2731  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2732  * @stream: An i915 perf stream opened for OA metrics
2733  *
2734  * Stops the OA unit from periodically writing counter reports into the
2735  * circular OA buffer. This also stops the hrtimer that periodically checks for
2736  * data in the circular OA buffer, for notifying userspace.
2737  */
2738 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2739 {
2740 	stream->perf->ops.oa_disable(stream);
2741 
2742 	if (stream->periodic)
2743 		hrtimer_cancel(&stream->poll_check_timer);
2744 }
2745 
2746 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2747 	.destroy = i915_oa_stream_destroy,
2748 	.enable = i915_oa_stream_enable,
2749 	.disable = i915_oa_stream_disable,
2750 	.wait_unlocked = i915_oa_wait_unlocked,
2751 	.poll_wait = i915_oa_poll_wait,
2752 	.read = i915_oa_read,
2753 };
2754 
2755 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2756 {
2757 	struct i915_active *active;
2758 	int err;
2759 
2760 	active = i915_active_create();
2761 	if (!active)
2762 		return -ENOMEM;
2763 
2764 	err = stream->perf->ops.enable_metric_set(stream, active);
2765 	if (err == 0)
2766 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2767 
2768 	i915_active_put(active);
2769 	return err;
2770 }
2771 
2772 static void
2773 get_default_sseu_config(struct intel_sseu *out_sseu,
2774 			struct intel_engine_cs *engine)
2775 {
2776 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2777 
2778 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2779 
2780 	if (IS_GEN(engine->i915, 11)) {
2781 		/*
2782 		 * We only need subslice count so it doesn't matter which ones
2783 		 * we select - just turn off low bits in the amount of half of
2784 		 * all available subslices per slice.
2785 		 */
2786 		out_sseu->subslice_mask =
2787 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2788 		out_sseu->slice_mask = 0x1;
2789 	}
2790 }
2791 
2792 static int
2793 get_sseu_config(struct intel_sseu *out_sseu,
2794 		struct intel_engine_cs *engine,
2795 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2796 {
2797 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2798 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2799 		return -EINVAL;
2800 
2801 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2802 }
2803 
2804 /**
2805  * i915_oa_stream_init - validate combined props for OA stream and init
2806  * @stream: An i915 perf stream
2807  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2808  * @props: The property state that configures stream (individually validated)
2809  *
2810  * While read_properties_unlocked() validates properties in isolation it
2811  * doesn't ensure that the combination necessarily makes sense.
2812  *
2813  * At this point it has been determined that userspace wants a stream of
2814  * OA metrics, but still we need to further validate the combined
2815  * properties are OK.
2816  *
2817  * If the configuration makes sense then we can allocate memory for
2818  * a circular OA buffer and apply the requested metric set configuration.
2819  *
2820  * Returns: zero on success or a negative error code.
2821  */
2822 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2823 			       struct drm_i915_perf_open_param *param,
2824 			       struct perf_open_properties *props)
2825 {
2826 	struct drm_i915_private *i915 = stream->perf->i915;
2827 	struct i915_perf *perf = stream->perf;
2828 	int format_size;
2829 	int ret;
2830 
2831 	if (!props->engine) {
2832 		DRM_DEBUG("OA engine not specified\n");
2833 		return -EINVAL;
2834 	}
2835 
2836 	/*
2837 	 * If the sysfs metrics/ directory wasn't registered for some
2838 	 * reason then don't let userspace try their luck with config
2839 	 * IDs
2840 	 */
2841 	if (!perf->metrics_kobj) {
2842 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2843 		return -EINVAL;
2844 	}
2845 
2846 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2847 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2848 		DRM_DEBUG("Only OA report sampling supported\n");
2849 		return -EINVAL;
2850 	}
2851 
2852 	if (!perf->ops.enable_metric_set) {
2853 		DRM_DEBUG("OA unit not supported\n");
2854 		return -ENODEV;
2855 	}
2856 
2857 	/*
2858 	 * To avoid the complexity of having to accurately filter
2859 	 * counter reports and marshal to the appropriate client
2860 	 * we currently only allow exclusive access
2861 	 */
2862 	if (perf->exclusive_stream) {
2863 		DRM_DEBUG("OA unit already in use\n");
2864 		return -EBUSY;
2865 	}
2866 
2867 	if (!props->oa_format) {
2868 		DRM_DEBUG("OA report format not specified\n");
2869 		return -EINVAL;
2870 	}
2871 
2872 	stream->engine = props->engine;
2873 	stream->uncore = stream->engine->gt->uncore;
2874 
2875 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2876 
2877 	format_size = perf->oa_formats[props->oa_format].size;
2878 
2879 	stream->sample_flags = props->sample_flags;
2880 	stream->sample_size += format_size;
2881 
2882 	stream->oa_buffer.format_size = format_size;
2883 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2884 		return -EINVAL;
2885 
2886 	stream->hold_preemption = props->hold_preemption;
2887 
2888 	stream->oa_buffer.format =
2889 		perf->oa_formats[props->oa_format].format;
2890 
2891 	stream->periodic = props->oa_periodic;
2892 	if (stream->periodic)
2893 		stream->period_exponent = props->oa_period_exponent;
2894 
2895 	if (stream->ctx) {
2896 		ret = oa_get_render_ctx_id(stream);
2897 		if (ret) {
2898 			DRM_DEBUG("Invalid context id to filter with\n");
2899 			return ret;
2900 		}
2901 	}
2902 
2903 	ret = alloc_noa_wait(stream);
2904 	if (ret) {
2905 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2906 		goto err_noa_wait_alloc;
2907 	}
2908 
2909 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2910 	if (!stream->oa_config) {
2911 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2912 		ret = -EINVAL;
2913 		goto err_config;
2914 	}
2915 
2916 	/* PRM - observability performance counters:
2917 	 *
2918 	 *   OACONTROL, performance counter enable, note:
2919 	 *
2920 	 *   "When this bit is set, in order to have coherent counts,
2921 	 *   RC6 power state and trunk clock gating must be disabled.
2922 	 *   This can be achieved by programming MMIO registers as
2923 	 *   0xA094=0 and 0xA090[31]=1"
2924 	 *
2925 	 *   In our case we are expecting that taking pm + FORCEWAKE
2926 	 *   references will effectively disable RC6.
2927 	 */
2928 	intel_engine_pm_get(stream->engine);
2929 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2930 
2931 	ret = alloc_oa_buffer(stream);
2932 	if (ret)
2933 		goto err_oa_buf_alloc;
2934 
2935 	stream->ops = &i915_oa_stream_ops;
2936 
2937 	perf->sseu = props->sseu;
2938 	WRITE_ONCE(perf->exclusive_stream, stream);
2939 
2940 	ret = i915_perf_stream_enable_sync(stream);
2941 	if (ret) {
2942 		DRM_DEBUG("Unable to enable metric set\n");
2943 		goto err_enable;
2944 	}
2945 
2946 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2947 		  stream->oa_config->uuid);
2948 
2949 	hrtimer_init(&stream->poll_check_timer,
2950 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2951 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2952 	init_waitqueue_head(&stream->poll_wq);
2953 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2954 
2955 	return 0;
2956 
2957 err_enable:
2958 	WRITE_ONCE(perf->exclusive_stream, NULL);
2959 	perf->ops.disable_metric_set(stream);
2960 
2961 	free_oa_buffer(stream);
2962 
2963 err_oa_buf_alloc:
2964 	free_oa_configs(stream);
2965 
2966 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2967 	intel_engine_pm_put(stream->engine);
2968 
2969 err_config:
2970 	free_noa_wait(stream);
2971 
2972 err_noa_wait_alloc:
2973 	if (stream->ctx)
2974 		oa_put_render_ctx_id(stream);
2975 
2976 	return ret;
2977 }
2978 
2979 void i915_oa_init_reg_state(const struct intel_context *ce,
2980 			    const struct intel_engine_cs *engine)
2981 {
2982 	struct i915_perf_stream *stream;
2983 
2984 	if (engine->class != RENDER_CLASS)
2985 		return;
2986 
2987 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2988 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2989 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2990 		gen8_update_reg_state_unlocked(ce, stream);
2991 }
2992 
2993 /**
2994  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2995  * @file: An i915 perf stream file
2996  * @buf: destination buffer given by userspace
2997  * @count: the number of bytes userspace wants to read
2998  * @ppos: (inout) file seek position (unused)
2999  *
3000  * The entry point for handling a read() on a stream file descriptor from
3001  * userspace. Most of the work is left to the i915_perf_read_locked() and
3002  * &i915_perf_stream_ops->read but to save having stream implementations (of
3003  * which we might have multiple later) we handle blocking read here.
3004  *
3005  * We can also consistently treat trying to read from a disabled stream
3006  * as an IO error so implementations can assume the stream is enabled
3007  * while reading.
3008  *
3009  * Returns: The number of bytes copied or a negative error code on failure.
3010  */
3011 static ssize_t i915_perf_read(struct file *file,
3012 			      char __user *buf,
3013 			      size_t count,
3014 			      loff_t *ppos)
3015 {
3016 	struct i915_perf_stream *stream = file->private_data;
3017 	struct i915_perf *perf = stream->perf;
3018 	size_t offset = 0;
3019 	int ret;
3020 
3021 	/* To ensure it's handled consistently we simply treat all reads of a
3022 	 * disabled stream as an error. In particular it might otherwise lead
3023 	 * to a deadlock for blocking file descriptors...
3024 	 */
3025 	if (!stream->enabled)
3026 		return -EIO;
3027 
3028 	if (!(file->f_flags & O_NONBLOCK)) {
3029 		/* There's the small chance of false positives from
3030 		 * stream->ops->wait_unlocked.
3031 		 *
3032 		 * E.g. with single context filtering since we only wait until
3033 		 * oabuffer has >= 1 report we don't immediately know whether
3034 		 * any reports really belong to the current context
3035 		 */
3036 		do {
3037 			ret = stream->ops->wait_unlocked(stream);
3038 			if (ret)
3039 				return ret;
3040 
3041 			mutex_lock(&perf->lock);
3042 			ret = stream->ops->read(stream, buf, count, &offset);
3043 			mutex_unlock(&perf->lock);
3044 		} while (!offset && !ret);
3045 	} else {
3046 		mutex_lock(&perf->lock);
3047 		ret = stream->ops->read(stream, buf, count, &offset);
3048 		mutex_unlock(&perf->lock);
3049 	}
3050 
3051 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3052 	 * events where we might actually report EAGAIN on read() if there's
3053 	 * not really any data available. In this situation though we don't
3054 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3055 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3056 	 * effectively ensures we back off until the next hrtimer callback
3057 	 * before reporting another EPOLLIN event.
3058 	 * The exception to this is if ops->read() returned -ENOSPC which means
3059 	 * that more OA data is available than could fit in the user provided
3060 	 * buffer. In this case we want the next poll() call to not block.
3061 	 */
3062 	if (ret != -ENOSPC)
3063 		stream->pollin = false;
3064 
3065 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3066 	return offset ?: (ret ?: -EAGAIN);
3067 }
3068 
3069 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3070 {
3071 	struct i915_perf_stream *stream =
3072 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3073 
3074 	if (oa_buffer_check_unlocked(stream)) {
3075 		stream->pollin = true;
3076 		wake_up(&stream->poll_wq);
3077 	}
3078 
3079 	hrtimer_forward_now(hrtimer,
3080 			    ns_to_ktime(stream->poll_oa_period));
3081 
3082 	return HRTIMER_RESTART;
3083 }
3084 
3085 /**
3086  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3087  * @stream: An i915 perf stream
3088  * @file: An i915 perf stream file
3089  * @wait: poll() state table
3090  *
3091  * For handling userspace polling on an i915 perf stream, this calls through to
3092  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3093  * will be woken for new stream data.
3094  *
3095  * Note: The &perf->lock mutex has been taken to serialize
3096  * with any non-file-operation driver hooks.
3097  *
3098  * Returns: any poll events that are ready without sleeping
3099  */
3100 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3101 				      struct file *file,
3102 				      poll_table *wait)
3103 {
3104 	__poll_t events = 0;
3105 
3106 	stream->ops->poll_wait(stream, file, wait);
3107 
3108 	/* Note: we don't explicitly check whether there's something to read
3109 	 * here since this path may be very hot depending on what else
3110 	 * userspace is polling, or on the timeout in use. We rely solely on
3111 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3112 	 * samples to read.
3113 	 */
3114 	if (stream->pollin)
3115 		events |= EPOLLIN;
3116 
3117 	return events;
3118 }
3119 
3120 /**
3121  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3122  * @file: An i915 perf stream file
3123  * @wait: poll() state table
3124  *
3125  * For handling userspace polling on an i915 perf stream, this ensures
3126  * poll_wait() gets called with a wait queue that will be woken for new stream
3127  * data.
3128  *
3129  * Note: Implementation deferred to i915_perf_poll_locked()
3130  *
3131  * Returns: any poll events that are ready without sleeping
3132  */
3133 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3134 {
3135 	struct i915_perf_stream *stream = file->private_data;
3136 	struct i915_perf *perf = stream->perf;
3137 	__poll_t ret;
3138 
3139 	mutex_lock(&perf->lock);
3140 	ret = i915_perf_poll_locked(stream, file, wait);
3141 	mutex_unlock(&perf->lock);
3142 
3143 	return ret;
3144 }
3145 
3146 /**
3147  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3148  * @stream: A disabled i915 perf stream
3149  *
3150  * [Re]enables the associated capture of data for this stream.
3151  *
3152  * If a stream was previously enabled then there's currently no intention
3153  * to provide userspace any guarantee about the preservation of previously
3154  * buffered data.
3155  */
3156 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3157 {
3158 	if (stream->enabled)
3159 		return;
3160 
3161 	/* Allow stream->ops->enable() to refer to this */
3162 	stream->enabled = true;
3163 
3164 	if (stream->ops->enable)
3165 		stream->ops->enable(stream);
3166 
3167 	if (stream->hold_preemption)
3168 		intel_context_set_nopreempt(stream->pinned_ctx);
3169 }
3170 
3171 /**
3172  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3173  * @stream: An enabled i915 perf stream
3174  *
3175  * Disables the associated capture of data for this stream.
3176  *
3177  * The intention is that disabling an re-enabling a stream will ideally be
3178  * cheaper than destroying and re-opening a stream with the same configuration,
3179  * though there are no formal guarantees about what state or buffered data
3180  * must be retained between disabling and re-enabling a stream.
3181  *
3182  * Note: while a stream is disabled it's considered an error for userspace
3183  * to attempt to read from the stream (-EIO).
3184  */
3185 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3186 {
3187 	if (!stream->enabled)
3188 		return;
3189 
3190 	/* Allow stream->ops->disable() to refer to this */
3191 	stream->enabled = false;
3192 
3193 	if (stream->hold_preemption)
3194 		intel_context_clear_nopreempt(stream->pinned_ctx);
3195 
3196 	if (stream->ops->disable)
3197 		stream->ops->disable(stream);
3198 }
3199 
3200 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3201 				    unsigned long metrics_set)
3202 {
3203 	struct i915_oa_config *config;
3204 	long ret = stream->oa_config->id;
3205 
3206 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3207 	if (!config)
3208 		return -EINVAL;
3209 
3210 	if (config != stream->oa_config) {
3211 		int err;
3212 
3213 		/*
3214 		 * If OA is bound to a specific context, emit the
3215 		 * reconfiguration inline from that context. The update
3216 		 * will then be ordered with respect to submission on that
3217 		 * context.
3218 		 *
3219 		 * When set globally, we use a low priority kernel context,
3220 		 * so it will effectively take effect when idle.
3221 		 */
3222 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3223 		if (!err)
3224 			config = xchg(&stream->oa_config, config);
3225 		else
3226 			ret = err;
3227 	}
3228 
3229 	i915_oa_config_put(config);
3230 
3231 	return ret;
3232 }
3233 
3234 /**
3235  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3236  * @stream: An i915 perf stream
3237  * @cmd: the ioctl request
3238  * @arg: the ioctl data
3239  *
3240  * Note: The &perf->lock mutex has been taken to serialize
3241  * with any non-file-operation driver hooks.
3242  *
3243  * Returns: zero on success or a negative error code. Returns -EINVAL for
3244  * an unknown ioctl request.
3245  */
3246 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3247 				   unsigned int cmd,
3248 				   unsigned long arg)
3249 {
3250 	switch (cmd) {
3251 	case I915_PERF_IOCTL_ENABLE:
3252 		i915_perf_enable_locked(stream);
3253 		return 0;
3254 	case I915_PERF_IOCTL_DISABLE:
3255 		i915_perf_disable_locked(stream);
3256 		return 0;
3257 	case I915_PERF_IOCTL_CONFIG:
3258 		return i915_perf_config_locked(stream, arg);
3259 	}
3260 
3261 	return -EINVAL;
3262 }
3263 
3264 /**
3265  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3266  * @file: An i915 perf stream file
3267  * @cmd: the ioctl request
3268  * @arg: the ioctl data
3269  *
3270  * Implementation deferred to i915_perf_ioctl_locked().
3271  *
3272  * Returns: zero on success or a negative error code. Returns -EINVAL for
3273  * an unknown ioctl request.
3274  */
3275 static long i915_perf_ioctl(struct file *file,
3276 			    unsigned int cmd,
3277 			    unsigned long arg)
3278 {
3279 	struct i915_perf_stream *stream = file->private_data;
3280 	struct i915_perf *perf = stream->perf;
3281 	long ret;
3282 
3283 	mutex_lock(&perf->lock);
3284 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3285 	mutex_unlock(&perf->lock);
3286 
3287 	return ret;
3288 }
3289 
3290 /**
3291  * i915_perf_destroy_locked - destroy an i915 perf stream
3292  * @stream: An i915 perf stream
3293  *
3294  * Frees all resources associated with the given i915 perf @stream, disabling
3295  * any associated data capture in the process.
3296  *
3297  * Note: The &perf->lock mutex has been taken to serialize
3298  * with any non-file-operation driver hooks.
3299  */
3300 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3301 {
3302 	if (stream->enabled)
3303 		i915_perf_disable_locked(stream);
3304 
3305 	if (stream->ops->destroy)
3306 		stream->ops->destroy(stream);
3307 
3308 	if (stream->ctx)
3309 		i915_gem_context_put(stream->ctx);
3310 
3311 	kfree(stream);
3312 }
3313 
3314 /**
3315  * i915_perf_release - handles userspace close() of a stream file
3316  * @inode: anonymous inode associated with file
3317  * @file: An i915 perf stream file
3318  *
3319  * Cleans up any resources associated with an open i915 perf stream file.
3320  *
3321  * NB: close() can't really fail from the userspace point of view.
3322  *
3323  * Returns: zero on success or a negative error code.
3324  */
3325 static int i915_perf_release(struct inode *inode, struct file *file)
3326 {
3327 	struct i915_perf_stream *stream = file->private_data;
3328 	struct i915_perf *perf = stream->perf;
3329 
3330 	mutex_lock(&perf->lock);
3331 	i915_perf_destroy_locked(stream);
3332 	mutex_unlock(&perf->lock);
3333 
3334 	/* Release the reference the perf stream kept on the driver. */
3335 	drm_dev_put(&perf->i915->drm);
3336 
3337 	return 0;
3338 }
3339 
3340 
3341 static const struct file_operations fops = {
3342 	.owner		= THIS_MODULE,
3343 	.llseek		= no_llseek,
3344 	.release	= i915_perf_release,
3345 	.poll		= i915_perf_poll,
3346 	.read		= i915_perf_read,
3347 	.unlocked_ioctl	= i915_perf_ioctl,
3348 	/* Our ioctl have no arguments, so it's safe to use the same function
3349 	 * to handle 32bits compatibility.
3350 	 */
3351 	.compat_ioctl   = i915_perf_ioctl,
3352 };
3353 
3354 
3355 /**
3356  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3357  * @perf: i915 perf instance
3358  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3359  * @props: individually validated u64 property value pairs
3360  * @file: drm file
3361  *
3362  * See i915_perf_ioctl_open() for interface details.
3363  *
3364  * Implements further stream config validation and stream initialization on
3365  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3366  * taken to serialize with any non-file-operation driver hooks.
3367  *
3368  * Note: at this point the @props have only been validated in isolation and
3369  * it's still necessary to validate that the combination of properties makes
3370  * sense.
3371  *
3372  * In the case where userspace is interested in OA unit metrics then further
3373  * config validation and stream initialization details will be handled by
3374  * i915_oa_stream_init(). The code here should only validate config state that
3375  * will be relevant to all stream types / backends.
3376  *
3377  * Returns: zero on success or a negative error code.
3378  */
3379 static int
3380 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3381 			    struct drm_i915_perf_open_param *param,
3382 			    struct perf_open_properties *props,
3383 			    struct drm_file *file)
3384 {
3385 	struct i915_gem_context *specific_ctx = NULL;
3386 	struct i915_perf_stream *stream = NULL;
3387 	unsigned long f_flags = 0;
3388 	bool privileged_op = true;
3389 	int stream_fd;
3390 	int ret;
3391 
3392 	if (props->single_context) {
3393 		u32 ctx_handle = props->ctx_handle;
3394 		struct drm_i915_file_private *file_priv = file->driver_priv;
3395 
3396 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3397 		if (!specific_ctx) {
3398 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3399 				  ctx_handle);
3400 			ret = -ENOENT;
3401 			goto err;
3402 		}
3403 	}
3404 
3405 	/*
3406 	 * On Haswell the OA unit supports clock gating off for a specific
3407 	 * context and in this mode there's no visibility of metrics for the
3408 	 * rest of the system, which we consider acceptable for a
3409 	 * non-privileged client.
3410 	 *
3411 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3412 	 * specific context and the kernel can't securely stop the counters
3413 	 * from updating as system-wide / global values. Even though we can
3414 	 * filter reports based on the included context ID we can't block
3415 	 * clients from seeing the raw / global counter values via
3416 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3417 	 * enable the OA unit by default.
3418 	 *
3419 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3420 	 * per context basis. So we can relax requirements there if the user
3421 	 * doesn't request global stream access (i.e. query based sampling
3422 	 * using MI_RECORD_PERF_COUNT.
3423 	 */
3424 	if (IS_HASWELL(perf->i915) && specific_ctx)
3425 		privileged_op = false;
3426 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3427 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3428 		privileged_op = false;
3429 
3430 	if (props->hold_preemption) {
3431 		if (!props->single_context) {
3432 			DRM_DEBUG("preemption disable with no context\n");
3433 			ret = -EINVAL;
3434 			goto err;
3435 		}
3436 		privileged_op = true;
3437 	}
3438 
3439 	/*
3440 	 * Asking for SSEU configuration is a priviliged operation.
3441 	 */
3442 	if (props->has_sseu)
3443 		privileged_op = true;
3444 	else
3445 		get_default_sseu_config(&props->sseu, props->engine);
3446 
3447 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3448 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3449 	 * to determine if it's ok to access system wide OA counters
3450 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3451 	 */
3452 	if (privileged_op &&
3453 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3454 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3455 		ret = -EACCES;
3456 		goto err_ctx;
3457 	}
3458 
3459 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3460 	if (!stream) {
3461 		ret = -ENOMEM;
3462 		goto err_ctx;
3463 	}
3464 
3465 	stream->perf = perf;
3466 	stream->ctx = specific_ctx;
3467 	stream->poll_oa_period = props->poll_oa_period;
3468 
3469 	ret = i915_oa_stream_init(stream, param, props);
3470 	if (ret)
3471 		goto err_alloc;
3472 
3473 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3474 	 * to have _stream_init check the combination of sample flags more
3475 	 * thoroughly, but still this is the expected result at this point.
3476 	 */
3477 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3478 		ret = -ENODEV;
3479 		goto err_flags;
3480 	}
3481 
3482 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3483 		f_flags |= O_CLOEXEC;
3484 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3485 		f_flags |= O_NONBLOCK;
3486 
3487 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3488 	if (stream_fd < 0) {
3489 		ret = stream_fd;
3490 		goto err_flags;
3491 	}
3492 
3493 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3494 		i915_perf_enable_locked(stream);
3495 
3496 	/* Take a reference on the driver that will be kept with stream_fd
3497 	 * until its release.
3498 	 */
3499 	drm_dev_get(&perf->i915->drm);
3500 
3501 	return stream_fd;
3502 
3503 err_flags:
3504 	if (stream->ops->destroy)
3505 		stream->ops->destroy(stream);
3506 err_alloc:
3507 	kfree(stream);
3508 err_ctx:
3509 	if (specific_ctx)
3510 		i915_gem_context_put(specific_ctx);
3511 err:
3512 	return ret;
3513 }
3514 
3515 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3516 {
3517 	return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3518 }
3519 
3520 /**
3521  * read_properties_unlocked - validate + copy userspace stream open properties
3522  * @perf: i915 perf instance
3523  * @uprops: The array of u64 key value pairs given by userspace
3524  * @n_props: The number of key value pairs expected in @uprops
3525  * @props: The stream configuration built up while validating properties
3526  *
3527  * Note this function only validates properties in isolation it doesn't
3528  * validate that the combination of properties makes sense or that all
3529  * properties necessary for a particular kind of stream have been set.
3530  *
3531  * Note that there currently aren't any ordering requirements for properties so
3532  * we shouldn't validate or assume anything about ordering here. This doesn't
3533  * rule out defining new properties with ordering requirements in the future.
3534  */
3535 static int read_properties_unlocked(struct i915_perf *perf,
3536 				    u64 __user *uprops,
3537 				    u32 n_props,
3538 				    struct perf_open_properties *props)
3539 {
3540 	u64 __user *uprop = uprops;
3541 	u32 i;
3542 	int ret;
3543 
3544 	memset(props, 0, sizeof(struct perf_open_properties));
3545 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3546 
3547 	if (!n_props) {
3548 		DRM_DEBUG("No i915 perf properties given\n");
3549 		return -EINVAL;
3550 	}
3551 
3552 	/* At the moment we only support using i915-perf on the RCS. */
3553 	props->engine = intel_engine_lookup_user(perf->i915,
3554 						 I915_ENGINE_CLASS_RENDER,
3555 						 0);
3556 	if (!props->engine) {
3557 		DRM_DEBUG("No RENDER-capable engines\n");
3558 		return -EINVAL;
3559 	}
3560 
3561 	/* Considering that ID = 0 is reserved and assuming that we don't
3562 	 * (currently) expect any configurations to ever specify duplicate
3563 	 * values for a particular property ID then the last _PROP_MAX value is
3564 	 * one greater than the maximum number of properties we expect to get
3565 	 * from userspace.
3566 	 */
3567 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3568 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3569 		return -EINVAL;
3570 	}
3571 
3572 	for (i = 0; i < n_props; i++) {
3573 		u64 oa_period, oa_freq_hz;
3574 		u64 id, value;
3575 
3576 		ret = get_user(id, uprop);
3577 		if (ret)
3578 			return ret;
3579 
3580 		ret = get_user(value, uprop + 1);
3581 		if (ret)
3582 			return ret;
3583 
3584 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3585 			DRM_DEBUG("Unknown i915 perf property ID\n");
3586 			return -EINVAL;
3587 		}
3588 
3589 		switch ((enum drm_i915_perf_property_id)id) {
3590 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3591 			props->single_context = 1;
3592 			props->ctx_handle = value;
3593 			break;
3594 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3595 			if (value)
3596 				props->sample_flags |= SAMPLE_OA_REPORT;
3597 			break;
3598 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3599 			if (value == 0) {
3600 				DRM_DEBUG("Unknown OA metric set ID\n");
3601 				return -EINVAL;
3602 			}
3603 			props->metrics_set = value;
3604 			break;
3605 		case DRM_I915_PERF_PROP_OA_FORMAT:
3606 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3607 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3608 					  value);
3609 				return -EINVAL;
3610 			}
3611 			if (!perf->oa_formats[value].size) {
3612 				DRM_DEBUG("Unsupported OA report format %llu\n",
3613 					  value);
3614 				return -EINVAL;
3615 			}
3616 			props->oa_format = value;
3617 			break;
3618 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3619 			if (value > OA_EXPONENT_MAX) {
3620 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3621 					 OA_EXPONENT_MAX);
3622 				return -EINVAL;
3623 			}
3624 
3625 			/* Theoretically we can program the OA unit to sample
3626 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3627 			 * for BXT. We don't allow such high sampling
3628 			 * frequencies by default unless root.
3629 			 */
3630 
3631 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3632 			oa_period = oa_exponent_to_ns(perf, value);
3633 
3634 			/* This check is primarily to ensure that oa_period <=
3635 			 * UINT32_MAX (before passing to do_div which only
3636 			 * accepts a u32 denominator), but we can also skip
3637 			 * checking anything < 1Hz which implicitly can't be
3638 			 * limited via an integer oa_max_sample_rate.
3639 			 */
3640 			if (oa_period <= NSEC_PER_SEC) {
3641 				u64 tmp = NSEC_PER_SEC;
3642 				do_div(tmp, oa_period);
3643 				oa_freq_hz = tmp;
3644 			} else
3645 				oa_freq_hz = 0;
3646 
3647 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3648 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3649 					  i915_oa_max_sample_rate);
3650 				return -EACCES;
3651 			}
3652 
3653 			props->oa_periodic = true;
3654 			props->oa_period_exponent = value;
3655 			break;
3656 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3657 			props->hold_preemption = !!value;
3658 			break;
3659 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3660 			struct drm_i915_gem_context_param_sseu user_sseu;
3661 
3662 			if (copy_from_user(&user_sseu,
3663 					   u64_to_user_ptr(value),
3664 					   sizeof(user_sseu))) {
3665 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3666 				return -EFAULT;
3667 			}
3668 
3669 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3670 			if (ret) {
3671 				DRM_DEBUG("Invalid SSEU configuration\n");
3672 				return ret;
3673 			}
3674 			props->has_sseu = true;
3675 			break;
3676 		}
3677 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3678 			if (value < 100000 /* 100us */) {
3679 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3680 					  value);
3681 				return -EINVAL;
3682 			}
3683 			props->poll_oa_period = value;
3684 			break;
3685 		case DRM_I915_PERF_PROP_MAX:
3686 			MISSING_CASE(id);
3687 			return -EINVAL;
3688 		}
3689 
3690 		uprop += 2;
3691 	}
3692 
3693 	return 0;
3694 }
3695 
3696 /**
3697  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3698  * @dev: drm device
3699  * @data: ioctl data copied from userspace (unvalidated)
3700  * @file: drm file
3701  *
3702  * Validates the stream open parameters given by userspace including flags
3703  * and an array of u64 key, value pair properties.
3704  *
3705  * Very little is assumed up front about the nature of the stream being
3706  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3707  * i915-perf stream is expected to be a suitable interface for other forms of
3708  * buffered data written by the GPU besides periodic OA metrics.
3709  *
3710  * Note we copy the properties from userspace outside of the i915 perf
3711  * mutex to avoid an awkward lockdep with mmap_lock.
3712  *
3713  * Most of the implementation details are handled by
3714  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3715  * mutex for serializing with any non-file-operation driver hooks.
3716  *
3717  * Return: A newly opened i915 Perf stream file descriptor or negative
3718  * error code on failure.
3719  */
3720 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3721 			 struct drm_file *file)
3722 {
3723 	struct i915_perf *perf = &to_i915(dev)->perf;
3724 	struct drm_i915_perf_open_param *param = data;
3725 	struct perf_open_properties props;
3726 	u32 known_open_flags;
3727 	int ret;
3728 
3729 	if (!perf->i915) {
3730 		DRM_DEBUG("i915 perf interface not available for this system\n");
3731 		return -ENOTSUPP;
3732 	}
3733 
3734 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3735 			   I915_PERF_FLAG_FD_NONBLOCK |
3736 			   I915_PERF_FLAG_DISABLED;
3737 	if (param->flags & ~known_open_flags) {
3738 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3739 		return -EINVAL;
3740 	}
3741 
3742 	ret = read_properties_unlocked(perf,
3743 				       u64_to_user_ptr(param->properties_ptr),
3744 				       param->num_properties,
3745 				       &props);
3746 	if (ret)
3747 		return ret;
3748 
3749 	mutex_lock(&perf->lock);
3750 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3751 	mutex_unlock(&perf->lock);
3752 
3753 	return ret;
3754 }
3755 
3756 /**
3757  * i915_perf_register - exposes i915-perf to userspace
3758  * @i915: i915 device instance
3759  *
3760  * In particular OA metric sets are advertised under a sysfs metrics/
3761  * directory allowing userspace to enumerate valid IDs that can be
3762  * used to open an i915-perf stream.
3763  */
3764 void i915_perf_register(struct drm_i915_private *i915)
3765 {
3766 	struct i915_perf *perf = &i915->perf;
3767 
3768 	if (!perf->i915)
3769 		return;
3770 
3771 	/* To be sure we're synchronized with an attempted
3772 	 * i915_perf_open_ioctl(); considering that we register after
3773 	 * being exposed to userspace.
3774 	 */
3775 	mutex_lock(&perf->lock);
3776 
3777 	perf->metrics_kobj =
3778 		kobject_create_and_add("metrics",
3779 				       &i915->drm.primary->kdev->kobj);
3780 
3781 	mutex_unlock(&perf->lock);
3782 }
3783 
3784 /**
3785  * i915_perf_unregister - hide i915-perf from userspace
3786  * @i915: i915 device instance
3787  *
3788  * i915-perf state cleanup is split up into an 'unregister' and
3789  * 'deinit' phase where the interface is first hidden from
3790  * userspace by i915_perf_unregister() before cleaning up
3791  * remaining state in i915_perf_fini().
3792  */
3793 void i915_perf_unregister(struct drm_i915_private *i915)
3794 {
3795 	struct i915_perf *perf = &i915->perf;
3796 
3797 	if (!perf->metrics_kobj)
3798 		return;
3799 
3800 	kobject_put(perf->metrics_kobj);
3801 	perf->metrics_kobj = NULL;
3802 }
3803 
3804 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3805 {
3806 	static const i915_reg_t flex_eu_regs[] = {
3807 		EU_PERF_CNTL0,
3808 		EU_PERF_CNTL1,
3809 		EU_PERF_CNTL2,
3810 		EU_PERF_CNTL3,
3811 		EU_PERF_CNTL4,
3812 		EU_PERF_CNTL5,
3813 		EU_PERF_CNTL6,
3814 	};
3815 	int i;
3816 
3817 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3818 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3819 			return true;
3820 	}
3821 	return false;
3822 }
3823 
3824 #define ADDR_IN_RANGE(addr, start, end) \
3825 	((addr) >= (start) && \
3826 	 (addr) <= (end))
3827 
3828 #define REG_IN_RANGE(addr, start, end) \
3829 	((addr) >= i915_mmio_reg_offset(start) && \
3830 	 (addr) <= i915_mmio_reg_offset(end))
3831 
3832 #define REG_EQUAL(addr, mmio) \
3833 	((addr) == i915_mmio_reg_offset(mmio))
3834 
3835 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3836 {
3837 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3838 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3839 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3840 }
3841 
3842 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3843 {
3844 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3845 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3846 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3847 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3848 }
3849 
3850 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3851 {
3852 	return gen7_is_valid_mux_addr(perf, addr) ||
3853 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3854 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3855 }
3856 
3857 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3858 {
3859 	return gen8_is_valid_mux_addr(perf, addr) ||
3860 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3861 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3862 }
3863 
3864 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3865 {
3866 	return gen7_is_valid_mux_addr(perf, addr) ||
3867 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3868 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3869 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3870 }
3871 
3872 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3873 {
3874 	return gen7_is_valid_mux_addr(perf, addr) ||
3875 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3876 }
3877 
3878 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3879 {
3880 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3881 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3882 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3883 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3884 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3885 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3886 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3887 }
3888 
3889 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3890 {
3891 	return REG_EQUAL(addr, NOA_WRITE) ||
3892 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3893 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3894 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3895 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3896 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3897 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3898 }
3899 
3900 static u32 mask_reg_value(u32 reg, u32 val)
3901 {
3902 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3903 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3904 	 * programmed by userspace doesn't change this.
3905 	 */
3906 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3907 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3908 
3909 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3910 	 * indicated by its name and a bunch of selection fields used by OA
3911 	 * configs.
3912 	 */
3913 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3914 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3915 
3916 	return val;
3917 }
3918 
3919 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3920 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3921 					 u32 __user *regs,
3922 					 u32 n_regs)
3923 {
3924 	struct i915_oa_reg *oa_regs;
3925 	int err;
3926 	u32 i;
3927 
3928 	if (!n_regs)
3929 		return NULL;
3930 
3931 	/* No is_valid function means we're not allowing any register to be programmed. */
3932 	GEM_BUG_ON(!is_valid);
3933 	if (!is_valid)
3934 		return ERR_PTR(-EINVAL);
3935 
3936 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3937 	if (!oa_regs)
3938 		return ERR_PTR(-ENOMEM);
3939 
3940 	for (i = 0; i < n_regs; i++) {
3941 		u32 addr, value;
3942 
3943 		err = get_user(addr, regs);
3944 		if (err)
3945 			goto addr_err;
3946 
3947 		if (!is_valid(perf, addr)) {
3948 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3949 			err = -EINVAL;
3950 			goto addr_err;
3951 		}
3952 
3953 		err = get_user(value, regs + 1);
3954 		if (err)
3955 			goto addr_err;
3956 
3957 		oa_regs[i].addr = _MMIO(addr);
3958 		oa_regs[i].value = mask_reg_value(addr, value);
3959 
3960 		regs += 2;
3961 	}
3962 
3963 	return oa_regs;
3964 
3965 addr_err:
3966 	kfree(oa_regs);
3967 	return ERR_PTR(err);
3968 }
3969 
3970 static ssize_t show_dynamic_id(struct device *dev,
3971 			       struct device_attribute *attr,
3972 			       char *buf)
3973 {
3974 	struct i915_oa_config *oa_config =
3975 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3976 
3977 	return sprintf(buf, "%d\n", oa_config->id);
3978 }
3979 
3980 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3981 					 struct i915_oa_config *oa_config)
3982 {
3983 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3984 	oa_config->sysfs_metric_id.attr.name = "id";
3985 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3986 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3987 	oa_config->sysfs_metric_id.store = NULL;
3988 
3989 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3990 	oa_config->attrs[1] = NULL;
3991 
3992 	oa_config->sysfs_metric.name = oa_config->uuid;
3993 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3994 
3995 	return sysfs_create_group(perf->metrics_kobj,
3996 				  &oa_config->sysfs_metric);
3997 }
3998 
3999 /**
4000  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4001  * @dev: drm device
4002  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4003  *        userspace (unvalidated)
4004  * @file: drm file
4005  *
4006  * Validates the submitted OA register to be saved into a new OA config that
4007  * can then be used for programming the OA unit and its NOA network.
4008  *
4009  * Returns: A new allocated config number to be used with the perf open ioctl
4010  * or a negative error code on failure.
4011  */
4012 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4013 			       struct drm_file *file)
4014 {
4015 	struct i915_perf *perf = &to_i915(dev)->perf;
4016 	struct drm_i915_perf_oa_config *args = data;
4017 	struct i915_oa_config *oa_config, *tmp;
4018 	struct i915_oa_reg *regs;
4019 	int err, id;
4020 
4021 	if (!perf->i915) {
4022 		DRM_DEBUG("i915 perf interface not available for this system\n");
4023 		return -ENOTSUPP;
4024 	}
4025 
4026 	if (!perf->metrics_kobj) {
4027 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4028 		return -EINVAL;
4029 	}
4030 
4031 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4032 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4033 		return -EACCES;
4034 	}
4035 
4036 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4037 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4038 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4039 		DRM_DEBUG("No OA registers given\n");
4040 		return -EINVAL;
4041 	}
4042 
4043 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4044 	if (!oa_config) {
4045 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4046 		return -ENOMEM;
4047 	}
4048 
4049 	oa_config->perf = perf;
4050 	kref_init(&oa_config->ref);
4051 
4052 	if (!uuid_is_valid(args->uuid)) {
4053 		DRM_DEBUG("Invalid uuid format for OA config\n");
4054 		err = -EINVAL;
4055 		goto reg_err;
4056 	}
4057 
4058 	/* Last character in oa_config->uuid will be 0 because oa_config is
4059 	 * kzalloc.
4060 	 */
4061 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4062 
4063 	oa_config->mux_regs_len = args->n_mux_regs;
4064 	regs = alloc_oa_regs(perf,
4065 			     perf->ops.is_valid_mux_reg,
4066 			     u64_to_user_ptr(args->mux_regs_ptr),
4067 			     args->n_mux_regs);
4068 
4069 	if (IS_ERR(regs)) {
4070 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4071 		err = PTR_ERR(regs);
4072 		goto reg_err;
4073 	}
4074 	oa_config->mux_regs = regs;
4075 
4076 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4077 	regs = alloc_oa_regs(perf,
4078 			     perf->ops.is_valid_b_counter_reg,
4079 			     u64_to_user_ptr(args->boolean_regs_ptr),
4080 			     args->n_boolean_regs);
4081 
4082 	if (IS_ERR(regs)) {
4083 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4084 		err = PTR_ERR(regs);
4085 		goto reg_err;
4086 	}
4087 	oa_config->b_counter_regs = regs;
4088 
4089 	if (INTEL_GEN(perf->i915) < 8) {
4090 		if (args->n_flex_regs != 0) {
4091 			err = -EINVAL;
4092 			goto reg_err;
4093 		}
4094 	} else {
4095 		oa_config->flex_regs_len = args->n_flex_regs;
4096 		regs = alloc_oa_regs(perf,
4097 				     perf->ops.is_valid_flex_reg,
4098 				     u64_to_user_ptr(args->flex_regs_ptr),
4099 				     args->n_flex_regs);
4100 
4101 		if (IS_ERR(regs)) {
4102 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4103 			err = PTR_ERR(regs);
4104 			goto reg_err;
4105 		}
4106 		oa_config->flex_regs = regs;
4107 	}
4108 
4109 	err = mutex_lock_interruptible(&perf->metrics_lock);
4110 	if (err)
4111 		goto reg_err;
4112 
4113 	/* We shouldn't have too many configs, so this iteration shouldn't be
4114 	 * too costly.
4115 	 */
4116 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4117 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4118 			DRM_DEBUG("OA config already exists with this uuid\n");
4119 			err = -EADDRINUSE;
4120 			goto sysfs_err;
4121 		}
4122 	}
4123 
4124 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4125 	if (err) {
4126 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4127 		goto sysfs_err;
4128 	}
4129 
4130 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4131 	oa_config->id = idr_alloc(&perf->metrics_idr,
4132 				  oa_config, 2,
4133 				  0, GFP_KERNEL);
4134 	if (oa_config->id < 0) {
4135 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4136 		err = oa_config->id;
4137 		goto sysfs_err;
4138 	}
4139 
4140 	mutex_unlock(&perf->metrics_lock);
4141 
4142 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4143 
4144 	return oa_config->id;
4145 
4146 sysfs_err:
4147 	mutex_unlock(&perf->metrics_lock);
4148 reg_err:
4149 	i915_oa_config_put(oa_config);
4150 	DRM_DEBUG("Failed to add new OA config\n");
4151 	return err;
4152 }
4153 
4154 /**
4155  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4156  * @dev: drm device
4157  * @data: ioctl data (pointer to u64 integer) copied from userspace
4158  * @file: drm file
4159  *
4160  * Configs can be removed while being used, the will stop appearing in sysfs
4161  * and their content will be freed when the stream using the config is closed.
4162  *
4163  * Returns: 0 on success or a negative error code on failure.
4164  */
4165 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4166 				  struct drm_file *file)
4167 {
4168 	struct i915_perf *perf = &to_i915(dev)->perf;
4169 	u64 *arg = data;
4170 	struct i915_oa_config *oa_config;
4171 	int ret;
4172 
4173 	if (!perf->i915) {
4174 		DRM_DEBUG("i915 perf interface not available for this system\n");
4175 		return -ENOTSUPP;
4176 	}
4177 
4178 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4179 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4180 		return -EACCES;
4181 	}
4182 
4183 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4184 	if (ret)
4185 		return ret;
4186 
4187 	oa_config = idr_find(&perf->metrics_idr, *arg);
4188 	if (!oa_config) {
4189 		DRM_DEBUG("Failed to remove unknown OA config\n");
4190 		ret = -ENOENT;
4191 		goto err_unlock;
4192 	}
4193 
4194 	GEM_BUG_ON(*arg != oa_config->id);
4195 
4196 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4197 
4198 	idr_remove(&perf->metrics_idr, *arg);
4199 
4200 	mutex_unlock(&perf->metrics_lock);
4201 
4202 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4203 
4204 	i915_oa_config_put(oa_config);
4205 
4206 	return 0;
4207 
4208 err_unlock:
4209 	mutex_unlock(&perf->metrics_lock);
4210 	return ret;
4211 }
4212 
4213 static struct ctl_table oa_table[] = {
4214 	{
4215 	 .procname = "perf_stream_paranoid",
4216 	 .data = &i915_perf_stream_paranoid,
4217 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4218 	 .mode = 0644,
4219 	 .proc_handler = proc_dointvec_minmax,
4220 	 .extra1 = SYSCTL_ZERO,
4221 	 .extra2 = SYSCTL_ONE,
4222 	 },
4223 	{
4224 	 .procname = "oa_max_sample_rate",
4225 	 .data = &i915_oa_max_sample_rate,
4226 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4227 	 .mode = 0644,
4228 	 .proc_handler = proc_dointvec_minmax,
4229 	 .extra1 = SYSCTL_ZERO,
4230 	 .extra2 = &oa_sample_rate_hard_limit,
4231 	 },
4232 	{}
4233 };
4234 
4235 static struct ctl_table i915_root[] = {
4236 	{
4237 	 .procname = "i915",
4238 	 .maxlen = 0,
4239 	 .mode = 0555,
4240 	 .child = oa_table,
4241 	 },
4242 	{}
4243 };
4244 
4245 static struct ctl_table dev_root[] = {
4246 	{
4247 	 .procname = "dev",
4248 	 .maxlen = 0,
4249 	 .mode = 0555,
4250 	 .child = i915_root,
4251 	 },
4252 	{}
4253 };
4254 
4255 /**
4256  * i915_perf_init - initialize i915-perf state on module bind
4257  * @i915: i915 device instance
4258  *
4259  * Initializes i915-perf state without exposing anything to userspace.
4260  *
4261  * Note: i915-perf initialization is split into an 'init' and 'register'
4262  * phase with the i915_perf_register() exposing state to userspace.
4263  */
4264 void i915_perf_init(struct drm_i915_private *i915)
4265 {
4266 	struct i915_perf *perf = &i915->perf;
4267 
4268 	/* XXX const struct i915_perf_ops! */
4269 
4270 	if (IS_HASWELL(i915)) {
4271 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4272 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4273 		perf->ops.is_valid_flex_reg = NULL;
4274 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4275 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4276 		perf->ops.oa_enable = gen7_oa_enable;
4277 		perf->ops.oa_disable = gen7_oa_disable;
4278 		perf->ops.read = gen7_oa_read;
4279 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4280 
4281 		perf->oa_formats = hsw_oa_formats;
4282 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4283 		/* Note: that although we could theoretically also support the
4284 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4285 		 * this driver, before upstreaming did this) it didn't seem
4286 		 * worth the complexity to maintain now that BDW+ enable
4287 		 * execlist mode by default.
4288 		 */
4289 		perf->ops.read = gen8_oa_read;
4290 
4291 		if (IS_GEN_RANGE(i915, 8, 9)) {
4292 			perf->oa_formats = gen8_plus_oa_formats;
4293 
4294 			perf->ops.is_valid_b_counter_reg =
4295 				gen7_is_valid_b_counter_addr;
4296 			perf->ops.is_valid_mux_reg =
4297 				gen8_is_valid_mux_addr;
4298 			perf->ops.is_valid_flex_reg =
4299 				gen8_is_valid_flex_addr;
4300 
4301 			if (IS_CHERRYVIEW(i915)) {
4302 				perf->ops.is_valid_mux_reg =
4303 					chv_is_valid_mux_addr;
4304 			}
4305 
4306 			perf->ops.oa_enable = gen8_oa_enable;
4307 			perf->ops.oa_disable = gen8_oa_disable;
4308 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4309 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4310 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4311 
4312 			if (IS_GEN(i915, 8)) {
4313 				perf->ctx_oactxctrl_offset = 0x120;
4314 				perf->ctx_flexeu0_offset = 0x2ce;
4315 
4316 				perf->gen8_valid_ctx_bit = BIT(25);
4317 			} else {
4318 				perf->ctx_oactxctrl_offset = 0x128;
4319 				perf->ctx_flexeu0_offset = 0x3de;
4320 
4321 				perf->gen8_valid_ctx_bit = BIT(16);
4322 			}
4323 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4324 			perf->oa_formats = gen8_plus_oa_formats;
4325 
4326 			perf->ops.is_valid_b_counter_reg =
4327 				gen7_is_valid_b_counter_addr;
4328 			perf->ops.is_valid_mux_reg =
4329 				gen10_is_valid_mux_addr;
4330 			perf->ops.is_valid_flex_reg =
4331 				gen8_is_valid_flex_addr;
4332 
4333 			perf->ops.oa_enable = gen8_oa_enable;
4334 			perf->ops.oa_disable = gen8_oa_disable;
4335 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4336 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4337 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4338 
4339 			if (IS_GEN(i915, 10)) {
4340 				perf->ctx_oactxctrl_offset = 0x128;
4341 				perf->ctx_flexeu0_offset = 0x3de;
4342 			} else {
4343 				perf->ctx_oactxctrl_offset = 0x124;
4344 				perf->ctx_flexeu0_offset = 0x78e;
4345 			}
4346 			perf->gen8_valid_ctx_bit = BIT(16);
4347 		} else if (IS_GEN(i915, 12)) {
4348 			perf->oa_formats = gen12_oa_formats;
4349 
4350 			perf->ops.is_valid_b_counter_reg =
4351 				gen12_is_valid_b_counter_addr;
4352 			perf->ops.is_valid_mux_reg =
4353 				gen12_is_valid_mux_addr;
4354 			perf->ops.is_valid_flex_reg =
4355 				gen8_is_valid_flex_addr;
4356 
4357 			perf->ops.oa_enable = gen12_oa_enable;
4358 			perf->ops.oa_disable = gen12_oa_disable;
4359 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4360 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4361 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4362 
4363 			perf->ctx_flexeu0_offset = 0;
4364 			perf->ctx_oactxctrl_offset = 0x144;
4365 		}
4366 	}
4367 
4368 	if (perf->ops.enable_metric_set) {
4369 		mutex_init(&perf->lock);
4370 
4371 		oa_sample_rate_hard_limit =
4372 			RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4373 
4374 		mutex_init(&perf->metrics_lock);
4375 		idr_init(&perf->metrics_idr);
4376 
4377 		/* We set up some ratelimit state to potentially throttle any
4378 		 * _NOTES about spurious, invalid OA reports which we don't
4379 		 * forward to userspace.
4380 		 *
4381 		 * We print a _NOTE about any throttling when closing the
4382 		 * stream instead of waiting until driver _fini which no one
4383 		 * would ever see.
4384 		 *
4385 		 * Using the same limiting factors as printk_ratelimit()
4386 		 */
4387 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4388 		/* Since we use a DRM_NOTE for spurious reports it would be
4389 		 * inconsistent to let __ratelimit() automatically print a
4390 		 * warning for throttling.
4391 		 */
4392 		ratelimit_set_flags(&perf->spurious_report_rs,
4393 				    RATELIMIT_MSG_ON_RELEASE);
4394 
4395 		ratelimit_state_init(&perf->tail_pointer_race,
4396 				     5 * HZ, 10);
4397 		ratelimit_set_flags(&perf->tail_pointer_race,
4398 				    RATELIMIT_MSG_ON_RELEASE);
4399 
4400 		atomic64_set(&perf->noa_programming_delay,
4401 			     500 * 1000 /* 500us */);
4402 
4403 		perf->i915 = i915;
4404 	}
4405 }
4406 
4407 static int destroy_config(int id, void *p, void *data)
4408 {
4409 	i915_oa_config_put(p);
4410 	return 0;
4411 }
4412 
4413 void i915_perf_sysctl_register(void)
4414 {
4415 	sysctl_header = register_sysctl_table(dev_root);
4416 }
4417 
4418 void i915_perf_sysctl_unregister(void)
4419 {
4420 	unregister_sysctl_table(sysctl_header);
4421 }
4422 
4423 /**
4424  * i915_perf_fini - Counter part to i915_perf_init()
4425  * @i915: i915 device instance
4426  */
4427 void i915_perf_fini(struct drm_i915_private *i915)
4428 {
4429 	struct i915_perf *perf = &i915->perf;
4430 
4431 	if (!perf->i915)
4432 		return;
4433 
4434 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4435 	idr_destroy(&perf->metrics_idr);
4436 
4437 	memset(&perf->ops, 0, sizeof(perf->ops));
4438 	perf->i915 = NULL;
4439 }
4440 
4441 /**
4442  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4443  *
4444  * This version number is used by userspace to detect available features.
4445  */
4446 int i915_perf_ioctl_version(void)
4447 {
4448 	/*
4449 	 * 1: Initial version
4450 	 *   I915_PERF_IOCTL_ENABLE
4451 	 *   I915_PERF_IOCTL_DISABLE
4452 	 *
4453 	 * 2: Added runtime modification of OA config.
4454 	 *   I915_PERF_IOCTL_CONFIG
4455 	 *
4456 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4457 	 *    preemption on a particular context so that performance data is
4458 	 *    accessible from a delta of MI_RPC reports without looking at the
4459 	 *    OA buffer.
4460 	 *
4461 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4462 	 *    be run for the duration of the performance recording based on
4463 	 *    their SSEU configuration.
4464 	 *
4465 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4466 	 *    interval for the hrtimer used to check for OA data.
4467 	 */
4468 	return 5;
4469 }
4470 
4471 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4472 #include "selftests/i915_perf.c"
4473 #endif
4474