1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_execlists_submission.h" 202 #include "gt/intel_gpu_commands.h" 203 #include "gt/intel_gt.h" 204 #include "gt/intel_gt_clock_utils.h" 205 #include "gt/intel_lrc.h" 206 #include "gt/intel_ring.h" 207 208 #include "i915_drv.h" 209 #include "i915_perf.h" 210 211 /* HW requires this to be a power of two, between 128k and 16M, though driver 212 * is currently generally designed assuming the largest 16M size is used such 213 * that the overflow cases are unlikely in normal operation. 214 */ 215 #define OA_BUFFER_SIZE SZ_16M 216 217 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 218 219 /** 220 * DOC: OA Tail Pointer Race 221 * 222 * There's a HW race condition between OA unit tail pointer register updates and 223 * writes to memory whereby the tail pointer can sometimes get ahead of what's 224 * been written out to the OA buffer so far (in terms of what's visible to the 225 * CPU). 226 * 227 * Although this can be observed explicitly while copying reports to userspace 228 * by checking for a zeroed report-id field in tail reports, we want to account 229 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 230 * redundant read() attempts. 231 * 232 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 233 * in the OA buffer, starting from the tail reported by the HW until we find a 234 * report with its first 2 dwords not 0 meaning its previous report is 235 * completely in memory and ready to be read. Those dwords are also set to 0 236 * once read and the whole buffer is cleared upon OA buffer initialization. The 237 * first dword is the reason for this report while the second is the timestamp, 238 * making the chances of having those 2 fields at 0 fairly unlikely. A more 239 * detailed explanation is available in oa_buffer_check_unlocked(). 240 * 241 * Most of the implementation details for this workaround are in 242 * oa_buffer_check_unlocked() and _append_oa_reports() 243 * 244 * Note for posterity: previously the driver used to define an effective tail 245 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 246 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 247 * This was flawed considering that the OA unit may also automatically generate 248 * non-periodic reports (such as on context switch) or the OA unit may be 249 * enabled without any periodic sampling. 250 */ 251 #define OA_TAIL_MARGIN_NSEC 100000ULL 252 #define INVALID_TAIL_PTR 0xffffffff 253 254 /* The default frequency for checking whether the OA unit has written new 255 * reports to the circular OA buffer... 256 */ 257 #define DEFAULT_POLL_FREQUENCY_HZ 200 258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 259 260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 261 static u32 i915_perf_stream_paranoid = true; 262 263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 264 * of the 64bit timestamp bits to trigger reports from) but there's currently 265 * no known use case for sampling as infrequently as once per 47 thousand years. 266 * 267 * Since the timestamps included in OA reports are only 32bits it seems 268 * reasonable to limit the OA exponent where it's still possible to account for 269 * overflow in OA report timestamps. 270 */ 271 #define OA_EXPONENT_MAX 31 272 273 #define INVALID_CTX_ID 0xffffffff 274 275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 276 #define OAREPORT_REASON_MASK 0x3f 277 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 278 #define OAREPORT_REASON_SHIFT 19 279 #define OAREPORT_REASON_TIMER (1<<0) 280 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 281 #define OAREPORT_REASON_CLK_RATIO (1<<5) 282 283 284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 285 * 286 * The highest sampling frequency we can theoretically program the OA unit 287 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 288 * 289 * Initialized just before we register the sysctl parameter. 290 */ 291 static int oa_sample_rate_hard_limit; 292 293 /* Theoretically we can program the OA unit to sample every 160ns but don't 294 * allow that by default unless root... 295 * 296 * The default threshold of 100000Hz is based on perf's similar 297 * kernel.perf_event_max_sample_rate sysctl parameter. 298 */ 299 static u32 i915_oa_max_sample_rate = 100000; 300 301 /* XXX: beware if future OA HW adds new report formats that the current 302 * code assumes all reports have a power-of-two size and ~(size - 1) can 303 * be used as a mask to align the OA tail pointer. 304 */ 305 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 306 [I915_OA_FORMAT_A13] = { 0, 64 }, 307 [I915_OA_FORMAT_A29] = { 1, 128 }, 308 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 309 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 310 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 311 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 312 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 313 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 }; 318 319 #define SAMPLE_OA_REPORT (1<<0) 320 321 /** 322 * struct perf_open_properties - for validated properties given to open a stream 323 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 324 * @single_context: Whether a single or all gpu contexts should be monitored 325 * @hold_preemption: Whether the preemption is disabled for the filtered 326 * context 327 * @ctx_handle: A gem ctx handle for use with @single_context 328 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 329 * @oa_format: An OA unit HW report format 330 * @oa_periodic: Whether to enable periodic OA unit sampling 331 * @oa_period_exponent: The OA unit sampling period is derived from this 332 * @engine: The engine (typically rcs0) being monitored by the OA unit 333 * @has_sseu: Whether @sseu was specified by userspace 334 * @sseu: internal SSEU configuration computed either from the userspace 335 * specified configuration in the opening parameters or a default value 336 * (see get_default_sseu_config()) 337 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 338 * data availability 339 * 340 * As read_properties_unlocked() enumerates and validates the properties given 341 * to open a stream of metrics the configuration is built up in the structure 342 * which starts out zero initialized. 343 */ 344 struct perf_open_properties { 345 u32 sample_flags; 346 347 u64 single_context:1; 348 u64 hold_preemption:1; 349 u64 ctx_handle; 350 351 /* OA sampling state */ 352 int metrics_set; 353 int oa_format; 354 bool oa_periodic; 355 int oa_period_exponent; 356 357 struct intel_engine_cs *engine; 358 359 bool has_sseu; 360 struct intel_sseu sseu; 361 362 u64 poll_oa_period; 363 }; 364 365 struct i915_oa_config_bo { 366 struct llist_node node; 367 368 struct i915_oa_config *oa_config; 369 struct i915_vma *vma; 370 }; 371 372 static struct ctl_table_header *sysctl_header; 373 374 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 375 376 void i915_oa_config_release(struct kref *ref) 377 { 378 struct i915_oa_config *oa_config = 379 container_of(ref, typeof(*oa_config), ref); 380 381 kfree(oa_config->flex_regs); 382 kfree(oa_config->b_counter_regs); 383 kfree(oa_config->mux_regs); 384 385 kfree_rcu(oa_config, rcu); 386 } 387 388 struct i915_oa_config * 389 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 390 { 391 struct i915_oa_config *oa_config; 392 393 rcu_read_lock(); 394 oa_config = idr_find(&perf->metrics_idr, metrics_set); 395 if (oa_config) 396 oa_config = i915_oa_config_get(oa_config); 397 rcu_read_unlock(); 398 399 return oa_config; 400 } 401 402 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 403 { 404 i915_oa_config_put(oa_bo->oa_config); 405 i915_vma_put(oa_bo->vma); 406 kfree(oa_bo); 407 } 408 409 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 410 { 411 struct intel_uncore *uncore = stream->uncore; 412 413 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 414 GEN12_OAG_OATAILPTR_MASK; 415 } 416 417 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 418 { 419 struct intel_uncore *uncore = stream->uncore; 420 421 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 422 } 423 424 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 425 { 426 struct intel_uncore *uncore = stream->uncore; 427 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 428 429 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 430 } 431 432 /** 433 * oa_buffer_check_unlocked - check for data and update tail ptr state 434 * @stream: i915 stream instance 435 * 436 * This is either called via fops (for blocking reads in user ctx) or the poll 437 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 438 * if there is data available for userspace to read. 439 * 440 * This function is central to providing a workaround for the OA unit tail 441 * pointer having a race with respect to what data is visible to the CPU. 442 * It is responsible for reading tail pointers from the hardware and giving 443 * the pointers time to 'age' before they are made available for reading. 444 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 445 * 446 * Besides returning true when there is data available to read() this function 447 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 448 * object. 449 * 450 * Note: It's safe to read OA config state here unlocked, assuming that this is 451 * only called while the stream is enabled, while the global OA configuration 452 * can't be modified. 453 * 454 * Returns: %true if the OA buffer contains data, else %false 455 */ 456 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 457 { 458 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 459 int report_size = stream->oa_buffer.format_size; 460 unsigned long flags; 461 bool pollin; 462 u32 hw_tail; 463 u64 now; 464 465 /* We have to consider the (unlikely) possibility that read() errors 466 * could result in an OA buffer reset which might reset the head and 467 * tail state. 468 */ 469 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 470 471 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 472 473 /* The tail pointer increases in 64 byte increments, 474 * not in report_size steps... 475 */ 476 hw_tail &= ~(report_size - 1); 477 478 now = ktime_get_mono_fast_ns(); 479 480 if (hw_tail == stream->oa_buffer.aging_tail && 481 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 482 /* If the HW tail hasn't move since the last check and the HW 483 * tail has been aging for long enough, declare it the new 484 * tail. 485 */ 486 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 487 } else { 488 u32 head, tail, aged_tail; 489 490 /* NB: The head we observe here might effectively be a little 491 * out of date. If a read() is in progress, the head could be 492 * anywhere between this head and stream->oa_buffer.tail. 493 */ 494 head = stream->oa_buffer.head - gtt_offset; 495 aged_tail = stream->oa_buffer.tail - gtt_offset; 496 497 hw_tail -= gtt_offset; 498 tail = hw_tail; 499 500 /* Walk the stream backward until we find a report with dword 0 501 * & 1 not at 0. Since the circular buffer pointers progress by 502 * increments of 64 bytes and that reports can be up to 256 503 * bytes long, we can't tell whether a report has fully landed 504 * in memory before the first 2 dwords of the following report 505 * have effectively landed. 506 * 507 * This is assuming that the writes of the OA unit land in 508 * memory in the order they were written to. 509 * If not : (╯°□°)╯︵ ┻━┻ 510 */ 511 while (OA_TAKEN(tail, aged_tail) >= report_size) { 512 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 513 514 if (report32[0] != 0 || report32[1] != 0) 515 break; 516 517 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 518 } 519 520 if (OA_TAKEN(hw_tail, tail) > report_size && 521 __ratelimit(&stream->perf->tail_pointer_race)) 522 DRM_NOTE("unlanded report(s) head=0x%x " 523 "tail=0x%x hw_tail=0x%x\n", 524 head, tail, hw_tail); 525 526 stream->oa_buffer.tail = gtt_offset + tail; 527 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 528 stream->oa_buffer.aging_timestamp = now; 529 } 530 531 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 532 stream->oa_buffer.head - gtt_offset) >= report_size; 533 534 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 535 536 return pollin; 537 } 538 539 /** 540 * append_oa_status - Appends a status record to a userspace read() buffer. 541 * @stream: An i915-perf stream opened for OA metrics 542 * @buf: destination buffer given by userspace 543 * @count: the number of bytes userspace wants to read 544 * @offset: (inout): the current position for writing into @buf 545 * @type: The kind of status to report to userspace 546 * 547 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 548 * into the userspace read() buffer. 549 * 550 * The @buf @offset will only be updated on success. 551 * 552 * Returns: 0 on success, negative error code on failure. 553 */ 554 static int append_oa_status(struct i915_perf_stream *stream, 555 char __user *buf, 556 size_t count, 557 size_t *offset, 558 enum drm_i915_perf_record_type type) 559 { 560 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 561 562 if ((count - *offset) < header.size) 563 return -ENOSPC; 564 565 if (copy_to_user(buf + *offset, &header, sizeof(header))) 566 return -EFAULT; 567 568 (*offset) += header.size; 569 570 return 0; 571 } 572 573 /** 574 * append_oa_sample - Copies single OA report into userspace read() buffer. 575 * @stream: An i915-perf stream opened for OA metrics 576 * @buf: destination buffer given by userspace 577 * @count: the number of bytes userspace wants to read 578 * @offset: (inout): the current position for writing into @buf 579 * @report: A single OA report to (optionally) include as part of the sample 580 * 581 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 582 * properties when opening a stream, tracked as `stream->sample_flags`. This 583 * function copies the requested components of a single sample to the given 584 * read() @buf. 585 * 586 * The @buf @offset will only be updated on success. 587 * 588 * Returns: 0 on success, negative error code on failure. 589 */ 590 static int append_oa_sample(struct i915_perf_stream *stream, 591 char __user *buf, 592 size_t count, 593 size_t *offset, 594 const u8 *report) 595 { 596 int report_size = stream->oa_buffer.format_size; 597 struct drm_i915_perf_record_header header; 598 599 header.type = DRM_I915_PERF_RECORD_SAMPLE; 600 header.pad = 0; 601 header.size = stream->sample_size; 602 603 if ((count - *offset) < header.size) 604 return -ENOSPC; 605 606 buf += *offset; 607 if (copy_to_user(buf, &header, sizeof(header))) 608 return -EFAULT; 609 buf += sizeof(header); 610 611 if (copy_to_user(buf, report, report_size)) 612 return -EFAULT; 613 614 (*offset) += header.size; 615 616 return 0; 617 } 618 619 /** 620 * gen8_append_oa_reports - Copies all buffered OA reports into 621 * userspace read() buffer. 622 * @stream: An i915-perf stream opened for OA metrics 623 * @buf: destination buffer given by userspace 624 * @count: the number of bytes userspace wants to read 625 * @offset: (inout): the current position for writing into @buf 626 * 627 * Notably any error condition resulting in a short read (-%ENOSPC or 628 * -%EFAULT) will be returned even though one or more records may 629 * have been successfully copied. In this case it's up to the caller 630 * to decide if the error should be squashed before returning to 631 * userspace. 632 * 633 * Note: reports are consumed from the head, and appended to the 634 * tail, so the tail chases the head?... If you think that's mad 635 * and back-to-front you're not alone, but this follows the 636 * Gen PRM naming convention. 637 * 638 * Returns: 0 on success, negative error code on failure. 639 */ 640 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 641 char __user *buf, 642 size_t count, 643 size_t *offset) 644 { 645 struct intel_uncore *uncore = stream->uncore; 646 int report_size = stream->oa_buffer.format_size; 647 u8 *oa_buf_base = stream->oa_buffer.vaddr; 648 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 649 u32 mask = (OA_BUFFER_SIZE - 1); 650 size_t start_offset = *offset; 651 unsigned long flags; 652 u32 head, tail; 653 u32 taken; 654 int ret = 0; 655 656 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 657 return -EIO; 658 659 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 660 661 head = stream->oa_buffer.head; 662 tail = stream->oa_buffer.tail; 663 664 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 665 666 /* 667 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 668 * while indexing relative to oa_buf_base. 669 */ 670 head -= gtt_offset; 671 tail -= gtt_offset; 672 673 /* 674 * An out of bounds or misaligned head or tail pointer implies a driver 675 * bug since we validate + align the tail pointers we read from the 676 * hardware and we are in full control of the head pointer which should 677 * only be incremented by multiples of the report size (notably also 678 * all a power of two). 679 */ 680 if (drm_WARN_ONCE(&uncore->i915->drm, 681 head > OA_BUFFER_SIZE || head % report_size || 682 tail > OA_BUFFER_SIZE || tail % report_size, 683 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 684 head, tail)) 685 return -EIO; 686 687 688 for (/* none */; 689 (taken = OA_TAKEN(tail, head)); 690 head = (head + report_size) & mask) { 691 u8 *report = oa_buf_base + head; 692 u32 *report32 = (void *)report; 693 u32 ctx_id; 694 u32 reason; 695 696 /* 697 * All the report sizes factor neatly into the buffer 698 * size so we never expect to see a report split 699 * between the beginning and end of the buffer. 700 * 701 * Given the initial alignment check a misalignment 702 * here would imply a driver bug that would result 703 * in an overrun. 704 */ 705 if (drm_WARN_ON(&uncore->i915->drm, 706 (OA_BUFFER_SIZE - head) < report_size)) { 707 drm_err(&uncore->i915->drm, 708 "Spurious OA head ptr: non-integral report offset\n"); 709 break; 710 } 711 712 /* 713 * The reason field includes flags identifying what 714 * triggered this specific report (mostly timer 715 * triggered or e.g. due to a context switch). 716 * 717 * This field is never expected to be zero so we can 718 * check that the report isn't invalid before copying 719 * it to userspace... 720 */ 721 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 722 (IS_GEN(stream->perf->i915, 12) ? 723 OAREPORT_REASON_MASK_EXTENDED : 724 OAREPORT_REASON_MASK)); 725 726 ctx_id = report32[2] & stream->specific_ctx_id_mask; 727 728 /* 729 * Squash whatever is in the CTX_ID field if it's marked as 730 * invalid to be sure we avoid false-positive, single-context 731 * filtering below... 732 * 733 * Note: that we don't clear the valid_ctx_bit so userspace can 734 * understand that the ID has been squashed by the kernel. 735 */ 736 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 737 INTEL_GEN(stream->perf->i915) <= 11) 738 ctx_id = report32[2] = INVALID_CTX_ID; 739 740 /* 741 * NB: For Gen 8 the OA unit no longer supports clock gating 742 * off for a specific context and the kernel can't securely 743 * stop the counters from updating as system-wide / global 744 * values. 745 * 746 * Automatic reports now include a context ID so reports can be 747 * filtered on the cpu but it's not worth trying to 748 * automatically subtract/hide counter progress for other 749 * contexts while filtering since we can't stop userspace 750 * issuing MI_REPORT_PERF_COUNT commands which would still 751 * provide a side-band view of the real values. 752 * 753 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 754 * to normalize counters for a single filtered context then it 755 * needs be forwarded bookend context-switch reports so that it 756 * can track switches in between MI_REPORT_PERF_COUNT commands 757 * and can itself subtract/ignore the progress of counters 758 * associated with other contexts. Note that the hardware 759 * automatically triggers reports when switching to a new 760 * context which are tagged with the ID of the newly active 761 * context. To avoid the complexity (and likely fragility) of 762 * reading ahead while parsing reports to try and minimize 763 * forwarding redundant context switch reports (i.e. between 764 * other, unrelated contexts) we simply elect to forward them 765 * all. 766 * 767 * We don't rely solely on the reason field to identify context 768 * switches since it's not-uncommon for periodic samples to 769 * identify a switch before any 'context switch' report. 770 */ 771 if (!stream->perf->exclusive_stream->ctx || 772 stream->specific_ctx_id == ctx_id || 773 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 774 reason & OAREPORT_REASON_CTX_SWITCH) { 775 776 /* 777 * While filtering for a single context we avoid 778 * leaking the IDs of other contexts. 779 */ 780 if (stream->perf->exclusive_stream->ctx && 781 stream->specific_ctx_id != ctx_id) { 782 report32[2] = INVALID_CTX_ID; 783 } 784 785 ret = append_oa_sample(stream, buf, count, offset, 786 report); 787 if (ret) 788 break; 789 790 stream->oa_buffer.last_ctx_id = ctx_id; 791 } 792 793 /* 794 * Clear out the first 2 dword as a mean to detect unlanded 795 * reports. 796 */ 797 report32[0] = 0; 798 report32[1] = 0; 799 } 800 801 if (start_offset != *offset) { 802 i915_reg_t oaheadptr; 803 804 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 805 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 806 807 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 808 809 /* 810 * We removed the gtt_offset for the copy loop above, indexing 811 * relative to oa_buf_base so put back here... 812 */ 813 head += gtt_offset; 814 intel_uncore_write(uncore, oaheadptr, 815 head & GEN12_OAG_OAHEADPTR_MASK); 816 stream->oa_buffer.head = head; 817 818 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 819 } 820 821 return ret; 822 } 823 824 /** 825 * gen8_oa_read - copy status records then buffered OA reports 826 * @stream: An i915-perf stream opened for OA metrics 827 * @buf: destination buffer given by userspace 828 * @count: the number of bytes userspace wants to read 829 * @offset: (inout): the current position for writing into @buf 830 * 831 * Checks OA unit status registers and if necessary appends corresponding 832 * status records for userspace (such as for a buffer full condition) and then 833 * initiate appending any buffered OA reports. 834 * 835 * Updates @offset according to the number of bytes successfully copied into 836 * the userspace buffer. 837 * 838 * NB: some data may be successfully copied to the userspace buffer 839 * even if an error is returned, and this is reflected in the 840 * updated @offset. 841 * 842 * Returns: zero on success or a negative error code 843 */ 844 static int gen8_oa_read(struct i915_perf_stream *stream, 845 char __user *buf, 846 size_t count, 847 size_t *offset) 848 { 849 struct intel_uncore *uncore = stream->uncore; 850 u32 oastatus; 851 i915_reg_t oastatus_reg; 852 int ret; 853 854 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 855 return -EIO; 856 857 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 858 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 859 860 oastatus = intel_uncore_read(uncore, oastatus_reg); 861 862 /* 863 * We treat OABUFFER_OVERFLOW as a significant error: 864 * 865 * Although theoretically we could handle this more gracefully 866 * sometimes, some Gens don't correctly suppress certain 867 * automatically triggered reports in this condition and so we 868 * have to assume that old reports are now being trampled 869 * over. 870 * 871 * Considering how we don't currently give userspace control 872 * over the OA buffer size and always configure a large 16MB 873 * buffer, then a buffer overflow does anyway likely indicate 874 * that something has gone quite badly wrong. 875 */ 876 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 877 ret = append_oa_status(stream, buf, count, offset, 878 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 879 if (ret) 880 return ret; 881 882 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 883 stream->period_exponent); 884 885 stream->perf->ops.oa_disable(stream); 886 stream->perf->ops.oa_enable(stream); 887 888 /* 889 * Note: .oa_enable() is expected to re-init the oabuffer and 890 * reset GEN8_OASTATUS for us 891 */ 892 oastatus = intel_uncore_read(uncore, oastatus_reg); 893 } 894 895 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 896 ret = append_oa_status(stream, buf, count, offset, 897 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 898 if (ret) 899 return ret; 900 901 intel_uncore_rmw(uncore, oastatus_reg, 902 GEN8_OASTATUS_COUNTER_OVERFLOW | 903 GEN8_OASTATUS_REPORT_LOST, 904 IS_GEN_RANGE(uncore->i915, 8, 11) ? 905 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 906 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 907 } 908 909 return gen8_append_oa_reports(stream, buf, count, offset); 910 } 911 912 /** 913 * gen7_append_oa_reports - Copies all buffered OA reports into 914 * userspace read() buffer. 915 * @stream: An i915-perf stream opened for OA metrics 916 * @buf: destination buffer given by userspace 917 * @count: the number of bytes userspace wants to read 918 * @offset: (inout): the current position for writing into @buf 919 * 920 * Notably any error condition resulting in a short read (-%ENOSPC or 921 * -%EFAULT) will be returned even though one or more records may 922 * have been successfully copied. In this case it's up to the caller 923 * to decide if the error should be squashed before returning to 924 * userspace. 925 * 926 * Note: reports are consumed from the head, and appended to the 927 * tail, so the tail chases the head?... If you think that's mad 928 * and back-to-front you're not alone, but this follows the 929 * Gen PRM naming convention. 930 * 931 * Returns: 0 on success, negative error code on failure. 932 */ 933 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 934 char __user *buf, 935 size_t count, 936 size_t *offset) 937 { 938 struct intel_uncore *uncore = stream->uncore; 939 int report_size = stream->oa_buffer.format_size; 940 u8 *oa_buf_base = stream->oa_buffer.vaddr; 941 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 942 u32 mask = (OA_BUFFER_SIZE - 1); 943 size_t start_offset = *offset; 944 unsigned long flags; 945 u32 head, tail; 946 u32 taken; 947 int ret = 0; 948 949 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 950 return -EIO; 951 952 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 953 954 head = stream->oa_buffer.head; 955 tail = stream->oa_buffer.tail; 956 957 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 958 959 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 960 * while indexing relative to oa_buf_base. 961 */ 962 head -= gtt_offset; 963 tail -= gtt_offset; 964 965 /* An out of bounds or misaligned head or tail pointer implies a driver 966 * bug since we validate + align the tail pointers we read from the 967 * hardware and we are in full control of the head pointer which should 968 * only be incremented by multiples of the report size (notably also 969 * all a power of two). 970 */ 971 if (drm_WARN_ONCE(&uncore->i915->drm, 972 head > OA_BUFFER_SIZE || head % report_size || 973 tail > OA_BUFFER_SIZE || tail % report_size, 974 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 975 head, tail)) 976 return -EIO; 977 978 979 for (/* none */; 980 (taken = OA_TAKEN(tail, head)); 981 head = (head + report_size) & mask) { 982 u8 *report = oa_buf_base + head; 983 u32 *report32 = (void *)report; 984 985 /* All the report sizes factor neatly into the buffer 986 * size so we never expect to see a report split 987 * between the beginning and end of the buffer. 988 * 989 * Given the initial alignment check a misalignment 990 * here would imply a driver bug that would result 991 * in an overrun. 992 */ 993 if (drm_WARN_ON(&uncore->i915->drm, 994 (OA_BUFFER_SIZE - head) < report_size)) { 995 drm_err(&uncore->i915->drm, 996 "Spurious OA head ptr: non-integral report offset\n"); 997 break; 998 } 999 1000 /* The report-ID field for periodic samples includes 1001 * some undocumented flags related to what triggered 1002 * the report and is never expected to be zero so we 1003 * can check that the report isn't invalid before 1004 * copying it to userspace... 1005 */ 1006 if (report32[0] == 0) { 1007 if (__ratelimit(&stream->perf->spurious_report_rs)) 1008 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1009 continue; 1010 } 1011 1012 ret = append_oa_sample(stream, buf, count, offset, report); 1013 if (ret) 1014 break; 1015 1016 /* Clear out the first 2 dwords as a mean to detect unlanded 1017 * reports. 1018 */ 1019 report32[0] = 0; 1020 report32[1] = 0; 1021 } 1022 1023 if (start_offset != *offset) { 1024 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1025 1026 /* We removed the gtt_offset for the copy loop above, indexing 1027 * relative to oa_buf_base so put back here... 1028 */ 1029 head += gtt_offset; 1030 1031 intel_uncore_write(uncore, GEN7_OASTATUS2, 1032 (head & GEN7_OASTATUS2_HEAD_MASK) | 1033 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1034 stream->oa_buffer.head = head; 1035 1036 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1037 } 1038 1039 return ret; 1040 } 1041 1042 /** 1043 * gen7_oa_read - copy status records then buffered OA reports 1044 * @stream: An i915-perf stream opened for OA metrics 1045 * @buf: destination buffer given by userspace 1046 * @count: the number of bytes userspace wants to read 1047 * @offset: (inout): the current position for writing into @buf 1048 * 1049 * Checks Gen 7 specific OA unit status registers and if necessary appends 1050 * corresponding status records for userspace (such as for a buffer full 1051 * condition) and then initiate appending any buffered OA reports. 1052 * 1053 * Updates @offset according to the number of bytes successfully copied into 1054 * the userspace buffer. 1055 * 1056 * Returns: zero on success or a negative error code 1057 */ 1058 static int gen7_oa_read(struct i915_perf_stream *stream, 1059 char __user *buf, 1060 size_t count, 1061 size_t *offset) 1062 { 1063 struct intel_uncore *uncore = stream->uncore; 1064 u32 oastatus1; 1065 int ret; 1066 1067 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1068 return -EIO; 1069 1070 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1071 1072 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1073 * bits while the OA unit is enabled (while the tail pointer 1074 * may be updated asynchronously) so we ignore status bits 1075 * that have already been reported to userspace. 1076 */ 1077 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1078 1079 /* We treat OABUFFER_OVERFLOW as a significant error: 1080 * 1081 * - The status can be interpreted to mean that the buffer is 1082 * currently full (with a higher precedence than OA_TAKEN() 1083 * which will start to report a near-empty buffer after an 1084 * overflow) but it's awkward that we can't clear the status 1085 * on Haswell, so without a reset we won't be able to catch 1086 * the state again. 1087 * 1088 * - Since it also implies the HW has started overwriting old 1089 * reports it may also affect our sanity checks for invalid 1090 * reports when copying to userspace that assume new reports 1091 * are being written to cleared memory. 1092 * 1093 * - In the future we may want to introduce a flight recorder 1094 * mode where the driver will automatically maintain a safe 1095 * guard band between head/tail, avoiding this overflow 1096 * condition, but we avoid the added driver complexity for 1097 * now. 1098 */ 1099 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1100 ret = append_oa_status(stream, buf, count, offset, 1101 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1102 if (ret) 1103 return ret; 1104 1105 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1106 stream->period_exponent); 1107 1108 stream->perf->ops.oa_disable(stream); 1109 stream->perf->ops.oa_enable(stream); 1110 1111 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1112 } 1113 1114 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1115 ret = append_oa_status(stream, buf, count, offset, 1116 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1117 if (ret) 1118 return ret; 1119 stream->perf->gen7_latched_oastatus1 |= 1120 GEN7_OASTATUS1_REPORT_LOST; 1121 } 1122 1123 return gen7_append_oa_reports(stream, buf, count, offset); 1124 } 1125 1126 /** 1127 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1128 * @stream: An i915-perf stream opened for OA metrics 1129 * 1130 * Called when userspace tries to read() from a blocking stream FD opened 1131 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1132 * OA buffer and wakes us. 1133 * 1134 * Note: it's acceptable to have this return with some false positives 1135 * since any subsequent read handling will return -EAGAIN if there isn't 1136 * really data ready for userspace yet. 1137 * 1138 * Returns: zero on success or a negative error code 1139 */ 1140 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1141 { 1142 /* We would wait indefinitely if periodic sampling is not enabled */ 1143 if (!stream->periodic) 1144 return -EIO; 1145 1146 return wait_event_interruptible(stream->poll_wq, 1147 oa_buffer_check_unlocked(stream)); 1148 } 1149 1150 /** 1151 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1152 * @stream: An i915-perf stream opened for OA metrics 1153 * @file: An i915 perf stream file 1154 * @wait: poll() state table 1155 * 1156 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1157 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1158 * when it sees data ready to read in the circular OA buffer. 1159 */ 1160 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1161 struct file *file, 1162 poll_table *wait) 1163 { 1164 poll_wait(file, &stream->poll_wq, wait); 1165 } 1166 1167 /** 1168 * i915_oa_read - just calls through to &i915_oa_ops->read 1169 * @stream: An i915-perf stream opened for OA metrics 1170 * @buf: destination buffer given by userspace 1171 * @count: the number of bytes userspace wants to read 1172 * @offset: (inout): the current position for writing into @buf 1173 * 1174 * Updates @offset according to the number of bytes successfully copied into 1175 * the userspace buffer. 1176 * 1177 * Returns: zero on success or a negative error code 1178 */ 1179 static int i915_oa_read(struct i915_perf_stream *stream, 1180 char __user *buf, 1181 size_t count, 1182 size_t *offset) 1183 { 1184 return stream->perf->ops.read(stream, buf, count, offset); 1185 } 1186 1187 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1188 { 1189 struct i915_gem_engines_iter it; 1190 struct i915_gem_context *ctx = stream->ctx; 1191 struct intel_context *ce; 1192 struct i915_gem_ww_ctx ww; 1193 int err = -ENODEV; 1194 1195 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1196 if (ce->engine != stream->engine) /* first match! */ 1197 continue; 1198 1199 err = 0; 1200 break; 1201 } 1202 i915_gem_context_unlock_engines(ctx); 1203 1204 if (err) 1205 return ERR_PTR(err); 1206 1207 i915_gem_ww_ctx_init(&ww, true); 1208 retry: 1209 /* 1210 * As the ID is the gtt offset of the context's vma we 1211 * pin the vma to ensure the ID remains fixed. 1212 */ 1213 err = intel_context_pin_ww(ce, &ww); 1214 if (err == -EDEADLK) { 1215 err = i915_gem_ww_ctx_backoff(&ww); 1216 if (!err) 1217 goto retry; 1218 } 1219 i915_gem_ww_ctx_fini(&ww); 1220 1221 if (err) 1222 return ERR_PTR(err); 1223 1224 stream->pinned_ctx = ce; 1225 return stream->pinned_ctx; 1226 } 1227 1228 /** 1229 * oa_get_render_ctx_id - determine and hold ctx hw id 1230 * @stream: An i915-perf stream opened for OA metrics 1231 * 1232 * Determine the render context hw id, and ensure it remains fixed for the 1233 * lifetime of the stream. This ensures that we don't have to worry about 1234 * updating the context ID in OACONTROL on the fly. 1235 * 1236 * Returns: zero on success or a negative error code 1237 */ 1238 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1239 { 1240 struct intel_context *ce; 1241 1242 ce = oa_pin_context(stream); 1243 if (IS_ERR(ce)) 1244 return PTR_ERR(ce); 1245 1246 switch (INTEL_GEN(ce->engine->i915)) { 1247 case 7: { 1248 /* 1249 * On Haswell we don't do any post processing of the reports 1250 * and don't need to use the mask. 1251 */ 1252 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1253 stream->specific_ctx_id_mask = 0; 1254 break; 1255 } 1256 1257 case 8: 1258 case 9: 1259 case 10: 1260 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1261 stream->specific_ctx_id_mask = 1262 (1U << GEN8_CTX_ID_WIDTH) - 1; 1263 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1264 } else { 1265 /* 1266 * When using GuC, the context descriptor we write in 1267 * i915 is read by GuC and rewritten before it's 1268 * actually written into the hardware. The LRCA is 1269 * what is put into the context id field of the 1270 * context descriptor by GuC. Because it's aligned to 1271 * a page, the lower 12bits are always at 0 and 1272 * dropped by GuC. They won't be part of the context 1273 * ID in the OA reports, so squash those lower bits. 1274 */ 1275 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1276 1277 /* 1278 * GuC uses the top bit to signal proxy submission, so 1279 * ignore that bit. 1280 */ 1281 stream->specific_ctx_id_mask = 1282 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1283 } 1284 break; 1285 1286 case 11: 1287 case 12: { 1288 stream->specific_ctx_id_mask = 1289 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1290 /* 1291 * Pick an unused context id 1292 * 0 - BITS_PER_LONG are used by other contexts 1293 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1294 */ 1295 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1296 break; 1297 } 1298 1299 default: 1300 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1301 } 1302 1303 ce->tag = stream->specific_ctx_id; 1304 1305 drm_dbg(&stream->perf->i915->drm, 1306 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1307 stream->specific_ctx_id, 1308 stream->specific_ctx_id_mask); 1309 1310 return 0; 1311 } 1312 1313 /** 1314 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1315 * @stream: An i915-perf stream opened for OA metrics 1316 * 1317 * In case anything needed doing to ensure the context HW ID would remain valid 1318 * for the lifetime of the stream, then that can be undone here. 1319 */ 1320 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1321 { 1322 struct intel_context *ce; 1323 1324 ce = fetch_and_zero(&stream->pinned_ctx); 1325 if (ce) { 1326 ce->tag = 0; /* recomputed on next submission after parking */ 1327 intel_context_unpin(ce); 1328 } 1329 1330 stream->specific_ctx_id = INVALID_CTX_ID; 1331 stream->specific_ctx_id_mask = 0; 1332 } 1333 1334 static void 1335 free_oa_buffer(struct i915_perf_stream *stream) 1336 { 1337 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1338 I915_VMA_RELEASE_MAP); 1339 1340 stream->oa_buffer.vaddr = NULL; 1341 } 1342 1343 static void 1344 free_oa_configs(struct i915_perf_stream *stream) 1345 { 1346 struct i915_oa_config_bo *oa_bo, *tmp; 1347 1348 i915_oa_config_put(stream->oa_config); 1349 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1350 free_oa_config_bo(oa_bo); 1351 } 1352 1353 static void 1354 free_noa_wait(struct i915_perf_stream *stream) 1355 { 1356 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1357 } 1358 1359 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1360 { 1361 struct i915_perf *perf = stream->perf; 1362 1363 BUG_ON(stream != perf->exclusive_stream); 1364 1365 /* 1366 * Unset exclusive_stream first, it will be checked while disabling 1367 * the metric set on gen8+. 1368 * 1369 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1370 */ 1371 WRITE_ONCE(perf->exclusive_stream, NULL); 1372 perf->ops.disable_metric_set(stream); 1373 1374 free_oa_buffer(stream); 1375 1376 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1377 intel_engine_pm_put(stream->engine); 1378 1379 if (stream->ctx) 1380 oa_put_render_ctx_id(stream); 1381 1382 free_oa_configs(stream); 1383 free_noa_wait(stream); 1384 1385 if (perf->spurious_report_rs.missed) { 1386 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1387 perf->spurious_report_rs.missed); 1388 } 1389 } 1390 1391 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1392 { 1393 struct intel_uncore *uncore = stream->uncore; 1394 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1395 unsigned long flags; 1396 1397 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1398 1399 /* Pre-DevBDW: OABUFFER must be set with counters off, 1400 * before OASTATUS1, but after OASTATUS2 1401 */ 1402 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1403 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1404 stream->oa_buffer.head = gtt_offset; 1405 1406 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1407 1408 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1409 gtt_offset | OABUFFER_SIZE_16M); 1410 1411 /* Mark that we need updated tail pointers to read from... */ 1412 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1413 stream->oa_buffer.tail = gtt_offset; 1414 1415 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1416 1417 /* On Haswell we have to track which OASTATUS1 flags we've 1418 * already seen since they can't be cleared while periodic 1419 * sampling is enabled. 1420 */ 1421 stream->perf->gen7_latched_oastatus1 = 0; 1422 1423 /* NB: although the OA buffer will initially be allocated 1424 * zeroed via shmfs (and so this memset is redundant when 1425 * first allocating), we may re-init the OA buffer, either 1426 * when re-enabling a stream or in error/reset paths. 1427 * 1428 * The reason we clear the buffer for each re-init is for the 1429 * sanity check in gen7_append_oa_reports() that looks at the 1430 * report-id field to make sure it's non-zero which relies on 1431 * the assumption that new reports are being written to zeroed 1432 * memory... 1433 */ 1434 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1435 } 1436 1437 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1438 { 1439 struct intel_uncore *uncore = stream->uncore; 1440 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1444 1445 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1446 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1447 stream->oa_buffer.head = gtt_offset; 1448 1449 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1450 1451 /* 1452 * PRM says: 1453 * 1454 * "This MMIO must be set before the OATAILPTR 1455 * register and after the OAHEADPTR register. This is 1456 * to enable proper functionality of the overflow 1457 * bit." 1458 */ 1459 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1460 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1461 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1462 1463 /* Mark that we need updated tail pointers to read from... */ 1464 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1465 stream->oa_buffer.tail = gtt_offset; 1466 1467 /* 1468 * Reset state used to recognise context switches, affecting which 1469 * reports we will forward to userspace while filtering for a single 1470 * context. 1471 */ 1472 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1473 1474 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1475 1476 /* 1477 * NB: although the OA buffer will initially be allocated 1478 * zeroed via shmfs (and so this memset is redundant when 1479 * first allocating), we may re-init the OA buffer, either 1480 * when re-enabling a stream or in error/reset paths. 1481 * 1482 * The reason we clear the buffer for each re-init is for the 1483 * sanity check in gen8_append_oa_reports() that looks at the 1484 * reason field to make sure it's non-zero which relies on 1485 * the assumption that new reports are being written to zeroed 1486 * memory... 1487 */ 1488 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1489 } 1490 1491 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1492 { 1493 struct intel_uncore *uncore = stream->uncore; 1494 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1495 unsigned long flags; 1496 1497 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1498 1499 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1500 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1501 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1502 stream->oa_buffer.head = gtt_offset; 1503 1504 /* 1505 * PRM says: 1506 * 1507 * "This MMIO must be set before the OATAILPTR 1508 * register and after the OAHEADPTR register. This is 1509 * to enable proper functionality of the overflow 1510 * bit." 1511 */ 1512 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1513 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1514 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1515 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1516 1517 /* Mark that we need updated tail pointers to read from... */ 1518 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1519 stream->oa_buffer.tail = gtt_offset; 1520 1521 /* 1522 * Reset state used to recognise context switches, affecting which 1523 * reports we will forward to userspace while filtering for a single 1524 * context. 1525 */ 1526 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1527 1528 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1529 1530 /* 1531 * NB: although the OA buffer will initially be allocated 1532 * zeroed via shmfs (and so this memset is redundant when 1533 * first allocating), we may re-init the OA buffer, either 1534 * when re-enabling a stream or in error/reset paths. 1535 * 1536 * The reason we clear the buffer for each re-init is for the 1537 * sanity check in gen8_append_oa_reports() that looks at the 1538 * reason field to make sure it's non-zero which relies on 1539 * the assumption that new reports are being written to zeroed 1540 * memory... 1541 */ 1542 memset(stream->oa_buffer.vaddr, 0, 1543 stream->oa_buffer.vma->size); 1544 } 1545 1546 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1547 { 1548 struct drm_i915_private *i915 = stream->perf->i915; 1549 struct drm_i915_gem_object *bo; 1550 struct i915_vma *vma; 1551 int ret; 1552 1553 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1554 return -ENODEV; 1555 1556 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1557 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1558 1559 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1560 if (IS_ERR(bo)) { 1561 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1562 return PTR_ERR(bo); 1563 } 1564 1565 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1566 1567 /* PreHSW required 512K alignment, HSW requires 16M */ 1568 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1569 if (IS_ERR(vma)) { 1570 ret = PTR_ERR(vma); 1571 goto err_unref; 1572 } 1573 stream->oa_buffer.vma = vma; 1574 1575 stream->oa_buffer.vaddr = 1576 i915_gem_object_pin_map(bo, I915_MAP_WB); 1577 if (IS_ERR(stream->oa_buffer.vaddr)) { 1578 ret = PTR_ERR(stream->oa_buffer.vaddr); 1579 goto err_unpin; 1580 } 1581 1582 return 0; 1583 1584 err_unpin: 1585 __i915_vma_unpin(vma); 1586 1587 err_unref: 1588 i915_gem_object_put(bo); 1589 1590 stream->oa_buffer.vaddr = NULL; 1591 stream->oa_buffer.vma = NULL; 1592 1593 return ret; 1594 } 1595 1596 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1597 bool save, i915_reg_t reg, u32 offset, 1598 u32 dword_count) 1599 { 1600 u32 cmd; 1601 u32 d; 1602 1603 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1604 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1605 if (INTEL_GEN(stream->perf->i915) >= 8) 1606 cmd++; 1607 1608 for (d = 0; d < dword_count; d++) { 1609 *cs++ = cmd; 1610 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1611 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1612 offset) + 4 * d; 1613 *cs++ = 0; 1614 } 1615 1616 return cs; 1617 } 1618 1619 static int alloc_noa_wait(struct i915_perf_stream *stream) 1620 { 1621 struct drm_i915_private *i915 = stream->perf->i915; 1622 struct drm_i915_gem_object *bo; 1623 struct i915_vma *vma; 1624 const u64 delay_ticks = 0xffffffffffffffff - 1625 intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt, 1626 atomic64_read(&stream->perf->noa_programming_delay)); 1627 const u32 base = stream->engine->mmio_base; 1628 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1629 u32 *batch, *ts0, *cs, *jump; 1630 int ret, i; 1631 enum { 1632 START_TS, 1633 NOW_TS, 1634 DELTA_TS, 1635 JUMP_PREDICATE, 1636 DELTA_TARGET, 1637 N_CS_GPR 1638 }; 1639 1640 bo = i915_gem_object_create_internal(i915, 4096); 1641 if (IS_ERR(bo)) { 1642 drm_err(&i915->drm, 1643 "Failed to allocate NOA wait batchbuffer\n"); 1644 return PTR_ERR(bo); 1645 } 1646 1647 /* 1648 * We pin in GGTT because we jump into this buffer now because 1649 * multiple OA config BOs will have a jump to this address and it 1650 * needs to be fixed during the lifetime of the i915/perf stream. 1651 */ 1652 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1653 if (IS_ERR(vma)) { 1654 ret = PTR_ERR(vma); 1655 goto err_unref; 1656 } 1657 1658 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1659 if (IS_ERR(batch)) { 1660 ret = PTR_ERR(batch); 1661 goto err_unpin; 1662 } 1663 1664 /* Save registers. */ 1665 for (i = 0; i < N_CS_GPR; i++) 1666 cs = save_restore_register( 1667 stream, cs, true /* save */, CS_GPR(i), 1668 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1669 cs = save_restore_register( 1670 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1671 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1672 1673 /* First timestamp snapshot location. */ 1674 ts0 = cs; 1675 1676 /* 1677 * Initial snapshot of the timestamp register to implement the wait. 1678 * We work with 32b values, so clear out the top 32b bits of the 1679 * register because the ALU works 64bits. 1680 */ 1681 *cs++ = MI_LOAD_REGISTER_IMM(1); 1682 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1683 *cs++ = 0; 1684 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1685 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1686 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1687 1688 /* 1689 * This is the location we're going to jump back into until the 1690 * required amount of time has passed. 1691 */ 1692 jump = cs; 1693 1694 /* 1695 * Take another snapshot of the timestamp register. Take care to clear 1696 * up the top 32bits of CS_GPR(1) as we're using it for other 1697 * operations below. 1698 */ 1699 *cs++ = MI_LOAD_REGISTER_IMM(1); 1700 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1701 *cs++ = 0; 1702 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1703 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1704 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1705 1706 /* 1707 * Do a diff between the 2 timestamps and store the result back into 1708 * CS_GPR(1). 1709 */ 1710 *cs++ = MI_MATH(5); 1711 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1712 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1713 *cs++ = MI_MATH_SUB; 1714 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1715 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1716 1717 /* 1718 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1719 * timestamp have rolled over the 32bits) into the predicate register 1720 * to be used for the predicated jump. 1721 */ 1722 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1723 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1724 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1725 1726 /* Restart from the beginning if we had timestamps roll over. */ 1727 *cs++ = (INTEL_GEN(i915) < 8 ? 1728 MI_BATCH_BUFFER_START : 1729 MI_BATCH_BUFFER_START_GEN8) | 1730 MI_BATCH_PREDICATE; 1731 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1732 *cs++ = 0; 1733 1734 /* 1735 * Now add the diff between to previous timestamps and add it to : 1736 * (((1 * << 64) - 1) - delay_ns) 1737 * 1738 * When the Carry Flag contains 1 this means the elapsed time is 1739 * longer than the expected delay, and we can exit the wait loop. 1740 */ 1741 *cs++ = MI_LOAD_REGISTER_IMM(2); 1742 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1743 *cs++ = lower_32_bits(delay_ticks); 1744 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1745 *cs++ = upper_32_bits(delay_ticks); 1746 1747 *cs++ = MI_MATH(4); 1748 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1749 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1750 *cs++ = MI_MATH_ADD; 1751 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1752 1753 *cs++ = MI_ARB_CHECK; 1754 1755 /* 1756 * Transfer the result into the predicate register to be used for the 1757 * predicated jump. 1758 */ 1759 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1760 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1761 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1762 1763 /* Predicate the jump. */ 1764 *cs++ = (INTEL_GEN(i915) < 8 ? 1765 MI_BATCH_BUFFER_START : 1766 MI_BATCH_BUFFER_START_GEN8) | 1767 MI_BATCH_PREDICATE; 1768 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1769 *cs++ = 0; 1770 1771 /* Restore registers. */ 1772 for (i = 0; i < N_CS_GPR; i++) 1773 cs = save_restore_register( 1774 stream, cs, false /* restore */, CS_GPR(i), 1775 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1776 cs = save_restore_register( 1777 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1778 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1779 1780 /* And return to the ring. */ 1781 *cs++ = MI_BATCH_BUFFER_END; 1782 1783 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1784 1785 i915_gem_object_flush_map(bo); 1786 __i915_gem_object_release_map(bo); 1787 1788 stream->noa_wait = vma; 1789 return 0; 1790 1791 err_unpin: 1792 i915_vma_unpin_and_release(&vma, 0); 1793 err_unref: 1794 i915_gem_object_put(bo); 1795 return ret; 1796 } 1797 1798 static u32 *write_cs_mi_lri(u32 *cs, 1799 const struct i915_oa_reg *reg_data, 1800 u32 n_regs) 1801 { 1802 u32 i; 1803 1804 for (i = 0; i < n_regs; i++) { 1805 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1806 u32 n_lri = min_t(u32, 1807 n_regs - i, 1808 MI_LOAD_REGISTER_IMM_MAX_REGS); 1809 1810 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1811 } 1812 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1813 *cs++ = reg_data[i].value; 1814 } 1815 1816 return cs; 1817 } 1818 1819 static int num_lri_dwords(int num_regs) 1820 { 1821 int count = 0; 1822 1823 if (num_regs > 0) { 1824 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1825 count += num_regs * 2; 1826 } 1827 1828 return count; 1829 } 1830 1831 static struct i915_oa_config_bo * 1832 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1833 struct i915_oa_config *oa_config) 1834 { 1835 struct drm_i915_gem_object *obj; 1836 struct i915_oa_config_bo *oa_bo; 1837 size_t config_length = 0; 1838 u32 *cs; 1839 int err; 1840 1841 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1842 if (!oa_bo) 1843 return ERR_PTR(-ENOMEM); 1844 1845 config_length += num_lri_dwords(oa_config->mux_regs_len); 1846 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1847 config_length += num_lri_dwords(oa_config->flex_regs_len); 1848 config_length += 3; /* MI_BATCH_BUFFER_START */ 1849 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1850 1851 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1852 if (IS_ERR(obj)) { 1853 err = PTR_ERR(obj); 1854 goto err_free; 1855 } 1856 1857 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1858 if (IS_ERR(cs)) { 1859 err = PTR_ERR(cs); 1860 goto err_oa_bo; 1861 } 1862 1863 cs = write_cs_mi_lri(cs, 1864 oa_config->mux_regs, 1865 oa_config->mux_regs_len); 1866 cs = write_cs_mi_lri(cs, 1867 oa_config->b_counter_regs, 1868 oa_config->b_counter_regs_len); 1869 cs = write_cs_mi_lri(cs, 1870 oa_config->flex_regs, 1871 oa_config->flex_regs_len); 1872 1873 /* Jump into the active wait. */ 1874 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1875 MI_BATCH_BUFFER_START : 1876 MI_BATCH_BUFFER_START_GEN8); 1877 *cs++ = i915_ggtt_offset(stream->noa_wait); 1878 *cs++ = 0; 1879 1880 i915_gem_object_flush_map(obj); 1881 __i915_gem_object_release_map(obj); 1882 1883 oa_bo->vma = i915_vma_instance(obj, 1884 &stream->engine->gt->ggtt->vm, 1885 NULL); 1886 if (IS_ERR(oa_bo->vma)) { 1887 err = PTR_ERR(oa_bo->vma); 1888 goto err_oa_bo; 1889 } 1890 1891 oa_bo->oa_config = i915_oa_config_get(oa_config); 1892 llist_add(&oa_bo->node, &stream->oa_config_bos); 1893 1894 return oa_bo; 1895 1896 err_oa_bo: 1897 i915_gem_object_put(obj); 1898 err_free: 1899 kfree(oa_bo); 1900 return ERR_PTR(err); 1901 } 1902 1903 static struct i915_vma * 1904 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1905 { 1906 struct i915_oa_config_bo *oa_bo; 1907 1908 /* 1909 * Look for the buffer in the already allocated BOs attached 1910 * to the stream. 1911 */ 1912 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1913 if (oa_bo->oa_config == oa_config && 1914 memcmp(oa_bo->oa_config->uuid, 1915 oa_config->uuid, 1916 sizeof(oa_config->uuid)) == 0) 1917 goto out; 1918 } 1919 1920 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1921 if (IS_ERR(oa_bo)) 1922 return ERR_CAST(oa_bo); 1923 1924 out: 1925 return i915_vma_get(oa_bo->vma); 1926 } 1927 1928 static int 1929 emit_oa_config(struct i915_perf_stream *stream, 1930 struct i915_oa_config *oa_config, 1931 struct intel_context *ce, 1932 struct i915_active *active) 1933 { 1934 struct i915_request *rq; 1935 struct i915_vma *vma; 1936 struct i915_gem_ww_ctx ww; 1937 int err; 1938 1939 vma = get_oa_vma(stream, oa_config); 1940 if (IS_ERR(vma)) 1941 return PTR_ERR(vma); 1942 1943 i915_gem_ww_ctx_init(&ww, true); 1944 retry: 1945 err = i915_gem_object_lock(vma->obj, &ww); 1946 if (err) 1947 goto err; 1948 1949 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1950 if (err) 1951 goto err; 1952 1953 intel_engine_pm_get(ce->engine); 1954 rq = i915_request_create(ce); 1955 intel_engine_pm_put(ce->engine); 1956 if (IS_ERR(rq)) { 1957 err = PTR_ERR(rq); 1958 goto err_vma_unpin; 1959 } 1960 1961 if (!IS_ERR_OR_NULL(active)) { 1962 /* After all individual context modifications */ 1963 err = i915_request_await_active(rq, active, 1964 I915_ACTIVE_AWAIT_ACTIVE); 1965 if (err) 1966 goto err_add_request; 1967 1968 err = i915_active_add_request(active, rq); 1969 if (err) 1970 goto err_add_request; 1971 } 1972 1973 err = i915_request_await_object(rq, vma->obj, 0); 1974 if (!err) 1975 err = i915_vma_move_to_active(vma, rq, 0); 1976 if (err) 1977 goto err_add_request; 1978 1979 err = rq->engine->emit_bb_start(rq, 1980 vma->node.start, 0, 1981 I915_DISPATCH_SECURE); 1982 if (err) 1983 goto err_add_request; 1984 1985 err_add_request: 1986 i915_request_add(rq); 1987 err_vma_unpin: 1988 i915_vma_unpin(vma); 1989 err: 1990 if (err == -EDEADLK) { 1991 err = i915_gem_ww_ctx_backoff(&ww); 1992 if (!err) 1993 goto retry; 1994 } 1995 1996 i915_gem_ww_ctx_fini(&ww); 1997 i915_vma_put(vma); 1998 return err; 1999 } 2000 2001 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2002 { 2003 return stream->pinned_ctx ?: stream->engine->kernel_context; 2004 } 2005 2006 static int 2007 hsw_enable_metric_set(struct i915_perf_stream *stream, 2008 struct i915_active *active) 2009 { 2010 struct intel_uncore *uncore = stream->uncore; 2011 2012 /* 2013 * PRM: 2014 * 2015 * OA unit is using “crclk” for its functionality. When trunk 2016 * level clock gating takes place, OA clock would be gated, 2017 * unable to count the events from non-render clock domain. 2018 * Render clock gating must be disabled when OA is enabled to 2019 * count the events from non-render domain. Unit level clock 2020 * gating for RCS should also be disabled. 2021 */ 2022 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2023 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2024 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2025 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2026 2027 return emit_oa_config(stream, 2028 stream->oa_config, oa_context(stream), 2029 active); 2030 } 2031 2032 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2033 { 2034 struct intel_uncore *uncore = stream->uncore; 2035 2036 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2037 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2038 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2039 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2040 2041 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2042 } 2043 2044 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2045 i915_reg_t reg) 2046 { 2047 u32 mmio = i915_mmio_reg_offset(reg); 2048 int i; 2049 2050 /* 2051 * This arbitrary default will select the 'EU FPU0 Pipeline 2052 * Active' event. In the future it's anticipated that there 2053 * will be an explicit 'No Event' we can select, but not yet... 2054 */ 2055 if (!oa_config) 2056 return 0; 2057 2058 for (i = 0; i < oa_config->flex_regs_len; i++) { 2059 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2060 return oa_config->flex_regs[i].value; 2061 } 2062 2063 return 0; 2064 } 2065 /* 2066 * NB: It must always remain pointer safe to run this even if the OA unit 2067 * has been disabled. 2068 * 2069 * It's fine to put out-of-date values into these per-context registers 2070 * in the case that the OA unit has been disabled. 2071 */ 2072 static void 2073 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2074 const struct i915_perf_stream *stream) 2075 { 2076 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2077 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2078 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2079 i915_reg_t flex_regs[] = { 2080 EU_PERF_CNTL0, 2081 EU_PERF_CNTL1, 2082 EU_PERF_CNTL2, 2083 EU_PERF_CNTL3, 2084 EU_PERF_CNTL4, 2085 EU_PERF_CNTL5, 2086 EU_PERF_CNTL6, 2087 }; 2088 u32 *reg_state = ce->lrc_reg_state; 2089 int i; 2090 2091 reg_state[ctx_oactxctrl + 1] = 2092 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2093 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2094 GEN8_OA_COUNTER_RESUME; 2095 2096 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2097 reg_state[ctx_flexeu0 + i * 2 + 1] = 2098 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2099 } 2100 2101 struct flex { 2102 i915_reg_t reg; 2103 u32 offset; 2104 u32 value; 2105 }; 2106 2107 static int 2108 gen8_store_flex(struct i915_request *rq, 2109 struct intel_context *ce, 2110 const struct flex *flex, unsigned int count) 2111 { 2112 u32 offset; 2113 u32 *cs; 2114 2115 cs = intel_ring_begin(rq, 4 * count); 2116 if (IS_ERR(cs)) 2117 return PTR_ERR(cs); 2118 2119 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2120 do { 2121 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2122 *cs++ = offset + flex->offset * sizeof(u32); 2123 *cs++ = 0; 2124 *cs++ = flex->value; 2125 } while (flex++, --count); 2126 2127 intel_ring_advance(rq, cs); 2128 2129 return 0; 2130 } 2131 2132 static int 2133 gen8_load_flex(struct i915_request *rq, 2134 struct intel_context *ce, 2135 const struct flex *flex, unsigned int count) 2136 { 2137 u32 *cs; 2138 2139 GEM_BUG_ON(!count || count > 63); 2140 2141 cs = intel_ring_begin(rq, 2 * count + 2); 2142 if (IS_ERR(cs)) 2143 return PTR_ERR(cs); 2144 2145 *cs++ = MI_LOAD_REGISTER_IMM(count); 2146 do { 2147 *cs++ = i915_mmio_reg_offset(flex->reg); 2148 *cs++ = flex->value; 2149 } while (flex++, --count); 2150 *cs++ = MI_NOOP; 2151 2152 intel_ring_advance(rq, cs); 2153 2154 return 0; 2155 } 2156 2157 static int gen8_modify_context(struct intel_context *ce, 2158 const struct flex *flex, unsigned int count) 2159 { 2160 struct i915_request *rq; 2161 int err; 2162 2163 rq = intel_engine_create_kernel_request(ce->engine); 2164 if (IS_ERR(rq)) 2165 return PTR_ERR(rq); 2166 2167 /* Serialise with the remote context */ 2168 err = intel_context_prepare_remote_request(ce, rq); 2169 if (err == 0) 2170 err = gen8_store_flex(rq, ce, flex, count); 2171 2172 i915_request_add(rq); 2173 return err; 2174 } 2175 2176 static int 2177 gen8_modify_self(struct intel_context *ce, 2178 const struct flex *flex, unsigned int count, 2179 struct i915_active *active) 2180 { 2181 struct i915_request *rq; 2182 int err; 2183 2184 intel_engine_pm_get(ce->engine); 2185 rq = i915_request_create(ce); 2186 intel_engine_pm_put(ce->engine); 2187 if (IS_ERR(rq)) 2188 return PTR_ERR(rq); 2189 2190 if (!IS_ERR_OR_NULL(active)) { 2191 err = i915_active_add_request(active, rq); 2192 if (err) 2193 goto err_add_request; 2194 } 2195 2196 err = gen8_load_flex(rq, ce, flex, count); 2197 if (err) 2198 goto err_add_request; 2199 2200 err_add_request: 2201 i915_request_add(rq); 2202 return err; 2203 } 2204 2205 static int gen8_configure_context(struct i915_gem_context *ctx, 2206 struct flex *flex, unsigned int count) 2207 { 2208 struct i915_gem_engines_iter it; 2209 struct intel_context *ce; 2210 int err = 0; 2211 2212 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2213 GEM_BUG_ON(ce == ce->engine->kernel_context); 2214 2215 if (ce->engine->class != RENDER_CLASS) 2216 continue; 2217 2218 /* Otherwise OA settings will be set upon first use */ 2219 if (!intel_context_pin_if_active(ce)) 2220 continue; 2221 2222 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2223 err = gen8_modify_context(ce, flex, count); 2224 2225 intel_context_unpin(ce); 2226 if (err) 2227 break; 2228 } 2229 i915_gem_context_unlock_engines(ctx); 2230 2231 return err; 2232 } 2233 2234 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2235 struct i915_active *active) 2236 { 2237 int err; 2238 struct intel_context *ce = stream->pinned_ctx; 2239 u32 format = stream->oa_buffer.format; 2240 struct flex regs_context[] = { 2241 { 2242 GEN8_OACTXCONTROL, 2243 stream->perf->ctx_oactxctrl_offset + 1, 2244 active ? GEN8_OA_COUNTER_RESUME : 0, 2245 }, 2246 }; 2247 /* Offsets in regs_lri are not used since this configuration is only 2248 * applied using LRI. Initialize the correct offsets for posterity. 2249 */ 2250 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2251 struct flex regs_lri[] = { 2252 { 2253 GEN12_OAR_OACONTROL, 2254 GEN12_OAR_OACONTROL_OFFSET + 1, 2255 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2256 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2257 }, 2258 { 2259 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2260 CTX_CONTEXT_CONTROL, 2261 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2262 active ? 2263 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2264 0) 2265 }, 2266 }; 2267 2268 /* Modify the context image of pinned context with regs_context*/ 2269 err = intel_context_lock_pinned(ce); 2270 if (err) 2271 return err; 2272 2273 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2274 intel_context_unlock_pinned(ce); 2275 if (err) 2276 return err; 2277 2278 /* Apply regs_lri using LRI with pinned context */ 2279 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2280 } 2281 2282 /* 2283 * Manages updating the per-context aspects of the OA stream 2284 * configuration across all contexts. 2285 * 2286 * The awkward consideration here is that OACTXCONTROL controls the 2287 * exponent for periodic sampling which is primarily used for system 2288 * wide profiling where we'd like a consistent sampling period even in 2289 * the face of context switches. 2290 * 2291 * Our approach of updating the register state context (as opposed to 2292 * say using a workaround batch buffer) ensures that the hardware 2293 * won't automatically reload an out-of-date timer exponent even 2294 * transiently before a WA BB could be parsed. 2295 * 2296 * This function needs to: 2297 * - Ensure the currently running context's per-context OA state is 2298 * updated 2299 * - Ensure that all existing contexts will have the correct per-context 2300 * OA state if they are scheduled for use. 2301 * - Ensure any new contexts will be initialized with the correct 2302 * per-context OA state. 2303 * 2304 * Note: it's only the RCS/Render context that has any OA state. 2305 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2306 */ 2307 static int 2308 oa_configure_all_contexts(struct i915_perf_stream *stream, 2309 struct flex *regs, 2310 size_t num_regs, 2311 struct i915_active *active) 2312 { 2313 struct drm_i915_private *i915 = stream->perf->i915; 2314 struct intel_engine_cs *engine; 2315 struct i915_gem_context *ctx, *cn; 2316 int err; 2317 2318 lockdep_assert_held(&stream->perf->lock); 2319 2320 /* 2321 * The OA register config is setup through the context image. This image 2322 * might be written to by the GPU on context switch (in particular on 2323 * lite-restore). This means we can't safely update a context's image, 2324 * if this context is scheduled/submitted to run on the GPU. 2325 * 2326 * We could emit the OA register config through the batch buffer but 2327 * this might leave small interval of time where the OA unit is 2328 * configured at an invalid sampling period. 2329 * 2330 * Note that since we emit all requests from a single ring, there 2331 * is still an implicit global barrier here that may cause a high 2332 * priority context to wait for an otherwise independent low priority 2333 * context. Contexts idle at the time of reconfiguration are not 2334 * trapped behind the barrier. 2335 */ 2336 spin_lock(&i915->gem.contexts.lock); 2337 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2338 if (!kref_get_unless_zero(&ctx->ref)) 2339 continue; 2340 2341 spin_unlock(&i915->gem.contexts.lock); 2342 2343 err = gen8_configure_context(ctx, regs, num_regs); 2344 if (err) { 2345 i915_gem_context_put(ctx); 2346 return err; 2347 } 2348 2349 spin_lock(&i915->gem.contexts.lock); 2350 list_safe_reset_next(ctx, cn, link); 2351 i915_gem_context_put(ctx); 2352 } 2353 spin_unlock(&i915->gem.contexts.lock); 2354 2355 /* 2356 * After updating all other contexts, we need to modify ourselves. 2357 * If we don't modify the kernel_context, we do not get events while 2358 * idle. 2359 */ 2360 for_each_uabi_engine(engine, i915) { 2361 struct intel_context *ce = engine->kernel_context; 2362 2363 if (engine->class != RENDER_CLASS) 2364 continue; 2365 2366 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2367 2368 err = gen8_modify_self(ce, regs, num_regs, active); 2369 if (err) 2370 return err; 2371 } 2372 2373 return 0; 2374 } 2375 2376 static int 2377 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2378 const struct i915_oa_config *oa_config, 2379 struct i915_active *active) 2380 { 2381 struct flex regs[] = { 2382 { 2383 GEN8_R_PWR_CLK_STATE, 2384 CTX_R_PWR_CLK_STATE, 2385 }, 2386 }; 2387 2388 return oa_configure_all_contexts(stream, 2389 regs, ARRAY_SIZE(regs), 2390 active); 2391 } 2392 2393 static int 2394 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2395 const struct i915_oa_config *oa_config, 2396 struct i915_active *active) 2397 { 2398 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2399 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2400 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2401 struct flex regs[] = { 2402 { 2403 GEN8_R_PWR_CLK_STATE, 2404 CTX_R_PWR_CLK_STATE, 2405 }, 2406 { 2407 GEN8_OACTXCONTROL, 2408 stream->perf->ctx_oactxctrl_offset + 1, 2409 }, 2410 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2411 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2412 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2413 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2414 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2415 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2416 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2417 }; 2418 #undef ctx_flexeuN 2419 int i; 2420 2421 regs[1].value = 2422 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2423 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2424 GEN8_OA_COUNTER_RESUME; 2425 2426 for (i = 2; i < ARRAY_SIZE(regs); i++) 2427 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2428 2429 return oa_configure_all_contexts(stream, 2430 regs, ARRAY_SIZE(regs), 2431 active); 2432 } 2433 2434 static int 2435 gen8_enable_metric_set(struct i915_perf_stream *stream, 2436 struct i915_active *active) 2437 { 2438 struct intel_uncore *uncore = stream->uncore; 2439 struct i915_oa_config *oa_config = stream->oa_config; 2440 int ret; 2441 2442 /* 2443 * We disable slice/unslice clock ratio change reports on SKL since 2444 * they are too noisy. The HW generates a lot of redundant reports 2445 * where the ratio hasn't really changed causing a lot of redundant 2446 * work to processes and increasing the chances we'll hit buffer 2447 * overruns. 2448 * 2449 * Although we don't currently use the 'disable overrun' OABUFFER 2450 * feature it's worth noting that clock ratio reports have to be 2451 * disabled before considering to use that feature since the HW doesn't 2452 * correctly block these reports. 2453 * 2454 * Currently none of the high-level metrics we have depend on knowing 2455 * this ratio to normalize. 2456 * 2457 * Note: This register is not power context saved and restored, but 2458 * that's OK considering that we disable RC6 while the OA unit is 2459 * enabled. 2460 * 2461 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2462 * be read back from automatically triggered reports, as part of the 2463 * RPT_ID field. 2464 */ 2465 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2466 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2467 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2468 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2469 } 2470 2471 /* 2472 * Update all contexts prior writing the mux configurations as we need 2473 * to make sure all slices/subslices are ON before writing to NOA 2474 * registers. 2475 */ 2476 ret = lrc_configure_all_contexts(stream, oa_config, active); 2477 if (ret) 2478 return ret; 2479 2480 return emit_oa_config(stream, 2481 stream->oa_config, oa_context(stream), 2482 active); 2483 } 2484 2485 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2486 { 2487 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2488 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2489 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2490 } 2491 2492 static int 2493 gen12_enable_metric_set(struct i915_perf_stream *stream, 2494 struct i915_active *active) 2495 { 2496 struct intel_uncore *uncore = stream->uncore; 2497 struct i915_oa_config *oa_config = stream->oa_config; 2498 bool periodic = stream->periodic; 2499 u32 period_exponent = stream->period_exponent; 2500 int ret; 2501 2502 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2503 /* Disable clk ratio reports, like previous Gens. */ 2504 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2505 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2506 /* 2507 * If the user didn't require OA reports, instruct 2508 * the hardware not to emit ctx switch reports. 2509 */ 2510 oag_report_ctx_switches(stream)); 2511 2512 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2513 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2514 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2515 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2516 : 0); 2517 2518 /* 2519 * Update all contexts prior writing the mux configurations as we need 2520 * to make sure all slices/subslices are ON before writing to NOA 2521 * registers. 2522 */ 2523 ret = gen12_configure_all_contexts(stream, oa_config, active); 2524 if (ret) 2525 return ret; 2526 2527 /* 2528 * For Gen12, performance counters are context 2529 * saved/restored. Only enable it for the context that 2530 * requested this. 2531 */ 2532 if (stream->ctx) { 2533 ret = gen12_configure_oar_context(stream, active); 2534 if (ret) 2535 return ret; 2536 } 2537 2538 return emit_oa_config(stream, 2539 stream->oa_config, oa_context(stream), 2540 active); 2541 } 2542 2543 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2544 { 2545 struct intel_uncore *uncore = stream->uncore; 2546 2547 /* Reset all contexts' slices/subslices configurations. */ 2548 lrc_configure_all_contexts(stream, NULL, NULL); 2549 2550 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2551 } 2552 2553 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2554 { 2555 struct intel_uncore *uncore = stream->uncore; 2556 2557 /* Reset all contexts' slices/subslices configurations. */ 2558 lrc_configure_all_contexts(stream, NULL, NULL); 2559 2560 /* Make sure we disable noa to save power. */ 2561 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2562 } 2563 2564 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2565 { 2566 struct intel_uncore *uncore = stream->uncore; 2567 2568 /* Reset all contexts' slices/subslices configurations. */ 2569 gen12_configure_all_contexts(stream, NULL, NULL); 2570 2571 /* disable the context save/restore or OAR counters */ 2572 if (stream->ctx) 2573 gen12_configure_oar_context(stream, NULL); 2574 2575 /* Make sure we disable noa to save power. */ 2576 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2577 } 2578 2579 static void gen7_oa_enable(struct i915_perf_stream *stream) 2580 { 2581 struct intel_uncore *uncore = stream->uncore; 2582 struct i915_gem_context *ctx = stream->ctx; 2583 u32 ctx_id = stream->specific_ctx_id; 2584 bool periodic = stream->periodic; 2585 u32 period_exponent = stream->period_exponent; 2586 u32 report_format = stream->oa_buffer.format; 2587 2588 /* 2589 * Reset buf pointers so we don't forward reports from before now. 2590 * 2591 * Think carefully if considering trying to avoid this, since it 2592 * also ensures status flags and the buffer itself are cleared 2593 * in error paths, and we have checks for invalid reports based 2594 * on the assumption that certain fields are written to zeroed 2595 * memory which this helps maintains. 2596 */ 2597 gen7_init_oa_buffer(stream); 2598 2599 intel_uncore_write(uncore, GEN7_OACONTROL, 2600 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2601 (period_exponent << 2602 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2603 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2604 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2605 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2606 GEN7_OACONTROL_ENABLE); 2607 } 2608 2609 static void gen8_oa_enable(struct i915_perf_stream *stream) 2610 { 2611 struct intel_uncore *uncore = stream->uncore; 2612 u32 report_format = stream->oa_buffer.format; 2613 2614 /* 2615 * Reset buf pointers so we don't forward reports from before now. 2616 * 2617 * Think carefully if considering trying to avoid this, since it 2618 * also ensures status flags and the buffer itself are cleared 2619 * in error paths, and we have checks for invalid reports based 2620 * on the assumption that certain fields are written to zeroed 2621 * memory which this helps maintains. 2622 */ 2623 gen8_init_oa_buffer(stream); 2624 2625 /* 2626 * Note: we don't rely on the hardware to perform single context 2627 * filtering and instead filter on the cpu based on the context-id 2628 * field of reports 2629 */ 2630 intel_uncore_write(uncore, GEN8_OACONTROL, 2631 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2632 GEN8_OA_COUNTER_ENABLE); 2633 } 2634 2635 static void gen12_oa_enable(struct i915_perf_stream *stream) 2636 { 2637 struct intel_uncore *uncore = stream->uncore; 2638 u32 report_format = stream->oa_buffer.format; 2639 2640 /* 2641 * If we don't want OA reports from the OA buffer, then we don't even 2642 * need to program the OAG unit. 2643 */ 2644 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2645 return; 2646 2647 gen12_init_oa_buffer(stream); 2648 2649 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2650 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2651 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2652 } 2653 2654 /** 2655 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2656 * @stream: An i915 perf stream opened for OA metrics 2657 * 2658 * [Re]enables hardware periodic sampling according to the period configured 2659 * when opening the stream. This also starts a hrtimer that will periodically 2660 * check for data in the circular OA buffer for notifying userspace (e.g. 2661 * during a read() or poll()). 2662 */ 2663 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2664 { 2665 stream->pollin = false; 2666 2667 stream->perf->ops.oa_enable(stream); 2668 2669 if (stream->sample_flags & SAMPLE_OA_REPORT) 2670 hrtimer_start(&stream->poll_check_timer, 2671 ns_to_ktime(stream->poll_oa_period), 2672 HRTIMER_MODE_REL_PINNED); 2673 } 2674 2675 static void gen7_oa_disable(struct i915_perf_stream *stream) 2676 { 2677 struct intel_uncore *uncore = stream->uncore; 2678 2679 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2680 if (intel_wait_for_register(uncore, 2681 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2682 50)) 2683 drm_err(&stream->perf->i915->drm, 2684 "wait for OA to be disabled timed out\n"); 2685 } 2686 2687 static void gen8_oa_disable(struct i915_perf_stream *stream) 2688 { 2689 struct intel_uncore *uncore = stream->uncore; 2690 2691 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2692 if (intel_wait_for_register(uncore, 2693 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2694 50)) 2695 drm_err(&stream->perf->i915->drm, 2696 "wait for OA to be disabled timed out\n"); 2697 } 2698 2699 static void gen12_oa_disable(struct i915_perf_stream *stream) 2700 { 2701 struct intel_uncore *uncore = stream->uncore; 2702 2703 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2704 if (intel_wait_for_register(uncore, 2705 GEN12_OAG_OACONTROL, 2706 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2707 50)) 2708 drm_err(&stream->perf->i915->drm, 2709 "wait for OA to be disabled timed out\n"); 2710 2711 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2712 if (intel_wait_for_register(uncore, 2713 GEN12_OA_TLB_INV_CR, 2714 1, 0, 2715 50)) 2716 drm_err(&stream->perf->i915->drm, 2717 "wait for OA tlb invalidate timed out\n"); 2718 } 2719 2720 /** 2721 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2722 * @stream: An i915 perf stream opened for OA metrics 2723 * 2724 * Stops the OA unit from periodically writing counter reports into the 2725 * circular OA buffer. This also stops the hrtimer that periodically checks for 2726 * data in the circular OA buffer, for notifying userspace. 2727 */ 2728 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2729 { 2730 stream->perf->ops.oa_disable(stream); 2731 2732 if (stream->sample_flags & SAMPLE_OA_REPORT) 2733 hrtimer_cancel(&stream->poll_check_timer); 2734 } 2735 2736 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2737 .destroy = i915_oa_stream_destroy, 2738 .enable = i915_oa_stream_enable, 2739 .disable = i915_oa_stream_disable, 2740 .wait_unlocked = i915_oa_wait_unlocked, 2741 .poll_wait = i915_oa_poll_wait, 2742 .read = i915_oa_read, 2743 }; 2744 2745 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2746 { 2747 struct i915_active *active; 2748 int err; 2749 2750 active = i915_active_create(); 2751 if (!active) 2752 return -ENOMEM; 2753 2754 err = stream->perf->ops.enable_metric_set(stream, active); 2755 if (err == 0) 2756 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2757 2758 i915_active_put(active); 2759 return err; 2760 } 2761 2762 static void 2763 get_default_sseu_config(struct intel_sseu *out_sseu, 2764 struct intel_engine_cs *engine) 2765 { 2766 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2767 2768 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2769 2770 if (IS_GEN(engine->i915, 11)) { 2771 /* 2772 * We only need subslice count so it doesn't matter which ones 2773 * we select - just turn off low bits in the amount of half of 2774 * all available subslices per slice. 2775 */ 2776 out_sseu->subslice_mask = 2777 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2778 out_sseu->slice_mask = 0x1; 2779 } 2780 } 2781 2782 static int 2783 get_sseu_config(struct intel_sseu *out_sseu, 2784 struct intel_engine_cs *engine, 2785 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2786 { 2787 if (drm_sseu->engine.engine_class != engine->uabi_class || 2788 drm_sseu->engine.engine_instance != engine->uabi_instance) 2789 return -EINVAL; 2790 2791 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2792 } 2793 2794 /** 2795 * i915_oa_stream_init - validate combined props for OA stream and init 2796 * @stream: An i915 perf stream 2797 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2798 * @props: The property state that configures stream (individually validated) 2799 * 2800 * While read_properties_unlocked() validates properties in isolation it 2801 * doesn't ensure that the combination necessarily makes sense. 2802 * 2803 * At this point it has been determined that userspace wants a stream of 2804 * OA metrics, but still we need to further validate the combined 2805 * properties are OK. 2806 * 2807 * If the configuration makes sense then we can allocate memory for 2808 * a circular OA buffer and apply the requested metric set configuration. 2809 * 2810 * Returns: zero on success or a negative error code. 2811 */ 2812 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2813 struct drm_i915_perf_open_param *param, 2814 struct perf_open_properties *props) 2815 { 2816 struct drm_i915_private *i915 = stream->perf->i915; 2817 struct i915_perf *perf = stream->perf; 2818 int format_size; 2819 int ret; 2820 2821 if (!props->engine) { 2822 DRM_DEBUG("OA engine not specified\n"); 2823 return -EINVAL; 2824 } 2825 2826 /* 2827 * If the sysfs metrics/ directory wasn't registered for some 2828 * reason then don't let userspace try their luck with config 2829 * IDs 2830 */ 2831 if (!perf->metrics_kobj) { 2832 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2833 return -EINVAL; 2834 } 2835 2836 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2837 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2838 DRM_DEBUG("Only OA report sampling supported\n"); 2839 return -EINVAL; 2840 } 2841 2842 if (!perf->ops.enable_metric_set) { 2843 DRM_DEBUG("OA unit not supported\n"); 2844 return -ENODEV; 2845 } 2846 2847 /* 2848 * To avoid the complexity of having to accurately filter 2849 * counter reports and marshal to the appropriate client 2850 * we currently only allow exclusive access 2851 */ 2852 if (perf->exclusive_stream) { 2853 DRM_DEBUG("OA unit already in use\n"); 2854 return -EBUSY; 2855 } 2856 2857 if (!props->oa_format) { 2858 DRM_DEBUG("OA report format not specified\n"); 2859 return -EINVAL; 2860 } 2861 2862 stream->engine = props->engine; 2863 stream->uncore = stream->engine->gt->uncore; 2864 2865 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2866 2867 format_size = perf->oa_formats[props->oa_format].size; 2868 2869 stream->sample_flags = props->sample_flags; 2870 stream->sample_size += format_size; 2871 2872 stream->oa_buffer.format_size = format_size; 2873 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2874 return -EINVAL; 2875 2876 stream->hold_preemption = props->hold_preemption; 2877 2878 stream->oa_buffer.format = 2879 perf->oa_formats[props->oa_format].format; 2880 2881 stream->periodic = props->oa_periodic; 2882 if (stream->periodic) 2883 stream->period_exponent = props->oa_period_exponent; 2884 2885 if (stream->ctx) { 2886 ret = oa_get_render_ctx_id(stream); 2887 if (ret) { 2888 DRM_DEBUG("Invalid context id to filter with\n"); 2889 return ret; 2890 } 2891 } 2892 2893 ret = alloc_noa_wait(stream); 2894 if (ret) { 2895 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2896 goto err_noa_wait_alloc; 2897 } 2898 2899 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2900 if (!stream->oa_config) { 2901 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2902 ret = -EINVAL; 2903 goto err_config; 2904 } 2905 2906 /* PRM - observability performance counters: 2907 * 2908 * OACONTROL, performance counter enable, note: 2909 * 2910 * "When this bit is set, in order to have coherent counts, 2911 * RC6 power state and trunk clock gating must be disabled. 2912 * This can be achieved by programming MMIO registers as 2913 * 0xA094=0 and 0xA090[31]=1" 2914 * 2915 * In our case we are expecting that taking pm + FORCEWAKE 2916 * references will effectively disable RC6. 2917 */ 2918 intel_engine_pm_get(stream->engine); 2919 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2920 2921 ret = alloc_oa_buffer(stream); 2922 if (ret) 2923 goto err_oa_buf_alloc; 2924 2925 stream->ops = &i915_oa_stream_ops; 2926 2927 perf->sseu = props->sseu; 2928 WRITE_ONCE(perf->exclusive_stream, stream); 2929 2930 ret = i915_perf_stream_enable_sync(stream); 2931 if (ret) { 2932 DRM_DEBUG("Unable to enable metric set\n"); 2933 goto err_enable; 2934 } 2935 2936 DRM_DEBUG("opening stream oa config uuid=%s\n", 2937 stream->oa_config->uuid); 2938 2939 hrtimer_init(&stream->poll_check_timer, 2940 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2941 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2942 init_waitqueue_head(&stream->poll_wq); 2943 spin_lock_init(&stream->oa_buffer.ptr_lock); 2944 2945 return 0; 2946 2947 err_enable: 2948 WRITE_ONCE(perf->exclusive_stream, NULL); 2949 perf->ops.disable_metric_set(stream); 2950 2951 free_oa_buffer(stream); 2952 2953 err_oa_buf_alloc: 2954 free_oa_configs(stream); 2955 2956 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2957 intel_engine_pm_put(stream->engine); 2958 2959 err_config: 2960 free_noa_wait(stream); 2961 2962 err_noa_wait_alloc: 2963 if (stream->ctx) 2964 oa_put_render_ctx_id(stream); 2965 2966 return ret; 2967 } 2968 2969 void i915_oa_init_reg_state(const struct intel_context *ce, 2970 const struct intel_engine_cs *engine) 2971 { 2972 struct i915_perf_stream *stream; 2973 2974 if (engine->class != RENDER_CLASS) 2975 return; 2976 2977 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2978 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2979 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2980 gen8_update_reg_state_unlocked(ce, stream); 2981 } 2982 2983 /** 2984 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2985 * @file: An i915 perf stream file 2986 * @buf: destination buffer given by userspace 2987 * @count: the number of bytes userspace wants to read 2988 * @ppos: (inout) file seek position (unused) 2989 * 2990 * The entry point for handling a read() on a stream file descriptor from 2991 * userspace. Most of the work is left to the i915_perf_read_locked() and 2992 * &i915_perf_stream_ops->read but to save having stream implementations (of 2993 * which we might have multiple later) we handle blocking read here. 2994 * 2995 * We can also consistently treat trying to read from a disabled stream 2996 * as an IO error so implementations can assume the stream is enabled 2997 * while reading. 2998 * 2999 * Returns: The number of bytes copied or a negative error code on failure. 3000 */ 3001 static ssize_t i915_perf_read(struct file *file, 3002 char __user *buf, 3003 size_t count, 3004 loff_t *ppos) 3005 { 3006 struct i915_perf_stream *stream = file->private_data; 3007 struct i915_perf *perf = stream->perf; 3008 size_t offset = 0; 3009 int ret; 3010 3011 /* To ensure it's handled consistently we simply treat all reads of a 3012 * disabled stream as an error. In particular it might otherwise lead 3013 * to a deadlock for blocking file descriptors... 3014 */ 3015 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3016 return -EIO; 3017 3018 if (!(file->f_flags & O_NONBLOCK)) { 3019 /* There's the small chance of false positives from 3020 * stream->ops->wait_unlocked. 3021 * 3022 * E.g. with single context filtering since we only wait until 3023 * oabuffer has >= 1 report we don't immediately know whether 3024 * any reports really belong to the current context 3025 */ 3026 do { 3027 ret = stream->ops->wait_unlocked(stream); 3028 if (ret) 3029 return ret; 3030 3031 mutex_lock(&perf->lock); 3032 ret = stream->ops->read(stream, buf, count, &offset); 3033 mutex_unlock(&perf->lock); 3034 } while (!offset && !ret); 3035 } else { 3036 mutex_lock(&perf->lock); 3037 ret = stream->ops->read(stream, buf, count, &offset); 3038 mutex_unlock(&perf->lock); 3039 } 3040 3041 /* We allow the poll checking to sometimes report false positive EPOLLIN 3042 * events where we might actually report EAGAIN on read() if there's 3043 * not really any data available. In this situation though we don't 3044 * want to enter a busy loop between poll() reporting a EPOLLIN event 3045 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3046 * effectively ensures we back off until the next hrtimer callback 3047 * before reporting another EPOLLIN event. 3048 * The exception to this is if ops->read() returned -ENOSPC which means 3049 * that more OA data is available than could fit in the user provided 3050 * buffer. In this case we want the next poll() call to not block. 3051 */ 3052 if (ret != -ENOSPC) 3053 stream->pollin = false; 3054 3055 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3056 return offset ?: (ret ?: -EAGAIN); 3057 } 3058 3059 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3060 { 3061 struct i915_perf_stream *stream = 3062 container_of(hrtimer, typeof(*stream), poll_check_timer); 3063 3064 if (oa_buffer_check_unlocked(stream)) { 3065 stream->pollin = true; 3066 wake_up(&stream->poll_wq); 3067 } 3068 3069 hrtimer_forward_now(hrtimer, 3070 ns_to_ktime(stream->poll_oa_period)); 3071 3072 return HRTIMER_RESTART; 3073 } 3074 3075 /** 3076 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3077 * @stream: An i915 perf stream 3078 * @file: An i915 perf stream file 3079 * @wait: poll() state table 3080 * 3081 * For handling userspace polling on an i915 perf stream, this calls through to 3082 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3083 * will be woken for new stream data. 3084 * 3085 * Note: The &perf->lock mutex has been taken to serialize 3086 * with any non-file-operation driver hooks. 3087 * 3088 * Returns: any poll events that are ready without sleeping 3089 */ 3090 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3091 struct file *file, 3092 poll_table *wait) 3093 { 3094 __poll_t events = 0; 3095 3096 stream->ops->poll_wait(stream, file, wait); 3097 3098 /* Note: we don't explicitly check whether there's something to read 3099 * here since this path may be very hot depending on what else 3100 * userspace is polling, or on the timeout in use. We rely solely on 3101 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3102 * samples to read. 3103 */ 3104 if (stream->pollin) 3105 events |= EPOLLIN; 3106 3107 return events; 3108 } 3109 3110 /** 3111 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3112 * @file: An i915 perf stream file 3113 * @wait: poll() state table 3114 * 3115 * For handling userspace polling on an i915 perf stream, this ensures 3116 * poll_wait() gets called with a wait queue that will be woken for new stream 3117 * data. 3118 * 3119 * Note: Implementation deferred to i915_perf_poll_locked() 3120 * 3121 * Returns: any poll events that are ready without sleeping 3122 */ 3123 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3124 { 3125 struct i915_perf_stream *stream = file->private_data; 3126 struct i915_perf *perf = stream->perf; 3127 __poll_t ret; 3128 3129 mutex_lock(&perf->lock); 3130 ret = i915_perf_poll_locked(stream, file, wait); 3131 mutex_unlock(&perf->lock); 3132 3133 return ret; 3134 } 3135 3136 /** 3137 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3138 * @stream: A disabled i915 perf stream 3139 * 3140 * [Re]enables the associated capture of data for this stream. 3141 * 3142 * If a stream was previously enabled then there's currently no intention 3143 * to provide userspace any guarantee about the preservation of previously 3144 * buffered data. 3145 */ 3146 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3147 { 3148 if (stream->enabled) 3149 return; 3150 3151 /* Allow stream->ops->enable() to refer to this */ 3152 stream->enabled = true; 3153 3154 if (stream->ops->enable) 3155 stream->ops->enable(stream); 3156 3157 if (stream->hold_preemption) 3158 intel_context_set_nopreempt(stream->pinned_ctx); 3159 } 3160 3161 /** 3162 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3163 * @stream: An enabled i915 perf stream 3164 * 3165 * Disables the associated capture of data for this stream. 3166 * 3167 * The intention is that disabling an re-enabling a stream will ideally be 3168 * cheaper than destroying and re-opening a stream with the same configuration, 3169 * though there are no formal guarantees about what state or buffered data 3170 * must be retained between disabling and re-enabling a stream. 3171 * 3172 * Note: while a stream is disabled it's considered an error for userspace 3173 * to attempt to read from the stream (-EIO). 3174 */ 3175 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3176 { 3177 if (!stream->enabled) 3178 return; 3179 3180 /* Allow stream->ops->disable() to refer to this */ 3181 stream->enabled = false; 3182 3183 if (stream->hold_preemption) 3184 intel_context_clear_nopreempt(stream->pinned_ctx); 3185 3186 if (stream->ops->disable) 3187 stream->ops->disable(stream); 3188 } 3189 3190 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3191 unsigned long metrics_set) 3192 { 3193 struct i915_oa_config *config; 3194 long ret = stream->oa_config->id; 3195 3196 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3197 if (!config) 3198 return -EINVAL; 3199 3200 if (config != stream->oa_config) { 3201 int err; 3202 3203 /* 3204 * If OA is bound to a specific context, emit the 3205 * reconfiguration inline from that context. The update 3206 * will then be ordered with respect to submission on that 3207 * context. 3208 * 3209 * When set globally, we use a low priority kernel context, 3210 * so it will effectively take effect when idle. 3211 */ 3212 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3213 if (!err) 3214 config = xchg(&stream->oa_config, config); 3215 else 3216 ret = err; 3217 } 3218 3219 i915_oa_config_put(config); 3220 3221 return ret; 3222 } 3223 3224 /** 3225 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3226 * @stream: An i915 perf stream 3227 * @cmd: the ioctl request 3228 * @arg: the ioctl data 3229 * 3230 * Note: The &perf->lock mutex has been taken to serialize 3231 * with any non-file-operation driver hooks. 3232 * 3233 * Returns: zero on success or a negative error code. Returns -EINVAL for 3234 * an unknown ioctl request. 3235 */ 3236 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3237 unsigned int cmd, 3238 unsigned long arg) 3239 { 3240 switch (cmd) { 3241 case I915_PERF_IOCTL_ENABLE: 3242 i915_perf_enable_locked(stream); 3243 return 0; 3244 case I915_PERF_IOCTL_DISABLE: 3245 i915_perf_disable_locked(stream); 3246 return 0; 3247 case I915_PERF_IOCTL_CONFIG: 3248 return i915_perf_config_locked(stream, arg); 3249 } 3250 3251 return -EINVAL; 3252 } 3253 3254 /** 3255 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3256 * @file: An i915 perf stream file 3257 * @cmd: the ioctl request 3258 * @arg: the ioctl data 3259 * 3260 * Implementation deferred to i915_perf_ioctl_locked(). 3261 * 3262 * Returns: zero on success or a negative error code. Returns -EINVAL for 3263 * an unknown ioctl request. 3264 */ 3265 static long i915_perf_ioctl(struct file *file, 3266 unsigned int cmd, 3267 unsigned long arg) 3268 { 3269 struct i915_perf_stream *stream = file->private_data; 3270 struct i915_perf *perf = stream->perf; 3271 long ret; 3272 3273 mutex_lock(&perf->lock); 3274 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3275 mutex_unlock(&perf->lock); 3276 3277 return ret; 3278 } 3279 3280 /** 3281 * i915_perf_destroy_locked - destroy an i915 perf stream 3282 * @stream: An i915 perf stream 3283 * 3284 * Frees all resources associated with the given i915 perf @stream, disabling 3285 * any associated data capture in the process. 3286 * 3287 * Note: The &perf->lock mutex has been taken to serialize 3288 * with any non-file-operation driver hooks. 3289 */ 3290 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3291 { 3292 if (stream->enabled) 3293 i915_perf_disable_locked(stream); 3294 3295 if (stream->ops->destroy) 3296 stream->ops->destroy(stream); 3297 3298 if (stream->ctx) 3299 i915_gem_context_put(stream->ctx); 3300 3301 kfree(stream); 3302 } 3303 3304 /** 3305 * i915_perf_release - handles userspace close() of a stream file 3306 * @inode: anonymous inode associated with file 3307 * @file: An i915 perf stream file 3308 * 3309 * Cleans up any resources associated with an open i915 perf stream file. 3310 * 3311 * NB: close() can't really fail from the userspace point of view. 3312 * 3313 * Returns: zero on success or a negative error code. 3314 */ 3315 static int i915_perf_release(struct inode *inode, struct file *file) 3316 { 3317 struct i915_perf_stream *stream = file->private_data; 3318 struct i915_perf *perf = stream->perf; 3319 3320 mutex_lock(&perf->lock); 3321 i915_perf_destroy_locked(stream); 3322 mutex_unlock(&perf->lock); 3323 3324 /* Release the reference the perf stream kept on the driver. */ 3325 drm_dev_put(&perf->i915->drm); 3326 3327 return 0; 3328 } 3329 3330 3331 static const struct file_operations fops = { 3332 .owner = THIS_MODULE, 3333 .llseek = no_llseek, 3334 .release = i915_perf_release, 3335 .poll = i915_perf_poll, 3336 .read = i915_perf_read, 3337 .unlocked_ioctl = i915_perf_ioctl, 3338 /* Our ioctl have no arguments, so it's safe to use the same function 3339 * to handle 32bits compatibility. 3340 */ 3341 .compat_ioctl = i915_perf_ioctl, 3342 }; 3343 3344 3345 /** 3346 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3347 * @perf: i915 perf instance 3348 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3349 * @props: individually validated u64 property value pairs 3350 * @file: drm file 3351 * 3352 * See i915_perf_ioctl_open() for interface details. 3353 * 3354 * Implements further stream config validation and stream initialization on 3355 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3356 * taken to serialize with any non-file-operation driver hooks. 3357 * 3358 * Note: at this point the @props have only been validated in isolation and 3359 * it's still necessary to validate that the combination of properties makes 3360 * sense. 3361 * 3362 * In the case where userspace is interested in OA unit metrics then further 3363 * config validation and stream initialization details will be handled by 3364 * i915_oa_stream_init(). The code here should only validate config state that 3365 * will be relevant to all stream types / backends. 3366 * 3367 * Returns: zero on success or a negative error code. 3368 */ 3369 static int 3370 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3371 struct drm_i915_perf_open_param *param, 3372 struct perf_open_properties *props, 3373 struct drm_file *file) 3374 { 3375 struct i915_gem_context *specific_ctx = NULL; 3376 struct i915_perf_stream *stream = NULL; 3377 unsigned long f_flags = 0; 3378 bool privileged_op = true; 3379 int stream_fd; 3380 int ret; 3381 3382 if (props->single_context) { 3383 u32 ctx_handle = props->ctx_handle; 3384 struct drm_i915_file_private *file_priv = file->driver_priv; 3385 3386 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3387 if (!specific_ctx) { 3388 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3389 ctx_handle); 3390 ret = -ENOENT; 3391 goto err; 3392 } 3393 } 3394 3395 /* 3396 * On Haswell the OA unit supports clock gating off for a specific 3397 * context and in this mode there's no visibility of metrics for the 3398 * rest of the system, which we consider acceptable for a 3399 * non-privileged client. 3400 * 3401 * For Gen8->11 the OA unit no longer supports clock gating off for a 3402 * specific context and the kernel can't securely stop the counters 3403 * from updating as system-wide / global values. Even though we can 3404 * filter reports based on the included context ID we can't block 3405 * clients from seeing the raw / global counter values via 3406 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3407 * enable the OA unit by default. 3408 * 3409 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3410 * per context basis. So we can relax requirements there if the user 3411 * doesn't request global stream access (i.e. query based sampling 3412 * using MI_RECORD_PERF_COUNT. 3413 */ 3414 if (IS_HASWELL(perf->i915) && specific_ctx) 3415 privileged_op = false; 3416 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3417 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3418 privileged_op = false; 3419 3420 if (props->hold_preemption) { 3421 if (!props->single_context) { 3422 DRM_DEBUG("preemption disable with no context\n"); 3423 ret = -EINVAL; 3424 goto err; 3425 } 3426 privileged_op = true; 3427 } 3428 3429 /* 3430 * Asking for SSEU configuration is a priviliged operation. 3431 */ 3432 if (props->has_sseu) 3433 privileged_op = true; 3434 else 3435 get_default_sseu_config(&props->sseu, props->engine); 3436 3437 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3438 * we check a dev.i915.perf_stream_paranoid sysctl option 3439 * to determine if it's ok to access system wide OA counters 3440 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3441 */ 3442 if (privileged_op && 3443 i915_perf_stream_paranoid && !perfmon_capable()) { 3444 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3445 ret = -EACCES; 3446 goto err_ctx; 3447 } 3448 3449 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3450 if (!stream) { 3451 ret = -ENOMEM; 3452 goto err_ctx; 3453 } 3454 3455 stream->perf = perf; 3456 stream->ctx = specific_ctx; 3457 stream->poll_oa_period = props->poll_oa_period; 3458 3459 ret = i915_oa_stream_init(stream, param, props); 3460 if (ret) 3461 goto err_alloc; 3462 3463 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3464 * to have _stream_init check the combination of sample flags more 3465 * thoroughly, but still this is the expected result at this point. 3466 */ 3467 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3468 ret = -ENODEV; 3469 goto err_flags; 3470 } 3471 3472 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3473 f_flags |= O_CLOEXEC; 3474 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3475 f_flags |= O_NONBLOCK; 3476 3477 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3478 if (stream_fd < 0) { 3479 ret = stream_fd; 3480 goto err_flags; 3481 } 3482 3483 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3484 i915_perf_enable_locked(stream); 3485 3486 /* Take a reference on the driver that will be kept with stream_fd 3487 * until its release. 3488 */ 3489 drm_dev_get(&perf->i915->drm); 3490 3491 return stream_fd; 3492 3493 err_flags: 3494 if (stream->ops->destroy) 3495 stream->ops->destroy(stream); 3496 err_alloc: 3497 kfree(stream); 3498 err_ctx: 3499 if (specific_ctx) 3500 i915_gem_context_put(specific_ctx); 3501 err: 3502 return ret; 3503 } 3504 3505 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3506 { 3507 return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt, 3508 2ULL << exponent); 3509 } 3510 3511 static __always_inline bool 3512 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3513 { 3514 return test_bit(format, perf->format_mask); 3515 } 3516 3517 static __always_inline void 3518 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3519 { 3520 __set_bit(format, perf->format_mask); 3521 } 3522 3523 /** 3524 * read_properties_unlocked - validate + copy userspace stream open properties 3525 * @perf: i915 perf instance 3526 * @uprops: The array of u64 key value pairs given by userspace 3527 * @n_props: The number of key value pairs expected in @uprops 3528 * @props: The stream configuration built up while validating properties 3529 * 3530 * Note this function only validates properties in isolation it doesn't 3531 * validate that the combination of properties makes sense or that all 3532 * properties necessary for a particular kind of stream have been set. 3533 * 3534 * Note that there currently aren't any ordering requirements for properties so 3535 * we shouldn't validate or assume anything about ordering here. This doesn't 3536 * rule out defining new properties with ordering requirements in the future. 3537 */ 3538 static int read_properties_unlocked(struct i915_perf *perf, 3539 u64 __user *uprops, 3540 u32 n_props, 3541 struct perf_open_properties *props) 3542 { 3543 u64 __user *uprop = uprops; 3544 u32 i; 3545 int ret; 3546 3547 memset(props, 0, sizeof(struct perf_open_properties)); 3548 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3549 3550 if (!n_props) { 3551 DRM_DEBUG("No i915 perf properties given\n"); 3552 return -EINVAL; 3553 } 3554 3555 /* At the moment we only support using i915-perf on the RCS. */ 3556 props->engine = intel_engine_lookup_user(perf->i915, 3557 I915_ENGINE_CLASS_RENDER, 3558 0); 3559 if (!props->engine) { 3560 DRM_DEBUG("No RENDER-capable engines\n"); 3561 return -EINVAL; 3562 } 3563 3564 /* Considering that ID = 0 is reserved and assuming that we don't 3565 * (currently) expect any configurations to ever specify duplicate 3566 * values for a particular property ID then the last _PROP_MAX value is 3567 * one greater than the maximum number of properties we expect to get 3568 * from userspace. 3569 */ 3570 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3571 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3572 return -EINVAL; 3573 } 3574 3575 for (i = 0; i < n_props; i++) { 3576 u64 oa_period, oa_freq_hz; 3577 u64 id, value; 3578 3579 ret = get_user(id, uprop); 3580 if (ret) 3581 return ret; 3582 3583 ret = get_user(value, uprop + 1); 3584 if (ret) 3585 return ret; 3586 3587 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3588 DRM_DEBUG("Unknown i915 perf property ID\n"); 3589 return -EINVAL; 3590 } 3591 3592 switch ((enum drm_i915_perf_property_id)id) { 3593 case DRM_I915_PERF_PROP_CTX_HANDLE: 3594 props->single_context = 1; 3595 props->ctx_handle = value; 3596 break; 3597 case DRM_I915_PERF_PROP_SAMPLE_OA: 3598 if (value) 3599 props->sample_flags |= SAMPLE_OA_REPORT; 3600 break; 3601 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3602 if (value == 0) { 3603 DRM_DEBUG("Unknown OA metric set ID\n"); 3604 return -EINVAL; 3605 } 3606 props->metrics_set = value; 3607 break; 3608 case DRM_I915_PERF_PROP_OA_FORMAT: 3609 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3610 DRM_DEBUG("Out-of-range OA report format %llu\n", 3611 value); 3612 return -EINVAL; 3613 } 3614 if (!oa_format_valid(perf, value)) { 3615 DRM_DEBUG("Unsupported OA report format %llu\n", 3616 value); 3617 return -EINVAL; 3618 } 3619 props->oa_format = value; 3620 break; 3621 case DRM_I915_PERF_PROP_OA_EXPONENT: 3622 if (value > OA_EXPONENT_MAX) { 3623 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3624 OA_EXPONENT_MAX); 3625 return -EINVAL; 3626 } 3627 3628 /* Theoretically we can program the OA unit to sample 3629 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3630 * for BXT. We don't allow such high sampling 3631 * frequencies by default unless root. 3632 */ 3633 3634 BUILD_BUG_ON(sizeof(oa_period) != 8); 3635 oa_period = oa_exponent_to_ns(perf, value); 3636 3637 /* This check is primarily to ensure that oa_period <= 3638 * UINT32_MAX (before passing to do_div which only 3639 * accepts a u32 denominator), but we can also skip 3640 * checking anything < 1Hz which implicitly can't be 3641 * limited via an integer oa_max_sample_rate. 3642 */ 3643 if (oa_period <= NSEC_PER_SEC) { 3644 u64 tmp = NSEC_PER_SEC; 3645 do_div(tmp, oa_period); 3646 oa_freq_hz = tmp; 3647 } else 3648 oa_freq_hz = 0; 3649 3650 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3651 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3652 i915_oa_max_sample_rate); 3653 return -EACCES; 3654 } 3655 3656 props->oa_periodic = true; 3657 props->oa_period_exponent = value; 3658 break; 3659 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3660 props->hold_preemption = !!value; 3661 break; 3662 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3663 struct drm_i915_gem_context_param_sseu user_sseu; 3664 3665 if (copy_from_user(&user_sseu, 3666 u64_to_user_ptr(value), 3667 sizeof(user_sseu))) { 3668 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3669 return -EFAULT; 3670 } 3671 3672 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3673 if (ret) { 3674 DRM_DEBUG("Invalid SSEU configuration\n"); 3675 return ret; 3676 } 3677 props->has_sseu = true; 3678 break; 3679 } 3680 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3681 if (value < 100000 /* 100us */) { 3682 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3683 value); 3684 return -EINVAL; 3685 } 3686 props->poll_oa_period = value; 3687 break; 3688 case DRM_I915_PERF_PROP_MAX: 3689 MISSING_CASE(id); 3690 return -EINVAL; 3691 } 3692 3693 uprop += 2; 3694 } 3695 3696 return 0; 3697 } 3698 3699 /** 3700 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3701 * @dev: drm device 3702 * @data: ioctl data copied from userspace (unvalidated) 3703 * @file: drm file 3704 * 3705 * Validates the stream open parameters given by userspace including flags 3706 * and an array of u64 key, value pair properties. 3707 * 3708 * Very little is assumed up front about the nature of the stream being 3709 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3710 * i915-perf stream is expected to be a suitable interface for other forms of 3711 * buffered data written by the GPU besides periodic OA metrics. 3712 * 3713 * Note we copy the properties from userspace outside of the i915 perf 3714 * mutex to avoid an awkward lockdep with mmap_lock. 3715 * 3716 * Most of the implementation details are handled by 3717 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3718 * mutex for serializing with any non-file-operation driver hooks. 3719 * 3720 * Return: A newly opened i915 Perf stream file descriptor or negative 3721 * error code on failure. 3722 */ 3723 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3724 struct drm_file *file) 3725 { 3726 struct i915_perf *perf = &to_i915(dev)->perf; 3727 struct drm_i915_perf_open_param *param = data; 3728 struct perf_open_properties props; 3729 u32 known_open_flags; 3730 int ret; 3731 3732 if (!perf->i915) { 3733 DRM_DEBUG("i915 perf interface not available for this system\n"); 3734 return -ENOTSUPP; 3735 } 3736 3737 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3738 I915_PERF_FLAG_FD_NONBLOCK | 3739 I915_PERF_FLAG_DISABLED; 3740 if (param->flags & ~known_open_flags) { 3741 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3742 return -EINVAL; 3743 } 3744 3745 ret = read_properties_unlocked(perf, 3746 u64_to_user_ptr(param->properties_ptr), 3747 param->num_properties, 3748 &props); 3749 if (ret) 3750 return ret; 3751 3752 mutex_lock(&perf->lock); 3753 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3754 mutex_unlock(&perf->lock); 3755 3756 return ret; 3757 } 3758 3759 /** 3760 * i915_perf_register - exposes i915-perf to userspace 3761 * @i915: i915 device instance 3762 * 3763 * In particular OA metric sets are advertised under a sysfs metrics/ 3764 * directory allowing userspace to enumerate valid IDs that can be 3765 * used to open an i915-perf stream. 3766 */ 3767 void i915_perf_register(struct drm_i915_private *i915) 3768 { 3769 struct i915_perf *perf = &i915->perf; 3770 3771 if (!perf->i915) 3772 return; 3773 3774 /* To be sure we're synchronized with an attempted 3775 * i915_perf_open_ioctl(); considering that we register after 3776 * being exposed to userspace. 3777 */ 3778 mutex_lock(&perf->lock); 3779 3780 perf->metrics_kobj = 3781 kobject_create_and_add("metrics", 3782 &i915->drm.primary->kdev->kobj); 3783 3784 mutex_unlock(&perf->lock); 3785 } 3786 3787 /** 3788 * i915_perf_unregister - hide i915-perf from userspace 3789 * @i915: i915 device instance 3790 * 3791 * i915-perf state cleanup is split up into an 'unregister' and 3792 * 'deinit' phase where the interface is first hidden from 3793 * userspace by i915_perf_unregister() before cleaning up 3794 * remaining state in i915_perf_fini(). 3795 */ 3796 void i915_perf_unregister(struct drm_i915_private *i915) 3797 { 3798 struct i915_perf *perf = &i915->perf; 3799 3800 if (!perf->metrics_kobj) 3801 return; 3802 3803 kobject_put(perf->metrics_kobj); 3804 perf->metrics_kobj = NULL; 3805 } 3806 3807 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3808 { 3809 static const i915_reg_t flex_eu_regs[] = { 3810 EU_PERF_CNTL0, 3811 EU_PERF_CNTL1, 3812 EU_PERF_CNTL2, 3813 EU_PERF_CNTL3, 3814 EU_PERF_CNTL4, 3815 EU_PERF_CNTL5, 3816 EU_PERF_CNTL6, 3817 }; 3818 int i; 3819 3820 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3821 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3822 return true; 3823 } 3824 return false; 3825 } 3826 3827 #define ADDR_IN_RANGE(addr, start, end) \ 3828 ((addr) >= (start) && \ 3829 (addr) <= (end)) 3830 3831 #define REG_IN_RANGE(addr, start, end) \ 3832 ((addr) >= i915_mmio_reg_offset(start) && \ 3833 (addr) <= i915_mmio_reg_offset(end)) 3834 3835 #define REG_EQUAL(addr, mmio) \ 3836 ((addr) == i915_mmio_reg_offset(mmio)) 3837 3838 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3839 { 3840 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3841 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3842 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3843 } 3844 3845 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3846 { 3847 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3848 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3849 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3850 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3851 } 3852 3853 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3854 { 3855 return gen7_is_valid_mux_addr(perf, addr) || 3856 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3857 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3858 } 3859 3860 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3861 { 3862 return gen8_is_valid_mux_addr(perf, addr) || 3863 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3864 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3865 } 3866 3867 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3868 { 3869 return gen7_is_valid_mux_addr(perf, addr) || 3870 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3871 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3872 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3873 } 3874 3875 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3876 { 3877 return gen7_is_valid_mux_addr(perf, addr) || 3878 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3879 } 3880 3881 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3882 { 3883 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3884 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3885 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3886 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3887 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3888 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3889 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3890 } 3891 3892 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3893 { 3894 return REG_EQUAL(addr, NOA_WRITE) || 3895 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3896 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3897 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3898 REG_EQUAL(addr, RPM_CONFIG0) || 3899 REG_EQUAL(addr, RPM_CONFIG1) || 3900 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3901 } 3902 3903 static u32 mask_reg_value(u32 reg, u32 val) 3904 { 3905 /* HALF_SLICE_CHICKEN2 is programmed with a the 3906 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3907 * programmed by userspace doesn't change this. 3908 */ 3909 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3910 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3911 3912 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3913 * indicated by its name and a bunch of selection fields used by OA 3914 * configs. 3915 */ 3916 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3917 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3918 3919 return val; 3920 } 3921 3922 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3923 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3924 u32 __user *regs, 3925 u32 n_regs) 3926 { 3927 struct i915_oa_reg *oa_regs; 3928 int err; 3929 u32 i; 3930 3931 if (!n_regs) 3932 return NULL; 3933 3934 /* No is_valid function means we're not allowing any register to be programmed. */ 3935 GEM_BUG_ON(!is_valid); 3936 if (!is_valid) 3937 return ERR_PTR(-EINVAL); 3938 3939 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3940 if (!oa_regs) 3941 return ERR_PTR(-ENOMEM); 3942 3943 for (i = 0; i < n_regs; i++) { 3944 u32 addr, value; 3945 3946 err = get_user(addr, regs); 3947 if (err) 3948 goto addr_err; 3949 3950 if (!is_valid(perf, addr)) { 3951 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3952 err = -EINVAL; 3953 goto addr_err; 3954 } 3955 3956 err = get_user(value, regs + 1); 3957 if (err) 3958 goto addr_err; 3959 3960 oa_regs[i].addr = _MMIO(addr); 3961 oa_regs[i].value = mask_reg_value(addr, value); 3962 3963 regs += 2; 3964 } 3965 3966 return oa_regs; 3967 3968 addr_err: 3969 kfree(oa_regs); 3970 return ERR_PTR(err); 3971 } 3972 3973 static ssize_t show_dynamic_id(struct device *dev, 3974 struct device_attribute *attr, 3975 char *buf) 3976 { 3977 struct i915_oa_config *oa_config = 3978 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3979 3980 return sprintf(buf, "%d\n", oa_config->id); 3981 } 3982 3983 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3984 struct i915_oa_config *oa_config) 3985 { 3986 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3987 oa_config->sysfs_metric_id.attr.name = "id"; 3988 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3989 oa_config->sysfs_metric_id.show = show_dynamic_id; 3990 oa_config->sysfs_metric_id.store = NULL; 3991 3992 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3993 oa_config->attrs[1] = NULL; 3994 3995 oa_config->sysfs_metric.name = oa_config->uuid; 3996 oa_config->sysfs_metric.attrs = oa_config->attrs; 3997 3998 return sysfs_create_group(perf->metrics_kobj, 3999 &oa_config->sysfs_metric); 4000 } 4001 4002 /** 4003 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4004 * @dev: drm device 4005 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4006 * userspace (unvalidated) 4007 * @file: drm file 4008 * 4009 * Validates the submitted OA register to be saved into a new OA config that 4010 * can then be used for programming the OA unit and its NOA network. 4011 * 4012 * Returns: A new allocated config number to be used with the perf open ioctl 4013 * or a negative error code on failure. 4014 */ 4015 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4016 struct drm_file *file) 4017 { 4018 struct i915_perf *perf = &to_i915(dev)->perf; 4019 struct drm_i915_perf_oa_config *args = data; 4020 struct i915_oa_config *oa_config, *tmp; 4021 struct i915_oa_reg *regs; 4022 int err, id; 4023 4024 if (!perf->i915) { 4025 DRM_DEBUG("i915 perf interface not available for this system\n"); 4026 return -ENOTSUPP; 4027 } 4028 4029 if (!perf->metrics_kobj) { 4030 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4031 return -EINVAL; 4032 } 4033 4034 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4035 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4036 return -EACCES; 4037 } 4038 4039 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4040 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4041 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4042 DRM_DEBUG("No OA registers given\n"); 4043 return -EINVAL; 4044 } 4045 4046 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4047 if (!oa_config) { 4048 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4049 return -ENOMEM; 4050 } 4051 4052 oa_config->perf = perf; 4053 kref_init(&oa_config->ref); 4054 4055 if (!uuid_is_valid(args->uuid)) { 4056 DRM_DEBUG("Invalid uuid format for OA config\n"); 4057 err = -EINVAL; 4058 goto reg_err; 4059 } 4060 4061 /* Last character in oa_config->uuid will be 0 because oa_config is 4062 * kzalloc. 4063 */ 4064 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4065 4066 oa_config->mux_regs_len = args->n_mux_regs; 4067 regs = alloc_oa_regs(perf, 4068 perf->ops.is_valid_mux_reg, 4069 u64_to_user_ptr(args->mux_regs_ptr), 4070 args->n_mux_regs); 4071 4072 if (IS_ERR(regs)) { 4073 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4074 err = PTR_ERR(regs); 4075 goto reg_err; 4076 } 4077 oa_config->mux_regs = regs; 4078 4079 oa_config->b_counter_regs_len = args->n_boolean_regs; 4080 regs = alloc_oa_regs(perf, 4081 perf->ops.is_valid_b_counter_reg, 4082 u64_to_user_ptr(args->boolean_regs_ptr), 4083 args->n_boolean_regs); 4084 4085 if (IS_ERR(regs)) { 4086 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4087 err = PTR_ERR(regs); 4088 goto reg_err; 4089 } 4090 oa_config->b_counter_regs = regs; 4091 4092 if (INTEL_GEN(perf->i915) < 8) { 4093 if (args->n_flex_regs != 0) { 4094 err = -EINVAL; 4095 goto reg_err; 4096 } 4097 } else { 4098 oa_config->flex_regs_len = args->n_flex_regs; 4099 regs = alloc_oa_regs(perf, 4100 perf->ops.is_valid_flex_reg, 4101 u64_to_user_ptr(args->flex_regs_ptr), 4102 args->n_flex_regs); 4103 4104 if (IS_ERR(regs)) { 4105 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4106 err = PTR_ERR(regs); 4107 goto reg_err; 4108 } 4109 oa_config->flex_regs = regs; 4110 } 4111 4112 err = mutex_lock_interruptible(&perf->metrics_lock); 4113 if (err) 4114 goto reg_err; 4115 4116 /* We shouldn't have too many configs, so this iteration shouldn't be 4117 * too costly. 4118 */ 4119 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4120 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4121 DRM_DEBUG("OA config already exists with this uuid\n"); 4122 err = -EADDRINUSE; 4123 goto sysfs_err; 4124 } 4125 } 4126 4127 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4128 if (err) { 4129 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4130 goto sysfs_err; 4131 } 4132 4133 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4134 oa_config->id = idr_alloc(&perf->metrics_idr, 4135 oa_config, 2, 4136 0, GFP_KERNEL); 4137 if (oa_config->id < 0) { 4138 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4139 err = oa_config->id; 4140 goto sysfs_err; 4141 } 4142 4143 mutex_unlock(&perf->metrics_lock); 4144 4145 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4146 4147 return oa_config->id; 4148 4149 sysfs_err: 4150 mutex_unlock(&perf->metrics_lock); 4151 reg_err: 4152 i915_oa_config_put(oa_config); 4153 DRM_DEBUG("Failed to add new OA config\n"); 4154 return err; 4155 } 4156 4157 /** 4158 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4159 * @dev: drm device 4160 * @data: ioctl data (pointer to u64 integer) copied from userspace 4161 * @file: drm file 4162 * 4163 * Configs can be removed while being used, the will stop appearing in sysfs 4164 * and their content will be freed when the stream using the config is closed. 4165 * 4166 * Returns: 0 on success or a negative error code on failure. 4167 */ 4168 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4169 struct drm_file *file) 4170 { 4171 struct i915_perf *perf = &to_i915(dev)->perf; 4172 u64 *arg = data; 4173 struct i915_oa_config *oa_config; 4174 int ret; 4175 4176 if (!perf->i915) { 4177 DRM_DEBUG("i915 perf interface not available for this system\n"); 4178 return -ENOTSUPP; 4179 } 4180 4181 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4182 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4183 return -EACCES; 4184 } 4185 4186 ret = mutex_lock_interruptible(&perf->metrics_lock); 4187 if (ret) 4188 return ret; 4189 4190 oa_config = idr_find(&perf->metrics_idr, *arg); 4191 if (!oa_config) { 4192 DRM_DEBUG("Failed to remove unknown OA config\n"); 4193 ret = -ENOENT; 4194 goto err_unlock; 4195 } 4196 4197 GEM_BUG_ON(*arg != oa_config->id); 4198 4199 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4200 4201 idr_remove(&perf->metrics_idr, *arg); 4202 4203 mutex_unlock(&perf->metrics_lock); 4204 4205 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4206 4207 i915_oa_config_put(oa_config); 4208 4209 return 0; 4210 4211 err_unlock: 4212 mutex_unlock(&perf->metrics_lock); 4213 return ret; 4214 } 4215 4216 static struct ctl_table oa_table[] = { 4217 { 4218 .procname = "perf_stream_paranoid", 4219 .data = &i915_perf_stream_paranoid, 4220 .maxlen = sizeof(i915_perf_stream_paranoid), 4221 .mode = 0644, 4222 .proc_handler = proc_dointvec_minmax, 4223 .extra1 = SYSCTL_ZERO, 4224 .extra2 = SYSCTL_ONE, 4225 }, 4226 { 4227 .procname = "oa_max_sample_rate", 4228 .data = &i915_oa_max_sample_rate, 4229 .maxlen = sizeof(i915_oa_max_sample_rate), 4230 .mode = 0644, 4231 .proc_handler = proc_dointvec_minmax, 4232 .extra1 = SYSCTL_ZERO, 4233 .extra2 = &oa_sample_rate_hard_limit, 4234 }, 4235 {} 4236 }; 4237 4238 static struct ctl_table i915_root[] = { 4239 { 4240 .procname = "i915", 4241 .maxlen = 0, 4242 .mode = 0555, 4243 .child = oa_table, 4244 }, 4245 {} 4246 }; 4247 4248 static struct ctl_table dev_root[] = { 4249 { 4250 .procname = "dev", 4251 .maxlen = 0, 4252 .mode = 0555, 4253 .child = i915_root, 4254 }, 4255 {} 4256 }; 4257 4258 static void oa_init_supported_formats(struct i915_perf *perf) 4259 { 4260 struct drm_i915_private *i915 = perf->i915; 4261 enum intel_platform platform = INTEL_INFO(i915)->platform; 4262 4263 switch (platform) { 4264 case INTEL_HASWELL: 4265 oa_format_add(perf, I915_OA_FORMAT_A13); 4266 oa_format_add(perf, I915_OA_FORMAT_A13); 4267 oa_format_add(perf, I915_OA_FORMAT_A29); 4268 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4269 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4270 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4271 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4272 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4273 break; 4274 4275 case INTEL_BROADWELL: 4276 case INTEL_CHERRYVIEW: 4277 case INTEL_SKYLAKE: 4278 case INTEL_BROXTON: 4279 case INTEL_KABYLAKE: 4280 case INTEL_GEMINILAKE: 4281 case INTEL_COFFEELAKE: 4282 case INTEL_COMETLAKE: 4283 case INTEL_CANNONLAKE: 4284 case INTEL_ICELAKE: 4285 case INTEL_ELKHARTLAKE: 4286 case INTEL_JASPERLAKE: 4287 case INTEL_TIGERLAKE: 4288 case INTEL_ROCKETLAKE: 4289 case INTEL_DG1: 4290 case INTEL_ALDERLAKE_S: 4291 oa_format_add(perf, I915_OA_FORMAT_A12); 4292 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4293 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4294 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4295 break; 4296 4297 default: 4298 MISSING_CASE(platform); 4299 } 4300 } 4301 4302 /** 4303 * i915_perf_init - initialize i915-perf state on module bind 4304 * @i915: i915 device instance 4305 * 4306 * Initializes i915-perf state without exposing anything to userspace. 4307 * 4308 * Note: i915-perf initialization is split into an 'init' and 'register' 4309 * phase with the i915_perf_register() exposing state to userspace. 4310 */ 4311 void i915_perf_init(struct drm_i915_private *i915) 4312 { 4313 struct i915_perf *perf = &i915->perf; 4314 4315 /* XXX const struct i915_perf_ops! */ 4316 4317 perf->oa_formats = oa_formats; 4318 if (IS_HASWELL(i915)) { 4319 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4320 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4321 perf->ops.is_valid_flex_reg = NULL; 4322 perf->ops.enable_metric_set = hsw_enable_metric_set; 4323 perf->ops.disable_metric_set = hsw_disable_metric_set; 4324 perf->ops.oa_enable = gen7_oa_enable; 4325 perf->ops.oa_disable = gen7_oa_disable; 4326 perf->ops.read = gen7_oa_read; 4327 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4328 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4329 /* Note: that although we could theoretically also support the 4330 * legacy ringbuffer mode on BDW (and earlier iterations of 4331 * this driver, before upstreaming did this) it didn't seem 4332 * worth the complexity to maintain now that BDW+ enable 4333 * execlist mode by default. 4334 */ 4335 perf->ops.read = gen8_oa_read; 4336 4337 if (IS_GEN_RANGE(i915, 8, 9)) { 4338 perf->ops.is_valid_b_counter_reg = 4339 gen7_is_valid_b_counter_addr; 4340 perf->ops.is_valid_mux_reg = 4341 gen8_is_valid_mux_addr; 4342 perf->ops.is_valid_flex_reg = 4343 gen8_is_valid_flex_addr; 4344 4345 if (IS_CHERRYVIEW(i915)) { 4346 perf->ops.is_valid_mux_reg = 4347 chv_is_valid_mux_addr; 4348 } 4349 4350 perf->ops.oa_enable = gen8_oa_enable; 4351 perf->ops.oa_disable = gen8_oa_disable; 4352 perf->ops.enable_metric_set = gen8_enable_metric_set; 4353 perf->ops.disable_metric_set = gen8_disable_metric_set; 4354 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4355 4356 if (IS_GEN(i915, 8)) { 4357 perf->ctx_oactxctrl_offset = 0x120; 4358 perf->ctx_flexeu0_offset = 0x2ce; 4359 4360 perf->gen8_valid_ctx_bit = BIT(25); 4361 } else { 4362 perf->ctx_oactxctrl_offset = 0x128; 4363 perf->ctx_flexeu0_offset = 0x3de; 4364 4365 perf->gen8_valid_ctx_bit = BIT(16); 4366 } 4367 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4368 perf->ops.is_valid_b_counter_reg = 4369 gen7_is_valid_b_counter_addr; 4370 perf->ops.is_valid_mux_reg = 4371 gen10_is_valid_mux_addr; 4372 perf->ops.is_valid_flex_reg = 4373 gen8_is_valid_flex_addr; 4374 4375 perf->ops.oa_enable = gen8_oa_enable; 4376 perf->ops.oa_disable = gen8_oa_disable; 4377 perf->ops.enable_metric_set = gen8_enable_metric_set; 4378 perf->ops.disable_metric_set = gen10_disable_metric_set; 4379 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4380 4381 if (IS_GEN(i915, 10)) { 4382 perf->ctx_oactxctrl_offset = 0x128; 4383 perf->ctx_flexeu0_offset = 0x3de; 4384 } else { 4385 perf->ctx_oactxctrl_offset = 0x124; 4386 perf->ctx_flexeu0_offset = 0x78e; 4387 } 4388 perf->gen8_valid_ctx_bit = BIT(16); 4389 } else if (IS_GEN(i915, 12)) { 4390 perf->ops.is_valid_b_counter_reg = 4391 gen12_is_valid_b_counter_addr; 4392 perf->ops.is_valid_mux_reg = 4393 gen12_is_valid_mux_addr; 4394 perf->ops.is_valid_flex_reg = 4395 gen8_is_valid_flex_addr; 4396 4397 perf->ops.oa_enable = gen12_oa_enable; 4398 perf->ops.oa_disable = gen12_oa_disable; 4399 perf->ops.enable_metric_set = gen12_enable_metric_set; 4400 perf->ops.disable_metric_set = gen12_disable_metric_set; 4401 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4402 4403 perf->ctx_flexeu0_offset = 0; 4404 perf->ctx_oactxctrl_offset = 0x144; 4405 } 4406 } 4407 4408 if (perf->ops.enable_metric_set) { 4409 mutex_init(&perf->lock); 4410 4411 /* Choose a representative limit */ 4412 oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2; 4413 4414 mutex_init(&perf->metrics_lock); 4415 idr_init_base(&perf->metrics_idr, 1); 4416 4417 /* We set up some ratelimit state to potentially throttle any 4418 * _NOTES about spurious, invalid OA reports which we don't 4419 * forward to userspace. 4420 * 4421 * We print a _NOTE about any throttling when closing the 4422 * stream instead of waiting until driver _fini which no one 4423 * would ever see. 4424 * 4425 * Using the same limiting factors as printk_ratelimit() 4426 */ 4427 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4428 /* Since we use a DRM_NOTE for spurious reports it would be 4429 * inconsistent to let __ratelimit() automatically print a 4430 * warning for throttling. 4431 */ 4432 ratelimit_set_flags(&perf->spurious_report_rs, 4433 RATELIMIT_MSG_ON_RELEASE); 4434 4435 ratelimit_state_init(&perf->tail_pointer_race, 4436 5 * HZ, 10); 4437 ratelimit_set_flags(&perf->tail_pointer_race, 4438 RATELIMIT_MSG_ON_RELEASE); 4439 4440 atomic64_set(&perf->noa_programming_delay, 4441 500 * 1000 /* 500us */); 4442 4443 perf->i915 = i915; 4444 4445 oa_init_supported_formats(perf); 4446 } 4447 } 4448 4449 static int destroy_config(int id, void *p, void *data) 4450 { 4451 i915_oa_config_put(p); 4452 return 0; 4453 } 4454 4455 void i915_perf_sysctl_register(void) 4456 { 4457 sysctl_header = register_sysctl_table(dev_root); 4458 } 4459 4460 void i915_perf_sysctl_unregister(void) 4461 { 4462 unregister_sysctl_table(sysctl_header); 4463 } 4464 4465 /** 4466 * i915_perf_fini - Counter part to i915_perf_init() 4467 * @i915: i915 device instance 4468 */ 4469 void i915_perf_fini(struct drm_i915_private *i915) 4470 { 4471 struct i915_perf *perf = &i915->perf; 4472 4473 if (!perf->i915) 4474 return; 4475 4476 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4477 idr_destroy(&perf->metrics_idr); 4478 4479 memset(&perf->ops, 0, sizeof(perf->ops)); 4480 perf->i915 = NULL; 4481 } 4482 4483 /** 4484 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4485 * 4486 * This version number is used by userspace to detect available features. 4487 */ 4488 int i915_perf_ioctl_version(void) 4489 { 4490 /* 4491 * 1: Initial version 4492 * I915_PERF_IOCTL_ENABLE 4493 * I915_PERF_IOCTL_DISABLE 4494 * 4495 * 2: Added runtime modification of OA config. 4496 * I915_PERF_IOCTL_CONFIG 4497 * 4498 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4499 * preemption on a particular context so that performance data is 4500 * accessible from a delta of MI_RPC reports without looking at the 4501 * OA buffer. 4502 * 4503 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4504 * be run for the duration of the performance recording based on 4505 * their SSEU configuration. 4506 * 4507 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4508 * interval for the hrtimer used to check for OA data. 4509 */ 4510 return 5; 4511 } 4512 4513 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4514 #include "selftests/i915_perf.c" 4515 #endif 4516