xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 6cd70754)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_execlists_submission.h"
202 #include "gt/intel_gpu_commands.h"
203 #include "gt/intel_gt.h"
204 #include "gt/intel_gt_clock_utils.h"
205 #include "gt/intel_lrc.h"
206 #include "gt/intel_ring.h"
207 
208 #include "i915_drv.h"
209 #include "i915_perf.h"
210 
211 /* HW requires this to be a power of two, between 128k and 16M, though driver
212  * is currently generally designed assuming the largest 16M size is used such
213  * that the overflow cases are unlikely in normal operation.
214  */
215 #define OA_BUFFER_SIZE		SZ_16M
216 
217 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
218 
219 /**
220  * DOC: OA Tail Pointer Race
221  *
222  * There's a HW race condition between OA unit tail pointer register updates and
223  * writes to memory whereby the tail pointer can sometimes get ahead of what's
224  * been written out to the OA buffer so far (in terms of what's visible to the
225  * CPU).
226  *
227  * Although this can be observed explicitly while copying reports to userspace
228  * by checking for a zeroed report-id field in tail reports, we want to account
229  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
230  * redundant read() attempts.
231  *
232  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
233  * in the OA buffer, starting from the tail reported by the HW until we find a
234  * report with its first 2 dwords not 0 meaning its previous report is
235  * completely in memory and ready to be read. Those dwords are also set to 0
236  * once read and the whole buffer is cleared upon OA buffer initialization. The
237  * first dword is the reason for this report while the second is the timestamp,
238  * making the chances of having those 2 fields at 0 fairly unlikely. A more
239  * detailed explanation is available in oa_buffer_check_unlocked().
240  *
241  * Most of the implementation details for this workaround are in
242  * oa_buffer_check_unlocked() and _append_oa_reports()
243  *
244  * Note for posterity: previously the driver used to define an effective tail
245  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
246  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
247  * This was flawed considering that the OA unit may also automatically generate
248  * non-periodic reports (such as on context switch) or the OA unit may be
249  * enabled without any periodic sampling.
250  */
251 #define OA_TAIL_MARGIN_NSEC	100000ULL
252 #define INVALID_TAIL_PTR	0xffffffff
253 
254 /* The default frequency for checking whether the OA unit has written new
255  * reports to the circular OA buffer...
256  */
257 #define DEFAULT_POLL_FREQUENCY_HZ 200
258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
259 
260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
261 static u32 i915_perf_stream_paranoid = true;
262 
263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
264  * of the 64bit timestamp bits to trigger reports from) but there's currently
265  * no known use case for sampling as infrequently as once per 47 thousand years.
266  *
267  * Since the timestamps included in OA reports are only 32bits it seems
268  * reasonable to limit the OA exponent where it's still possible to account for
269  * overflow in OA report timestamps.
270  */
271 #define OA_EXPONENT_MAX 31
272 
273 #define INVALID_CTX_ID 0xffffffff
274 
275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
276 #define OAREPORT_REASON_MASK           0x3f
277 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
278 #define OAREPORT_REASON_SHIFT          19
279 #define OAREPORT_REASON_TIMER          (1<<0)
280 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
281 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
282 
283 
284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
285  *
286  * The highest sampling frequency we can theoretically program the OA unit
287  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
288  *
289  * Initialized just before we register the sysctl parameter.
290  */
291 static int oa_sample_rate_hard_limit;
292 
293 /* Theoretically we can program the OA unit to sample every 160ns but don't
294  * allow that by default unless root...
295  *
296  * The default threshold of 100000Hz is based on perf's similar
297  * kernel.perf_event_max_sample_rate sysctl parameter.
298  */
299 static u32 i915_oa_max_sample_rate = 100000;
300 
301 /* XXX: beware if future OA HW adds new report formats that the current
302  * code assumes all reports have a power-of-two size and ~(size - 1) can
303  * be used as a mask to align the OA tail pointer.
304  */
305 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
306 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
307 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
308 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
309 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
310 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
311 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
312 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
313 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
314 };
315 
316 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
317 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
318 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
319 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
320 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
321 };
322 
323 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
324 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
325 };
326 
327 #define SAMPLE_OA_REPORT      (1<<0)
328 
329 /**
330  * struct perf_open_properties - for validated properties given to open a stream
331  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
332  * @single_context: Whether a single or all gpu contexts should be monitored
333  * @hold_preemption: Whether the preemption is disabled for the filtered
334  *                   context
335  * @ctx_handle: A gem ctx handle for use with @single_context
336  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
337  * @oa_format: An OA unit HW report format
338  * @oa_periodic: Whether to enable periodic OA unit sampling
339  * @oa_period_exponent: The OA unit sampling period is derived from this
340  * @engine: The engine (typically rcs0) being monitored by the OA unit
341  * @has_sseu: Whether @sseu was specified by userspace
342  * @sseu: internal SSEU configuration computed either from the userspace
343  *        specified configuration in the opening parameters or a default value
344  *        (see get_default_sseu_config())
345  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
346  * data availability
347  *
348  * As read_properties_unlocked() enumerates and validates the properties given
349  * to open a stream of metrics the configuration is built up in the structure
350  * which starts out zero initialized.
351  */
352 struct perf_open_properties {
353 	u32 sample_flags;
354 
355 	u64 single_context:1;
356 	u64 hold_preemption:1;
357 	u64 ctx_handle;
358 
359 	/* OA sampling state */
360 	int metrics_set;
361 	int oa_format;
362 	bool oa_periodic;
363 	int oa_period_exponent;
364 
365 	struct intel_engine_cs *engine;
366 
367 	bool has_sseu;
368 	struct intel_sseu sseu;
369 
370 	u64 poll_oa_period;
371 };
372 
373 struct i915_oa_config_bo {
374 	struct llist_node node;
375 
376 	struct i915_oa_config *oa_config;
377 	struct i915_vma *vma;
378 };
379 
380 static struct ctl_table_header *sysctl_header;
381 
382 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
383 
384 void i915_oa_config_release(struct kref *ref)
385 {
386 	struct i915_oa_config *oa_config =
387 		container_of(ref, typeof(*oa_config), ref);
388 
389 	kfree(oa_config->flex_regs);
390 	kfree(oa_config->b_counter_regs);
391 	kfree(oa_config->mux_regs);
392 
393 	kfree_rcu(oa_config, rcu);
394 }
395 
396 struct i915_oa_config *
397 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
398 {
399 	struct i915_oa_config *oa_config;
400 
401 	rcu_read_lock();
402 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
403 	if (oa_config)
404 		oa_config = i915_oa_config_get(oa_config);
405 	rcu_read_unlock();
406 
407 	return oa_config;
408 }
409 
410 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
411 {
412 	i915_oa_config_put(oa_bo->oa_config);
413 	i915_vma_put(oa_bo->vma);
414 	kfree(oa_bo);
415 }
416 
417 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
418 {
419 	struct intel_uncore *uncore = stream->uncore;
420 
421 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
422 	       GEN12_OAG_OATAILPTR_MASK;
423 }
424 
425 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
426 {
427 	struct intel_uncore *uncore = stream->uncore;
428 
429 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
430 }
431 
432 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
433 {
434 	struct intel_uncore *uncore = stream->uncore;
435 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
436 
437 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
438 }
439 
440 /**
441  * oa_buffer_check_unlocked - check for data and update tail ptr state
442  * @stream: i915 stream instance
443  *
444  * This is either called via fops (for blocking reads in user ctx) or the poll
445  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
446  * if there is data available for userspace to read.
447  *
448  * This function is central to providing a workaround for the OA unit tail
449  * pointer having a race with respect to what data is visible to the CPU.
450  * It is responsible for reading tail pointers from the hardware and giving
451  * the pointers time to 'age' before they are made available for reading.
452  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
453  *
454  * Besides returning true when there is data available to read() this function
455  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
456  * object.
457  *
458  * Note: It's safe to read OA config state here unlocked, assuming that this is
459  * only called while the stream is enabled, while the global OA configuration
460  * can't be modified.
461  *
462  * Returns: %true if the OA buffer contains data, else %false
463  */
464 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
465 {
466 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
467 	int report_size = stream->oa_buffer.format_size;
468 	unsigned long flags;
469 	bool pollin;
470 	u32 hw_tail;
471 	u64 now;
472 
473 	/* We have to consider the (unlikely) possibility that read() errors
474 	 * could result in an OA buffer reset which might reset the head and
475 	 * tail state.
476 	 */
477 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
478 
479 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
480 
481 	/* The tail pointer increases in 64 byte increments,
482 	 * not in report_size steps...
483 	 */
484 	hw_tail &= ~(report_size - 1);
485 
486 	now = ktime_get_mono_fast_ns();
487 
488 	if (hw_tail == stream->oa_buffer.aging_tail &&
489 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
490 		/* If the HW tail hasn't move since the last check and the HW
491 		 * tail has been aging for long enough, declare it the new
492 		 * tail.
493 		 */
494 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
495 	} else {
496 		u32 head, tail, aged_tail;
497 
498 		/* NB: The head we observe here might effectively be a little
499 		 * out of date. If a read() is in progress, the head could be
500 		 * anywhere between this head and stream->oa_buffer.tail.
501 		 */
502 		head = stream->oa_buffer.head - gtt_offset;
503 		aged_tail = stream->oa_buffer.tail - gtt_offset;
504 
505 		hw_tail -= gtt_offset;
506 		tail = hw_tail;
507 
508 		/* Walk the stream backward until we find a report with dword 0
509 		 * & 1 not at 0. Since the circular buffer pointers progress by
510 		 * increments of 64 bytes and that reports can be up to 256
511 		 * bytes long, we can't tell whether a report has fully landed
512 		 * in memory before the first 2 dwords of the following report
513 		 * have effectively landed.
514 		 *
515 		 * This is assuming that the writes of the OA unit land in
516 		 * memory in the order they were written to.
517 		 * If not : (╯°□°)╯︵ ┻━┻
518 		 */
519 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
520 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
521 
522 			if (report32[0] != 0 || report32[1] != 0)
523 				break;
524 
525 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
526 		}
527 
528 		if (OA_TAKEN(hw_tail, tail) > report_size &&
529 		    __ratelimit(&stream->perf->tail_pointer_race))
530 			DRM_NOTE("unlanded report(s) head=0x%x "
531 				 "tail=0x%x hw_tail=0x%x\n",
532 				 head, tail, hw_tail);
533 
534 		stream->oa_buffer.tail = gtt_offset + tail;
535 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
536 		stream->oa_buffer.aging_timestamp = now;
537 	}
538 
539 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
540 			  stream->oa_buffer.head - gtt_offset) >= report_size;
541 
542 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
543 
544 	return pollin;
545 }
546 
547 /**
548  * append_oa_status - Appends a status record to a userspace read() buffer.
549  * @stream: An i915-perf stream opened for OA metrics
550  * @buf: destination buffer given by userspace
551  * @count: the number of bytes userspace wants to read
552  * @offset: (inout): the current position for writing into @buf
553  * @type: The kind of status to report to userspace
554  *
555  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
556  * into the userspace read() buffer.
557  *
558  * The @buf @offset will only be updated on success.
559  *
560  * Returns: 0 on success, negative error code on failure.
561  */
562 static int append_oa_status(struct i915_perf_stream *stream,
563 			    char __user *buf,
564 			    size_t count,
565 			    size_t *offset,
566 			    enum drm_i915_perf_record_type type)
567 {
568 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
569 
570 	if ((count - *offset) < header.size)
571 		return -ENOSPC;
572 
573 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
574 		return -EFAULT;
575 
576 	(*offset) += header.size;
577 
578 	return 0;
579 }
580 
581 /**
582  * append_oa_sample - Copies single OA report into userspace read() buffer.
583  * @stream: An i915-perf stream opened for OA metrics
584  * @buf: destination buffer given by userspace
585  * @count: the number of bytes userspace wants to read
586  * @offset: (inout): the current position for writing into @buf
587  * @report: A single OA report to (optionally) include as part of the sample
588  *
589  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
590  * properties when opening a stream, tracked as `stream->sample_flags`. This
591  * function copies the requested components of a single sample to the given
592  * read() @buf.
593  *
594  * The @buf @offset will only be updated on success.
595  *
596  * Returns: 0 on success, negative error code on failure.
597  */
598 static int append_oa_sample(struct i915_perf_stream *stream,
599 			    char __user *buf,
600 			    size_t count,
601 			    size_t *offset,
602 			    const u8 *report)
603 {
604 	int report_size = stream->oa_buffer.format_size;
605 	struct drm_i915_perf_record_header header;
606 
607 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
608 	header.pad = 0;
609 	header.size = stream->sample_size;
610 
611 	if ((count - *offset) < header.size)
612 		return -ENOSPC;
613 
614 	buf += *offset;
615 	if (copy_to_user(buf, &header, sizeof(header)))
616 		return -EFAULT;
617 	buf += sizeof(header);
618 
619 	if (copy_to_user(buf, report, report_size))
620 		return -EFAULT;
621 
622 	(*offset) += header.size;
623 
624 	return 0;
625 }
626 
627 /**
628  * gen8_append_oa_reports - Copies all buffered OA reports into
629  *			    userspace read() buffer.
630  * @stream: An i915-perf stream opened for OA metrics
631  * @buf: destination buffer given by userspace
632  * @count: the number of bytes userspace wants to read
633  * @offset: (inout): the current position for writing into @buf
634  *
635  * Notably any error condition resulting in a short read (-%ENOSPC or
636  * -%EFAULT) will be returned even though one or more records may
637  * have been successfully copied. In this case it's up to the caller
638  * to decide if the error should be squashed before returning to
639  * userspace.
640  *
641  * Note: reports are consumed from the head, and appended to the
642  * tail, so the tail chases the head?... If you think that's mad
643  * and back-to-front you're not alone, but this follows the
644  * Gen PRM naming convention.
645  *
646  * Returns: 0 on success, negative error code on failure.
647  */
648 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
649 				  char __user *buf,
650 				  size_t count,
651 				  size_t *offset)
652 {
653 	struct intel_uncore *uncore = stream->uncore;
654 	int report_size = stream->oa_buffer.format_size;
655 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
656 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
657 	u32 mask = (OA_BUFFER_SIZE - 1);
658 	size_t start_offset = *offset;
659 	unsigned long flags;
660 	u32 head, tail;
661 	u32 taken;
662 	int ret = 0;
663 
664 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
665 		return -EIO;
666 
667 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
668 
669 	head = stream->oa_buffer.head;
670 	tail = stream->oa_buffer.tail;
671 
672 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
673 
674 	/*
675 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
676 	 * while indexing relative to oa_buf_base.
677 	 */
678 	head -= gtt_offset;
679 	tail -= gtt_offset;
680 
681 	/*
682 	 * An out of bounds or misaligned head or tail pointer implies a driver
683 	 * bug since we validate + align the tail pointers we read from the
684 	 * hardware and we are in full control of the head pointer which should
685 	 * only be incremented by multiples of the report size (notably also
686 	 * all a power of two).
687 	 */
688 	if (drm_WARN_ONCE(&uncore->i915->drm,
689 			  head > OA_BUFFER_SIZE || head % report_size ||
690 			  tail > OA_BUFFER_SIZE || tail % report_size,
691 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
692 			  head, tail))
693 		return -EIO;
694 
695 
696 	for (/* none */;
697 	     (taken = OA_TAKEN(tail, head));
698 	     head = (head + report_size) & mask) {
699 		u8 *report = oa_buf_base + head;
700 		u32 *report32 = (void *)report;
701 		u32 ctx_id;
702 		u32 reason;
703 
704 		/*
705 		 * All the report sizes factor neatly into the buffer
706 		 * size so we never expect to see a report split
707 		 * between the beginning and end of the buffer.
708 		 *
709 		 * Given the initial alignment check a misalignment
710 		 * here would imply a driver bug that would result
711 		 * in an overrun.
712 		 */
713 		if (drm_WARN_ON(&uncore->i915->drm,
714 				(OA_BUFFER_SIZE - head) < report_size)) {
715 			drm_err(&uncore->i915->drm,
716 				"Spurious OA head ptr: non-integral report offset\n");
717 			break;
718 		}
719 
720 		/*
721 		 * The reason field includes flags identifying what
722 		 * triggered this specific report (mostly timer
723 		 * triggered or e.g. due to a context switch).
724 		 *
725 		 * This field is never expected to be zero so we can
726 		 * check that the report isn't invalid before copying
727 		 * it to userspace...
728 		 */
729 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
730 			  (IS_GEN(stream->perf->i915, 12) ?
731 			   OAREPORT_REASON_MASK_EXTENDED :
732 			   OAREPORT_REASON_MASK));
733 		if (reason == 0) {
734 			if (__ratelimit(&stream->perf->spurious_report_rs))
735 				DRM_NOTE("Skipping spurious, invalid OA report\n");
736 			continue;
737 		}
738 
739 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
740 
741 		/*
742 		 * Squash whatever is in the CTX_ID field if it's marked as
743 		 * invalid to be sure we avoid false-positive, single-context
744 		 * filtering below...
745 		 *
746 		 * Note: that we don't clear the valid_ctx_bit so userspace can
747 		 * understand that the ID has been squashed by the kernel.
748 		 */
749 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
750 		    INTEL_GEN(stream->perf->i915) <= 11)
751 			ctx_id = report32[2] = INVALID_CTX_ID;
752 
753 		/*
754 		 * NB: For Gen 8 the OA unit no longer supports clock gating
755 		 * off for a specific context and the kernel can't securely
756 		 * stop the counters from updating as system-wide / global
757 		 * values.
758 		 *
759 		 * Automatic reports now include a context ID so reports can be
760 		 * filtered on the cpu but it's not worth trying to
761 		 * automatically subtract/hide counter progress for other
762 		 * contexts while filtering since we can't stop userspace
763 		 * issuing MI_REPORT_PERF_COUNT commands which would still
764 		 * provide a side-band view of the real values.
765 		 *
766 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
767 		 * to normalize counters for a single filtered context then it
768 		 * needs be forwarded bookend context-switch reports so that it
769 		 * can track switches in between MI_REPORT_PERF_COUNT commands
770 		 * and can itself subtract/ignore the progress of counters
771 		 * associated with other contexts. Note that the hardware
772 		 * automatically triggers reports when switching to a new
773 		 * context which are tagged with the ID of the newly active
774 		 * context. To avoid the complexity (and likely fragility) of
775 		 * reading ahead while parsing reports to try and minimize
776 		 * forwarding redundant context switch reports (i.e. between
777 		 * other, unrelated contexts) we simply elect to forward them
778 		 * all.
779 		 *
780 		 * We don't rely solely on the reason field to identify context
781 		 * switches since it's not-uncommon for periodic samples to
782 		 * identify a switch before any 'context switch' report.
783 		 */
784 		if (!stream->perf->exclusive_stream->ctx ||
785 		    stream->specific_ctx_id == ctx_id ||
786 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
787 		    reason & OAREPORT_REASON_CTX_SWITCH) {
788 
789 			/*
790 			 * While filtering for a single context we avoid
791 			 * leaking the IDs of other contexts.
792 			 */
793 			if (stream->perf->exclusive_stream->ctx &&
794 			    stream->specific_ctx_id != ctx_id) {
795 				report32[2] = INVALID_CTX_ID;
796 			}
797 
798 			ret = append_oa_sample(stream, buf, count, offset,
799 					       report);
800 			if (ret)
801 				break;
802 
803 			stream->oa_buffer.last_ctx_id = ctx_id;
804 		}
805 
806 		/*
807 		 * Clear out the first 2 dword as a mean to detect unlanded
808 		 * reports.
809 		 */
810 		report32[0] = 0;
811 		report32[1] = 0;
812 	}
813 
814 	if (start_offset != *offset) {
815 		i915_reg_t oaheadptr;
816 
817 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
818 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
819 
820 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
821 
822 		/*
823 		 * We removed the gtt_offset for the copy loop above, indexing
824 		 * relative to oa_buf_base so put back here...
825 		 */
826 		head += gtt_offset;
827 		intel_uncore_write(uncore, oaheadptr,
828 				   head & GEN12_OAG_OAHEADPTR_MASK);
829 		stream->oa_buffer.head = head;
830 
831 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
832 	}
833 
834 	return ret;
835 }
836 
837 /**
838  * gen8_oa_read - copy status records then buffered OA reports
839  * @stream: An i915-perf stream opened for OA metrics
840  * @buf: destination buffer given by userspace
841  * @count: the number of bytes userspace wants to read
842  * @offset: (inout): the current position for writing into @buf
843  *
844  * Checks OA unit status registers and if necessary appends corresponding
845  * status records for userspace (such as for a buffer full condition) and then
846  * initiate appending any buffered OA reports.
847  *
848  * Updates @offset according to the number of bytes successfully copied into
849  * the userspace buffer.
850  *
851  * NB: some data may be successfully copied to the userspace buffer
852  * even if an error is returned, and this is reflected in the
853  * updated @offset.
854  *
855  * Returns: zero on success or a negative error code
856  */
857 static int gen8_oa_read(struct i915_perf_stream *stream,
858 			char __user *buf,
859 			size_t count,
860 			size_t *offset)
861 {
862 	struct intel_uncore *uncore = stream->uncore;
863 	u32 oastatus;
864 	i915_reg_t oastatus_reg;
865 	int ret;
866 
867 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
868 		return -EIO;
869 
870 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
871 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
872 
873 	oastatus = intel_uncore_read(uncore, oastatus_reg);
874 
875 	/*
876 	 * We treat OABUFFER_OVERFLOW as a significant error:
877 	 *
878 	 * Although theoretically we could handle this more gracefully
879 	 * sometimes, some Gens don't correctly suppress certain
880 	 * automatically triggered reports in this condition and so we
881 	 * have to assume that old reports are now being trampled
882 	 * over.
883 	 *
884 	 * Considering how we don't currently give userspace control
885 	 * over the OA buffer size and always configure a large 16MB
886 	 * buffer, then a buffer overflow does anyway likely indicate
887 	 * that something has gone quite badly wrong.
888 	 */
889 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
890 		ret = append_oa_status(stream, buf, count, offset,
891 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
892 		if (ret)
893 			return ret;
894 
895 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
896 			  stream->period_exponent);
897 
898 		stream->perf->ops.oa_disable(stream);
899 		stream->perf->ops.oa_enable(stream);
900 
901 		/*
902 		 * Note: .oa_enable() is expected to re-init the oabuffer and
903 		 * reset GEN8_OASTATUS for us
904 		 */
905 		oastatus = intel_uncore_read(uncore, oastatus_reg);
906 	}
907 
908 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
909 		ret = append_oa_status(stream, buf, count, offset,
910 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
911 		if (ret)
912 			return ret;
913 
914 		intel_uncore_rmw(uncore, oastatus_reg,
915 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
916 				 GEN8_OASTATUS_REPORT_LOST,
917 				 IS_GEN_RANGE(uncore->i915, 8, 11) ?
918 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
919 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
920 	}
921 
922 	return gen8_append_oa_reports(stream, buf, count, offset);
923 }
924 
925 /**
926  * gen7_append_oa_reports - Copies all buffered OA reports into
927  *			    userspace read() buffer.
928  * @stream: An i915-perf stream opened for OA metrics
929  * @buf: destination buffer given by userspace
930  * @count: the number of bytes userspace wants to read
931  * @offset: (inout): the current position for writing into @buf
932  *
933  * Notably any error condition resulting in a short read (-%ENOSPC or
934  * -%EFAULT) will be returned even though one or more records may
935  * have been successfully copied. In this case it's up to the caller
936  * to decide if the error should be squashed before returning to
937  * userspace.
938  *
939  * Note: reports are consumed from the head, and appended to the
940  * tail, so the tail chases the head?... If you think that's mad
941  * and back-to-front you're not alone, but this follows the
942  * Gen PRM naming convention.
943  *
944  * Returns: 0 on success, negative error code on failure.
945  */
946 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
947 				  char __user *buf,
948 				  size_t count,
949 				  size_t *offset)
950 {
951 	struct intel_uncore *uncore = stream->uncore;
952 	int report_size = stream->oa_buffer.format_size;
953 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
954 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
955 	u32 mask = (OA_BUFFER_SIZE - 1);
956 	size_t start_offset = *offset;
957 	unsigned long flags;
958 	u32 head, tail;
959 	u32 taken;
960 	int ret = 0;
961 
962 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
963 		return -EIO;
964 
965 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
966 
967 	head = stream->oa_buffer.head;
968 	tail = stream->oa_buffer.tail;
969 
970 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
971 
972 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 	 * while indexing relative to oa_buf_base.
974 	 */
975 	head -= gtt_offset;
976 	tail -= gtt_offset;
977 
978 	/* An out of bounds or misaligned head or tail pointer implies a driver
979 	 * bug since we validate + align the tail pointers we read from the
980 	 * hardware and we are in full control of the head pointer which should
981 	 * only be incremented by multiples of the report size (notably also
982 	 * all a power of two).
983 	 */
984 	if (drm_WARN_ONCE(&uncore->i915->drm,
985 			  head > OA_BUFFER_SIZE || head % report_size ||
986 			  tail > OA_BUFFER_SIZE || tail % report_size,
987 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
988 			  head, tail))
989 		return -EIO;
990 
991 
992 	for (/* none */;
993 	     (taken = OA_TAKEN(tail, head));
994 	     head = (head + report_size) & mask) {
995 		u8 *report = oa_buf_base + head;
996 		u32 *report32 = (void *)report;
997 
998 		/* All the report sizes factor neatly into the buffer
999 		 * size so we never expect to see a report split
1000 		 * between the beginning and end of the buffer.
1001 		 *
1002 		 * Given the initial alignment check a misalignment
1003 		 * here would imply a driver bug that would result
1004 		 * in an overrun.
1005 		 */
1006 		if (drm_WARN_ON(&uncore->i915->drm,
1007 				(OA_BUFFER_SIZE - head) < report_size)) {
1008 			drm_err(&uncore->i915->drm,
1009 				"Spurious OA head ptr: non-integral report offset\n");
1010 			break;
1011 		}
1012 
1013 		/* The report-ID field for periodic samples includes
1014 		 * some undocumented flags related to what triggered
1015 		 * the report and is never expected to be zero so we
1016 		 * can check that the report isn't invalid before
1017 		 * copying it to userspace...
1018 		 */
1019 		if (report32[0] == 0) {
1020 			if (__ratelimit(&stream->perf->spurious_report_rs))
1021 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 			continue;
1023 		}
1024 
1025 		ret = append_oa_sample(stream, buf, count, offset, report);
1026 		if (ret)
1027 			break;
1028 
1029 		/* Clear out the first 2 dwords as a mean to detect unlanded
1030 		 * reports.
1031 		 */
1032 		report32[0] = 0;
1033 		report32[1] = 0;
1034 	}
1035 
1036 	if (start_offset != *offset) {
1037 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1038 
1039 		/* We removed the gtt_offset for the copy loop above, indexing
1040 		 * relative to oa_buf_base so put back here...
1041 		 */
1042 		head += gtt_offset;
1043 
1044 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1045 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1046 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1047 		stream->oa_buffer.head = head;
1048 
1049 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1050 	}
1051 
1052 	return ret;
1053 }
1054 
1055 /**
1056  * gen7_oa_read - copy status records then buffered OA reports
1057  * @stream: An i915-perf stream opened for OA metrics
1058  * @buf: destination buffer given by userspace
1059  * @count: the number of bytes userspace wants to read
1060  * @offset: (inout): the current position for writing into @buf
1061  *
1062  * Checks Gen 7 specific OA unit status registers and if necessary appends
1063  * corresponding status records for userspace (such as for a buffer full
1064  * condition) and then initiate appending any buffered OA reports.
1065  *
1066  * Updates @offset according to the number of bytes successfully copied into
1067  * the userspace buffer.
1068  *
1069  * Returns: zero on success or a negative error code
1070  */
1071 static int gen7_oa_read(struct i915_perf_stream *stream,
1072 			char __user *buf,
1073 			size_t count,
1074 			size_t *offset)
1075 {
1076 	struct intel_uncore *uncore = stream->uncore;
1077 	u32 oastatus1;
1078 	int ret;
1079 
1080 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1081 		return -EIO;
1082 
1083 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1084 
1085 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1086 	 * bits while the OA unit is enabled (while the tail pointer
1087 	 * may be updated asynchronously) so we ignore status bits
1088 	 * that have already been reported to userspace.
1089 	 */
1090 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1091 
1092 	/* We treat OABUFFER_OVERFLOW as a significant error:
1093 	 *
1094 	 * - The status can be interpreted to mean that the buffer is
1095 	 *   currently full (with a higher precedence than OA_TAKEN()
1096 	 *   which will start to report a near-empty buffer after an
1097 	 *   overflow) but it's awkward that we can't clear the status
1098 	 *   on Haswell, so without a reset we won't be able to catch
1099 	 *   the state again.
1100 	 *
1101 	 * - Since it also implies the HW has started overwriting old
1102 	 *   reports it may also affect our sanity checks for invalid
1103 	 *   reports when copying to userspace that assume new reports
1104 	 *   are being written to cleared memory.
1105 	 *
1106 	 * - In the future we may want to introduce a flight recorder
1107 	 *   mode where the driver will automatically maintain a safe
1108 	 *   guard band between head/tail, avoiding this overflow
1109 	 *   condition, but we avoid the added driver complexity for
1110 	 *   now.
1111 	 */
1112 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1113 		ret = append_oa_status(stream, buf, count, offset,
1114 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1115 		if (ret)
1116 			return ret;
1117 
1118 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119 			  stream->period_exponent);
1120 
1121 		stream->perf->ops.oa_disable(stream);
1122 		stream->perf->ops.oa_enable(stream);
1123 
1124 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1125 	}
1126 
1127 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 		ret = append_oa_status(stream, buf, count, offset,
1129 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130 		if (ret)
1131 			return ret;
1132 		stream->perf->gen7_latched_oastatus1 |=
1133 			GEN7_OASTATUS1_REPORT_LOST;
1134 	}
1135 
1136 	return gen7_append_oa_reports(stream, buf, count, offset);
1137 }
1138 
1139 /**
1140  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141  * @stream: An i915-perf stream opened for OA metrics
1142  *
1143  * Called when userspace tries to read() from a blocking stream FD opened
1144  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145  * OA buffer and wakes us.
1146  *
1147  * Note: it's acceptable to have this return with some false positives
1148  * since any subsequent read handling will return -EAGAIN if there isn't
1149  * really data ready for userspace yet.
1150  *
1151  * Returns: zero on success or a negative error code
1152  */
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154 {
1155 	/* We would wait indefinitely if periodic sampling is not enabled */
1156 	if (!stream->periodic)
1157 		return -EIO;
1158 
1159 	return wait_event_interruptible(stream->poll_wq,
1160 					oa_buffer_check_unlocked(stream));
1161 }
1162 
1163 /**
1164  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165  * @stream: An i915-perf stream opened for OA metrics
1166  * @file: An i915 perf stream file
1167  * @wait: poll() state table
1168  *
1169  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171  * when it sees data ready to read in the circular OA buffer.
1172  */
1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174 			      struct file *file,
1175 			      poll_table *wait)
1176 {
1177 	poll_wait(file, &stream->poll_wq, wait);
1178 }
1179 
1180 /**
1181  * i915_oa_read - just calls through to &i915_oa_ops->read
1182  * @stream: An i915-perf stream opened for OA metrics
1183  * @buf: destination buffer given by userspace
1184  * @count: the number of bytes userspace wants to read
1185  * @offset: (inout): the current position for writing into @buf
1186  *
1187  * Updates @offset according to the number of bytes successfully copied into
1188  * the userspace buffer.
1189  *
1190  * Returns: zero on success or a negative error code
1191  */
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 			char __user *buf,
1194 			size_t count,
1195 			size_t *offset)
1196 {
1197 	return stream->perf->ops.read(stream, buf, count, offset);
1198 }
1199 
1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1201 {
1202 	struct i915_gem_engines_iter it;
1203 	struct i915_gem_context *ctx = stream->ctx;
1204 	struct intel_context *ce;
1205 	struct i915_gem_ww_ctx ww;
1206 	int err = -ENODEV;
1207 
1208 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1209 		if (ce->engine != stream->engine) /* first match! */
1210 			continue;
1211 
1212 		err = 0;
1213 		break;
1214 	}
1215 	i915_gem_context_unlock_engines(ctx);
1216 
1217 	if (err)
1218 		return ERR_PTR(err);
1219 
1220 	i915_gem_ww_ctx_init(&ww, true);
1221 retry:
1222 	/*
1223 	 * As the ID is the gtt offset of the context's vma we
1224 	 * pin the vma to ensure the ID remains fixed.
1225 	 */
1226 	err = intel_context_pin_ww(ce, &ww);
1227 	if (err == -EDEADLK) {
1228 		err = i915_gem_ww_ctx_backoff(&ww);
1229 		if (!err)
1230 			goto retry;
1231 	}
1232 	i915_gem_ww_ctx_fini(&ww);
1233 
1234 	if (err)
1235 		return ERR_PTR(err);
1236 
1237 	stream->pinned_ctx = ce;
1238 	return stream->pinned_ctx;
1239 }
1240 
1241 /**
1242  * oa_get_render_ctx_id - determine and hold ctx hw id
1243  * @stream: An i915-perf stream opened for OA metrics
1244  *
1245  * Determine the render context hw id, and ensure it remains fixed for the
1246  * lifetime of the stream. This ensures that we don't have to worry about
1247  * updating the context ID in OACONTROL on the fly.
1248  *
1249  * Returns: zero on success or a negative error code
1250  */
1251 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1252 {
1253 	struct intel_context *ce;
1254 
1255 	ce = oa_pin_context(stream);
1256 	if (IS_ERR(ce))
1257 		return PTR_ERR(ce);
1258 
1259 	switch (INTEL_GEN(ce->engine->i915)) {
1260 	case 7: {
1261 		/*
1262 		 * On Haswell we don't do any post processing of the reports
1263 		 * and don't need to use the mask.
1264 		 */
1265 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1266 		stream->specific_ctx_id_mask = 0;
1267 		break;
1268 	}
1269 
1270 	case 8:
1271 	case 9:
1272 	case 10:
1273 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1274 			stream->specific_ctx_id_mask =
1275 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1276 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1277 		} else {
1278 			/*
1279 			 * When using GuC, the context descriptor we write in
1280 			 * i915 is read by GuC and rewritten before it's
1281 			 * actually written into the hardware. The LRCA is
1282 			 * what is put into the context id field of the
1283 			 * context descriptor by GuC. Because it's aligned to
1284 			 * a page, the lower 12bits are always at 0 and
1285 			 * dropped by GuC. They won't be part of the context
1286 			 * ID in the OA reports, so squash those lower bits.
1287 			 */
1288 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1289 
1290 			/*
1291 			 * GuC uses the top bit to signal proxy submission, so
1292 			 * ignore that bit.
1293 			 */
1294 			stream->specific_ctx_id_mask =
1295 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1296 		}
1297 		break;
1298 
1299 	case 11:
1300 	case 12: {
1301 		stream->specific_ctx_id_mask =
1302 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1303 		/*
1304 		 * Pick an unused context id
1305 		 * 0 - BITS_PER_LONG are used by other contexts
1306 		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1307 		 */
1308 		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1309 		break;
1310 	}
1311 
1312 	default:
1313 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1314 	}
1315 
1316 	ce->tag = stream->specific_ctx_id;
1317 
1318 	drm_dbg(&stream->perf->i915->drm,
1319 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1320 		stream->specific_ctx_id,
1321 		stream->specific_ctx_id_mask);
1322 
1323 	return 0;
1324 }
1325 
1326 /**
1327  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1328  * @stream: An i915-perf stream opened for OA metrics
1329  *
1330  * In case anything needed doing to ensure the context HW ID would remain valid
1331  * for the lifetime of the stream, then that can be undone here.
1332  */
1333 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1334 {
1335 	struct intel_context *ce;
1336 
1337 	ce = fetch_and_zero(&stream->pinned_ctx);
1338 	if (ce) {
1339 		ce->tag = 0; /* recomputed on next submission after parking */
1340 		intel_context_unpin(ce);
1341 	}
1342 
1343 	stream->specific_ctx_id = INVALID_CTX_ID;
1344 	stream->specific_ctx_id_mask = 0;
1345 }
1346 
1347 static void
1348 free_oa_buffer(struct i915_perf_stream *stream)
1349 {
1350 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1351 				   I915_VMA_RELEASE_MAP);
1352 
1353 	stream->oa_buffer.vaddr = NULL;
1354 }
1355 
1356 static void
1357 free_oa_configs(struct i915_perf_stream *stream)
1358 {
1359 	struct i915_oa_config_bo *oa_bo, *tmp;
1360 
1361 	i915_oa_config_put(stream->oa_config);
1362 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1363 		free_oa_config_bo(oa_bo);
1364 }
1365 
1366 static void
1367 free_noa_wait(struct i915_perf_stream *stream)
1368 {
1369 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1370 }
1371 
1372 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1373 {
1374 	struct i915_perf *perf = stream->perf;
1375 
1376 	BUG_ON(stream != perf->exclusive_stream);
1377 
1378 	/*
1379 	 * Unset exclusive_stream first, it will be checked while disabling
1380 	 * the metric set on gen8+.
1381 	 *
1382 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1383 	 */
1384 	WRITE_ONCE(perf->exclusive_stream, NULL);
1385 	perf->ops.disable_metric_set(stream);
1386 
1387 	free_oa_buffer(stream);
1388 
1389 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1390 	intel_engine_pm_put(stream->engine);
1391 
1392 	if (stream->ctx)
1393 		oa_put_render_ctx_id(stream);
1394 
1395 	free_oa_configs(stream);
1396 	free_noa_wait(stream);
1397 
1398 	if (perf->spurious_report_rs.missed) {
1399 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1400 			 perf->spurious_report_rs.missed);
1401 	}
1402 }
1403 
1404 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1405 {
1406 	struct intel_uncore *uncore = stream->uncore;
1407 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1408 	unsigned long flags;
1409 
1410 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1411 
1412 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1413 	 * before OASTATUS1, but after OASTATUS2
1414 	 */
1415 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1416 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1417 	stream->oa_buffer.head = gtt_offset;
1418 
1419 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1420 
1421 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1422 			   gtt_offset | OABUFFER_SIZE_16M);
1423 
1424 	/* Mark that we need updated tail pointers to read from... */
1425 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1426 	stream->oa_buffer.tail = gtt_offset;
1427 
1428 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1429 
1430 	/* On Haswell we have to track which OASTATUS1 flags we've
1431 	 * already seen since they can't be cleared while periodic
1432 	 * sampling is enabled.
1433 	 */
1434 	stream->perf->gen7_latched_oastatus1 = 0;
1435 
1436 	/* NB: although the OA buffer will initially be allocated
1437 	 * zeroed via shmfs (and so this memset is redundant when
1438 	 * first allocating), we may re-init the OA buffer, either
1439 	 * when re-enabling a stream or in error/reset paths.
1440 	 *
1441 	 * The reason we clear the buffer for each re-init is for the
1442 	 * sanity check in gen7_append_oa_reports() that looks at the
1443 	 * report-id field to make sure it's non-zero which relies on
1444 	 * the assumption that new reports are being written to zeroed
1445 	 * memory...
1446 	 */
1447 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1448 }
1449 
1450 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1451 {
1452 	struct intel_uncore *uncore = stream->uncore;
1453 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1454 	unsigned long flags;
1455 
1456 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1457 
1458 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1459 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1460 	stream->oa_buffer.head = gtt_offset;
1461 
1462 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1463 
1464 	/*
1465 	 * PRM says:
1466 	 *
1467 	 *  "This MMIO must be set before the OATAILPTR
1468 	 *  register and after the OAHEADPTR register. This is
1469 	 *  to enable proper functionality of the overflow
1470 	 *  bit."
1471 	 */
1472 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1473 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1474 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1475 
1476 	/* Mark that we need updated tail pointers to read from... */
1477 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1478 	stream->oa_buffer.tail = gtt_offset;
1479 
1480 	/*
1481 	 * Reset state used to recognise context switches, affecting which
1482 	 * reports we will forward to userspace while filtering for a single
1483 	 * context.
1484 	 */
1485 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1486 
1487 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1488 
1489 	/*
1490 	 * NB: although the OA buffer will initially be allocated
1491 	 * zeroed via shmfs (and so this memset is redundant when
1492 	 * first allocating), we may re-init the OA buffer, either
1493 	 * when re-enabling a stream or in error/reset paths.
1494 	 *
1495 	 * The reason we clear the buffer for each re-init is for the
1496 	 * sanity check in gen8_append_oa_reports() that looks at the
1497 	 * reason field to make sure it's non-zero which relies on
1498 	 * the assumption that new reports are being written to zeroed
1499 	 * memory...
1500 	 */
1501 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1502 }
1503 
1504 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1505 {
1506 	struct intel_uncore *uncore = stream->uncore;
1507 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1508 	unsigned long flags;
1509 
1510 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1511 
1512 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1513 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1514 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1515 	stream->oa_buffer.head = gtt_offset;
1516 
1517 	/*
1518 	 * PRM says:
1519 	 *
1520 	 *  "This MMIO must be set before the OATAILPTR
1521 	 *  register and after the OAHEADPTR register. This is
1522 	 *  to enable proper functionality of the overflow
1523 	 *  bit."
1524 	 */
1525 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1526 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1527 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1528 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1529 
1530 	/* Mark that we need updated tail pointers to read from... */
1531 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1532 	stream->oa_buffer.tail = gtt_offset;
1533 
1534 	/*
1535 	 * Reset state used to recognise context switches, affecting which
1536 	 * reports we will forward to userspace while filtering for a single
1537 	 * context.
1538 	 */
1539 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1540 
1541 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1542 
1543 	/*
1544 	 * NB: although the OA buffer will initially be allocated
1545 	 * zeroed via shmfs (and so this memset is redundant when
1546 	 * first allocating), we may re-init the OA buffer, either
1547 	 * when re-enabling a stream or in error/reset paths.
1548 	 *
1549 	 * The reason we clear the buffer for each re-init is for the
1550 	 * sanity check in gen8_append_oa_reports() that looks at the
1551 	 * reason field to make sure it's non-zero which relies on
1552 	 * the assumption that new reports are being written to zeroed
1553 	 * memory...
1554 	 */
1555 	memset(stream->oa_buffer.vaddr, 0,
1556 	       stream->oa_buffer.vma->size);
1557 }
1558 
1559 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1560 {
1561 	struct drm_i915_private *i915 = stream->perf->i915;
1562 	struct drm_i915_gem_object *bo;
1563 	struct i915_vma *vma;
1564 	int ret;
1565 
1566 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1567 		return -ENODEV;
1568 
1569 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1570 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1571 
1572 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1573 	if (IS_ERR(bo)) {
1574 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1575 		return PTR_ERR(bo);
1576 	}
1577 
1578 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1579 
1580 	/* PreHSW required 512K alignment, HSW requires 16M */
1581 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1582 	if (IS_ERR(vma)) {
1583 		ret = PTR_ERR(vma);
1584 		goto err_unref;
1585 	}
1586 	stream->oa_buffer.vma = vma;
1587 
1588 	stream->oa_buffer.vaddr =
1589 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1590 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1591 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1592 		goto err_unpin;
1593 	}
1594 
1595 	return 0;
1596 
1597 err_unpin:
1598 	__i915_vma_unpin(vma);
1599 
1600 err_unref:
1601 	i915_gem_object_put(bo);
1602 
1603 	stream->oa_buffer.vaddr = NULL;
1604 	stream->oa_buffer.vma = NULL;
1605 
1606 	return ret;
1607 }
1608 
1609 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1610 				  bool save, i915_reg_t reg, u32 offset,
1611 				  u32 dword_count)
1612 {
1613 	u32 cmd;
1614 	u32 d;
1615 
1616 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1617 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1618 	if (INTEL_GEN(stream->perf->i915) >= 8)
1619 		cmd++;
1620 
1621 	for (d = 0; d < dword_count; d++) {
1622 		*cs++ = cmd;
1623 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1624 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1625 						offset) + 4 * d;
1626 		*cs++ = 0;
1627 	}
1628 
1629 	return cs;
1630 }
1631 
1632 static int alloc_noa_wait(struct i915_perf_stream *stream)
1633 {
1634 	struct drm_i915_private *i915 = stream->perf->i915;
1635 	struct drm_i915_gem_object *bo;
1636 	struct i915_vma *vma;
1637 	const u64 delay_ticks = 0xffffffffffffffff -
1638 		intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt,
1639 					      atomic64_read(&stream->perf->noa_programming_delay));
1640 	const u32 base = stream->engine->mmio_base;
1641 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1642 	u32 *batch, *ts0, *cs, *jump;
1643 	int ret, i;
1644 	enum {
1645 		START_TS,
1646 		NOW_TS,
1647 		DELTA_TS,
1648 		JUMP_PREDICATE,
1649 		DELTA_TARGET,
1650 		N_CS_GPR
1651 	};
1652 
1653 	bo = i915_gem_object_create_internal(i915, 4096);
1654 	if (IS_ERR(bo)) {
1655 		drm_err(&i915->drm,
1656 			"Failed to allocate NOA wait batchbuffer\n");
1657 		return PTR_ERR(bo);
1658 	}
1659 
1660 	/*
1661 	 * We pin in GGTT because we jump into this buffer now because
1662 	 * multiple OA config BOs will have a jump to this address and it
1663 	 * needs to be fixed during the lifetime of the i915/perf stream.
1664 	 */
1665 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1666 	if (IS_ERR(vma)) {
1667 		ret = PTR_ERR(vma);
1668 		goto err_unref;
1669 	}
1670 
1671 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1672 	if (IS_ERR(batch)) {
1673 		ret = PTR_ERR(batch);
1674 		goto err_unpin;
1675 	}
1676 
1677 	/* Save registers. */
1678 	for (i = 0; i < N_CS_GPR; i++)
1679 		cs = save_restore_register(
1680 			stream, cs, true /* save */, CS_GPR(i),
1681 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1682 	cs = save_restore_register(
1683 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1684 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1685 
1686 	/* First timestamp snapshot location. */
1687 	ts0 = cs;
1688 
1689 	/*
1690 	 * Initial snapshot of the timestamp register to implement the wait.
1691 	 * We work with 32b values, so clear out the top 32b bits of the
1692 	 * register because the ALU works 64bits.
1693 	 */
1694 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1695 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1696 	*cs++ = 0;
1697 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1698 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1699 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1700 
1701 	/*
1702 	 * This is the location we're going to jump back into until the
1703 	 * required amount of time has passed.
1704 	 */
1705 	jump = cs;
1706 
1707 	/*
1708 	 * Take another snapshot of the timestamp register. Take care to clear
1709 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1710 	 * operations below.
1711 	 */
1712 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1713 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1714 	*cs++ = 0;
1715 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1716 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1717 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1718 
1719 	/*
1720 	 * Do a diff between the 2 timestamps and store the result back into
1721 	 * CS_GPR(1).
1722 	 */
1723 	*cs++ = MI_MATH(5);
1724 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1725 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1726 	*cs++ = MI_MATH_SUB;
1727 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1728 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1729 
1730 	/*
1731 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1732 	 * timestamp have rolled over the 32bits) into the predicate register
1733 	 * to be used for the predicated jump.
1734 	 */
1735 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1736 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1737 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1738 
1739 	/* Restart from the beginning if we had timestamps roll over. */
1740 	*cs++ = (INTEL_GEN(i915) < 8 ?
1741 		 MI_BATCH_BUFFER_START :
1742 		 MI_BATCH_BUFFER_START_GEN8) |
1743 		MI_BATCH_PREDICATE;
1744 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1745 	*cs++ = 0;
1746 
1747 	/*
1748 	 * Now add the diff between to previous timestamps and add it to :
1749 	 *      (((1 * << 64) - 1) - delay_ns)
1750 	 *
1751 	 * When the Carry Flag contains 1 this means the elapsed time is
1752 	 * longer than the expected delay, and we can exit the wait loop.
1753 	 */
1754 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1755 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1756 	*cs++ = lower_32_bits(delay_ticks);
1757 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1758 	*cs++ = upper_32_bits(delay_ticks);
1759 
1760 	*cs++ = MI_MATH(4);
1761 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1762 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1763 	*cs++ = MI_MATH_ADD;
1764 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1765 
1766 	*cs++ = MI_ARB_CHECK;
1767 
1768 	/*
1769 	 * Transfer the result into the predicate register to be used for the
1770 	 * predicated jump.
1771 	 */
1772 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1773 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1774 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1775 
1776 	/* Predicate the jump.  */
1777 	*cs++ = (INTEL_GEN(i915) < 8 ?
1778 		 MI_BATCH_BUFFER_START :
1779 		 MI_BATCH_BUFFER_START_GEN8) |
1780 		MI_BATCH_PREDICATE;
1781 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1782 	*cs++ = 0;
1783 
1784 	/* Restore registers. */
1785 	for (i = 0; i < N_CS_GPR; i++)
1786 		cs = save_restore_register(
1787 			stream, cs, false /* restore */, CS_GPR(i),
1788 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1789 	cs = save_restore_register(
1790 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1791 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1792 
1793 	/* And return to the ring. */
1794 	*cs++ = MI_BATCH_BUFFER_END;
1795 
1796 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1797 
1798 	i915_gem_object_flush_map(bo);
1799 	__i915_gem_object_release_map(bo);
1800 
1801 	stream->noa_wait = vma;
1802 	return 0;
1803 
1804 err_unpin:
1805 	i915_vma_unpin_and_release(&vma, 0);
1806 err_unref:
1807 	i915_gem_object_put(bo);
1808 	return ret;
1809 }
1810 
1811 static u32 *write_cs_mi_lri(u32 *cs,
1812 			    const struct i915_oa_reg *reg_data,
1813 			    u32 n_regs)
1814 {
1815 	u32 i;
1816 
1817 	for (i = 0; i < n_regs; i++) {
1818 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1819 			u32 n_lri = min_t(u32,
1820 					  n_regs - i,
1821 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1822 
1823 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1824 		}
1825 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1826 		*cs++ = reg_data[i].value;
1827 	}
1828 
1829 	return cs;
1830 }
1831 
1832 static int num_lri_dwords(int num_regs)
1833 {
1834 	int count = 0;
1835 
1836 	if (num_regs > 0) {
1837 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1838 		count += num_regs * 2;
1839 	}
1840 
1841 	return count;
1842 }
1843 
1844 static struct i915_oa_config_bo *
1845 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1846 		       struct i915_oa_config *oa_config)
1847 {
1848 	struct drm_i915_gem_object *obj;
1849 	struct i915_oa_config_bo *oa_bo;
1850 	size_t config_length = 0;
1851 	u32 *cs;
1852 	int err;
1853 
1854 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1855 	if (!oa_bo)
1856 		return ERR_PTR(-ENOMEM);
1857 
1858 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1859 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1860 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1861 	config_length += 3; /* MI_BATCH_BUFFER_START */
1862 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1863 
1864 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1865 	if (IS_ERR(obj)) {
1866 		err = PTR_ERR(obj);
1867 		goto err_free;
1868 	}
1869 
1870 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1871 	if (IS_ERR(cs)) {
1872 		err = PTR_ERR(cs);
1873 		goto err_oa_bo;
1874 	}
1875 
1876 	cs = write_cs_mi_lri(cs,
1877 			     oa_config->mux_regs,
1878 			     oa_config->mux_regs_len);
1879 	cs = write_cs_mi_lri(cs,
1880 			     oa_config->b_counter_regs,
1881 			     oa_config->b_counter_regs_len);
1882 	cs = write_cs_mi_lri(cs,
1883 			     oa_config->flex_regs,
1884 			     oa_config->flex_regs_len);
1885 
1886 	/* Jump into the active wait. */
1887 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1888 		 MI_BATCH_BUFFER_START :
1889 		 MI_BATCH_BUFFER_START_GEN8);
1890 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1891 	*cs++ = 0;
1892 
1893 	i915_gem_object_flush_map(obj);
1894 	__i915_gem_object_release_map(obj);
1895 
1896 	oa_bo->vma = i915_vma_instance(obj,
1897 				       &stream->engine->gt->ggtt->vm,
1898 				       NULL);
1899 	if (IS_ERR(oa_bo->vma)) {
1900 		err = PTR_ERR(oa_bo->vma);
1901 		goto err_oa_bo;
1902 	}
1903 
1904 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1905 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1906 
1907 	return oa_bo;
1908 
1909 err_oa_bo:
1910 	i915_gem_object_put(obj);
1911 err_free:
1912 	kfree(oa_bo);
1913 	return ERR_PTR(err);
1914 }
1915 
1916 static struct i915_vma *
1917 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1918 {
1919 	struct i915_oa_config_bo *oa_bo;
1920 
1921 	/*
1922 	 * Look for the buffer in the already allocated BOs attached
1923 	 * to the stream.
1924 	 */
1925 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1926 		if (oa_bo->oa_config == oa_config &&
1927 		    memcmp(oa_bo->oa_config->uuid,
1928 			   oa_config->uuid,
1929 			   sizeof(oa_config->uuid)) == 0)
1930 			goto out;
1931 	}
1932 
1933 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1934 	if (IS_ERR(oa_bo))
1935 		return ERR_CAST(oa_bo);
1936 
1937 out:
1938 	return i915_vma_get(oa_bo->vma);
1939 }
1940 
1941 static int
1942 emit_oa_config(struct i915_perf_stream *stream,
1943 	       struct i915_oa_config *oa_config,
1944 	       struct intel_context *ce,
1945 	       struct i915_active *active)
1946 {
1947 	struct i915_request *rq;
1948 	struct i915_vma *vma;
1949 	struct i915_gem_ww_ctx ww;
1950 	int err;
1951 
1952 	vma = get_oa_vma(stream, oa_config);
1953 	if (IS_ERR(vma))
1954 		return PTR_ERR(vma);
1955 
1956 	i915_gem_ww_ctx_init(&ww, true);
1957 retry:
1958 	err = i915_gem_object_lock(vma->obj, &ww);
1959 	if (err)
1960 		goto err;
1961 
1962 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1963 	if (err)
1964 		goto err;
1965 
1966 	intel_engine_pm_get(ce->engine);
1967 	rq = i915_request_create(ce);
1968 	intel_engine_pm_put(ce->engine);
1969 	if (IS_ERR(rq)) {
1970 		err = PTR_ERR(rq);
1971 		goto err_vma_unpin;
1972 	}
1973 
1974 	if (!IS_ERR_OR_NULL(active)) {
1975 		/* After all individual context modifications */
1976 		err = i915_request_await_active(rq, active,
1977 						I915_ACTIVE_AWAIT_ACTIVE);
1978 		if (err)
1979 			goto err_add_request;
1980 
1981 		err = i915_active_add_request(active, rq);
1982 		if (err)
1983 			goto err_add_request;
1984 	}
1985 
1986 	err = i915_request_await_object(rq, vma->obj, 0);
1987 	if (!err)
1988 		err = i915_vma_move_to_active(vma, rq, 0);
1989 	if (err)
1990 		goto err_add_request;
1991 
1992 	err = rq->engine->emit_bb_start(rq,
1993 					vma->node.start, 0,
1994 					I915_DISPATCH_SECURE);
1995 	if (err)
1996 		goto err_add_request;
1997 
1998 err_add_request:
1999 	i915_request_add(rq);
2000 err_vma_unpin:
2001 	i915_vma_unpin(vma);
2002 err:
2003 	if (err == -EDEADLK) {
2004 		err = i915_gem_ww_ctx_backoff(&ww);
2005 		if (!err)
2006 			goto retry;
2007 	}
2008 
2009 	i915_gem_ww_ctx_fini(&ww);
2010 	i915_vma_put(vma);
2011 	return err;
2012 }
2013 
2014 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2015 {
2016 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2017 }
2018 
2019 static int
2020 hsw_enable_metric_set(struct i915_perf_stream *stream,
2021 		      struct i915_active *active)
2022 {
2023 	struct intel_uncore *uncore = stream->uncore;
2024 
2025 	/*
2026 	 * PRM:
2027 	 *
2028 	 * OA unit is using “crclk” for its functionality. When trunk
2029 	 * level clock gating takes place, OA clock would be gated,
2030 	 * unable to count the events from non-render clock domain.
2031 	 * Render clock gating must be disabled when OA is enabled to
2032 	 * count the events from non-render domain. Unit level clock
2033 	 * gating for RCS should also be disabled.
2034 	 */
2035 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2036 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2037 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2038 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2039 
2040 	return emit_oa_config(stream,
2041 			      stream->oa_config, oa_context(stream),
2042 			      active);
2043 }
2044 
2045 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2046 {
2047 	struct intel_uncore *uncore = stream->uncore;
2048 
2049 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2050 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2051 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2052 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2053 
2054 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2055 }
2056 
2057 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2058 			      i915_reg_t reg)
2059 {
2060 	u32 mmio = i915_mmio_reg_offset(reg);
2061 	int i;
2062 
2063 	/*
2064 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2065 	 * Active' event. In the future it's anticipated that there
2066 	 * will be an explicit 'No Event' we can select, but not yet...
2067 	 */
2068 	if (!oa_config)
2069 		return 0;
2070 
2071 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2072 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2073 			return oa_config->flex_regs[i].value;
2074 	}
2075 
2076 	return 0;
2077 }
2078 /*
2079  * NB: It must always remain pointer safe to run this even if the OA unit
2080  * has been disabled.
2081  *
2082  * It's fine to put out-of-date values into these per-context registers
2083  * in the case that the OA unit has been disabled.
2084  */
2085 static void
2086 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2087 			       const struct i915_perf_stream *stream)
2088 {
2089 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2090 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2091 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2092 	i915_reg_t flex_regs[] = {
2093 		EU_PERF_CNTL0,
2094 		EU_PERF_CNTL1,
2095 		EU_PERF_CNTL2,
2096 		EU_PERF_CNTL3,
2097 		EU_PERF_CNTL4,
2098 		EU_PERF_CNTL5,
2099 		EU_PERF_CNTL6,
2100 	};
2101 	u32 *reg_state = ce->lrc_reg_state;
2102 	int i;
2103 
2104 	reg_state[ctx_oactxctrl + 1] =
2105 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2106 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2107 		GEN8_OA_COUNTER_RESUME;
2108 
2109 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2110 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2111 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2112 }
2113 
2114 struct flex {
2115 	i915_reg_t reg;
2116 	u32 offset;
2117 	u32 value;
2118 };
2119 
2120 static int
2121 gen8_store_flex(struct i915_request *rq,
2122 		struct intel_context *ce,
2123 		const struct flex *flex, unsigned int count)
2124 {
2125 	u32 offset;
2126 	u32 *cs;
2127 
2128 	cs = intel_ring_begin(rq, 4 * count);
2129 	if (IS_ERR(cs))
2130 		return PTR_ERR(cs);
2131 
2132 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2133 	do {
2134 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2135 		*cs++ = offset + flex->offset * sizeof(u32);
2136 		*cs++ = 0;
2137 		*cs++ = flex->value;
2138 	} while (flex++, --count);
2139 
2140 	intel_ring_advance(rq, cs);
2141 
2142 	return 0;
2143 }
2144 
2145 static int
2146 gen8_load_flex(struct i915_request *rq,
2147 	       struct intel_context *ce,
2148 	       const struct flex *flex, unsigned int count)
2149 {
2150 	u32 *cs;
2151 
2152 	GEM_BUG_ON(!count || count > 63);
2153 
2154 	cs = intel_ring_begin(rq, 2 * count + 2);
2155 	if (IS_ERR(cs))
2156 		return PTR_ERR(cs);
2157 
2158 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2159 	do {
2160 		*cs++ = i915_mmio_reg_offset(flex->reg);
2161 		*cs++ = flex->value;
2162 	} while (flex++, --count);
2163 	*cs++ = MI_NOOP;
2164 
2165 	intel_ring_advance(rq, cs);
2166 
2167 	return 0;
2168 }
2169 
2170 static int gen8_modify_context(struct intel_context *ce,
2171 			       const struct flex *flex, unsigned int count)
2172 {
2173 	struct i915_request *rq;
2174 	int err;
2175 
2176 	rq = intel_engine_create_kernel_request(ce->engine);
2177 	if (IS_ERR(rq))
2178 		return PTR_ERR(rq);
2179 
2180 	/* Serialise with the remote context */
2181 	err = intel_context_prepare_remote_request(ce, rq);
2182 	if (err == 0)
2183 		err = gen8_store_flex(rq, ce, flex, count);
2184 
2185 	i915_request_add(rq);
2186 	return err;
2187 }
2188 
2189 static int
2190 gen8_modify_self(struct intel_context *ce,
2191 		 const struct flex *flex, unsigned int count,
2192 		 struct i915_active *active)
2193 {
2194 	struct i915_request *rq;
2195 	int err;
2196 
2197 	intel_engine_pm_get(ce->engine);
2198 	rq = i915_request_create(ce);
2199 	intel_engine_pm_put(ce->engine);
2200 	if (IS_ERR(rq))
2201 		return PTR_ERR(rq);
2202 
2203 	if (!IS_ERR_OR_NULL(active)) {
2204 		err = i915_active_add_request(active, rq);
2205 		if (err)
2206 			goto err_add_request;
2207 	}
2208 
2209 	err = gen8_load_flex(rq, ce, flex, count);
2210 	if (err)
2211 		goto err_add_request;
2212 
2213 err_add_request:
2214 	i915_request_add(rq);
2215 	return err;
2216 }
2217 
2218 static int gen8_configure_context(struct i915_gem_context *ctx,
2219 				  struct flex *flex, unsigned int count)
2220 {
2221 	struct i915_gem_engines_iter it;
2222 	struct intel_context *ce;
2223 	int err = 0;
2224 
2225 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2226 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2227 
2228 		if (ce->engine->class != RENDER_CLASS)
2229 			continue;
2230 
2231 		/* Otherwise OA settings will be set upon first use */
2232 		if (!intel_context_pin_if_active(ce))
2233 			continue;
2234 
2235 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2236 		err = gen8_modify_context(ce, flex, count);
2237 
2238 		intel_context_unpin(ce);
2239 		if (err)
2240 			break;
2241 	}
2242 	i915_gem_context_unlock_engines(ctx);
2243 
2244 	return err;
2245 }
2246 
2247 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2248 				       struct i915_active *active)
2249 {
2250 	int err;
2251 	struct intel_context *ce = stream->pinned_ctx;
2252 	u32 format = stream->oa_buffer.format;
2253 	struct flex regs_context[] = {
2254 		{
2255 			GEN8_OACTXCONTROL,
2256 			stream->perf->ctx_oactxctrl_offset + 1,
2257 			active ? GEN8_OA_COUNTER_RESUME : 0,
2258 		},
2259 	};
2260 	/* Offsets in regs_lri are not used since this configuration is only
2261 	 * applied using LRI. Initialize the correct offsets for posterity.
2262 	 */
2263 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2264 	struct flex regs_lri[] = {
2265 		{
2266 			GEN12_OAR_OACONTROL,
2267 			GEN12_OAR_OACONTROL_OFFSET + 1,
2268 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2269 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2270 		},
2271 		{
2272 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2273 			CTX_CONTEXT_CONTROL,
2274 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2275 				      active ?
2276 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2277 				      0)
2278 		},
2279 	};
2280 
2281 	/* Modify the context image of pinned context with regs_context*/
2282 	err = intel_context_lock_pinned(ce);
2283 	if (err)
2284 		return err;
2285 
2286 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2287 	intel_context_unlock_pinned(ce);
2288 	if (err)
2289 		return err;
2290 
2291 	/* Apply regs_lri using LRI with pinned context */
2292 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2293 }
2294 
2295 /*
2296  * Manages updating the per-context aspects of the OA stream
2297  * configuration across all contexts.
2298  *
2299  * The awkward consideration here is that OACTXCONTROL controls the
2300  * exponent for periodic sampling which is primarily used for system
2301  * wide profiling where we'd like a consistent sampling period even in
2302  * the face of context switches.
2303  *
2304  * Our approach of updating the register state context (as opposed to
2305  * say using a workaround batch buffer) ensures that the hardware
2306  * won't automatically reload an out-of-date timer exponent even
2307  * transiently before a WA BB could be parsed.
2308  *
2309  * This function needs to:
2310  * - Ensure the currently running context's per-context OA state is
2311  *   updated
2312  * - Ensure that all existing contexts will have the correct per-context
2313  *   OA state if they are scheduled for use.
2314  * - Ensure any new contexts will be initialized with the correct
2315  *   per-context OA state.
2316  *
2317  * Note: it's only the RCS/Render context that has any OA state.
2318  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2319  */
2320 static int
2321 oa_configure_all_contexts(struct i915_perf_stream *stream,
2322 			  struct flex *regs,
2323 			  size_t num_regs,
2324 			  struct i915_active *active)
2325 {
2326 	struct drm_i915_private *i915 = stream->perf->i915;
2327 	struct intel_engine_cs *engine;
2328 	struct i915_gem_context *ctx, *cn;
2329 	int err;
2330 
2331 	lockdep_assert_held(&stream->perf->lock);
2332 
2333 	/*
2334 	 * The OA register config is setup through the context image. This image
2335 	 * might be written to by the GPU on context switch (in particular on
2336 	 * lite-restore). This means we can't safely update a context's image,
2337 	 * if this context is scheduled/submitted to run on the GPU.
2338 	 *
2339 	 * We could emit the OA register config through the batch buffer but
2340 	 * this might leave small interval of time where the OA unit is
2341 	 * configured at an invalid sampling period.
2342 	 *
2343 	 * Note that since we emit all requests from a single ring, there
2344 	 * is still an implicit global barrier here that may cause a high
2345 	 * priority context to wait for an otherwise independent low priority
2346 	 * context. Contexts idle at the time of reconfiguration are not
2347 	 * trapped behind the barrier.
2348 	 */
2349 	spin_lock(&i915->gem.contexts.lock);
2350 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2351 		if (!kref_get_unless_zero(&ctx->ref))
2352 			continue;
2353 
2354 		spin_unlock(&i915->gem.contexts.lock);
2355 
2356 		err = gen8_configure_context(ctx, regs, num_regs);
2357 		if (err) {
2358 			i915_gem_context_put(ctx);
2359 			return err;
2360 		}
2361 
2362 		spin_lock(&i915->gem.contexts.lock);
2363 		list_safe_reset_next(ctx, cn, link);
2364 		i915_gem_context_put(ctx);
2365 	}
2366 	spin_unlock(&i915->gem.contexts.lock);
2367 
2368 	/*
2369 	 * After updating all other contexts, we need to modify ourselves.
2370 	 * If we don't modify the kernel_context, we do not get events while
2371 	 * idle.
2372 	 */
2373 	for_each_uabi_engine(engine, i915) {
2374 		struct intel_context *ce = engine->kernel_context;
2375 
2376 		if (engine->class != RENDER_CLASS)
2377 			continue;
2378 
2379 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2380 
2381 		err = gen8_modify_self(ce, regs, num_regs, active);
2382 		if (err)
2383 			return err;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static int
2390 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2391 			     const struct i915_oa_config *oa_config,
2392 			     struct i915_active *active)
2393 {
2394 	struct flex regs[] = {
2395 		{
2396 			GEN8_R_PWR_CLK_STATE,
2397 			CTX_R_PWR_CLK_STATE,
2398 		},
2399 	};
2400 
2401 	return oa_configure_all_contexts(stream,
2402 					 regs, ARRAY_SIZE(regs),
2403 					 active);
2404 }
2405 
2406 static int
2407 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2408 			   const struct i915_oa_config *oa_config,
2409 			   struct i915_active *active)
2410 {
2411 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2412 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2413 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2414 	struct flex regs[] = {
2415 		{
2416 			GEN8_R_PWR_CLK_STATE,
2417 			CTX_R_PWR_CLK_STATE,
2418 		},
2419 		{
2420 			GEN8_OACTXCONTROL,
2421 			stream->perf->ctx_oactxctrl_offset + 1,
2422 		},
2423 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2424 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2425 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2426 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2427 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2428 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2429 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2430 	};
2431 #undef ctx_flexeuN
2432 	int i;
2433 
2434 	regs[1].value =
2435 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2436 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2437 		GEN8_OA_COUNTER_RESUME;
2438 
2439 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2440 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2441 
2442 	return oa_configure_all_contexts(stream,
2443 					 regs, ARRAY_SIZE(regs),
2444 					 active);
2445 }
2446 
2447 static int
2448 gen8_enable_metric_set(struct i915_perf_stream *stream,
2449 		       struct i915_active *active)
2450 {
2451 	struct intel_uncore *uncore = stream->uncore;
2452 	struct i915_oa_config *oa_config = stream->oa_config;
2453 	int ret;
2454 
2455 	/*
2456 	 * We disable slice/unslice clock ratio change reports on SKL since
2457 	 * they are too noisy. The HW generates a lot of redundant reports
2458 	 * where the ratio hasn't really changed causing a lot of redundant
2459 	 * work to processes and increasing the chances we'll hit buffer
2460 	 * overruns.
2461 	 *
2462 	 * Although we don't currently use the 'disable overrun' OABUFFER
2463 	 * feature it's worth noting that clock ratio reports have to be
2464 	 * disabled before considering to use that feature since the HW doesn't
2465 	 * correctly block these reports.
2466 	 *
2467 	 * Currently none of the high-level metrics we have depend on knowing
2468 	 * this ratio to normalize.
2469 	 *
2470 	 * Note: This register is not power context saved and restored, but
2471 	 * that's OK considering that we disable RC6 while the OA unit is
2472 	 * enabled.
2473 	 *
2474 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2475 	 * be read back from automatically triggered reports, as part of the
2476 	 * RPT_ID field.
2477 	 */
2478 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2479 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2480 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2481 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2482 	}
2483 
2484 	/*
2485 	 * Update all contexts prior writing the mux configurations as we need
2486 	 * to make sure all slices/subslices are ON before writing to NOA
2487 	 * registers.
2488 	 */
2489 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2490 	if (ret)
2491 		return ret;
2492 
2493 	return emit_oa_config(stream,
2494 			      stream->oa_config, oa_context(stream),
2495 			      active);
2496 }
2497 
2498 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2499 {
2500 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2501 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2502 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2503 }
2504 
2505 static int
2506 gen12_enable_metric_set(struct i915_perf_stream *stream,
2507 			struct i915_active *active)
2508 {
2509 	struct intel_uncore *uncore = stream->uncore;
2510 	struct i915_oa_config *oa_config = stream->oa_config;
2511 	bool periodic = stream->periodic;
2512 	u32 period_exponent = stream->period_exponent;
2513 	int ret;
2514 
2515 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2516 			   /* Disable clk ratio reports, like previous Gens. */
2517 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2518 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2519 			   /*
2520 			    * If the user didn't require OA reports, instruct
2521 			    * the hardware not to emit ctx switch reports.
2522 			    */
2523 			   oag_report_ctx_switches(stream));
2524 
2525 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2526 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2527 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2528 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2529 			    : 0);
2530 
2531 	/*
2532 	 * Update all contexts prior writing the mux configurations as we need
2533 	 * to make sure all slices/subslices are ON before writing to NOA
2534 	 * registers.
2535 	 */
2536 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2537 	if (ret)
2538 		return ret;
2539 
2540 	/*
2541 	 * For Gen12, performance counters are context
2542 	 * saved/restored. Only enable it for the context that
2543 	 * requested this.
2544 	 */
2545 	if (stream->ctx) {
2546 		ret = gen12_configure_oar_context(stream, active);
2547 		if (ret)
2548 			return ret;
2549 	}
2550 
2551 	return emit_oa_config(stream,
2552 			      stream->oa_config, oa_context(stream),
2553 			      active);
2554 }
2555 
2556 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2557 {
2558 	struct intel_uncore *uncore = stream->uncore;
2559 
2560 	/* Reset all contexts' slices/subslices configurations. */
2561 	lrc_configure_all_contexts(stream, NULL, NULL);
2562 
2563 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2564 }
2565 
2566 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2567 {
2568 	struct intel_uncore *uncore = stream->uncore;
2569 
2570 	/* Reset all contexts' slices/subslices configurations. */
2571 	lrc_configure_all_contexts(stream, NULL, NULL);
2572 
2573 	/* Make sure we disable noa to save power. */
2574 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2575 }
2576 
2577 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2578 {
2579 	struct intel_uncore *uncore = stream->uncore;
2580 
2581 	/* Reset all contexts' slices/subslices configurations. */
2582 	gen12_configure_all_contexts(stream, NULL, NULL);
2583 
2584 	/* disable the context save/restore or OAR counters */
2585 	if (stream->ctx)
2586 		gen12_configure_oar_context(stream, NULL);
2587 
2588 	/* Make sure we disable noa to save power. */
2589 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2590 }
2591 
2592 static void gen7_oa_enable(struct i915_perf_stream *stream)
2593 {
2594 	struct intel_uncore *uncore = stream->uncore;
2595 	struct i915_gem_context *ctx = stream->ctx;
2596 	u32 ctx_id = stream->specific_ctx_id;
2597 	bool periodic = stream->periodic;
2598 	u32 period_exponent = stream->period_exponent;
2599 	u32 report_format = stream->oa_buffer.format;
2600 
2601 	/*
2602 	 * Reset buf pointers so we don't forward reports from before now.
2603 	 *
2604 	 * Think carefully if considering trying to avoid this, since it
2605 	 * also ensures status flags and the buffer itself are cleared
2606 	 * in error paths, and we have checks for invalid reports based
2607 	 * on the assumption that certain fields are written to zeroed
2608 	 * memory which this helps maintains.
2609 	 */
2610 	gen7_init_oa_buffer(stream);
2611 
2612 	intel_uncore_write(uncore, GEN7_OACONTROL,
2613 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2614 			   (period_exponent <<
2615 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2616 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2617 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2618 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2619 			   GEN7_OACONTROL_ENABLE);
2620 }
2621 
2622 static void gen8_oa_enable(struct i915_perf_stream *stream)
2623 {
2624 	struct intel_uncore *uncore = stream->uncore;
2625 	u32 report_format = stream->oa_buffer.format;
2626 
2627 	/*
2628 	 * Reset buf pointers so we don't forward reports from before now.
2629 	 *
2630 	 * Think carefully if considering trying to avoid this, since it
2631 	 * also ensures status flags and the buffer itself are cleared
2632 	 * in error paths, and we have checks for invalid reports based
2633 	 * on the assumption that certain fields are written to zeroed
2634 	 * memory which this helps maintains.
2635 	 */
2636 	gen8_init_oa_buffer(stream);
2637 
2638 	/*
2639 	 * Note: we don't rely on the hardware to perform single context
2640 	 * filtering and instead filter on the cpu based on the context-id
2641 	 * field of reports
2642 	 */
2643 	intel_uncore_write(uncore, GEN8_OACONTROL,
2644 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2645 			   GEN8_OA_COUNTER_ENABLE);
2646 }
2647 
2648 static void gen12_oa_enable(struct i915_perf_stream *stream)
2649 {
2650 	struct intel_uncore *uncore = stream->uncore;
2651 	u32 report_format = stream->oa_buffer.format;
2652 
2653 	/*
2654 	 * If we don't want OA reports from the OA buffer, then we don't even
2655 	 * need to program the OAG unit.
2656 	 */
2657 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2658 		return;
2659 
2660 	gen12_init_oa_buffer(stream);
2661 
2662 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2663 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2664 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2665 }
2666 
2667 /**
2668  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2669  * @stream: An i915 perf stream opened for OA metrics
2670  *
2671  * [Re]enables hardware periodic sampling according to the period configured
2672  * when opening the stream. This also starts a hrtimer that will periodically
2673  * check for data in the circular OA buffer for notifying userspace (e.g.
2674  * during a read() or poll()).
2675  */
2676 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2677 {
2678 	stream->pollin = false;
2679 
2680 	stream->perf->ops.oa_enable(stream);
2681 
2682 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2683 		hrtimer_start(&stream->poll_check_timer,
2684 			      ns_to_ktime(stream->poll_oa_period),
2685 			      HRTIMER_MODE_REL_PINNED);
2686 }
2687 
2688 static void gen7_oa_disable(struct i915_perf_stream *stream)
2689 {
2690 	struct intel_uncore *uncore = stream->uncore;
2691 
2692 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2693 	if (intel_wait_for_register(uncore,
2694 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2695 				    50))
2696 		drm_err(&stream->perf->i915->drm,
2697 			"wait for OA to be disabled timed out\n");
2698 }
2699 
2700 static void gen8_oa_disable(struct i915_perf_stream *stream)
2701 {
2702 	struct intel_uncore *uncore = stream->uncore;
2703 
2704 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2705 	if (intel_wait_for_register(uncore,
2706 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2707 				    50))
2708 		drm_err(&stream->perf->i915->drm,
2709 			"wait for OA to be disabled timed out\n");
2710 }
2711 
2712 static void gen12_oa_disable(struct i915_perf_stream *stream)
2713 {
2714 	struct intel_uncore *uncore = stream->uncore;
2715 
2716 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2717 	if (intel_wait_for_register(uncore,
2718 				    GEN12_OAG_OACONTROL,
2719 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2720 				    50))
2721 		drm_err(&stream->perf->i915->drm,
2722 			"wait for OA to be disabled timed out\n");
2723 
2724 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2725 	if (intel_wait_for_register(uncore,
2726 				    GEN12_OA_TLB_INV_CR,
2727 				    1, 0,
2728 				    50))
2729 		drm_err(&stream->perf->i915->drm,
2730 			"wait for OA tlb invalidate timed out\n");
2731 }
2732 
2733 /**
2734  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2735  * @stream: An i915 perf stream opened for OA metrics
2736  *
2737  * Stops the OA unit from periodically writing counter reports into the
2738  * circular OA buffer. This also stops the hrtimer that periodically checks for
2739  * data in the circular OA buffer, for notifying userspace.
2740  */
2741 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2742 {
2743 	stream->perf->ops.oa_disable(stream);
2744 
2745 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2746 		hrtimer_cancel(&stream->poll_check_timer);
2747 }
2748 
2749 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2750 	.destroy = i915_oa_stream_destroy,
2751 	.enable = i915_oa_stream_enable,
2752 	.disable = i915_oa_stream_disable,
2753 	.wait_unlocked = i915_oa_wait_unlocked,
2754 	.poll_wait = i915_oa_poll_wait,
2755 	.read = i915_oa_read,
2756 };
2757 
2758 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2759 {
2760 	struct i915_active *active;
2761 	int err;
2762 
2763 	active = i915_active_create();
2764 	if (!active)
2765 		return -ENOMEM;
2766 
2767 	err = stream->perf->ops.enable_metric_set(stream, active);
2768 	if (err == 0)
2769 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2770 
2771 	i915_active_put(active);
2772 	return err;
2773 }
2774 
2775 static void
2776 get_default_sseu_config(struct intel_sseu *out_sseu,
2777 			struct intel_engine_cs *engine)
2778 {
2779 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2780 
2781 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2782 
2783 	if (IS_GEN(engine->i915, 11)) {
2784 		/*
2785 		 * We only need subslice count so it doesn't matter which ones
2786 		 * we select - just turn off low bits in the amount of half of
2787 		 * all available subslices per slice.
2788 		 */
2789 		out_sseu->subslice_mask =
2790 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2791 		out_sseu->slice_mask = 0x1;
2792 	}
2793 }
2794 
2795 static int
2796 get_sseu_config(struct intel_sseu *out_sseu,
2797 		struct intel_engine_cs *engine,
2798 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2799 {
2800 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2801 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2802 		return -EINVAL;
2803 
2804 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2805 }
2806 
2807 /**
2808  * i915_oa_stream_init - validate combined props for OA stream and init
2809  * @stream: An i915 perf stream
2810  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2811  * @props: The property state that configures stream (individually validated)
2812  *
2813  * While read_properties_unlocked() validates properties in isolation it
2814  * doesn't ensure that the combination necessarily makes sense.
2815  *
2816  * At this point it has been determined that userspace wants a stream of
2817  * OA metrics, but still we need to further validate the combined
2818  * properties are OK.
2819  *
2820  * If the configuration makes sense then we can allocate memory for
2821  * a circular OA buffer and apply the requested metric set configuration.
2822  *
2823  * Returns: zero on success or a negative error code.
2824  */
2825 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2826 			       struct drm_i915_perf_open_param *param,
2827 			       struct perf_open_properties *props)
2828 {
2829 	struct drm_i915_private *i915 = stream->perf->i915;
2830 	struct i915_perf *perf = stream->perf;
2831 	int format_size;
2832 	int ret;
2833 
2834 	if (!props->engine) {
2835 		DRM_DEBUG("OA engine not specified\n");
2836 		return -EINVAL;
2837 	}
2838 
2839 	/*
2840 	 * If the sysfs metrics/ directory wasn't registered for some
2841 	 * reason then don't let userspace try their luck with config
2842 	 * IDs
2843 	 */
2844 	if (!perf->metrics_kobj) {
2845 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2846 		return -EINVAL;
2847 	}
2848 
2849 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2850 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2851 		DRM_DEBUG("Only OA report sampling supported\n");
2852 		return -EINVAL;
2853 	}
2854 
2855 	if (!perf->ops.enable_metric_set) {
2856 		DRM_DEBUG("OA unit not supported\n");
2857 		return -ENODEV;
2858 	}
2859 
2860 	/*
2861 	 * To avoid the complexity of having to accurately filter
2862 	 * counter reports and marshal to the appropriate client
2863 	 * we currently only allow exclusive access
2864 	 */
2865 	if (perf->exclusive_stream) {
2866 		DRM_DEBUG("OA unit already in use\n");
2867 		return -EBUSY;
2868 	}
2869 
2870 	if (!props->oa_format) {
2871 		DRM_DEBUG("OA report format not specified\n");
2872 		return -EINVAL;
2873 	}
2874 
2875 	stream->engine = props->engine;
2876 	stream->uncore = stream->engine->gt->uncore;
2877 
2878 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2879 
2880 	format_size = perf->oa_formats[props->oa_format].size;
2881 
2882 	stream->sample_flags = props->sample_flags;
2883 	stream->sample_size += format_size;
2884 
2885 	stream->oa_buffer.format_size = format_size;
2886 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2887 		return -EINVAL;
2888 
2889 	stream->hold_preemption = props->hold_preemption;
2890 
2891 	stream->oa_buffer.format =
2892 		perf->oa_formats[props->oa_format].format;
2893 
2894 	stream->periodic = props->oa_periodic;
2895 	if (stream->periodic)
2896 		stream->period_exponent = props->oa_period_exponent;
2897 
2898 	if (stream->ctx) {
2899 		ret = oa_get_render_ctx_id(stream);
2900 		if (ret) {
2901 			DRM_DEBUG("Invalid context id to filter with\n");
2902 			return ret;
2903 		}
2904 	}
2905 
2906 	ret = alloc_noa_wait(stream);
2907 	if (ret) {
2908 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2909 		goto err_noa_wait_alloc;
2910 	}
2911 
2912 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2913 	if (!stream->oa_config) {
2914 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2915 		ret = -EINVAL;
2916 		goto err_config;
2917 	}
2918 
2919 	/* PRM - observability performance counters:
2920 	 *
2921 	 *   OACONTROL, performance counter enable, note:
2922 	 *
2923 	 *   "When this bit is set, in order to have coherent counts,
2924 	 *   RC6 power state and trunk clock gating must be disabled.
2925 	 *   This can be achieved by programming MMIO registers as
2926 	 *   0xA094=0 and 0xA090[31]=1"
2927 	 *
2928 	 *   In our case we are expecting that taking pm + FORCEWAKE
2929 	 *   references will effectively disable RC6.
2930 	 */
2931 	intel_engine_pm_get(stream->engine);
2932 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2933 
2934 	ret = alloc_oa_buffer(stream);
2935 	if (ret)
2936 		goto err_oa_buf_alloc;
2937 
2938 	stream->ops = &i915_oa_stream_ops;
2939 
2940 	perf->sseu = props->sseu;
2941 	WRITE_ONCE(perf->exclusive_stream, stream);
2942 
2943 	ret = i915_perf_stream_enable_sync(stream);
2944 	if (ret) {
2945 		DRM_DEBUG("Unable to enable metric set\n");
2946 		goto err_enable;
2947 	}
2948 
2949 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2950 		  stream->oa_config->uuid);
2951 
2952 	hrtimer_init(&stream->poll_check_timer,
2953 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2954 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2955 	init_waitqueue_head(&stream->poll_wq);
2956 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2957 
2958 	return 0;
2959 
2960 err_enable:
2961 	WRITE_ONCE(perf->exclusive_stream, NULL);
2962 	perf->ops.disable_metric_set(stream);
2963 
2964 	free_oa_buffer(stream);
2965 
2966 err_oa_buf_alloc:
2967 	free_oa_configs(stream);
2968 
2969 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2970 	intel_engine_pm_put(stream->engine);
2971 
2972 err_config:
2973 	free_noa_wait(stream);
2974 
2975 err_noa_wait_alloc:
2976 	if (stream->ctx)
2977 		oa_put_render_ctx_id(stream);
2978 
2979 	return ret;
2980 }
2981 
2982 void i915_oa_init_reg_state(const struct intel_context *ce,
2983 			    const struct intel_engine_cs *engine)
2984 {
2985 	struct i915_perf_stream *stream;
2986 
2987 	if (engine->class != RENDER_CLASS)
2988 		return;
2989 
2990 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2991 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2992 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2993 		gen8_update_reg_state_unlocked(ce, stream);
2994 }
2995 
2996 /**
2997  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2998  * @file: An i915 perf stream file
2999  * @buf: destination buffer given by userspace
3000  * @count: the number of bytes userspace wants to read
3001  * @ppos: (inout) file seek position (unused)
3002  *
3003  * The entry point for handling a read() on a stream file descriptor from
3004  * userspace. Most of the work is left to the i915_perf_read_locked() and
3005  * &i915_perf_stream_ops->read but to save having stream implementations (of
3006  * which we might have multiple later) we handle blocking read here.
3007  *
3008  * We can also consistently treat trying to read from a disabled stream
3009  * as an IO error so implementations can assume the stream is enabled
3010  * while reading.
3011  *
3012  * Returns: The number of bytes copied or a negative error code on failure.
3013  */
3014 static ssize_t i915_perf_read(struct file *file,
3015 			      char __user *buf,
3016 			      size_t count,
3017 			      loff_t *ppos)
3018 {
3019 	struct i915_perf_stream *stream = file->private_data;
3020 	struct i915_perf *perf = stream->perf;
3021 	size_t offset = 0;
3022 	int ret;
3023 
3024 	/* To ensure it's handled consistently we simply treat all reads of a
3025 	 * disabled stream as an error. In particular it might otherwise lead
3026 	 * to a deadlock for blocking file descriptors...
3027 	 */
3028 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3029 		return -EIO;
3030 
3031 	if (!(file->f_flags & O_NONBLOCK)) {
3032 		/* There's the small chance of false positives from
3033 		 * stream->ops->wait_unlocked.
3034 		 *
3035 		 * E.g. with single context filtering since we only wait until
3036 		 * oabuffer has >= 1 report we don't immediately know whether
3037 		 * any reports really belong to the current context
3038 		 */
3039 		do {
3040 			ret = stream->ops->wait_unlocked(stream);
3041 			if (ret)
3042 				return ret;
3043 
3044 			mutex_lock(&perf->lock);
3045 			ret = stream->ops->read(stream, buf, count, &offset);
3046 			mutex_unlock(&perf->lock);
3047 		} while (!offset && !ret);
3048 	} else {
3049 		mutex_lock(&perf->lock);
3050 		ret = stream->ops->read(stream, buf, count, &offset);
3051 		mutex_unlock(&perf->lock);
3052 	}
3053 
3054 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3055 	 * events where we might actually report EAGAIN on read() if there's
3056 	 * not really any data available. In this situation though we don't
3057 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3058 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3059 	 * effectively ensures we back off until the next hrtimer callback
3060 	 * before reporting another EPOLLIN event.
3061 	 * The exception to this is if ops->read() returned -ENOSPC which means
3062 	 * that more OA data is available than could fit in the user provided
3063 	 * buffer. In this case we want the next poll() call to not block.
3064 	 */
3065 	if (ret != -ENOSPC)
3066 		stream->pollin = false;
3067 
3068 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3069 	return offset ?: (ret ?: -EAGAIN);
3070 }
3071 
3072 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3073 {
3074 	struct i915_perf_stream *stream =
3075 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3076 
3077 	if (oa_buffer_check_unlocked(stream)) {
3078 		stream->pollin = true;
3079 		wake_up(&stream->poll_wq);
3080 	}
3081 
3082 	hrtimer_forward_now(hrtimer,
3083 			    ns_to_ktime(stream->poll_oa_period));
3084 
3085 	return HRTIMER_RESTART;
3086 }
3087 
3088 /**
3089  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3090  * @stream: An i915 perf stream
3091  * @file: An i915 perf stream file
3092  * @wait: poll() state table
3093  *
3094  * For handling userspace polling on an i915 perf stream, this calls through to
3095  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3096  * will be woken for new stream data.
3097  *
3098  * Note: The &perf->lock mutex has been taken to serialize
3099  * with any non-file-operation driver hooks.
3100  *
3101  * Returns: any poll events that are ready without sleeping
3102  */
3103 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3104 				      struct file *file,
3105 				      poll_table *wait)
3106 {
3107 	__poll_t events = 0;
3108 
3109 	stream->ops->poll_wait(stream, file, wait);
3110 
3111 	/* Note: we don't explicitly check whether there's something to read
3112 	 * here since this path may be very hot depending on what else
3113 	 * userspace is polling, or on the timeout in use. We rely solely on
3114 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3115 	 * samples to read.
3116 	 */
3117 	if (stream->pollin)
3118 		events |= EPOLLIN;
3119 
3120 	return events;
3121 }
3122 
3123 /**
3124  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3125  * @file: An i915 perf stream file
3126  * @wait: poll() state table
3127  *
3128  * For handling userspace polling on an i915 perf stream, this ensures
3129  * poll_wait() gets called with a wait queue that will be woken for new stream
3130  * data.
3131  *
3132  * Note: Implementation deferred to i915_perf_poll_locked()
3133  *
3134  * Returns: any poll events that are ready without sleeping
3135  */
3136 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3137 {
3138 	struct i915_perf_stream *stream = file->private_data;
3139 	struct i915_perf *perf = stream->perf;
3140 	__poll_t ret;
3141 
3142 	mutex_lock(&perf->lock);
3143 	ret = i915_perf_poll_locked(stream, file, wait);
3144 	mutex_unlock(&perf->lock);
3145 
3146 	return ret;
3147 }
3148 
3149 /**
3150  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3151  * @stream: A disabled i915 perf stream
3152  *
3153  * [Re]enables the associated capture of data for this stream.
3154  *
3155  * If a stream was previously enabled then there's currently no intention
3156  * to provide userspace any guarantee about the preservation of previously
3157  * buffered data.
3158  */
3159 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3160 {
3161 	if (stream->enabled)
3162 		return;
3163 
3164 	/* Allow stream->ops->enable() to refer to this */
3165 	stream->enabled = true;
3166 
3167 	if (stream->ops->enable)
3168 		stream->ops->enable(stream);
3169 
3170 	if (stream->hold_preemption)
3171 		intel_context_set_nopreempt(stream->pinned_ctx);
3172 }
3173 
3174 /**
3175  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3176  * @stream: An enabled i915 perf stream
3177  *
3178  * Disables the associated capture of data for this stream.
3179  *
3180  * The intention is that disabling an re-enabling a stream will ideally be
3181  * cheaper than destroying and re-opening a stream with the same configuration,
3182  * though there are no formal guarantees about what state or buffered data
3183  * must be retained between disabling and re-enabling a stream.
3184  *
3185  * Note: while a stream is disabled it's considered an error for userspace
3186  * to attempt to read from the stream (-EIO).
3187  */
3188 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3189 {
3190 	if (!stream->enabled)
3191 		return;
3192 
3193 	/* Allow stream->ops->disable() to refer to this */
3194 	stream->enabled = false;
3195 
3196 	if (stream->hold_preemption)
3197 		intel_context_clear_nopreempt(stream->pinned_ctx);
3198 
3199 	if (stream->ops->disable)
3200 		stream->ops->disable(stream);
3201 }
3202 
3203 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3204 				    unsigned long metrics_set)
3205 {
3206 	struct i915_oa_config *config;
3207 	long ret = stream->oa_config->id;
3208 
3209 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3210 	if (!config)
3211 		return -EINVAL;
3212 
3213 	if (config != stream->oa_config) {
3214 		int err;
3215 
3216 		/*
3217 		 * If OA is bound to a specific context, emit the
3218 		 * reconfiguration inline from that context. The update
3219 		 * will then be ordered with respect to submission on that
3220 		 * context.
3221 		 *
3222 		 * When set globally, we use a low priority kernel context,
3223 		 * so it will effectively take effect when idle.
3224 		 */
3225 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3226 		if (!err)
3227 			config = xchg(&stream->oa_config, config);
3228 		else
3229 			ret = err;
3230 	}
3231 
3232 	i915_oa_config_put(config);
3233 
3234 	return ret;
3235 }
3236 
3237 /**
3238  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3239  * @stream: An i915 perf stream
3240  * @cmd: the ioctl request
3241  * @arg: the ioctl data
3242  *
3243  * Note: The &perf->lock mutex has been taken to serialize
3244  * with any non-file-operation driver hooks.
3245  *
3246  * Returns: zero on success or a negative error code. Returns -EINVAL for
3247  * an unknown ioctl request.
3248  */
3249 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3250 				   unsigned int cmd,
3251 				   unsigned long arg)
3252 {
3253 	switch (cmd) {
3254 	case I915_PERF_IOCTL_ENABLE:
3255 		i915_perf_enable_locked(stream);
3256 		return 0;
3257 	case I915_PERF_IOCTL_DISABLE:
3258 		i915_perf_disable_locked(stream);
3259 		return 0;
3260 	case I915_PERF_IOCTL_CONFIG:
3261 		return i915_perf_config_locked(stream, arg);
3262 	}
3263 
3264 	return -EINVAL;
3265 }
3266 
3267 /**
3268  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3269  * @file: An i915 perf stream file
3270  * @cmd: the ioctl request
3271  * @arg: the ioctl data
3272  *
3273  * Implementation deferred to i915_perf_ioctl_locked().
3274  *
3275  * Returns: zero on success or a negative error code. Returns -EINVAL for
3276  * an unknown ioctl request.
3277  */
3278 static long i915_perf_ioctl(struct file *file,
3279 			    unsigned int cmd,
3280 			    unsigned long arg)
3281 {
3282 	struct i915_perf_stream *stream = file->private_data;
3283 	struct i915_perf *perf = stream->perf;
3284 	long ret;
3285 
3286 	mutex_lock(&perf->lock);
3287 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3288 	mutex_unlock(&perf->lock);
3289 
3290 	return ret;
3291 }
3292 
3293 /**
3294  * i915_perf_destroy_locked - destroy an i915 perf stream
3295  * @stream: An i915 perf stream
3296  *
3297  * Frees all resources associated with the given i915 perf @stream, disabling
3298  * any associated data capture in the process.
3299  *
3300  * Note: The &perf->lock mutex has been taken to serialize
3301  * with any non-file-operation driver hooks.
3302  */
3303 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3304 {
3305 	if (stream->enabled)
3306 		i915_perf_disable_locked(stream);
3307 
3308 	if (stream->ops->destroy)
3309 		stream->ops->destroy(stream);
3310 
3311 	if (stream->ctx)
3312 		i915_gem_context_put(stream->ctx);
3313 
3314 	kfree(stream);
3315 }
3316 
3317 /**
3318  * i915_perf_release - handles userspace close() of a stream file
3319  * @inode: anonymous inode associated with file
3320  * @file: An i915 perf stream file
3321  *
3322  * Cleans up any resources associated with an open i915 perf stream file.
3323  *
3324  * NB: close() can't really fail from the userspace point of view.
3325  *
3326  * Returns: zero on success or a negative error code.
3327  */
3328 static int i915_perf_release(struct inode *inode, struct file *file)
3329 {
3330 	struct i915_perf_stream *stream = file->private_data;
3331 	struct i915_perf *perf = stream->perf;
3332 
3333 	mutex_lock(&perf->lock);
3334 	i915_perf_destroy_locked(stream);
3335 	mutex_unlock(&perf->lock);
3336 
3337 	/* Release the reference the perf stream kept on the driver. */
3338 	drm_dev_put(&perf->i915->drm);
3339 
3340 	return 0;
3341 }
3342 
3343 
3344 static const struct file_operations fops = {
3345 	.owner		= THIS_MODULE,
3346 	.llseek		= no_llseek,
3347 	.release	= i915_perf_release,
3348 	.poll		= i915_perf_poll,
3349 	.read		= i915_perf_read,
3350 	.unlocked_ioctl	= i915_perf_ioctl,
3351 	/* Our ioctl have no arguments, so it's safe to use the same function
3352 	 * to handle 32bits compatibility.
3353 	 */
3354 	.compat_ioctl   = i915_perf_ioctl,
3355 };
3356 
3357 
3358 /**
3359  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3360  * @perf: i915 perf instance
3361  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3362  * @props: individually validated u64 property value pairs
3363  * @file: drm file
3364  *
3365  * See i915_perf_ioctl_open() for interface details.
3366  *
3367  * Implements further stream config validation and stream initialization on
3368  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3369  * taken to serialize with any non-file-operation driver hooks.
3370  *
3371  * Note: at this point the @props have only been validated in isolation and
3372  * it's still necessary to validate that the combination of properties makes
3373  * sense.
3374  *
3375  * In the case where userspace is interested in OA unit metrics then further
3376  * config validation and stream initialization details will be handled by
3377  * i915_oa_stream_init(). The code here should only validate config state that
3378  * will be relevant to all stream types / backends.
3379  *
3380  * Returns: zero on success or a negative error code.
3381  */
3382 static int
3383 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3384 			    struct drm_i915_perf_open_param *param,
3385 			    struct perf_open_properties *props,
3386 			    struct drm_file *file)
3387 {
3388 	struct i915_gem_context *specific_ctx = NULL;
3389 	struct i915_perf_stream *stream = NULL;
3390 	unsigned long f_flags = 0;
3391 	bool privileged_op = true;
3392 	int stream_fd;
3393 	int ret;
3394 
3395 	if (props->single_context) {
3396 		u32 ctx_handle = props->ctx_handle;
3397 		struct drm_i915_file_private *file_priv = file->driver_priv;
3398 
3399 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3400 		if (!specific_ctx) {
3401 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3402 				  ctx_handle);
3403 			ret = -ENOENT;
3404 			goto err;
3405 		}
3406 	}
3407 
3408 	/*
3409 	 * On Haswell the OA unit supports clock gating off for a specific
3410 	 * context and in this mode there's no visibility of metrics for the
3411 	 * rest of the system, which we consider acceptable for a
3412 	 * non-privileged client.
3413 	 *
3414 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3415 	 * specific context and the kernel can't securely stop the counters
3416 	 * from updating as system-wide / global values. Even though we can
3417 	 * filter reports based on the included context ID we can't block
3418 	 * clients from seeing the raw / global counter values via
3419 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3420 	 * enable the OA unit by default.
3421 	 *
3422 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3423 	 * per context basis. So we can relax requirements there if the user
3424 	 * doesn't request global stream access (i.e. query based sampling
3425 	 * using MI_RECORD_PERF_COUNT.
3426 	 */
3427 	if (IS_HASWELL(perf->i915) && specific_ctx)
3428 		privileged_op = false;
3429 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3430 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3431 		privileged_op = false;
3432 
3433 	if (props->hold_preemption) {
3434 		if (!props->single_context) {
3435 			DRM_DEBUG("preemption disable with no context\n");
3436 			ret = -EINVAL;
3437 			goto err;
3438 		}
3439 		privileged_op = true;
3440 	}
3441 
3442 	/*
3443 	 * Asking for SSEU configuration is a priviliged operation.
3444 	 */
3445 	if (props->has_sseu)
3446 		privileged_op = true;
3447 	else
3448 		get_default_sseu_config(&props->sseu, props->engine);
3449 
3450 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3451 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3452 	 * to determine if it's ok to access system wide OA counters
3453 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3454 	 */
3455 	if (privileged_op &&
3456 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3457 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3458 		ret = -EACCES;
3459 		goto err_ctx;
3460 	}
3461 
3462 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3463 	if (!stream) {
3464 		ret = -ENOMEM;
3465 		goto err_ctx;
3466 	}
3467 
3468 	stream->perf = perf;
3469 	stream->ctx = specific_ctx;
3470 	stream->poll_oa_period = props->poll_oa_period;
3471 
3472 	ret = i915_oa_stream_init(stream, param, props);
3473 	if (ret)
3474 		goto err_alloc;
3475 
3476 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3477 	 * to have _stream_init check the combination of sample flags more
3478 	 * thoroughly, but still this is the expected result at this point.
3479 	 */
3480 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3481 		ret = -ENODEV;
3482 		goto err_flags;
3483 	}
3484 
3485 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3486 		f_flags |= O_CLOEXEC;
3487 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3488 		f_flags |= O_NONBLOCK;
3489 
3490 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3491 	if (stream_fd < 0) {
3492 		ret = stream_fd;
3493 		goto err_flags;
3494 	}
3495 
3496 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3497 		i915_perf_enable_locked(stream);
3498 
3499 	/* Take a reference on the driver that will be kept with stream_fd
3500 	 * until its release.
3501 	 */
3502 	drm_dev_get(&perf->i915->drm);
3503 
3504 	return stream_fd;
3505 
3506 err_flags:
3507 	if (stream->ops->destroy)
3508 		stream->ops->destroy(stream);
3509 err_alloc:
3510 	kfree(stream);
3511 err_ctx:
3512 	if (specific_ctx)
3513 		i915_gem_context_put(specific_ctx);
3514 err:
3515 	return ret;
3516 }
3517 
3518 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3519 {
3520 	return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt,
3521 					     2ULL << exponent);
3522 }
3523 
3524 /**
3525  * read_properties_unlocked - validate + copy userspace stream open properties
3526  * @perf: i915 perf instance
3527  * @uprops: The array of u64 key value pairs given by userspace
3528  * @n_props: The number of key value pairs expected in @uprops
3529  * @props: The stream configuration built up while validating properties
3530  *
3531  * Note this function only validates properties in isolation it doesn't
3532  * validate that the combination of properties makes sense or that all
3533  * properties necessary for a particular kind of stream have been set.
3534  *
3535  * Note that there currently aren't any ordering requirements for properties so
3536  * we shouldn't validate or assume anything about ordering here. This doesn't
3537  * rule out defining new properties with ordering requirements in the future.
3538  */
3539 static int read_properties_unlocked(struct i915_perf *perf,
3540 				    u64 __user *uprops,
3541 				    u32 n_props,
3542 				    struct perf_open_properties *props)
3543 {
3544 	u64 __user *uprop = uprops;
3545 	u32 i;
3546 	int ret;
3547 
3548 	memset(props, 0, sizeof(struct perf_open_properties));
3549 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3550 
3551 	if (!n_props) {
3552 		DRM_DEBUG("No i915 perf properties given\n");
3553 		return -EINVAL;
3554 	}
3555 
3556 	/* At the moment we only support using i915-perf on the RCS. */
3557 	props->engine = intel_engine_lookup_user(perf->i915,
3558 						 I915_ENGINE_CLASS_RENDER,
3559 						 0);
3560 	if (!props->engine) {
3561 		DRM_DEBUG("No RENDER-capable engines\n");
3562 		return -EINVAL;
3563 	}
3564 
3565 	/* Considering that ID = 0 is reserved and assuming that we don't
3566 	 * (currently) expect any configurations to ever specify duplicate
3567 	 * values for a particular property ID then the last _PROP_MAX value is
3568 	 * one greater than the maximum number of properties we expect to get
3569 	 * from userspace.
3570 	 */
3571 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3572 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3573 		return -EINVAL;
3574 	}
3575 
3576 	for (i = 0; i < n_props; i++) {
3577 		u64 oa_period, oa_freq_hz;
3578 		u64 id, value;
3579 
3580 		ret = get_user(id, uprop);
3581 		if (ret)
3582 			return ret;
3583 
3584 		ret = get_user(value, uprop + 1);
3585 		if (ret)
3586 			return ret;
3587 
3588 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3589 			DRM_DEBUG("Unknown i915 perf property ID\n");
3590 			return -EINVAL;
3591 		}
3592 
3593 		switch ((enum drm_i915_perf_property_id)id) {
3594 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3595 			props->single_context = 1;
3596 			props->ctx_handle = value;
3597 			break;
3598 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3599 			if (value)
3600 				props->sample_flags |= SAMPLE_OA_REPORT;
3601 			break;
3602 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3603 			if (value == 0) {
3604 				DRM_DEBUG("Unknown OA metric set ID\n");
3605 				return -EINVAL;
3606 			}
3607 			props->metrics_set = value;
3608 			break;
3609 		case DRM_I915_PERF_PROP_OA_FORMAT:
3610 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3611 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3612 					  value);
3613 				return -EINVAL;
3614 			}
3615 			if (!perf->oa_formats[value].size) {
3616 				DRM_DEBUG("Unsupported OA report format %llu\n",
3617 					  value);
3618 				return -EINVAL;
3619 			}
3620 			props->oa_format = value;
3621 			break;
3622 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3623 			if (value > OA_EXPONENT_MAX) {
3624 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3625 					 OA_EXPONENT_MAX);
3626 				return -EINVAL;
3627 			}
3628 
3629 			/* Theoretically we can program the OA unit to sample
3630 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3631 			 * for BXT. We don't allow such high sampling
3632 			 * frequencies by default unless root.
3633 			 */
3634 
3635 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3636 			oa_period = oa_exponent_to_ns(perf, value);
3637 
3638 			/* This check is primarily to ensure that oa_period <=
3639 			 * UINT32_MAX (before passing to do_div which only
3640 			 * accepts a u32 denominator), but we can also skip
3641 			 * checking anything < 1Hz which implicitly can't be
3642 			 * limited via an integer oa_max_sample_rate.
3643 			 */
3644 			if (oa_period <= NSEC_PER_SEC) {
3645 				u64 tmp = NSEC_PER_SEC;
3646 				do_div(tmp, oa_period);
3647 				oa_freq_hz = tmp;
3648 			} else
3649 				oa_freq_hz = 0;
3650 
3651 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3652 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3653 					  i915_oa_max_sample_rate);
3654 				return -EACCES;
3655 			}
3656 
3657 			props->oa_periodic = true;
3658 			props->oa_period_exponent = value;
3659 			break;
3660 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3661 			props->hold_preemption = !!value;
3662 			break;
3663 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3664 			struct drm_i915_gem_context_param_sseu user_sseu;
3665 
3666 			if (copy_from_user(&user_sseu,
3667 					   u64_to_user_ptr(value),
3668 					   sizeof(user_sseu))) {
3669 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3670 				return -EFAULT;
3671 			}
3672 
3673 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3674 			if (ret) {
3675 				DRM_DEBUG("Invalid SSEU configuration\n");
3676 				return ret;
3677 			}
3678 			props->has_sseu = true;
3679 			break;
3680 		}
3681 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3682 			if (value < 100000 /* 100us */) {
3683 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3684 					  value);
3685 				return -EINVAL;
3686 			}
3687 			props->poll_oa_period = value;
3688 			break;
3689 		case DRM_I915_PERF_PROP_MAX:
3690 			MISSING_CASE(id);
3691 			return -EINVAL;
3692 		}
3693 
3694 		uprop += 2;
3695 	}
3696 
3697 	return 0;
3698 }
3699 
3700 /**
3701  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3702  * @dev: drm device
3703  * @data: ioctl data copied from userspace (unvalidated)
3704  * @file: drm file
3705  *
3706  * Validates the stream open parameters given by userspace including flags
3707  * and an array of u64 key, value pair properties.
3708  *
3709  * Very little is assumed up front about the nature of the stream being
3710  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3711  * i915-perf stream is expected to be a suitable interface for other forms of
3712  * buffered data written by the GPU besides periodic OA metrics.
3713  *
3714  * Note we copy the properties from userspace outside of the i915 perf
3715  * mutex to avoid an awkward lockdep with mmap_lock.
3716  *
3717  * Most of the implementation details are handled by
3718  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3719  * mutex for serializing with any non-file-operation driver hooks.
3720  *
3721  * Return: A newly opened i915 Perf stream file descriptor or negative
3722  * error code on failure.
3723  */
3724 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3725 			 struct drm_file *file)
3726 {
3727 	struct i915_perf *perf = &to_i915(dev)->perf;
3728 	struct drm_i915_perf_open_param *param = data;
3729 	struct perf_open_properties props;
3730 	u32 known_open_flags;
3731 	int ret;
3732 
3733 	if (!perf->i915) {
3734 		DRM_DEBUG("i915 perf interface not available for this system\n");
3735 		return -ENOTSUPP;
3736 	}
3737 
3738 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3739 			   I915_PERF_FLAG_FD_NONBLOCK |
3740 			   I915_PERF_FLAG_DISABLED;
3741 	if (param->flags & ~known_open_flags) {
3742 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3743 		return -EINVAL;
3744 	}
3745 
3746 	ret = read_properties_unlocked(perf,
3747 				       u64_to_user_ptr(param->properties_ptr),
3748 				       param->num_properties,
3749 				       &props);
3750 	if (ret)
3751 		return ret;
3752 
3753 	mutex_lock(&perf->lock);
3754 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3755 	mutex_unlock(&perf->lock);
3756 
3757 	return ret;
3758 }
3759 
3760 /**
3761  * i915_perf_register - exposes i915-perf to userspace
3762  * @i915: i915 device instance
3763  *
3764  * In particular OA metric sets are advertised under a sysfs metrics/
3765  * directory allowing userspace to enumerate valid IDs that can be
3766  * used to open an i915-perf stream.
3767  */
3768 void i915_perf_register(struct drm_i915_private *i915)
3769 {
3770 	struct i915_perf *perf = &i915->perf;
3771 
3772 	if (!perf->i915)
3773 		return;
3774 
3775 	/* To be sure we're synchronized with an attempted
3776 	 * i915_perf_open_ioctl(); considering that we register after
3777 	 * being exposed to userspace.
3778 	 */
3779 	mutex_lock(&perf->lock);
3780 
3781 	perf->metrics_kobj =
3782 		kobject_create_and_add("metrics",
3783 				       &i915->drm.primary->kdev->kobj);
3784 
3785 	mutex_unlock(&perf->lock);
3786 }
3787 
3788 /**
3789  * i915_perf_unregister - hide i915-perf from userspace
3790  * @i915: i915 device instance
3791  *
3792  * i915-perf state cleanup is split up into an 'unregister' and
3793  * 'deinit' phase where the interface is first hidden from
3794  * userspace by i915_perf_unregister() before cleaning up
3795  * remaining state in i915_perf_fini().
3796  */
3797 void i915_perf_unregister(struct drm_i915_private *i915)
3798 {
3799 	struct i915_perf *perf = &i915->perf;
3800 
3801 	if (!perf->metrics_kobj)
3802 		return;
3803 
3804 	kobject_put(perf->metrics_kobj);
3805 	perf->metrics_kobj = NULL;
3806 }
3807 
3808 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3809 {
3810 	static const i915_reg_t flex_eu_regs[] = {
3811 		EU_PERF_CNTL0,
3812 		EU_PERF_CNTL1,
3813 		EU_PERF_CNTL2,
3814 		EU_PERF_CNTL3,
3815 		EU_PERF_CNTL4,
3816 		EU_PERF_CNTL5,
3817 		EU_PERF_CNTL6,
3818 	};
3819 	int i;
3820 
3821 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3822 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3823 			return true;
3824 	}
3825 	return false;
3826 }
3827 
3828 #define ADDR_IN_RANGE(addr, start, end) \
3829 	((addr) >= (start) && \
3830 	 (addr) <= (end))
3831 
3832 #define REG_IN_RANGE(addr, start, end) \
3833 	((addr) >= i915_mmio_reg_offset(start) && \
3834 	 (addr) <= i915_mmio_reg_offset(end))
3835 
3836 #define REG_EQUAL(addr, mmio) \
3837 	((addr) == i915_mmio_reg_offset(mmio))
3838 
3839 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3840 {
3841 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3842 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3843 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3844 }
3845 
3846 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3847 {
3848 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3849 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3850 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3851 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3852 }
3853 
3854 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3855 {
3856 	return gen7_is_valid_mux_addr(perf, addr) ||
3857 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3858 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3859 }
3860 
3861 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3862 {
3863 	return gen8_is_valid_mux_addr(perf, addr) ||
3864 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3865 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3866 }
3867 
3868 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3869 {
3870 	return gen7_is_valid_mux_addr(perf, addr) ||
3871 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3872 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3873 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3874 }
3875 
3876 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3877 {
3878 	return gen7_is_valid_mux_addr(perf, addr) ||
3879 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3880 }
3881 
3882 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3883 {
3884 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3885 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3886 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3887 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3888 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3889 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3890 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3891 }
3892 
3893 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3894 {
3895 	return REG_EQUAL(addr, NOA_WRITE) ||
3896 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3897 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3898 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3899 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3900 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3901 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3902 }
3903 
3904 static u32 mask_reg_value(u32 reg, u32 val)
3905 {
3906 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3907 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3908 	 * programmed by userspace doesn't change this.
3909 	 */
3910 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3911 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3912 
3913 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3914 	 * indicated by its name and a bunch of selection fields used by OA
3915 	 * configs.
3916 	 */
3917 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3918 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3919 
3920 	return val;
3921 }
3922 
3923 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3924 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3925 					 u32 __user *regs,
3926 					 u32 n_regs)
3927 {
3928 	struct i915_oa_reg *oa_regs;
3929 	int err;
3930 	u32 i;
3931 
3932 	if (!n_regs)
3933 		return NULL;
3934 
3935 	/* No is_valid function means we're not allowing any register to be programmed. */
3936 	GEM_BUG_ON(!is_valid);
3937 	if (!is_valid)
3938 		return ERR_PTR(-EINVAL);
3939 
3940 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3941 	if (!oa_regs)
3942 		return ERR_PTR(-ENOMEM);
3943 
3944 	for (i = 0; i < n_regs; i++) {
3945 		u32 addr, value;
3946 
3947 		err = get_user(addr, regs);
3948 		if (err)
3949 			goto addr_err;
3950 
3951 		if (!is_valid(perf, addr)) {
3952 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3953 			err = -EINVAL;
3954 			goto addr_err;
3955 		}
3956 
3957 		err = get_user(value, regs + 1);
3958 		if (err)
3959 			goto addr_err;
3960 
3961 		oa_regs[i].addr = _MMIO(addr);
3962 		oa_regs[i].value = mask_reg_value(addr, value);
3963 
3964 		regs += 2;
3965 	}
3966 
3967 	return oa_regs;
3968 
3969 addr_err:
3970 	kfree(oa_regs);
3971 	return ERR_PTR(err);
3972 }
3973 
3974 static ssize_t show_dynamic_id(struct device *dev,
3975 			       struct device_attribute *attr,
3976 			       char *buf)
3977 {
3978 	struct i915_oa_config *oa_config =
3979 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3980 
3981 	return sprintf(buf, "%d\n", oa_config->id);
3982 }
3983 
3984 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3985 					 struct i915_oa_config *oa_config)
3986 {
3987 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3988 	oa_config->sysfs_metric_id.attr.name = "id";
3989 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3990 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3991 	oa_config->sysfs_metric_id.store = NULL;
3992 
3993 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3994 	oa_config->attrs[1] = NULL;
3995 
3996 	oa_config->sysfs_metric.name = oa_config->uuid;
3997 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3998 
3999 	return sysfs_create_group(perf->metrics_kobj,
4000 				  &oa_config->sysfs_metric);
4001 }
4002 
4003 /**
4004  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4005  * @dev: drm device
4006  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4007  *        userspace (unvalidated)
4008  * @file: drm file
4009  *
4010  * Validates the submitted OA register to be saved into a new OA config that
4011  * can then be used for programming the OA unit and its NOA network.
4012  *
4013  * Returns: A new allocated config number to be used with the perf open ioctl
4014  * or a negative error code on failure.
4015  */
4016 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4017 			       struct drm_file *file)
4018 {
4019 	struct i915_perf *perf = &to_i915(dev)->perf;
4020 	struct drm_i915_perf_oa_config *args = data;
4021 	struct i915_oa_config *oa_config, *tmp;
4022 	struct i915_oa_reg *regs;
4023 	int err, id;
4024 
4025 	if (!perf->i915) {
4026 		DRM_DEBUG("i915 perf interface not available for this system\n");
4027 		return -ENOTSUPP;
4028 	}
4029 
4030 	if (!perf->metrics_kobj) {
4031 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4032 		return -EINVAL;
4033 	}
4034 
4035 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4036 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4037 		return -EACCES;
4038 	}
4039 
4040 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4041 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4042 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4043 		DRM_DEBUG("No OA registers given\n");
4044 		return -EINVAL;
4045 	}
4046 
4047 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4048 	if (!oa_config) {
4049 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4050 		return -ENOMEM;
4051 	}
4052 
4053 	oa_config->perf = perf;
4054 	kref_init(&oa_config->ref);
4055 
4056 	if (!uuid_is_valid(args->uuid)) {
4057 		DRM_DEBUG("Invalid uuid format for OA config\n");
4058 		err = -EINVAL;
4059 		goto reg_err;
4060 	}
4061 
4062 	/* Last character in oa_config->uuid will be 0 because oa_config is
4063 	 * kzalloc.
4064 	 */
4065 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4066 
4067 	oa_config->mux_regs_len = args->n_mux_regs;
4068 	regs = alloc_oa_regs(perf,
4069 			     perf->ops.is_valid_mux_reg,
4070 			     u64_to_user_ptr(args->mux_regs_ptr),
4071 			     args->n_mux_regs);
4072 
4073 	if (IS_ERR(regs)) {
4074 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4075 		err = PTR_ERR(regs);
4076 		goto reg_err;
4077 	}
4078 	oa_config->mux_regs = regs;
4079 
4080 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4081 	regs = alloc_oa_regs(perf,
4082 			     perf->ops.is_valid_b_counter_reg,
4083 			     u64_to_user_ptr(args->boolean_regs_ptr),
4084 			     args->n_boolean_regs);
4085 
4086 	if (IS_ERR(regs)) {
4087 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4088 		err = PTR_ERR(regs);
4089 		goto reg_err;
4090 	}
4091 	oa_config->b_counter_regs = regs;
4092 
4093 	if (INTEL_GEN(perf->i915) < 8) {
4094 		if (args->n_flex_regs != 0) {
4095 			err = -EINVAL;
4096 			goto reg_err;
4097 		}
4098 	} else {
4099 		oa_config->flex_regs_len = args->n_flex_regs;
4100 		regs = alloc_oa_regs(perf,
4101 				     perf->ops.is_valid_flex_reg,
4102 				     u64_to_user_ptr(args->flex_regs_ptr),
4103 				     args->n_flex_regs);
4104 
4105 		if (IS_ERR(regs)) {
4106 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4107 			err = PTR_ERR(regs);
4108 			goto reg_err;
4109 		}
4110 		oa_config->flex_regs = regs;
4111 	}
4112 
4113 	err = mutex_lock_interruptible(&perf->metrics_lock);
4114 	if (err)
4115 		goto reg_err;
4116 
4117 	/* We shouldn't have too many configs, so this iteration shouldn't be
4118 	 * too costly.
4119 	 */
4120 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4121 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4122 			DRM_DEBUG("OA config already exists with this uuid\n");
4123 			err = -EADDRINUSE;
4124 			goto sysfs_err;
4125 		}
4126 	}
4127 
4128 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4129 	if (err) {
4130 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4131 		goto sysfs_err;
4132 	}
4133 
4134 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4135 	oa_config->id = idr_alloc(&perf->metrics_idr,
4136 				  oa_config, 2,
4137 				  0, GFP_KERNEL);
4138 	if (oa_config->id < 0) {
4139 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4140 		err = oa_config->id;
4141 		goto sysfs_err;
4142 	}
4143 
4144 	mutex_unlock(&perf->metrics_lock);
4145 
4146 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4147 
4148 	return oa_config->id;
4149 
4150 sysfs_err:
4151 	mutex_unlock(&perf->metrics_lock);
4152 reg_err:
4153 	i915_oa_config_put(oa_config);
4154 	DRM_DEBUG("Failed to add new OA config\n");
4155 	return err;
4156 }
4157 
4158 /**
4159  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4160  * @dev: drm device
4161  * @data: ioctl data (pointer to u64 integer) copied from userspace
4162  * @file: drm file
4163  *
4164  * Configs can be removed while being used, the will stop appearing in sysfs
4165  * and their content will be freed when the stream using the config is closed.
4166  *
4167  * Returns: 0 on success or a negative error code on failure.
4168  */
4169 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4170 				  struct drm_file *file)
4171 {
4172 	struct i915_perf *perf = &to_i915(dev)->perf;
4173 	u64 *arg = data;
4174 	struct i915_oa_config *oa_config;
4175 	int ret;
4176 
4177 	if (!perf->i915) {
4178 		DRM_DEBUG("i915 perf interface not available for this system\n");
4179 		return -ENOTSUPP;
4180 	}
4181 
4182 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4183 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4184 		return -EACCES;
4185 	}
4186 
4187 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4188 	if (ret)
4189 		return ret;
4190 
4191 	oa_config = idr_find(&perf->metrics_idr, *arg);
4192 	if (!oa_config) {
4193 		DRM_DEBUG("Failed to remove unknown OA config\n");
4194 		ret = -ENOENT;
4195 		goto err_unlock;
4196 	}
4197 
4198 	GEM_BUG_ON(*arg != oa_config->id);
4199 
4200 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4201 
4202 	idr_remove(&perf->metrics_idr, *arg);
4203 
4204 	mutex_unlock(&perf->metrics_lock);
4205 
4206 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4207 
4208 	i915_oa_config_put(oa_config);
4209 
4210 	return 0;
4211 
4212 err_unlock:
4213 	mutex_unlock(&perf->metrics_lock);
4214 	return ret;
4215 }
4216 
4217 static struct ctl_table oa_table[] = {
4218 	{
4219 	 .procname = "perf_stream_paranoid",
4220 	 .data = &i915_perf_stream_paranoid,
4221 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4222 	 .mode = 0644,
4223 	 .proc_handler = proc_dointvec_minmax,
4224 	 .extra1 = SYSCTL_ZERO,
4225 	 .extra2 = SYSCTL_ONE,
4226 	 },
4227 	{
4228 	 .procname = "oa_max_sample_rate",
4229 	 .data = &i915_oa_max_sample_rate,
4230 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4231 	 .mode = 0644,
4232 	 .proc_handler = proc_dointvec_minmax,
4233 	 .extra1 = SYSCTL_ZERO,
4234 	 .extra2 = &oa_sample_rate_hard_limit,
4235 	 },
4236 	{}
4237 };
4238 
4239 static struct ctl_table i915_root[] = {
4240 	{
4241 	 .procname = "i915",
4242 	 .maxlen = 0,
4243 	 .mode = 0555,
4244 	 .child = oa_table,
4245 	 },
4246 	{}
4247 };
4248 
4249 static struct ctl_table dev_root[] = {
4250 	{
4251 	 .procname = "dev",
4252 	 .maxlen = 0,
4253 	 .mode = 0555,
4254 	 .child = i915_root,
4255 	 },
4256 	{}
4257 };
4258 
4259 /**
4260  * i915_perf_init - initialize i915-perf state on module bind
4261  * @i915: i915 device instance
4262  *
4263  * Initializes i915-perf state without exposing anything to userspace.
4264  *
4265  * Note: i915-perf initialization is split into an 'init' and 'register'
4266  * phase with the i915_perf_register() exposing state to userspace.
4267  */
4268 void i915_perf_init(struct drm_i915_private *i915)
4269 {
4270 	struct i915_perf *perf = &i915->perf;
4271 
4272 	/* XXX const struct i915_perf_ops! */
4273 
4274 	if (IS_HASWELL(i915)) {
4275 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4276 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4277 		perf->ops.is_valid_flex_reg = NULL;
4278 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4279 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4280 		perf->ops.oa_enable = gen7_oa_enable;
4281 		perf->ops.oa_disable = gen7_oa_disable;
4282 		perf->ops.read = gen7_oa_read;
4283 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4284 
4285 		perf->oa_formats = hsw_oa_formats;
4286 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4287 		/* Note: that although we could theoretically also support the
4288 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4289 		 * this driver, before upstreaming did this) it didn't seem
4290 		 * worth the complexity to maintain now that BDW+ enable
4291 		 * execlist mode by default.
4292 		 */
4293 		perf->ops.read = gen8_oa_read;
4294 
4295 		if (IS_GEN_RANGE(i915, 8, 9)) {
4296 			perf->oa_formats = gen8_plus_oa_formats;
4297 
4298 			perf->ops.is_valid_b_counter_reg =
4299 				gen7_is_valid_b_counter_addr;
4300 			perf->ops.is_valid_mux_reg =
4301 				gen8_is_valid_mux_addr;
4302 			perf->ops.is_valid_flex_reg =
4303 				gen8_is_valid_flex_addr;
4304 
4305 			if (IS_CHERRYVIEW(i915)) {
4306 				perf->ops.is_valid_mux_reg =
4307 					chv_is_valid_mux_addr;
4308 			}
4309 
4310 			perf->ops.oa_enable = gen8_oa_enable;
4311 			perf->ops.oa_disable = gen8_oa_disable;
4312 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4313 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4314 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4315 
4316 			if (IS_GEN(i915, 8)) {
4317 				perf->ctx_oactxctrl_offset = 0x120;
4318 				perf->ctx_flexeu0_offset = 0x2ce;
4319 
4320 				perf->gen8_valid_ctx_bit = BIT(25);
4321 			} else {
4322 				perf->ctx_oactxctrl_offset = 0x128;
4323 				perf->ctx_flexeu0_offset = 0x3de;
4324 
4325 				perf->gen8_valid_ctx_bit = BIT(16);
4326 			}
4327 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4328 			perf->oa_formats = gen8_plus_oa_formats;
4329 
4330 			perf->ops.is_valid_b_counter_reg =
4331 				gen7_is_valid_b_counter_addr;
4332 			perf->ops.is_valid_mux_reg =
4333 				gen10_is_valid_mux_addr;
4334 			perf->ops.is_valid_flex_reg =
4335 				gen8_is_valid_flex_addr;
4336 
4337 			perf->ops.oa_enable = gen8_oa_enable;
4338 			perf->ops.oa_disable = gen8_oa_disable;
4339 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4340 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4341 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4342 
4343 			if (IS_GEN(i915, 10)) {
4344 				perf->ctx_oactxctrl_offset = 0x128;
4345 				perf->ctx_flexeu0_offset = 0x3de;
4346 			} else {
4347 				perf->ctx_oactxctrl_offset = 0x124;
4348 				perf->ctx_flexeu0_offset = 0x78e;
4349 			}
4350 			perf->gen8_valid_ctx_bit = BIT(16);
4351 		} else if (IS_GEN(i915, 12)) {
4352 			perf->oa_formats = gen12_oa_formats;
4353 
4354 			perf->ops.is_valid_b_counter_reg =
4355 				gen12_is_valid_b_counter_addr;
4356 			perf->ops.is_valid_mux_reg =
4357 				gen12_is_valid_mux_addr;
4358 			perf->ops.is_valid_flex_reg =
4359 				gen8_is_valid_flex_addr;
4360 
4361 			perf->ops.oa_enable = gen12_oa_enable;
4362 			perf->ops.oa_disable = gen12_oa_disable;
4363 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4364 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4365 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4366 
4367 			perf->ctx_flexeu0_offset = 0;
4368 			perf->ctx_oactxctrl_offset = 0x144;
4369 		}
4370 	}
4371 
4372 	if (perf->ops.enable_metric_set) {
4373 		mutex_init(&perf->lock);
4374 
4375 		/* Choose a representative limit */
4376 		oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2;
4377 
4378 		mutex_init(&perf->metrics_lock);
4379 		idr_init_base(&perf->metrics_idr, 1);
4380 
4381 		/* We set up some ratelimit state to potentially throttle any
4382 		 * _NOTES about spurious, invalid OA reports which we don't
4383 		 * forward to userspace.
4384 		 *
4385 		 * We print a _NOTE about any throttling when closing the
4386 		 * stream instead of waiting until driver _fini which no one
4387 		 * would ever see.
4388 		 *
4389 		 * Using the same limiting factors as printk_ratelimit()
4390 		 */
4391 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4392 		/* Since we use a DRM_NOTE for spurious reports it would be
4393 		 * inconsistent to let __ratelimit() automatically print a
4394 		 * warning for throttling.
4395 		 */
4396 		ratelimit_set_flags(&perf->spurious_report_rs,
4397 				    RATELIMIT_MSG_ON_RELEASE);
4398 
4399 		ratelimit_state_init(&perf->tail_pointer_race,
4400 				     5 * HZ, 10);
4401 		ratelimit_set_flags(&perf->tail_pointer_race,
4402 				    RATELIMIT_MSG_ON_RELEASE);
4403 
4404 		atomic64_set(&perf->noa_programming_delay,
4405 			     500 * 1000 /* 500us */);
4406 
4407 		perf->i915 = i915;
4408 	}
4409 }
4410 
4411 static int destroy_config(int id, void *p, void *data)
4412 {
4413 	i915_oa_config_put(p);
4414 	return 0;
4415 }
4416 
4417 void i915_perf_sysctl_register(void)
4418 {
4419 	sysctl_header = register_sysctl_table(dev_root);
4420 }
4421 
4422 void i915_perf_sysctl_unregister(void)
4423 {
4424 	unregister_sysctl_table(sysctl_header);
4425 }
4426 
4427 /**
4428  * i915_perf_fini - Counter part to i915_perf_init()
4429  * @i915: i915 device instance
4430  */
4431 void i915_perf_fini(struct drm_i915_private *i915)
4432 {
4433 	struct i915_perf *perf = &i915->perf;
4434 
4435 	if (!perf->i915)
4436 		return;
4437 
4438 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4439 	idr_destroy(&perf->metrics_idr);
4440 
4441 	memset(&perf->ops, 0, sizeof(perf->ops));
4442 	perf->i915 = NULL;
4443 }
4444 
4445 /**
4446  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4447  *
4448  * This version number is used by userspace to detect available features.
4449  */
4450 int i915_perf_ioctl_version(void)
4451 {
4452 	/*
4453 	 * 1: Initial version
4454 	 *   I915_PERF_IOCTL_ENABLE
4455 	 *   I915_PERF_IOCTL_DISABLE
4456 	 *
4457 	 * 2: Added runtime modification of OA config.
4458 	 *   I915_PERF_IOCTL_CONFIG
4459 	 *
4460 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4461 	 *    preemption on a particular context so that performance data is
4462 	 *    accessible from a delta of MI_RPC reports without looking at the
4463 	 *    OA buffer.
4464 	 *
4465 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4466 	 *    be run for the duration of the performance recording based on
4467 	 *    their SSEU configuration.
4468 	 *
4469 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4470 	 *    interval for the hrtimer used to check for OA data.
4471 	 */
4472 	return 5;
4473 }
4474 
4475 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4476 #include "selftests/i915_perf.c"
4477 #endif
4478