xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204 
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209  * is currently generally designed assuming the largest 16M size is used such
210  * that the overflow cases are unlikely in normal operation.
211  */
212 #define OA_BUFFER_SIZE		SZ_16M
213 
214 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
215 
216 /**
217  * DOC: OA Tail Pointer Race
218  *
219  * There's a HW race condition between OA unit tail pointer register updates and
220  * writes to memory whereby the tail pointer can sometimes get ahead of what's
221  * been written out to the OA buffer so far (in terms of what's visible to the
222  * CPU).
223  *
224  * Although this can be observed explicitly while copying reports to userspace
225  * by checking for a zeroed report-id field in tail reports, we want to account
226  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227  * redundant read() attempts.
228  *
229  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230  * in the OA buffer, starting from the tail reported by the HW until we find a
231  * report with its first 2 dwords not 0 meaning its previous report is
232  * completely in memory and ready to be read. Those dwords are also set to 0
233  * once read and the whole buffer is cleared upon OA buffer initialization. The
234  * first dword is the reason for this report while the second is the timestamp,
235  * making the chances of having those 2 fields at 0 fairly unlikely. A more
236  * detailed explanation is available in oa_buffer_check_unlocked().
237  *
238  * Most of the implementation details for this workaround are in
239  * oa_buffer_check_unlocked() and _append_oa_reports()
240  *
241  * Note for posterity: previously the driver used to define an effective tail
242  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244  * This was flawed considering that the OA unit may also automatically generate
245  * non-periodic reports (such as on context switch) or the OA unit may be
246  * enabled without any periodic sampling.
247  */
248 #define OA_TAIL_MARGIN_NSEC	100000ULL
249 #define INVALID_TAIL_PTR	0xffffffff
250 
251 /* The default frequency for checking whether the OA unit has written new
252  * reports to the circular OA buffer...
253  */
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256 
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
259 
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261  * of the 64bit timestamp bits to trigger reports from) but there's currently
262  * no known use case for sampling as infrequently as once per 47 thousand years.
263  *
264  * Since the timestamps included in OA reports are only 32bits it seems
265  * reasonable to limit the OA exponent where it's still possible to account for
266  * overflow in OA report timestamps.
267  */
268 #define OA_EXPONENT_MAX 31
269 
270 #define INVALID_CTX_ID 0xffffffff
271 
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK           0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
275 #define OAREPORT_REASON_SHIFT          19
276 #define OAREPORT_REASON_TIMER          (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
279 
280 
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282  *
283  * The highest sampling frequency we can theoretically program the OA unit
284  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285  *
286  * Initialized just before we register the sysctl parameter.
287  */
288 static int oa_sample_rate_hard_limit;
289 
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291  * allow that by default unless root...
292  *
293  * The default threshold of 100000Hz is based on perf's similar
294  * kernel.perf_event_max_sample_rate sysctl parameter.
295  */
296 static u32 i915_oa_max_sample_rate = 100000;
297 
298 /* XXX: beware if future OA HW adds new report formats that the current
299  * code assumes all reports have a power-of-two size and ~(size - 1) can
300  * be used as a mask to align the OA tail pointer.
301  */
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
304 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
305 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
306 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
308 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
309 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
310 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
311 };
312 
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
318 };
319 
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322 };
323 
324 #define SAMPLE_OA_REPORT      (1<<0)
325 
326 /**
327  * struct perf_open_properties - for validated properties given to open a stream
328  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329  * @single_context: Whether a single or all gpu contexts should be monitored
330  * @hold_preemption: Whether the preemption is disabled for the filtered
331  *                   context
332  * @ctx_handle: A gem ctx handle for use with @single_context
333  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334  * @oa_format: An OA unit HW report format
335  * @oa_periodic: Whether to enable periodic OA unit sampling
336  * @oa_period_exponent: The OA unit sampling period is derived from this
337  * @engine: The engine (typically rcs0) being monitored by the OA unit
338  * @has_sseu: Whether @sseu was specified by userspace
339  * @sseu: internal SSEU configuration computed either from the userspace
340  *        specified configuration in the opening parameters or a default value
341  *        (see get_default_sseu_config())
342  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343  * data availability
344  *
345  * As read_properties_unlocked() enumerates and validates the properties given
346  * to open a stream of metrics the configuration is built up in the structure
347  * which starts out zero initialized.
348  */
349 struct perf_open_properties {
350 	u32 sample_flags;
351 
352 	u64 single_context:1;
353 	u64 hold_preemption:1;
354 	u64 ctx_handle;
355 
356 	/* OA sampling state */
357 	int metrics_set;
358 	int oa_format;
359 	bool oa_periodic;
360 	int oa_period_exponent;
361 
362 	struct intel_engine_cs *engine;
363 
364 	bool has_sseu;
365 	struct intel_sseu sseu;
366 
367 	u64 poll_oa_period;
368 };
369 
370 struct i915_oa_config_bo {
371 	struct llist_node node;
372 
373 	struct i915_oa_config *oa_config;
374 	struct i915_vma *vma;
375 };
376 
377 static struct ctl_table_header *sysctl_header;
378 
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380 
381 void i915_oa_config_release(struct kref *ref)
382 {
383 	struct i915_oa_config *oa_config =
384 		container_of(ref, typeof(*oa_config), ref);
385 
386 	kfree(oa_config->flex_regs);
387 	kfree(oa_config->b_counter_regs);
388 	kfree(oa_config->mux_regs);
389 
390 	kfree_rcu(oa_config, rcu);
391 }
392 
393 struct i915_oa_config *
394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395 {
396 	struct i915_oa_config *oa_config;
397 
398 	rcu_read_lock();
399 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 	if (oa_config)
401 		oa_config = i915_oa_config_get(oa_config);
402 	rcu_read_unlock();
403 
404 	return oa_config;
405 }
406 
407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408 {
409 	i915_oa_config_put(oa_bo->oa_config);
410 	i915_vma_put(oa_bo->vma);
411 	kfree(oa_bo);
412 }
413 
414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415 {
416 	struct intel_uncore *uncore = stream->uncore;
417 
418 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 	       GEN12_OAG_OATAILPTR_MASK;
420 }
421 
422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423 {
424 	struct intel_uncore *uncore = stream->uncore;
425 
426 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 }
428 
429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 	struct intel_uncore *uncore = stream->uncore;
432 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433 
434 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435 }
436 
437 /**
438  * oa_buffer_check_unlocked - check for data and update tail ptr state
439  * @stream: i915 stream instance
440  *
441  * This is either called via fops (for blocking reads in user ctx) or the poll
442  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443  * if there is data available for userspace to read.
444  *
445  * This function is central to providing a workaround for the OA unit tail
446  * pointer having a race with respect to what data is visible to the CPU.
447  * It is responsible for reading tail pointers from the hardware and giving
448  * the pointers time to 'age' before they are made available for reading.
449  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450  *
451  * Besides returning true when there is data available to read() this function
452  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453  * object.
454  *
455  * Note: It's safe to read OA config state here unlocked, assuming that this is
456  * only called while the stream is enabled, while the global OA configuration
457  * can't be modified.
458  *
459  * Returns: %true if the OA buffer contains data, else %false
460  */
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462 {
463 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 	int report_size = stream->oa_buffer.format_size;
465 	unsigned long flags;
466 	bool pollin;
467 	u32 hw_tail;
468 	u64 now;
469 
470 	/* We have to consider the (unlikely) possibility that read() errors
471 	 * could result in an OA buffer reset which might reset the head and
472 	 * tail state.
473 	 */
474 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475 
476 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477 
478 	/* The tail pointer increases in 64 byte increments,
479 	 * not in report_size steps...
480 	 */
481 	hw_tail &= ~(report_size - 1);
482 
483 	now = ktime_get_mono_fast_ns();
484 
485 	if (hw_tail == stream->oa_buffer.aging_tail &&
486 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 		/* If the HW tail hasn't move since the last check and the HW
488 		 * tail has been aging for long enough, declare it the new
489 		 * tail.
490 		 */
491 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 	} else {
493 		u32 head, tail, aged_tail;
494 
495 		/* NB: The head we observe here might effectively be a little
496 		 * out of date. If a read() is in progress, the head could be
497 		 * anywhere between this head and stream->oa_buffer.tail.
498 		 */
499 		head = stream->oa_buffer.head - gtt_offset;
500 		aged_tail = stream->oa_buffer.tail - gtt_offset;
501 
502 		hw_tail -= gtt_offset;
503 		tail = hw_tail;
504 
505 		/* Walk the stream backward until we find a report with dword 0
506 		 * & 1 not at 0. Since the circular buffer pointers progress by
507 		 * increments of 64 bytes and that reports can be up to 256
508 		 * bytes long, we can't tell whether a report has fully landed
509 		 * in memory before the first 2 dwords of the following report
510 		 * have effectively landed.
511 		 *
512 		 * This is assuming that the writes of the OA unit land in
513 		 * memory in the order they were written to.
514 		 * If not : (╯°□°)╯︵ ┻━┻
515 		 */
516 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518 
519 			if (report32[0] != 0 || report32[1] != 0)
520 				break;
521 
522 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 		}
524 
525 		if (OA_TAKEN(hw_tail, tail) > report_size &&
526 		    __ratelimit(&stream->perf->tail_pointer_race))
527 			DRM_NOTE("unlanded report(s) head=0x%x "
528 				 "tail=0x%x hw_tail=0x%x\n",
529 				 head, tail, hw_tail);
530 
531 		stream->oa_buffer.tail = gtt_offset + tail;
532 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 		stream->oa_buffer.aging_timestamp = now;
534 	}
535 
536 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 			  stream->oa_buffer.head - gtt_offset) >= report_size;
538 
539 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540 
541 	return pollin;
542 }
543 
544 /**
545  * append_oa_status - Appends a status record to a userspace read() buffer.
546  * @stream: An i915-perf stream opened for OA metrics
547  * @buf: destination buffer given by userspace
548  * @count: the number of bytes userspace wants to read
549  * @offset: (inout): the current position for writing into @buf
550  * @type: The kind of status to report to userspace
551  *
552  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553  * into the userspace read() buffer.
554  *
555  * The @buf @offset will only be updated on success.
556  *
557  * Returns: 0 on success, negative error code on failure.
558  */
559 static int append_oa_status(struct i915_perf_stream *stream,
560 			    char __user *buf,
561 			    size_t count,
562 			    size_t *offset,
563 			    enum drm_i915_perf_record_type type)
564 {
565 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566 
567 	if ((count - *offset) < header.size)
568 		return -ENOSPC;
569 
570 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 		return -EFAULT;
572 
573 	(*offset) += header.size;
574 
575 	return 0;
576 }
577 
578 /**
579  * append_oa_sample - Copies single OA report into userspace read() buffer.
580  * @stream: An i915-perf stream opened for OA metrics
581  * @buf: destination buffer given by userspace
582  * @count: the number of bytes userspace wants to read
583  * @offset: (inout): the current position for writing into @buf
584  * @report: A single OA report to (optionally) include as part of the sample
585  *
586  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587  * properties when opening a stream, tracked as `stream->sample_flags`. This
588  * function copies the requested components of a single sample to the given
589  * read() @buf.
590  *
591  * The @buf @offset will only be updated on success.
592  *
593  * Returns: 0 on success, negative error code on failure.
594  */
595 static int append_oa_sample(struct i915_perf_stream *stream,
596 			    char __user *buf,
597 			    size_t count,
598 			    size_t *offset,
599 			    const u8 *report)
600 {
601 	int report_size = stream->oa_buffer.format_size;
602 	struct drm_i915_perf_record_header header;
603 	u32 sample_flags = stream->sample_flags;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (sample_flags & SAMPLE_OA_REPORT) {
618 		if (copy_to_user(buf, report, report_size))
619 			return -EFAULT;
620 	}
621 
622 	(*offset) += header.size;
623 
624 	return 0;
625 }
626 
627 /**
628  * Copies all buffered OA reports into userspace read() buffer.
629  * @stream: An i915-perf stream opened for OA metrics
630  * @buf: destination buffer given by userspace
631  * @count: the number of bytes userspace wants to read
632  * @offset: (inout): the current position for writing into @buf
633  *
634  * Notably any error condition resulting in a short read (-%ENOSPC or
635  * -%EFAULT) will be returned even though one or more records may
636  * have been successfully copied. In this case it's up to the caller
637  * to decide if the error should be squashed before returning to
638  * userspace.
639  *
640  * Note: reports are consumed from the head, and appended to the
641  * tail, so the tail chases the head?... If you think that's mad
642  * and back-to-front you're not alone, but this follows the
643  * Gen PRM naming convention.
644  *
645  * Returns: 0 on success, negative error code on failure.
646  */
647 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
648 				  char __user *buf,
649 				  size_t count,
650 				  size_t *offset)
651 {
652 	struct intel_uncore *uncore = stream->uncore;
653 	int report_size = stream->oa_buffer.format_size;
654 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
655 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
656 	u32 mask = (OA_BUFFER_SIZE - 1);
657 	size_t start_offset = *offset;
658 	unsigned long flags;
659 	u32 head, tail;
660 	u32 taken;
661 	int ret = 0;
662 
663 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
664 		return -EIO;
665 
666 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
667 
668 	head = stream->oa_buffer.head;
669 	tail = stream->oa_buffer.tail;
670 
671 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
672 
673 	/*
674 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
675 	 * while indexing relative to oa_buf_base.
676 	 */
677 	head -= gtt_offset;
678 	tail -= gtt_offset;
679 
680 	/*
681 	 * An out of bounds or misaligned head or tail pointer implies a driver
682 	 * bug since we validate + align the tail pointers we read from the
683 	 * hardware and we are in full control of the head pointer which should
684 	 * only be incremented by multiples of the report size (notably also
685 	 * all a power of two).
686 	 */
687 	if (drm_WARN_ONCE(&uncore->i915->drm,
688 			  head > OA_BUFFER_SIZE || head % report_size ||
689 			  tail > OA_BUFFER_SIZE || tail % report_size,
690 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
691 			  head, tail))
692 		return -EIO;
693 
694 
695 	for (/* none */;
696 	     (taken = OA_TAKEN(tail, head));
697 	     head = (head + report_size) & mask) {
698 		u8 *report = oa_buf_base + head;
699 		u32 *report32 = (void *)report;
700 		u32 ctx_id;
701 		u32 reason;
702 
703 		/*
704 		 * All the report sizes factor neatly into the buffer
705 		 * size so we never expect to see a report split
706 		 * between the beginning and end of the buffer.
707 		 *
708 		 * Given the initial alignment check a misalignment
709 		 * here would imply a driver bug that would result
710 		 * in an overrun.
711 		 */
712 		if (drm_WARN_ON(&uncore->i915->drm,
713 				(OA_BUFFER_SIZE - head) < report_size)) {
714 			drm_err(&uncore->i915->drm,
715 				"Spurious OA head ptr: non-integral report offset\n");
716 			break;
717 		}
718 
719 		/*
720 		 * The reason field includes flags identifying what
721 		 * triggered this specific report (mostly timer
722 		 * triggered or e.g. due to a context switch).
723 		 *
724 		 * This field is never expected to be zero so we can
725 		 * check that the report isn't invalid before copying
726 		 * it to userspace...
727 		 */
728 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 			  (IS_GEN(stream->perf->i915, 12) ?
730 			   OAREPORT_REASON_MASK_EXTENDED :
731 			   OAREPORT_REASON_MASK));
732 		if (reason == 0) {
733 			if (__ratelimit(&stream->perf->spurious_report_rs))
734 				DRM_NOTE("Skipping spurious, invalid OA report\n");
735 			continue;
736 		}
737 
738 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
739 
740 		/*
741 		 * Squash whatever is in the CTX_ID field if it's marked as
742 		 * invalid to be sure we avoid false-positive, single-context
743 		 * filtering below...
744 		 *
745 		 * Note: that we don't clear the valid_ctx_bit so userspace can
746 		 * understand that the ID has been squashed by the kernel.
747 		 */
748 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
749 		    INTEL_GEN(stream->perf->i915) <= 11)
750 			ctx_id = report32[2] = INVALID_CTX_ID;
751 
752 		/*
753 		 * NB: For Gen 8 the OA unit no longer supports clock gating
754 		 * off for a specific context and the kernel can't securely
755 		 * stop the counters from updating as system-wide / global
756 		 * values.
757 		 *
758 		 * Automatic reports now include a context ID so reports can be
759 		 * filtered on the cpu but it's not worth trying to
760 		 * automatically subtract/hide counter progress for other
761 		 * contexts while filtering since we can't stop userspace
762 		 * issuing MI_REPORT_PERF_COUNT commands which would still
763 		 * provide a side-band view of the real values.
764 		 *
765 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
766 		 * to normalize counters for a single filtered context then it
767 		 * needs be forwarded bookend context-switch reports so that it
768 		 * can track switches in between MI_REPORT_PERF_COUNT commands
769 		 * and can itself subtract/ignore the progress of counters
770 		 * associated with other contexts. Note that the hardware
771 		 * automatically triggers reports when switching to a new
772 		 * context which are tagged with the ID of the newly active
773 		 * context. To avoid the complexity (and likely fragility) of
774 		 * reading ahead while parsing reports to try and minimize
775 		 * forwarding redundant context switch reports (i.e. between
776 		 * other, unrelated contexts) we simply elect to forward them
777 		 * all.
778 		 *
779 		 * We don't rely solely on the reason field to identify context
780 		 * switches since it's not-uncommon for periodic samples to
781 		 * identify a switch before any 'context switch' report.
782 		 */
783 		if (!stream->perf->exclusive_stream->ctx ||
784 		    stream->specific_ctx_id == ctx_id ||
785 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
786 		    reason & OAREPORT_REASON_CTX_SWITCH) {
787 
788 			/*
789 			 * While filtering for a single context we avoid
790 			 * leaking the IDs of other contexts.
791 			 */
792 			if (stream->perf->exclusive_stream->ctx &&
793 			    stream->specific_ctx_id != ctx_id) {
794 				report32[2] = INVALID_CTX_ID;
795 			}
796 
797 			ret = append_oa_sample(stream, buf, count, offset,
798 					       report);
799 			if (ret)
800 				break;
801 
802 			stream->oa_buffer.last_ctx_id = ctx_id;
803 		}
804 
805 		/*
806 		 * Clear out the first 2 dword as a mean to detect unlanded
807 		 * reports.
808 		 */
809 		report32[0] = 0;
810 		report32[1] = 0;
811 	}
812 
813 	if (start_offset != *offset) {
814 		i915_reg_t oaheadptr;
815 
816 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
817 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
818 
819 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
820 
821 		/*
822 		 * We removed the gtt_offset for the copy loop above, indexing
823 		 * relative to oa_buf_base so put back here...
824 		 */
825 		head += gtt_offset;
826 		intel_uncore_write(uncore, oaheadptr,
827 				   head & GEN12_OAG_OAHEADPTR_MASK);
828 		stream->oa_buffer.head = head;
829 
830 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
831 	}
832 
833 	return ret;
834 }
835 
836 /**
837  * gen8_oa_read - copy status records then buffered OA reports
838  * @stream: An i915-perf stream opened for OA metrics
839  * @buf: destination buffer given by userspace
840  * @count: the number of bytes userspace wants to read
841  * @offset: (inout): the current position for writing into @buf
842  *
843  * Checks OA unit status registers and if necessary appends corresponding
844  * status records for userspace (such as for a buffer full condition) and then
845  * initiate appending any buffered OA reports.
846  *
847  * Updates @offset according to the number of bytes successfully copied into
848  * the userspace buffer.
849  *
850  * NB: some data may be successfully copied to the userspace buffer
851  * even if an error is returned, and this is reflected in the
852  * updated @offset.
853  *
854  * Returns: zero on success or a negative error code
855  */
856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 			char __user *buf,
858 			size_t count,
859 			size_t *offset)
860 {
861 	struct intel_uncore *uncore = stream->uncore;
862 	u32 oastatus;
863 	i915_reg_t oastatus_reg;
864 	int ret;
865 
866 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
867 		return -EIO;
868 
869 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
870 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
871 
872 	oastatus = intel_uncore_read(uncore, oastatus_reg);
873 
874 	/*
875 	 * We treat OABUFFER_OVERFLOW as a significant error:
876 	 *
877 	 * Although theoretically we could handle this more gracefully
878 	 * sometimes, some Gens don't correctly suppress certain
879 	 * automatically triggered reports in this condition and so we
880 	 * have to assume that old reports are now being trampled
881 	 * over.
882 	 *
883 	 * Considering how we don't currently give userspace control
884 	 * over the OA buffer size and always configure a large 16MB
885 	 * buffer, then a buffer overflow does anyway likely indicate
886 	 * that something has gone quite badly wrong.
887 	 */
888 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 		ret = append_oa_status(stream, buf, count, offset,
890 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 		if (ret)
892 			return ret;
893 
894 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 			  stream->period_exponent);
896 
897 		stream->perf->ops.oa_disable(stream);
898 		stream->perf->ops.oa_enable(stream);
899 
900 		/*
901 		 * Note: .oa_enable() is expected to re-init the oabuffer and
902 		 * reset GEN8_OASTATUS for us
903 		 */
904 		oastatus = intel_uncore_read(uncore, oastatus_reg);
905 	}
906 
907 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 		ret = append_oa_status(stream, buf, count, offset,
909 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 		if (ret)
911 			return ret;
912 		intel_uncore_write(uncore, oastatus_reg,
913 				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 	}
915 
916 	return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918 
919 /**
920  * Copies all buffered OA reports into userspace read() buffer.
921  * @stream: An i915-perf stream opened for OA metrics
922  * @buf: destination buffer given by userspace
923  * @count: the number of bytes userspace wants to read
924  * @offset: (inout): the current position for writing into @buf
925  *
926  * Notably any error condition resulting in a short read (-%ENOSPC or
927  * -%EFAULT) will be returned even though one or more records may
928  * have been successfully copied. In this case it's up to the caller
929  * to decide if the error should be squashed before returning to
930  * userspace.
931  *
932  * Note: reports are consumed from the head, and appended to the
933  * tail, so the tail chases the head?... If you think that's mad
934  * and back-to-front you're not alone, but this follows the
935  * Gen PRM naming convention.
936  *
937  * Returns: 0 on success, negative error code on failure.
938  */
939 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
940 				  char __user *buf,
941 				  size_t count,
942 				  size_t *offset)
943 {
944 	struct intel_uncore *uncore = stream->uncore;
945 	int report_size = stream->oa_buffer.format_size;
946 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
947 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948 	u32 mask = (OA_BUFFER_SIZE - 1);
949 	size_t start_offset = *offset;
950 	unsigned long flags;
951 	u32 head, tail;
952 	u32 taken;
953 	int ret = 0;
954 
955 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
956 		return -EIO;
957 
958 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
959 
960 	head = stream->oa_buffer.head;
961 	tail = stream->oa_buffer.tail;
962 
963 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
964 
965 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
966 	 * while indexing relative to oa_buf_base.
967 	 */
968 	head -= gtt_offset;
969 	tail -= gtt_offset;
970 
971 	/* An out of bounds or misaligned head or tail pointer implies a driver
972 	 * bug since we validate + align the tail pointers we read from the
973 	 * hardware and we are in full control of the head pointer which should
974 	 * only be incremented by multiples of the report size (notably also
975 	 * all a power of two).
976 	 */
977 	if (drm_WARN_ONCE(&uncore->i915->drm,
978 			  head > OA_BUFFER_SIZE || head % report_size ||
979 			  tail > OA_BUFFER_SIZE || tail % report_size,
980 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
981 			  head, tail))
982 		return -EIO;
983 
984 
985 	for (/* none */;
986 	     (taken = OA_TAKEN(tail, head));
987 	     head = (head + report_size) & mask) {
988 		u8 *report = oa_buf_base + head;
989 		u32 *report32 = (void *)report;
990 
991 		/* All the report sizes factor neatly into the buffer
992 		 * size so we never expect to see a report split
993 		 * between the beginning and end of the buffer.
994 		 *
995 		 * Given the initial alignment check a misalignment
996 		 * here would imply a driver bug that would result
997 		 * in an overrun.
998 		 */
999 		if (drm_WARN_ON(&uncore->i915->drm,
1000 				(OA_BUFFER_SIZE - head) < report_size)) {
1001 			drm_err(&uncore->i915->drm,
1002 				"Spurious OA head ptr: non-integral report offset\n");
1003 			break;
1004 		}
1005 
1006 		/* The report-ID field for periodic samples includes
1007 		 * some undocumented flags related to what triggered
1008 		 * the report and is never expected to be zero so we
1009 		 * can check that the report isn't invalid before
1010 		 * copying it to userspace...
1011 		 */
1012 		if (report32[0] == 0) {
1013 			if (__ratelimit(&stream->perf->spurious_report_rs))
1014 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1015 			continue;
1016 		}
1017 
1018 		ret = append_oa_sample(stream, buf, count, offset, report);
1019 		if (ret)
1020 			break;
1021 
1022 		/* Clear out the first 2 dwords as a mean to detect unlanded
1023 		 * reports.
1024 		 */
1025 		report32[0] = 0;
1026 		report32[1] = 0;
1027 	}
1028 
1029 	if (start_offset != *offset) {
1030 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031 
1032 		/* We removed the gtt_offset for the copy loop above, indexing
1033 		 * relative to oa_buf_base so put back here...
1034 		 */
1035 		head += gtt_offset;
1036 
1037 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1038 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1039 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040 		stream->oa_buffer.head = head;
1041 
1042 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /**
1049  * gen7_oa_read - copy status records then buffered OA reports
1050  * @stream: An i915-perf stream opened for OA metrics
1051  * @buf: destination buffer given by userspace
1052  * @count: the number of bytes userspace wants to read
1053  * @offset: (inout): the current position for writing into @buf
1054  *
1055  * Checks Gen 7 specific OA unit status registers and if necessary appends
1056  * corresponding status records for userspace (such as for a buffer full
1057  * condition) and then initiate appending any buffered OA reports.
1058  *
1059  * Updates @offset according to the number of bytes successfully copied into
1060  * the userspace buffer.
1061  *
1062  * Returns: zero on success or a negative error code
1063  */
1064 static int gen7_oa_read(struct i915_perf_stream *stream,
1065 			char __user *buf,
1066 			size_t count,
1067 			size_t *offset)
1068 {
1069 	struct intel_uncore *uncore = stream->uncore;
1070 	u32 oastatus1;
1071 	int ret;
1072 
1073 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074 		return -EIO;
1075 
1076 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077 
1078 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1079 	 * bits while the OA unit is enabled (while the tail pointer
1080 	 * may be updated asynchronously) so we ignore status bits
1081 	 * that have already been reported to userspace.
1082 	 */
1083 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084 
1085 	/* We treat OABUFFER_OVERFLOW as a significant error:
1086 	 *
1087 	 * - The status can be interpreted to mean that the buffer is
1088 	 *   currently full (with a higher precedence than OA_TAKEN()
1089 	 *   which will start to report a near-empty buffer after an
1090 	 *   overflow) but it's awkward that we can't clear the status
1091 	 *   on Haswell, so without a reset we won't be able to catch
1092 	 *   the state again.
1093 	 *
1094 	 * - Since it also implies the HW has started overwriting old
1095 	 *   reports it may also affect our sanity checks for invalid
1096 	 *   reports when copying to userspace that assume new reports
1097 	 *   are being written to cleared memory.
1098 	 *
1099 	 * - In the future we may want to introduce a flight recorder
1100 	 *   mode where the driver will automatically maintain a safe
1101 	 *   guard band between head/tail, avoiding this overflow
1102 	 *   condition, but we avoid the added driver complexity for
1103 	 *   now.
1104 	 */
1105 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1106 		ret = append_oa_status(stream, buf, count, offset,
1107 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1108 		if (ret)
1109 			return ret;
1110 
1111 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112 			  stream->period_exponent);
1113 
1114 		stream->perf->ops.oa_disable(stream);
1115 		stream->perf->ops.oa_enable(stream);
1116 
1117 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 	}
1119 
1120 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1121 		ret = append_oa_status(stream, buf, count, offset,
1122 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1123 		if (ret)
1124 			return ret;
1125 		stream->perf->gen7_latched_oastatus1 |=
1126 			GEN7_OASTATUS1_REPORT_LOST;
1127 	}
1128 
1129 	return gen7_append_oa_reports(stream, buf, count, offset);
1130 }
1131 
1132 /**
1133  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1134  * @stream: An i915-perf stream opened for OA metrics
1135  *
1136  * Called when userspace tries to read() from a blocking stream FD opened
1137  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1138  * OA buffer and wakes us.
1139  *
1140  * Note: it's acceptable to have this return with some false positives
1141  * since any subsequent read handling will return -EAGAIN if there isn't
1142  * really data ready for userspace yet.
1143  *
1144  * Returns: zero on success or a negative error code
1145  */
1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1147 {
1148 	/* We would wait indefinitely if periodic sampling is not enabled */
1149 	if (!stream->periodic)
1150 		return -EIO;
1151 
1152 	return wait_event_interruptible(stream->poll_wq,
1153 					oa_buffer_check_unlocked(stream));
1154 }
1155 
1156 /**
1157  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1158  * @stream: An i915-perf stream opened for OA metrics
1159  * @file: An i915 perf stream file
1160  * @wait: poll() state table
1161  *
1162  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1163  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1164  * when it sees data ready to read in the circular OA buffer.
1165  */
1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1167 			      struct file *file,
1168 			      poll_table *wait)
1169 {
1170 	poll_wait(file, &stream->poll_wq, wait);
1171 }
1172 
1173 /**
1174  * i915_oa_read - just calls through to &i915_oa_ops->read
1175  * @stream: An i915-perf stream opened for OA metrics
1176  * @buf: destination buffer given by userspace
1177  * @count: the number of bytes userspace wants to read
1178  * @offset: (inout): the current position for writing into @buf
1179  *
1180  * Updates @offset according to the number of bytes successfully copied into
1181  * the userspace buffer.
1182  *
1183  * Returns: zero on success or a negative error code
1184  */
1185 static int i915_oa_read(struct i915_perf_stream *stream,
1186 			char __user *buf,
1187 			size_t count,
1188 			size_t *offset)
1189 {
1190 	return stream->perf->ops.read(stream, buf, count, offset);
1191 }
1192 
1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194 {
1195 	struct i915_gem_engines_iter it;
1196 	struct i915_gem_context *ctx = stream->ctx;
1197 	struct intel_context *ce;
1198 	struct i915_gem_ww_ctx ww;
1199 	int err = -ENODEV;
1200 
1201 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1202 		if (ce->engine != stream->engine) /* first match! */
1203 			continue;
1204 
1205 		err = 0;
1206 		break;
1207 	}
1208 	i915_gem_context_unlock_engines(ctx);
1209 
1210 	if (err)
1211 		return ERR_PTR(err);
1212 
1213 	i915_gem_ww_ctx_init(&ww, true);
1214 retry:
1215 	/*
1216 	 * As the ID is the gtt offset of the context's vma we
1217 	 * pin the vma to ensure the ID remains fixed.
1218 	 */
1219 	err = intel_context_pin_ww(ce, &ww);
1220 	if (err == -EDEADLK) {
1221 		err = i915_gem_ww_ctx_backoff(&ww);
1222 		if (!err)
1223 			goto retry;
1224 	}
1225 	i915_gem_ww_ctx_fini(&ww);
1226 
1227 	if (err)
1228 		return ERR_PTR(err);
1229 
1230 	stream->pinned_ctx = ce;
1231 	return stream->pinned_ctx;
1232 }
1233 
1234 /**
1235  * oa_get_render_ctx_id - determine and hold ctx hw id
1236  * @stream: An i915-perf stream opened for OA metrics
1237  *
1238  * Determine the render context hw id, and ensure it remains fixed for the
1239  * lifetime of the stream. This ensures that we don't have to worry about
1240  * updating the context ID in OACONTROL on the fly.
1241  *
1242  * Returns: zero on success or a negative error code
1243  */
1244 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1245 {
1246 	struct intel_context *ce;
1247 
1248 	ce = oa_pin_context(stream);
1249 	if (IS_ERR(ce))
1250 		return PTR_ERR(ce);
1251 
1252 	switch (INTEL_GEN(ce->engine->i915)) {
1253 	case 7: {
1254 		/*
1255 		 * On Haswell we don't do any post processing of the reports
1256 		 * and don't need to use the mask.
1257 		 */
1258 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1259 		stream->specific_ctx_id_mask = 0;
1260 		break;
1261 	}
1262 
1263 	case 8:
1264 	case 9:
1265 	case 10:
1266 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1267 			stream->specific_ctx_id_mask =
1268 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1269 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1270 		} else {
1271 			/*
1272 			 * When using GuC, the context descriptor we write in
1273 			 * i915 is read by GuC and rewritten before it's
1274 			 * actually written into the hardware. The LRCA is
1275 			 * what is put into the context id field of the
1276 			 * context descriptor by GuC. Because it's aligned to
1277 			 * a page, the lower 12bits are always at 0 and
1278 			 * dropped by GuC. They won't be part of the context
1279 			 * ID in the OA reports, so squash those lower bits.
1280 			 */
1281 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1282 
1283 			/*
1284 			 * GuC uses the top bit to signal proxy submission, so
1285 			 * ignore that bit.
1286 			 */
1287 			stream->specific_ctx_id_mask =
1288 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1289 		}
1290 		break;
1291 
1292 	case 11:
1293 	case 12: {
1294 		stream->specific_ctx_id_mask =
1295 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1296 		/*
1297 		 * Pick an unused context id
1298 		 * 0 - BITS_PER_LONG are used by other contexts
1299 		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1300 		 */
1301 		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1302 		break;
1303 	}
1304 
1305 	default:
1306 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1307 	}
1308 
1309 	ce->tag = stream->specific_ctx_id;
1310 
1311 	drm_dbg(&stream->perf->i915->drm,
1312 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1313 		stream->specific_ctx_id,
1314 		stream->specific_ctx_id_mask);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1321  * @stream: An i915-perf stream opened for OA metrics
1322  *
1323  * In case anything needed doing to ensure the context HW ID would remain valid
1324  * for the lifetime of the stream, then that can be undone here.
1325  */
1326 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1327 {
1328 	struct intel_context *ce;
1329 
1330 	ce = fetch_and_zero(&stream->pinned_ctx);
1331 	if (ce) {
1332 		ce->tag = 0; /* recomputed on next submission after parking */
1333 		intel_context_unpin(ce);
1334 	}
1335 
1336 	stream->specific_ctx_id = INVALID_CTX_ID;
1337 	stream->specific_ctx_id_mask = 0;
1338 }
1339 
1340 static void
1341 free_oa_buffer(struct i915_perf_stream *stream)
1342 {
1343 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1344 				   I915_VMA_RELEASE_MAP);
1345 
1346 	stream->oa_buffer.vaddr = NULL;
1347 }
1348 
1349 static void
1350 free_oa_configs(struct i915_perf_stream *stream)
1351 {
1352 	struct i915_oa_config_bo *oa_bo, *tmp;
1353 
1354 	i915_oa_config_put(stream->oa_config);
1355 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1356 		free_oa_config_bo(oa_bo);
1357 }
1358 
1359 static void
1360 free_noa_wait(struct i915_perf_stream *stream)
1361 {
1362 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1363 }
1364 
1365 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1366 {
1367 	struct i915_perf *perf = stream->perf;
1368 
1369 	BUG_ON(stream != perf->exclusive_stream);
1370 
1371 	/*
1372 	 * Unset exclusive_stream first, it will be checked while disabling
1373 	 * the metric set on gen8+.
1374 	 *
1375 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1376 	 */
1377 	WRITE_ONCE(perf->exclusive_stream, NULL);
1378 	perf->ops.disable_metric_set(stream);
1379 
1380 	free_oa_buffer(stream);
1381 
1382 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1383 	intel_engine_pm_put(stream->engine);
1384 
1385 	if (stream->ctx)
1386 		oa_put_render_ctx_id(stream);
1387 
1388 	free_oa_configs(stream);
1389 	free_noa_wait(stream);
1390 
1391 	if (perf->spurious_report_rs.missed) {
1392 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1393 			 perf->spurious_report_rs.missed);
1394 	}
1395 }
1396 
1397 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1398 {
1399 	struct intel_uncore *uncore = stream->uncore;
1400 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1401 	unsigned long flags;
1402 
1403 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1404 
1405 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1406 	 * before OASTATUS1, but after OASTATUS2
1407 	 */
1408 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1409 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1410 	stream->oa_buffer.head = gtt_offset;
1411 
1412 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1413 
1414 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1415 			   gtt_offset | OABUFFER_SIZE_16M);
1416 
1417 	/* Mark that we need updated tail pointers to read from... */
1418 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1419 	stream->oa_buffer.tail = gtt_offset;
1420 
1421 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1422 
1423 	/* On Haswell we have to track which OASTATUS1 flags we've
1424 	 * already seen since they can't be cleared while periodic
1425 	 * sampling is enabled.
1426 	 */
1427 	stream->perf->gen7_latched_oastatus1 = 0;
1428 
1429 	/* NB: although the OA buffer will initially be allocated
1430 	 * zeroed via shmfs (and so this memset is redundant when
1431 	 * first allocating), we may re-init the OA buffer, either
1432 	 * when re-enabling a stream or in error/reset paths.
1433 	 *
1434 	 * The reason we clear the buffer for each re-init is for the
1435 	 * sanity check in gen7_append_oa_reports() that looks at the
1436 	 * report-id field to make sure it's non-zero which relies on
1437 	 * the assumption that new reports are being written to zeroed
1438 	 * memory...
1439 	 */
1440 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1441 }
1442 
1443 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1444 {
1445 	struct intel_uncore *uncore = stream->uncore;
1446 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1447 	unsigned long flags;
1448 
1449 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1450 
1451 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1452 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1453 	stream->oa_buffer.head = gtt_offset;
1454 
1455 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1456 
1457 	/*
1458 	 * PRM says:
1459 	 *
1460 	 *  "This MMIO must be set before the OATAILPTR
1461 	 *  register and after the OAHEADPTR register. This is
1462 	 *  to enable proper functionality of the overflow
1463 	 *  bit."
1464 	 */
1465 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1466 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1467 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1468 
1469 	/* Mark that we need updated tail pointers to read from... */
1470 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1471 	stream->oa_buffer.tail = gtt_offset;
1472 
1473 	/*
1474 	 * Reset state used to recognise context switches, affecting which
1475 	 * reports we will forward to userspace while filtering for a single
1476 	 * context.
1477 	 */
1478 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1479 
1480 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1481 
1482 	/*
1483 	 * NB: although the OA buffer will initially be allocated
1484 	 * zeroed via shmfs (and so this memset is redundant when
1485 	 * first allocating), we may re-init the OA buffer, either
1486 	 * when re-enabling a stream or in error/reset paths.
1487 	 *
1488 	 * The reason we clear the buffer for each re-init is for the
1489 	 * sanity check in gen8_append_oa_reports() that looks at the
1490 	 * reason field to make sure it's non-zero which relies on
1491 	 * the assumption that new reports are being written to zeroed
1492 	 * memory...
1493 	 */
1494 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1495 }
1496 
1497 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1498 {
1499 	struct intel_uncore *uncore = stream->uncore;
1500 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1504 
1505 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1506 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1507 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1508 	stream->oa_buffer.head = gtt_offset;
1509 
1510 	/*
1511 	 * PRM says:
1512 	 *
1513 	 *  "This MMIO must be set before the OATAILPTR
1514 	 *  register and after the OAHEADPTR register. This is
1515 	 *  to enable proper functionality of the overflow
1516 	 *  bit."
1517 	 */
1518 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1519 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1520 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1521 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1522 
1523 	/* Mark that we need updated tail pointers to read from... */
1524 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1525 	stream->oa_buffer.tail = gtt_offset;
1526 
1527 	/*
1528 	 * Reset state used to recognise context switches, affecting which
1529 	 * reports we will forward to userspace while filtering for a single
1530 	 * context.
1531 	 */
1532 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1533 
1534 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1535 
1536 	/*
1537 	 * NB: although the OA buffer will initially be allocated
1538 	 * zeroed via shmfs (and so this memset is redundant when
1539 	 * first allocating), we may re-init the OA buffer, either
1540 	 * when re-enabling a stream or in error/reset paths.
1541 	 *
1542 	 * The reason we clear the buffer for each re-init is for the
1543 	 * sanity check in gen8_append_oa_reports() that looks at the
1544 	 * reason field to make sure it's non-zero which relies on
1545 	 * the assumption that new reports are being written to zeroed
1546 	 * memory...
1547 	 */
1548 	memset(stream->oa_buffer.vaddr, 0,
1549 	       stream->oa_buffer.vma->size);
1550 }
1551 
1552 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1553 {
1554 	struct drm_i915_private *i915 = stream->perf->i915;
1555 	struct drm_i915_gem_object *bo;
1556 	struct i915_vma *vma;
1557 	int ret;
1558 
1559 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1560 		return -ENODEV;
1561 
1562 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1563 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1564 
1565 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1566 	if (IS_ERR(bo)) {
1567 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1568 		return PTR_ERR(bo);
1569 	}
1570 
1571 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1572 
1573 	/* PreHSW required 512K alignment, HSW requires 16M */
1574 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1575 	if (IS_ERR(vma)) {
1576 		ret = PTR_ERR(vma);
1577 		goto err_unref;
1578 	}
1579 	stream->oa_buffer.vma = vma;
1580 
1581 	stream->oa_buffer.vaddr =
1582 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1583 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1584 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1585 		goto err_unpin;
1586 	}
1587 
1588 	return 0;
1589 
1590 err_unpin:
1591 	__i915_vma_unpin(vma);
1592 
1593 err_unref:
1594 	i915_gem_object_put(bo);
1595 
1596 	stream->oa_buffer.vaddr = NULL;
1597 	stream->oa_buffer.vma = NULL;
1598 
1599 	return ret;
1600 }
1601 
1602 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1603 				  bool save, i915_reg_t reg, u32 offset,
1604 				  u32 dword_count)
1605 {
1606 	u32 cmd;
1607 	u32 d;
1608 
1609 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1610 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1611 	if (INTEL_GEN(stream->perf->i915) >= 8)
1612 		cmd++;
1613 
1614 	for (d = 0; d < dword_count; d++) {
1615 		*cs++ = cmd;
1616 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1617 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1618 						offset) + 4 * d;
1619 		*cs++ = 0;
1620 	}
1621 
1622 	return cs;
1623 }
1624 
1625 static int alloc_noa_wait(struct i915_perf_stream *stream)
1626 {
1627 	struct drm_i915_private *i915 = stream->perf->i915;
1628 	struct drm_i915_gem_object *bo;
1629 	struct i915_vma *vma;
1630 	const u64 delay_ticks = 0xffffffffffffffff -
1631 		i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1632 	const u32 base = stream->engine->mmio_base;
1633 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1634 	u32 *batch, *ts0, *cs, *jump;
1635 	int ret, i;
1636 	enum {
1637 		START_TS,
1638 		NOW_TS,
1639 		DELTA_TS,
1640 		JUMP_PREDICATE,
1641 		DELTA_TARGET,
1642 		N_CS_GPR
1643 	};
1644 
1645 	bo = i915_gem_object_create_internal(i915, 4096);
1646 	if (IS_ERR(bo)) {
1647 		drm_err(&i915->drm,
1648 			"Failed to allocate NOA wait batchbuffer\n");
1649 		return PTR_ERR(bo);
1650 	}
1651 
1652 	/*
1653 	 * We pin in GGTT because we jump into this buffer now because
1654 	 * multiple OA config BOs will have a jump to this address and it
1655 	 * needs to be fixed during the lifetime of the i915/perf stream.
1656 	 */
1657 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1658 	if (IS_ERR(vma)) {
1659 		ret = PTR_ERR(vma);
1660 		goto err_unref;
1661 	}
1662 
1663 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1664 	if (IS_ERR(batch)) {
1665 		ret = PTR_ERR(batch);
1666 		goto err_unpin;
1667 	}
1668 
1669 	/* Save registers. */
1670 	for (i = 0; i < N_CS_GPR; i++)
1671 		cs = save_restore_register(
1672 			stream, cs, true /* save */, CS_GPR(i),
1673 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1674 	cs = save_restore_register(
1675 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1676 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1677 
1678 	/* First timestamp snapshot location. */
1679 	ts0 = cs;
1680 
1681 	/*
1682 	 * Initial snapshot of the timestamp register to implement the wait.
1683 	 * We work with 32b values, so clear out the top 32b bits of the
1684 	 * register because the ALU works 64bits.
1685 	 */
1686 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1687 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1688 	*cs++ = 0;
1689 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1690 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1691 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1692 
1693 	/*
1694 	 * This is the location we're going to jump back into until the
1695 	 * required amount of time has passed.
1696 	 */
1697 	jump = cs;
1698 
1699 	/*
1700 	 * Take another snapshot of the timestamp register. Take care to clear
1701 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1702 	 * operations below.
1703 	 */
1704 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1705 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1706 	*cs++ = 0;
1707 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1708 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1709 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1710 
1711 	/*
1712 	 * Do a diff between the 2 timestamps and store the result back into
1713 	 * CS_GPR(1).
1714 	 */
1715 	*cs++ = MI_MATH(5);
1716 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1717 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1718 	*cs++ = MI_MATH_SUB;
1719 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1720 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1721 
1722 	/*
1723 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1724 	 * timestamp have rolled over the 32bits) into the predicate register
1725 	 * to be used for the predicated jump.
1726 	 */
1727 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1728 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1729 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1730 
1731 	/* Restart from the beginning if we had timestamps roll over. */
1732 	*cs++ = (INTEL_GEN(i915) < 8 ?
1733 		 MI_BATCH_BUFFER_START :
1734 		 MI_BATCH_BUFFER_START_GEN8) |
1735 		MI_BATCH_PREDICATE;
1736 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1737 	*cs++ = 0;
1738 
1739 	/*
1740 	 * Now add the diff between to previous timestamps and add it to :
1741 	 *      (((1 * << 64) - 1) - delay_ns)
1742 	 *
1743 	 * When the Carry Flag contains 1 this means the elapsed time is
1744 	 * longer than the expected delay, and we can exit the wait loop.
1745 	 */
1746 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1747 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1748 	*cs++ = lower_32_bits(delay_ticks);
1749 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1750 	*cs++ = upper_32_bits(delay_ticks);
1751 
1752 	*cs++ = MI_MATH(4);
1753 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1754 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1755 	*cs++ = MI_MATH_ADD;
1756 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1757 
1758 	*cs++ = MI_ARB_CHECK;
1759 
1760 	/*
1761 	 * Transfer the result into the predicate register to be used for the
1762 	 * predicated jump.
1763 	 */
1764 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1765 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1766 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1767 
1768 	/* Predicate the jump.  */
1769 	*cs++ = (INTEL_GEN(i915) < 8 ?
1770 		 MI_BATCH_BUFFER_START :
1771 		 MI_BATCH_BUFFER_START_GEN8) |
1772 		MI_BATCH_PREDICATE;
1773 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1774 	*cs++ = 0;
1775 
1776 	/* Restore registers. */
1777 	for (i = 0; i < N_CS_GPR; i++)
1778 		cs = save_restore_register(
1779 			stream, cs, false /* restore */, CS_GPR(i),
1780 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1781 	cs = save_restore_register(
1782 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1783 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1784 
1785 	/* And return to the ring. */
1786 	*cs++ = MI_BATCH_BUFFER_END;
1787 
1788 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1789 
1790 	i915_gem_object_flush_map(bo);
1791 	__i915_gem_object_release_map(bo);
1792 
1793 	stream->noa_wait = vma;
1794 	return 0;
1795 
1796 err_unpin:
1797 	i915_vma_unpin_and_release(&vma, 0);
1798 err_unref:
1799 	i915_gem_object_put(bo);
1800 	return ret;
1801 }
1802 
1803 static u32 *write_cs_mi_lri(u32 *cs,
1804 			    const struct i915_oa_reg *reg_data,
1805 			    u32 n_regs)
1806 {
1807 	u32 i;
1808 
1809 	for (i = 0; i < n_regs; i++) {
1810 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1811 			u32 n_lri = min_t(u32,
1812 					  n_regs - i,
1813 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1814 
1815 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1816 		}
1817 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1818 		*cs++ = reg_data[i].value;
1819 	}
1820 
1821 	return cs;
1822 }
1823 
1824 static int num_lri_dwords(int num_regs)
1825 {
1826 	int count = 0;
1827 
1828 	if (num_regs > 0) {
1829 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1830 		count += num_regs * 2;
1831 	}
1832 
1833 	return count;
1834 }
1835 
1836 static struct i915_oa_config_bo *
1837 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1838 		       struct i915_oa_config *oa_config)
1839 {
1840 	struct drm_i915_gem_object *obj;
1841 	struct i915_oa_config_bo *oa_bo;
1842 	size_t config_length = 0;
1843 	u32 *cs;
1844 	int err;
1845 
1846 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1847 	if (!oa_bo)
1848 		return ERR_PTR(-ENOMEM);
1849 
1850 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1851 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1852 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1853 	config_length += 3; /* MI_BATCH_BUFFER_START */
1854 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1855 
1856 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1857 	if (IS_ERR(obj)) {
1858 		err = PTR_ERR(obj);
1859 		goto err_free;
1860 	}
1861 
1862 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1863 	if (IS_ERR(cs)) {
1864 		err = PTR_ERR(cs);
1865 		goto err_oa_bo;
1866 	}
1867 
1868 	cs = write_cs_mi_lri(cs,
1869 			     oa_config->mux_regs,
1870 			     oa_config->mux_regs_len);
1871 	cs = write_cs_mi_lri(cs,
1872 			     oa_config->b_counter_regs,
1873 			     oa_config->b_counter_regs_len);
1874 	cs = write_cs_mi_lri(cs,
1875 			     oa_config->flex_regs,
1876 			     oa_config->flex_regs_len);
1877 
1878 	/* Jump into the active wait. */
1879 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1880 		 MI_BATCH_BUFFER_START :
1881 		 MI_BATCH_BUFFER_START_GEN8);
1882 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1883 	*cs++ = 0;
1884 
1885 	i915_gem_object_flush_map(obj);
1886 	__i915_gem_object_release_map(obj);
1887 
1888 	oa_bo->vma = i915_vma_instance(obj,
1889 				       &stream->engine->gt->ggtt->vm,
1890 				       NULL);
1891 	if (IS_ERR(oa_bo->vma)) {
1892 		err = PTR_ERR(oa_bo->vma);
1893 		goto err_oa_bo;
1894 	}
1895 
1896 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1897 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1898 
1899 	return oa_bo;
1900 
1901 err_oa_bo:
1902 	i915_gem_object_put(obj);
1903 err_free:
1904 	kfree(oa_bo);
1905 	return ERR_PTR(err);
1906 }
1907 
1908 static struct i915_vma *
1909 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1910 {
1911 	struct i915_oa_config_bo *oa_bo;
1912 
1913 	/*
1914 	 * Look for the buffer in the already allocated BOs attached
1915 	 * to the stream.
1916 	 */
1917 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1918 		if (oa_bo->oa_config == oa_config &&
1919 		    memcmp(oa_bo->oa_config->uuid,
1920 			   oa_config->uuid,
1921 			   sizeof(oa_config->uuid)) == 0)
1922 			goto out;
1923 	}
1924 
1925 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1926 	if (IS_ERR(oa_bo))
1927 		return ERR_CAST(oa_bo);
1928 
1929 out:
1930 	return i915_vma_get(oa_bo->vma);
1931 }
1932 
1933 static int
1934 emit_oa_config(struct i915_perf_stream *stream,
1935 	       struct i915_oa_config *oa_config,
1936 	       struct intel_context *ce,
1937 	       struct i915_active *active)
1938 {
1939 	struct i915_request *rq;
1940 	struct i915_vma *vma;
1941 	struct i915_gem_ww_ctx ww;
1942 	int err;
1943 
1944 	vma = get_oa_vma(stream, oa_config);
1945 	if (IS_ERR(vma))
1946 		return PTR_ERR(vma);
1947 
1948 	i915_gem_ww_ctx_init(&ww, true);
1949 retry:
1950 	err = i915_gem_object_lock(vma->obj, &ww);
1951 	if (err)
1952 		goto err;
1953 
1954 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1955 	if (err)
1956 		goto err;
1957 
1958 	intel_engine_pm_get(ce->engine);
1959 	rq = i915_request_create(ce);
1960 	intel_engine_pm_put(ce->engine);
1961 	if (IS_ERR(rq)) {
1962 		err = PTR_ERR(rq);
1963 		goto err_vma_unpin;
1964 	}
1965 
1966 	if (!IS_ERR_OR_NULL(active)) {
1967 		/* After all individual context modifications */
1968 		err = i915_request_await_active(rq, active,
1969 						I915_ACTIVE_AWAIT_ACTIVE);
1970 		if (err)
1971 			goto err_add_request;
1972 
1973 		err = i915_active_add_request(active, rq);
1974 		if (err)
1975 			goto err_add_request;
1976 	}
1977 
1978 	err = i915_request_await_object(rq, vma->obj, 0);
1979 	if (!err)
1980 		err = i915_vma_move_to_active(vma, rq, 0);
1981 	if (err)
1982 		goto err_add_request;
1983 
1984 	err = rq->engine->emit_bb_start(rq,
1985 					vma->node.start, 0,
1986 					I915_DISPATCH_SECURE);
1987 	if (err)
1988 		goto err_add_request;
1989 
1990 err_add_request:
1991 	i915_request_add(rq);
1992 err_vma_unpin:
1993 	i915_vma_unpin(vma);
1994 err:
1995 	if (err == -EDEADLK) {
1996 		err = i915_gem_ww_ctx_backoff(&ww);
1997 		if (!err)
1998 			goto retry;
1999 	}
2000 
2001 	i915_gem_ww_ctx_fini(&ww);
2002 	i915_vma_put(vma);
2003 	return err;
2004 }
2005 
2006 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2007 {
2008 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2009 }
2010 
2011 static int
2012 hsw_enable_metric_set(struct i915_perf_stream *stream,
2013 		      struct i915_active *active)
2014 {
2015 	struct intel_uncore *uncore = stream->uncore;
2016 
2017 	/*
2018 	 * PRM:
2019 	 *
2020 	 * OA unit is using “crclk” for its functionality. When trunk
2021 	 * level clock gating takes place, OA clock would be gated,
2022 	 * unable to count the events from non-render clock domain.
2023 	 * Render clock gating must be disabled when OA is enabled to
2024 	 * count the events from non-render domain. Unit level clock
2025 	 * gating for RCS should also be disabled.
2026 	 */
2027 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2028 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2029 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2030 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2031 
2032 	return emit_oa_config(stream,
2033 			      stream->oa_config, oa_context(stream),
2034 			      active);
2035 }
2036 
2037 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2038 {
2039 	struct intel_uncore *uncore = stream->uncore;
2040 
2041 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2042 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2043 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2044 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2045 
2046 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2047 }
2048 
2049 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2050 			      i915_reg_t reg)
2051 {
2052 	u32 mmio = i915_mmio_reg_offset(reg);
2053 	int i;
2054 
2055 	/*
2056 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2057 	 * Active' event. In the future it's anticipated that there
2058 	 * will be an explicit 'No Event' we can select, but not yet...
2059 	 */
2060 	if (!oa_config)
2061 		return 0;
2062 
2063 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2064 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2065 			return oa_config->flex_regs[i].value;
2066 	}
2067 
2068 	return 0;
2069 }
2070 /*
2071  * NB: It must always remain pointer safe to run this even if the OA unit
2072  * has been disabled.
2073  *
2074  * It's fine to put out-of-date values into these per-context registers
2075  * in the case that the OA unit has been disabled.
2076  */
2077 static void
2078 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2079 			       const struct i915_perf_stream *stream)
2080 {
2081 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2082 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2083 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2084 	i915_reg_t flex_regs[] = {
2085 		EU_PERF_CNTL0,
2086 		EU_PERF_CNTL1,
2087 		EU_PERF_CNTL2,
2088 		EU_PERF_CNTL3,
2089 		EU_PERF_CNTL4,
2090 		EU_PERF_CNTL5,
2091 		EU_PERF_CNTL6,
2092 	};
2093 	u32 *reg_state = ce->lrc_reg_state;
2094 	int i;
2095 
2096 	reg_state[ctx_oactxctrl + 1] =
2097 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2098 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2099 		GEN8_OA_COUNTER_RESUME;
2100 
2101 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2102 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2103 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2104 }
2105 
2106 struct flex {
2107 	i915_reg_t reg;
2108 	u32 offset;
2109 	u32 value;
2110 };
2111 
2112 static int
2113 gen8_store_flex(struct i915_request *rq,
2114 		struct intel_context *ce,
2115 		const struct flex *flex, unsigned int count)
2116 {
2117 	u32 offset;
2118 	u32 *cs;
2119 
2120 	cs = intel_ring_begin(rq, 4 * count);
2121 	if (IS_ERR(cs))
2122 		return PTR_ERR(cs);
2123 
2124 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2125 	do {
2126 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2127 		*cs++ = offset + flex->offset * sizeof(u32);
2128 		*cs++ = 0;
2129 		*cs++ = flex->value;
2130 	} while (flex++, --count);
2131 
2132 	intel_ring_advance(rq, cs);
2133 
2134 	return 0;
2135 }
2136 
2137 static int
2138 gen8_load_flex(struct i915_request *rq,
2139 	       struct intel_context *ce,
2140 	       const struct flex *flex, unsigned int count)
2141 {
2142 	u32 *cs;
2143 
2144 	GEM_BUG_ON(!count || count > 63);
2145 
2146 	cs = intel_ring_begin(rq, 2 * count + 2);
2147 	if (IS_ERR(cs))
2148 		return PTR_ERR(cs);
2149 
2150 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2151 	do {
2152 		*cs++ = i915_mmio_reg_offset(flex->reg);
2153 		*cs++ = flex->value;
2154 	} while (flex++, --count);
2155 	*cs++ = MI_NOOP;
2156 
2157 	intel_ring_advance(rq, cs);
2158 
2159 	return 0;
2160 }
2161 
2162 static int gen8_modify_context(struct intel_context *ce,
2163 			       const struct flex *flex, unsigned int count)
2164 {
2165 	struct i915_request *rq;
2166 	int err;
2167 
2168 	rq = intel_engine_create_kernel_request(ce->engine);
2169 	if (IS_ERR(rq))
2170 		return PTR_ERR(rq);
2171 
2172 	/* Serialise with the remote context */
2173 	err = intel_context_prepare_remote_request(ce, rq);
2174 	if (err == 0)
2175 		err = gen8_store_flex(rq, ce, flex, count);
2176 
2177 	i915_request_add(rq);
2178 	return err;
2179 }
2180 
2181 static int
2182 gen8_modify_self(struct intel_context *ce,
2183 		 const struct flex *flex, unsigned int count,
2184 		 struct i915_active *active)
2185 {
2186 	struct i915_request *rq;
2187 	int err;
2188 
2189 	intel_engine_pm_get(ce->engine);
2190 	rq = i915_request_create(ce);
2191 	intel_engine_pm_put(ce->engine);
2192 	if (IS_ERR(rq))
2193 		return PTR_ERR(rq);
2194 
2195 	if (!IS_ERR_OR_NULL(active)) {
2196 		err = i915_active_add_request(active, rq);
2197 		if (err)
2198 			goto err_add_request;
2199 	}
2200 
2201 	err = gen8_load_flex(rq, ce, flex, count);
2202 	if (err)
2203 		goto err_add_request;
2204 
2205 err_add_request:
2206 	i915_request_add(rq);
2207 	return err;
2208 }
2209 
2210 static int gen8_configure_context(struct i915_gem_context *ctx,
2211 				  struct flex *flex, unsigned int count)
2212 {
2213 	struct i915_gem_engines_iter it;
2214 	struct intel_context *ce;
2215 	int err = 0;
2216 
2217 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2218 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2219 
2220 		if (ce->engine->class != RENDER_CLASS)
2221 			continue;
2222 
2223 		/* Otherwise OA settings will be set upon first use */
2224 		if (!intel_context_pin_if_active(ce))
2225 			continue;
2226 
2227 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2228 		err = gen8_modify_context(ce, flex, count);
2229 
2230 		intel_context_unpin(ce);
2231 		if (err)
2232 			break;
2233 	}
2234 	i915_gem_context_unlock_engines(ctx);
2235 
2236 	return err;
2237 }
2238 
2239 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2240 				       struct i915_active *active)
2241 {
2242 	int err;
2243 	struct intel_context *ce = stream->pinned_ctx;
2244 	u32 format = stream->oa_buffer.format;
2245 	struct flex regs_context[] = {
2246 		{
2247 			GEN8_OACTXCONTROL,
2248 			stream->perf->ctx_oactxctrl_offset + 1,
2249 			active ? GEN8_OA_COUNTER_RESUME : 0,
2250 		},
2251 	};
2252 	/* Offsets in regs_lri are not used since this configuration is only
2253 	 * applied using LRI. Initialize the correct offsets for posterity.
2254 	 */
2255 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2256 	struct flex regs_lri[] = {
2257 		{
2258 			GEN12_OAR_OACONTROL,
2259 			GEN12_OAR_OACONTROL_OFFSET + 1,
2260 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2261 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2262 		},
2263 		{
2264 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2265 			CTX_CONTEXT_CONTROL,
2266 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2267 				      active ?
2268 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2269 				      0)
2270 		},
2271 	};
2272 
2273 	/* Modify the context image of pinned context with regs_context*/
2274 	err = intel_context_lock_pinned(ce);
2275 	if (err)
2276 		return err;
2277 
2278 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2279 	intel_context_unlock_pinned(ce);
2280 	if (err)
2281 		return err;
2282 
2283 	/* Apply regs_lri using LRI with pinned context */
2284 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2285 }
2286 
2287 /*
2288  * Manages updating the per-context aspects of the OA stream
2289  * configuration across all contexts.
2290  *
2291  * The awkward consideration here is that OACTXCONTROL controls the
2292  * exponent for periodic sampling which is primarily used for system
2293  * wide profiling where we'd like a consistent sampling period even in
2294  * the face of context switches.
2295  *
2296  * Our approach of updating the register state context (as opposed to
2297  * say using a workaround batch buffer) ensures that the hardware
2298  * won't automatically reload an out-of-date timer exponent even
2299  * transiently before a WA BB could be parsed.
2300  *
2301  * This function needs to:
2302  * - Ensure the currently running context's per-context OA state is
2303  *   updated
2304  * - Ensure that all existing contexts will have the correct per-context
2305  *   OA state if they are scheduled for use.
2306  * - Ensure any new contexts will be initialized with the correct
2307  *   per-context OA state.
2308  *
2309  * Note: it's only the RCS/Render context that has any OA state.
2310  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2311  */
2312 static int
2313 oa_configure_all_contexts(struct i915_perf_stream *stream,
2314 			  struct flex *regs,
2315 			  size_t num_regs,
2316 			  struct i915_active *active)
2317 {
2318 	struct drm_i915_private *i915 = stream->perf->i915;
2319 	struct intel_engine_cs *engine;
2320 	struct i915_gem_context *ctx, *cn;
2321 	int err;
2322 
2323 	lockdep_assert_held(&stream->perf->lock);
2324 
2325 	/*
2326 	 * The OA register config is setup through the context image. This image
2327 	 * might be written to by the GPU on context switch (in particular on
2328 	 * lite-restore). This means we can't safely update a context's image,
2329 	 * if this context is scheduled/submitted to run on the GPU.
2330 	 *
2331 	 * We could emit the OA register config through the batch buffer but
2332 	 * this might leave small interval of time where the OA unit is
2333 	 * configured at an invalid sampling period.
2334 	 *
2335 	 * Note that since we emit all requests from a single ring, there
2336 	 * is still an implicit global barrier here that may cause a high
2337 	 * priority context to wait for an otherwise independent low priority
2338 	 * context. Contexts idle at the time of reconfiguration are not
2339 	 * trapped behind the barrier.
2340 	 */
2341 	spin_lock(&i915->gem.contexts.lock);
2342 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2343 		if (!kref_get_unless_zero(&ctx->ref))
2344 			continue;
2345 
2346 		spin_unlock(&i915->gem.contexts.lock);
2347 
2348 		err = gen8_configure_context(ctx, regs, num_regs);
2349 		if (err) {
2350 			i915_gem_context_put(ctx);
2351 			return err;
2352 		}
2353 
2354 		spin_lock(&i915->gem.contexts.lock);
2355 		list_safe_reset_next(ctx, cn, link);
2356 		i915_gem_context_put(ctx);
2357 	}
2358 	spin_unlock(&i915->gem.contexts.lock);
2359 
2360 	/*
2361 	 * After updating all other contexts, we need to modify ourselves.
2362 	 * If we don't modify the kernel_context, we do not get events while
2363 	 * idle.
2364 	 */
2365 	for_each_uabi_engine(engine, i915) {
2366 		struct intel_context *ce = engine->kernel_context;
2367 
2368 		if (engine->class != RENDER_CLASS)
2369 			continue;
2370 
2371 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2372 
2373 		err = gen8_modify_self(ce, regs, num_regs, active);
2374 		if (err)
2375 			return err;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 static int
2382 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2383 			     const struct i915_oa_config *oa_config,
2384 			     struct i915_active *active)
2385 {
2386 	struct flex regs[] = {
2387 		{
2388 			GEN8_R_PWR_CLK_STATE,
2389 			CTX_R_PWR_CLK_STATE,
2390 		},
2391 	};
2392 
2393 	return oa_configure_all_contexts(stream,
2394 					 regs, ARRAY_SIZE(regs),
2395 					 active);
2396 }
2397 
2398 static int
2399 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2400 			   const struct i915_oa_config *oa_config,
2401 			   struct i915_active *active)
2402 {
2403 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2404 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2405 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2406 	struct flex regs[] = {
2407 		{
2408 			GEN8_R_PWR_CLK_STATE,
2409 			CTX_R_PWR_CLK_STATE,
2410 		},
2411 		{
2412 			GEN8_OACTXCONTROL,
2413 			stream->perf->ctx_oactxctrl_offset + 1,
2414 		},
2415 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2416 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2417 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2418 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2419 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2420 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2421 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2422 	};
2423 #undef ctx_flexeuN
2424 	int i;
2425 
2426 	regs[1].value =
2427 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2428 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2429 		GEN8_OA_COUNTER_RESUME;
2430 
2431 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2432 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2433 
2434 	return oa_configure_all_contexts(stream,
2435 					 regs, ARRAY_SIZE(regs),
2436 					 active);
2437 }
2438 
2439 static int
2440 gen8_enable_metric_set(struct i915_perf_stream *stream,
2441 		       struct i915_active *active)
2442 {
2443 	struct intel_uncore *uncore = stream->uncore;
2444 	struct i915_oa_config *oa_config = stream->oa_config;
2445 	int ret;
2446 
2447 	/*
2448 	 * We disable slice/unslice clock ratio change reports on SKL since
2449 	 * they are too noisy. The HW generates a lot of redundant reports
2450 	 * where the ratio hasn't really changed causing a lot of redundant
2451 	 * work to processes and increasing the chances we'll hit buffer
2452 	 * overruns.
2453 	 *
2454 	 * Although we don't currently use the 'disable overrun' OABUFFER
2455 	 * feature it's worth noting that clock ratio reports have to be
2456 	 * disabled before considering to use that feature since the HW doesn't
2457 	 * correctly block these reports.
2458 	 *
2459 	 * Currently none of the high-level metrics we have depend on knowing
2460 	 * this ratio to normalize.
2461 	 *
2462 	 * Note: This register is not power context saved and restored, but
2463 	 * that's OK considering that we disable RC6 while the OA unit is
2464 	 * enabled.
2465 	 *
2466 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2467 	 * be read back from automatically triggered reports, as part of the
2468 	 * RPT_ID field.
2469 	 */
2470 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2471 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2472 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2473 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2474 	}
2475 
2476 	/*
2477 	 * Update all contexts prior writing the mux configurations as we need
2478 	 * to make sure all slices/subslices are ON before writing to NOA
2479 	 * registers.
2480 	 */
2481 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2482 	if (ret)
2483 		return ret;
2484 
2485 	return emit_oa_config(stream,
2486 			      stream->oa_config, oa_context(stream),
2487 			      active);
2488 }
2489 
2490 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2491 {
2492 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2493 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2494 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2495 }
2496 
2497 static int
2498 gen12_enable_metric_set(struct i915_perf_stream *stream,
2499 			struct i915_active *active)
2500 {
2501 	struct intel_uncore *uncore = stream->uncore;
2502 	struct i915_oa_config *oa_config = stream->oa_config;
2503 	bool periodic = stream->periodic;
2504 	u32 period_exponent = stream->period_exponent;
2505 	int ret;
2506 
2507 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2508 			   /* Disable clk ratio reports, like previous Gens. */
2509 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2510 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2511 			   /*
2512 			    * If the user didn't require OA reports, instruct
2513 			    * the hardware not to emit ctx switch reports.
2514 			    */
2515 			   oag_report_ctx_switches(stream));
2516 
2517 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2518 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2519 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2520 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2521 			    : 0);
2522 
2523 	/*
2524 	 * Update all contexts prior writing the mux configurations as we need
2525 	 * to make sure all slices/subslices are ON before writing to NOA
2526 	 * registers.
2527 	 */
2528 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2529 	if (ret)
2530 		return ret;
2531 
2532 	/*
2533 	 * For Gen12, performance counters are context
2534 	 * saved/restored. Only enable it for the context that
2535 	 * requested this.
2536 	 */
2537 	if (stream->ctx) {
2538 		ret = gen12_configure_oar_context(stream, active);
2539 		if (ret)
2540 			return ret;
2541 	}
2542 
2543 	return emit_oa_config(stream,
2544 			      stream->oa_config, oa_context(stream),
2545 			      active);
2546 }
2547 
2548 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2549 {
2550 	struct intel_uncore *uncore = stream->uncore;
2551 
2552 	/* Reset all contexts' slices/subslices configurations. */
2553 	lrc_configure_all_contexts(stream, NULL, NULL);
2554 
2555 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2556 }
2557 
2558 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2559 {
2560 	struct intel_uncore *uncore = stream->uncore;
2561 
2562 	/* Reset all contexts' slices/subslices configurations. */
2563 	lrc_configure_all_contexts(stream, NULL, NULL);
2564 
2565 	/* Make sure we disable noa to save power. */
2566 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2567 }
2568 
2569 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2570 {
2571 	struct intel_uncore *uncore = stream->uncore;
2572 
2573 	/* Reset all contexts' slices/subslices configurations. */
2574 	gen12_configure_all_contexts(stream, NULL, NULL);
2575 
2576 	/* disable the context save/restore or OAR counters */
2577 	if (stream->ctx)
2578 		gen12_configure_oar_context(stream, NULL);
2579 
2580 	/* Make sure we disable noa to save power. */
2581 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2582 }
2583 
2584 static void gen7_oa_enable(struct i915_perf_stream *stream)
2585 {
2586 	struct intel_uncore *uncore = stream->uncore;
2587 	struct i915_gem_context *ctx = stream->ctx;
2588 	u32 ctx_id = stream->specific_ctx_id;
2589 	bool periodic = stream->periodic;
2590 	u32 period_exponent = stream->period_exponent;
2591 	u32 report_format = stream->oa_buffer.format;
2592 
2593 	/*
2594 	 * Reset buf pointers so we don't forward reports from before now.
2595 	 *
2596 	 * Think carefully if considering trying to avoid this, since it
2597 	 * also ensures status flags and the buffer itself are cleared
2598 	 * in error paths, and we have checks for invalid reports based
2599 	 * on the assumption that certain fields are written to zeroed
2600 	 * memory which this helps maintains.
2601 	 */
2602 	gen7_init_oa_buffer(stream);
2603 
2604 	intel_uncore_write(uncore, GEN7_OACONTROL,
2605 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2606 			   (period_exponent <<
2607 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2608 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2609 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2610 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2611 			   GEN7_OACONTROL_ENABLE);
2612 }
2613 
2614 static void gen8_oa_enable(struct i915_perf_stream *stream)
2615 {
2616 	struct intel_uncore *uncore = stream->uncore;
2617 	u32 report_format = stream->oa_buffer.format;
2618 
2619 	/*
2620 	 * Reset buf pointers so we don't forward reports from before now.
2621 	 *
2622 	 * Think carefully if considering trying to avoid this, since it
2623 	 * also ensures status flags and the buffer itself are cleared
2624 	 * in error paths, and we have checks for invalid reports based
2625 	 * on the assumption that certain fields are written to zeroed
2626 	 * memory which this helps maintains.
2627 	 */
2628 	gen8_init_oa_buffer(stream);
2629 
2630 	/*
2631 	 * Note: we don't rely on the hardware to perform single context
2632 	 * filtering and instead filter on the cpu based on the context-id
2633 	 * field of reports
2634 	 */
2635 	intel_uncore_write(uncore, GEN8_OACONTROL,
2636 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2637 			   GEN8_OA_COUNTER_ENABLE);
2638 }
2639 
2640 static void gen12_oa_enable(struct i915_perf_stream *stream)
2641 {
2642 	struct intel_uncore *uncore = stream->uncore;
2643 	u32 report_format = stream->oa_buffer.format;
2644 
2645 	/*
2646 	 * If we don't want OA reports from the OA buffer, then we don't even
2647 	 * need to program the OAG unit.
2648 	 */
2649 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2650 		return;
2651 
2652 	gen12_init_oa_buffer(stream);
2653 
2654 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2655 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2656 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2657 }
2658 
2659 /**
2660  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2661  * @stream: An i915 perf stream opened for OA metrics
2662  *
2663  * [Re]enables hardware periodic sampling according to the period configured
2664  * when opening the stream. This also starts a hrtimer that will periodically
2665  * check for data in the circular OA buffer for notifying userspace (e.g.
2666  * during a read() or poll()).
2667  */
2668 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2669 {
2670 	stream->pollin = false;
2671 
2672 	stream->perf->ops.oa_enable(stream);
2673 
2674 	if (stream->periodic)
2675 		hrtimer_start(&stream->poll_check_timer,
2676 			      ns_to_ktime(stream->poll_oa_period),
2677 			      HRTIMER_MODE_REL_PINNED);
2678 }
2679 
2680 static void gen7_oa_disable(struct i915_perf_stream *stream)
2681 {
2682 	struct intel_uncore *uncore = stream->uncore;
2683 
2684 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2685 	if (intel_wait_for_register(uncore,
2686 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2687 				    50))
2688 		drm_err(&stream->perf->i915->drm,
2689 			"wait for OA to be disabled timed out\n");
2690 }
2691 
2692 static void gen8_oa_disable(struct i915_perf_stream *stream)
2693 {
2694 	struct intel_uncore *uncore = stream->uncore;
2695 
2696 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2697 	if (intel_wait_for_register(uncore,
2698 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2699 				    50))
2700 		drm_err(&stream->perf->i915->drm,
2701 			"wait for OA to be disabled timed out\n");
2702 }
2703 
2704 static void gen12_oa_disable(struct i915_perf_stream *stream)
2705 {
2706 	struct intel_uncore *uncore = stream->uncore;
2707 
2708 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2709 	if (intel_wait_for_register(uncore,
2710 				    GEN12_OAG_OACONTROL,
2711 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2712 				    50))
2713 		drm_err(&stream->perf->i915->drm,
2714 			"wait for OA to be disabled timed out\n");
2715 
2716 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2717 	if (intel_wait_for_register(uncore,
2718 				    GEN12_OA_TLB_INV_CR,
2719 				    1, 0,
2720 				    50))
2721 		drm_err(&stream->perf->i915->drm,
2722 			"wait for OA tlb invalidate timed out\n");
2723 }
2724 
2725 /**
2726  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2727  * @stream: An i915 perf stream opened for OA metrics
2728  *
2729  * Stops the OA unit from periodically writing counter reports into the
2730  * circular OA buffer. This also stops the hrtimer that periodically checks for
2731  * data in the circular OA buffer, for notifying userspace.
2732  */
2733 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2734 {
2735 	stream->perf->ops.oa_disable(stream);
2736 
2737 	if (stream->periodic)
2738 		hrtimer_cancel(&stream->poll_check_timer);
2739 }
2740 
2741 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2742 	.destroy = i915_oa_stream_destroy,
2743 	.enable = i915_oa_stream_enable,
2744 	.disable = i915_oa_stream_disable,
2745 	.wait_unlocked = i915_oa_wait_unlocked,
2746 	.poll_wait = i915_oa_poll_wait,
2747 	.read = i915_oa_read,
2748 };
2749 
2750 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2751 {
2752 	struct i915_active *active;
2753 	int err;
2754 
2755 	active = i915_active_create();
2756 	if (!active)
2757 		return -ENOMEM;
2758 
2759 	err = stream->perf->ops.enable_metric_set(stream, active);
2760 	if (err == 0)
2761 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2762 
2763 	i915_active_put(active);
2764 	return err;
2765 }
2766 
2767 static void
2768 get_default_sseu_config(struct intel_sseu *out_sseu,
2769 			struct intel_engine_cs *engine)
2770 {
2771 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2772 
2773 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2774 
2775 	if (IS_GEN(engine->i915, 11)) {
2776 		/*
2777 		 * We only need subslice count so it doesn't matter which ones
2778 		 * we select - just turn off low bits in the amount of half of
2779 		 * all available subslices per slice.
2780 		 */
2781 		out_sseu->subslice_mask =
2782 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2783 		out_sseu->slice_mask = 0x1;
2784 	}
2785 }
2786 
2787 static int
2788 get_sseu_config(struct intel_sseu *out_sseu,
2789 		struct intel_engine_cs *engine,
2790 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2791 {
2792 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2793 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2794 		return -EINVAL;
2795 
2796 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2797 }
2798 
2799 /**
2800  * i915_oa_stream_init - validate combined props for OA stream and init
2801  * @stream: An i915 perf stream
2802  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2803  * @props: The property state that configures stream (individually validated)
2804  *
2805  * While read_properties_unlocked() validates properties in isolation it
2806  * doesn't ensure that the combination necessarily makes sense.
2807  *
2808  * At this point it has been determined that userspace wants a stream of
2809  * OA metrics, but still we need to further validate the combined
2810  * properties are OK.
2811  *
2812  * If the configuration makes sense then we can allocate memory for
2813  * a circular OA buffer and apply the requested metric set configuration.
2814  *
2815  * Returns: zero on success or a negative error code.
2816  */
2817 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2818 			       struct drm_i915_perf_open_param *param,
2819 			       struct perf_open_properties *props)
2820 {
2821 	struct drm_i915_private *i915 = stream->perf->i915;
2822 	struct i915_perf *perf = stream->perf;
2823 	int format_size;
2824 	int ret;
2825 
2826 	if (!props->engine) {
2827 		DRM_DEBUG("OA engine not specified\n");
2828 		return -EINVAL;
2829 	}
2830 
2831 	/*
2832 	 * If the sysfs metrics/ directory wasn't registered for some
2833 	 * reason then don't let userspace try their luck with config
2834 	 * IDs
2835 	 */
2836 	if (!perf->metrics_kobj) {
2837 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2838 		return -EINVAL;
2839 	}
2840 
2841 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2842 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2843 		DRM_DEBUG("Only OA report sampling supported\n");
2844 		return -EINVAL;
2845 	}
2846 
2847 	if (!perf->ops.enable_metric_set) {
2848 		DRM_DEBUG("OA unit not supported\n");
2849 		return -ENODEV;
2850 	}
2851 
2852 	/*
2853 	 * To avoid the complexity of having to accurately filter
2854 	 * counter reports and marshal to the appropriate client
2855 	 * we currently only allow exclusive access
2856 	 */
2857 	if (perf->exclusive_stream) {
2858 		DRM_DEBUG("OA unit already in use\n");
2859 		return -EBUSY;
2860 	}
2861 
2862 	if (!props->oa_format) {
2863 		DRM_DEBUG("OA report format not specified\n");
2864 		return -EINVAL;
2865 	}
2866 
2867 	stream->engine = props->engine;
2868 	stream->uncore = stream->engine->gt->uncore;
2869 
2870 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2871 
2872 	format_size = perf->oa_formats[props->oa_format].size;
2873 
2874 	stream->sample_flags = props->sample_flags;
2875 	stream->sample_size += format_size;
2876 
2877 	stream->oa_buffer.format_size = format_size;
2878 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2879 		return -EINVAL;
2880 
2881 	stream->hold_preemption = props->hold_preemption;
2882 
2883 	stream->oa_buffer.format =
2884 		perf->oa_formats[props->oa_format].format;
2885 
2886 	stream->periodic = props->oa_periodic;
2887 	if (stream->periodic)
2888 		stream->period_exponent = props->oa_period_exponent;
2889 
2890 	if (stream->ctx) {
2891 		ret = oa_get_render_ctx_id(stream);
2892 		if (ret) {
2893 			DRM_DEBUG("Invalid context id to filter with\n");
2894 			return ret;
2895 		}
2896 	}
2897 
2898 	ret = alloc_noa_wait(stream);
2899 	if (ret) {
2900 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2901 		goto err_noa_wait_alloc;
2902 	}
2903 
2904 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2905 	if (!stream->oa_config) {
2906 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2907 		ret = -EINVAL;
2908 		goto err_config;
2909 	}
2910 
2911 	/* PRM - observability performance counters:
2912 	 *
2913 	 *   OACONTROL, performance counter enable, note:
2914 	 *
2915 	 *   "When this bit is set, in order to have coherent counts,
2916 	 *   RC6 power state and trunk clock gating must be disabled.
2917 	 *   This can be achieved by programming MMIO registers as
2918 	 *   0xA094=0 and 0xA090[31]=1"
2919 	 *
2920 	 *   In our case we are expecting that taking pm + FORCEWAKE
2921 	 *   references will effectively disable RC6.
2922 	 */
2923 	intel_engine_pm_get(stream->engine);
2924 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2925 
2926 	ret = alloc_oa_buffer(stream);
2927 	if (ret)
2928 		goto err_oa_buf_alloc;
2929 
2930 	stream->ops = &i915_oa_stream_ops;
2931 
2932 	perf->sseu = props->sseu;
2933 	WRITE_ONCE(perf->exclusive_stream, stream);
2934 
2935 	ret = i915_perf_stream_enable_sync(stream);
2936 	if (ret) {
2937 		DRM_DEBUG("Unable to enable metric set\n");
2938 		goto err_enable;
2939 	}
2940 
2941 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2942 		  stream->oa_config->uuid);
2943 
2944 	hrtimer_init(&stream->poll_check_timer,
2945 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2946 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2947 	init_waitqueue_head(&stream->poll_wq);
2948 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2949 
2950 	return 0;
2951 
2952 err_enable:
2953 	WRITE_ONCE(perf->exclusive_stream, NULL);
2954 	perf->ops.disable_metric_set(stream);
2955 
2956 	free_oa_buffer(stream);
2957 
2958 err_oa_buf_alloc:
2959 	free_oa_configs(stream);
2960 
2961 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2962 	intel_engine_pm_put(stream->engine);
2963 
2964 err_config:
2965 	free_noa_wait(stream);
2966 
2967 err_noa_wait_alloc:
2968 	if (stream->ctx)
2969 		oa_put_render_ctx_id(stream);
2970 
2971 	return ret;
2972 }
2973 
2974 void i915_oa_init_reg_state(const struct intel_context *ce,
2975 			    const struct intel_engine_cs *engine)
2976 {
2977 	struct i915_perf_stream *stream;
2978 
2979 	if (engine->class != RENDER_CLASS)
2980 		return;
2981 
2982 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2983 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2984 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2985 		gen8_update_reg_state_unlocked(ce, stream);
2986 }
2987 
2988 /**
2989  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2990  * @file: An i915 perf stream file
2991  * @buf: destination buffer given by userspace
2992  * @count: the number of bytes userspace wants to read
2993  * @ppos: (inout) file seek position (unused)
2994  *
2995  * The entry point for handling a read() on a stream file descriptor from
2996  * userspace. Most of the work is left to the i915_perf_read_locked() and
2997  * &i915_perf_stream_ops->read but to save having stream implementations (of
2998  * which we might have multiple later) we handle blocking read here.
2999  *
3000  * We can also consistently treat trying to read from a disabled stream
3001  * as an IO error so implementations can assume the stream is enabled
3002  * while reading.
3003  *
3004  * Returns: The number of bytes copied or a negative error code on failure.
3005  */
3006 static ssize_t i915_perf_read(struct file *file,
3007 			      char __user *buf,
3008 			      size_t count,
3009 			      loff_t *ppos)
3010 {
3011 	struct i915_perf_stream *stream = file->private_data;
3012 	struct i915_perf *perf = stream->perf;
3013 	size_t offset = 0;
3014 	int ret;
3015 
3016 	/* To ensure it's handled consistently we simply treat all reads of a
3017 	 * disabled stream as an error. In particular it might otherwise lead
3018 	 * to a deadlock for blocking file descriptors...
3019 	 */
3020 	if (!stream->enabled)
3021 		return -EIO;
3022 
3023 	if (!(file->f_flags & O_NONBLOCK)) {
3024 		/* There's the small chance of false positives from
3025 		 * stream->ops->wait_unlocked.
3026 		 *
3027 		 * E.g. with single context filtering since we only wait until
3028 		 * oabuffer has >= 1 report we don't immediately know whether
3029 		 * any reports really belong to the current context
3030 		 */
3031 		do {
3032 			ret = stream->ops->wait_unlocked(stream);
3033 			if (ret)
3034 				return ret;
3035 
3036 			mutex_lock(&perf->lock);
3037 			ret = stream->ops->read(stream, buf, count, &offset);
3038 			mutex_unlock(&perf->lock);
3039 		} while (!offset && !ret);
3040 	} else {
3041 		mutex_lock(&perf->lock);
3042 		ret = stream->ops->read(stream, buf, count, &offset);
3043 		mutex_unlock(&perf->lock);
3044 	}
3045 
3046 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3047 	 * events where we might actually report EAGAIN on read() if there's
3048 	 * not really any data available. In this situation though we don't
3049 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3050 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3051 	 * effectively ensures we back off until the next hrtimer callback
3052 	 * before reporting another EPOLLIN event.
3053 	 * The exception to this is if ops->read() returned -ENOSPC which means
3054 	 * that more OA data is available than could fit in the user provided
3055 	 * buffer. In this case we want the next poll() call to not block.
3056 	 */
3057 	if (ret != -ENOSPC)
3058 		stream->pollin = false;
3059 
3060 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3061 	return offset ?: (ret ?: -EAGAIN);
3062 }
3063 
3064 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3065 {
3066 	struct i915_perf_stream *stream =
3067 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3068 
3069 	if (oa_buffer_check_unlocked(stream)) {
3070 		stream->pollin = true;
3071 		wake_up(&stream->poll_wq);
3072 	}
3073 
3074 	hrtimer_forward_now(hrtimer,
3075 			    ns_to_ktime(stream->poll_oa_period));
3076 
3077 	return HRTIMER_RESTART;
3078 }
3079 
3080 /**
3081  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3082  * @stream: An i915 perf stream
3083  * @file: An i915 perf stream file
3084  * @wait: poll() state table
3085  *
3086  * For handling userspace polling on an i915 perf stream, this calls through to
3087  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3088  * will be woken for new stream data.
3089  *
3090  * Note: The &perf->lock mutex has been taken to serialize
3091  * with any non-file-operation driver hooks.
3092  *
3093  * Returns: any poll events that are ready without sleeping
3094  */
3095 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3096 				      struct file *file,
3097 				      poll_table *wait)
3098 {
3099 	__poll_t events = 0;
3100 
3101 	stream->ops->poll_wait(stream, file, wait);
3102 
3103 	/* Note: we don't explicitly check whether there's something to read
3104 	 * here since this path may be very hot depending on what else
3105 	 * userspace is polling, or on the timeout in use. We rely solely on
3106 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3107 	 * samples to read.
3108 	 */
3109 	if (stream->pollin)
3110 		events |= EPOLLIN;
3111 
3112 	return events;
3113 }
3114 
3115 /**
3116  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3117  * @file: An i915 perf stream file
3118  * @wait: poll() state table
3119  *
3120  * For handling userspace polling on an i915 perf stream, this ensures
3121  * poll_wait() gets called with a wait queue that will be woken for new stream
3122  * data.
3123  *
3124  * Note: Implementation deferred to i915_perf_poll_locked()
3125  *
3126  * Returns: any poll events that are ready without sleeping
3127  */
3128 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3129 {
3130 	struct i915_perf_stream *stream = file->private_data;
3131 	struct i915_perf *perf = stream->perf;
3132 	__poll_t ret;
3133 
3134 	mutex_lock(&perf->lock);
3135 	ret = i915_perf_poll_locked(stream, file, wait);
3136 	mutex_unlock(&perf->lock);
3137 
3138 	return ret;
3139 }
3140 
3141 /**
3142  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3143  * @stream: A disabled i915 perf stream
3144  *
3145  * [Re]enables the associated capture of data for this stream.
3146  *
3147  * If a stream was previously enabled then there's currently no intention
3148  * to provide userspace any guarantee about the preservation of previously
3149  * buffered data.
3150  */
3151 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3152 {
3153 	if (stream->enabled)
3154 		return;
3155 
3156 	/* Allow stream->ops->enable() to refer to this */
3157 	stream->enabled = true;
3158 
3159 	if (stream->ops->enable)
3160 		stream->ops->enable(stream);
3161 
3162 	if (stream->hold_preemption)
3163 		intel_context_set_nopreempt(stream->pinned_ctx);
3164 }
3165 
3166 /**
3167  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3168  * @stream: An enabled i915 perf stream
3169  *
3170  * Disables the associated capture of data for this stream.
3171  *
3172  * The intention is that disabling an re-enabling a stream will ideally be
3173  * cheaper than destroying and re-opening a stream with the same configuration,
3174  * though there are no formal guarantees about what state or buffered data
3175  * must be retained between disabling and re-enabling a stream.
3176  *
3177  * Note: while a stream is disabled it's considered an error for userspace
3178  * to attempt to read from the stream (-EIO).
3179  */
3180 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3181 {
3182 	if (!stream->enabled)
3183 		return;
3184 
3185 	/* Allow stream->ops->disable() to refer to this */
3186 	stream->enabled = false;
3187 
3188 	if (stream->hold_preemption)
3189 		intel_context_clear_nopreempt(stream->pinned_ctx);
3190 
3191 	if (stream->ops->disable)
3192 		stream->ops->disable(stream);
3193 }
3194 
3195 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3196 				    unsigned long metrics_set)
3197 {
3198 	struct i915_oa_config *config;
3199 	long ret = stream->oa_config->id;
3200 
3201 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3202 	if (!config)
3203 		return -EINVAL;
3204 
3205 	if (config != stream->oa_config) {
3206 		int err;
3207 
3208 		/*
3209 		 * If OA is bound to a specific context, emit the
3210 		 * reconfiguration inline from that context. The update
3211 		 * will then be ordered with respect to submission on that
3212 		 * context.
3213 		 *
3214 		 * When set globally, we use a low priority kernel context,
3215 		 * so it will effectively take effect when idle.
3216 		 */
3217 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3218 		if (!err)
3219 			config = xchg(&stream->oa_config, config);
3220 		else
3221 			ret = err;
3222 	}
3223 
3224 	i915_oa_config_put(config);
3225 
3226 	return ret;
3227 }
3228 
3229 /**
3230  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3231  * @stream: An i915 perf stream
3232  * @cmd: the ioctl request
3233  * @arg: the ioctl data
3234  *
3235  * Note: The &perf->lock mutex has been taken to serialize
3236  * with any non-file-operation driver hooks.
3237  *
3238  * Returns: zero on success or a negative error code. Returns -EINVAL for
3239  * an unknown ioctl request.
3240  */
3241 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3242 				   unsigned int cmd,
3243 				   unsigned long arg)
3244 {
3245 	switch (cmd) {
3246 	case I915_PERF_IOCTL_ENABLE:
3247 		i915_perf_enable_locked(stream);
3248 		return 0;
3249 	case I915_PERF_IOCTL_DISABLE:
3250 		i915_perf_disable_locked(stream);
3251 		return 0;
3252 	case I915_PERF_IOCTL_CONFIG:
3253 		return i915_perf_config_locked(stream, arg);
3254 	}
3255 
3256 	return -EINVAL;
3257 }
3258 
3259 /**
3260  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3261  * @file: An i915 perf stream file
3262  * @cmd: the ioctl request
3263  * @arg: the ioctl data
3264  *
3265  * Implementation deferred to i915_perf_ioctl_locked().
3266  *
3267  * Returns: zero on success or a negative error code. Returns -EINVAL for
3268  * an unknown ioctl request.
3269  */
3270 static long i915_perf_ioctl(struct file *file,
3271 			    unsigned int cmd,
3272 			    unsigned long arg)
3273 {
3274 	struct i915_perf_stream *stream = file->private_data;
3275 	struct i915_perf *perf = stream->perf;
3276 	long ret;
3277 
3278 	mutex_lock(&perf->lock);
3279 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3280 	mutex_unlock(&perf->lock);
3281 
3282 	return ret;
3283 }
3284 
3285 /**
3286  * i915_perf_destroy_locked - destroy an i915 perf stream
3287  * @stream: An i915 perf stream
3288  *
3289  * Frees all resources associated with the given i915 perf @stream, disabling
3290  * any associated data capture in the process.
3291  *
3292  * Note: The &perf->lock mutex has been taken to serialize
3293  * with any non-file-operation driver hooks.
3294  */
3295 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3296 {
3297 	if (stream->enabled)
3298 		i915_perf_disable_locked(stream);
3299 
3300 	if (stream->ops->destroy)
3301 		stream->ops->destroy(stream);
3302 
3303 	if (stream->ctx)
3304 		i915_gem_context_put(stream->ctx);
3305 
3306 	kfree(stream);
3307 }
3308 
3309 /**
3310  * i915_perf_release - handles userspace close() of a stream file
3311  * @inode: anonymous inode associated with file
3312  * @file: An i915 perf stream file
3313  *
3314  * Cleans up any resources associated with an open i915 perf stream file.
3315  *
3316  * NB: close() can't really fail from the userspace point of view.
3317  *
3318  * Returns: zero on success or a negative error code.
3319  */
3320 static int i915_perf_release(struct inode *inode, struct file *file)
3321 {
3322 	struct i915_perf_stream *stream = file->private_data;
3323 	struct i915_perf *perf = stream->perf;
3324 
3325 	mutex_lock(&perf->lock);
3326 	i915_perf_destroy_locked(stream);
3327 	mutex_unlock(&perf->lock);
3328 
3329 	/* Release the reference the perf stream kept on the driver. */
3330 	drm_dev_put(&perf->i915->drm);
3331 
3332 	return 0;
3333 }
3334 
3335 
3336 static const struct file_operations fops = {
3337 	.owner		= THIS_MODULE,
3338 	.llseek		= no_llseek,
3339 	.release	= i915_perf_release,
3340 	.poll		= i915_perf_poll,
3341 	.read		= i915_perf_read,
3342 	.unlocked_ioctl	= i915_perf_ioctl,
3343 	/* Our ioctl have no arguments, so it's safe to use the same function
3344 	 * to handle 32bits compatibility.
3345 	 */
3346 	.compat_ioctl   = i915_perf_ioctl,
3347 };
3348 
3349 
3350 /**
3351  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3352  * @perf: i915 perf instance
3353  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3354  * @props: individually validated u64 property value pairs
3355  * @file: drm file
3356  *
3357  * See i915_perf_ioctl_open() for interface details.
3358  *
3359  * Implements further stream config validation and stream initialization on
3360  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3361  * taken to serialize with any non-file-operation driver hooks.
3362  *
3363  * Note: at this point the @props have only been validated in isolation and
3364  * it's still necessary to validate that the combination of properties makes
3365  * sense.
3366  *
3367  * In the case where userspace is interested in OA unit metrics then further
3368  * config validation and stream initialization details will be handled by
3369  * i915_oa_stream_init(). The code here should only validate config state that
3370  * will be relevant to all stream types / backends.
3371  *
3372  * Returns: zero on success or a negative error code.
3373  */
3374 static int
3375 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3376 			    struct drm_i915_perf_open_param *param,
3377 			    struct perf_open_properties *props,
3378 			    struct drm_file *file)
3379 {
3380 	struct i915_gem_context *specific_ctx = NULL;
3381 	struct i915_perf_stream *stream = NULL;
3382 	unsigned long f_flags = 0;
3383 	bool privileged_op = true;
3384 	int stream_fd;
3385 	int ret;
3386 
3387 	if (props->single_context) {
3388 		u32 ctx_handle = props->ctx_handle;
3389 		struct drm_i915_file_private *file_priv = file->driver_priv;
3390 
3391 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3392 		if (!specific_ctx) {
3393 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3394 				  ctx_handle);
3395 			ret = -ENOENT;
3396 			goto err;
3397 		}
3398 	}
3399 
3400 	/*
3401 	 * On Haswell the OA unit supports clock gating off for a specific
3402 	 * context and in this mode there's no visibility of metrics for the
3403 	 * rest of the system, which we consider acceptable for a
3404 	 * non-privileged client.
3405 	 *
3406 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3407 	 * specific context and the kernel can't securely stop the counters
3408 	 * from updating as system-wide / global values. Even though we can
3409 	 * filter reports based on the included context ID we can't block
3410 	 * clients from seeing the raw / global counter values via
3411 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3412 	 * enable the OA unit by default.
3413 	 *
3414 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3415 	 * per context basis. So we can relax requirements there if the user
3416 	 * doesn't request global stream access (i.e. query based sampling
3417 	 * using MI_RECORD_PERF_COUNT.
3418 	 */
3419 	if (IS_HASWELL(perf->i915) && specific_ctx)
3420 		privileged_op = false;
3421 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3422 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3423 		privileged_op = false;
3424 
3425 	if (props->hold_preemption) {
3426 		if (!props->single_context) {
3427 			DRM_DEBUG("preemption disable with no context\n");
3428 			ret = -EINVAL;
3429 			goto err;
3430 		}
3431 		privileged_op = true;
3432 	}
3433 
3434 	/*
3435 	 * Asking for SSEU configuration is a priviliged operation.
3436 	 */
3437 	if (props->has_sseu)
3438 		privileged_op = true;
3439 	else
3440 		get_default_sseu_config(&props->sseu, props->engine);
3441 
3442 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3443 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3444 	 * to determine if it's ok to access system wide OA counters
3445 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3446 	 */
3447 	if (privileged_op &&
3448 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3449 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3450 		ret = -EACCES;
3451 		goto err_ctx;
3452 	}
3453 
3454 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3455 	if (!stream) {
3456 		ret = -ENOMEM;
3457 		goto err_ctx;
3458 	}
3459 
3460 	stream->perf = perf;
3461 	stream->ctx = specific_ctx;
3462 	stream->poll_oa_period = props->poll_oa_period;
3463 
3464 	ret = i915_oa_stream_init(stream, param, props);
3465 	if (ret)
3466 		goto err_alloc;
3467 
3468 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3469 	 * to have _stream_init check the combination of sample flags more
3470 	 * thoroughly, but still this is the expected result at this point.
3471 	 */
3472 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3473 		ret = -ENODEV;
3474 		goto err_flags;
3475 	}
3476 
3477 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3478 		f_flags |= O_CLOEXEC;
3479 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3480 		f_flags |= O_NONBLOCK;
3481 
3482 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3483 	if (stream_fd < 0) {
3484 		ret = stream_fd;
3485 		goto err_flags;
3486 	}
3487 
3488 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3489 		i915_perf_enable_locked(stream);
3490 
3491 	/* Take a reference on the driver that will be kept with stream_fd
3492 	 * until its release.
3493 	 */
3494 	drm_dev_get(&perf->i915->drm);
3495 
3496 	return stream_fd;
3497 
3498 err_flags:
3499 	if (stream->ops->destroy)
3500 		stream->ops->destroy(stream);
3501 err_alloc:
3502 	kfree(stream);
3503 err_ctx:
3504 	if (specific_ctx)
3505 		i915_gem_context_put(specific_ctx);
3506 err:
3507 	return ret;
3508 }
3509 
3510 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3511 {
3512 	return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3513 }
3514 
3515 /**
3516  * read_properties_unlocked - validate + copy userspace stream open properties
3517  * @perf: i915 perf instance
3518  * @uprops: The array of u64 key value pairs given by userspace
3519  * @n_props: The number of key value pairs expected in @uprops
3520  * @props: The stream configuration built up while validating properties
3521  *
3522  * Note this function only validates properties in isolation it doesn't
3523  * validate that the combination of properties makes sense or that all
3524  * properties necessary for a particular kind of stream have been set.
3525  *
3526  * Note that there currently aren't any ordering requirements for properties so
3527  * we shouldn't validate or assume anything about ordering here. This doesn't
3528  * rule out defining new properties with ordering requirements in the future.
3529  */
3530 static int read_properties_unlocked(struct i915_perf *perf,
3531 				    u64 __user *uprops,
3532 				    u32 n_props,
3533 				    struct perf_open_properties *props)
3534 {
3535 	u64 __user *uprop = uprops;
3536 	u32 i;
3537 	int ret;
3538 
3539 	memset(props, 0, sizeof(struct perf_open_properties));
3540 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3541 
3542 	if (!n_props) {
3543 		DRM_DEBUG("No i915 perf properties given\n");
3544 		return -EINVAL;
3545 	}
3546 
3547 	/* At the moment we only support using i915-perf on the RCS. */
3548 	props->engine = intel_engine_lookup_user(perf->i915,
3549 						 I915_ENGINE_CLASS_RENDER,
3550 						 0);
3551 	if (!props->engine) {
3552 		DRM_DEBUG("No RENDER-capable engines\n");
3553 		return -EINVAL;
3554 	}
3555 
3556 	/* Considering that ID = 0 is reserved and assuming that we don't
3557 	 * (currently) expect any configurations to ever specify duplicate
3558 	 * values for a particular property ID then the last _PROP_MAX value is
3559 	 * one greater than the maximum number of properties we expect to get
3560 	 * from userspace.
3561 	 */
3562 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3563 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3564 		return -EINVAL;
3565 	}
3566 
3567 	for (i = 0; i < n_props; i++) {
3568 		u64 oa_period, oa_freq_hz;
3569 		u64 id, value;
3570 
3571 		ret = get_user(id, uprop);
3572 		if (ret)
3573 			return ret;
3574 
3575 		ret = get_user(value, uprop + 1);
3576 		if (ret)
3577 			return ret;
3578 
3579 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3580 			DRM_DEBUG("Unknown i915 perf property ID\n");
3581 			return -EINVAL;
3582 		}
3583 
3584 		switch ((enum drm_i915_perf_property_id)id) {
3585 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3586 			props->single_context = 1;
3587 			props->ctx_handle = value;
3588 			break;
3589 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3590 			if (value)
3591 				props->sample_flags |= SAMPLE_OA_REPORT;
3592 			break;
3593 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3594 			if (value == 0) {
3595 				DRM_DEBUG("Unknown OA metric set ID\n");
3596 				return -EINVAL;
3597 			}
3598 			props->metrics_set = value;
3599 			break;
3600 		case DRM_I915_PERF_PROP_OA_FORMAT:
3601 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3602 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3603 					  value);
3604 				return -EINVAL;
3605 			}
3606 			if (!perf->oa_formats[value].size) {
3607 				DRM_DEBUG("Unsupported OA report format %llu\n",
3608 					  value);
3609 				return -EINVAL;
3610 			}
3611 			props->oa_format = value;
3612 			break;
3613 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3614 			if (value > OA_EXPONENT_MAX) {
3615 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3616 					 OA_EXPONENT_MAX);
3617 				return -EINVAL;
3618 			}
3619 
3620 			/* Theoretically we can program the OA unit to sample
3621 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3622 			 * for BXT. We don't allow such high sampling
3623 			 * frequencies by default unless root.
3624 			 */
3625 
3626 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3627 			oa_period = oa_exponent_to_ns(perf, value);
3628 
3629 			/* This check is primarily to ensure that oa_period <=
3630 			 * UINT32_MAX (before passing to do_div which only
3631 			 * accepts a u32 denominator), but we can also skip
3632 			 * checking anything < 1Hz which implicitly can't be
3633 			 * limited via an integer oa_max_sample_rate.
3634 			 */
3635 			if (oa_period <= NSEC_PER_SEC) {
3636 				u64 tmp = NSEC_PER_SEC;
3637 				do_div(tmp, oa_period);
3638 				oa_freq_hz = tmp;
3639 			} else
3640 				oa_freq_hz = 0;
3641 
3642 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3643 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3644 					  i915_oa_max_sample_rate);
3645 				return -EACCES;
3646 			}
3647 
3648 			props->oa_periodic = true;
3649 			props->oa_period_exponent = value;
3650 			break;
3651 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3652 			props->hold_preemption = !!value;
3653 			break;
3654 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3655 			struct drm_i915_gem_context_param_sseu user_sseu;
3656 
3657 			if (copy_from_user(&user_sseu,
3658 					   u64_to_user_ptr(value),
3659 					   sizeof(user_sseu))) {
3660 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3661 				return -EFAULT;
3662 			}
3663 
3664 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3665 			if (ret) {
3666 				DRM_DEBUG("Invalid SSEU configuration\n");
3667 				return ret;
3668 			}
3669 			props->has_sseu = true;
3670 			break;
3671 		}
3672 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3673 			if (value < 100000 /* 100us */) {
3674 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3675 					  value);
3676 				return -EINVAL;
3677 			}
3678 			props->poll_oa_period = value;
3679 			break;
3680 		case DRM_I915_PERF_PROP_MAX:
3681 			MISSING_CASE(id);
3682 			return -EINVAL;
3683 		}
3684 
3685 		uprop += 2;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 /**
3692  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3693  * @dev: drm device
3694  * @data: ioctl data copied from userspace (unvalidated)
3695  * @file: drm file
3696  *
3697  * Validates the stream open parameters given by userspace including flags
3698  * and an array of u64 key, value pair properties.
3699  *
3700  * Very little is assumed up front about the nature of the stream being
3701  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3702  * i915-perf stream is expected to be a suitable interface for other forms of
3703  * buffered data written by the GPU besides periodic OA metrics.
3704  *
3705  * Note we copy the properties from userspace outside of the i915 perf
3706  * mutex to avoid an awkward lockdep with mmap_lock.
3707  *
3708  * Most of the implementation details are handled by
3709  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3710  * mutex for serializing with any non-file-operation driver hooks.
3711  *
3712  * Return: A newly opened i915 Perf stream file descriptor or negative
3713  * error code on failure.
3714  */
3715 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3716 			 struct drm_file *file)
3717 {
3718 	struct i915_perf *perf = &to_i915(dev)->perf;
3719 	struct drm_i915_perf_open_param *param = data;
3720 	struct perf_open_properties props;
3721 	u32 known_open_flags;
3722 	int ret;
3723 
3724 	if (!perf->i915) {
3725 		DRM_DEBUG("i915 perf interface not available for this system\n");
3726 		return -ENOTSUPP;
3727 	}
3728 
3729 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3730 			   I915_PERF_FLAG_FD_NONBLOCK |
3731 			   I915_PERF_FLAG_DISABLED;
3732 	if (param->flags & ~known_open_flags) {
3733 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3734 		return -EINVAL;
3735 	}
3736 
3737 	ret = read_properties_unlocked(perf,
3738 				       u64_to_user_ptr(param->properties_ptr),
3739 				       param->num_properties,
3740 				       &props);
3741 	if (ret)
3742 		return ret;
3743 
3744 	mutex_lock(&perf->lock);
3745 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3746 	mutex_unlock(&perf->lock);
3747 
3748 	return ret;
3749 }
3750 
3751 /**
3752  * i915_perf_register - exposes i915-perf to userspace
3753  * @i915: i915 device instance
3754  *
3755  * In particular OA metric sets are advertised under a sysfs metrics/
3756  * directory allowing userspace to enumerate valid IDs that can be
3757  * used to open an i915-perf stream.
3758  */
3759 void i915_perf_register(struct drm_i915_private *i915)
3760 {
3761 	struct i915_perf *perf = &i915->perf;
3762 
3763 	if (!perf->i915)
3764 		return;
3765 
3766 	/* To be sure we're synchronized with an attempted
3767 	 * i915_perf_open_ioctl(); considering that we register after
3768 	 * being exposed to userspace.
3769 	 */
3770 	mutex_lock(&perf->lock);
3771 
3772 	perf->metrics_kobj =
3773 		kobject_create_and_add("metrics",
3774 				       &i915->drm.primary->kdev->kobj);
3775 
3776 	mutex_unlock(&perf->lock);
3777 }
3778 
3779 /**
3780  * i915_perf_unregister - hide i915-perf from userspace
3781  * @i915: i915 device instance
3782  *
3783  * i915-perf state cleanup is split up into an 'unregister' and
3784  * 'deinit' phase where the interface is first hidden from
3785  * userspace by i915_perf_unregister() before cleaning up
3786  * remaining state in i915_perf_fini().
3787  */
3788 void i915_perf_unregister(struct drm_i915_private *i915)
3789 {
3790 	struct i915_perf *perf = &i915->perf;
3791 
3792 	if (!perf->metrics_kobj)
3793 		return;
3794 
3795 	kobject_put(perf->metrics_kobj);
3796 	perf->metrics_kobj = NULL;
3797 }
3798 
3799 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3800 {
3801 	static const i915_reg_t flex_eu_regs[] = {
3802 		EU_PERF_CNTL0,
3803 		EU_PERF_CNTL1,
3804 		EU_PERF_CNTL2,
3805 		EU_PERF_CNTL3,
3806 		EU_PERF_CNTL4,
3807 		EU_PERF_CNTL5,
3808 		EU_PERF_CNTL6,
3809 	};
3810 	int i;
3811 
3812 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3813 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3814 			return true;
3815 	}
3816 	return false;
3817 }
3818 
3819 #define ADDR_IN_RANGE(addr, start, end) \
3820 	((addr) >= (start) && \
3821 	 (addr) <= (end))
3822 
3823 #define REG_IN_RANGE(addr, start, end) \
3824 	((addr) >= i915_mmio_reg_offset(start) && \
3825 	 (addr) <= i915_mmio_reg_offset(end))
3826 
3827 #define REG_EQUAL(addr, mmio) \
3828 	((addr) == i915_mmio_reg_offset(mmio))
3829 
3830 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3831 {
3832 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3833 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3834 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3835 }
3836 
3837 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3838 {
3839 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3840 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3841 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3842 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3843 }
3844 
3845 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3846 {
3847 	return gen7_is_valid_mux_addr(perf, addr) ||
3848 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3849 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3850 }
3851 
3852 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3853 {
3854 	return gen8_is_valid_mux_addr(perf, addr) ||
3855 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3856 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3857 }
3858 
3859 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3860 {
3861 	return gen7_is_valid_mux_addr(perf, addr) ||
3862 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3863 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3864 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3865 }
3866 
3867 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3868 {
3869 	return gen7_is_valid_mux_addr(perf, addr) ||
3870 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3871 }
3872 
3873 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3874 {
3875 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3876 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3877 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3878 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3879 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3880 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3881 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3882 }
3883 
3884 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3885 {
3886 	return REG_EQUAL(addr, NOA_WRITE) ||
3887 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3888 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3889 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3890 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3891 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3892 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3893 }
3894 
3895 static u32 mask_reg_value(u32 reg, u32 val)
3896 {
3897 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3898 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3899 	 * programmed by userspace doesn't change this.
3900 	 */
3901 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3902 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3903 
3904 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3905 	 * indicated by its name and a bunch of selection fields used by OA
3906 	 * configs.
3907 	 */
3908 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3909 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3910 
3911 	return val;
3912 }
3913 
3914 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3915 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3916 					 u32 __user *regs,
3917 					 u32 n_regs)
3918 {
3919 	struct i915_oa_reg *oa_regs;
3920 	int err;
3921 	u32 i;
3922 
3923 	if (!n_regs)
3924 		return NULL;
3925 
3926 	/* No is_valid function means we're not allowing any register to be programmed. */
3927 	GEM_BUG_ON(!is_valid);
3928 	if (!is_valid)
3929 		return ERR_PTR(-EINVAL);
3930 
3931 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3932 	if (!oa_regs)
3933 		return ERR_PTR(-ENOMEM);
3934 
3935 	for (i = 0; i < n_regs; i++) {
3936 		u32 addr, value;
3937 
3938 		err = get_user(addr, regs);
3939 		if (err)
3940 			goto addr_err;
3941 
3942 		if (!is_valid(perf, addr)) {
3943 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3944 			err = -EINVAL;
3945 			goto addr_err;
3946 		}
3947 
3948 		err = get_user(value, regs + 1);
3949 		if (err)
3950 			goto addr_err;
3951 
3952 		oa_regs[i].addr = _MMIO(addr);
3953 		oa_regs[i].value = mask_reg_value(addr, value);
3954 
3955 		regs += 2;
3956 	}
3957 
3958 	return oa_regs;
3959 
3960 addr_err:
3961 	kfree(oa_regs);
3962 	return ERR_PTR(err);
3963 }
3964 
3965 static ssize_t show_dynamic_id(struct device *dev,
3966 			       struct device_attribute *attr,
3967 			       char *buf)
3968 {
3969 	struct i915_oa_config *oa_config =
3970 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3971 
3972 	return sprintf(buf, "%d\n", oa_config->id);
3973 }
3974 
3975 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3976 					 struct i915_oa_config *oa_config)
3977 {
3978 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3979 	oa_config->sysfs_metric_id.attr.name = "id";
3980 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3981 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3982 	oa_config->sysfs_metric_id.store = NULL;
3983 
3984 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3985 	oa_config->attrs[1] = NULL;
3986 
3987 	oa_config->sysfs_metric.name = oa_config->uuid;
3988 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3989 
3990 	return sysfs_create_group(perf->metrics_kobj,
3991 				  &oa_config->sysfs_metric);
3992 }
3993 
3994 /**
3995  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3996  * @dev: drm device
3997  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3998  *        userspace (unvalidated)
3999  * @file: drm file
4000  *
4001  * Validates the submitted OA register to be saved into a new OA config that
4002  * can then be used for programming the OA unit and its NOA network.
4003  *
4004  * Returns: A new allocated config number to be used with the perf open ioctl
4005  * or a negative error code on failure.
4006  */
4007 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4008 			       struct drm_file *file)
4009 {
4010 	struct i915_perf *perf = &to_i915(dev)->perf;
4011 	struct drm_i915_perf_oa_config *args = data;
4012 	struct i915_oa_config *oa_config, *tmp;
4013 	struct i915_oa_reg *regs;
4014 	int err, id;
4015 
4016 	if (!perf->i915) {
4017 		DRM_DEBUG("i915 perf interface not available for this system\n");
4018 		return -ENOTSUPP;
4019 	}
4020 
4021 	if (!perf->metrics_kobj) {
4022 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4023 		return -EINVAL;
4024 	}
4025 
4026 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4027 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4028 		return -EACCES;
4029 	}
4030 
4031 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4032 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4033 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4034 		DRM_DEBUG("No OA registers given\n");
4035 		return -EINVAL;
4036 	}
4037 
4038 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4039 	if (!oa_config) {
4040 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4041 		return -ENOMEM;
4042 	}
4043 
4044 	oa_config->perf = perf;
4045 	kref_init(&oa_config->ref);
4046 
4047 	if (!uuid_is_valid(args->uuid)) {
4048 		DRM_DEBUG("Invalid uuid format for OA config\n");
4049 		err = -EINVAL;
4050 		goto reg_err;
4051 	}
4052 
4053 	/* Last character in oa_config->uuid will be 0 because oa_config is
4054 	 * kzalloc.
4055 	 */
4056 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4057 
4058 	oa_config->mux_regs_len = args->n_mux_regs;
4059 	regs = alloc_oa_regs(perf,
4060 			     perf->ops.is_valid_mux_reg,
4061 			     u64_to_user_ptr(args->mux_regs_ptr),
4062 			     args->n_mux_regs);
4063 
4064 	if (IS_ERR(regs)) {
4065 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4066 		err = PTR_ERR(regs);
4067 		goto reg_err;
4068 	}
4069 	oa_config->mux_regs = regs;
4070 
4071 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4072 	regs = alloc_oa_regs(perf,
4073 			     perf->ops.is_valid_b_counter_reg,
4074 			     u64_to_user_ptr(args->boolean_regs_ptr),
4075 			     args->n_boolean_regs);
4076 
4077 	if (IS_ERR(regs)) {
4078 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4079 		err = PTR_ERR(regs);
4080 		goto reg_err;
4081 	}
4082 	oa_config->b_counter_regs = regs;
4083 
4084 	if (INTEL_GEN(perf->i915) < 8) {
4085 		if (args->n_flex_regs != 0) {
4086 			err = -EINVAL;
4087 			goto reg_err;
4088 		}
4089 	} else {
4090 		oa_config->flex_regs_len = args->n_flex_regs;
4091 		regs = alloc_oa_regs(perf,
4092 				     perf->ops.is_valid_flex_reg,
4093 				     u64_to_user_ptr(args->flex_regs_ptr),
4094 				     args->n_flex_regs);
4095 
4096 		if (IS_ERR(regs)) {
4097 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4098 			err = PTR_ERR(regs);
4099 			goto reg_err;
4100 		}
4101 		oa_config->flex_regs = regs;
4102 	}
4103 
4104 	err = mutex_lock_interruptible(&perf->metrics_lock);
4105 	if (err)
4106 		goto reg_err;
4107 
4108 	/* We shouldn't have too many configs, so this iteration shouldn't be
4109 	 * too costly.
4110 	 */
4111 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4112 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4113 			DRM_DEBUG("OA config already exists with this uuid\n");
4114 			err = -EADDRINUSE;
4115 			goto sysfs_err;
4116 		}
4117 	}
4118 
4119 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4120 	if (err) {
4121 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4122 		goto sysfs_err;
4123 	}
4124 
4125 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4126 	oa_config->id = idr_alloc(&perf->metrics_idr,
4127 				  oa_config, 2,
4128 				  0, GFP_KERNEL);
4129 	if (oa_config->id < 0) {
4130 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4131 		err = oa_config->id;
4132 		goto sysfs_err;
4133 	}
4134 
4135 	mutex_unlock(&perf->metrics_lock);
4136 
4137 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4138 
4139 	return oa_config->id;
4140 
4141 sysfs_err:
4142 	mutex_unlock(&perf->metrics_lock);
4143 reg_err:
4144 	i915_oa_config_put(oa_config);
4145 	DRM_DEBUG("Failed to add new OA config\n");
4146 	return err;
4147 }
4148 
4149 /**
4150  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4151  * @dev: drm device
4152  * @data: ioctl data (pointer to u64 integer) copied from userspace
4153  * @file: drm file
4154  *
4155  * Configs can be removed while being used, the will stop appearing in sysfs
4156  * and their content will be freed when the stream using the config is closed.
4157  *
4158  * Returns: 0 on success or a negative error code on failure.
4159  */
4160 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4161 				  struct drm_file *file)
4162 {
4163 	struct i915_perf *perf = &to_i915(dev)->perf;
4164 	u64 *arg = data;
4165 	struct i915_oa_config *oa_config;
4166 	int ret;
4167 
4168 	if (!perf->i915) {
4169 		DRM_DEBUG("i915 perf interface not available for this system\n");
4170 		return -ENOTSUPP;
4171 	}
4172 
4173 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4174 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4175 		return -EACCES;
4176 	}
4177 
4178 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4179 	if (ret)
4180 		return ret;
4181 
4182 	oa_config = idr_find(&perf->metrics_idr, *arg);
4183 	if (!oa_config) {
4184 		DRM_DEBUG("Failed to remove unknown OA config\n");
4185 		ret = -ENOENT;
4186 		goto err_unlock;
4187 	}
4188 
4189 	GEM_BUG_ON(*arg != oa_config->id);
4190 
4191 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4192 
4193 	idr_remove(&perf->metrics_idr, *arg);
4194 
4195 	mutex_unlock(&perf->metrics_lock);
4196 
4197 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4198 
4199 	i915_oa_config_put(oa_config);
4200 
4201 	return 0;
4202 
4203 err_unlock:
4204 	mutex_unlock(&perf->metrics_lock);
4205 	return ret;
4206 }
4207 
4208 static struct ctl_table oa_table[] = {
4209 	{
4210 	 .procname = "perf_stream_paranoid",
4211 	 .data = &i915_perf_stream_paranoid,
4212 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4213 	 .mode = 0644,
4214 	 .proc_handler = proc_dointvec_minmax,
4215 	 .extra1 = SYSCTL_ZERO,
4216 	 .extra2 = SYSCTL_ONE,
4217 	 },
4218 	{
4219 	 .procname = "oa_max_sample_rate",
4220 	 .data = &i915_oa_max_sample_rate,
4221 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4222 	 .mode = 0644,
4223 	 .proc_handler = proc_dointvec_minmax,
4224 	 .extra1 = SYSCTL_ZERO,
4225 	 .extra2 = &oa_sample_rate_hard_limit,
4226 	 },
4227 	{}
4228 };
4229 
4230 static struct ctl_table i915_root[] = {
4231 	{
4232 	 .procname = "i915",
4233 	 .maxlen = 0,
4234 	 .mode = 0555,
4235 	 .child = oa_table,
4236 	 },
4237 	{}
4238 };
4239 
4240 static struct ctl_table dev_root[] = {
4241 	{
4242 	 .procname = "dev",
4243 	 .maxlen = 0,
4244 	 .mode = 0555,
4245 	 .child = i915_root,
4246 	 },
4247 	{}
4248 };
4249 
4250 /**
4251  * i915_perf_init - initialize i915-perf state on module bind
4252  * @i915: i915 device instance
4253  *
4254  * Initializes i915-perf state without exposing anything to userspace.
4255  *
4256  * Note: i915-perf initialization is split into an 'init' and 'register'
4257  * phase with the i915_perf_register() exposing state to userspace.
4258  */
4259 void i915_perf_init(struct drm_i915_private *i915)
4260 {
4261 	struct i915_perf *perf = &i915->perf;
4262 
4263 	/* XXX const struct i915_perf_ops! */
4264 
4265 	if (IS_HASWELL(i915)) {
4266 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4267 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4268 		perf->ops.is_valid_flex_reg = NULL;
4269 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4270 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4271 		perf->ops.oa_enable = gen7_oa_enable;
4272 		perf->ops.oa_disable = gen7_oa_disable;
4273 		perf->ops.read = gen7_oa_read;
4274 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4275 
4276 		perf->oa_formats = hsw_oa_formats;
4277 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4278 		/* Note: that although we could theoretically also support the
4279 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4280 		 * this driver, before upstreaming did this) it didn't seem
4281 		 * worth the complexity to maintain now that BDW+ enable
4282 		 * execlist mode by default.
4283 		 */
4284 		perf->ops.read = gen8_oa_read;
4285 
4286 		if (IS_GEN_RANGE(i915, 8, 9)) {
4287 			perf->oa_formats = gen8_plus_oa_formats;
4288 
4289 			perf->ops.is_valid_b_counter_reg =
4290 				gen7_is_valid_b_counter_addr;
4291 			perf->ops.is_valid_mux_reg =
4292 				gen8_is_valid_mux_addr;
4293 			perf->ops.is_valid_flex_reg =
4294 				gen8_is_valid_flex_addr;
4295 
4296 			if (IS_CHERRYVIEW(i915)) {
4297 				perf->ops.is_valid_mux_reg =
4298 					chv_is_valid_mux_addr;
4299 			}
4300 
4301 			perf->ops.oa_enable = gen8_oa_enable;
4302 			perf->ops.oa_disable = gen8_oa_disable;
4303 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4304 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4305 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4306 
4307 			if (IS_GEN(i915, 8)) {
4308 				perf->ctx_oactxctrl_offset = 0x120;
4309 				perf->ctx_flexeu0_offset = 0x2ce;
4310 
4311 				perf->gen8_valid_ctx_bit = BIT(25);
4312 			} else {
4313 				perf->ctx_oactxctrl_offset = 0x128;
4314 				perf->ctx_flexeu0_offset = 0x3de;
4315 
4316 				perf->gen8_valid_ctx_bit = BIT(16);
4317 			}
4318 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4319 			perf->oa_formats = gen8_plus_oa_formats;
4320 
4321 			perf->ops.is_valid_b_counter_reg =
4322 				gen7_is_valid_b_counter_addr;
4323 			perf->ops.is_valid_mux_reg =
4324 				gen10_is_valid_mux_addr;
4325 			perf->ops.is_valid_flex_reg =
4326 				gen8_is_valid_flex_addr;
4327 
4328 			perf->ops.oa_enable = gen8_oa_enable;
4329 			perf->ops.oa_disable = gen8_oa_disable;
4330 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4331 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4332 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4333 
4334 			if (IS_GEN(i915, 10)) {
4335 				perf->ctx_oactxctrl_offset = 0x128;
4336 				perf->ctx_flexeu0_offset = 0x3de;
4337 			} else {
4338 				perf->ctx_oactxctrl_offset = 0x124;
4339 				perf->ctx_flexeu0_offset = 0x78e;
4340 			}
4341 			perf->gen8_valid_ctx_bit = BIT(16);
4342 		} else if (IS_GEN(i915, 12)) {
4343 			perf->oa_formats = gen12_oa_formats;
4344 
4345 			perf->ops.is_valid_b_counter_reg =
4346 				gen12_is_valid_b_counter_addr;
4347 			perf->ops.is_valid_mux_reg =
4348 				gen12_is_valid_mux_addr;
4349 			perf->ops.is_valid_flex_reg =
4350 				gen8_is_valid_flex_addr;
4351 
4352 			perf->ops.oa_enable = gen12_oa_enable;
4353 			perf->ops.oa_disable = gen12_oa_disable;
4354 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4355 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4356 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4357 
4358 			perf->ctx_flexeu0_offset = 0;
4359 			perf->ctx_oactxctrl_offset = 0x144;
4360 		}
4361 	}
4362 
4363 	if (perf->ops.enable_metric_set) {
4364 		mutex_init(&perf->lock);
4365 
4366 		oa_sample_rate_hard_limit =
4367 			RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4368 
4369 		mutex_init(&perf->metrics_lock);
4370 		idr_init(&perf->metrics_idr);
4371 
4372 		/* We set up some ratelimit state to potentially throttle any
4373 		 * _NOTES about spurious, invalid OA reports which we don't
4374 		 * forward to userspace.
4375 		 *
4376 		 * We print a _NOTE about any throttling when closing the
4377 		 * stream instead of waiting until driver _fini which no one
4378 		 * would ever see.
4379 		 *
4380 		 * Using the same limiting factors as printk_ratelimit()
4381 		 */
4382 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4383 		/* Since we use a DRM_NOTE for spurious reports it would be
4384 		 * inconsistent to let __ratelimit() automatically print a
4385 		 * warning for throttling.
4386 		 */
4387 		ratelimit_set_flags(&perf->spurious_report_rs,
4388 				    RATELIMIT_MSG_ON_RELEASE);
4389 
4390 		ratelimit_state_init(&perf->tail_pointer_race,
4391 				     5 * HZ, 10);
4392 		ratelimit_set_flags(&perf->tail_pointer_race,
4393 				    RATELIMIT_MSG_ON_RELEASE);
4394 
4395 		atomic64_set(&perf->noa_programming_delay,
4396 			     500 * 1000 /* 500us */);
4397 
4398 		perf->i915 = i915;
4399 	}
4400 }
4401 
4402 static int destroy_config(int id, void *p, void *data)
4403 {
4404 	i915_oa_config_put(p);
4405 	return 0;
4406 }
4407 
4408 void i915_perf_sysctl_register(void)
4409 {
4410 	sysctl_header = register_sysctl_table(dev_root);
4411 }
4412 
4413 void i915_perf_sysctl_unregister(void)
4414 {
4415 	unregister_sysctl_table(sysctl_header);
4416 }
4417 
4418 /**
4419  * i915_perf_fini - Counter part to i915_perf_init()
4420  * @i915: i915 device instance
4421  */
4422 void i915_perf_fini(struct drm_i915_private *i915)
4423 {
4424 	struct i915_perf *perf = &i915->perf;
4425 
4426 	if (!perf->i915)
4427 		return;
4428 
4429 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4430 	idr_destroy(&perf->metrics_idr);
4431 
4432 	memset(&perf->ops, 0, sizeof(perf->ops));
4433 	perf->i915 = NULL;
4434 }
4435 
4436 /**
4437  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4438  *
4439  * This version number is used by userspace to detect available features.
4440  */
4441 int i915_perf_ioctl_version(void)
4442 {
4443 	/*
4444 	 * 1: Initial version
4445 	 *   I915_PERF_IOCTL_ENABLE
4446 	 *   I915_PERF_IOCTL_DISABLE
4447 	 *
4448 	 * 2: Added runtime modification of OA config.
4449 	 *   I915_PERF_IOCTL_CONFIG
4450 	 *
4451 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4452 	 *    preemption on a particular context so that performance data is
4453 	 *    accessible from a delta of MI_RPC reports without looking at the
4454 	 *    OA buffer.
4455 	 *
4456 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4457 	 *    be run for the duration of the performance recording based on
4458 	 *    their SSEU configuration.
4459 	 *
4460 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4461 	 *    interval for the hrtimer used to check for OA data.
4462 	 */
4463 	return 5;
4464 }
4465 
4466 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4467 #include "selftests/i915_perf.c"
4468 #endif
4469