1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "i915_drv.h" 199 #include "i915_oa_hsw.h" 200 #include "i915_oa_bdw.h" 201 #include "i915_oa_chv.h" 202 #include "i915_oa_sklgt2.h" 203 #include "i915_oa_sklgt3.h" 204 #include "i915_oa_sklgt4.h" 205 #include "i915_oa_bxt.h" 206 #include "i915_oa_kblgt2.h" 207 #include "i915_oa_kblgt3.h" 208 #include "i915_oa_glk.h" 209 210 /* HW requires this to be a power of two, between 128k and 16M, though driver 211 * is currently generally designed assuming the largest 16M size is used such 212 * that the overflow cases are unlikely in normal operation. 213 */ 214 #define OA_BUFFER_SIZE SZ_16M 215 216 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 217 218 /** 219 * DOC: OA Tail Pointer Race 220 * 221 * There's a HW race condition between OA unit tail pointer register updates and 222 * writes to memory whereby the tail pointer can sometimes get ahead of what's 223 * been written out to the OA buffer so far (in terms of what's visible to the 224 * CPU). 225 * 226 * Although this can be observed explicitly while copying reports to userspace 227 * by checking for a zeroed report-id field in tail reports, we want to account 228 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 229 * read() attempts. 230 * 231 * In effect we define a tail pointer for reading that lags the real tail 232 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 233 * time for the corresponding reports to become visible to the CPU. 234 * 235 * To manage this we actually track two tail pointers: 236 * 1) An 'aging' tail with an associated timestamp that is tracked until we 237 * can trust the corresponding data is visible to the CPU; at which point 238 * it is considered 'aged'. 239 * 2) An 'aged' tail that can be used for read()ing. 240 * 241 * The two separate pointers let us decouple read()s from tail pointer aging. 242 * 243 * The tail pointers are checked and updated at a limited rate within a hrtimer 244 * callback (the same callback that is used for delivering POLLIN events) 245 * 246 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 247 * indicates that an updated tail pointer is needed. 248 * 249 * Most of the implementation details for this workaround are in 250 * oa_buffer_check_unlocked() and _append_oa_reports() 251 * 252 * Note for posterity: previously the driver used to define an effective tail 253 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 254 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 255 * This was flawed considering that the OA unit may also automatically generate 256 * non-periodic reports (such as on context switch) or the OA unit may be 257 * enabled without any periodic sampling. 258 */ 259 #define OA_TAIL_MARGIN_NSEC 100000ULL 260 #define INVALID_TAIL_PTR 0xffffffff 261 262 /* frequency for checking whether the OA unit has written new reports to the 263 * circular OA buffer... 264 */ 265 #define POLL_FREQUENCY 200 266 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 267 268 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 269 static int zero; 270 static int one = 1; 271 static u32 i915_perf_stream_paranoid = true; 272 273 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 274 * of the 64bit timestamp bits to trigger reports from) but there's currently 275 * no known use case for sampling as infrequently as once per 47 thousand years. 276 * 277 * Since the timestamps included in OA reports are only 32bits it seems 278 * reasonable to limit the OA exponent where it's still possible to account for 279 * overflow in OA report timestamps. 280 */ 281 #define OA_EXPONENT_MAX 31 282 283 #define INVALID_CTX_ID 0xffffffff 284 285 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 286 #define OAREPORT_REASON_MASK 0x3f 287 #define OAREPORT_REASON_SHIFT 19 288 #define OAREPORT_REASON_TIMER (1<<0) 289 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 290 #define OAREPORT_REASON_CLK_RATIO (1<<5) 291 292 293 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 294 * 295 * The highest sampling frequency we can theoretically program the OA unit 296 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 297 * 298 * Initialized just before we register the sysctl parameter. 299 */ 300 static int oa_sample_rate_hard_limit; 301 302 /* Theoretically we can program the OA unit to sample every 160ns but don't 303 * allow that by default unless root... 304 * 305 * The default threshold of 100000Hz is based on perf's similar 306 * kernel.perf_event_max_sample_rate sysctl parameter. 307 */ 308 static u32 i915_oa_max_sample_rate = 100000; 309 310 /* XXX: beware if future OA HW adds new report formats that the current 311 * code assumes all reports have a power-of-two size and ~(size - 1) can 312 * be used as a mask to align the OA tail pointer. 313 */ 314 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 315 [I915_OA_FORMAT_A13] = { 0, 64 }, 316 [I915_OA_FORMAT_A29] = { 1, 128 }, 317 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 318 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 319 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 320 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 321 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 322 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 323 }; 324 325 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 326 [I915_OA_FORMAT_A12] = { 0, 64 }, 327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 329 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 330 }; 331 332 #define SAMPLE_OA_REPORT (1<<0) 333 334 /** 335 * struct perf_open_properties - for validated properties given to open a stream 336 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 337 * @single_context: Whether a single or all gpu contexts should be monitored 338 * @ctx_handle: A gem ctx handle for use with @single_context 339 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 340 * @oa_format: An OA unit HW report format 341 * @oa_periodic: Whether to enable periodic OA unit sampling 342 * @oa_period_exponent: The OA unit sampling period is derived from this 343 * 344 * As read_properties_unlocked() enumerates and validates the properties given 345 * to open a stream of metrics the configuration is built up in the structure 346 * which starts out zero initialized. 347 */ 348 struct perf_open_properties { 349 u32 sample_flags; 350 351 u64 single_context:1; 352 u64 ctx_handle; 353 354 /* OA sampling state */ 355 int metrics_set; 356 int oa_format; 357 bool oa_periodic; 358 int oa_period_exponent; 359 }; 360 361 static void free_oa_config(struct drm_i915_private *dev_priv, 362 struct i915_oa_config *oa_config) 363 { 364 if (!PTR_ERR(oa_config->flex_regs)) 365 kfree(oa_config->flex_regs); 366 if (!PTR_ERR(oa_config->b_counter_regs)) 367 kfree(oa_config->b_counter_regs); 368 if (!PTR_ERR(oa_config->mux_regs)) 369 kfree(oa_config->mux_regs); 370 kfree(oa_config); 371 } 372 373 static void put_oa_config(struct drm_i915_private *dev_priv, 374 struct i915_oa_config *oa_config) 375 { 376 if (!atomic_dec_and_test(&oa_config->ref_count)) 377 return; 378 379 free_oa_config(dev_priv, oa_config); 380 } 381 382 static int get_oa_config(struct drm_i915_private *dev_priv, 383 int metrics_set, 384 struct i915_oa_config **out_config) 385 { 386 int ret; 387 388 if (metrics_set == 1) { 389 *out_config = &dev_priv->perf.oa.test_config; 390 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 391 return 0; 392 } 393 394 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 395 if (ret) 396 return ret; 397 398 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 399 if (!*out_config) 400 ret = -EINVAL; 401 else 402 atomic_inc(&(*out_config)->ref_count); 403 404 mutex_unlock(&dev_priv->perf.metrics_lock); 405 406 return ret; 407 } 408 409 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 410 { 411 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 412 } 413 414 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 415 { 416 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 417 418 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 419 } 420 421 /** 422 * oa_buffer_check_unlocked - check for data and update tail ptr state 423 * @dev_priv: i915 device instance 424 * 425 * This is either called via fops (for blocking reads in user ctx) or the poll 426 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 427 * if there is data available for userspace to read. 428 * 429 * This function is central to providing a workaround for the OA unit tail 430 * pointer having a race with respect to what data is visible to the CPU. 431 * It is responsible for reading tail pointers from the hardware and giving 432 * the pointers time to 'age' before they are made available for reading. 433 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 434 * 435 * Besides returning true when there is data available to read() this function 436 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 437 * and .aged_tail_idx state used for reading. 438 * 439 * Note: It's safe to read OA config state here unlocked, assuming that this is 440 * only called while the stream is enabled, while the global OA configuration 441 * can't be modified. 442 * 443 * Returns: %true if the OA buffer contains data, else %false 444 */ 445 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 446 { 447 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 448 unsigned long flags; 449 unsigned int aged_idx; 450 u32 head, hw_tail, aged_tail, aging_tail; 451 u64 now; 452 453 /* We have to consider the (unlikely) possibility that read() errors 454 * could result in an OA buffer reset which might reset the head, 455 * tails[] and aged_tail state. 456 */ 457 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 458 459 /* NB: The head we observe here might effectively be a little out of 460 * date (between head and tails[aged_idx].offset if there is currently 461 * a read() in progress. 462 */ 463 head = dev_priv->perf.oa.oa_buffer.head; 464 465 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 466 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 467 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 468 469 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 470 471 /* The tail pointer increases in 64 byte increments, 472 * not in report_size steps... 473 */ 474 hw_tail &= ~(report_size - 1); 475 476 now = ktime_get_mono_fast_ns(); 477 478 /* Update the aged tail 479 * 480 * Flip the tail pointer available for read()s once the aging tail is 481 * old enough to trust that the corresponding data will be visible to 482 * the CPU... 483 * 484 * Do this before updating the aging pointer in case we may be able to 485 * immediately start aging a new pointer too (if new data has become 486 * available) without needing to wait for a later hrtimer callback. 487 */ 488 if (aging_tail != INVALID_TAIL_PTR && 489 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 490 OA_TAIL_MARGIN_NSEC)) { 491 492 aged_idx ^= 1; 493 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 494 495 aged_tail = aging_tail; 496 497 /* Mark that we need a new pointer to start aging... */ 498 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 499 aging_tail = INVALID_TAIL_PTR; 500 } 501 502 /* Update the aging tail 503 * 504 * We throttle aging tail updates until we have a new tail that 505 * represents >= one report more data than is already available for 506 * reading. This ensures there will be enough data for a successful 507 * read once this new pointer has aged and ensures we will give the new 508 * pointer time to age. 509 */ 510 if (aging_tail == INVALID_TAIL_PTR && 511 (aged_tail == INVALID_TAIL_PTR || 512 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 513 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 514 u32 gtt_offset = i915_ggtt_offset(vma); 515 516 /* Be paranoid and do a bounds check on the pointer read back 517 * from hardware, just in case some spurious hardware condition 518 * could put the tail out of bounds... 519 */ 520 if (hw_tail >= gtt_offset && 521 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 522 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 523 aging_tail = hw_tail; 524 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 525 } else { 526 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 527 hw_tail); 528 } 529 } 530 531 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 532 533 return aged_tail == INVALID_TAIL_PTR ? 534 false : OA_TAKEN(aged_tail, head) >= report_size; 535 } 536 537 /** 538 * append_oa_status - Appends a status record to a userspace read() buffer. 539 * @stream: An i915-perf stream opened for OA metrics 540 * @buf: destination buffer given by userspace 541 * @count: the number of bytes userspace wants to read 542 * @offset: (inout): the current position for writing into @buf 543 * @type: The kind of status to report to userspace 544 * 545 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 546 * into the userspace read() buffer. 547 * 548 * The @buf @offset will only be updated on success. 549 * 550 * Returns: 0 on success, negative error code on failure. 551 */ 552 static int append_oa_status(struct i915_perf_stream *stream, 553 char __user *buf, 554 size_t count, 555 size_t *offset, 556 enum drm_i915_perf_record_type type) 557 { 558 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 559 560 if ((count - *offset) < header.size) 561 return -ENOSPC; 562 563 if (copy_to_user(buf + *offset, &header, sizeof(header))) 564 return -EFAULT; 565 566 (*offset) += header.size; 567 568 return 0; 569 } 570 571 /** 572 * append_oa_sample - Copies single OA report into userspace read() buffer. 573 * @stream: An i915-perf stream opened for OA metrics 574 * @buf: destination buffer given by userspace 575 * @count: the number of bytes userspace wants to read 576 * @offset: (inout): the current position for writing into @buf 577 * @report: A single OA report to (optionally) include as part of the sample 578 * 579 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 580 * properties when opening a stream, tracked as `stream->sample_flags`. This 581 * function copies the requested components of a single sample to the given 582 * read() @buf. 583 * 584 * The @buf @offset will only be updated on success. 585 * 586 * Returns: 0 on success, negative error code on failure. 587 */ 588 static int append_oa_sample(struct i915_perf_stream *stream, 589 char __user *buf, 590 size_t count, 591 size_t *offset, 592 const u8 *report) 593 { 594 struct drm_i915_private *dev_priv = stream->dev_priv; 595 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 596 struct drm_i915_perf_record_header header; 597 u32 sample_flags = stream->sample_flags; 598 599 header.type = DRM_I915_PERF_RECORD_SAMPLE; 600 header.pad = 0; 601 header.size = stream->sample_size; 602 603 if ((count - *offset) < header.size) 604 return -ENOSPC; 605 606 buf += *offset; 607 if (copy_to_user(buf, &header, sizeof(header))) 608 return -EFAULT; 609 buf += sizeof(header); 610 611 if (sample_flags & SAMPLE_OA_REPORT) { 612 if (copy_to_user(buf, report, report_size)) 613 return -EFAULT; 614 } 615 616 (*offset) += header.size; 617 618 return 0; 619 } 620 621 /** 622 * Copies all buffered OA reports into userspace read() buffer. 623 * @stream: An i915-perf stream opened for OA metrics 624 * @buf: destination buffer given by userspace 625 * @count: the number of bytes userspace wants to read 626 * @offset: (inout): the current position for writing into @buf 627 * 628 * Notably any error condition resulting in a short read (-%ENOSPC or 629 * -%EFAULT) will be returned even though one or more records may 630 * have been successfully copied. In this case it's up to the caller 631 * to decide if the error should be squashed before returning to 632 * userspace. 633 * 634 * Note: reports are consumed from the head, and appended to the 635 * tail, so the tail chases the head?... If you think that's mad 636 * and back-to-front you're not alone, but this follows the 637 * Gen PRM naming convention. 638 * 639 * Returns: 0 on success, negative error code on failure. 640 */ 641 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 642 char __user *buf, 643 size_t count, 644 size_t *offset) 645 { 646 struct drm_i915_private *dev_priv = stream->dev_priv; 647 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 648 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 649 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 650 u32 mask = (OA_BUFFER_SIZE - 1); 651 size_t start_offset = *offset; 652 unsigned long flags; 653 unsigned int aged_tail_idx; 654 u32 head, tail; 655 u32 taken; 656 int ret = 0; 657 658 if (WARN_ON(!stream->enabled)) 659 return -EIO; 660 661 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 662 663 head = dev_priv->perf.oa.oa_buffer.head; 664 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 665 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 666 667 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 668 669 /* 670 * An invalid tail pointer here means we're still waiting for the poll 671 * hrtimer callback to give us a pointer 672 */ 673 if (tail == INVALID_TAIL_PTR) 674 return -EAGAIN; 675 676 /* 677 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 678 * while indexing relative to oa_buf_base. 679 */ 680 head -= gtt_offset; 681 tail -= gtt_offset; 682 683 /* 684 * An out of bounds or misaligned head or tail pointer implies a driver 685 * bug since we validate + align the tail pointers we read from the 686 * hardware and we are in full control of the head pointer which should 687 * only be incremented by multiples of the report size (notably also 688 * all a power of two). 689 */ 690 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 691 tail > OA_BUFFER_SIZE || tail % report_size, 692 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 693 head, tail)) 694 return -EIO; 695 696 697 for (/* none */; 698 (taken = OA_TAKEN(tail, head)); 699 head = (head + report_size) & mask) { 700 u8 *report = oa_buf_base + head; 701 u32 *report32 = (void *)report; 702 u32 ctx_id; 703 u32 reason; 704 705 /* 706 * All the report sizes factor neatly into the buffer 707 * size so we never expect to see a report split 708 * between the beginning and end of the buffer. 709 * 710 * Given the initial alignment check a misalignment 711 * here would imply a driver bug that would result 712 * in an overrun. 713 */ 714 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 715 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 716 break; 717 } 718 719 /* 720 * The reason field includes flags identifying what 721 * triggered this specific report (mostly timer 722 * triggered or e.g. due to a context switch). 723 * 724 * This field is never expected to be zero so we can 725 * check that the report isn't invalid before copying 726 * it to userspace... 727 */ 728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 729 OAREPORT_REASON_MASK); 730 if (reason == 0) { 731 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 732 DRM_NOTE("Skipping spurious, invalid OA report\n"); 733 continue; 734 } 735 736 /* 737 * XXX: Just keep the lower 21 bits for now since I'm not 738 * entirely sure if the HW touches any of the higher bits in 739 * this field 740 */ 741 ctx_id = report32[2] & 0x1fffff; 742 743 /* 744 * Squash whatever is in the CTX_ID field if it's marked as 745 * invalid to be sure we avoid false-positive, single-context 746 * filtering below... 747 * 748 * Note: that we don't clear the valid_ctx_bit so userspace can 749 * understand that the ID has been squashed by the kernel. 750 */ 751 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 752 ctx_id = report32[2] = INVALID_CTX_ID; 753 754 /* 755 * NB: For Gen 8 the OA unit no longer supports clock gating 756 * off for a specific context and the kernel can't securely 757 * stop the counters from updating as system-wide / global 758 * values. 759 * 760 * Automatic reports now include a context ID so reports can be 761 * filtered on the cpu but it's not worth trying to 762 * automatically subtract/hide counter progress for other 763 * contexts while filtering since we can't stop userspace 764 * issuing MI_REPORT_PERF_COUNT commands which would still 765 * provide a side-band view of the real values. 766 * 767 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 768 * to normalize counters for a single filtered context then it 769 * needs be forwarded bookend context-switch reports so that it 770 * can track switches in between MI_REPORT_PERF_COUNT commands 771 * and can itself subtract/ignore the progress of counters 772 * associated with other contexts. Note that the hardware 773 * automatically triggers reports when switching to a new 774 * context which are tagged with the ID of the newly active 775 * context. To avoid the complexity (and likely fragility) of 776 * reading ahead while parsing reports to try and minimize 777 * forwarding redundant context switch reports (i.e. between 778 * other, unrelated contexts) we simply elect to forward them 779 * all. 780 * 781 * We don't rely solely on the reason field to identify context 782 * switches since it's not-uncommon for periodic samples to 783 * identify a switch before any 'context switch' report. 784 */ 785 if (!dev_priv->perf.oa.exclusive_stream->ctx || 786 dev_priv->perf.oa.specific_ctx_id == ctx_id || 787 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 788 dev_priv->perf.oa.specific_ctx_id) || 789 reason & OAREPORT_REASON_CTX_SWITCH) { 790 791 /* 792 * While filtering for a single context we avoid 793 * leaking the IDs of other contexts. 794 */ 795 if (dev_priv->perf.oa.exclusive_stream->ctx && 796 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 797 report32[2] = INVALID_CTX_ID; 798 } 799 800 ret = append_oa_sample(stream, buf, count, offset, 801 report); 802 if (ret) 803 break; 804 805 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 806 } 807 808 /* 809 * The above reason field sanity check is based on 810 * the assumption that the OA buffer is initially 811 * zeroed and we reset the field after copying so the 812 * check is still meaningful once old reports start 813 * being overwritten. 814 */ 815 report32[0] = 0; 816 } 817 818 if (start_offset != *offset) { 819 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 820 821 /* 822 * We removed the gtt_offset for the copy loop above, indexing 823 * relative to oa_buf_base so put back here... 824 */ 825 head += gtt_offset; 826 827 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 828 dev_priv->perf.oa.oa_buffer.head = head; 829 830 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 831 } 832 833 return ret; 834 } 835 836 /** 837 * gen8_oa_read - copy status records then buffered OA reports 838 * @stream: An i915-perf stream opened for OA metrics 839 * @buf: destination buffer given by userspace 840 * @count: the number of bytes userspace wants to read 841 * @offset: (inout): the current position for writing into @buf 842 * 843 * Checks OA unit status registers and if necessary appends corresponding 844 * status records for userspace (such as for a buffer full condition) and then 845 * initiate appending any buffered OA reports. 846 * 847 * Updates @offset according to the number of bytes successfully copied into 848 * the userspace buffer. 849 * 850 * NB: some data may be successfully copied to the userspace buffer 851 * even if an error is returned, and this is reflected in the 852 * updated @offset. 853 * 854 * Returns: zero on success or a negative error code 855 */ 856 static int gen8_oa_read(struct i915_perf_stream *stream, 857 char __user *buf, 858 size_t count, 859 size_t *offset) 860 { 861 struct drm_i915_private *dev_priv = stream->dev_priv; 862 u32 oastatus; 863 int ret; 864 865 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 866 return -EIO; 867 868 oastatus = I915_READ(GEN8_OASTATUS); 869 870 /* 871 * We treat OABUFFER_OVERFLOW as a significant error: 872 * 873 * Although theoretically we could handle this more gracefully 874 * sometimes, some Gens don't correctly suppress certain 875 * automatically triggered reports in this condition and so we 876 * have to assume that old reports are now being trampled 877 * over. 878 * 879 * Considering how we don't currently give userspace control 880 * over the OA buffer size and always configure a large 16MB 881 * buffer, then a buffer overflow does anyway likely indicate 882 * that something has gone quite badly wrong. 883 */ 884 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 885 ret = append_oa_status(stream, buf, count, offset, 886 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 887 if (ret) 888 return ret; 889 890 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 891 dev_priv->perf.oa.period_exponent); 892 893 dev_priv->perf.oa.ops.oa_disable(dev_priv); 894 dev_priv->perf.oa.ops.oa_enable(dev_priv); 895 896 /* 897 * Note: .oa_enable() is expected to re-init the oabuffer and 898 * reset GEN8_OASTATUS for us 899 */ 900 oastatus = I915_READ(GEN8_OASTATUS); 901 } 902 903 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 904 ret = append_oa_status(stream, buf, count, offset, 905 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 906 if (ret) 907 return ret; 908 I915_WRITE(GEN8_OASTATUS, 909 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 910 } 911 912 return gen8_append_oa_reports(stream, buf, count, offset); 913 } 914 915 /** 916 * Copies all buffered OA reports into userspace read() buffer. 917 * @stream: An i915-perf stream opened for OA metrics 918 * @buf: destination buffer given by userspace 919 * @count: the number of bytes userspace wants to read 920 * @offset: (inout): the current position for writing into @buf 921 * 922 * Notably any error condition resulting in a short read (-%ENOSPC or 923 * -%EFAULT) will be returned even though one or more records may 924 * have been successfully copied. In this case it's up to the caller 925 * to decide if the error should be squashed before returning to 926 * userspace. 927 * 928 * Note: reports are consumed from the head, and appended to the 929 * tail, so the tail chases the head?... If you think that's mad 930 * and back-to-front you're not alone, but this follows the 931 * Gen PRM naming convention. 932 * 933 * Returns: 0 on success, negative error code on failure. 934 */ 935 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 936 char __user *buf, 937 size_t count, 938 size_t *offset) 939 { 940 struct drm_i915_private *dev_priv = stream->dev_priv; 941 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 942 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 943 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 944 u32 mask = (OA_BUFFER_SIZE - 1); 945 size_t start_offset = *offset; 946 unsigned long flags; 947 unsigned int aged_tail_idx; 948 u32 head, tail; 949 u32 taken; 950 int ret = 0; 951 952 if (WARN_ON(!stream->enabled)) 953 return -EIO; 954 955 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 956 957 head = dev_priv->perf.oa.oa_buffer.head; 958 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 959 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 960 961 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 962 963 /* An invalid tail pointer here means we're still waiting for the poll 964 * hrtimer callback to give us a pointer 965 */ 966 if (tail == INVALID_TAIL_PTR) 967 return -EAGAIN; 968 969 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 970 * while indexing relative to oa_buf_base. 971 */ 972 head -= gtt_offset; 973 tail -= gtt_offset; 974 975 /* An out of bounds or misaligned head or tail pointer implies a driver 976 * bug since we validate + align the tail pointers we read from the 977 * hardware and we are in full control of the head pointer which should 978 * only be incremented by multiples of the report size (notably also 979 * all a power of two). 980 */ 981 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 982 tail > OA_BUFFER_SIZE || tail % report_size, 983 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 984 head, tail)) 985 return -EIO; 986 987 988 for (/* none */; 989 (taken = OA_TAKEN(tail, head)); 990 head = (head + report_size) & mask) { 991 u8 *report = oa_buf_base + head; 992 u32 *report32 = (void *)report; 993 994 /* All the report sizes factor neatly into the buffer 995 * size so we never expect to see a report split 996 * between the beginning and end of the buffer. 997 * 998 * Given the initial alignment check a misalignment 999 * here would imply a driver bug that would result 1000 * in an overrun. 1001 */ 1002 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1003 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1004 break; 1005 } 1006 1007 /* The report-ID field for periodic samples includes 1008 * some undocumented flags related to what triggered 1009 * the report and is never expected to be zero so we 1010 * can check that the report isn't invalid before 1011 * copying it to userspace... 1012 */ 1013 if (report32[0] == 0) { 1014 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1015 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1016 continue; 1017 } 1018 1019 ret = append_oa_sample(stream, buf, count, offset, report); 1020 if (ret) 1021 break; 1022 1023 /* The above report-id field sanity check is based on 1024 * the assumption that the OA buffer is initially 1025 * zeroed and we reset the field after copying so the 1026 * check is still meaningful once old reports start 1027 * being overwritten. 1028 */ 1029 report32[0] = 0; 1030 } 1031 1032 if (start_offset != *offset) { 1033 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1034 1035 /* We removed the gtt_offset for the copy loop above, indexing 1036 * relative to oa_buf_base so put back here... 1037 */ 1038 head += gtt_offset; 1039 1040 I915_WRITE(GEN7_OASTATUS2, 1041 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1042 OA_MEM_SELECT_GGTT)); 1043 dev_priv->perf.oa.oa_buffer.head = head; 1044 1045 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1046 } 1047 1048 return ret; 1049 } 1050 1051 /** 1052 * gen7_oa_read - copy status records then buffered OA reports 1053 * @stream: An i915-perf stream opened for OA metrics 1054 * @buf: destination buffer given by userspace 1055 * @count: the number of bytes userspace wants to read 1056 * @offset: (inout): the current position for writing into @buf 1057 * 1058 * Checks Gen 7 specific OA unit status registers and if necessary appends 1059 * corresponding status records for userspace (such as for a buffer full 1060 * condition) and then initiate appending any buffered OA reports. 1061 * 1062 * Updates @offset according to the number of bytes successfully copied into 1063 * the userspace buffer. 1064 * 1065 * Returns: zero on success or a negative error code 1066 */ 1067 static int gen7_oa_read(struct i915_perf_stream *stream, 1068 char __user *buf, 1069 size_t count, 1070 size_t *offset) 1071 { 1072 struct drm_i915_private *dev_priv = stream->dev_priv; 1073 u32 oastatus1; 1074 int ret; 1075 1076 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1077 return -EIO; 1078 1079 oastatus1 = I915_READ(GEN7_OASTATUS1); 1080 1081 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1082 * bits while the OA unit is enabled (while the tail pointer 1083 * may be updated asynchronously) so we ignore status bits 1084 * that have already been reported to userspace. 1085 */ 1086 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1087 1088 /* We treat OABUFFER_OVERFLOW as a significant error: 1089 * 1090 * - The status can be interpreted to mean that the buffer is 1091 * currently full (with a higher precedence than OA_TAKEN() 1092 * which will start to report a near-empty buffer after an 1093 * overflow) but it's awkward that we can't clear the status 1094 * on Haswell, so without a reset we won't be able to catch 1095 * the state again. 1096 * 1097 * - Since it also implies the HW has started overwriting old 1098 * reports it may also affect our sanity checks for invalid 1099 * reports when copying to userspace that assume new reports 1100 * are being written to cleared memory. 1101 * 1102 * - In the future we may want to introduce a flight recorder 1103 * mode where the driver will automatically maintain a safe 1104 * guard band between head/tail, avoiding this overflow 1105 * condition, but we avoid the added driver complexity for 1106 * now. 1107 */ 1108 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1109 ret = append_oa_status(stream, buf, count, offset, 1110 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1111 if (ret) 1112 return ret; 1113 1114 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1115 dev_priv->perf.oa.period_exponent); 1116 1117 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1118 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1119 1120 oastatus1 = I915_READ(GEN7_OASTATUS1); 1121 } 1122 1123 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1124 ret = append_oa_status(stream, buf, count, offset, 1125 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1126 if (ret) 1127 return ret; 1128 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1129 GEN7_OASTATUS1_REPORT_LOST; 1130 } 1131 1132 return gen7_append_oa_reports(stream, buf, count, offset); 1133 } 1134 1135 /** 1136 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1137 * @stream: An i915-perf stream opened for OA metrics 1138 * 1139 * Called when userspace tries to read() from a blocking stream FD opened 1140 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1141 * OA buffer and wakes us. 1142 * 1143 * Note: it's acceptable to have this return with some false positives 1144 * since any subsequent read handling will return -EAGAIN if there isn't 1145 * really data ready for userspace yet. 1146 * 1147 * Returns: zero on success or a negative error code 1148 */ 1149 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1150 { 1151 struct drm_i915_private *dev_priv = stream->dev_priv; 1152 1153 /* We would wait indefinitely if periodic sampling is not enabled */ 1154 if (!dev_priv->perf.oa.periodic) 1155 return -EIO; 1156 1157 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1158 oa_buffer_check_unlocked(dev_priv)); 1159 } 1160 1161 /** 1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1163 * @stream: An i915-perf stream opened for OA metrics 1164 * @file: An i915 perf stream file 1165 * @wait: poll() state table 1166 * 1167 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1169 * when it sees data ready to read in the circular OA buffer. 1170 */ 1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1172 struct file *file, 1173 poll_table *wait) 1174 { 1175 struct drm_i915_private *dev_priv = stream->dev_priv; 1176 1177 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1178 } 1179 1180 /** 1181 * i915_oa_read - just calls through to &i915_oa_ops->read 1182 * @stream: An i915-perf stream opened for OA metrics 1183 * @buf: destination buffer given by userspace 1184 * @count: the number of bytes userspace wants to read 1185 * @offset: (inout): the current position for writing into @buf 1186 * 1187 * Updates @offset according to the number of bytes successfully copied into 1188 * the userspace buffer. 1189 * 1190 * Returns: zero on success or a negative error code 1191 */ 1192 static int i915_oa_read(struct i915_perf_stream *stream, 1193 char __user *buf, 1194 size_t count, 1195 size_t *offset) 1196 { 1197 struct drm_i915_private *dev_priv = stream->dev_priv; 1198 1199 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1200 } 1201 1202 /** 1203 * oa_get_render_ctx_id - determine and hold ctx hw id 1204 * @stream: An i915-perf stream opened for OA metrics 1205 * 1206 * Determine the render context hw id, and ensure it remains fixed for the 1207 * lifetime of the stream. This ensures that we don't have to worry about 1208 * updating the context ID in OACONTROL on the fly. 1209 * 1210 * Returns: zero on success or a negative error code 1211 */ 1212 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1213 { 1214 struct drm_i915_private *dev_priv = stream->dev_priv; 1215 1216 if (i915.enable_execlists) 1217 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id; 1218 else { 1219 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1220 struct intel_ring *ring; 1221 int ret; 1222 1223 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1224 if (ret) 1225 return ret; 1226 1227 /* 1228 * As the ID is the gtt offset of the context's vma we 1229 * pin the vma to ensure the ID remains fixed. 1230 * 1231 * NB: implied RCS engine... 1232 */ 1233 ring = engine->context_pin(engine, stream->ctx); 1234 mutex_unlock(&dev_priv->drm.struct_mutex); 1235 if (IS_ERR(ring)) 1236 return PTR_ERR(ring); 1237 1238 1239 /* 1240 * Explicitly track the ID (instead of calling 1241 * i915_ggtt_offset() on the fly) considering the difference 1242 * with gen8+ and execlists 1243 */ 1244 dev_priv->perf.oa.specific_ctx_id = 1245 i915_ggtt_offset(stream->ctx->engine[engine->id].state); 1246 } 1247 1248 return 0; 1249 } 1250 1251 /** 1252 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1253 * @stream: An i915-perf stream opened for OA metrics 1254 * 1255 * In case anything needed doing to ensure the context HW ID would remain valid 1256 * for the lifetime of the stream, then that can be undone here. 1257 */ 1258 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1259 { 1260 struct drm_i915_private *dev_priv = stream->dev_priv; 1261 1262 if (i915.enable_execlists) { 1263 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1264 } else { 1265 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1266 1267 mutex_lock(&dev_priv->drm.struct_mutex); 1268 1269 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1270 engine->context_unpin(engine, stream->ctx); 1271 1272 mutex_unlock(&dev_priv->drm.struct_mutex); 1273 } 1274 } 1275 1276 static void 1277 free_oa_buffer(struct drm_i915_private *i915) 1278 { 1279 mutex_lock(&i915->drm.struct_mutex); 1280 1281 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj); 1282 i915_vma_unpin(i915->perf.oa.oa_buffer.vma); 1283 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj); 1284 1285 i915->perf.oa.oa_buffer.vma = NULL; 1286 i915->perf.oa.oa_buffer.vaddr = NULL; 1287 1288 mutex_unlock(&i915->drm.struct_mutex); 1289 } 1290 1291 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1292 { 1293 struct drm_i915_private *dev_priv = stream->dev_priv; 1294 1295 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1296 1297 /* 1298 * Unset exclusive_stream first, it will be checked while disabling 1299 * the metric set on gen8+. 1300 */ 1301 mutex_lock(&dev_priv->drm.struct_mutex); 1302 dev_priv->perf.oa.exclusive_stream = NULL; 1303 mutex_unlock(&dev_priv->drm.struct_mutex); 1304 1305 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1306 1307 free_oa_buffer(dev_priv); 1308 1309 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1310 intel_runtime_pm_put(dev_priv); 1311 1312 if (stream->ctx) 1313 oa_put_render_ctx_id(stream); 1314 1315 put_oa_config(dev_priv, stream->oa_config); 1316 1317 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1318 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1319 dev_priv->perf.oa.spurious_report_rs.missed); 1320 } 1321 } 1322 1323 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1324 { 1325 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1326 unsigned long flags; 1327 1328 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1329 1330 /* Pre-DevBDW: OABUFFER must be set with counters off, 1331 * before OASTATUS1, but after OASTATUS2 1332 */ 1333 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */ 1334 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1335 1336 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1337 1338 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1339 1340 /* Mark that we need updated tail pointers to read from... */ 1341 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1342 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1343 1344 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1345 1346 /* On Haswell we have to track which OASTATUS1 flags we've 1347 * already seen since they can't be cleared while periodic 1348 * sampling is enabled. 1349 */ 1350 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1351 1352 /* NB: although the OA buffer will initially be allocated 1353 * zeroed via shmfs (and so this memset is redundant when 1354 * first allocating), we may re-init the OA buffer, either 1355 * when re-enabling a stream or in error/reset paths. 1356 * 1357 * The reason we clear the buffer for each re-init is for the 1358 * sanity check in gen7_append_oa_reports() that looks at the 1359 * report-id field to make sure it's non-zero which relies on 1360 * the assumption that new reports are being written to zeroed 1361 * memory... 1362 */ 1363 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1364 1365 /* Maybe make ->pollin per-stream state if we support multiple 1366 * concurrent streams in the future. 1367 */ 1368 dev_priv->perf.oa.pollin = false; 1369 } 1370 1371 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1372 { 1373 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1374 unsigned long flags; 1375 1376 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1377 1378 I915_WRITE(GEN8_OASTATUS, 0); 1379 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1380 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1381 1382 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1383 1384 /* 1385 * PRM says: 1386 * 1387 * "This MMIO must be set before the OATAILPTR 1388 * register and after the OAHEADPTR register. This is 1389 * to enable proper functionality of the overflow 1390 * bit." 1391 */ 1392 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1393 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT); 1394 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1395 1396 /* Mark that we need updated tail pointers to read from... */ 1397 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1398 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1399 1400 /* 1401 * Reset state used to recognise context switches, affecting which 1402 * reports we will forward to userspace while filtering for a single 1403 * context. 1404 */ 1405 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1406 1407 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1408 1409 /* 1410 * NB: although the OA buffer will initially be allocated 1411 * zeroed via shmfs (and so this memset is redundant when 1412 * first allocating), we may re-init the OA buffer, either 1413 * when re-enabling a stream or in error/reset paths. 1414 * 1415 * The reason we clear the buffer for each re-init is for the 1416 * sanity check in gen8_append_oa_reports() that looks at the 1417 * reason field to make sure it's non-zero which relies on 1418 * the assumption that new reports are being written to zeroed 1419 * memory... 1420 */ 1421 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1422 1423 /* 1424 * Maybe make ->pollin per-stream state if we support multiple 1425 * concurrent streams in the future. 1426 */ 1427 dev_priv->perf.oa.pollin = false; 1428 } 1429 1430 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1431 { 1432 struct drm_i915_gem_object *bo; 1433 struct i915_vma *vma; 1434 int ret; 1435 1436 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1437 return -ENODEV; 1438 1439 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1440 if (ret) 1441 return ret; 1442 1443 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1444 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1445 1446 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE); 1447 if (IS_ERR(bo)) { 1448 DRM_ERROR("Failed to allocate OA buffer\n"); 1449 ret = PTR_ERR(bo); 1450 goto unlock; 1451 } 1452 1453 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC); 1454 if (ret) 1455 goto err_unref; 1456 1457 /* PreHSW required 512K alignment, HSW requires 16M */ 1458 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1459 if (IS_ERR(vma)) { 1460 ret = PTR_ERR(vma); 1461 goto err_unref; 1462 } 1463 dev_priv->perf.oa.oa_buffer.vma = vma; 1464 1465 dev_priv->perf.oa.oa_buffer.vaddr = 1466 i915_gem_object_pin_map(bo, I915_MAP_WB); 1467 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1468 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1469 goto err_unpin; 1470 } 1471 1472 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv); 1473 1474 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1475 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1476 dev_priv->perf.oa.oa_buffer.vaddr); 1477 1478 goto unlock; 1479 1480 err_unpin: 1481 __i915_vma_unpin(vma); 1482 1483 err_unref: 1484 i915_gem_object_put(bo); 1485 1486 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1487 dev_priv->perf.oa.oa_buffer.vma = NULL; 1488 1489 unlock: 1490 mutex_unlock(&dev_priv->drm.struct_mutex); 1491 return ret; 1492 } 1493 1494 static void config_oa_regs(struct drm_i915_private *dev_priv, 1495 const struct i915_oa_reg *regs, 1496 u32 n_regs) 1497 { 1498 u32 i; 1499 1500 for (i = 0; i < n_regs; i++) { 1501 const struct i915_oa_reg *reg = regs + i; 1502 1503 I915_WRITE(reg->addr, reg->value); 1504 } 1505 } 1506 1507 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv, 1508 const struct i915_oa_config *oa_config) 1509 { 1510 /* PRM: 1511 * 1512 * OA unit is using “crclk” for its functionality. When trunk 1513 * level clock gating takes place, OA clock would be gated, 1514 * unable to count the events from non-render clock domain. 1515 * Render clock gating must be disabled when OA is enabled to 1516 * count the events from non-render domain. Unit level clock 1517 * gating for RCS should also be disabled. 1518 */ 1519 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1520 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1521 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1522 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1523 1524 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1525 1526 /* It apparently takes a fairly long time for a new MUX 1527 * configuration to be be applied after these register writes. 1528 * This delay duration was derived empirically based on the 1529 * render_basic config but hopefully it covers the maximum 1530 * configuration latency. 1531 * 1532 * As a fallback, the checks in _append_oa_reports() to skip 1533 * invalid OA reports do also seem to work to discard reports 1534 * generated before this config has completed - albeit not 1535 * silently. 1536 * 1537 * Unfortunately this is essentially a magic number, since we 1538 * don't currently know of a reliable mechanism for predicting 1539 * how long the MUX config will take to apply and besides 1540 * seeing invalid reports we don't know of a reliable way to 1541 * explicitly check that the MUX config has landed. 1542 * 1543 * It's even possible we've miss characterized the underlying 1544 * problem - it just seems like the simplest explanation why 1545 * a delay at this location would mitigate any invalid reports. 1546 */ 1547 usleep_range(15000, 20000); 1548 1549 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1550 oa_config->b_counter_regs_len); 1551 1552 return 0; 1553 } 1554 1555 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1556 { 1557 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1558 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1559 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1560 GEN7_DOP_CLOCK_GATE_ENABLE)); 1561 1562 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1563 ~GT_NOA_ENABLE)); 1564 } 1565 1566 /* 1567 * NB: It must always remain pointer safe to run this even if the OA unit 1568 * has been disabled. 1569 * 1570 * It's fine to put out-of-date values into these per-context registers 1571 * in the case that the OA unit has been disabled. 1572 */ 1573 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx, 1574 u32 *reg_state, 1575 const struct i915_oa_config *oa_config) 1576 { 1577 struct drm_i915_private *dev_priv = ctx->i915; 1578 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 1579 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 1580 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1581 u32 flex_mmio[] = { 1582 i915_mmio_reg_offset(EU_PERF_CNTL0), 1583 i915_mmio_reg_offset(EU_PERF_CNTL1), 1584 i915_mmio_reg_offset(EU_PERF_CNTL2), 1585 i915_mmio_reg_offset(EU_PERF_CNTL3), 1586 i915_mmio_reg_offset(EU_PERF_CNTL4), 1587 i915_mmio_reg_offset(EU_PERF_CNTL5), 1588 i915_mmio_reg_offset(EU_PERF_CNTL6), 1589 }; 1590 int i; 1591 1592 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL); 1593 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent << 1594 GEN8_OA_TIMER_PERIOD_SHIFT) | 1595 (dev_priv->perf.oa.periodic ? 1596 GEN8_OA_TIMER_ENABLE : 0) | 1597 GEN8_OA_COUNTER_RESUME; 1598 1599 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) { 1600 u32 state_offset = ctx_flexeu0 + i * 2; 1601 u32 mmio = flex_mmio[i]; 1602 1603 /* 1604 * This arbitrary default will select the 'EU FPU0 Pipeline 1605 * Active' event. In the future it's anticipated that there 1606 * will be an explicit 'No Event' we can select, but not yet... 1607 */ 1608 u32 value = 0; 1609 1610 if (oa_config) { 1611 u32 j; 1612 1613 for (j = 0; j < oa_config->flex_regs_len; j++) { 1614 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1615 value = oa_config->flex_regs[j].value; 1616 break; 1617 } 1618 } 1619 } 1620 1621 reg_state[state_offset] = mmio; 1622 reg_state[state_offset+1] = value; 1623 } 1624 } 1625 1626 /* 1627 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This 1628 * is only used by the kernel context. 1629 */ 1630 static int gen8_emit_oa_config(struct drm_i915_gem_request *req, 1631 const struct i915_oa_config *oa_config) 1632 { 1633 struct drm_i915_private *dev_priv = req->i915; 1634 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1635 u32 flex_mmio[] = { 1636 i915_mmio_reg_offset(EU_PERF_CNTL0), 1637 i915_mmio_reg_offset(EU_PERF_CNTL1), 1638 i915_mmio_reg_offset(EU_PERF_CNTL2), 1639 i915_mmio_reg_offset(EU_PERF_CNTL3), 1640 i915_mmio_reg_offset(EU_PERF_CNTL4), 1641 i915_mmio_reg_offset(EU_PERF_CNTL5), 1642 i915_mmio_reg_offset(EU_PERF_CNTL6), 1643 }; 1644 u32 *cs; 1645 int i; 1646 1647 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4); 1648 if (IS_ERR(cs)) 1649 return PTR_ERR(cs); 1650 1651 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1); 1652 1653 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL); 1654 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1655 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1656 GEN8_OA_COUNTER_RESUME; 1657 1658 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) { 1659 u32 mmio = flex_mmio[i]; 1660 1661 /* 1662 * This arbitrary default will select the 'EU FPU0 Pipeline 1663 * Active' event. In the future it's anticipated that there 1664 * will be an explicit 'No Event' we can select, but not 1665 * yet... 1666 */ 1667 u32 value = 0; 1668 1669 if (oa_config) { 1670 u32 j; 1671 1672 for (j = 0; j < oa_config->flex_regs_len; j++) { 1673 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1674 value = oa_config->flex_regs[j].value; 1675 break; 1676 } 1677 } 1678 } 1679 1680 *cs++ = mmio; 1681 *cs++ = value; 1682 } 1683 1684 *cs++ = MI_NOOP; 1685 intel_ring_advance(req, cs); 1686 1687 return 0; 1688 } 1689 1690 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv, 1691 const struct i915_oa_config *oa_config) 1692 { 1693 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1694 struct i915_gem_timeline *timeline; 1695 struct drm_i915_gem_request *req; 1696 int ret; 1697 1698 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1699 1700 i915_gem_retire_requests(dev_priv); 1701 1702 req = i915_gem_request_alloc(engine, dev_priv->kernel_context); 1703 if (IS_ERR(req)) 1704 return PTR_ERR(req); 1705 1706 ret = gen8_emit_oa_config(req, oa_config); 1707 if (ret) { 1708 i915_add_request(req); 1709 return ret; 1710 } 1711 1712 /* Queue this switch after all other activity */ 1713 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) { 1714 struct drm_i915_gem_request *prev; 1715 struct intel_timeline *tl; 1716 1717 tl = &timeline->engine[engine->id]; 1718 prev = i915_gem_active_raw(&tl->last_request, 1719 &dev_priv->drm.struct_mutex); 1720 if (prev) 1721 i915_sw_fence_await_sw_fence_gfp(&req->submit, 1722 &prev->submit, 1723 GFP_KERNEL); 1724 } 1725 1726 ret = i915_switch_context(req); 1727 i915_add_request(req); 1728 1729 return ret; 1730 } 1731 1732 /* 1733 * Manages updating the per-context aspects of the OA stream 1734 * configuration across all contexts. 1735 * 1736 * The awkward consideration here is that OACTXCONTROL controls the 1737 * exponent for periodic sampling which is primarily used for system 1738 * wide profiling where we'd like a consistent sampling period even in 1739 * the face of context switches. 1740 * 1741 * Our approach of updating the register state context (as opposed to 1742 * say using a workaround batch buffer) ensures that the hardware 1743 * won't automatically reload an out-of-date timer exponent even 1744 * transiently before a WA BB could be parsed. 1745 * 1746 * This function needs to: 1747 * - Ensure the currently running context's per-context OA state is 1748 * updated 1749 * - Ensure that all existing contexts will have the correct per-context 1750 * OA state if they are scheduled for use. 1751 * - Ensure any new contexts will be initialized with the correct 1752 * per-context OA state. 1753 * 1754 * Note: it's only the RCS/Render context that has any OA state. 1755 */ 1756 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv, 1757 const struct i915_oa_config *oa_config, 1758 bool interruptible) 1759 { 1760 struct i915_gem_context *ctx; 1761 int ret; 1762 unsigned int wait_flags = I915_WAIT_LOCKED; 1763 1764 if (interruptible) { 1765 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1766 if (ret) 1767 return ret; 1768 1769 wait_flags |= I915_WAIT_INTERRUPTIBLE; 1770 } else { 1771 mutex_lock(&dev_priv->drm.struct_mutex); 1772 } 1773 1774 /* Switch away from any user context. */ 1775 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config); 1776 if (ret) 1777 goto out; 1778 1779 /* 1780 * The OA register config is setup through the context image. This image 1781 * might be written to by the GPU on context switch (in particular on 1782 * lite-restore). This means we can't safely update a context's image, 1783 * if this context is scheduled/submitted to run on the GPU. 1784 * 1785 * We could emit the OA register config through the batch buffer but 1786 * this might leave small interval of time where the OA unit is 1787 * configured at an invalid sampling period. 1788 * 1789 * So far the best way to work around this issue seems to be draining 1790 * the GPU from any submitted work. 1791 */ 1792 ret = i915_gem_wait_for_idle(dev_priv, wait_flags); 1793 if (ret) 1794 goto out; 1795 1796 /* Update all contexts now that we've stalled the submission. */ 1797 list_for_each_entry(ctx, &dev_priv->contexts.list, link) { 1798 struct intel_context *ce = &ctx->engine[RCS]; 1799 u32 *regs; 1800 1801 /* OA settings will be set upon first use */ 1802 if (!ce->state) 1803 continue; 1804 1805 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB); 1806 if (IS_ERR(regs)) { 1807 ret = PTR_ERR(regs); 1808 goto out; 1809 } 1810 1811 ce->state->obj->mm.dirty = true; 1812 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs); 1813 1814 gen8_update_reg_state_unlocked(ctx, regs, oa_config); 1815 1816 i915_gem_object_unpin_map(ce->state->obj); 1817 } 1818 1819 out: 1820 mutex_unlock(&dev_priv->drm.struct_mutex); 1821 1822 return ret; 1823 } 1824 1825 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv, 1826 const struct i915_oa_config *oa_config) 1827 { 1828 int ret; 1829 1830 /* 1831 * We disable slice/unslice clock ratio change reports on SKL since 1832 * they are too noisy. The HW generates a lot of redundant reports 1833 * where the ratio hasn't really changed causing a lot of redundant 1834 * work to processes and increasing the chances we'll hit buffer 1835 * overruns. 1836 * 1837 * Although we don't currently use the 'disable overrun' OABUFFER 1838 * feature it's worth noting that clock ratio reports have to be 1839 * disabled before considering to use that feature since the HW doesn't 1840 * correctly block these reports. 1841 * 1842 * Currently none of the high-level metrics we have depend on knowing 1843 * this ratio to normalize. 1844 * 1845 * Note: This register is not power context saved and restored, but 1846 * that's OK considering that we disable RC6 while the OA unit is 1847 * enabled. 1848 * 1849 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1850 * be read back from automatically triggered reports, as part of the 1851 * RPT_ID field. 1852 */ 1853 if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) || 1854 IS_KABYLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) { 1855 I915_WRITE(GEN8_OA_DEBUG, 1856 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1857 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1858 } 1859 1860 /* 1861 * Update all contexts prior writing the mux configurations as we need 1862 * to make sure all slices/subslices are ON before writing to NOA 1863 * registers. 1864 */ 1865 ret = gen8_configure_all_contexts(dev_priv, oa_config, true); 1866 if (ret) 1867 return ret; 1868 1869 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1870 1871 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1872 oa_config->b_counter_regs_len); 1873 1874 return 0; 1875 } 1876 1877 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1878 { 1879 /* Reset all contexts' slices/subslices configurations. */ 1880 gen8_configure_all_contexts(dev_priv, NULL, false); 1881 1882 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1883 ~GT_NOA_ENABLE)); 1884 1885 } 1886 1887 static void gen7_oa_enable(struct drm_i915_private *dev_priv) 1888 { 1889 /* 1890 * Reset buf pointers so we don't forward reports from before now. 1891 * 1892 * Think carefully if considering trying to avoid this, since it 1893 * also ensures status flags and the buffer itself are cleared 1894 * in error paths, and we have checks for invalid reports based 1895 * on the assumption that certain fields are written to zeroed 1896 * memory which this helps maintains. 1897 */ 1898 gen7_init_oa_buffer(dev_priv); 1899 1900 if (dev_priv->perf.oa.exclusive_stream->enabled) { 1901 struct i915_gem_context *ctx = 1902 dev_priv->perf.oa.exclusive_stream->ctx; 1903 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1904 1905 bool periodic = dev_priv->perf.oa.periodic; 1906 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1907 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1908 1909 I915_WRITE(GEN7_OACONTROL, 1910 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1911 (period_exponent << 1912 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1913 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1914 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1915 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1916 GEN7_OACONTROL_ENABLE); 1917 } else 1918 I915_WRITE(GEN7_OACONTROL, 0); 1919 } 1920 1921 static void gen8_oa_enable(struct drm_i915_private *dev_priv) 1922 { 1923 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1924 1925 /* 1926 * Reset buf pointers so we don't forward reports from before now. 1927 * 1928 * Think carefully if considering trying to avoid this, since it 1929 * also ensures status flags and the buffer itself are cleared 1930 * in error paths, and we have checks for invalid reports based 1931 * on the assumption that certain fields are written to zeroed 1932 * memory which this helps maintains. 1933 */ 1934 gen8_init_oa_buffer(dev_priv); 1935 1936 /* 1937 * Note: we don't rely on the hardware to perform single context 1938 * filtering and instead filter on the cpu based on the context-id 1939 * field of reports 1940 */ 1941 I915_WRITE(GEN8_OACONTROL, (report_format << 1942 GEN8_OA_REPORT_FORMAT_SHIFT) | 1943 GEN8_OA_COUNTER_ENABLE); 1944 } 1945 1946 /** 1947 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1948 * @stream: An i915 perf stream opened for OA metrics 1949 * 1950 * [Re]enables hardware periodic sampling according to the period configured 1951 * when opening the stream. This also starts a hrtimer that will periodically 1952 * check for data in the circular OA buffer for notifying userspace (e.g. 1953 * during a read() or poll()). 1954 */ 1955 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1956 { 1957 struct drm_i915_private *dev_priv = stream->dev_priv; 1958 1959 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1960 1961 if (dev_priv->perf.oa.periodic) 1962 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1963 ns_to_ktime(POLL_PERIOD), 1964 HRTIMER_MODE_REL_PINNED); 1965 } 1966 1967 static void gen7_oa_disable(struct drm_i915_private *dev_priv) 1968 { 1969 I915_WRITE(GEN7_OACONTROL, 0); 1970 } 1971 1972 static void gen8_oa_disable(struct drm_i915_private *dev_priv) 1973 { 1974 I915_WRITE(GEN8_OACONTROL, 0); 1975 } 1976 1977 /** 1978 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1979 * @stream: An i915 perf stream opened for OA metrics 1980 * 1981 * Stops the OA unit from periodically writing counter reports into the 1982 * circular OA buffer. This also stops the hrtimer that periodically checks for 1983 * data in the circular OA buffer, for notifying userspace. 1984 */ 1985 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1986 { 1987 struct drm_i915_private *dev_priv = stream->dev_priv; 1988 1989 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1990 1991 if (dev_priv->perf.oa.periodic) 1992 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1993 } 1994 1995 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1996 .destroy = i915_oa_stream_destroy, 1997 .enable = i915_oa_stream_enable, 1998 .disable = i915_oa_stream_disable, 1999 .wait_unlocked = i915_oa_wait_unlocked, 2000 .poll_wait = i915_oa_poll_wait, 2001 .read = i915_oa_read, 2002 }; 2003 2004 /** 2005 * i915_oa_stream_init - validate combined props for OA stream and init 2006 * @stream: An i915 perf stream 2007 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2008 * @props: The property state that configures stream (individually validated) 2009 * 2010 * While read_properties_unlocked() validates properties in isolation it 2011 * doesn't ensure that the combination necessarily makes sense. 2012 * 2013 * At this point it has been determined that userspace wants a stream of 2014 * OA metrics, but still we need to further validate the combined 2015 * properties are OK. 2016 * 2017 * If the configuration makes sense then we can allocate memory for 2018 * a circular OA buffer and apply the requested metric set configuration. 2019 * 2020 * Returns: zero on success or a negative error code. 2021 */ 2022 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2023 struct drm_i915_perf_open_param *param, 2024 struct perf_open_properties *props) 2025 { 2026 struct drm_i915_private *dev_priv = stream->dev_priv; 2027 int format_size; 2028 int ret; 2029 2030 /* If the sysfs metrics/ directory wasn't registered for some 2031 * reason then don't let userspace try their luck with config 2032 * IDs 2033 */ 2034 if (!dev_priv->perf.metrics_kobj) { 2035 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2036 return -EINVAL; 2037 } 2038 2039 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2040 DRM_DEBUG("Only OA report sampling supported\n"); 2041 return -EINVAL; 2042 } 2043 2044 if (!dev_priv->perf.oa.ops.init_oa_buffer) { 2045 DRM_DEBUG("OA unit not supported\n"); 2046 return -ENODEV; 2047 } 2048 2049 /* To avoid the complexity of having to accurately filter 2050 * counter reports and marshal to the appropriate client 2051 * we currently only allow exclusive access 2052 */ 2053 if (dev_priv->perf.oa.exclusive_stream) { 2054 DRM_DEBUG("OA unit already in use\n"); 2055 return -EBUSY; 2056 } 2057 2058 if (!props->oa_format) { 2059 DRM_DEBUG("OA report format not specified\n"); 2060 return -EINVAL; 2061 } 2062 2063 /* We set up some ratelimit state to potentially throttle any _NOTES 2064 * about spurious, invalid OA reports which we don't forward to 2065 * userspace. 2066 * 2067 * The initialization is associated with opening the stream (not driver 2068 * init) considering we print a _NOTE about any throttling when closing 2069 * the stream instead of waiting until driver _fini which no one would 2070 * ever see. 2071 * 2072 * Using the same limiting factors as printk_ratelimit() 2073 */ 2074 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2075 5 * HZ, 10); 2076 /* Since we use a DRM_NOTE for spurious reports it would be 2077 * inconsistent to let __ratelimit() automatically print a warning for 2078 * throttling. 2079 */ 2080 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2081 RATELIMIT_MSG_ON_RELEASE); 2082 2083 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2084 2085 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2086 2087 stream->sample_flags |= SAMPLE_OA_REPORT; 2088 stream->sample_size += format_size; 2089 2090 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2091 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2092 return -EINVAL; 2093 2094 dev_priv->perf.oa.oa_buffer.format = 2095 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2096 2097 dev_priv->perf.oa.periodic = props->oa_periodic; 2098 if (dev_priv->perf.oa.periodic) 2099 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2100 2101 if (stream->ctx) { 2102 ret = oa_get_render_ctx_id(stream); 2103 if (ret) 2104 return ret; 2105 } 2106 2107 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2108 if (ret) 2109 goto err_config; 2110 2111 /* PRM - observability performance counters: 2112 * 2113 * OACONTROL, performance counter enable, note: 2114 * 2115 * "When this bit is set, in order to have coherent counts, 2116 * RC6 power state and trunk clock gating must be disabled. 2117 * This can be achieved by programming MMIO registers as 2118 * 0xA094=0 and 0xA090[31]=1" 2119 * 2120 * In our case we are expecting that taking pm + FORCEWAKE 2121 * references will effectively disable RC6. 2122 */ 2123 intel_runtime_pm_get(dev_priv); 2124 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 2125 2126 ret = alloc_oa_buffer(dev_priv); 2127 if (ret) 2128 goto err_oa_buf_alloc; 2129 2130 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv, 2131 stream->oa_config); 2132 if (ret) 2133 goto err_enable; 2134 2135 stream->ops = &i915_oa_stream_ops; 2136 2137 /* Lock device for exclusive_stream access late because 2138 * enable_metric_set() might lock as well on gen8+. 2139 */ 2140 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2141 if (ret) 2142 goto err_lock; 2143 2144 dev_priv->perf.oa.exclusive_stream = stream; 2145 2146 mutex_unlock(&dev_priv->drm.struct_mutex); 2147 2148 return 0; 2149 2150 err_lock: 2151 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2152 2153 err_enable: 2154 free_oa_buffer(dev_priv); 2155 2156 err_oa_buf_alloc: 2157 put_oa_config(dev_priv, stream->oa_config); 2158 2159 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 2160 intel_runtime_pm_put(dev_priv); 2161 2162 err_config: 2163 if (stream->ctx) 2164 oa_put_render_ctx_id(stream); 2165 2166 return ret; 2167 } 2168 2169 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2170 struct i915_gem_context *ctx, 2171 u32 *reg_state) 2172 { 2173 struct i915_perf_stream *stream; 2174 2175 if (engine->id != RCS) 2176 return; 2177 2178 stream = engine->i915->perf.oa.exclusive_stream; 2179 if (stream) 2180 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config); 2181 } 2182 2183 /** 2184 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2185 * @stream: An i915 perf stream 2186 * @file: An i915 perf stream file 2187 * @buf: destination buffer given by userspace 2188 * @count: the number of bytes userspace wants to read 2189 * @ppos: (inout) file seek position (unused) 2190 * 2191 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2192 * ensure that if we've successfully copied any data then reporting that takes 2193 * precedence over any internal error status, so the data isn't lost. 2194 * 2195 * For example ret will be -ENOSPC whenever there is more buffered data than 2196 * can be copied to userspace, but that's only interesting if we weren't able 2197 * to copy some data because it implies the userspace buffer is too small to 2198 * receive a single record (and we never split records). 2199 * 2200 * Another case with ret == -EFAULT is more of a grey area since it would seem 2201 * like bad form for userspace to ask us to overrun its buffer, but the user 2202 * knows best: 2203 * 2204 * http://yarchive.net/comp/linux/partial_reads_writes.html 2205 * 2206 * Returns: The number of bytes copied or a negative error code on failure. 2207 */ 2208 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2209 struct file *file, 2210 char __user *buf, 2211 size_t count, 2212 loff_t *ppos) 2213 { 2214 /* Note we keep the offset (aka bytes read) separate from any 2215 * error status so that the final check for whether we return 2216 * the bytes read with a higher precedence than any error (see 2217 * comment below) doesn't need to be handled/duplicated in 2218 * stream->ops->read() implementations. 2219 */ 2220 size_t offset = 0; 2221 int ret = stream->ops->read(stream, buf, count, &offset); 2222 2223 return offset ?: (ret ?: -EAGAIN); 2224 } 2225 2226 /** 2227 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2228 * @file: An i915 perf stream file 2229 * @buf: destination buffer given by userspace 2230 * @count: the number of bytes userspace wants to read 2231 * @ppos: (inout) file seek position (unused) 2232 * 2233 * The entry point for handling a read() on a stream file descriptor from 2234 * userspace. Most of the work is left to the i915_perf_read_locked() and 2235 * &i915_perf_stream_ops->read but to save having stream implementations (of 2236 * which we might have multiple later) we handle blocking read here. 2237 * 2238 * We can also consistently treat trying to read from a disabled stream 2239 * as an IO error so implementations can assume the stream is enabled 2240 * while reading. 2241 * 2242 * Returns: The number of bytes copied or a negative error code on failure. 2243 */ 2244 static ssize_t i915_perf_read(struct file *file, 2245 char __user *buf, 2246 size_t count, 2247 loff_t *ppos) 2248 { 2249 struct i915_perf_stream *stream = file->private_data; 2250 struct drm_i915_private *dev_priv = stream->dev_priv; 2251 ssize_t ret; 2252 2253 /* To ensure it's handled consistently we simply treat all reads of a 2254 * disabled stream as an error. In particular it might otherwise lead 2255 * to a deadlock for blocking file descriptors... 2256 */ 2257 if (!stream->enabled) 2258 return -EIO; 2259 2260 if (!(file->f_flags & O_NONBLOCK)) { 2261 /* There's the small chance of false positives from 2262 * stream->ops->wait_unlocked. 2263 * 2264 * E.g. with single context filtering since we only wait until 2265 * oabuffer has >= 1 report we don't immediately know whether 2266 * any reports really belong to the current context 2267 */ 2268 do { 2269 ret = stream->ops->wait_unlocked(stream); 2270 if (ret) 2271 return ret; 2272 2273 mutex_lock(&dev_priv->perf.lock); 2274 ret = i915_perf_read_locked(stream, file, 2275 buf, count, ppos); 2276 mutex_unlock(&dev_priv->perf.lock); 2277 } while (ret == -EAGAIN); 2278 } else { 2279 mutex_lock(&dev_priv->perf.lock); 2280 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2281 mutex_unlock(&dev_priv->perf.lock); 2282 } 2283 2284 /* We allow the poll checking to sometimes report false positive POLLIN 2285 * events where we might actually report EAGAIN on read() if there's 2286 * not really any data available. In this situation though we don't 2287 * want to enter a busy loop between poll() reporting a POLLIN event 2288 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2289 * effectively ensures we back off until the next hrtimer callback 2290 * before reporting another POLLIN event. 2291 */ 2292 if (ret >= 0 || ret == -EAGAIN) { 2293 /* Maybe make ->pollin per-stream state if we support multiple 2294 * concurrent streams in the future. 2295 */ 2296 dev_priv->perf.oa.pollin = false; 2297 } 2298 2299 return ret; 2300 } 2301 2302 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2303 { 2304 struct drm_i915_private *dev_priv = 2305 container_of(hrtimer, typeof(*dev_priv), 2306 perf.oa.poll_check_timer); 2307 2308 if (oa_buffer_check_unlocked(dev_priv)) { 2309 dev_priv->perf.oa.pollin = true; 2310 wake_up(&dev_priv->perf.oa.poll_wq); 2311 } 2312 2313 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2314 2315 return HRTIMER_RESTART; 2316 } 2317 2318 /** 2319 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2320 * @dev_priv: i915 device instance 2321 * @stream: An i915 perf stream 2322 * @file: An i915 perf stream file 2323 * @wait: poll() state table 2324 * 2325 * For handling userspace polling on an i915 perf stream, this calls through to 2326 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2327 * will be woken for new stream data. 2328 * 2329 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2330 * with any non-file-operation driver hooks. 2331 * 2332 * Returns: any poll events that are ready without sleeping 2333 */ 2334 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2335 struct i915_perf_stream *stream, 2336 struct file *file, 2337 poll_table *wait) 2338 { 2339 unsigned int events = 0; 2340 2341 stream->ops->poll_wait(stream, file, wait); 2342 2343 /* Note: we don't explicitly check whether there's something to read 2344 * here since this path may be very hot depending on what else 2345 * userspace is polling, or on the timeout in use. We rely solely on 2346 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2347 * samples to read. 2348 */ 2349 if (dev_priv->perf.oa.pollin) 2350 events |= POLLIN; 2351 2352 return events; 2353 } 2354 2355 /** 2356 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2357 * @file: An i915 perf stream file 2358 * @wait: poll() state table 2359 * 2360 * For handling userspace polling on an i915 perf stream, this ensures 2361 * poll_wait() gets called with a wait queue that will be woken for new stream 2362 * data. 2363 * 2364 * Note: Implementation deferred to i915_perf_poll_locked() 2365 * 2366 * Returns: any poll events that are ready without sleeping 2367 */ 2368 static unsigned int i915_perf_poll(struct file *file, poll_table *wait) 2369 { 2370 struct i915_perf_stream *stream = file->private_data; 2371 struct drm_i915_private *dev_priv = stream->dev_priv; 2372 int ret; 2373 2374 mutex_lock(&dev_priv->perf.lock); 2375 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2376 mutex_unlock(&dev_priv->perf.lock); 2377 2378 return ret; 2379 } 2380 2381 /** 2382 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2383 * @stream: A disabled i915 perf stream 2384 * 2385 * [Re]enables the associated capture of data for this stream. 2386 * 2387 * If a stream was previously enabled then there's currently no intention 2388 * to provide userspace any guarantee about the preservation of previously 2389 * buffered data. 2390 */ 2391 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2392 { 2393 if (stream->enabled) 2394 return; 2395 2396 /* Allow stream->ops->enable() to refer to this */ 2397 stream->enabled = true; 2398 2399 if (stream->ops->enable) 2400 stream->ops->enable(stream); 2401 } 2402 2403 /** 2404 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2405 * @stream: An enabled i915 perf stream 2406 * 2407 * Disables the associated capture of data for this stream. 2408 * 2409 * The intention is that disabling an re-enabling a stream will ideally be 2410 * cheaper than destroying and re-opening a stream with the same configuration, 2411 * though there are no formal guarantees about what state or buffered data 2412 * must be retained between disabling and re-enabling a stream. 2413 * 2414 * Note: while a stream is disabled it's considered an error for userspace 2415 * to attempt to read from the stream (-EIO). 2416 */ 2417 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2418 { 2419 if (!stream->enabled) 2420 return; 2421 2422 /* Allow stream->ops->disable() to refer to this */ 2423 stream->enabled = false; 2424 2425 if (stream->ops->disable) 2426 stream->ops->disable(stream); 2427 } 2428 2429 /** 2430 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2431 * @stream: An i915 perf stream 2432 * @cmd: the ioctl request 2433 * @arg: the ioctl data 2434 * 2435 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2436 * with any non-file-operation driver hooks. 2437 * 2438 * Returns: zero on success or a negative error code. Returns -EINVAL for 2439 * an unknown ioctl request. 2440 */ 2441 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2442 unsigned int cmd, 2443 unsigned long arg) 2444 { 2445 switch (cmd) { 2446 case I915_PERF_IOCTL_ENABLE: 2447 i915_perf_enable_locked(stream); 2448 return 0; 2449 case I915_PERF_IOCTL_DISABLE: 2450 i915_perf_disable_locked(stream); 2451 return 0; 2452 } 2453 2454 return -EINVAL; 2455 } 2456 2457 /** 2458 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2459 * @file: An i915 perf stream file 2460 * @cmd: the ioctl request 2461 * @arg: the ioctl data 2462 * 2463 * Implementation deferred to i915_perf_ioctl_locked(). 2464 * 2465 * Returns: zero on success or a negative error code. Returns -EINVAL for 2466 * an unknown ioctl request. 2467 */ 2468 static long i915_perf_ioctl(struct file *file, 2469 unsigned int cmd, 2470 unsigned long arg) 2471 { 2472 struct i915_perf_stream *stream = file->private_data; 2473 struct drm_i915_private *dev_priv = stream->dev_priv; 2474 long ret; 2475 2476 mutex_lock(&dev_priv->perf.lock); 2477 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2478 mutex_unlock(&dev_priv->perf.lock); 2479 2480 return ret; 2481 } 2482 2483 /** 2484 * i915_perf_destroy_locked - destroy an i915 perf stream 2485 * @stream: An i915 perf stream 2486 * 2487 * Frees all resources associated with the given i915 perf @stream, disabling 2488 * any associated data capture in the process. 2489 * 2490 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2491 * with any non-file-operation driver hooks. 2492 */ 2493 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2494 { 2495 if (stream->enabled) 2496 i915_perf_disable_locked(stream); 2497 2498 if (stream->ops->destroy) 2499 stream->ops->destroy(stream); 2500 2501 list_del(&stream->link); 2502 2503 if (stream->ctx) 2504 i915_gem_context_put(stream->ctx); 2505 2506 kfree(stream); 2507 } 2508 2509 /** 2510 * i915_perf_release - handles userspace close() of a stream file 2511 * @inode: anonymous inode associated with file 2512 * @file: An i915 perf stream file 2513 * 2514 * Cleans up any resources associated with an open i915 perf stream file. 2515 * 2516 * NB: close() can't really fail from the userspace point of view. 2517 * 2518 * Returns: zero on success or a negative error code. 2519 */ 2520 static int i915_perf_release(struct inode *inode, struct file *file) 2521 { 2522 struct i915_perf_stream *stream = file->private_data; 2523 struct drm_i915_private *dev_priv = stream->dev_priv; 2524 2525 mutex_lock(&dev_priv->perf.lock); 2526 i915_perf_destroy_locked(stream); 2527 mutex_unlock(&dev_priv->perf.lock); 2528 2529 return 0; 2530 } 2531 2532 2533 static const struct file_operations fops = { 2534 .owner = THIS_MODULE, 2535 .llseek = no_llseek, 2536 .release = i915_perf_release, 2537 .poll = i915_perf_poll, 2538 .read = i915_perf_read, 2539 .unlocked_ioctl = i915_perf_ioctl, 2540 }; 2541 2542 2543 /** 2544 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2545 * @dev_priv: i915 device instance 2546 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2547 * @props: individually validated u64 property value pairs 2548 * @file: drm file 2549 * 2550 * See i915_perf_ioctl_open() for interface details. 2551 * 2552 * Implements further stream config validation and stream initialization on 2553 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2554 * taken to serialize with any non-file-operation driver hooks. 2555 * 2556 * Note: at this point the @props have only been validated in isolation and 2557 * it's still necessary to validate that the combination of properties makes 2558 * sense. 2559 * 2560 * In the case where userspace is interested in OA unit metrics then further 2561 * config validation and stream initialization details will be handled by 2562 * i915_oa_stream_init(). The code here should only validate config state that 2563 * will be relevant to all stream types / backends. 2564 * 2565 * Returns: zero on success or a negative error code. 2566 */ 2567 static int 2568 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2569 struct drm_i915_perf_open_param *param, 2570 struct perf_open_properties *props, 2571 struct drm_file *file) 2572 { 2573 struct i915_gem_context *specific_ctx = NULL; 2574 struct i915_perf_stream *stream = NULL; 2575 unsigned long f_flags = 0; 2576 bool privileged_op = true; 2577 int stream_fd; 2578 int ret; 2579 2580 if (props->single_context) { 2581 u32 ctx_handle = props->ctx_handle; 2582 struct drm_i915_file_private *file_priv = file->driver_priv; 2583 2584 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2585 if (!specific_ctx) { 2586 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2587 ctx_handle); 2588 ret = -ENOENT; 2589 goto err; 2590 } 2591 } 2592 2593 /* 2594 * On Haswell the OA unit supports clock gating off for a specific 2595 * context and in this mode there's no visibility of metrics for the 2596 * rest of the system, which we consider acceptable for a 2597 * non-privileged client. 2598 * 2599 * For Gen8+ the OA unit no longer supports clock gating off for a 2600 * specific context and the kernel can't securely stop the counters 2601 * from updating as system-wide / global values. Even though we can 2602 * filter reports based on the included context ID we can't block 2603 * clients from seeing the raw / global counter values via 2604 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2605 * enable the OA unit by default. 2606 */ 2607 if (IS_HASWELL(dev_priv) && specific_ctx) 2608 privileged_op = false; 2609 2610 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2611 * we check a dev.i915.perf_stream_paranoid sysctl option 2612 * to determine if it's ok to access system wide OA counters 2613 * without CAP_SYS_ADMIN privileges. 2614 */ 2615 if (privileged_op && 2616 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2617 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2618 ret = -EACCES; 2619 goto err_ctx; 2620 } 2621 2622 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2623 if (!stream) { 2624 ret = -ENOMEM; 2625 goto err_ctx; 2626 } 2627 2628 stream->dev_priv = dev_priv; 2629 stream->ctx = specific_ctx; 2630 2631 ret = i915_oa_stream_init(stream, param, props); 2632 if (ret) 2633 goto err_alloc; 2634 2635 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2636 * to have _stream_init check the combination of sample flags more 2637 * thoroughly, but still this is the expected result at this point. 2638 */ 2639 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2640 ret = -ENODEV; 2641 goto err_flags; 2642 } 2643 2644 list_add(&stream->link, &dev_priv->perf.streams); 2645 2646 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2647 f_flags |= O_CLOEXEC; 2648 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2649 f_flags |= O_NONBLOCK; 2650 2651 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2652 if (stream_fd < 0) { 2653 ret = stream_fd; 2654 goto err_open; 2655 } 2656 2657 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2658 i915_perf_enable_locked(stream); 2659 2660 return stream_fd; 2661 2662 err_open: 2663 list_del(&stream->link); 2664 err_flags: 2665 if (stream->ops->destroy) 2666 stream->ops->destroy(stream); 2667 err_alloc: 2668 kfree(stream); 2669 err_ctx: 2670 if (specific_ctx) 2671 i915_gem_context_put(specific_ctx); 2672 err: 2673 return ret; 2674 } 2675 2676 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2677 { 2678 return div_u64(1000000000ULL * (2ULL << exponent), 2679 dev_priv->perf.oa.timestamp_frequency); 2680 } 2681 2682 /** 2683 * read_properties_unlocked - validate + copy userspace stream open properties 2684 * @dev_priv: i915 device instance 2685 * @uprops: The array of u64 key value pairs given by userspace 2686 * @n_props: The number of key value pairs expected in @uprops 2687 * @props: The stream configuration built up while validating properties 2688 * 2689 * Note this function only validates properties in isolation it doesn't 2690 * validate that the combination of properties makes sense or that all 2691 * properties necessary for a particular kind of stream have been set. 2692 * 2693 * Note that there currently aren't any ordering requirements for properties so 2694 * we shouldn't validate or assume anything about ordering here. This doesn't 2695 * rule out defining new properties with ordering requirements in the future. 2696 */ 2697 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2698 u64 __user *uprops, 2699 u32 n_props, 2700 struct perf_open_properties *props) 2701 { 2702 u64 __user *uprop = uprops; 2703 u32 i; 2704 2705 memset(props, 0, sizeof(struct perf_open_properties)); 2706 2707 if (!n_props) { 2708 DRM_DEBUG("No i915 perf properties given\n"); 2709 return -EINVAL; 2710 } 2711 2712 /* Considering that ID = 0 is reserved and assuming that we don't 2713 * (currently) expect any configurations to ever specify duplicate 2714 * values for a particular property ID then the last _PROP_MAX value is 2715 * one greater than the maximum number of properties we expect to get 2716 * from userspace. 2717 */ 2718 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2719 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2720 return -EINVAL; 2721 } 2722 2723 for (i = 0; i < n_props; i++) { 2724 u64 oa_period, oa_freq_hz; 2725 u64 id, value; 2726 int ret; 2727 2728 ret = get_user(id, uprop); 2729 if (ret) 2730 return ret; 2731 2732 ret = get_user(value, uprop + 1); 2733 if (ret) 2734 return ret; 2735 2736 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2737 DRM_DEBUG("Unknown i915 perf property ID\n"); 2738 return -EINVAL; 2739 } 2740 2741 switch ((enum drm_i915_perf_property_id)id) { 2742 case DRM_I915_PERF_PROP_CTX_HANDLE: 2743 props->single_context = 1; 2744 props->ctx_handle = value; 2745 break; 2746 case DRM_I915_PERF_PROP_SAMPLE_OA: 2747 props->sample_flags |= SAMPLE_OA_REPORT; 2748 break; 2749 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2750 if (value == 0) { 2751 DRM_DEBUG("Unknown OA metric set ID\n"); 2752 return -EINVAL; 2753 } 2754 props->metrics_set = value; 2755 break; 2756 case DRM_I915_PERF_PROP_OA_FORMAT: 2757 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2758 DRM_DEBUG("Out-of-range OA report format %llu\n", 2759 value); 2760 return -EINVAL; 2761 } 2762 if (!dev_priv->perf.oa.oa_formats[value].size) { 2763 DRM_DEBUG("Unsupported OA report format %llu\n", 2764 value); 2765 return -EINVAL; 2766 } 2767 props->oa_format = value; 2768 break; 2769 case DRM_I915_PERF_PROP_OA_EXPONENT: 2770 if (value > OA_EXPONENT_MAX) { 2771 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2772 OA_EXPONENT_MAX); 2773 return -EINVAL; 2774 } 2775 2776 /* Theoretically we can program the OA unit to sample 2777 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2778 * for BXT. We don't allow such high sampling 2779 * frequencies by default unless root. 2780 */ 2781 2782 BUILD_BUG_ON(sizeof(oa_period) != 8); 2783 oa_period = oa_exponent_to_ns(dev_priv, value); 2784 2785 /* This check is primarily to ensure that oa_period <= 2786 * UINT32_MAX (before passing to do_div which only 2787 * accepts a u32 denominator), but we can also skip 2788 * checking anything < 1Hz which implicitly can't be 2789 * limited via an integer oa_max_sample_rate. 2790 */ 2791 if (oa_period <= NSEC_PER_SEC) { 2792 u64 tmp = NSEC_PER_SEC; 2793 do_div(tmp, oa_period); 2794 oa_freq_hz = tmp; 2795 } else 2796 oa_freq_hz = 0; 2797 2798 if (oa_freq_hz > i915_oa_max_sample_rate && 2799 !capable(CAP_SYS_ADMIN)) { 2800 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2801 i915_oa_max_sample_rate); 2802 return -EACCES; 2803 } 2804 2805 props->oa_periodic = true; 2806 props->oa_period_exponent = value; 2807 break; 2808 case DRM_I915_PERF_PROP_MAX: 2809 MISSING_CASE(id); 2810 return -EINVAL; 2811 } 2812 2813 uprop += 2; 2814 } 2815 2816 return 0; 2817 } 2818 2819 /** 2820 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2821 * @dev: drm device 2822 * @data: ioctl data copied from userspace (unvalidated) 2823 * @file: drm file 2824 * 2825 * Validates the stream open parameters given by userspace including flags 2826 * and an array of u64 key, value pair properties. 2827 * 2828 * Very little is assumed up front about the nature of the stream being 2829 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2830 * i915-perf stream is expected to be a suitable interface for other forms of 2831 * buffered data written by the GPU besides periodic OA metrics. 2832 * 2833 * Note we copy the properties from userspace outside of the i915 perf 2834 * mutex to avoid an awkward lockdep with mmap_sem. 2835 * 2836 * Most of the implementation details are handled by 2837 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2838 * mutex for serializing with any non-file-operation driver hooks. 2839 * 2840 * Return: A newly opened i915 Perf stream file descriptor or negative 2841 * error code on failure. 2842 */ 2843 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2844 struct drm_file *file) 2845 { 2846 struct drm_i915_private *dev_priv = dev->dev_private; 2847 struct drm_i915_perf_open_param *param = data; 2848 struct perf_open_properties props; 2849 u32 known_open_flags; 2850 int ret; 2851 2852 if (!dev_priv->perf.initialized) { 2853 DRM_DEBUG("i915 perf interface not available for this system\n"); 2854 return -ENOTSUPP; 2855 } 2856 2857 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 2858 I915_PERF_FLAG_FD_NONBLOCK | 2859 I915_PERF_FLAG_DISABLED; 2860 if (param->flags & ~known_open_flags) { 2861 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 2862 return -EINVAL; 2863 } 2864 2865 ret = read_properties_unlocked(dev_priv, 2866 u64_to_user_ptr(param->properties_ptr), 2867 param->num_properties, 2868 &props); 2869 if (ret) 2870 return ret; 2871 2872 mutex_lock(&dev_priv->perf.lock); 2873 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 2874 mutex_unlock(&dev_priv->perf.lock); 2875 2876 return ret; 2877 } 2878 2879 /** 2880 * i915_perf_register - exposes i915-perf to userspace 2881 * @dev_priv: i915 device instance 2882 * 2883 * In particular OA metric sets are advertised under a sysfs metrics/ 2884 * directory allowing userspace to enumerate valid IDs that can be 2885 * used to open an i915-perf stream. 2886 */ 2887 void i915_perf_register(struct drm_i915_private *dev_priv) 2888 { 2889 int ret; 2890 2891 if (!dev_priv->perf.initialized) 2892 return; 2893 2894 /* To be sure we're synchronized with an attempted 2895 * i915_perf_open_ioctl(); considering that we register after 2896 * being exposed to userspace. 2897 */ 2898 mutex_lock(&dev_priv->perf.lock); 2899 2900 dev_priv->perf.metrics_kobj = 2901 kobject_create_and_add("metrics", 2902 &dev_priv->drm.primary->kdev->kobj); 2903 if (!dev_priv->perf.metrics_kobj) 2904 goto exit; 2905 2906 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 2907 2908 if (IS_HASWELL(dev_priv)) { 2909 i915_perf_load_test_config_hsw(dev_priv); 2910 } else if (IS_BROADWELL(dev_priv)) { 2911 i915_perf_load_test_config_bdw(dev_priv); 2912 } else if (IS_CHERRYVIEW(dev_priv)) { 2913 i915_perf_load_test_config_chv(dev_priv); 2914 } else if (IS_SKYLAKE(dev_priv)) { 2915 if (IS_SKL_GT2(dev_priv)) 2916 i915_perf_load_test_config_sklgt2(dev_priv); 2917 else if (IS_SKL_GT3(dev_priv)) 2918 i915_perf_load_test_config_sklgt3(dev_priv); 2919 else if (IS_SKL_GT4(dev_priv)) 2920 i915_perf_load_test_config_sklgt4(dev_priv); 2921 } else if (IS_BROXTON(dev_priv)) { 2922 i915_perf_load_test_config_bxt(dev_priv); 2923 } else if (IS_KABYLAKE(dev_priv)) { 2924 if (IS_KBL_GT2(dev_priv)) 2925 i915_perf_load_test_config_kblgt2(dev_priv); 2926 else if (IS_KBL_GT3(dev_priv)) 2927 i915_perf_load_test_config_kblgt3(dev_priv); 2928 } else if (IS_GEMINILAKE(dev_priv)) { 2929 i915_perf_load_test_config_glk(dev_priv); 2930 } 2931 2932 if (dev_priv->perf.oa.test_config.id == 0) 2933 goto sysfs_error; 2934 2935 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 2936 &dev_priv->perf.oa.test_config.sysfs_metric); 2937 if (ret) 2938 goto sysfs_error; 2939 2940 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 2941 2942 goto exit; 2943 2944 sysfs_error: 2945 kobject_put(dev_priv->perf.metrics_kobj); 2946 dev_priv->perf.metrics_kobj = NULL; 2947 2948 exit: 2949 mutex_unlock(&dev_priv->perf.lock); 2950 } 2951 2952 /** 2953 * i915_perf_unregister - hide i915-perf from userspace 2954 * @dev_priv: i915 device instance 2955 * 2956 * i915-perf state cleanup is split up into an 'unregister' and 2957 * 'deinit' phase where the interface is first hidden from 2958 * userspace by i915_perf_unregister() before cleaning up 2959 * remaining state in i915_perf_fini(). 2960 */ 2961 void i915_perf_unregister(struct drm_i915_private *dev_priv) 2962 { 2963 if (!dev_priv->perf.metrics_kobj) 2964 return; 2965 2966 sysfs_remove_group(dev_priv->perf.metrics_kobj, 2967 &dev_priv->perf.oa.test_config.sysfs_metric); 2968 2969 kobject_put(dev_priv->perf.metrics_kobj); 2970 dev_priv->perf.metrics_kobj = NULL; 2971 } 2972 2973 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 2974 { 2975 static const i915_reg_t flex_eu_regs[] = { 2976 EU_PERF_CNTL0, 2977 EU_PERF_CNTL1, 2978 EU_PERF_CNTL2, 2979 EU_PERF_CNTL3, 2980 EU_PERF_CNTL4, 2981 EU_PERF_CNTL5, 2982 EU_PERF_CNTL6, 2983 }; 2984 int i; 2985 2986 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 2987 if (flex_eu_regs[i].reg == addr) 2988 return true; 2989 } 2990 return false; 2991 } 2992 2993 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 2994 { 2995 return (addr >= OASTARTTRIG1.reg && addr <= OASTARTTRIG8.reg) || 2996 (addr >= OAREPORTTRIG1.reg && addr <= OAREPORTTRIG8.reg) || 2997 (addr >= OACEC0_0.reg && addr <= OACEC7_1.reg); 2998 } 2999 3000 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3001 { 3002 return addr == HALF_SLICE_CHICKEN2.reg || 3003 (addr >= MICRO_BP0_0.reg && addr <= NOA_WRITE.reg) || 3004 (addr >= OA_PERFCNT1_LO.reg && addr <= OA_PERFCNT2_HI.reg) || 3005 (addr >= OA_PERFMATRIX_LO.reg && addr <= OA_PERFMATRIX_HI.reg); 3006 } 3007 3008 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3009 { 3010 return gen7_is_valid_mux_addr(dev_priv, addr) || 3011 addr == WAIT_FOR_RC6_EXIT.reg || 3012 (addr >= RPM_CONFIG0.reg && addr <= NOA_CONFIG(8).reg); 3013 } 3014 3015 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3016 { 3017 return gen7_is_valid_mux_addr(dev_priv, addr) || 3018 (addr >= 0x25100 && addr <= 0x2FF90) || 3019 addr == 0x9ec0; 3020 } 3021 3022 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3023 { 3024 return gen7_is_valid_mux_addr(dev_priv, addr) || 3025 (addr >= 0x182300 && addr <= 0x1823A4); 3026 } 3027 3028 static uint32_t mask_reg_value(u32 reg, u32 val) 3029 { 3030 /* HALF_SLICE_CHICKEN2 is programmed with a the 3031 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3032 * programmed by userspace doesn't change this. 3033 */ 3034 if (HALF_SLICE_CHICKEN2.reg == reg) 3035 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3036 3037 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3038 * indicated by its name and a bunch of selection fields used by OA 3039 * configs. 3040 */ 3041 if (WAIT_FOR_RC6_EXIT.reg == reg) 3042 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3043 3044 return val; 3045 } 3046 3047 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3048 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3049 u32 __user *regs, 3050 u32 n_regs) 3051 { 3052 struct i915_oa_reg *oa_regs; 3053 int err; 3054 u32 i; 3055 3056 if (!n_regs) 3057 return NULL; 3058 3059 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2)) 3060 return ERR_PTR(-EFAULT); 3061 3062 /* No is_valid function means we're not allowing any register to be programmed. */ 3063 GEM_BUG_ON(!is_valid); 3064 if (!is_valid) 3065 return ERR_PTR(-EINVAL); 3066 3067 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3068 if (!oa_regs) 3069 return ERR_PTR(-ENOMEM); 3070 3071 for (i = 0; i < n_regs; i++) { 3072 u32 addr, value; 3073 3074 err = get_user(addr, regs); 3075 if (err) 3076 goto addr_err; 3077 3078 if (!is_valid(dev_priv, addr)) { 3079 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3080 err = -EINVAL; 3081 goto addr_err; 3082 } 3083 3084 err = get_user(value, regs + 1); 3085 if (err) 3086 goto addr_err; 3087 3088 oa_regs[i].addr = _MMIO(addr); 3089 oa_regs[i].value = mask_reg_value(addr, value); 3090 3091 regs += 2; 3092 } 3093 3094 return oa_regs; 3095 3096 addr_err: 3097 kfree(oa_regs); 3098 return ERR_PTR(err); 3099 } 3100 3101 static ssize_t show_dynamic_id(struct device *dev, 3102 struct device_attribute *attr, 3103 char *buf) 3104 { 3105 struct i915_oa_config *oa_config = 3106 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3107 3108 return sprintf(buf, "%d\n", oa_config->id); 3109 } 3110 3111 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3112 struct i915_oa_config *oa_config) 3113 { 3114 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3115 oa_config->sysfs_metric_id.attr.name = "id"; 3116 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3117 oa_config->sysfs_metric_id.show = show_dynamic_id; 3118 oa_config->sysfs_metric_id.store = NULL; 3119 3120 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3121 oa_config->attrs[1] = NULL; 3122 3123 oa_config->sysfs_metric.name = oa_config->uuid; 3124 oa_config->sysfs_metric.attrs = oa_config->attrs; 3125 3126 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3127 &oa_config->sysfs_metric); 3128 } 3129 3130 /** 3131 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3132 * @dev: drm device 3133 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3134 * userspace (unvalidated) 3135 * @file: drm file 3136 * 3137 * Validates the submitted OA register to be saved into a new OA config that 3138 * can then be used for programming the OA unit and its NOA network. 3139 * 3140 * Returns: A new allocated config number to be used with the perf open ioctl 3141 * or a negative error code on failure. 3142 */ 3143 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3144 struct drm_file *file) 3145 { 3146 struct drm_i915_private *dev_priv = dev->dev_private; 3147 struct drm_i915_perf_oa_config *args = data; 3148 struct i915_oa_config *oa_config, *tmp; 3149 int err, id; 3150 3151 if (!dev_priv->perf.initialized) { 3152 DRM_DEBUG("i915 perf interface not available for this system\n"); 3153 return -ENOTSUPP; 3154 } 3155 3156 if (!dev_priv->perf.metrics_kobj) { 3157 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3158 return -EINVAL; 3159 } 3160 3161 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3162 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3163 return -EACCES; 3164 } 3165 3166 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3167 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3168 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3169 DRM_DEBUG("No OA registers given\n"); 3170 return -EINVAL; 3171 } 3172 3173 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3174 if (!oa_config) { 3175 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3176 return -ENOMEM; 3177 } 3178 3179 atomic_set(&oa_config->ref_count, 1); 3180 3181 if (!uuid_is_valid(args->uuid)) { 3182 DRM_DEBUG("Invalid uuid format for OA config\n"); 3183 err = -EINVAL; 3184 goto reg_err; 3185 } 3186 3187 /* Last character in oa_config->uuid will be 0 because oa_config is 3188 * kzalloc. 3189 */ 3190 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3191 3192 oa_config->mux_regs_len = args->n_mux_regs; 3193 oa_config->mux_regs = 3194 alloc_oa_regs(dev_priv, 3195 dev_priv->perf.oa.ops.is_valid_mux_reg, 3196 u64_to_user_ptr(args->mux_regs_ptr), 3197 args->n_mux_regs); 3198 3199 if (IS_ERR(oa_config->mux_regs)) { 3200 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3201 err = PTR_ERR(oa_config->mux_regs); 3202 goto reg_err; 3203 } 3204 3205 oa_config->b_counter_regs_len = args->n_boolean_regs; 3206 oa_config->b_counter_regs = 3207 alloc_oa_regs(dev_priv, 3208 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3209 u64_to_user_ptr(args->boolean_regs_ptr), 3210 args->n_boolean_regs); 3211 3212 if (IS_ERR(oa_config->b_counter_regs)) { 3213 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3214 err = PTR_ERR(oa_config->b_counter_regs); 3215 goto reg_err; 3216 } 3217 3218 if (INTEL_GEN(dev_priv) < 8) { 3219 if (args->n_flex_regs != 0) { 3220 err = -EINVAL; 3221 goto reg_err; 3222 } 3223 } else { 3224 oa_config->flex_regs_len = args->n_flex_regs; 3225 oa_config->flex_regs = 3226 alloc_oa_regs(dev_priv, 3227 dev_priv->perf.oa.ops.is_valid_flex_reg, 3228 u64_to_user_ptr(args->flex_regs_ptr), 3229 args->n_flex_regs); 3230 3231 if (IS_ERR(oa_config->flex_regs)) { 3232 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3233 err = PTR_ERR(oa_config->flex_regs); 3234 goto reg_err; 3235 } 3236 } 3237 3238 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3239 if (err) 3240 goto reg_err; 3241 3242 /* We shouldn't have too many configs, so this iteration shouldn't be 3243 * too costly. 3244 */ 3245 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3246 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3247 DRM_DEBUG("OA config already exists with this uuid\n"); 3248 err = -EADDRINUSE; 3249 goto sysfs_err; 3250 } 3251 } 3252 3253 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3254 if (err) { 3255 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3256 goto sysfs_err; 3257 } 3258 3259 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3260 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3261 oa_config, 2, 3262 0, GFP_KERNEL); 3263 if (oa_config->id < 0) { 3264 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3265 err = oa_config->id; 3266 goto sysfs_err; 3267 } 3268 3269 mutex_unlock(&dev_priv->perf.metrics_lock); 3270 3271 return oa_config->id; 3272 3273 sysfs_err: 3274 mutex_unlock(&dev_priv->perf.metrics_lock); 3275 reg_err: 3276 put_oa_config(dev_priv, oa_config); 3277 DRM_DEBUG("Failed to add new OA config\n"); 3278 return err; 3279 } 3280 3281 /** 3282 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3283 * @dev: drm device 3284 * @data: ioctl data (pointer to u64 integer) copied from userspace 3285 * @file: drm file 3286 * 3287 * Configs can be removed while being used, the will stop appearing in sysfs 3288 * and their content will be freed when the stream using the config is closed. 3289 * 3290 * Returns: 0 on success or a negative error code on failure. 3291 */ 3292 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3293 struct drm_file *file) 3294 { 3295 struct drm_i915_private *dev_priv = dev->dev_private; 3296 u64 *arg = data; 3297 struct i915_oa_config *oa_config; 3298 int ret; 3299 3300 if (!dev_priv->perf.initialized) { 3301 DRM_DEBUG("i915 perf interface not available for this system\n"); 3302 return -ENOTSUPP; 3303 } 3304 3305 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3306 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3307 return -EACCES; 3308 } 3309 3310 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3311 if (ret) 3312 goto lock_err; 3313 3314 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3315 if (!oa_config) { 3316 DRM_DEBUG("Failed to remove unknown OA config\n"); 3317 ret = -ENOENT; 3318 goto config_err; 3319 } 3320 3321 GEM_BUG_ON(*arg != oa_config->id); 3322 3323 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3324 &oa_config->sysfs_metric); 3325 3326 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3327 put_oa_config(dev_priv, oa_config); 3328 3329 config_err: 3330 mutex_unlock(&dev_priv->perf.metrics_lock); 3331 lock_err: 3332 return ret; 3333 } 3334 3335 static struct ctl_table oa_table[] = { 3336 { 3337 .procname = "perf_stream_paranoid", 3338 .data = &i915_perf_stream_paranoid, 3339 .maxlen = sizeof(i915_perf_stream_paranoid), 3340 .mode = 0644, 3341 .proc_handler = proc_dointvec_minmax, 3342 .extra1 = &zero, 3343 .extra2 = &one, 3344 }, 3345 { 3346 .procname = "oa_max_sample_rate", 3347 .data = &i915_oa_max_sample_rate, 3348 .maxlen = sizeof(i915_oa_max_sample_rate), 3349 .mode = 0644, 3350 .proc_handler = proc_dointvec_minmax, 3351 .extra1 = &zero, 3352 .extra2 = &oa_sample_rate_hard_limit, 3353 }, 3354 {} 3355 }; 3356 3357 static struct ctl_table i915_root[] = { 3358 { 3359 .procname = "i915", 3360 .maxlen = 0, 3361 .mode = 0555, 3362 .child = oa_table, 3363 }, 3364 {} 3365 }; 3366 3367 static struct ctl_table dev_root[] = { 3368 { 3369 .procname = "dev", 3370 .maxlen = 0, 3371 .mode = 0555, 3372 .child = i915_root, 3373 }, 3374 {} 3375 }; 3376 3377 /** 3378 * i915_perf_init - initialize i915-perf state on module load 3379 * @dev_priv: i915 device instance 3380 * 3381 * Initializes i915-perf state without exposing anything to userspace. 3382 * 3383 * Note: i915-perf initialization is split into an 'init' and 'register' 3384 * phase with the i915_perf_register() exposing state to userspace. 3385 */ 3386 void i915_perf_init(struct drm_i915_private *dev_priv) 3387 { 3388 dev_priv->perf.oa.timestamp_frequency = 0; 3389 3390 if (IS_HASWELL(dev_priv)) { 3391 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3392 gen7_is_valid_b_counter_addr; 3393 dev_priv->perf.oa.ops.is_valid_mux_reg = 3394 hsw_is_valid_mux_addr; 3395 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3396 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer; 3397 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3398 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3399 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3400 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3401 dev_priv->perf.oa.ops.read = gen7_oa_read; 3402 dev_priv->perf.oa.ops.oa_hw_tail_read = 3403 gen7_oa_hw_tail_read; 3404 3405 dev_priv->perf.oa.timestamp_frequency = 12500000; 3406 3407 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3408 } else if (i915.enable_execlists) { 3409 /* Note: that although we could theoretically also support the 3410 * legacy ringbuffer mode on BDW (and earlier iterations of 3411 * this driver, before upstreaming did this) it didn't seem 3412 * worth the complexity to maintain now that BDW+ enable 3413 * execlist mode by default. 3414 */ 3415 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3416 gen7_is_valid_b_counter_addr; 3417 dev_priv->perf.oa.ops.is_valid_mux_reg = 3418 gen8_is_valid_mux_addr; 3419 dev_priv->perf.oa.ops.is_valid_flex_reg = 3420 gen8_is_valid_flex_addr; 3421 3422 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer; 3423 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3424 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3425 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3426 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3427 dev_priv->perf.oa.ops.read = gen8_oa_read; 3428 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3429 3430 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3431 3432 if (IS_GEN8(dev_priv)) { 3433 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3434 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3435 3436 dev_priv->perf.oa.timestamp_frequency = 12500000; 3437 3438 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3439 if (IS_CHERRYVIEW(dev_priv)) { 3440 dev_priv->perf.oa.ops.is_valid_mux_reg = 3441 chv_is_valid_mux_addr; 3442 } 3443 } else if (IS_GEN9(dev_priv)) { 3444 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3445 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3446 3447 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3448 3449 switch (dev_priv->info.platform) { 3450 case INTEL_BROXTON: 3451 case INTEL_GEMINILAKE: 3452 dev_priv->perf.oa.timestamp_frequency = 19200000; 3453 break; 3454 case INTEL_SKYLAKE: 3455 case INTEL_KABYLAKE: 3456 dev_priv->perf.oa.timestamp_frequency = 12000000; 3457 break; 3458 default: 3459 /* Leave timestamp_frequency to 0 so we can 3460 * detect unsupported platforms. 3461 */ 3462 break; 3463 } 3464 } 3465 } 3466 3467 if (dev_priv->perf.oa.timestamp_frequency) { 3468 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3469 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3470 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3471 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3472 3473 INIT_LIST_HEAD(&dev_priv->perf.streams); 3474 mutex_init(&dev_priv->perf.lock); 3475 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3476 3477 oa_sample_rate_hard_limit = 3478 dev_priv->perf.oa.timestamp_frequency / 2; 3479 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3480 3481 mutex_init(&dev_priv->perf.metrics_lock); 3482 idr_init(&dev_priv->perf.metrics_idr); 3483 3484 dev_priv->perf.initialized = true; 3485 } 3486 } 3487 3488 static int destroy_config(int id, void *p, void *data) 3489 { 3490 struct drm_i915_private *dev_priv = data; 3491 struct i915_oa_config *oa_config = p; 3492 3493 put_oa_config(dev_priv, oa_config); 3494 3495 return 0; 3496 } 3497 3498 /** 3499 * i915_perf_fini - Counter part to i915_perf_init() 3500 * @dev_priv: i915 device instance 3501 */ 3502 void i915_perf_fini(struct drm_i915_private *dev_priv) 3503 { 3504 if (!dev_priv->perf.initialized) 3505 return; 3506 3507 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3508 idr_destroy(&dev_priv->perf.metrics_idr); 3509 3510 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3511 3512 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3513 3514 dev_priv->perf.initialized = false; 3515 } 3516