1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 208 /* HW requires this to be a power of two, between 128k and 16M, though driver 209 * is currently generally designed assuming the largest 16M size is used such 210 * that the overflow cases are unlikely in normal operation. 211 */ 212 #define OA_BUFFER_SIZE SZ_16M 213 214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 215 216 /** 217 * DOC: OA Tail Pointer Race 218 * 219 * There's a HW race condition between OA unit tail pointer register updates and 220 * writes to memory whereby the tail pointer can sometimes get ahead of what's 221 * been written out to the OA buffer so far (in terms of what's visible to the 222 * CPU). 223 * 224 * Although this can be observed explicitly while copying reports to userspace 225 * by checking for a zeroed report-id field in tail reports, we want to account 226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 227 * redundant read() attempts. 228 * 229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 230 * in the OA buffer, starting from the tail reported by the HW until we find a 231 * report with its first 2 dwords not 0 meaning its previous report is 232 * completely in memory and ready to be read. Those dwords are also set to 0 233 * once read and the whole buffer is cleared upon OA buffer initialization. The 234 * first dword is the reason for this report while the second is the timestamp, 235 * making the chances of having those 2 fields at 0 fairly unlikely. A more 236 * detailed explanation is available in oa_buffer_check_unlocked(). 237 * 238 * Most of the implementation details for this workaround are in 239 * oa_buffer_check_unlocked() and _append_oa_reports() 240 * 241 * Note for posterity: previously the driver used to define an effective tail 242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 244 * This was flawed considering that the OA unit may also automatically generate 245 * non-periodic reports (such as on context switch) or the OA unit may be 246 * enabled without any periodic sampling. 247 */ 248 #define OA_TAIL_MARGIN_NSEC 100000ULL 249 #define INVALID_TAIL_PTR 0xffffffff 250 251 /* The default frequency for checking whether the OA unit has written new 252 * reports to the circular OA buffer... 253 */ 254 #define DEFAULT_POLL_FREQUENCY_HZ 200 255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 256 257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 258 static u32 i915_perf_stream_paranoid = true; 259 260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 261 * of the 64bit timestamp bits to trigger reports from) but there's currently 262 * no known use case for sampling as infrequently as once per 47 thousand years. 263 * 264 * Since the timestamps included in OA reports are only 32bits it seems 265 * reasonable to limit the OA exponent where it's still possible to account for 266 * overflow in OA report timestamps. 267 */ 268 #define OA_EXPONENT_MAX 31 269 270 #define INVALID_CTX_ID 0xffffffff 271 272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 273 #define OAREPORT_REASON_MASK 0x3f 274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 275 #define OAREPORT_REASON_SHIFT 19 276 #define OAREPORT_REASON_TIMER (1<<0) 277 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 278 #define OAREPORT_REASON_CLK_RATIO (1<<5) 279 280 281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 282 * 283 * The highest sampling frequency we can theoretically program the OA unit 284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 285 * 286 * Initialized just before we register the sysctl parameter. 287 */ 288 static int oa_sample_rate_hard_limit; 289 290 /* Theoretically we can program the OA unit to sample every 160ns but don't 291 * allow that by default unless root... 292 * 293 * The default threshold of 100000Hz is based on perf's similar 294 * kernel.perf_event_max_sample_rate sysctl parameter. 295 */ 296 static u32 i915_oa_max_sample_rate = 100000; 297 298 /* XXX: beware if future OA HW adds new report formats that the current 299 * code assumes all reports have a power-of-two size and ~(size - 1) can 300 * be used as a mask to align the OA tail pointer. 301 */ 302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 303 [I915_OA_FORMAT_A13] = { 0, 64 }, 304 [I915_OA_FORMAT_A29] = { 1, 128 }, 305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 307 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 310 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 311 }; 312 313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 318 }; 319 320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 322 }; 323 324 #define SAMPLE_OA_REPORT (1<<0) 325 326 /** 327 * struct perf_open_properties - for validated properties given to open a stream 328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 329 * @single_context: Whether a single or all gpu contexts should be monitored 330 * @hold_preemption: Whether the preemption is disabled for the filtered 331 * context 332 * @ctx_handle: A gem ctx handle for use with @single_context 333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 334 * @oa_format: An OA unit HW report format 335 * @oa_periodic: Whether to enable periodic OA unit sampling 336 * @oa_period_exponent: The OA unit sampling period is derived from this 337 * @engine: The engine (typically rcs0) being monitored by the OA unit 338 * @has_sseu: Whether @sseu was specified by userspace 339 * @sseu: internal SSEU configuration computed either from the userspace 340 * specified configuration in the opening parameters or a default value 341 * (see get_default_sseu_config()) 342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 343 * data availability 344 * 345 * As read_properties_unlocked() enumerates and validates the properties given 346 * to open a stream of metrics the configuration is built up in the structure 347 * which starts out zero initialized. 348 */ 349 struct perf_open_properties { 350 u32 sample_flags; 351 352 u64 single_context:1; 353 u64 hold_preemption:1; 354 u64 ctx_handle; 355 356 /* OA sampling state */ 357 int metrics_set; 358 int oa_format; 359 bool oa_periodic; 360 int oa_period_exponent; 361 362 struct intel_engine_cs *engine; 363 364 bool has_sseu; 365 struct intel_sseu sseu; 366 367 u64 poll_oa_period; 368 }; 369 370 struct i915_oa_config_bo { 371 struct llist_node node; 372 373 struct i915_oa_config *oa_config; 374 struct i915_vma *vma; 375 }; 376 377 static struct ctl_table_header *sysctl_header; 378 379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 380 381 void i915_oa_config_release(struct kref *ref) 382 { 383 struct i915_oa_config *oa_config = 384 container_of(ref, typeof(*oa_config), ref); 385 386 kfree(oa_config->flex_regs); 387 kfree(oa_config->b_counter_regs); 388 kfree(oa_config->mux_regs); 389 390 kfree_rcu(oa_config, rcu); 391 } 392 393 struct i915_oa_config * 394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 395 { 396 struct i915_oa_config *oa_config; 397 398 rcu_read_lock(); 399 oa_config = idr_find(&perf->metrics_idr, metrics_set); 400 if (oa_config) 401 oa_config = i915_oa_config_get(oa_config); 402 rcu_read_unlock(); 403 404 return oa_config; 405 } 406 407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 408 { 409 i915_oa_config_put(oa_bo->oa_config); 410 i915_vma_put(oa_bo->vma); 411 kfree(oa_bo); 412 } 413 414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 415 { 416 struct intel_uncore *uncore = stream->uncore; 417 418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 419 GEN12_OAG_OATAILPTR_MASK; 420 } 421 422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 423 { 424 struct intel_uncore *uncore = stream->uncore; 425 426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 427 } 428 429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 433 434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 435 } 436 437 /** 438 * oa_buffer_check_unlocked - check for data and update tail ptr state 439 * @stream: i915 stream instance 440 * 441 * This is either called via fops (for blocking reads in user ctx) or the poll 442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 443 * if there is data available for userspace to read. 444 * 445 * This function is central to providing a workaround for the OA unit tail 446 * pointer having a race with respect to what data is visible to the CPU. 447 * It is responsible for reading tail pointers from the hardware and giving 448 * the pointers time to 'age' before they are made available for reading. 449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 450 * 451 * Besides returning true when there is data available to read() this function 452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 453 * object. 454 * 455 * Note: It's safe to read OA config state here unlocked, assuming that this is 456 * only called while the stream is enabled, while the global OA configuration 457 * can't be modified. 458 * 459 * Returns: %true if the OA buffer contains data, else %false 460 */ 461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 462 { 463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 464 int report_size = stream->oa_buffer.format_size; 465 unsigned long flags; 466 bool pollin; 467 u32 hw_tail; 468 u64 now; 469 470 /* We have to consider the (unlikely) possibility that read() errors 471 * could result in an OA buffer reset which might reset the head and 472 * tail state. 473 */ 474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 475 476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 477 478 /* The tail pointer increases in 64 byte increments, 479 * not in report_size steps... 480 */ 481 hw_tail &= ~(report_size - 1); 482 483 now = ktime_get_mono_fast_ns(); 484 485 if (hw_tail == stream->oa_buffer.aging_tail && 486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 487 /* If the HW tail hasn't move since the last check and the HW 488 * tail has been aging for long enough, declare it the new 489 * tail. 490 */ 491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 492 } else { 493 u32 head, tail, aged_tail; 494 495 /* NB: The head we observe here might effectively be a little 496 * out of date. If a read() is in progress, the head could be 497 * anywhere between this head and stream->oa_buffer.tail. 498 */ 499 head = stream->oa_buffer.head - gtt_offset; 500 aged_tail = stream->oa_buffer.tail - gtt_offset; 501 502 hw_tail -= gtt_offset; 503 tail = hw_tail; 504 505 /* Walk the stream backward until we find a report with dword 0 506 * & 1 not at 0. Since the circular buffer pointers progress by 507 * increments of 64 bytes and that reports can be up to 256 508 * bytes long, we can't tell whether a report has fully landed 509 * in memory before the first 2 dwords of the following report 510 * have effectively landed. 511 * 512 * This is assuming that the writes of the OA unit land in 513 * memory in the order they were written to. 514 * If not : (╯°□°)╯︵ ┻━┻ 515 */ 516 while (OA_TAKEN(tail, aged_tail) >= report_size) { 517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 518 519 if (report32[0] != 0 || report32[1] != 0) 520 break; 521 522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 523 } 524 525 if (OA_TAKEN(hw_tail, tail) > report_size && 526 __ratelimit(&stream->perf->tail_pointer_race)) 527 DRM_NOTE("unlanded report(s) head=0x%x " 528 "tail=0x%x hw_tail=0x%x\n", 529 head, tail, hw_tail); 530 531 stream->oa_buffer.tail = gtt_offset + tail; 532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 533 stream->oa_buffer.aging_timestamp = now; 534 } 535 536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 537 stream->oa_buffer.head - gtt_offset) >= report_size; 538 539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 540 541 return pollin; 542 } 543 544 /** 545 * append_oa_status - Appends a status record to a userspace read() buffer. 546 * @stream: An i915-perf stream opened for OA metrics 547 * @buf: destination buffer given by userspace 548 * @count: the number of bytes userspace wants to read 549 * @offset: (inout): the current position for writing into @buf 550 * @type: The kind of status to report to userspace 551 * 552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 553 * into the userspace read() buffer. 554 * 555 * The @buf @offset will only be updated on success. 556 * 557 * Returns: 0 on success, negative error code on failure. 558 */ 559 static int append_oa_status(struct i915_perf_stream *stream, 560 char __user *buf, 561 size_t count, 562 size_t *offset, 563 enum drm_i915_perf_record_type type) 564 { 565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 566 567 if ((count - *offset) < header.size) 568 return -ENOSPC; 569 570 if (copy_to_user(buf + *offset, &header, sizeof(header))) 571 return -EFAULT; 572 573 (*offset) += header.size; 574 575 return 0; 576 } 577 578 /** 579 * append_oa_sample - Copies single OA report into userspace read() buffer. 580 * @stream: An i915-perf stream opened for OA metrics 581 * @buf: destination buffer given by userspace 582 * @count: the number of bytes userspace wants to read 583 * @offset: (inout): the current position for writing into @buf 584 * @report: A single OA report to (optionally) include as part of the sample 585 * 586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 587 * properties when opening a stream, tracked as `stream->sample_flags`. This 588 * function copies the requested components of a single sample to the given 589 * read() @buf. 590 * 591 * The @buf @offset will only be updated on success. 592 * 593 * Returns: 0 on success, negative error code on failure. 594 */ 595 static int append_oa_sample(struct i915_perf_stream *stream, 596 char __user *buf, 597 size_t count, 598 size_t *offset, 599 const u8 *report) 600 { 601 int report_size = stream->oa_buffer.format_size; 602 struct drm_i915_perf_record_header header; 603 u32 sample_flags = stream->sample_flags; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (sample_flags & SAMPLE_OA_REPORT) { 618 if (copy_to_user(buf, report, report_size)) 619 return -EFAULT; 620 } 621 622 (*offset) += header.size; 623 624 return 0; 625 } 626 627 /** 628 * Copies all buffered OA reports into userspace read() buffer. 629 * @stream: An i915-perf stream opened for OA metrics 630 * @buf: destination buffer given by userspace 631 * @count: the number of bytes userspace wants to read 632 * @offset: (inout): the current position for writing into @buf 633 * 634 * Notably any error condition resulting in a short read (-%ENOSPC or 635 * -%EFAULT) will be returned even though one or more records may 636 * have been successfully copied. In this case it's up to the caller 637 * to decide if the error should be squashed before returning to 638 * userspace. 639 * 640 * Note: reports are consumed from the head, and appended to the 641 * tail, so the tail chases the head?... If you think that's mad 642 * and back-to-front you're not alone, but this follows the 643 * Gen PRM naming convention. 644 * 645 * Returns: 0 on success, negative error code on failure. 646 */ 647 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 648 char __user *buf, 649 size_t count, 650 size_t *offset) 651 { 652 struct intel_uncore *uncore = stream->uncore; 653 int report_size = stream->oa_buffer.format_size; 654 u8 *oa_buf_base = stream->oa_buffer.vaddr; 655 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 656 u32 mask = (OA_BUFFER_SIZE - 1); 657 size_t start_offset = *offset; 658 unsigned long flags; 659 u32 head, tail; 660 u32 taken; 661 int ret = 0; 662 663 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 664 return -EIO; 665 666 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 667 668 head = stream->oa_buffer.head; 669 tail = stream->oa_buffer.tail; 670 671 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 672 673 /* 674 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 675 * while indexing relative to oa_buf_base. 676 */ 677 head -= gtt_offset; 678 tail -= gtt_offset; 679 680 /* 681 * An out of bounds or misaligned head or tail pointer implies a driver 682 * bug since we validate + align the tail pointers we read from the 683 * hardware and we are in full control of the head pointer which should 684 * only be incremented by multiples of the report size (notably also 685 * all a power of two). 686 */ 687 if (drm_WARN_ONCE(&uncore->i915->drm, 688 head > OA_BUFFER_SIZE || head % report_size || 689 tail > OA_BUFFER_SIZE || tail % report_size, 690 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 691 head, tail)) 692 return -EIO; 693 694 695 for (/* none */; 696 (taken = OA_TAKEN(tail, head)); 697 head = (head + report_size) & mask) { 698 u8 *report = oa_buf_base + head; 699 u32 *report32 = (void *)report; 700 u32 ctx_id; 701 u32 reason; 702 703 /* 704 * All the report sizes factor neatly into the buffer 705 * size so we never expect to see a report split 706 * between the beginning and end of the buffer. 707 * 708 * Given the initial alignment check a misalignment 709 * here would imply a driver bug that would result 710 * in an overrun. 711 */ 712 if (drm_WARN_ON(&uncore->i915->drm, 713 (OA_BUFFER_SIZE - head) < report_size)) { 714 drm_err(&uncore->i915->drm, 715 "Spurious OA head ptr: non-integral report offset\n"); 716 break; 717 } 718 719 /* 720 * The reason field includes flags identifying what 721 * triggered this specific report (mostly timer 722 * triggered or e.g. due to a context switch). 723 * 724 * This field is never expected to be zero so we can 725 * check that the report isn't invalid before copying 726 * it to userspace... 727 */ 728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 729 (IS_GEN(stream->perf->i915, 12) ? 730 OAREPORT_REASON_MASK_EXTENDED : 731 OAREPORT_REASON_MASK)); 732 if (reason == 0) { 733 if (__ratelimit(&stream->perf->spurious_report_rs)) 734 DRM_NOTE("Skipping spurious, invalid OA report\n"); 735 continue; 736 } 737 738 ctx_id = report32[2] & stream->specific_ctx_id_mask; 739 740 /* 741 * Squash whatever is in the CTX_ID field if it's marked as 742 * invalid to be sure we avoid false-positive, single-context 743 * filtering below... 744 * 745 * Note: that we don't clear the valid_ctx_bit so userspace can 746 * understand that the ID has been squashed by the kernel. 747 */ 748 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 749 INTEL_GEN(stream->perf->i915) <= 11) 750 ctx_id = report32[2] = INVALID_CTX_ID; 751 752 /* 753 * NB: For Gen 8 the OA unit no longer supports clock gating 754 * off for a specific context and the kernel can't securely 755 * stop the counters from updating as system-wide / global 756 * values. 757 * 758 * Automatic reports now include a context ID so reports can be 759 * filtered on the cpu but it's not worth trying to 760 * automatically subtract/hide counter progress for other 761 * contexts while filtering since we can't stop userspace 762 * issuing MI_REPORT_PERF_COUNT commands which would still 763 * provide a side-band view of the real values. 764 * 765 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 766 * to normalize counters for a single filtered context then it 767 * needs be forwarded bookend context-switch reports so that it 768 * can track switches in between MI_REPORT_PERF_COUNT commands 769 * and can itself subtract/ignore the progress of counters 770 * associated with other contexts. Note that the hardware 771 * automatically triggers reports when switching to a new 772 * context which are tagged with the ID of the newly active 773 * context. To avoid the complexity (and likely fragility) of 774 * reading ahead while parsing reports to try and minimize 775 * forwarding redundant context switch reports (i.e. between 776 * other, unrelated contexts) we simply elect to forward them 777 * all. 778 * 779 * We don't rely solely on the reason field to identify context 780 * switches since it's not-uncommon for periodic samples to 781 * identify a switch before any 'context switch' report. 782 */ 783 if (!stream->perf->exclusive_stream->ctx || 784 stream->specific_ctx_id == ctx_id || 785 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 786 reason & OAREPORT_REASON_CTX_SWITCH) { 787 788 /* 789 * While filtering for a single context we avoid 790 * leaking the IDs of other contexts. 791 */ 792 if (stream->perf->exclusive_stream->ctx && 793 stream->specific_ctx_id != ctx_id) { 794 report32[2] = INVALID_CTX_ID; 795 } 796 797 ret = append_oa_sample(stream, buf, count, offset, 798 report); 799 if (ret) 800 break; 801 802 stream->oa_buffer.last_ctx_id = ctx_id; 803 } 804 805 /* 806 * Clear out the first 2 dword as a mean to detect unlanded 807 * reports. 808 */ 809 report32[0] = 0; 810 report32[1] = 0; 811 } 812 813 if (start_offset != *offset) { 814 i915_reg_t oaheadptr; 815 816 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 817 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 818 819 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 820 821 /* 822 * We removed the gtt_offset for the copy loop above, indexing 823 * relative to oa_buf_base so put back here... 824 */ 825 head += gtt_offset; 826 intel_uncore_write(uncore, oaheadptr, 827 head & GEN12_OAG_OAHEADPTR_MASK); 828 stream->oa_buffer.head = head; 829 830 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 831 } 832 833 return ret; 834 } 835 836 /** 837 * gen8_oa_read - copy status records then buffered OA reports 838 * @stream: An i915-perf stream opened for OA metrics 839 * @buf: destination buffer given by userspace 840 * @count: the number of bytes userspace wants to read 841 * @offset: (inout): the current position for writing into @buf 842 * 843 * Checks OA unit status registers and if necessary appends corresponding 844 * status records for userspace (such as for a buffer full condition) and then 845 * initiate appending any buffered OA reports. 846 * 847 * Updates @offset according to the number of bytes successfully copied into 848 * the userspace buffer. 849 * 850 * NB: some data may be successfully copied to the userspace buffer 851 * even if an error is returned, and this is reflected in the 852 * updated @offset. 853 * 854 * Returns: zero on success or a negative error code 855 */ 856 static int gen8_oa_read(struct i915_perf_stream *stream, 857 char __user *buf, 858 size_t count, 859 size_t *offset) 860 { 861 struct intel_uncore *uncore = stream->uncore; 862 u32 oastatus; 863 i915_reg_t oastatus_reg; 864 int ret; 865 866 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 867 return -EIO; 868 869 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 870 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 871 872 oastatus = intel_uncore_read(uncore, oastatus_reg); 873 874 /* 875 * We treat OABUFFER_OVERFLOW as a significant error: 876 * 877 * Although theoretically we could handle this more gracefully 878 * sometimes, some Gens don't correctly suppress certain 879 * automatically triggered reports in this condition and so we 880 * have to assume that old reports are now being trampled 881 * over. 882 * 883 * Considering how we don't currently give userspace control 884 * over the OA buffer size and always configure a large 16MB 885 * buffer, then a buffer overflow does anyway likely indicate 886 * that something has gone quite badly wrong. 887 */ 888 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 889 ret = append_oa_status(stream, buf, count, offset, 890 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 891 if (ret) 892 return ret; 893 894 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 895 stream->period_exponent); 896 897 stream->perf->ops.oa_disable(stream); 898 stream->perf->ops.oa_enable(stream); 899 900 /* 901 * Note: .oa_enable() is expected to re-init the oabuffer and 902 * reset GEN8_OASTATUS for us 903 */ 904 oastatus = intel_uncore_read(uncore, oastatus_reg); 905 } 906 907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 908 ret = append_oa_status(stream, buf, count, offset, 909 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 910 if (ret) 911 return ret; 912 intel_uncore_write(uncore, oastatus_reg, 913 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 914 } 915 916 return gen8_append_oa_reports(stream, buf, count, offset); 917 } 918 919 /** 920 * Copies all buffered OA reports into userspace read() buffer. 921 * @stream: An i915-perf stream opened for OA metrics 922 * @buf: destination buffer given by userspace 923 * @count: the number of bytes userspace wants to read 924 * @offset: (inout): the current position for writing into @buf 925 * 926 * Notably any error condition resulting in a short read (-%ENOSPC or 927 * -%EFAULT) will be returned even though one or more records may 928 * have been successfully copied. In this case it's up to the caller 929 * to decide if the error should be squashed before returning to 930 * userspace. 931 * 932 * Note: reports are consumed from the head, and appended to the 933 * tail, so the tail chases the head?... If you think that's mad 934 * and back-to-front you're not alone, but this follows the 935 * Gen PRM naming convention. 936 * 937 * Returns: 0 on success, negative error code on failure. 938 */ 939 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 940 char __user *buf, 941 size_t count, 942 size_t *offset) 943 { 944 struct intel_uncore *uncore = stream->uncore; 945 int report_size = stream->oa_buffer.format_size; 946 u8 *oa_buf_base = stream->oa_buffer.vaddr; 947 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 948 u32 mask = (OA_BUFFER_SIZE - 1); 949 size_t start_offset = *offset; 950 unsigned long flags; 951 u32 head, tail; 952 u32 taken; 953 int ret = 0; 954 955 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 956 return -EIO; 957 958 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 959 960 head = stream->oa_buffer.head; 961 tail = stream->oa_buffer.tail; 962 963 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 964 965 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 966 * while indexing relative to oa_buf_base. 967 */ 968 head -= gtt_offset; 969 tail -= gtt_offset; 970 971 /* An out of bounds or misaligned head or tail pointer implies a driver 972 * bug since we validate + align the tail pointers we read from the 973 * hardware and we are in full control of the head pointer which should 974 * only be incremented by multiples of the report size (notably also 975 * all a power of two). 976 */ 977 if (drm_WARN_ONCE(&uncore->i915->drm, 978 head > OA_BUFFER_SIZE || head % report_size || 979 tail > OA_BUFFER_SIZE || tail % report_size, 980 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 981 head, tail)) 982 return -EIO; 983 984 985 for (/* none */; 986 (taken = OA_TAKEN(tail, head)); 987 head = (head + report_size) & mask) { 988 u8 *report = oa_buf_base + head; 989 u32 *report32 = (void *)report; 990 991 /* All the report sizes factor neatly into the buffer 992 * size so we never expect to see a report split 993 * between the beginning and end of the buffer. 994 * 995 * Given the initial alignment check a misalignment 996 * here would imply a driver bug that would result 997 * in an overrun. 998 */ 999 if (drm_WARN_ON(&uncore->i915->drm, 1000 (OA_BUFFER_SIZE - head) < report_size)) { 1001 drm_err(&uncore->i915->drm, 1002 "Spurious OA head ptr: non-integral report offset\n"); 1003 break; 1004 } 1005 1006 /* The report-ID field for periodic samples includes 1007 * some undocumented flags related to what triggered 1008 * the report and is never expected to be zero so we 1009 * can check that the report isn't invalid before 1010 * copying it to userspace... 1011 */ 1012 if (report32[0] == 0) { 1013 if (__ratelimit(&stream->perf->spurious_report_rs)) 1014 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1015 continue; 1016 } 1017 1018 ret = append_oa_sample(stream, buf, count, offset, report); 1019 if (ret) 1020 break; 1021 1022 /* Clear out the first 2 dwords as a mean to detect unlanded 1023 * reports. 1024 */ 1025 report32[0] = 0; 1026 report32[1] = 0; 1027 } 1028 1029 if (start_offset != *offset) { 1030 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1031 1032 /* We removed the gtt_offset for the copy loop above, indexing 1033 * relative to oa_buf_base so put back here... 1034 */ 1035 head += gtt_offset; 1036 1037 intel_uncore_write(uncore, GEN7_OASTATUS2, 1038 (head & GEN7_OASTATUS2_HEAD_MASK) | 1039 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1040 stream->oa_buffer.head = head; 1041 1042 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1043 } 1044 1045 return ret; 1046 } 1047 1048 /** 1049 * gen7_oa_read - copy status records then buffered OA reports 1050 * @stream: An i915-perf stream opened for OA metrics 1051 * @buf: destination buffer given by userspace 1052 * @count: the number of bytes userspace wants to read 1053 * @offset: (inout): the current position for writing into @buf 1054 * 1055 * Checks Gen 7 specific OA unit status registers and if necessary appends 1056 * corresponding status records for userspace (such as for a buffer full 1057 * condition) and then initiate appending any buffered OA reports. 1058 * 1059 * Updates @offset according to the number of bytes successfully copied into 1060 * the userspace buffer. 1061 * 1062 * Returns: zero on success or a negative error code 1063 */ 1064 static int gen7_oa_read(struct i915_perf_stream *stream, 1065 char __user *buf, 1066 size_t count, 1067 size_t *offset) 1068 { 1069 struct intel_uncore *uncore = stream->uncore; 1070 u32 oastatus1; 1071 int ret; 1072 1073 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1074 return -EIO; 1075 1076 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1077 1078 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1079 * bits while the OA unit is enabled (while the tail pointer 1080 * may be updated asynchronously) so we ignore status bits 1081 * that have already been reported to userspace. 1082 */ 1083 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1084 1085 /* We treat OABUFFER_OVERFLOW as a significant error: 1086 * 1087 * - The status can be interpreted to mean that the buffer is 1088 * currently full (with a higher precedence than OA_TAKEN() 1089 * which will start to report a near-empty buffer after an 1090 * overflow) but it's awkward that we can't clear the status 1091 * on Haswell, so without a reset we won't be able to catch 1092 * the state again. 1093 * 1094 * - Since it also implies the HW has started overwriting old 1095 * reports it may also affect our sanity checks for invalid 1096 * reports when copying to userspace that assume new reports 1097 * are being written to cleared memory. 1098 * 1099 * - In the future we may want to introduce a flight recorder 1100 * mode where the driver will automatically maintain a safe 1101 * guard band between head/tail, avoiding this overflow 1102 * condition, but we avoid the added driver complexity for 1103 * now. 1104 */ 1105 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1106 ret = append_oa_status(stream, buf, count, offset, 1107 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1108 if (ret) 1109 return ret; 1110 1111 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1112 stream->period_exponent); 1113 1114 stream->perf->ops.oa_disable(stream); 1115 stream->perf->ops.oa_enable(stream); 1116 1117 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1118 } 1119 1120 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1121 ret = append_oa_status(stream, buf, count, offset, 1122 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1123 if (ret) 1124 return ret; 1125 stream->perf->gen7_latched_oastatus1 |= 1126 GEN7_OASTATUS1_REPORT_LOST; 1127 } 1128 1129 return gen7_append_oa_reports(stream, buf, count, offset); 1130 } 1131 1132 /** 1133 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1134 * @stream: An i915-perf stream opened for OA metrics 1135 * 1136 * Called when userspace tries to read() from a blocking stream FD opened 1137 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1138 * OA buffer and wakes us. 1139 * 1140 * Note: it's acceptable to have this return with some false positives 1141 * since any subsequent read handling will return -EAGAIN if there isn't 1142 * really data ready for userspace yet. 1143 * 1144 * Returns: zero on success or a negative error code 1145 */ 1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1147 { 1148 /* We would wait indefinitely if periodic sampling is not enabled */ 1149 if (!stream->periodic) 1150 return -EIO; 1151 1152 return wait_event_interruptible(stream->poll_wq, 1153 oa_buffer_check_unlocked(stream)); 1154 } 1155 1156 /** 1157 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1158 * @stream: An i915-perf stream opened for OA metrics 1159 * @file: An i915 perf stream file 1160 * @wait: poll() state table 1161 * 1162 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1163 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1164 * when it sees data ready to read in the circular OA buffer. 1165 */ 1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1167 struct file *file, 1168 poll_table *wait) 1169 { 1170 poll_wait(file, &stream->poll_wq, wait); 1171 } 1172 1173 /** 1174 * i915_oa_read - just calls through to &i915_oa_ops->read 1175 * @stream: An i915-perf stream opened for OA metrics 1176 * @buf: destination buffer given by userspace 1177 * @count: the number of bytes userspace wants to read 1178 * @offset: (inout): the current position for writing into @buf 1179 * 1180 * Updates @offset according to the number of bytes successfully copied into 1181 * the userspace buffer. 1182 * 1183 * Returns: zero on success or a negative error code 1184 */ 1185 static int i915_oa_read(struct i915_perf_stream *stream, 1186 char __user *buf, 1187 size_t count, 1188 size_t *offset) 1189 { 1190 return stream->perf->ops.read(stream, buf, count, offset); 1191 } 1192 1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1194 { 1195 struct i915_gem_engines_iter it; 1196 struct i915_gem_context *ctx = stream->ctx; 1197 struct intel_context *ce; 1198 int err; 1199 1200 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1201 if (ce->engine != stream->engine) /* first match! */ 1202 continue; 1203 1204 /* 1205 * As the ID is the gtt offset of the context's vma we 1206 * pin the vma to ensure the ID remains fixed. 1207 */ 1208 err = intel_context_pin(ce); 1209 if (err == 0) { 1210 stream->pinned_ctx = ce; 1211 break; 1212 } 1213 } 1214 i915_gem_context_unlock_engines(ctx); 1215 1216 return stream->pinned_ctx; 1217 } 1218 1219 /** 1220 * oa_get_render_ctx_id - determine and hold ctx hw id 1221 * @stream: An i915-perf stream opened for OA metrics 1222 * 1223 * Determine the render context hw id, and ensure it remains fixed for the 1224 * lifetime of the stream. This ensures that we don't have to worry about 1225 * updating the context ID in OACONTROL on the fly. 1226 * 1227 * Returns: zero on success or a negative error code 1228 */ 1229 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1230 { 1231 struct intel_context *ce; 1232 1233 ce = oa_pin_context(stream); 1234 if (IS_ERR(ce)) 1235 return PTR_ERR(ce); 1236 1237 switch (INTEL_GEN(ce->engine->i915)) { 1238 case 7: { 1239 /* 1240 * On Haswell we don't do any post processing of the reports 1241 * and don't need to use the mask. 1242 */ 1243 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1244 stream->specific_ctx_id_mask = 0; 1245 break; 1246 } 1247 1248 case 8: 1249 case 9: 1250 case 10: 1251 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1252 stream->specific_ctx_id_mask = 1253 (1U << GEN8_CTX_ID_WIDTH) - 1; 1254 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1255 } else { 1256 /* 1257 * When using GuC, the context descriptor we write in 1258 * i915 is read by GuC and rewritten before it's 1259 * actually written into the hardware. The LRCA is 1260 * what is put into the context id field of the 1261 * context descriptor by GuC. Because it's aligned to 1262 * a page, the lower 12bits are always at 0 and 1263 * dropped by GuC. They won't be part of the context 1264 * ID in the OA reports, so squash those lower bits. 1265 */ 1266 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1267 1268 /* 1269 * GuC uses the top bit to signal proxy submission, so 1270 * ignore that bit. 1271 */ 1272 stream->specific_ctx_id_mask = 1273 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1274 } 1275 break; 1276 1277 case 11: 1278 case 12: { 1279 stream->specific_ctx_id_mask = 1280 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1281 /* 1282 * Pick an unused context id 1283 * 0 - BITS_PER_LONG are used by other contexts 1284 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1285 */ 1286 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1287 break; 1288 } 1289 1290 default: 1291 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1292 } 1293 1294 ce->tag = stream->specific_ctx_id; 1295 1296 drm_dbg(&stream->perf->i915->drm, 1297 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1298 stream->specific_ctx_id, 1299 stream->specific_ctx_id_mask); 1300 1301 return 0; 1302 } 1303 1304 /** 1305 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1306 * @stream: An i915-perf stream opened for OA metrics 1307 * 1308 * In case anything needed doing to ensure the context HW ID would remain valid 1309 * for the lifetime of the stream, then that can be undone here. 1310 */ 1311 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1312 { 1313 struct intel_context *ce; 1314 1315 ce = fetch_and_zero(&stream->pinned_ctx); 1316 if (ce) { 1317 ce->tag = 0; /* recomputed on next submission after parking */ 1318 intel_context_unpin(ce); 1319 } 1320 1321 stream->specific_ctx_id = INVALID_CTX_ID; 1322 stream->specific_ctx_id_mask = 0; 1323 } 1324 1325 static void 1326 free_oa_buffer(struct i915_perf_stream *stream) 1327 { 1328 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1329 I915_VMA_RELEASE_MAP); 1330 1331 stream->oa_buffer.vaddr = NULL; 1332 } 1333 1334 static void 1335 free_oa_configs(struct i915_perf_stream *stream) 1336 { 1337 struct i915_oa_config_bo *oa_bo, *tmp; 1338 1339 i915_oa_config_put(stream->oa_config); 1340 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1341 free_oa_config_bo(oa_bo); 1342 } 1343 1344 static void 1345 free_noa_wait(struct i915_perf_stream *stream) 1346 { 1347 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1348 } 1349 1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1351 { 1352 struct i915_perf *perf = stream->perf; 1353 1354 BUG_ON(stream != perf->exclusive_stream); 1355 1356 /* 1357 * Unset exclusive_stream first, it will be checked while disabling 1358 * the metric set on gen8+. 1359 * 1360 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1361 */ 1362 WRITE_ONCE(perf->exclusive_stream, NULL); 1363 perf->ops.disable_metric_set(stream); 1364 1365 free_oa_buffer(stream); 1366 1367 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1368 intel_engine_pm_put(stream->engine); 1369 1370 if (stream->ctx) 1371 oa_put_render_ctx_id(stream); 1372 1373 free_oa_configs(stream); 1374 free_noa_wait(stream); 1375 1376 if (perf->spurious_report_rs.missed) { 1377 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1378 perf->spurious_report_rs.missed); 1379 } 1380 } 1381 1382 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1383 { 1384 struct intel_uncore *uncore = stream->uncore; 1385 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1386 unsigned long flags; 1387 1388 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1389 1390 /* Pre-DevBDW: OABUFFER must be set with counters off, 1391 * before OASTATUS1, but after OASTATUS2 1392 */ 1393 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1394 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1395 stream->oa_buffer.head = gtt_offset; 1396 1397 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1398 1399 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1400 gtt_offset | OABUFFER_SIZE_16M); 1401 1402 /* Mark that we need updated tail pointers to read from... */ 1403 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1404 stream->oa_buffer.tail = gtt_offset; 1405 1406 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1407 1408 /* On Haswell we have to track which OASTATUS1 flags we've 1409 * already seen since they can't be cleared while periodic 1410 * sampling is enabled. 1411 */ 1412 stream->perf->gen7_latched_oastatus1 = 0; 1413 1414 /* NB: although the OA buffer will initially be allocated 1415 * zeroed via shmfs (and so this memset is redundant when 1416 * first allocating), we may re-init the OA buffer, either 1417 * when re-enabling a stream or in error/reset paths. 1418 * 1419 * The reason we clear the buffer for each re-init is for the 1420 * sanity check in gen7_append_oa_reports() that looks at the 1421 * report-id field to make sure it's non-zero which relies on 1422 * the assumption that new reports are being written to zeroed 1423 * memory... 1424 */ 1425 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1426 } 1427 1428 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1429 { 1430 struct intel_uncore *uncore = stream->uncore; 1431 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1432 unsigned long flags; 1433 1434 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1435 1436 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1437 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1438 stream->oa_buffer.head = gtt_offset; 1439 1440 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1441 1442 /* 1443 * PRM says: 1444 * 1445 * "This MMIO must be set before the OATAILPTR 1446 * register and after the OAHEADPTR register. This is 1447 * to enable proper functionality of the overflow 1448 * bit." 1449 */ 1450 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1451 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1452 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1453 1454 /* Mark that we need updated tail pointers to read from... */ 1455 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1456 stream->oa_buffer.tail = gtt_offset; 1457 1458 /* 1459 * Reset state used to recognise context switches, affecting which 1460 * reports we will forward to userspace while filtering for a single 1461 * context. 1462 */ 1463 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1464 1465 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1466 1467 /* 1468 * NB: although the OA buffer will initially be allocated 1469 * zeroed via shmfs (and so this memset is redundant when 1470 * first allocating), we may re-init the OA buffer, either 1471 * when re-enabling a stream or in error/reset paths. 1472 * 1473 * The reason we clear the buffer for each re-init is for the 1474 * sanity check in gen8_append_oa_reports() that looks at the 1475 * reason field to make sure it's non-zero which relies on 1476 * the assumption that new reports are being written to zeroed 1477 * memory... 1478 */ 1479 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1480 } 1481 1482 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1483 { 1484 struct intel_uncore *uncore = stream->uncore; 1485 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1489 1490 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1491 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1492 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1493 stream->oa_buffer.head = gtt_offset; 1494 1495 /* 1496 * PRM says: 1497 * 1498 * "This MMIO must be set before the OATAILPTR 1499 * register and after the OAHEADPTR register. This is 1500 * to enable proper functionality of the overflow 1501 * bit." 1502 */ 1503 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1504 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1505 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1506 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1507 1508 /* Mark that we need updated tail pointers to read from... */ 1509 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1510 stream->oa_buffer.tail = gtt_offset; 1511 1512 /* 1513 * Reset state used to recognise context switches, affecting which 1514 * reports we will forward to userspace while filtering for a single 1515 * context. 1516 */ 1517 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1518 1519 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1520 1521 /* 1522 * NB: although the OA buffer will initially be allocated 1523 * zeroed via shmfs (and so this memset is redundant when 1524 * first allocating), we may re-init the OA buffer, either 1525 * when re-enabling a stream or in error/reset paths. 1526 * 1527 * The reason we clear the buffer for each re-init is for the 1528 * sanity check in gen8_append_oa_reports() that looks at the 1529 * reason field to make sure it's non-zero which relies on 1530 * the assumption that new reports are being written to zeroed 1531 * memory... 1532 */ 1533 memset(stream->oa_buffer.vaddr, 0, 1534 stream->oa_buffer.vma->size); 1535 } 1536 1537 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1538 { 1539 struct drm_i915_private *i915 = stream->perf->i915; 1540 struct drm_i915_gem_object *bo; 1541 struct i915_vma *vma; 1542 int ret; 1543 1544 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1545 return -ENODEV; 1546 1547 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1548 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1549 1550 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1551 if (IS_ERR(bo)) { 1552 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1553 return PTR_ERR(bo); 1554 } 1555 1556 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1557 1558 /* PreHSW required 512K alignment, HSW requires 16M */ 1559 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1560 if (IS_ERR(vma)) { 1561 ret = PTR_ERR(vma); 1562 goto err_unref; 1563 } 1564 stream->oa_buffer.vma = vma; 1565 1566 stream->oa_buffer.vaddr = 1567 i915_gem_object_pin_map(bo, I915_MAP_WB); 1568 if (IS_ERR(stream->oa_buffer.vaddr)) { 1569 ret = PTR_ERR(stream->oa_buffer.vaddr); 1570 goto err_unpin; 1571 } 1572 1573 return 0; 1574 1575 err_unpin: 1576 __i915_vma_unpin(vma); 1577 1578 err_unref: 1579 i915_gem_object_put(bo); 1580 1581 stream->oa_buffer.vaddr = NULL; 1582 stream->oa_buffer.vma = NULL; 1583 1584 return ret; 1585 } 1586 1587 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1588 bool save, i915_reg_t reg, u32 offset, 1589 u32 dword_count) 1590 { 1591 u32 cmd; 1592 u32 d; 1593 1594 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1595 if (INTEL_GEN(stream->perf->i915) >= 8) 1596 cmd++; 1597 1598 for (d = 0; d < dword_count; d++) { 1599 *cs++ = cmd; 1600 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1601 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1602 offset) + 4 * d; 1603 *cs++ = 0; 1604 } 1605 1606 return cs; 1607 } 1608 1609 static int alloc_noa_wait(struct i915_perf_stream *stream) 1610 { 1611 struct drm_i915_private *i915 = stream->perf->i915; 1612 struct drm_i915_gem_object *bo; 1613 struct i915_vma *vma; 1614 const u64 delay_ticks = 0xffffffffffffffff - 1615 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay)); 1616 const u32 base = stream->engine->mmio_base; 1617 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1618 u32 *batch, *ts0, *cs, *jump; 1619 int ret, i; 1620 enum { 1621 START_TS, 1622 NOW_TS, 1623 DELTA_TS, 1624 JUMP_PREDICATE, 1625 DELTA_TARGET, 1626 N_CS_GPR 1627 }; 1628 1629 bo = i915_gem_object_create_internal(i915, 4096); 1630 if (IS_ERR(bo)) { 1631 drm_err(&i915->drm, 1632 "Failed to allocate NOA wait batchbuffer\n"); 1633 return PTR_ERR(bo); 1634 } 1635 1636 /* 1637 * We pin in GGTT because we jump into this buffer now because 1638 * multiple OA config BOs will have a jump to this address and it 1639 * needs to be fixed during the lifetime of the i915/perf stream. 1640 */ 1641 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1642 if (IS_ERR(vma)) { 1643 ret = PTR_ERR(vma); 1644 goto err_unref; 1645 } 1646 1647 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1648 if (IS_ERR(batch)) { 1649 ret = PTR_ERR(batch); 1650 goto err_unpin; 1651 } 1652 1653 /* Save registers. */ 1654 for (i = 0; i < N_CS_GPR; i++) 1655 cs = save_restore_register( 1656 stream, cs, true /* save */, CS_GPR(i), 1657 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1658 cs = save_restore_register( 1659 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1660 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1661 1662 /* First timestamp snapshot location. */ 1663 ts0 = cs; 1664 1665 /* 1666 * Initial snapshot of the timestamp register to implement the wait. 1667 * We work with 32b values, so clear out the top 32b bits of the 1668 * register because the ALU works 64bits. 1669 */ 1670 *cs++ = MI_LOAD_REGISTER_IMM(1); 1671 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1672 *cs++ = 0; 1673 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1674 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1675 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1676 1677 /* 1678 * This is the location we're going to jump back into until the 1679 * required amount of time has passed. 1680 */ 1681 jump = cs; 1682 1683 /* 1684 * Take another snapshot of the timestamp register. Take care to clear 1685 * up the top 32bits of CS_GPR(1) as we're using it for other 1686 * operations below. 1687 */ 1688 *cs++ = MI_LOAD_REGISTER_IMM(1); 1689 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1690 *cs++ = 0; 1691 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1692 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1693 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1694 1695 /* 1696 * Do a diff between the 2 timestamps and store the result back into 1697 * CS_GPR(1). 1698 */ 1699 *cs++ = MI_MATH(5); 1700 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1701 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1702 *cs++ = MI_MATH_SUB; 1703 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1704 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1705 1706 /* 1707 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1708 * timestamp have rolled over the 32bits) into the predicate register 1709 * to be used for the predicated jump. 1710 */ 1711 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1712 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1713 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1714 1715 /* Restart from the beginning if we had timestamps roll over. */ 1716 *cs++ = (INTEL_GEN(i915) < 8 ? 1717 MI_BATCH_BUFFER_START : 1718 MI_BATCH_BUFFER_START_GEN8) | 1719 MI_BATCH_PREDICATE; 1720 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1721 *cs++ = 0; 1722 1723 /* 1724 * Now add the diff between to previous timestamps and add it to : 1725 * (((1 * << 64) - 1) - delay_ns) 1726 * 1727 * When the Carry Flag contains 1 this means the elapsed time is 1728 * longer than the expected delay, and we can exit the wait loop. 1729 */ 1730 *cs++ = MI_LOAD_REGISTER_IMM(2); 1731 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1732 *cs++ = lower_32_bits(delay_ticks); 1733 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1734 *cs++ = upper_32_bits(delay_ticks); 1735 1736 *cs++ = MI_MATH(4); 1737 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1738 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1739 *cs++ = MI_MATH_ADD; 1740 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1741 1742 *cs++ = MI_ARB_CHECK; 1743 1744 /* 1745 * Transfer the result into the predicate register to be used for the 1746 * predicated jump. 1747 */ 1748 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1749 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1750 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1751 1752 /* Predicate the jump. */ 1753 *cs++ = (INTEL_GEN(i915) < 8 ? 1754 MI_BATCH_BUFFER_START : 1755 MI_BATCH_BUFFER_START_GEN8) | 1756 MI_BATCH_PREDICATE; 1757 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1758 *cs++ = 0; 1759 1760 /* Restore registers. */ 1761 for (i = 0; i < N_CS_GPR; i++) 1762 cs = save_restore_register( 1763 stream, cs, false /* restore */, CS_GPR(i), 1764 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1765 cs = save_restore_register( 1766 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1767 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1768 1769 /* And return to the ring. */ 1770 *cs++ = MI_BATCH_BUFFER_END; 1771 1772 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1773 1774 i915_gem_object_flush_map(bo); 1775 i915_gem_object_unpin_map(bo); 1776 1777 stream->noa_wait = vma; 1778 return 0; 1779 1780 err_unpin: 1781 i915_vma_unpin_and_release(&vma, 0); 1782 err_unref: 1783 i915_gem_object_put(bo); 1784 return ret; 1785 } 1786 1787 static u32 *write_cs_mi_lri(u32 *cs, 1788 const struct i915_oa_reg *reg_data, 1789 u32 n_regs) 1790 { 1791 u32 i; 1792 1793 for (i = 0; i < n_regs; i++) { 1794 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1795 u32 n_lri = min_t(u32, 1796 n_regs - i, 1797 MI_LOAD_REGISTER_IMM_MAX_REGS); 1798 1799 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1800 } 1801 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1802 *cs++ = reg_data[i].value; 1803 } 1804 1805 return cs; 1806 } 1807 1808 static int num_lri_dwords(int num_regs) 1809 { 1810 int count = 0; 1811 1812 if (num_regs > 0) { 1813 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1814 count += num_regs * 2; 1815 } 1816 1817 return count; 1818 } 1819 1820 static struct i915_oa_config_bo * 1821 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1822 struct i915_oa_config *oa_config) 1823 { 1824 struct drm_i915_gem_object *obj; 1825 struct i915_oa_config_bo *oa_bo; 1826 size_t config_length = 0; 1827 u32 *cs; 1828 int err; 1829 1830 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1831 if (!oa_bo) 1832 return ERR_PTR(-ENOMEM); 1833 1834 config_length += num_lri_dwords(oa_config->mux_regs_len); 1835 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1836 config_length += num_lri_dwords(oa_config->flex_regs_len); 1837 config_length += 3; /* MI_BATCH_BUFFER_START */ 1838 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1839 1840 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1841 if (IS_ERR(obj)) { 1842 err = PTR_ERR(obj); 1843 goto err_free; 1844 } 1845 1846 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1847 if (IS_ERR(cs)) { 1848 err = PTR_ERR(cs); 1849 goto err_oa_bo; 1850 } 1851 1852 cs = write_cs_mi_lri(cs, 1853 oa_config->mux_regs, 1854 oa_config->mux_regs_len); 1855 cs = write_cs_mi_lri(cs, 1856 oa_config->b_counter_regs, 1857 oa_config->b_counter_regs_len); 1858 cs = write_cs_mi_lri(cs, 1859 oa_config->flex_regs, 1860 oa_config->flex_regs_len); 1861 1862 /* Jump into the active wait. */ 1863 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1864 MI_BATCH_BUFFER_START : 1865 MI_BATCH_BUFFER_START_GEN8); 1866 *cs++ = i915_ggtt_offset(stream->noa_wait); 1867 *cs++ = 0; 1868 1869 i915_gem_object_flush_map(obj); 1870 i915_gem_object_unpin_map(obj); 1871 1872 oa_bo->vma = i915_vma_instance(obj, 1873 &stream->engine->gt->ggtt->vm, 1874 NULL); 1875 if (IS_ERR(oa_bo->vma)) { 1876 err = PTR_ERR(oa_bo->vma); 1877 goto err_oa_bo; 1878 } 1879 1880 oa_bo->oa_config = i915_oa_config_get(oa_config); 1881 llist_add(&oa_bo->node, &stream->oa_config_bos); 1882 1883 return oa_bo; 1884 1885 err_oa_bo: 1886 i915_gem_object_put(obj); 1887 err_free: 1888 kfree(oa_bo); 1889 return ERR_PTR(err); 1890 } 1891 1892 static struct i915_vma * 1893 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1894 { 1895 struct i915_oa_config_bo *oa_bo; 1896 1897 /* 1898 * Look for the buffer in the already allocated BOs attached 1899 * to the stream. 1900 */ 1901 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1902 if (oa_bo->oa_config == oa_config && 1903 memcmp(oa_bo->oa_config->uuid, 1904 oa_config->uuid, 1905 sizeof(oa_config->uuid)) == 0) 1906 goto out; 1907 } 1908 1909 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1910 if (IS_ERR(oa_bo)) 1911 return ERR_CAST(oa_bo); 1912 1913 out: 1914 return i915_vma_get(oa_bo->vma); 1915 } 1916 1917 static int 1918 emit_oa_config(struct i915_perf_stream *stream, 1919 struct i915_oa_config *oa_config, 1920 struct intel_context *ce, 1921 struct i915_active *active) 1922 { 1923 struct i915_request *rq; 1924 struct i915_vma *vma; 1925 int err; 1926 1927 vma = get_oa_vma(stream, oa_config); 1928 if (IS_ERR(vma)) 1929 return PTR_ERR(vma); 1930 1931 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1932 if (err) 1933 goto err_vma_put; 1934 1935 intel_engine_pm_get(ce->engine); 1936 rq = i915_request_create(ce); 1937 intel_engine_pm_put(ce->engine); 1938 if (IS_ERR(rq)) { 1939 err = PTR_ERR(rq); 1940 goto err_vma_unpin; 1941 } 1942 1943 if (!IS_ERR_OR_NULL(active)) { 1944 /* After all individual context modifications */ 1945 err = i915_request_await_active(rq, active, 1946 I915_ACTIVE_AWAIT_ACTIVE); 1947 if (err) 1948 goto err_add_request; 1949 1950 err = i915_active_add_request(active, rq); 1951 if (err) 1952 goto err_add_request; 1953 } 1954 1955 i915_vma_lock(vma); 1956 err = i915_request_await_object(rq, vma->obj, 0); 1957 if (!err) 1958 err = i915_vma_move_to_active(vma, rq, 0); 1959 i915_vma_unlock(vma); 1960 if (err) 1961 goto err_add_request; 1962 1963 err = rq->engine->emit_bb_start(rq, 1964 vma->node.start, 0, 1965 I915_DISPATCH_SECURE); 1966 if (err) 1967 goto err_add_request; 1968 1969 err_add_request: 1970 i915_request_add(rq); 1971 err_vma_unpin: 1972 i915_vma_unpin(vma); 1973 err_vma_put: 1974 i915_vma_put(vma); 1975 return err; 1976 } 1977 1978 static struct intel_context *oa_context(struct i915_perf_stream *stream) 1979 { 1980 return stream->pinned_ctx ?: stream->engine->kernel_context; 1981 } 1982 1983 static int 1984 hsw_enable_metric_set(struct i915_perf_stream *stream, 1985 struct i915_active *active) 1986 { 1987 struct intel_uncore *uncore = stream->uncore; 1988 1989 /* 1990 * PRM: 1991 * 1992 * OA unit is using “crclk” for its functionality. When trunk 1993 * level clock gating takes place, OA clock would be gated, 1994 * unable to count the events from non-render clock domain. 1995 * Render clock gating must be disabled when OA is enabled to 1996 * count the events from non-render domain. Unit level clock 1997 * gating for RCS should also be disabled. 1998 */ 1999 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2000 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2001 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2002 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2003 2004 return emit_oa_config(stream, 2005 stream->oa_config, oa_context(stream), 2006 active); 2007 } 2008 2009 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2010 { 2011 struct intel_uncore *uncore = stream->uncore; 2012 2013 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2014 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2015 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2016 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2017 2018 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2019 } 2020 2021 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2022 i915_reg_t reg) 2023 { 2024 u32 mmio = i915_mmio_reg_offset(reg); 2025 int i; 2026 2027 /* 2028 * This arbitrary default will select the 'EU FPU0 Pipeline 2029 * Active' event. In the future it's anticipated that there 2030 * will be an explicit 'No Event' we can select, but not yet... 2031 */ 2032 if (!oa_config) 2033 return 0; 2034 2035 for (i = 0; i < oa_config->flex_regs_len; i++) { 2036 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2037 return oa_config->flex_regs[i].value; 2038 } 2039 2040 return 0; 2041 } 2042 /* 2043 * NB: It must always remain pointer safe to run this even if the OA unit 2044 * has been disabled. 2045 * 2046 * It's fine to put out-of-date values into these per-context registers 2047 * in the case that the OA unit has been disabled. 2048 */ 2049 static void 2050 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2051 const struct i915_perf_stream *stream) 2052 { 2053 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2054 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2055 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2056 i915_reg_t flex_regs[] = { 2057 EU_PERF_CNTL0, 2058 EU_PERF_CNTL1, 2059 EU_PERF_CNTL2, 2060 EU_PERF_CNTL3, 2061 EU_PERF_CNTL4, 2062 EU_PERF_CNTL5, 2063 EU_PERF_CNTL6, 2064 }; 2065 u32 *reg_state = ce->lrc_reg_state; 2066 int i; 2067 2068 reg_state[ctx_oactxctrl + 1] = 2069 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2070 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2071 GEN8_OA_COUNTER_RESUME; 2072 2073 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2074 reg_state[ctx_flexeu0 + i * 2 + 1] = 2075 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2076 } 2077 2078 struct flex { 2079 i915_reg_t reg; 2080 u32 offset; 2081 u32 value; 2082 }; 2083 2084 static int 2085 gen8_store_flex(struct i915_request *rq, 2086 struct intel_context *ce, 2087 const struct flex *flex, unsigned int count) 2088 { 2089 u32 offset; 2090 u32 *cs; 2091 2092 cs = intel_ring_begin(rq, 4 * count); 2093 if (IS_ERR(cs)) 2094 return PTR_ERR(cs); 2095 2096 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2097 do { 2098 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2099 *cs++ = offset + flex->offset * sizeof(u32); 2100 *cs++ = 0; 2101 *cs++ = flex->value; 2102 } while (flex++, --count); 2103 2104 intel_ring_advance(rq, cs); 2105 2106 return 0; 2107 } 2108 2109 static int 2110 gen8_load_flex(struct i915_request *rq, 2111 struct intel_context *ce, 2112 const struct flex *flex, unsigned int count) 2113 { 2114 u32 *cs; 2115 2116 GEM_BUG_ON(!count || count > 63); 2117 2118 cs = intel_ring_begin(rq, 2 * count + 2); 2119 if (IS_ERR(cs)) 2120 return PTR_ERR(cs); 2121 2122 *cs++ = MI_LOAD_REGISTER_IMM(count); 2123 do { 2124 *cs++ = i915_mmio_reg_offset(flex->reg); 2125 *cs++ = flex->value; 2126 } while (flex++, --count); 2127 *cs++ = MI_NOOP; 2128 2129 intel_ring_advance(rq, cs); 2130 2131 return 0; 2132 } 2133 2134 static int gen8_modify_context(struct intel_context *ce, 2135 const struct flex *flex, unsigned int count) 2136 { 2137 struct i915_request *rq; 2138 int err; 2139 2140 rq = intel_engine_create_kernel_request(ce->engine); 2141 if (IS_ERR(rq)) 2142 return PTR_ERR(rq); 2143 2144 /* Serialise with the remote context */ 2145 err = intel_context_prepare_remote_request(ce, rq); 2146 if (err == 0) 2147 err = gen8_store_flex(rq, ce, flex, count); 2148 2149 i915_request_add(rq); 2150 return err; 2151 } 2152 2153 static int 2154 gen8_modify_self(struct intel_context *ce, 2155 const struct flex *flex, unsigned int count, 2156 struct i915_active *active) 2157 { 2158 struct i915_request *rq; 2159 int err; 2160 2161 intel_engine_pm_get(ce->engine); 2162 rq = i915_request_create(ce); 2163 intel_engine_pm_put(ce->engine); 2164 if (IS_ERR(rq)) 2165 return PTR_ERR(rq); 2166 2167 if (!IS_ERR_OR_NULL(active)) { 2168 err = i915_active_add_request(active, rq); 2169 if (err) 2170 goto err_add_request; 2171 } 2172 2173 err = gen8_load_flex(rq, ce, flex, count); 2174 if (err) 2175 goto err_add_request; 2176 2177 err_add_request: 2178 i915_request_add(rq); 2179 return err; 2180 } 2181 2182 static int gen8_configure_context(struct i915_gem_context *ctx, 2183 struct flex *flex, unsigned int count) 2184 { 2185 struct i915_gem_engines_iter it; 2186 struct intel_context *ce; 2187 int err = 0; 2188 2189 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2190 GEM_BUG_ON(ce == ce->engine->kernel_context); 2191 2192 if (ce->engine->class != RENDER_CLASS) 2193 continue; 2194 2195 /* Otherwise OA settings will be set upon first use */ 2196 if (!intel_context_pin_if_active(ce)) 2197 continue; 2198 2199 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2200 err = gen8_modify_context(ce, flex, count); 2201 2202 intel_context_unpin(ce); 2203 if (err) 2204 break; 2205 } 2206 i915_gem_context_unlock_engines(ctx); 2207 2208 return err; 2209 } 2210 2211 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2212 struct i915_active *active) 2213 { 2214 int err; 2215 struct intel_context *ce = stream->pinned_ctx; 2216 u32 format = stream->oa_buffer.format; 2217 struct flex regs_context[] = { 2218 { 2219 GEN8_OACTXCONTROL, 2220 stream->perf->ctx_oactxctrl_offset + 1, 2221 active ? GEN8_OA_COUNTER_RESUME : 0, 2222 }, 2223 }; 2224 /* Offsets in regs_lri are not used since this configuration is only 2225 * applied using LRI. Initialize the correct offsets for posterity. 2226 */ 2227 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2228 struct flex regs_lri[] = { 2229 { 2230 GEN12_OAR_OACONTROL, 2231 GEN12_OAR_OACONTROL_OFFSET + 1, 2232 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2233 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2234 }, 2235 { 2236 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2237 CTX_CONTEXT_CONTROL, 2238 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2239 active ? 2240 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2241 0) 2242 }, 2243 }; 2244 2245 /* Modify the context image of pinned context with regs_context*/ 2246 err = intel_context_lock_pinned(ce); 2247 if (err) 2248 return err; 2249 2250 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2251 intel_context_unlock_pinned(ce); 2252 if (err) 2253 return err; 2254 2255 /* Apply regs_lri using LRI with pinned context */ 2256 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2257 } 2258 2259 /* 2260 * Manages updating the per-context aspects of the OA stream 2261 * configuration across all contexts. 2262 * 2263 * The awkward consideration here is that OACTXCONTROL controls the 2264 * exponent for periodic sampling which is primarily used for system 2265 * wide profiling where we'd like a consistent sampling period even in 2266 * the face of context switches. 2267 * 2268 * Our approach of updating the register state context (as opposed to 2269 * say using a workaround batch buffer) ensures that the hardware 2270 * won't automatically reload an out-of-date timer exponent even 2271 * transiently before a WA BB could be parsed. 2272 * 2273 * This function needs to: 2274 * - Ensure the currently running context's per-context OA state is 2275 * updated 2276 * - Ensure that all existing contexts will have the correct per-context 2277 * OA state if they are scheduled for use. 2278 * - Ensure any new contexts will be initialized with the correct 2279 * per-context OA state. 2280 * 2281 * Note: it's only the RCS/Render context that has any OA state. 2282 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2283 */ 2284 static int 2285 oa_configure_all_contexts(struct i915_perf_stream *stream, 2286 struct flex *regs, 2287 size_t num_regs, 2288 struct i915_active *active) 2289 { 2290 struct drm_i915_private *i915 = stream->perf->i915; 2291 struct intel_engine_cs *engine; 2292 struct i915_gem_context *ctx, *cn; 2293 int err; 2294 2295 lockdep_assert_held(&stream->perf->lock); 2296 2297 /* 2298 * The OA register config is setup through the context image. This image 2299 * might be written to by the GPU on context switch (in particular on 2300 * lite-restore). This means we can't safely update a context's image, 2301 * if this context is scheduled/submitted to run on the GPU. 2302 * 2303 * We could emit the OA register config through the batch buffer but 2304 * this might leave small interval of time where the OA unit is 2305 * configured at an invalid sampling period. 2306 * 2307 * Note that since we emit all requests from a single ring, there 2308 * is still an implicit global barrier here that may cause a high 2309 * priority context to wait for an otherwise independent low priority 2310 * context. Contexts idle at the time of reconfiguration are not 2311 * trapped behind the barrier. 2312 */ 2313 spin_lock(&i915->gem.contexts.lock); 2314 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2315 if (!kref_get_unless_zero(&ctx->ref)) 2316 continue; 2317 2318 spin_unlock(&i915->gem.contexts.lock); 2319 2320 err = gen8_configure_context(ctx, regs, num_regs); 2321 if (err) { 2322 i915_gem_context_put(ctx); 2323 return err; 2324 } 2325 2326 spin_lock(&i915->gem.contexts.lock); 2327 list_safe_reset_next(ctx, cn, link); 2328 i915_gem_context_put(ctx); 2329 } 2330 spin_unlock(&i915->gem.contexts.lock); 2331 2332 /* 2333 * After updating all other contexts, we need to modify ourselves. 2334 * If we don't modify the kernel_context, we do not get events while 2335 * idle. 2336 */ 2337 for_each_uabi_engine(engine, i915) { 2338 struct intel_context *ce = engine->kernel_context; 2339 2340 if (engine->class != RENDER_CLASS) 2341 continue; 2342 2343 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2344 2345 err = gen8_modify_self(ce, regs, num_regs, active); 2346 if (err) 2347 return err; 2348 } 2349 2350 return 0; 2351 } 2352 2353 static int 2354 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2355 const struct i915_oa_config *oa_config, 2356 struct i915_active *active) 2357 { 2358 struct flex regs[] = { 2359 { 2360 GEN8_R_PWR_CLK_STATE, 2361 CTX_R_PWR_CLK_STATE, 2362 }, 2363 }; 2364 2365 return oa_configure_all_contexts(stream, 2366 regs, ARRAY_SIZE(regs), 2367 active); 2368 } 2369 2370 static int 2371 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2372 const struct i915_oa_config *oa_config, 2373 struct i915_active *active) 2374 { 2375 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2376 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2377 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2378 struct flex regs[] = { 2379 { 2380 GEN8_R_PWR_CLK_STATE, 2381 CTX_R_PWR_CLK_STATE, 2382 }, 2383 { 2384 GEN8_OACTXCONTROL, 2385 stream->perf->ctx_oactxctrl_offset + 1, 2386 }, 2387 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2388 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2389 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2390 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2391 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2392 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2393 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2394 }; 2395 #undef ctx_flexeuN 2396 int i; 2397 2398 regs[1].value = 2399 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2400 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2401 GEN8_OA_COUNTER_RESUME; 2402 2403 for (i = 2; i < ARRAY_SIZE(regs); i++) 2404 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2405 2406 return oa_configure_all_contexts(stream, 2407 regs, ARRAY_SIZE(regs), 2408 active); 2409 } 2410 2411 static int 2412 gen8_enable_metric_set(struct i915_perf_stream *stream, 2413 struct i915_active *active) 2414 { 2415 struct intel_uncore *uncore = stream->uncore; 2416 struct i915_oa_config *oa_config = stream->oa_config; 2417 int ret; 2418 2419 /* 2420 * We disable slice/unslice clock ratio change reports on SKL since 2421 * they are too noisy. The HW generates a lot of redundant reports 2422 * where the ratio hasn't really changed causing a lot of redundant 2423 * work to processes and increasing the chances we'll hit buffer 2424 * overruns. 2425 * 2426 * Although we don't currently use the 'disable overrun' OABUFFER 2427 * feature it's worth noting that clock ratio reports have to be 2428 * disabled before considering to use that feature since the HW doesn't 2429 * correctly block these reports. 2430 * 2431 * Currently none of the high-level metrics we have depend on knowing 2432 * this ratio to normalize. 2433 * 2434 * Note: This register is not power context saved and restored, but 2435 * that's OK considering that we disable RC6 while the OA unit is 2436 * enabled. 2437 * 2438 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2439 * be read back from automatically triggered reports, as part of the 2440 * RPT_ID field. 2441 */ 2442 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2443 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2444 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2445 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2446 } 2447 2448 /* 2449 * Update all contexts prior writing the mux configurations as we need 2450 * to make sure all slices/subslices are ON before writing to NOA 2451 * registers. 2452 */ 2453 ret = lrc_configure_all_contexts(stream, oa_config, active); 2454 if (ret) 2455 return ret; 2456 2457 return emit_oa_config(stream, 2458 stream->oa_config, oa_context(stream), 2459 active); 2460 } 2461 2462 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2463 { 2464 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2465 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2466 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2467 } 2468 2469 static int 2470 gen12_enable_metric_set(struct i915_perf_stream *stream, 2471 struct i915_active *active) 2472 { 2473 struct intel_uncore *uncore = stream->uncore; 2474 struct i915_oa_config *oa_config = stream->oa_config; 2475 bool periodic = stream->periodic; 2476 u32 period_exponent = stream->period_exponent; 2477 int ret; 2478 2479 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2480 /* Disable clk ratio reports, like previous Gens. */ 2481 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2482 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2483 /* 2484 * If the user didn't require OA reports, instruct 2485 * the hardware not to emit ctx switch reports. 2486 */ 2487 oag_report_ctx_switches(stream)); 2488 2489 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2490 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2491 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2492 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2493 : 0); 2494 2495 /* 2496 * Update all contexts prior writing the mux configurations as we need 2497 * to make sure all slices/subslices are ON before writing to NOA 2498 * registers. 2499 */ 2500 ret = gen12_configure_all_contexts(stream, oa_config, active); 2501 if (ret) 2502 return ret; 2503 2504 /* 2505 * For Gen12, performance counters are context 2506 * saved/restored. Only enable it for the context that 2507 * requested this. 2508 */ 2509 if (stream->ctx) { 2510 ret = gen12_configure_oar_context(stream, active); 2511 if (ret) 2512 return ret; 2513 } 2514 2515 return emit_oa_config(stream, 2516 stream->oa_config, oa_context(stream), 2517 active); 2518 } 2519 2520 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2521 { 2522 struct intel_uncore *uncore = stream->uncore; 2523 2524 /* Reset all contexts' slices/subslices configurations. */ 2525 lrc_configure_all_contexts(stream, NULL, NULL); 2526 2527 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2528 } 2529 2530 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2531 { 2532 struct intel_uncore *uncore = stream->uncore; 2533 2534 /* Reset all contexts' slices/subslices configurations. */ 2535 lrc_configure_all_contexts(stream, NULL, NULL); 2536 2537 /* Make sure we disable noa to save power. */ 2538 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2539 } 2540 2541 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2542 { 2543 struct intel_uncore *uncore = stream->uncore; 2544 2545 /* Reset all contexts' slices/subslices configurations. */ 2546 gen12_configure_all_contexts(stream, NULL, NULL); 2547 2548 /* disable the context save/restore or OAR counters */ 2549 if (stream->ctx) 2550 gen12_configure_oar_context(stream, NULL); 2551 2552 /* Make sure we disable noa to save power. */ 2553 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2554 } 2555 2556 static void gen7_oa_enable(struct i915_perf_stream *stream) 2557 { 2558 struct intel_uncore *uncore = stream->uncore; 2559 struct i915_gem_context *ctx = stream->ctx; 2560 u32 ctx_id = stream->specific_ctx_id; 2561 bool periodic = stream->periodic; 2562 u32 period_exponent = stream->period_exponent; 2563 u32 report_format = stream->oa_buffer.format; 2564 2565 /* 2566 * Reset buf pointers so we don't forward reports from before now. 2567 * 2568 * Think carefully if considering trying to avoid this, since it 2569 * also ensures status flags and the buffer itself are cleared 2570 * in error paths, and we have checks for invalid reports based 2571 * on the assumption that certain fields are written to zeroed 2572 * memory which this helps maintains. 2573 */ 2574 gen7_init_oa_buffer(stream); 2575 2576 intel_uncore_write(uncore, GEN7_OACONTROL, 2577 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2578 (period_exponent << 2579 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2580 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2581 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2582 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2583 GEN7_OACONTROL_ENABLE); 2584 } 2585 2586 static void gen8_oa_enable(struct i915_perf_stream *stream) 2587 { 2588 struct intel_uncore *uncore = stream->uncore; 2589 u32 report_format = stream->oa_buffer.format; 2590 2591 /* 2592 * Reset buf pointers so we don't forward reports from before now. 2593 * 2594 * Think carefully if considering trying to avoid this, since it 2595 * also ensures status flags and the buffer itself are cleared 2596 * in error paths, and we have checks for invalid reports based 2597 * on the assumption that certain fields are written to zeroed 2598 * memory which this helps maintains. 2599 */ 2600 gen8_init_oa_buffer(stream); 2601 2602 /* 2603 * Note: we don't rely on the hardware to perform single context 2604 * filtering and instead filter on the cpu based on the context-id 2605 * field of reports 2606 */ 2607 intel_uncore_write(uncore, GEN8_OACONTROL, 2608 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2609 GEN8_OA_COUNTER_ENABLE); 2610 } 2611 2612 static void gen12_oa_enable(struct i915_perf_stream *stream) 2613 { 2614 struct intel_uncore *uncore = stream->uncore; 2615 u32 report_format = stream->oa_buffer.format; 2616 2617 /* 2618 * If we don't want OA reports from the OA buffer, then we don't even 2619 * need to program the OAG unit. 2620 */ 2621 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2622 return; 2623 2624 gen12_init_oa_buffer(stream); 2625 2626 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2627 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2628 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2629 } 2630 2631 /** 2632 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2633 * @stream: An i915 perf stream opened for OA metrics 2634 * 2635 * [Re]enables hardware periodic sampling according to the period configured 2636 * when opening the stream. This also starts a hrtimer that will periodically 2637 * check for data in the circular OA buffer for notifying userspace (e.g. 2638 * during a read() or poll()). 2639 */ 2640 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2641 { 2642 stream->pollin = false; 2643 2644 stream->perf->ops.oa_enable(stream); 2645 2646 if (stream->periodic) 2647 hrtimer_start(&stream->poll_check_timer, 2648 ns_to_ktime(stream->poll_oa_period), 2649 HRTIMER_MODE_REL_PINNED); 2650 } 2651 2652 static void gen7_oa_disable(struct i915_perf_stream *stream) 2653 { 2654 struct intel_uncore *uncore = stream->uncore; 2655 2656 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2657 if (intel_wait_for_register(uncore, 2658 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2659 50)) 2660 drm_err(&stream->perf->i915->drm, 2661 "wait for OA to be disabled timed out\n"); 2662 } 2663 2664 static void gen8_oa_disable(struct i915_perf_stream *stream) 2665 { 2666 struct intel_uncore *uncore = stream->uncore; 2667 2668 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2669 if (intel_wait_for_register(uncore, 2670 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2671 50)) 2672 drm_err(&stream->perf->i915->drm, 2673 "wait for OA to be disabled timed out\n"); 2674 } 2675 2676 static void gen12_oa_disable(struct i915_perf_stream *stream) 2677 { 2678 struct intel_uncore *uncore = stream->uncore; 2679 2680 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2681 if (intel_wait_for_register(uncore, 2682 GEN12_OAG_OACONTROL, 2683 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2684 50)) 2685 drm_err(&stream->perf->i915->drm, 2686 "wait for OA to be disabled timed out\n"); 2687 2688 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2689 if (intel_wait_for_register(uncore, 2690 GEN12_OA_TLB_INV_CR, 2691 1, 0, 2692 50)) 2693 drm_err(&stream->perf->i915->drm, 2694 "wait for OA tlb invalidate timed out\n"); 2695 } 2696 2697 /** 2698 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2699 * @stream: An i915 perf stream opened for OA metrics 2700 * 2701 * Stops the OA unit from periodically writing counter reports into the 2702 * circular OA buffer. This also stops the hrtimer that periodically checks for 2703 * data in the circular OA buffer, for notifying userspace. 2704 */ 2705 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2706 { 2707 stream->perf->ops.oa_disable(stream); 2708 2709 if (stream->periodic) 2710 hrtimer_cancel(&stream->poll_check_timer); 2711 } 2712 2713 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2714 .destroy = i915_oa_stream_destroy, 2715 .enable = i915_oa_stream_enable, 2716 .disable = i915_oa_stream_disable, 2717 .wait_unlocked = i915_oa_wait_unlocked, 2718 .poll_wait = i915_oa_poll_wait, 2719 .read = i915_oa_read, 2720 }; 2721 2722 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2723 { 2724 struct i915_active *active; 2725 int err; 2726 2727 active = i915_active_create(); 2728 if (!active) 2729 return -ENOMEM; 2730 2731 err = stream->perf->ops.enable_metric_set(stream, active); 2732 if (err == 0) 2733 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2734 2735 i915_active_put(active); 2736 return err; 2737 } 2738 2739 static void 2740 get_default_sseu_config(struct intel_sseu *out_sseu, 2741 struct intel_engine_cs *engine) 2742 { 2743 const struct sseu_dev_info *devinfo_sseu = 2744 &RUNTIME_INFO(engine->i915)->sseu; 2745 2746 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2747 2748 if (IS_GEN(engine->i915, 11)) { 2749 /* 2750 * We only need subslice count so it doesn't matter which ones 2751 * we select - just turn off low bits in the amount of half of 2752 * all available subslices per slice. 2753 */ 2754 out_sseu->subslice_mask = 2755 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2756 out_sseu->slice_mask = 0x1; 2757 } 2758 } 2759 2760 static int 2761 get_sseu_config(struct intel_sseu *out_sseu, 2762 struct intel_engine_cs *engine, 2763 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2764 { 2765 if (drm_sseu->engine.engine_class != engine->uabi_class || 2766 drm_sseu->engine.engine_instance != engine->uabi_instance) 2767 return -EINVAL; 2768 2769 return i915_gem_user_to_context_sseu(engine->i915, drm_sseu, out_sseu); 2770 } 2771 2772 /** 2773 * i915_oa_stream_init - validate combined props for OA stream and init 2774 * @stream: An i915 perf stream 2775 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2776 * @props: The property state that configures stream (individually validated) 2777 * 2778 * While read_properties_unlocked() validates properties in isolation it 2779 * doesn't ensure that the combination necessarily makes sense. 2780 * 2781 * At this point it has been determined that userspace wants a stream of 2782 * OA metrics, but still we need to further validate the combined 2783 * properties are OK. 2784 * 2785 * If the configuration makes sense then we can allocate memory for 2786 * a circular OA buffer and apply the requested metric set configuration. 2787 * 2788 * Returns: zero on success or a negative error code. 2789 */ 2790 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2791 struct drm_i915_perf_open_param *param, 2792 struct perf_open_properties *props) 2793 { 2794 struct drm_i915_private *i915 = stream->perf->i915; 2795 struct i915_perf *perf = stream->perf; 2796 int format_size; 2797 int ret; 2798 2799 if (!props->engine) { 2800 DRM_DEBUG("OA engine not specified\n"); 2801 return -EINVAL; 2802 } 2803 2804 /* 2805 * If the sysfs metrics/ directory wasn't registered for some 2806 * reason then don't let userspace try their luck with config 2807 * IDs 2808 */ 2809 if (!perf->metrics_kobj) { 2810 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2811 return -EINVAL; 2812 } 2813 2814 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2815 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2816 DRM_DEBUG("Only OA report sampling supported\n"); 2817 return -EINVAL; 2818 } 2819 2820 if (!perf->ops.enable_metric_set) { 2821 DRM_DEBUG("OA unit not supported\n"); 2822 return -ENODEV; 2823 } 2824 2825 /* 2826 * To avoid the complexity of having to accurately filter 2827 * counter reports and marshal to the appropriate client 2828 * we currently only allow exclusive access 2829 */ 2830 if (perf->exclusive_stream) { 2831 DRM_DEBUG("OA unit already in use\n"); 2832 return -EBUSY; 2833 } 2834 2835 if (!props->oa_format) { 2836 DRM_DEBUG("OA report format not specified\n"); 2837 return -EINVAL; 2838 } 2839 2840 stream->engine = props->engine; 2841 stream->uncore = stream->engine->gt->uncore; 2842 2843 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2844 2845 format_size = perf->oa_formats[props->oa_format].size; 2846 2847 stream->sample_flags = props->sample_flags; 2848 stream->sample_size += format_size; 2849 2850 stream->oa_buffer.format_size = format_size; 2851 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2852 return -EINVAL; 2853 2854 stream->hold_preemption = props->hold_preemption; 2855 2856 stream->oa_buffer.format = 2857 perf->oa_formats[props->oa_format].format; 2858 2859 stream->periodic = props->oa_periodic; 2860 if (stream->periodic) 2861 stream->period_exponent = props->oa_period_exponent; 2862 2863 if (stream->ctx) { 2864 ret = oa_get_render_ctx_id(stream); 2865 if (ret) { 2866 DRM_DEBUG("Invalid context id to filter with\n"); 2867 return ret; 2868 } 2869 } 2870 2871 ret = alloc_noa_wait(stream); 2872 if (ret) { 2873 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2874 goto err_noa_wait_alloc; 2875 } 2876 2877 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2878 if (!stream->oa_config) { 2879 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2880 ret = -EINVAL; 2881 goto err_config; 2882 } 2883 2884 /* PRM - observability performance counters: 2885 * 2886 * OACONTROL, performance counter enable, note: 2887 * 2888 * "When this bit is set, in order to have coherent counts, 2889 * RC6 power state and trunk clock gating must be disabled. 2890 * This can be achieved by programming MMIO registers as 2891 * 0xA094=0 and 0xA090[31]=1" 2892 * 2893 * In our case we are expecting that taking pm + FORCEWAKE 2894 * references will effectively disable RC6. 2895 */ 2896 intel_engine_pm_get(stream->engine); 2897 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2898 2899 ret = alloc_oa_buffer(stream); 2900 if (ret) 2901 goto err_oa_buf_alloc; 2902 2903 stream->ops = &i915_oa_stream_ops; 2904 2905 perf->sseu = props->sseu; 2906 WRITE_ONCE(perf->exclusive_stream, stream); 2907 2908 ret = i915_perf_stream_enable_sync(stream); 2909 if (ret) { 2910 DRM_DEBUG("Unable to enable metric set\n"); 2911 goto err_enable; 2912 } 2913 2914 DRM_DEBUG("opening stream oa config uuid=%s\n", 2915 stream->oa_config->uuid); 2916 2917 hrtimer_init(&stream->poll_check_timer, 2918 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2919 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2920 init_waitqueue_head(&stream->poll_wq); 2921 spin_lock_init(&stream->oa_buffer.ptr_lock); 2922 2923 return 0; 2924 2925 err_enable: 2926 WRITE_ONCE(perf->exclusive_stream, NULL); 2927 perf->ops.disable_metric_set(stream); 2928 2929 free_oa_buffer(stream); 2930 2931 err_oa_buf_alloc: 2932 free_oa_configs(stream); 2933 2934 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2935 intel_engine_pm_put(stream->engine); 2936 2937 err_config: 2938 free_noa_wait(stream); 2939 2940 err_noa_wait_alloc: 2941 if (stream->ctx) 2942 oa_put_render_ctx_id(stream); 2943 2944 return ret; 2945 } 2946 2947 void i915_oa_init_reg_state(const struct intel_context *ce, 2948 const struct intel_engine_cs *engine) 2949 { 2950 struct i915_perf_stream *stream; 2951 2952 if (engine->class != RENDER_CLASS) 2953 return; 2954 2955 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2956 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2957 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2958 gen8_update_reg_state_unlocked(ce, stream); 2959 } 2960 2961 /** 2962 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2963 * @file: An i915 perf stream file 2964 * @buf: destination buffer given by userspace 2965 * @count: the number of bytes userspace wants to read 2966 * @ppos: (inout) file seek position (unused) 2967 * 2968 * The entry point for handling a read() on a stream file descriptor from 2969 * userspace. Most of the work is left to the i915_perf_read_locked() and 2970 * &i915_perf_stream_ops->read but to save having stream implementations (of 2971 * which we might have multiple later) we handle blocking read here. 2972 * 2973 * We can also consistently treat trying to read from a disabled stream 2974 * as an IO error so implementations can assume the stream is enabled 2975 * while reading. 2976 * 2977 * Returns: The number of bytes copied or a negative error code on failure. 2978 */ 2979 static ssize_t i915_perf_read(struct file *file, 2980 char __user *buf, 2981 size_t count, 2982 loff_t *ppos) 2983 { 2984 struct i915_perf_stream *stream = file->private_data; 2985 struct i915_perf *perf = stream->perf; 2986 size_t offset = 0; 2987 int ret; 2988 2989 /* To ensure it's handled consistently we simply treat all reads of a 2990 * disabled stream as an error. In particular it might otherwise lead 2991 * to a deadlock for blocking file descriptors... 2992 */ 2993 if (!stream->enabled) 2994 return -EIO; 2995 2996 if (!(file->f_flags & O_NONBLOCK)) { 2997 /* There's the small chance of false positives from 2998 * stream->ops->wait_unlocked. 2999 * 3000 * E.g. with single context filtering since we only wait until 3001 * oabuffer has >= 1 report we don't immediately know whether 3002 * any reports really belong to the current context 3003 */ 3004 do { 3005 ret = stream->ops->wait_unlocked(stream); 3006 if (ret) 3007 return ret; 3008 3009 mutex_lock(&perf->lock); 3010 ret = stream->ops->read(stream, buf, count, &offset); 3011 mutex_unlock(&perf->lock); 3012 } while (!offset && !ret); 3013 } else { 3014 mutex_lock(&perf->lock); 3015 ret = stream->ops->read(stream, buf, count, &offset); 3016 mutex_unlock(&perf->lock); 3017 } 3018 3019 /* We allow the poll checking to sometimes report false positive EPOLLIN 3020 * events where we might actually report EAGAIN on read() if there's 3021 * not really any data available. In this situation though we don't 3022 * want to enter a busy loop between poll() reporting a EPOLLIN event 3023 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3024 * effectively ensures we back off until the next hrtimer callback 3025 * before reporting another EPOLLIN event. 3026 * The exception to this is if ops->read() returned -ENOSPC which means 3027 * that more OA data is available than could fit in the user provided 3028 * buffer. In this case we want the next poll() call to not block. 3029 */ 3030 if (ret != -ENOSPC) 3031 stream->pollin = false; 3032 3033 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3034 return offset ?: (ret ?: -EAGAIN); 3035 } 3036 3037 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3038 { 3039 struct i915_perf_stream *stream = 3040 container_of(hrtimer, typeof(*stream), poll_check_timer); 3041 3042 if (oa_buffer_check_unlocked(stream)) { 3043 stream->pollin = true; 3044 wake_up(&stream->poll_wq); 3045 } 3046 3047 hrtimer_forward_now(hrtimer, 3048 ns_to_ktime(stream->poll_oa_period)); 3049 3050 return HRTIMER_RESTART; 3051 } 3052 3053 /** 3054 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3055 * @stream: An i915 perf stream 3056 * @file: An i915 perf stream file 3057 * @wait: poll() state table 3058 * 3059 * For handling userspace polling on an i915 perf stream, this calls through to 3060 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3061 * will be woken for new stream data. 3062 * 3063 * Note: The &perf->lock mutex has been taken to serialize 3064 * with any non-file-operation driver hooks. 3065 * 3066 * Returns: any poll events that are ready without sleeping 3067 */ 3068 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3069 struct file *file, 3070 poll_table *wait) 3071 { 3072 __poll_t events = 0; 3073 3074 stream->ops->poll_wait(stream, file, wait); 3075 3076 /* Note: we don't explicitly check whether there's something to read 3077 * here since this path may be very hot depending on what else 3078 * userspace is polling, or on the timeout in use. We rely solely on 3079 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3080 * samples to read. 3081 */ 3082 if (stream->pollin) 3083 events |= EPOLLIN; 3084 3085 return events; 3086 } 3087 3088 /** 3089 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3090 * @file: An i915 perf stream file 3091 * @wait: poll() state table 3092 * 3093 * For handling userspace polling on an i915 perf stream, this ensures 3094 * poll_wait() gets called with a wait queue that will be woken for new stream 3095 * data. 3096 * 3097 * Note: Implementation deferred to i915_perf_poll_locked() 3098 * 3099 * Returns: any poll events that are ready without sleeping 3100 */ 3101 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3102 { 3103 struct i915_perf_stream *stream = file->private_data; 3104 struct i915_perf *perf = stream->perf; 3105 __poll_t ret; 3106 3107 mutex_lock(&perf->lock); 3108 ret = i915_perf_poll_locked(stream, file, wait); 3109 mutex_unlock(&perf->lock); 3110 3111 return ret; 3112 } 3113 3114 /** 3115 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3116 * @stream: A disabled i915 perf stream 3117 * 3118 * [Re]enables the associated capture of data for this stream. 3119 * 3120 * If a stream was previously enabled then there's currently no intention 3121 * to provide userspace any guarantee about the preservation of previously 3122 * buffered data. 3123 */ 3124 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3125 { 3126 if (stream->enabled) 3127 return; 3128 3129 /* Allow stream->ops->enable() to refer to this */ 3130 stream->enabled = true; 3131 3132 if (stream->ops->enable) 3133 stream->ops->enable(stream); 3134 3135 if (stream->hold_preemption) 3136 intel_context_set_nopreempt(stream->pinned_ctx); 3137 } 3138 3139 /** 3140 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3141 * @stream: An enabled i915 perf stream 3142 * 3143 * Disables the associated capture of data for this stream. 3144 * 3145 * The intention is that disabling an re-enabling a stream will ideally be 3146 * cheaper than destroying and re-opening a stream with the same configuration, 3147 * though there are no formal guarantees about what state or buffered data 3148 * must be retained between disabling and re-enabling a stream. 3149 * 3150 * Note: while a stream is disabled it's considered an error for userspace 3151 * to attempt to read from the stream (-EIO). 3152 */ 3153 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3154 { 3155 if (!stream->enabled) 3156 return; 3157 3158 /* Allow stream->ops->disable() to refer to this */ 3159 stream->enabled = false; 3160 3161 if (stream->hold_preemption) 3162 intel_context_clear_nopreempt(stream->pinned_ctx); 3163 3164 if (stream->ops->disable) 3165 stream->ops->disable(stream); 3166 } 3167 3168 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3169 unsigned long metrics_set) 3170 { 3171 struct i915_oa_config *config; 3172 long ret = stream->oa_config->id; 3173 3174 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3175 if (!config) 3176 return -EINVAL; 3177 3178 if (config != stream->oa_config) { 3179 int err; 3180 3181 /* 3182 * If OA is bound to a specific context, emit the 3183 * reconfiguration inline from that context. The update 3184 * will then be ordered with respect to submission on that 3185 * context. 3186 * 3187 * When set globally, we use a low priority kernel context, 3188 * so it will effectively take effect when idle. 3189 */ 3190 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3191 if (!err) 3192 config = xchg(&stream->oa_config, config); 3193 else 3194 ret = err; 3195 } 3196 3197 i915_oa_config_put(config); 3198 3199 return ret; 3200 } 3201 3202 /** 3203 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3204 * @stream: An i915 perf stream 3205 * @cmd: the ioctl request 3206 * @arg: the ioctl data 3207 * 3208 * Note: The &perf->lock mutex has been taken to serialize 3209 * with any non-file-operation driver hooks. 3210 * 3211 * Returns: zero on success or a negative error code. Returns -EINVAL for 3212 * an unknown ioctl request. 3213 */ 3214 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3215 unsigned int cmd, 3216 unsigned long arg) 3217 { 3218 switch (cmd) { 3219 case I915_PERF_IOCTL_ENABLE: 3220 i915_perf_enable_locked(stream); 3221 return 0; 3222 case I915_PERF_IOCTL_DISABLE: 3223 i915_perf_disable_locked(stream); 3224 return 0; 3225 case I915_PERF_IOCTL_CONFIG: 3226 return i915_perf_config_locked(stream, arg); 3227 } 3228 3229 return -EINVAL; 3230 } 3231 3232 /** 3233 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3234 * @file: An i915 perf stream file 3235 * @cmd: the ioctl request 3236 * @arg: the ioctl data 3237 * 3238 * Implementation deferred to i915_perf_ioctl_locked(). 3239 * 3240 * Returns: zero on success or a negative error code. Returns -EINVAL for 3241 * an unknown ioctl request. 3242 */ 3243 static long i915_perf_ioctl(struct file *file, 3244 unsigned int cmd, 3245 unsigned long arg) 3246 { 3247 struct i915_perf_stream *stream = file->private_data; 3248 struct i915_perf *perf = stream->perf; 3249 long ret; 3250 3251 mutex_lock(&perf->lock); 3252 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3253 mutex_unlock(&perf->lock); 3254 3255 return ret; 3256 } 3257 3258 /** 3259 * i915_perf_destroy_locked - destroy an i915 perf stream 3260 * @stream: An i915 perf stream 3261 * 3262 * Frees all resources associated with the given i915 perf @stream, disabling 3263 * any associated data capture in the process. 3264 * 3265 * Note: The &perf->lock mutex has been taken to serialize 3266 * with any non-file-operation driver hooks. 3267 */ 3268 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3269 { 3270 if (stream->enabled) 3271 i915_perf_disable_locked(stream); 3272 3273 if (stream->ops->destroy) 3274 stream->ops->destroy(stream); 3275 3276 if (stream->ctx) 3277 i915_gem_context_put(stream->ctx); 3278 3279 kfree(stream); 3280 } 3281 3282 /** 3283 * i915_perf_release - handles userspace close() of a stream file 3284 * @inode: anonymous inode associated with file 3285 * @file: An i915 perf stream file 3286 * 3287 * Cleans up any resources associated with an open i915 perf stream file. 3288 * 3289 * NB: close() can't really fail from the userspace point of view. 3290 * 3291 * Returns: zero on success or a negative error code. 3292 */ 3293 static int i915_perf_release(struct inode *inode, struct file *file) 3294 { 3295 struct i915_perf_stream *stream = file->private_data; 3296 struct i915_perf *perf = stream->perf; 3297 3298 mutex_lock(&perf->lock); 3299 i915_perf_destroy_locked(stream); 3300 mutex_unlock(&perf->lock); 3301 3302 /* Release the reference the perf stream kept on the driver. */ 3303 drm_dev_put(&perf->i915->drm); 3304 3305 return 0; 3306 } 3307 3308 3309 static const struct file_operations fops = { 3310 .owner = THIS_MODULE, 3311 .llseek = no_llseek, 3312 .release = i915_perf_release, 3313 .poll = i915_perf_poll, 3314 .read = i915_perf_read, 3315 .unlocked_ioctl = i915_perf_ioctl, 3316 /* Our ioctl have no arguments, so it's safe to use the same function 3317 * to handle 32bits compatibility. 3318 */ 3319 .compat_ioctl = i915_perf_ioctl, 3320 }; 3321 3322 3323 /** 3324 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3325 * @perf: i915 perf instance 3326 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3327 * @props: individually validated u64 property value pairs 3328 * @file: drm file 3329 * 3330 * See i915_perf_ioctl_open() for interface details. 3331 * 3332 * Implements further stream config validation and stream initialization on 3333 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3334 * taken to serialize with any non-file-operation driver hooks. 3335 * 3336 * Note: at this point the @props have only been validated in isolation and 3337 * it's still necessary to validate that the combination of properties makes 3338 * sense. 3339 * 3340 * In the case where userspace is interested in OA unit metrics then further 3341 * config validation and stream initialization details will be handled by 3342 * i915_oa_stream_init(). The code here should only validate config state that 3343 * will be relevant to all stream types / backends. 3344 * 3345 * Returns: zero on success or a negative error code. 3346 */ 3347 static int 3348 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3349 struct drm_i915_perf_open_param *param, 3350 struct perf_open_properties *props, 3351 struct drm_file *file) 3352 { 3353 struct i915_gem_context *specific_ctx = NULL; 3354 struct i915_perf_stream *stream = NULL; 3355 unsigned long f_flags = 0; 3356 bool privileged_op = true; 3357 int stream_fd; 3358 int ret; 3359 3360 if (props->single_context) { 3361 u32 ctx_handle = props->ctx_handle; 3362 struct drm_i915_file_private *file_priv = file->driver_priv; 3363 3364 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3365 if (!specific_ctx) { 3366 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3367 ctx_handle); 3368 ret = -ENOENT; 3369 goto err; 3370 } 3371 } 3372 3373 /* 3374 * On Haswell the OA unit supports clock gating off for a specific 3375 * context and in this mode there's no visibility of metrics for the 3376 * rest of the system, which we consider acceptable for a 3377 * non-privileged client. 3378 * 3379 * For Gen8->11 the OA unit no longer supports clock gating off for a 3380 * specific context and the kernel can't securely stop the counters 3381 * from updating as system-wide / global values. Even though we can 3382 * filter reports based on the included context ID we can't block 3383 * clients from seeing the raw / global counter values via 3384 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3385 * enable the OA unit by default. 3386 * 3387 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3388 * per context basis. So we can relax requirements there if the user 3389 * doesn't request global stream access (i.e. query based sampling 3390 * using MI_RECORD_PERF_COUNT. 3391 */ 3392 if (IS_HASWELL(perf->i915) && specific_ctx) 3393 privileged_op = false; 3394 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3395 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3396 privileged_op = false; 3397 3398 if (props->hold_preemption) { 3399 if (!props->single_context) { 3400 DRM_DEBUG("preemption disable with no context\n"); 3401 ret = -EINVAL; 3402 goto err; 3403 } 3404 privileged_op = true; 3405 } 3406 3407 /* 3408 * Asking for SSEU configuration is a priviliged operation. 3409 */ 3410 if (props->has_sseu) 3411 privileged_op = true; 3412 else 3413 get_default_sseu_config(&props->sseu, props->engine); 3414 3415 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3416 * we check a dev.i915.perf_stream_paranoid sysctl option 3417 * to determine if it's ok to access system wide OA counters 3418 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3419 */ 3420 if (privileged_op && 3421 i915_perf_stream_paranoid && !perfmon_capable()) { 3422 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3423 ret = -EACCES; 3424 goto err_ctx; 3425 } 3426 3427 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3428 if (!stream) { 3429 ret = -ENOMEM; 3430 goto err_ctx; 3431 } 3432 3433 stream->perf = perf; 3434 stream->ctx = specific_ctx; 3435 stream->poll_oa_period = props->poll_oa_period; 3436 3437 ret = i915_oa_stream_init(stream, param, props); 3438 if (ret) 3439 goto err_alloc; 3440 3441 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3442 * to have _stream_init check the combination of sample flags more 3443 * thoroughly, but still this is the expected result at this point. 3444 */ 3445 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3446 ret = -ENODEV; 3447 goto err_flags; 3448 } 3449 3450 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3451 f_flags |= O_CLOEXEC; 3452 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3453 f_flags |= O_NONBLOCK; 3454 3455 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3456 if (stream_fd < 0) { 3457 ret = stream_fd; 3458 goto err_flags; 3459 } 3460 3461 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3462 i915_perf_enable_locked(stream); 3463 3464 /* Take a reference on the driver that will be kept with stream_fd 3465 * until its release. 3466 */ 3467 drm_dev_get(&perf->i915->drm); 3468 3469 return stream_fd; 3470 3471 err_flags: 3472 if (stream->ops->destroy) 3473 stream->ops->destroy(stream); 3474 err_alloc: 3475 kfree(stream); 3476 err_ctx: 3477 if (specific_ctx) 3478 i915_gem_context_put(specific_ctx); 3479 err: 3480 return ret; 3481 } 3482 3483 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3484 { 3485 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent); 3486 } 3487 3488 /** 3489 * read_properties_unlocked - validate + copy userspace stream open properties 3490 * @perf: i915 perf instance 3491 * @uprops: The array of u64 key value pairs given by userspace 3492 * @n_props: The number of key value pairs expected in @uprops 3493 * @props: The stream configuration built up while validating properties 3494 * 3495 * Note this function only validates properties in isolation it doesn't 3496 * validate that the combination of properties makes sense or that all 3497 * properties necessary for a particular kind of stream have been set. 3498 * 3499 * Note that there currently aren't any ordering requirements for properties so 3500 * we shouldn't validate or assume anything about ordering here. This doesn't 3501 * rule out defining new properties with ordering requirements in the future. 3502 */ 3503 static int read_properties_unlocked(struct i915_perf *perf, 3504 u64 __user *uprops, 3505 u32 n_props, 3506 struct perf_open_properties *props) 3507 { 3508 u64 __user *uprop = uprops; 3509 u32 i; 3510 int ret; 3511 3512 memset(props, 0, sizeof(struct perf_open_properties)); 3513 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3514 3515 if (!n_props) { 3516 DRM_DEBUG("No i915 perf properties given\n"); 3517 return -EINVAL; 3518 } 3519 3520 /* At the moment we only support using i915-perf on the RCS. */ 3521 props->engine = intel_engine_lookup_user(perf->i915, 3522 I915_ENGINE_CLASS_RENDER, 3523 0); 3524 if (!props->engine) { 3525 DRM_DEBUG("No RENDER-capable engines\n"); 3526 return -EINVAL; 3527 } 3528 3529 /* Considering that ID = 0 is reserved and assuming that we don't 3530 * (currently) expect any configurations to ever specify duplicate 3531 * values for a particular property ID then the last _PROP_MAX value is 3532 * one greater than the maximum number of properties we expect to get 3533 * from userspace. 3534 */ 3535 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3536 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3537 return -EINVAL; 3538 } 3539 3540 for (i = 0; i < n_props; i++) { 3541 u64 oa_period, oa_freq_hz; 3542 u64 id, value; 3543 3544 ret = get_user(id, uprop); 3545 if (ret) 3546 return ret; 3547 3548 ret = get_user(value, uprop + 1); 3549 if (ret) 3550 return ret; 3551 3552 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3553 DRM_DEBUG("Unknown i915 perf property ID\n"); 3554 return -EINVAL; 3555 } 3556 3557 switch ((enum drm_i915_perf_property_id)id) { 3558 case DRM_I915_PERF_PROP_CTX_HANDLE: 3559 props->single_context = 1; 3560 props->ctx_handle = value; 3561 break; 3562 case DRM_I915_PERF_PROP_SAMPLE_OA: 3563 if (value) 3564 props->sample_flags |= SAMPLE_OA_REPORT; 3565 break; 3566 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3567 if (value == 0) { 3568 DRM_DEBUG("Unknown OA metric set ID\n"); 3569 return -EINVAL; 3570 } 3571 props->metrics_set = value; 3572 break; 3573 case DRM_I915_PERF_PROP_OA_FORMAT: 3574 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3575 DRM_DEBUG("Out-of-range OA report format %llu\n", 3576 value); 3577 return -EINVAL; 3578 } 3579 if (!perf->oa_formats[value].size) { 3580 DRM_DEBUG("Unsupported OA report format %llu\n", 3581 value); 3582 return -EINVAL; 3583 } 3584 props->oa_format = value; 3585 break; 3586 case DRM_I915_PERF_PROP_OA_EXPONENT: 3587 if (value > OA_EXPONENT_MAX) { 3588 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3589 OA_EXPONENT_MAX); 3590 return -EINVAL; 3591 } 3592 3593 /* Theoretically we can program the OA unit to sample 3594 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3595 * for BXT. We don't allow such high sampling 3596 * frequencies by default unless root. 3597 */ 3598 3599 BUILD_BUG_ON(sizeof(oa_period) != 8); 3600 oa_period = oa_exponent_to_ns(perf, value); 3601 3602 /* This check is primarily to ensure that oa_period <= 3603 * UINT32_MAX (before passing to do_div which only 3604 * accepts a u32 denominator), but we can also skip 3605 * checking anything < 1Hz which implicitly can't be 3606 * limited via an integer oa_max_sample_rate. 3607 */ 3608 if (oa_period <= NSEC_PER_SEC) { 3609 u64 tmp = NSEC_PER_SEC; 3610 do_div(tmp, oa_period); 3611 oa_freq_hz = tmp; 3612 } else 3613 oa_freq_hz = 0; 3614 3615 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3616 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3617 i915_oa_max_sample_rate); 3618 return -EACCES; 3619 } 3620 3621 props->oa_periodic = true; 3622 props->oa_period_exponent = value; 3623 break; 3624 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3625 props->hold_preemption = !!value; 3626 break; 3627 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3628 struct drm_i915_gem_context_param_sseu user_sseu; 3629 3630 if (copy_from_user(&user_sseu, 3631 u64_to_user_ptr(value), 3632 sizeof(user_sseu))) { 3633 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3634 return -EFAULT; 3635 } 3636 3637 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3638 if (ret) { 3639 DRM_DEBUG("Invalid SSEU configuration\n"); 3640 return ret; 3641 } 3642 props->has_sseu = true; 3643 break; 3644 } 3645 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3646 if (value < 100000 /* 100us */) { 3647 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3648 value); 3649 return -EINVAL; 3650 } 3651 props->poll_oa_period = value; 3652 break; 3653 case DRM_I915_PERF_PROP_MAX: 3654 MISSING_CASE(id); 3655 return -EINVAL; 3656 } 3657 3658 uprop += 2; 3659 } 3660 3661 return 0; 3662 } 3663 3664 /** 3665 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3666 * @dev: drm device 3667 * @data: ioctl data copied from userspace (unvalidated) 3668 * @file: drm file 3669 * 3670 * Validates the stream open parameters given by userspace including flags 3671 * and an array of u64 key, value pair properties. 3672 * 3673 * Very little is assumed up front about the nature of the stream being 3674 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3675 * i915-perf stream is expected to be a suitable interface for other forms of 3676 * buffered data written by the GPU besides periodic OA metrics. 3677 * 3678 * Note we copy the properties from userspace outside of the i915 perf 3679 * mutex to avoid an awkward lockdep with mmap_lock. 3680 * 3681 * Most of the implementation details are handled by 3682 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3683 * mutex for serializing with any non-file-operation driver hooks. 3684 * 3685 * Return: A newly opened i915 Perf stream file descriptor or negative 3686 * error code on failure. 3687 */ 3688 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3689 struct drm_file *file) 3690 { 3691 struct i915_perf *perf = &to_i915(dev)->perf; 3692 struct drm_i915_perf_open_param *param = data; 3693 struct perf_open_properties props; 3694 u32 known_open_flags; 3695 int ret; 3696 3697 if (!perf->i915) { 3698 DRM_DEBUG("i915 perf interface not available for this system\n"); 3699 return -ENOTSUPP; 3700 } 3701 3702 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3703 I915_PERF_FLAG_FD_NONBLOCK | 3704 I915_PERF_FLAG_DISABLED; 3705 if (param->flags & ~known_open_flags) { 3706 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3707 return -EINVAL; 3708 } 3709 3710 ret = read_properties_unlocked(perf, 3711 u64_to_user_ptr(param->properties_ptr), 3712 param->num_properties, 3713 &props); 3714 if (ret) 3715 return ret; 3716 3717 mutex_lock(&perf->lock); 3718 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3719 mutex_unlock(&perf->lock); 3720 3721 return ret; 3722 } 3723 3724 /** 3725 * i915_perf_register - exposes i915-perf to userspace 3726 * @i915: i915 device instance 3727 * 3728 * In particular OA metric sets are advertised under a sysfs metrics/ 3729 * directory allowing userspace to enumerate valid IDs that can be 3730 * used to open an i915-perf stream. 3731 */ 3732 void i915_perf_register(struct drm_i915_private *i915) 3733 { 3734 struct i915_perf *perf = &i915->perf; 3735 3736 if (!perf->i915) 3737 return; 3738 3739 /* To be sure we're synchronized with an attempted 3740 * i915_perf_open_ioctl(); considering that we register after 3741 * being exposed to userspace. 3742 */ 3743 mutex_lock(&perf->lock); 3744 3745 perf->metrics_kobj = 3746 kobject_create_and_add("metrics", 3747 &i915->drm.primary->kdev->kobj); 3748 3749 mutex_unlock(&perf->lock); 3750 } 3751 3752 /** 3753 * i915_perf_unregister - hide i915-perf from userspace 3754 * @i915: i915 device instance 3755 * 3756 * i915-perf state cleanup is split up into an 'unregister' and 3757 * 'deinit' phase where the interface is first hidden from 3758 * userspace by i915_perf_unregister() before cleaning up 3759 * remaining state in i915_perf_fini(). 3760 */ 3761 void i915_perf_unregister(struct drm_i915_private *i915) 3762 { 3763 struct i915_perf *perf = &i915->perf; 3764 3765 if (!perf->metrics_kobj) 3766 return; 3767 3768 kobject_put(perf->metrics_kobj); 3769 perf->metrics_kobj = NULL; 3770 } 3771 3772 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3773 { 3774 static const i915_reg_t flex_eu_regs[] = { 3775 EU_PERF_CNTL0, 3776 EU_PERF_CNTL1, 3777 EU_PERF_CNTL2, 3778 EU_PERF_CNTL3, 3779 EU_PERF_CNTL4, 3780 EU_PERF_CNTL5, 3781 EU_PERF_CNTL6, 3782 }; 3783 int i; 3784 3785 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3786 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3787 return true; 3788 } 3789 return false; 3790 } 3791 3792 #define ADDR_IN_RANGE(addr, start, end) \ 3793 ((addr) >= (start) && \ 3794 (addr) <= (end)) 3795 3796 #define REG_IN_RANGE(addr, start, end) \ 3797 ((addr) >= i915_mmio_reg_offset(start) && \ 3798 (addr) <= i915_mmio_reg_offset(end)) 3799 3800 #define REG_EQUAL(addr, mmio) \ 3801 ((addr) == i915_mmio_reg_offset(mmio)) 3802 3803 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3804 { 3805 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3806 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3807 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3808 } 3809 3810 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3811 { 3812 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3813 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3814 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3815 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3816 } 3817 3818 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3819 { 3820 return gen7_is_valid_mux_addr(perf, addr) || 3821 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3822 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3823 } 3824 3825 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3826 { 3827 return gen8_is_valid_mux_addr(perf, addr) || 3828 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3829 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3830 } 3831 3832 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3833 { 3834 return gen7_is_valid_mux_addr(perf, addr) || 3835 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3836 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3837 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3838 } 3839 3840 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3841 { 3842 return gen7_is_valid_mux_addr(perf, addr) || 3843 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3844 } 3845 3846 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3847 { 3848 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3849 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3850 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3851 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3852 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3853 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3854 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3855 } 3856 3857 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3858 { 3859 return REG_EQUAL(addr, NOA_WRITE) || 3860 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3861 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3862 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3863 REG_EQUAL(addr, RPM_CONFIG0) || 3864 REG_EQUAL(addr, RPM_CONFIG1) || 3865 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3866 } 3867 3868 static u32 mask_reg_value(u32 reg, u32 val) 3869 { 3870 /* HALF_SLICE_CHICKEN2 is programmed with a the 3871 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3872 * programmed by userspace doesn't change this. 3873 */ 3874 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3875 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3876 3877 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3878 * indicated by its name and a bunch of selection fields used by OA 3879 * configs. 3880 */ 3881 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3882 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3883 3884 return val; 3885 } 3886 3887 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3888 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3889 u32 __user *regs, 3890 u32 n_regs) 3891 { 3892 struct i915_oa_reg *oa_regs; 3893 int err; 3894 u32 i; 3895 3896 if (!n_regs) 3897 return NULL; 3898 3899 /* No is_valid function means we're not allowing any register to be programmed. */ 3900 GEM_BUG_ON(!is_valid); 3901 if (!is_valid) 3902 return ERR_PTR(-EINVAL); 3903 3904 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3905 if (!oa_regs) 3906 return ERR_PTR(-ENOMEM); 3907 3908 for (i = 0; i < n_regs; i++) { 3909 u32 addr, value; 3910 3911 err = get_user(addr, regs); 3912 if (err) 3913 goto addr_err; 3914 3915 if (!is_valid(perf, addr)) { 3916 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3917 err = -EINVAL; 3918 goto addr_err; 3919 } 3920 3921 err = get_user(value, regs + 1); 3922 if (err) 3923 goto addr_err; 3924 3925 oa_regs[i].addr = _MMIO(addr); 3926 oa_regs[i].value = mask_reg_value(addr, value); 3927 3928 regs += 2; 3929 } 3930 3931 return oa_regs; 3932 3933 addr_err: 3934 kfree(oa_regs); 3935 return ERR_PTR(err); 3936 } 3937 3938 static ssize_t show_dynamic_id(struct device *dev, 3939 struct device_attribute *attr, 3940 char *buf) 3941 { 3942 struct i915_oa_config *oa_config = 3943 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3944 3945 return sprintf(buf, "%d\n", oa_config->id); 3946 } 3947 3948 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3949 struct i915_oa_config *oa_config) 3950 { 3951 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3952 oa_config->sysfs_metric_id.attr.name = "id"; 3953 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3954 oa_config->sysfs_metric_id.show = show_dynamic_id; 3955 oa_config->sysfs_metric_id.store = NULL; 3956 3957 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3958 oa_config->attrs[1] = NULL; 3959 3960 oa_config->sysfs_metric.name = oa_config->uuid; 3961 oa_config->sysfs_metric.attrs = oa_config->attrs; 3962 3963 return sysfs_create_group(perf->metrics_kobj, 3964 &oa_config->sysfs_metric); 3965 } 3966 3967 /** 3968 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3969 * @dev: drm device 3970 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3971 * userspace (unvalidated) 3972 * @file: drm file 3973 * 3974 * Validates the submitted OA register to be saved into a new OA config that 3975 * can then be used for programming the OA unit and its NOA network. 3976 * 3977 * Returns: A new allocated config number to be used with the perf open ioctl 3978 * or a negative error code on failure. 3979 */ 3980 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3981 struct drm_file *file) 3982 { 3983 struct i915_perf *perf = &to_i915(dev)->perf; 3984 struct drm_i915_perf_oa_config *args = data; 3985 struct i915_oa_config *oa_config, *tmp; 3986 struct i915_oa_reg *regs; 3987 int err, id; 3988 3989 if (!perf->i915) { 3990 DRM_DEBUG("i915 perf interface not available for this system\n"); 3991 return -ENOTSUPP; 3992 } 3993 3994 if (!perf->metrics_kobj) { 3995 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3996 return -EINVAL; 3997 } 3998 3999 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4000 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4001 return -EACCES; 4002 } 4003 4004 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4005 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4006 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4007 DRM_DEBUG("No OA registers given\n"); 4008 return -EINVAL; 4009 } 4010 4011 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4012 if (!oa_config) { 4013 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4014 return -ENOMEM; 4015 } 4016 4017 oa_config->perf = perf; 4018 kref_init(&oa_config->ref); 4019 4020 if (!uuid_is_valid(args->uuid)) { 4021 DRM_DEBUG("Invalid uuid format for OA config\n"); 4022 err = -EINVAL; 4023 goto reg_err; 4024 } 4025 4026 /* Last character in oa_config->uuid will be 0 because oa_config is 4027 * kzalloc. 4028 */ 4029 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4030 4031 oa_config->mux_regs_len = args->n_mux_regs; 4032 regs = alloc_oa_regs(perf, 4033 perf->ops.is_valid_mux_reg, 4034 u64_to_user_ptr(args->mux_regs_ptr), 4035 args->n_mux_regs); 4036 4037 if (IS_ERR(regs)) { 4038 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4039 err = PTR_ERR(regs); 4040 goto reg_err; 4041 } 4042 oa_config->mux_regs = regs; 4043 4044 oa_config->b_counter_regs_len = args->n_boolean_regs; 4045 regs = alloc_oa_regs(perf, 4046 perf->ops.is_valid_b_counter_reg, 4047 u64_to_user_ptr(args->boolean_regs_ptr), 4048 args->n_boolean_regs); 4049 4050 if (IS_ERR(regs)) { 4051 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4052 err = PTR_ERR(regs); 4053 goto reg_err; 4054 } 4055 oa_config->b_counter_regs = regs; 4056 4057 if (INTEL_GEN(perf->i915) < 8) { 4058 if (args->n_flex_regs != 0) { 4059 err = -EINVAL; 4060 goto reg_err; 4061 } 4062 } else { 4063 oa_config->flex_regs_len = args->n_flex_regs; 4064 regs = alloc_oa_regs(perf, 4065 perf->ops.is_valid_flex_reg, 4066 u64_to_user_ptr(args->flex_regs_ptr), 4067 args->n_flex_regs); 4068 4069 if (IS_ERR(regs)) { 4070 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4071 err = PTR_ERR(regs); 4072 goto reg_err; 4073 } 4074 oa_config->flex_regs = regs; 4075 } 4076 4077 err = mutex_lock_interruptible(&perf->metrics_lock); 4078 if (err) 4079 goto reg_err; 4080 4081 /* We shouldn't have too many configs, so this iteration shouldn't be 4082 * too costly. 4083 */ 4084 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4085 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4086 DRM_DEBUG("OA config already exists with this uuid\n"); 4087 err = -EADDRINUSE; 4088 goto sysfs_err; 4089 } 4090 } 4091 4092 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4093 if (err) { 4094 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4095 goto sysfs_err; 4096 } 4097 4098 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4099 oa_config->id = idr_alloc(&perf->metrics_idr, 4100 oa_config, 2, 4101 0, GFP_KERNEL); 4102 if (oa_config->id < 0) { 4103 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4104 err = oa_config->id; 4105 goto sysfs_err; 4106 } 4107 4108 mutex_unlock(&perf->metrics_lock); 4109 4110 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4111 4112 return oa_config->id; 4113 4114 sysfs_err: 4115 mutex_unlock(&perf->metrics_lock); 4116 reg_err: 4117 i915_oa_config_put(oa_config); 4118 DRM_DEBUG("Failed to add new OA config\n"); 4119 return err; 4120 } 4121 4122 /** 4123 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4124 * @dev: drm device 4125 * @data: ioctl data (pointer to u64 integer) copied from userspace 4126 * @file: drm file 4127 * 4128 * Configs can be removed while being used, the will stop appearing in sysfs 4129 * and their content will be freed when the stream using the config is closed. 4130 * 4131 * Returns: 0 on success or a negative error code on failure. 4132 */ 4133 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4134 struct drm_file *file) 4135 { 4136 struct i915_perf *perf = &to_i915(dev)->perf; 4137 u64 *arg = data; 4138 struct i915_oa_config *oa_config; 4139 int ret; 4140 4141 if (!perf->i915) { 4142 DRM_DEBUG("i915 perf interface not available for this system\n"); 4143 return -ENOTSUPP; 4144 } 4145 4146 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4147 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4148 return -EACCES; 4149 } 4150 4151 ret = mutex_lock_interruptible(&perf->metrics_lock); 4152 if (ret) 4153 return ret; 4154 4155 oa_config = idr_find(&perf->metrics_idr, *arg); 4156 if (!oa_config) { 4157 DRM_DEBUG("Failed to remove unknown OA config\n"); 4158 ret = -ENOENT; 4159 goto err_unlock; 4160 } 4161 4162 GEM_BUG_ON(*arg != oa_config->id); 4163 4164 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4165 4166 idr_remove(&perf->metrics_idr, *arg); 4167 4168 mutex_unlock(&perf->metrics_lock); 4169 4170 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4171 4172 i915_oa_config_put(oa_config); 4173 4174 return 0; 4175 4176 err_unlock: 4177 mutex_unlock(&perf->metrics_lock); 4178 return ret; 4179 } 4180 4181 static struct ctl_table oa_table[] = { 4182 { 4183 .procname = "perf_stream_paranoid", 4184 .data = &i915_perf_stream_paranoid, 4185 .maxlen = sizeof(i915_perf_stream_paranoid), 4186 .mode = 0644, 4187 .proc_handler = proc_dointvec_minmax, 4188 .extra1 = SYSCTL_ZERO, 4189 .extra2 = SYSCTL_ONE, 4190 }, 4191 { 4192 .procname = "oa_max_sample_rate", 4193 .data = &i915_oa_max_sample_rate, 4194 .maxlen = sizeof(i915_oa_max_sample_rate), 4195 .mode = 0644, 4196 .proc_handler = proc_dointvec_minmax, 4197 .extra1 = SYSCTL_ZERO, 4198 .extra2 = &oa_sample_rate_hard_limit, 4199 }, 4200 {} 4201 }; 4202 4203 static struct ctl_table i915_root[] = { 4204 { 4205 .procname = "i915", 4206 .maxlen = 0, 4207 .mode = 0555, 4208 .child = oa_table, 4209 }, 4210 {} 4211 }; 4212 4213 static struct ctl_table dev_root[] = { 4214 { 4215 .procname = "dev", 4216 .maxlen = 0, 4217 .mode = 0555, 4218 .child = i915_root, 4219 }, 4220 {} 4221 }; 4222 4223 /** 4224 * i915_perf_init - initialize i915-perf state on module bind 4225 * @i915: i915 device instance 4226 * 4227 * Initializes i915-perf state without exposing anything to userspace. 4228 * 4229 * Note: i915-perf initialization is split into an 'init' and 'register' 4230 * phase with the i915_perf_register() exposing state to userspace. 4231 */ 4232 void i915_perf_init(struct drm_i915_private *i915) 4233 { 4234 struct i915_perf *perf = &i915->perf; 4235 4236 /* XXX const struct i915_perf_ops! */ 4237 4238 if (IS_HASWELL(i915)) { 4239 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4240 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4241 perf->ops.is_valid_flex_reg = NULL; 4242 perf->ops.enable_metric_set = hsw_enable_metric_set; 4243 perf->ops.disable_metric_set = hsw_disable_metric_set; 4244 perf->ops.oa_enable = gen7_oa_enable; 4245 perf->ops.oa_disable = gen7_oa_disable; 4246 perf->ops.read = gen7_oa_read; 4247 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4248 4249 perf->oa_formats = hsw_oa_formats; 4250 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4251 /* Note: that although we could theoretically also support the 4252 * legacy ringbuffer mode on BDW (and earlier iterations of 4253 * this driver, before upstreaming did this) it didn't seem 4254 * worth the complexity to maintain now that BDW+ enable 4255 * execlist mode by default. 4256 */ 4257 perf->ops.read = gen8_oa_read; 4258 4259 if (IS_GEN_RANGE(i915, 8, 9)) { 4260 perf->oa_formats = gen8_plus_oa_formats; 4261 4262 perf->ops.is_valid_b_counter_reg = 4263 gen7_is_valid_b_counter_addr; 4264 perf->ops.is_valid_mux_reg = 4265 gen8_is_valid_mux_addr; 4266 perf->ops.is_valid_flex_reg = 4267 gen8_is_valid_flex_addr; 4268 4269 if (IS_CHERRYVIEW(i915)) { 4270 perf->ops.is_valid_mux_reg = 4271 chv_is_valid_mux_addr; 4272 } 4273 4274 perf->ops.oa_enable = gen8_oa_enable; 4275 perf->ops.oa_disable = gen8_oa_disable; 4276 perf->ops.enable_metric_set = gen8_enable_metric_set; 4277 perf->ops.disable_metric_set = gen8_disable_metric_set; 4278 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4279 4280 if (IS_GEN(i915, 8)) { 4281 perf->ctx_oactxctrl_offset = 0x120; 4282 perf->ctx_flexeu0_offset = 0x2ce; 4283 4284 perf->gen8_valid_ctx_bit = BIT(25); 4285 } else { 4286 perf->ctx_oactxctrl_offset = 0x128; 4287 perf->ctx_flexeu0_offset = 0x3de; 4288 4289 perf->gen8_valid_ctx_bit = BIT(16); 4290 } 4291 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4292 perf->oa_formats = gen8_plus_oa_formats; 4293 4294 perf->ops.is_valid_b_counter_reg = 4295 gen7_is_valid_b_counter_addr; 4296 perf->ops.is_valid_mux_reg = 4297 gen10_is_valid_mux_addr; 4298 perf->ops.is_valid_flex_reg = 4299 gen8_is_valid_flex_addr; 4300 4301 perf->ops.oa_enable = gen8_oa_enable; 4302 perf->ops.oa_disable = gen8_oa_disable; 4303 perf->ops.enable_metric_set = gen8_enable_metric_set; 4304 perf->ops.disable_metric_set = gen10_disable_metric_set; 4305 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4306 4307 if (IS_GEN(i915, 10)) { 4308 perf->ctx_oactxctrl_offset = 0x128; 4309 perf->ctx_flexeu0_offset = 0x3de; 4310 } else { 4311 perf->ctx_oactxctrl_offset = 0x124; 4312 perf->ctx_flexeu0_offset = 0x78e; 4313 } 4314 perf->gen8_valid_ctx_bit = BIT(16); 4315 } else if (IS_GEN(i915, 12)) { 4316 perf->oa_formats = gen12_oa_formats; 4317 4318 perf->ops.is_valid_b_counter_reg = 4319 gen12_is_valid_b_counter_addr; 4320 perf->ops.is_valid_mux_reg = 4321 gen12_is_valid_mux_addr; 4322 perf->ops.is_valid_flex_reg = 4323 gen8_is_valid_flex_addr; 4324 4325 perf->ops.oa_enable = gen12_oa_enable; 4326 perf->ops.oa_disable = gen12_oa_disable; 4327 perf->ops.enable_metric_set = gen12_enable_metric_set; 4328 perf->ops.disable_metric_set = gen12_disable_metric_set; 4329 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4330 4331 perf->ctx_flexeu0_offset = 0; 4332 perf->ctx_oactxctrl_offset = 0x144; 4333 } 4334 } 4335 4336 if (perf->ops.enable_metric_set) { 4337 mutex_init(&perf->lock); 4338 4339 oa_sample_rate_hard_limit = 4340 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2; 4341 4342 mutex_init(&perf->metrics_lock); 4343 idr_init(&perf->metrics_idr); 4344 4345 /* We set up some ratelimit state to potentially throttle any 4346 * _NOTES about spurious, invalid OA reports which we don't 4347 * forward to userspace. 4348 * 4349 * We print a _NOTE about any throttling when closing the 4350 * stream instead of waiting until driver _fini which no one 4351 * would ever see. 4352 * 4353 * Using the same limiting factors as printk_ratelimit() 4354 */ 4355 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4356 /* Since we use a DRM_NOTE for spurious reports it would be 4357 * inconsistent to let __ratelimit() automatically print a 4358 * warning for throttling. 4359 */ 4360 ratelimit_set_flags(&perf->spurious_report_rs, 4361 RATELIMIT_MSG_ON_RELEASE); 4362 4363 ratelimit_state_init(&perf->tail_pointer_race, 4364 5 * HZ, 10); 4365 ratelimit_set_flags(&perf->tail_pointer_race, 4366 RATELIMIT_MSG_ON_RELEASE); 4367 4368 atomic64_set(&perf->noa_programming_delay, 4369 500 * 1000 /* 500us */); 4370 4371 perf->i915 = i915; 4372 } 4373 } 4374 4375 static int destroy_config(int id, void *p, void *data) 4376 { 4377 i915_oa_config_put(p); 4378 return 0; 4379 } 4380 4381 void i915_perf_sysctl_register(void) 4382 { 4383 sysctl_header = register_sysctl_table(dev_root); 4384 } 4385 4386 void i915_perf_sysctl_unregister(void) 4387 { 4388 unregister_sysctl_table(sysctl_header); 4389 } 4390 4391 /** 4392 * i915_perf_fini - Counter part to i915_perf_init() 4393 * @i915: i915 device instance 4394 */ 4395 void i915_perf_fini(struct drm_i915_private *i915) 4396 { 4397 struct i915_perf *perf = &i915->perf; 4398 4399 if (!perf->i915) 4400 return; 4401 4402 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4403 idr_destroy(&perf->metrics_idr); 4404 4405 memset(&perf->ops, 0, sizeof(perf->ops)); 4406 perf->i915 = NULL; 4407 } 4408 4409 /** 4410 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4411 * 4412 * This version number is used by userspace to detect available features. 4413 */ 4414 int i915_perf_ioctl_version(void) 4415 { 4416 /* 4417 * 1: Initial version 4418 * I915_PERF_IOCTL_ENABLE 4419 * I915_PERF_IOCTL_DISABLE 4420 * 4421 * 2: Added runtime modification of OA config. 4422 * I915_PERF_IOCTL_CONFIG 4423 * 4424 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4425 * preemption on a particular context so that performance data is 4426 * accessible from a delta of MI_RPC reports without looking at the 4427 * OA buffer. 4428 * 4429 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4430 * be run for the duration of the performance recording based on 4431 * their SSEU configuration. 4432 * 4433 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4434 * interval for the hrtimer used to check for OA data. 4435 */ 4436 return 5; 4437 } 4438 4439 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4440 #include "selftests/i915_perf.c" 4441 #endif 4442