1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_pm.h" 200 #include "gt/intel_lrc_reg.h" 201 202 #include "i915_drv.h" 203 #include "i915_oa_hsw.h" 204 #include "i915_oa_bdw.h" 205 #include "i915_oa_chv.h" 206 #include "i915_oa_sklgt2.h" 207 #include "i915_oa_sklgt3.h" 208 #include "i915_oa_sklgt4.h" 209 #include "i915_oa_bxt.h" 210 #include "i915_oa_kblgt2.h" 211 #include "i915_oa_kblgt3.h" 212 #include "i915_oa_glk.h" 213 #include "i915_oa_cflgt2.h" 214 #include "i915_oa_cflgt3.h" 215 #include "i915_oa_cnl.h" 216 #include "i915_oa_icl.h" 217 218 /* HW requires this to be a power of two, between 128k and 16M, though driver 219 * is currently generally designed assuming the largest 16M size is used such 220 * that the overflow cases are unlikely in normal operation. 221 */ 222 #define OA_BUFFER_SIZE SZ_16M 223 224 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 225 226 /** 227 * DOC: OA Tail Pointer Race 228 * 229 * There's a HW race condition between OA unit tail pointer register updates and 230 * writes to memory whereby the tail pointer can sometimes get ahead of what's 231 * been written out to the OA buffer so far (in terms of what's visible to the 232 * CPU). 233 * 234 * Although this can be observed explicitly while copying reports to userspace 235 * by checking for a zeroed report-id field in tail reports, we want to account 236 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 237 * read() attempts. 238 * 239 * In effect we define a tail pointer for reading that lags the real tail 240 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 241 * time for the corresponding reports to become visible to the CPU. 242 * 243 * To manage this we actually track two tail pointers: 244 * 1) An 'aging' tail with an associated timestamp that is tracked until we 245 * can trust the corresponding data is visible to the CPU; at which point 246 * it is considered 'aged'. 247 * 2) An 'aged' tail that can be used for read()ing. 248 * 249 * The two separate pointers let us decouple read()s from tail pointer aging. 250 * 251 * The tail pointers are checked and updated at a limited rate within a hrtimer 252 * callback (the same callback that is used for delivering EPOLLIN events) 253 * 254 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 255 * indicates that an updated tail pointer is needed. 256 * 257 * Most of the implementation details for this workaround are in 258 * oa_buffer_check_unlocked() and _append_oa_reports() 259 * 260 * Note for posterity: previously the driver used to define an effective tail 261 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 262 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 263 * This was flawed considering that the OA unit may also automatically generate 264 * non-periodic reports (such as on context switch) or the OA unit may be 265 * enabled without any periodic sampling. 266 */ 267 #define OA_TAIL_MARGIN_NSEC 100000ULL 268 #define INVALID_TAIL_PTR 0xffffffff 269 270 /* frequency for checking whether the OA unit has written new reports to the 271 * circular OA buffer... 272 */ 273 #define POLL_FREQUENCY 200 274 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 275 276 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 277 static u32 i915_perf_stream_paranoid = true; 278 279 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 280 * of the 64bit timestamp bits to trigger reports from) but there's currently 281 * no known use case for sampling as infrequently as once per 47 thousand years. 282 * 283 * Since the timestamps included in OA reports are only 32bits it seems 284 * reasonable to limit the OA exponent where it's still possible to account for 285 * overflow in OA report timestamps. 286 */ 287 #define OA_EXPONENT_MAX 31 288 289 #define INVALID_CTX_ID 0xffffffff 290 291 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 292 #define OAREPORT_REASON_MASK 0x3f 293 #define OAREPORT_REASON_SHIFT 19 294 #define OAREPORT_REASON_TIMER (1<<0) 295 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 296 #define OAREPORT_REASON_CLK_RATIO (1<<5) 297 298 299 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 300 * 301 * The highest sampling frequency we can theoretically program the OA unit 302 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 303 * 304 * Initialized just before we register the sysctl parameter. 305 */ 306 static int oa_sample_rate_hard_limit; 307 308 /* Theoretically we can program the OA unit to sample every 160ns but don't 309 * allow that by default unless root... 310 * 311 * The default threshold of 100000Hz is based on perf's similar 312 * kernel.perf_event_max_sample_rate sysctl parameter. 313 */ 314 static u32 i915_oa_max_sample_rate = 100000; 315 316 /* XXX: beware if future OA HW adds new report formats that the current 317 * code assumes all reports have a power-of-two size and ~(size - 1) can 318 * be used as a mask to align the OA tail pointer. 319 */ 320 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 321 [I915_OA_FORMAT_A13] = { 0, 64 }, 322 [I915_OA_FORMAT_A29] = { 1, 128 }, 323 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 324 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 325 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 326 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 327 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 328 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 329 }; 330 331 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 332 [I915_OA_FORMAT_A12] = { 0, 64 }, 333 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 334 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 335 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 336 }; 337 338 #define SAMPLE_OA_REPORT (1<<0) 339 340 /** 341 * struct perf_open_properties - for validated properties given to open a stream 342 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 343 * @single_context: Whether a single or all gpu contexts should be monitored 344 * @ctx_handle: A gem ctx handle for use with @single_context 345 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 346 * @oa_format: An OA unit HW report format 347 * @oa_periodic: Whether to enable periodic OA unit sampling 348 * @oa_period_exponent: The OA unit sampling period is derived from this 349 * 350 * As read_properties_unlocked() enumerates and validates the properties given 351 * to open a stream of metrics the configuration is built up in the structure 352 * which starts out zero initialized. 353 */ 354 struct perf_open_properties { 355 u32 sample_flags; 356 357 u64 single_context:1; 358 u64 ctx_handle; 359 360 /* OA sampling state */ 361 int metrics_set; 362 int oa_format; 363 bool oa_periodic; 364 int oa_period_exponent; 365 }; 366 367 static void free_oa_config(struct drm_i915_private *dev_priv, 368 struct i915_oa_config *oa_config) 369 { 370 if (!PTR_ERR(oa_config->flex_regs)) 371 kfree(oa_config->flex_regs); 372 if (!PTR_ERR(oa_config->b_counter_regs)) 373 kfree(oa_config->b_counter_regs); 374 if (!PTR_ERR(oa_config->mux_regs)) 375 kfree(oa_config->mux_regs); 376 kfree(oa_config); 377 } 378 379 static void put_oa_config(struct drm_i915_private *dev_priv, 380 struct i915_oa_config *oa_config) 381 { 382 if (!atomic_dec_and_test(&oa_config->ref_count)) 383 return; 384 385 free_oa_config(dev_priv, oa_config); 386 } 387 388 static int get_oa_config(struct drm_i915_private *dev_priv, 389 int metrics_set, 390 struct i915_oa_config **out_config) 391 { 392 int ret; 393 394 if (metrics_set == 1) { 395 *out_config = &dev_priv->perf.oa.test_config; 396 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 397 return 0; 398 } 399 400 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 401 if (ret) 402 return ret; 403 404 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 405 if (!*out_config) 406 ret = -EINVAL; 407 else 408 atomic_inc(&(*out_config)->ref_count); 409 410 mutex_unlock(&dev_priv->perf.metrics_lock); 411 412 return ret; 413 } 414 415 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 416 { 417 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 418 } 419 420 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 421 { 422 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 423 424 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 425 } 426 427 /** 428 * oa_buffer_check_unlocked - check for data and update tail ptr state 429 * @dev_priv: i915 device instance 430 * 431 * This is either called via fops (for blocking reads in user ctx) or the poll 432 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 433 * if there is data available for userspace to read. 434 * 435 * This function is central to providing a workaround for the OA unit tail 436 * pointer having a race with respect to what data is visible to the CPU. 437 * It is responsible for reading tail pointers from the hardware and giving 438 * the pointers time to 'age' before they are made available for reading. 439 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 440 * 441 * Besides returning true when there is data available to read() this function 442 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 443 * and .aged_tail_idx state used for reading. 444 * 445 * Note: It's safe to read OA config state here unlocked, assuming that this is 446 * only called while the stream is enabled, while the global OA configuration 447 * can't be modified. 448 * 449 * Returns: %true if the OA buffer contains data, else %false 450 */ 451 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 452 { 453 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 454 unsigned long flags; 455 unsigned int aged_idx; 456 u32 head, hw_tail, aged_tail, aging_tail; 457 u64 now; 458 459 /* We have to consider the (unlikely) possibility that read() errors 460 * could result in an OA buffer reset which might reset the head, 461 * tails[] and aged_tail state. 462 */ 463 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 464 465 /* NB: The head we observe here might effectively be a little out of 466 * date (between head and tails[aged_idx].offset if there is currently 467 * a read() in progress. 468 */ 469 head = dev_priv->perf.oa.oa_buffer.head; 470 471 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 472 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 473 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 474 475 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 476 477 /* The tail pointer increases in 64 byte increments, 478 * not in report_size steps... 479 */ 480 hw_tail &= ~(report_size - 1); 481 482 now = ktime_get_mono_fast_ns(); 483 484 /* Update the aged tail 485 * 486 * Flip the tail pointer available for read()s once the aging tail is 487 * old enough to trust that the corresponding data will be visible to 488 * the CPU... 489 * 490 * Do this before updating the aging pointer in case we may be able to 491 * immediately start aging a new pointer too (if new data has become 492 * available) without needing to wait for a later hrtimer callback. 493 */ 494 if (aging_tail != INVALID_TAIL_PTR && 495 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 496 OA_TAIL_MARGIN_NSEC)) { 497 498 aged_idx ^= 1; 499 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 500 501 aged_tail = aging_tail; 502 503 /* Mark that we need a new pointer to start aging... */ 504 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 505 aging_tail = INVALID_TAIL_PTR; 506 } 507 508 /* Update the aging tail 509 * 510 * We throttle aging tail updates until we have a new tail that 511 * represents >= one report more data than is already available for 512 * reading. This ensures there will be enough data for a successful 513 * read once this new pointer has aged and ensures we will give the new 514 * pointer time to age. 515 */ 516 if (aging_tail == INVALID_TAIL_PTR && 517 (aged_tail == INVALID_TAIL_PTR || 518 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 519 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 520 u32 gtt_offset = i915_ggtt_offset(vma); 521 522 /* Be paranoid and do a bounds check on the pointer read back 523 * from hardware, just in case some spurious hardware condition 524 * could put the tail out of bounds... 525 */ 526 if (hw_tail >= gtt_offset && 527 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 528 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 529 aging_tail = hw_tail; 530 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 531 } else { 532 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 533 hw_tail); 534 } 535 } 536 537 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 538 539 return aged_tail == INVALID_TAIL_PTR ? 540 false : OA_TAKEN(aged_tail, head) >= report_size; 541 } 542 543 /** 544 * append_oa_status - Appends a status record to a userspace read() buffer. 545 * @stream: An i915-perf stream opened for OA metrics 546 * @buf: destination buffer given by userspace 547 * @count: the number of bytes userspace wants to read 548 * @offset: (inout): the current position for writing into @buf 549 * @type: The kind of status to report to userspace 550 * 551 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 552 * into the userspace read() buffer. 553 * 554 * The @buf @offset will only be updated on success. 555 * 556 * Returns: 0 on success, negative error code on failure. 557 */ 558 static int append_oa_status(struct i915_perf_stream *stream, 559 char __user *buf, 560 size_t count, 561 size_t *offset, 562 enum drm_i915_perf_record_type type) 563 { 564 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 565 566 if ((count - *offset) < header.size) 567 return -ENOSPC; 568 569 if (copy_to_user(buf + *offset, &header, sizeof(header))) 570 return -EFAULT; 571 572 (*offset) += header.size; 573 574 return 0; 575 } 576 577 /** 578 * append_oa_sample - Copies single OA report into userspace read() buffer. 579 * @stream: An i915-perf stream opened for OA metrics 580 * @buf: destination buffer given by userspace 581 * @count: the number of bytes userspace wants to read 582 * @offset: (inout): the current position for writing into @buf 583 * @report: A single OA report to (optionally) include as part of the sample 584 * 585 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 586 * properties when opening a stream, tracked as `stream->sample_flags`. This 587 * function copies the requested components of a single sample to the given 588 * read() @buf. 589 * 590 * The @buf @offset will only be updated on success. 591 * 592 * Returns: 0 on success, negative error code on failure. 593 */ 594 static int append_oa_sample(struct i915_perf_stream *stream, 595 char __user *buf, 596 size_t count, 597 size_t *offset, 598 const u8 *report) 599 { 600 struct drm_i915_private *dev_priv = stream->dev_priv; 601 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 602 struct drm_i915_perf_record_header header; 603 u32 sample_flags = stream->sample_flags; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (sample_flags & SAMPLE_OA_REPORT) { 618 if (copy_to_user(buf, report, report_size)) 619 return -EFAULT; 620 } 621 622 (*offset) += header.size; 623 624 return 0; 625 } 626 627 /** 628 * Copies all buffered OA reports into userspace read() buffer. 629 * @stream: An i915-perf stream opened for OA metrics 630 * @buf: destination buffer given by userspace 631 * @count: the number of bytes userspace wants to read 632 * @offset: (inout): the current position for writing into @buf 633 * 634 * Notably any error condition resulting in a short read (-%ENOSPC or 635 * -%EFAULT) will be returned even though one or more records may 636 * have been successfully copied. In this case it's up to the caller 637 * to decide if the error should be squashed before returning to 638 * userspace. 639 * 640 * Note: reports are consumed from the head, and appended to the 641 * tail, so the tail chases the head?... If you think that's mad 642 * and back-to-front you're not alone, but this follows the 643 * Gen PRM naming convention. 644 * 645 * Returns: 0 on success, negative error code on failure. 646 */ 647 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 648 char __user *buf, 649 size_t count, 650 size_t *offset) 651 { 652 struct drm_i915_private *dev_priv = stream->dev_priv; 653 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 654 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 655 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 656 u32 mask = (OA_BUFFER_SIZE - 1); 657 size_t start_offset = *offset; 658 unsigned long flags; 659 unsigned int aged_tail_idx; 660 u32 head, tail; 661 u32 taken; 662 int ret = 0; 663 664 if (WARN_ON(!stream->enabled)) 665 return -EIO; 666 667 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 668 669 head = dev_priv->perf.oa.oa_buffer.head; 670 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 671 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 672 673 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 674 675 /* 676 * An invalid tail pointer here means we're still waiting for the poll 677 * hrtimer callback to give us a pointer 678 */ 679 if (tail == INVALID_TAIL_PTR) 680 return -EAGAIN; 681 682 /* 683 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 684 * while indexing relative to oa_buf_base. 685 */ 686 head -= gtt_offset; 687 tail -= gtt_offset; 688 689 /* 690 * An out of bounds or misaligned head or tail pointer implies a driver 691 * bug since we validate + align the tail pointers we read from the 692 * hardware and we are in full control of the head pointer which should 693 * only be incremented by multiples of the report size (notably also 694 * all a power of two). 695 */ 696 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 697 tail > OA_BUFFER_SIZE || tail % report_size, 698 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 699 head, tail)) 700 return -EIO; 701 702 703 for (/* none */; 704 (taken = OA_TAKEN(tail, head)); 705 head = (head + report_size) & mask) { 706 u8 *report = oa_buf_base + head; 707 u32 *report32 = (void *)report; 708 u32 ctx_id; 709 u32 reason; 710 711 /* 712 * All the report sizes factor neatly into the buffer 713 * size so we never expect to see a report split 714 * between the beginning and end of the buffer. 715 * 716 * Given the initial alignment check a misalignment 717 * here would imply a driver bug that would result 718 * in an overrun. 719 */ 720 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 721 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 722 break; 723 } 724 725 /* 726 * The reason field includes flags identifying what 727 * triggered this specific report (mostly timer 728 * triggered or e.g. due to a context switch). 729 * 730 * This field is never expected to be zero so we can 731 * check that the report isn't invalid before copying 732 * it to userspace... 733 */ 734 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 735 OAREPORT_REASON_MASK); 736 if (reason == 0) { 737 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 738 DRM_NOTE("Skipping spurious, invalid OA report\n"); 739 continue; 740 } 741 742 ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask; 743 744 /* 745 * Squash whatever is in the CTX_ID field if it's marked as 746 * invalid to be sure we avoid false-positive, single-context 747 * filtering below... 748 * 749 * Note: that we don't clear the valid_ctx_bit so userspace can 750 * understand that the ID has been squashed by the kernel. 751 */ 752 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 753 ctx_id = report32[2] = INVALID_CTX_ID; 754 755 /* 756 * NB: For Gen 8 the OA unit no longer supports clock gating 757 * off for a specific context and the kernel can't securely 758 * stop the counters from updating as system-wide / global 759 * values. 760 * 761 * Automatic reports now include a context ID so reports can be 762 * filtered on the cpu but it's not worth trying to 763 * automatically subtract/hide counter progress for other 764 * contexts while filtering since we can't stop userspace 765 * issuing MI_REPORT_PERF_COUNT commands which would still 766 * provide a side-band view of the real values. 767 * 768 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 769 * to normalize counters for a single filtered context then it 770 * needs be forwarded bookend context-switch reports so that it 771 * can track switches in between MI_REPORT_PERF_COUNT commands 772 * and can itself subtract/ignore the progress of counters 773 * associated with other contexts. Note that the hardware 774 * automatically triggers reports when switching to a new 775 * context which are tagged with the ID of the newly active 776 * context. To avoid the complexity (and likely fragility) of 777 * reading ahead while parsing reports to try and minimize 778 * forwarding redundant context switch reports (i.e. between 779 * other, unrelated contexts) we simply elect to forward them 780 * all. 781 * 782 * We don't rely solely on the reason field to identify context 783 * switches since it's not-uncommon for periodic samples to 784 * identify a switch before any 'context switch' report. 785 */ 786 if (!dev_priv->perf.oa.exclusive_stream->ctx || 787 dev_priv->perf.oa.specific_ctx_id == ctx_id || 788 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 789 dev_priv->perf.oa.specific_ctx_id) || 790 reason & OAREPORT_REASON_CTX_SWITCH) { 791 792 /* 793 * While filtering for a single context we avoid 794 * leaking the IDs of other contexts. 795 */ 796 if (dev_priv->perf.oa.exclusive_stream->ctx && 797 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 798 report32[2] = INVALID_CTX_ID; 799 } 800 801 ret = append_oa_sample(stream, buf, count, offset, 802 report); 803 if (ret) 804 break; 805 806 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 807 } 808 809 /* 810 * The above reason field sanity check is based on 811 * the assumption that the OA buffer is initially 812 * zeroed and we reset the field after copying so the 813 * check is still meaningful once old reports start 814 * being overwritten. 815 */ 816 report32[0] = 0; 817 } 818 819 if (start_offset != *offset) { 820 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 821 822 /* 823 * We removed the gtt_offset for the copy loop above, indexing 824 * relative to oa_buf_base so put back here... 825 */ 826 head += gtt_offset; 827 828 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 829 dev_priv->perf.oa.oa_buffer.head = head; 830 831 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 832 } 833 834 return ret; 835 } 836 837 /** 838 * gen8_oa_read - copy status records then buffered OA reports 839 * @stream: An i915-perf stream opened for OA metrics 840 * @buf: destination buffer given by userspace 841 * @count: the number of bytes userspace wants to read 842 * @offset: (inout): the current position for writing into @buf 843 * 844 * Checks OA unit status registers and if necessary appends corresponding 845 * status records for userspace (such as for a buffer full condition) and then 846 * initiate appending any buffered OA reports. 847 * 848 * Updates @offset according to the number of bytes successfully copied into 849 * the userspace buffer. 850 * 851 * NB: some data may be successfully copied to the userspace buffer 852 * even if an error is returned, and this is reflected in the 853 * updated @offset. 854 * 855 * Returns: zero on success or a negative error code 856 */ 857 static int gen8_oa_read(struct i915_perf_stream *stream, 858 char __user *buf, 859 size_t count, 860 size_t *offset) 861 { 862 struct drm_i915_private *dev_priv = stream->dev_priv; 863 u32 oastatus; 864 int ret; 865 866 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 867 return -EIO; 868 869 oastatus = I915_READ(GEN8_OASTATUS); 870 871 /* 872 * We treat OABUFFER_OVERFLOW as a significant error: 873 * 874 * Although theoretically we could handle this more gracefully 875 * sometimes, some Gens don't correctly suppress certain 876 * automatically triggered reports in this condition and so we 877 * have to assume that old reports are now being trampled 878 * over. 879 * 880 * Considering how we don't currently give userspace control 881 * over the OA buffer size and always configure a large 16MB 882 * buffer, then a buffer overflow does anyway likely indicate 883 * that something has gone quite badly wrong. 884 */ 885 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 886 ret = append_oa_status(stream, buf, count, offset, 887 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 888 if (ret) 889 return ret; 890 891 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 892 dev_priv->perf.oa.period_exponent); 893 894 dev_priv->perf.oa.ops.oa_disable(stream); 895 dev_priv->perf.oa.ops.oa_enable(stream); 896 897 /* 898 * Note: .oa_enable() is expected to re-init the oabuffer and 899 * reset GEN8_OASTATUS for us 900 */ 901 oastatus = I915_READ(GEN8_OASTATUS); 902 } 903 904 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 905 ret = append_oa_status(stream, buf, count, offset, 906 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 907 if (ret) 908 return ret; 909 I915_WRITE(GEN8_OASTATUS, 910 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 911 } 912 913 return gen8_append_oa_reports(stream, buf, count, offset); 914 } 915 916 /** 917 * Copies all buffered OA reports into userspace read() buffer. 918 * @stream: An i915-perf stream opened for OA metrics 919 * @buf: destination buffer given by userspace 920 * @count: the number of bytes userspace wants to read 921 * @offset: (inout): the current position for writing into @buf 922 * 923 * Notably any error condition resulting in a short read (-%ENOSPC or 924 * -%EFAULT) will be returned even though one or more records may 925 * have been successfully copied. In this case it's up to the caller 926 * to decide if the error should be squashed before returning to 927 * userspace. 928 * 929 * Note: reports are consumed from the head, and appended to the 930 * tail, so the tail chases the head?... If you think that's mad 931 * and back-to-front you're not alone, but this follows the 932 * Gen PRM naming convention. 933 * 934 * Returns: 0 on success, negative error code on failure. 935 */ 936 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 937 char __user *buf, 938 size_t count, 939 size_t *offset) 940 { 941 struct drm_i915_private *dev_priv = stream->dev_priv; 942 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 943 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 944 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 945 u32 mask = (OA_BUFFER_SIZE - 1); 946 size_t start_offset = *offset; 947 unsigned long flags; 948 unsigned int aged_tail_idx; 949 u32 head, tail; 950 u32 taken; 951 int ret = 0; 952 953 if (WARN_ON(!stream->enabled)) 954 return -EIO; 955 956 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 957 958 head = dev_priv->perf.oa.oa_buffer.head; 959 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 960 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 961 962 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 963 964 /* An invalid tail pointer here means we're still waiting for the poll 965 * hrtimer callback to give us a pointer 966 */ 967 if (tail == INVALID_TAIL_PTR) 968 return -EAGAIN; 969 970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 971 * while indexing relative to oa_buf_base. 972 */ 973 head -= gtt_offset; 974 tail -= gtt_offset; 975 976 /* An out of bounds or misaligned head or tail pointer implies a driver 977 * bug since we validate + align the tail pointers we read from the 978 * hardware and we are in full control of the head pointer which should 979 * only be incremented by multiples of the report size (notably also 980 * all a power of two). 981 */ 982 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 983 tail > OA_BUFFER_SIZE || tail % report_size, 984 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 985 head, tail)) 986 return -EIO; 987 988 989 for (/* none */; 990 (taken = OA_TAKEN(tail, head)); 991 head = (head + report_size) & mask) { 992 u8 *report = oa_buf_base + head; 993 u32 *report32 = (void *)report; 994 995 /* All the report sizes factor neatly into the buffer 996 * size so we never expect to see a report split 997 * between the beginning and end of the buffer. 998 * 999 * Given the initial alignment check a misalignment 1000 * here would imply a driver bug that would result 1001 * in an overrun. 1002 */ 1003 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1004 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1005 break; 1006 } 1007 1008 /* The report-ID field for periodic samples includes 1009 * some undocumented flags related to what triggered 1010 * the report and is never expected to be zero so we 1011 * can check that the report isn't invalid before 1012 * copying it to userspace... 1013 */ 1014 if (report32[0] == 0) { 1015 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1016 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1017 continue; 1018 } 1019 1020 ret = append_oa_sample(stream, buf, count, offset, report); 1021 if (ret) 1022 break; 1023 1024 /* The above report-id field sanity check is based on 1025 * the assumption that the OA buffer is initially 1026 * zeroed and we reset the field after copying so the 1027 * check is still meaningful once old reports start 1028 * being overwritten. 1029 */ 1030 report32[0] = 0; 1031 } 1032 1033 if (start_offset != *offset) { 1034 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1035 1036 /* We removed the gtt_offset for the copy loop above, indexing 1037 * relative to oa_buf_base so put back here... 1038 */ 1039 head += gtt_offset; 1040 1041 I915_WRITE(GEN7_OASTATUS2, 1042 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1043 GEN7_OASTATUS2_MEM_SELECT_GGTT)); 1044 dev_priv->perf.oa.oa_buffer.head = head; 1045 1046 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1047 } 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * gen7_oa_read - copy status records then buffered OA reports 1054 * @stream: An i915-perf stream opened for OA metrics 1055 * @buf: destination buffer given by userspace 1056 * @count: the number of bytes userspace wants to read 1057 * @offset: (inout): the current position for writing into @buf 1058 * 1059 * Checks Gen 7 specific OA unit status registers and if necessary appends 1060 * corresponding status records for userspace (such as for a buffer full 1061 * condition) and then initiate appending any buffered OA reports. 1062 * 1063 * Updates @offset according to the number of bytes successfully copied into 1064 * the userspace buffer. 1065 * 1066 * Returns: zero on success or a negative error code 1067 */ 1068 static int gen7_oa_read(struct i915_perf_stream *stream, 1069 char __user *buf, 1070 size_t count, 1071 size_t *offset) 1072 { 1073 struct drm_i915_private *dev_priv = stream->dev_priv; 1074 u32 oastatus1; 1075 int ret; 1076 1077 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1078 return -EIO; 1079 1080 oastatus1 = I915_READ(GEN7_OASTATUS1); 1081 1082 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1083 * bits while the OA unit is enabled (while the tail pointer 1084 * may be updated asynchronously) so we ignore status bits 1085 * that have already been reported to userspace. 1086 */ 1087 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1088 1089 /* We treat OABUFFER_OVERFLOW as a significant error: 1090 * 1091 * - The status can be interpreted to mean that the buffer is 1092 * currently full (with a higher precedence than OA_TAKEN() 1093 * which will start to report a near-empty buffer after an 1094 * overflow) but it's awkward that we can't clear the status 1095 * on Haswell, so without a reset we won't be able to catch 1096 * the state again. 1097 * 1098 * - Since it also implies the HW has started overwriting old 1099 * reports it may also affect our sanity checks for invalid 1100 * reports when copying to userspace that assume new reports 1101 * are being written to cleared memory. 1102 * 1103 * - In the future we may want to introduce a flight recorder 1104 * mode where the driver will automatically maintain a safe 1105 * guard band between head/tail, avoiding this overflow 1106 * condition, but we avoid the added driver complexity for 1107 * now. 1108 */ 1109 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1110 ret = append_oa_status(stream, buf, count, offset, 1111 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1112 if (ret) 1113 return ret; 1114 1115 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1116 dev_priv->perf.oa.period_exponent); 1117 1118 dev_priv->perf.oa.ops.oa_disable(stream); 1119 dev_priv->perf.oa.ops.oa_enable(stream); 1120 1121 oastatus1 = I915_READ(GEN7_OASTATUS1); 1122 } 1123 1124 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1125 ret = append_oa_status(stream, buf, count, offset, 1126 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1127 if (ret) 1128 return ret; 1129 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1130 GEN7_OASTATUS1_REPORT_LOST; 1131 } 1132 1133 return gen7_append_oa_reports(stream, buf, count, offset); 1134 } 1135 1136 /** 1137 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1138 * @stream: An i915-perf stream opened for OA metrics 1139 * 1140 * Called when userspace tries to read() from a blocking stream FD opened 1141 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1142 * OA buffer and wakes us. 1143 * 1144 * Note: it's acceptable to have this return with some false positives 1145 * since any subsequent read handling will return -EAGAIN if there isn't 1146 * really data ready for userspace yet. 1147 * 1148 * Returns: zero on success or a negative error code 1149 */ 1150 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1151 { 1152 struct drm_i915_private *dev_priv = stream->dev_priv; 1153 1154 /* We would wait indefinitely if periodic sampling is not enabled */ 1155 if (!dev_priv->perf.oa.periodic) 1156 return -EIO; 1157 1158 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1159 oa_buffer_check_unlocked(dev_priv)); 1160 } 1161 1162 /** 1163 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1164 * @stream: An i915-perf stream opened for OA metrics 1165 * @file: An i915 perf stream file 1166 * @wait: poll() state table 1167 * 1168 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1169 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1170 * when it sees data ready to read in the circular OA buffer. 1171 */ 1172 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1173 struct file *file, 1174 poll_table *wait) 1175 { 1176 struct drm_i915_private *dev_priv = stream->dev_priv; 1177 1178 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1179 } 1180 1181 /** 1182 * i915_oa_read - just calls through to &i915_oa_ops->read 1183 * @stream: An i915-perf stream opened for OA metrics 1184 * @buf: destination buffer given by userspace 1185 * @count: the number of bytes userspace wants to read 1186 * @offset: (inout): the current position for writing into @buf 1187 * 1188 * Updates @offset according to the number of bytes successfully copied into 1189 * the userspace buffer. 1190 * 1191 * Returns: zero on success or a negative error code 1192 */ 1193 static int i915_oa_read(struct i915_perf_stream *stream, 1194 char __user *buf, 1195 size_t count, 1196 size_t *offset) 1197 { 1198 struct drm_i915_private *dev_priv = stream->dev_priv; 1199 1200 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1201 } 1202 1203 static struct intel_context *oa_pin_context(struct drm_i915_private *i915, 1204 struct i915_gem_context *ctx) 1205 { 1206 struct i915_gem_engines_iter it; 1207 struct intel_context *ce; 1208 int err; 1209 1210 err = i915_mutex_lock_interruptible(&i915->drm); 1211 if (err) 1212 return ERR_PTR(err); 1213 1214 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1215 if (ce->engine->class != RENDER_CLASS) 1216 continue; 1217 1218 /* 1219 * As the ID is the gtt offset of the context's vma we 1220 * pin the vma to ensure the ID remains fixed. 1221 */ 1222 err = intel_context_pin(ce); 1223 if (err == 0) { 1224 i915->perf.oa.pinned_ctx = ce; 1225 break; 1226 } 1227 } 1228 i915_gem_context_unlock_engines(ctx); 1229 1230 mutex_unlock(&i915->drm.struct_mutex); 1231 if (err) 1232 return ERR_PTR(err); 1233 1234 return i915->perf.oa.pinned_ctx; 1235 } 1236 1237 /** 1238 * oa_get_render_ctx_id - determine and hold ctx hw id 1239 * @stream: An i915-perf stream opened for OA metrics 1240 * 1241 * Determine the render context hw id, and ensure it remains fixed for the 1242 * lifetime of the stream. This ensures that we don't have to worry about 1243 * updating the context ID in OACONTROL on the fly. 1244 * 1245 * Returns: zero on success or a negative error code 1246 */ 1247 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1248 { 1249 struct drm_i915_private *i915 = stream->dev_priv; 1250 struct intel_context *ce; 1251 1252 ce = oa_pin_context(i915, stream->ctx); 1253 if (IS_ERR(ce)) 1254 return PTR_ERR(ce); 1255 1256 switch (INTEL_GEN(i915)) { 1257 case 7: { 1258 /* 1259 * On Haswell we don't do any post processing of the reports 1260 * and don't need to use the mask. 1261 */ 1262 i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state); 1263 i915->perf.oa.specific_ctx_id_mask = 0; 1264 break; 1265 } 1266 1267 case 8: 1268 case 9: 1269 case 10: 1270 if (USES_GUC_SUBMISSION(i915)) { 1271 /* 1272 * When using GuC, the context descriptor we write in 1273 * i915 is read by GuC and rewritten before it's 1274 * actually written into the hardware. The LRCA is 1275 * what is put into the context id field of the 1276 * context descriptor by GuC. Because it's aligned to 1277 * a page, the lower 12bits are always at 0 and 1278 * dropped by GuC. They won't be part of the context 1279 * ID in the OA reports, so squash those lower bits. 1280 */ 1281 i915->perf.oa.specific_ctx_id = 1282 lower_32_bits(ce->lrc_desc) >> 12; 1283 1284 /* 1285 * GuC uses the top bit to signal proxy submission, so 1286 * ignore that bit. 1287 */ 1288 i915->perf.oa.specific_ctx_id_mask = 1289 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1290 } else { 1291 i915->perf.oa.specific_ctx_id_mask = 1292 (1U << GEN8_CTX_ID_WIDTH) - 1; 1293 i915->perf.oa.specific_ctx_id = 1294 upper_32_bits(ce->lrc_desc); 1295 i915->perf.oa.specific_ctx_id &= 1296 i915->perf.oa.specific_ctx_id_mask; 1297 } 1298 break; 1299 1300 case 11: { 1301 i915->perf.oa.specific_ctx_id_mask = 1302 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) | 1303 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) | 1304 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32); 1305 i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc); 1306 i915->perf.oa.specific_ctx_id &= 1307 i915->perf.oa.specific_ctx_id_mask; 1308 break; 1309 } 1310 1311 default: 1312 MISSING_CASE(INTEL_GEN(i915)); 1313 } 1314 1315 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1316 i915->perf.oa.specific_ctx_id, 1317 i915->perf.oa.specific_ctx_id_mask); 1318 1319 return 0; 1320 } 1321 1322 /** 1323 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1324 * @stream: An i915-perf stream opened for OA metrics 1325 * 1326 * In case anything needed doing to ensure the context HW ID would remain valid 1327 * for the lifetime of the stream, then that can be undone here. 1328 */ 1329 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1330 { 1331 struct drm_i915_private *dev_priv = stream->dev_priv; 1332 struct intel_context *ce; 1333 1334 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1335 dev_priv->perf.oa.specific_ctx_id_mask = 0; 1336 1337 ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx); 1338 if (ce) { 1339 mutex_lock(&dev_priv->drm.struct_mutex); 1340 intel_context_unpin(ce); 1341 mutex_unlock(&dev_priv->drm.struct_mutex); 1342 } 1343 } 1344 1345 static void 1346 free_oa_buffer(struct drm_i915_private *i915) 1347 { 1348 mutex_lock(&i915->drm.struct_mutex); 1349 1350 i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma, 1351 I915_VMA_RELEASE_MAP); 1352 1353 mutex_unlock(&i915->drm.struct_mutex); 1354 1355 i915->perf.oa.oa_buffer.vaddr = NULL; 1356 } 1357 1358 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1359 { 1360 struct drm_i915_private *dev_priv = stream->dev_priv; 1361 1362 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1363 1364 /* 1365 * Unset exclusive_stream first, it will be checked while disabling 1366 * the metric set on gen8+. 1367 */ 1368 mutex_lock(&dev_priv->drm.struct_mutex); 1369 dev_priv->perf.oa.exclusive_stream = NULL; 1370 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1371 mutex_unlock(&dev_priv->drm.struct_mutex); 1372 1373 free_oa_buffer(dev_priv); 1374 1375 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 1376 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref); 1377 1378 if (stream->ctx) 1379 oa_put_render_ctx_id(stream); 1380 1381 put_oa_config(dev_priv, stream->oa_config); 1382 1383 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1384 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1385 dev_priv->perf.oa.spurious_report_rs.missed); 1386 } 1387 } 1388 1389 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1390 { 1391 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1392 unsigned long flags; 1393 1394 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1395 1396 /* Pre-DevBDW: OABUFFER must be set with counters off, 1397 * before OASTATUS1, but after OASTATUS2 1398 */ 1399 I915_WRITE(GEN7_OASTATUS2, 1400 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */ 1401 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1402 1403 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1404 1405 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1406 1407 /* Mark that we need updated tail pointers to read from... */ 1408 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1409 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1410 1411 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1412 1413 /* On Haswell we have to track which OASTATUS1 flags we've 1414 * already seen since they can't be cleared while periodic 1415 * sampling is enabled. 1416 */ 1417 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1418 1419 /* NB: although the OA buffer will initially be allocated 1420 * zeroed via shmfs (and so this memset is redundant when 1421 * first allocating), we may re-init the OA buffer, either 1422 * when re-enabling a stream or in error/reset paths. 1423 * 1424 * The reason we clear the buffer for each re-init is for the 1425 * sanity check in gen7_append_oa_reports() that looks at the 1426 * report-id field to make sure it's non-zero which relies on 1427 * the assumption that new reports are being written to zeroed 1428 * memory... 1429 */ 1430 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1431 1432 /* Maybe make ->pollin per-stream state if we support multiple 1433 * concurrent streams in the future. 1434 */ 1435 dev_priv->perf.oa.pollin = false; 1436 } 1437 1438 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1439 { 1440 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1444 1445 I915_WRITE(GEN8_OASTATUS, 0); 1446 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1447 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1448 1449 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1450 1451 /* 1452 * PRM says: 1453 * 1454 * "This MMIO must be set before the OATAILPTR 1455 * register and after the OAHEADPTR register. This is 1456 * to enable proper functionality of the overflow 1457 * bit." 1458 */ 1459 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1460 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1461 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1462 1463 /* Mark that we need updated tail pointers to read from... */ 1464 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1465 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1466 1467 /* 1468 * Reset state used to recognise context switches, affecting which 1469 * reports we will forward to userspace while filtering for a single 1470 * context. 1471 */ 1472 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1473 1474 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1475 1476 /* 1477 * NB: although the OA buffer will initially be allocated 1478 * zeroed via shmfs (and so this memset is redundant when 1479 * first allocating), we may re-init the OA buffer, either 1480 * when re-enabling a stream or in error/reset paths. 1481 * 1482 * The reason we clear the buffer for each re-init is for the 1483 * sanity check in gen8_append_oa_reports() that looks at the 1484 * reason field to make sure it's non-zero which relies on 1485 * the assumption that new reports are being written to zeroed 1486 * memory... 1487 */ 1488 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1489 1490 /* 1491 * Maybe make ->pollin per-stream state if we support multiple 1492 * concurrent streams in the future. 1493 */ 1494 dev_priv->perf.oa.pollin = false; 1495 } 1496 1497 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1498 { 1499 struct drm_i915_gem_object *bo; 1500 struct i915_vma *vma; 1501 int ret; 1502 1503 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1504 return -ENODEV; 1505 1506 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1507 if (ret) 1508 return ret; 1509 1510 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1511 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1512 1513 bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE); 1514 if (IS_ERR(bo)) { 1515 DRM_ERROR("Failed to allocate OA buffer\n"); 1516 ret = PTR_ERR(bo); 1517 goto unlock; 1518 } 1519 1520 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1521 1522 /* PreHSW required 512K alignment, HSW requires 16M */ 1523 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1524 if (IS_ERR(vma)) { 1525 ret = PTR_ERR(vma); 1526 goto err_unref; 1527 } 1528 dev_priv->perf.oa.oa_buffer.vma = vma; 1529 1530 dev_priv->perf.oa.oa_buffer.vaddr = 1531 i915_gem_object_pin_map(bo, I915_MAP_WB); 1532 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1533 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1534 goto err_unpin; 1535 } 1536 1537 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1538 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1539 dev_priv->perf.oa.oa_buffer.vaddr); 1540 1541 goto unlock; 1542 1543 err_unpin: 1544 __i915_vma_unpin(vma); 1545 1546 err_unref: 1547 i915_gem_object_put(bo); 1548 1549 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1550 dev_priv->perf.oa.oa_buffer.vma = NULL; 1551 1552 unlock: 1553 mutex_unlock(&dev_priv->drm.struct_mutex); 1554 return ret; 1555 } 1556 1557 static void config_oa_regs(struct drm_i915_private *dev_priv, 1558 const struct i915_oa_reg *regs, 1559 u32 n_regs) 1560 { 1561 u32 i; 1562 1563 for (i = 0; i < n_regs; i++) { 1564 const struct i915_oa_reg *reg = regs + i; 1565 1566 I915_WRITE(reg->addr, reg->value); 1567 } 1568 } 1569 1570 static int hsw_enable_metric_set(struct i915_perf_stream *stream) 1571 { 1572 struct drm_i915_private *dev_priv = stream->dev_priv; 1573 const struct i915_oa_config *oa_config = stream->oa_config; 1574 1575 /* PRM: 1576 * 1577 * OA unit is using “crclk” for its functionality. When trunk 1578 * level clock gating takes place, OA clock would be gated, 1579 * unable to count the events from non-render clock domain. 1580 * Render clock gating must be disabled when OA is enabled to 1581 * count the events from non-render domain. Unit level clock 1582 * gating for RCS should also be disabled. 1583 */ 1584 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1585 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1586 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1587 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1588 1589 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1590 1591 /* It apparently takes a fairly long time for a new MUX 1592 * configuration to be be applied after these register writes. 1593 * This delay duration was derived empirically based on the 1594 * render_basic config but hopefully it covers the maximum 1595 * configuration latency. 1596 * 1597 * As a fallback, the checks in _append_oa_reports() to skip 1598 * invalid OA reports do also seem to work to discard reports 1599 * generated before this config has completed - albeit not 1600 * silently. 1601 * 1602 * Unfortunately this is essentially a magic number, since we 1603 * don't currently know of a reliable mechanism for predicting 1604 * how long the MUX config will take to apply and besides 1605 * seeing invalid reports we don't know of a reliable way to 1606 * explicitly check that the MUX config has landed. 1607 * 1608 * It's even possible we've miss characterized the underlying 1609 * problem - it just seems like the simplest explanation why 1610 * a delay at this location would mitigate any invalid reports. 1611 */ 1612 usleep_range(15000, 20000); 1613 1614 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1615 oa_config->b_counter_regs_len); 1616 1617 return 0; 1618 } 1619 1620 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1621 { 1622 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1623 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1624 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1625 GEN7_DOP_CLOCK_GATE_ENABLE)); 1626 1627 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1628 ~GT_NOA_ENABLE)); 1629 } 1630 1631 /* 1632 * NB: It must always remain pointer safe to run this even if the OA unit 1633 * has been disabled. 1634 * 1635 * It's fine to put out-of-date values into these per-context registers 1636 * in the case that the OA unit has been disabled. 1637 */ 1638 static void 1639 gen8_update_reg_state_unlocked(struct intel_context *ce, 1640 u32 *reg_state, 1641 const struct i915_oa_config *oa_config) 1642 { 1643 struct drm_i915_private *i915 = ce->gem_context->i915; 1644 u32 ctx_oactxctrl = i915->perf.oa.ctx_oactxctrl_offset; 1645 u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset; 1646 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1647 i915_reg_t flex_regs[] = { 1648 EU_PERF_CNTL0, 1649 EU_PERF_CNTL1, 1650 EU_PERF_CNTL2, 1651 EU_PERF_CNTL3, 1652 EU_PERF_CNTL4, 1653 EU_PERF_CNTL5, 1654 EU_PERF_CNTL6, 1655 }; 1656 int i; 1657 1658 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL, 1659 (i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1660 (i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1661 GEN8_OA_COUNTER_RESUME); 1662 1663 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) { 1664 u32 state_offset = ctx_flexeu0 + i * 2; 1665 u32 mmio = i915_mmio_reg_offset(flex_regs[i]); 1666 1667 /* 1668 * This arbitrary default will select the 'EU FPU0 Pipeline 1669 * Active' event. In the future it's anticipated that there 1670 * will be an explicit 'No Event' we can select, but not yet... 1671 */ 1672 u32 value = 0; 1673 1674 if (oa_config) { 1675 u32 j; 1676 1677 for (j = 0; j < oa_config->flex_regs_len; j++) { 1678 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1679 value = oa_config->flex_regs[j].value; 1680 break; 1681 } 1682 } 1683 } 1684 1685 CTX_REG(reg_state, state_offset, flex_regs[i], value); 1686 } 1687 1688 CTX_REG(reg_state, 1689 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 1690 intel_sseu_make_rpcs(i915, &ce->sseu)); 1691 } 1692 1693 /* 1694 * Manages updating the per-context aspects of the OA stream 1695 * configuration across all contexts. 1696 * 1697 * The awkward consideration here is that OACTXCONTROL controls the 1698 * exponent for periodic sampling which is primarily used for system 1699 * wide profiling where we'd like a consistent sampling period even in 1700 * the face of context switches. 1701 * 1702 * Our approach of updating the register state context (as opposed to 1703 * say using a workaround batch buffer) ensures that the hardware 1704 * won't automatically reload an out-of-date timer exponent even 1705 * transiently before a WA BB could be parsed. 1706 * 1707 * This function needs to: 1708 * - Ensure the currently running context's per-context OA state is 1709 * updated 1710 * - Ensure that all existing contexts will have the correct per-context 1711 * OA state if they are scheduled for use. 1712 * - Ensure any new contexts will be initialized with the correct 1713 * per-context OA state. 1714 * 1715 * Note: it's only the RCS/Render context that has any OA state. 1716 */ 1717 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv, 1718 const struct i915_oa_config *oa_config) 1719 { 1720 unsigned int map_type = i915_coherent_map_type(dev_priv); 1721 struct i915_gem_context *ctx; 1722 struct i915_request *rq; 1723 int ret; 1724 1725 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1726 1727 /* 1728 * The OA register config is setup through the context image. This image 1729 * might be written to by the GPU on context switch (in particular on 1730 * lite-restore). This means we can't safely update a context's image, 1731 * if this context is scheduled/submitted to run on the GPU. 1732 * 1733 * We could emit the OA register config through the batch buffer but 1734 * this might leave small interval of time where the OA unit is 1735 * configured at an invalid sampling period. 1736 * 1737 * So far the best way to work around this issue seems to be draining 1738 * the GPU from any submitted work. 1739 */ 1740 ret = i915_gem_wait_for_idle(dev_priv, 1741 I915_WAIT_LOCKED, 1742 MAX_SCHEDULE_TIMEOUT); 1743 if (ret) 1744 return ret; 1745 1746 /* Update all contexts now that we've stalled the submission. */ 1747 list_for_each_entry(ctx, &dev_priv->contexts.list, link) { 1748 struct i915_gem_engines_iter it; 1749 struct intel_context *ce; 1750 1751 for_each_gem_engine(ce, 1752 i915_gem_context_lock_engines(ctx), 1753 it) { 1754 u32 *regs; 1755 1756 if (ce->engine->class != RENDER_CLASS) 1757 continue; 1758 1759 /* OA settings will be set upon first use */ 1760 if (!ce->state) 1761 continue; 1762 1763 regs = i915_gem_object_pin_map(ce->state->obj, 1764 map_type); 1765 if (IS_ERR(regs)) { 1766 i915_gem_context_unlock_engines(ctx); 1767 return PTR_ERR(regs); 1768 } 1769 1770 ce->state->obj->mm.dirty = true; 1771 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs); 1772 1773 gen8_update_reg_state_unlocked(ce, regs, oa_config); 1774 1775 i915_gem_object_unpin_map(ce->state->obj); 1776 } 1777 i915_gem_context_unlock_engines(ctx); 1778 } 1779 1780 /* 1781 * Apply the configuration by doing one context restore of the edited 1782 * context image. 1783 */ 1784 rq = i915_request_create(dev_priv->engine[RCS0]->kernel_context); 1785 if (IS_ERR(rq)) 1786 return PTR_ERR(rq); 1787 1788 i915_request_add(rq); 1789 1790 return 0; 1791 } 1792 1793 static int gen8_enable_metric_set(struct i915_perf_stream *stream) 1794 { 1795 struct drm_i915_private *dev_priv = stream->dev_priv; 1796 const struct i915_oa_config *oa_config = stream->oa_config; 1797 int ret; 1798 1799 /* 1800 * We disable slice/unslice clock ratio change reports on SKL since 1801 * they are too noisy. The HW generates a lot of redundant reports 1802 * where the ratio hasn't really changed causing a lot of redundant 1803 * work to processes and increasing the chances we'll hit buffer 1804 * overruns. 1805 * 1806 * Although we don't currently use the 'disable overrun' OABUFFER 1807 * feature it's worth noting that clock ratio reports have to be 1808 * disabled before considering to use that feature since the HW doesn't 1809 * correctly block these reports. 1810 * 1811 * Currently none of the high-level metrics we have depend on knowing 1812 * this ratio to normalize. 1813 * 1814 * Note: This register is not power context saved and restored, but 1815 * that's OK considering that we disable RC6 while the OA unit is 1816 * enabled. 1817 * 1818 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1819 * be read back from automatically triggered reports, as part of the 1820 * RPT_ID field. 1821 */ 1822 if (IS_GEN_RANGE(dev_priv, 9, 11)) { 1823 I915_WRITE(GEN8_OA_DEBUG, 1824 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1825 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1826 } 1827 1828 /* 1829 * Update all contexts prior writing the mux configurations as we need 1830 * to make sure all slices/subslices are ON before writing to NOA 1831 * registers. 1832 */ 1833 ret = gen8_configure_all_contexts(dev_priv, oa_config); 1834 if (ret) 1835 return ret; 1836 1837 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1838 1839 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1840 oa_config->b_counter_regs_len); 1841 1842 return 0; 1843 } 1844 1845 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1846 { 1847 /* Reset all contexts' slices/subslices configurations. */ 1848 gen8_configure_all_contexts(dev_priv, NULL); 1849 1850 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1851 ~GT_NOA_ENABLE)); 1852 } 1853 1854 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv) 1855 { 1856 /* Reset all contexts' slices/subslices configurations. */ 1857 gen8_configure_all_contexts(dev_priv, NULL); 1858 1859 /* Make sure we disable noa to save power. */ 1860 I915_WRITE(RPM_CONFIG1, 1861 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE); 1862 } 1863 1864 static void gen7_oa_enable(struct i915_perf_stream *stream) 1865 { 1866 struct drm_i915_private *dev_priv = stream->dev_priv; 1867 struct i915_gem_context *ctx = stream->ctx; 1868 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1869 bool periodic = dev_priv->perf.oa.periodic; 1870 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1871 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1872 1873 /* 1874 * Reset buf pointers so we don't forward reports from before now. 1875 * 1876 * Think carefully if considering trying to avoid this, since it 1877 * also ensures status flags and the buffer itself are cleared 1878 * in error paths, and we have checks for invalid reports based 1879 * on the assumption that certain fields are written to zeroed 1880 * memory which this helps maintains. 1881 */ 1882 gen7_init_oa_buffer(dev_priv); 1883 1884 I915_WRITE(GEN7_OACONTROL, 1885 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1886 (period_exponent << 1887 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1888 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1889 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1890 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1891 GEN7_OACONTROL_ENABLE); 1892 } 1893 1894 static void gen8_oa_enable(struct i915_perf_stream *stream) 1895 { 1896 struct drm_i915_private *dev_priv = stream->dev_priv; 1897 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1898 1899 /* 1900 * Reset buf pointers so we don't forward reports from before now. 1901 * 1902 * Think carefully if considering trying to avoid this, since it 1903 * also ensures status flags and the buffer itself are cleared 1904 * in error paths, and we have checks for invalid reports based 1905 * on the assumption that certain fields are written to zeroed 1906 * memory which this helps maintains. 1907 */ 1908 gen8_init_oa_buffer(dev_priv); 1909 1910 /* 1911 * Note: we don't rely on the hardware to perform single context 1912 * filtering and instead filter on the cpu based on the context-id 1913 * field of reports 1914 */ 1915 I915_WRITE(GEN8_OACONTROL, (report_format << 1916 GEN8_OA_REPORT_FORMAT_SHIFT) | 1917 GEN8_OA_COUNTER_ENABLE); 1918 } 1919 1920 /** 1921 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1922 * @stream: An i915 perf stream opened for OA metrics 1923 * 1924 * [Re]enables hardware periodic sampling according to the period configured 1925 * when opening the stream. This also starts a hrtimer that will periodically 1926 * check for data in the circular OA buffer for notifying userspace (e.g. 1927 * during a read() or poll()). 1928 */ 1929 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1930 { 1931 struct drm_i915_private *dev_priv = stream->dev_priv; 1932 1933 dev_priv->perf.oa.ops.oa_enable(stream); 1934 1935 if (dev_priv->perf.oa.periodic) 1936 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1937 ns_to_ktime(POLL_PERIOD), 1938 HRTIMER_MODE_REL_PINNED); 1939 } 1940 1941 static void gen7_oa_disable(struct i915_perf_stream *stream) 1942 { 1943 struct intel_uncore *uncore = &stream->dev_priv->uncore; 1944 1945 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 1946 if (intel_wait_for_register(uncore, 1947 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 1948 50)) 1949 DRM_ERROR("wait for OA to be disabled timed out\n"); 1950 } 1951 1952 static void gen8_oa_disable(struct i915_perf_stream *stream) 1953 { 1954 struct intel_uncore *uncore = &stream->dev_priv->uncore; 1955 1956 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 1957 if (intel_wait_for_register(uncore, 1958 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 1959 50)) 1960 DRM_ERROR("wait for OA to be disabled timed out\n"); 1961 } 1962 1963 /** 1964 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1965 * @stream: An i915 perf stream opened for OA metrics 1966 * 1967 * Stops the OA unit from periodically writing counter reports into the 1968 * circular OA buffer. This also stops the hrtimer that periodically checks for 1969 * data in the circular OA buffer, for notifying userspace. 1970 */ 1971 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1972 { 1973 struct drm_i915_private *dev_priv = stream->dev_priv; 1974 1975 dev_priv->perf.oa.ops.oa_disable(stream); 1976 1977 if (dev_priv->perf.oa.periodic) 1978 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1979 } 1980 1981 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1982 .destroy = i915_oa_stream_destroy, 1983 .enable = i915_oa_stream_enable, 1984 .disable = i915_oa_stream_disable, 1985 .wait_unlocked = i915_oa_wait_unlocked, 1986 .poll_wait = i915_oa_poll_wait, 1987 .read = i915_oa_read, 1988 }; 1989 1990 /** 1991 * i915_oa_stream_init - validate combined props for OA stream and init 1992 * @stream: An i915 perf stream 1993 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 1994 * @props: The property state that configures stream (individually validated) 1995 * 1996 * While read_properties_unlocked() validates properties in isolation it 1997 * doesn't ensure that the combination necessarily makes sense. 1998 * 1999 * At this point it has been determined that userspace wants a stream of 2000 * OA metrics, but still we need to further validate the combined 2001 * properties are OK. 2002 * 2003 * If the configuration makes sense then we can allocate memory for 2004 * a circular OA buffer and apply the requested metric set configuration. 2005 * 2006 * Returns: zero on success or a negative error code. 2007 */ 2008 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2009 struct drm_i915_perf_open_param *param, 2010 struct perf_open_properties *props) 2011 { 2012 struct drm_i915_private *dev_priv = stream->dev_priv; 2013 int format_size; 2014 int ret; 2015 2016 /* If the sysfs metrics/ directory wasn't registered for some 2017 * reason then don't let userspace try their luck with config 2018 * IDs 2019 */ 2020 if (!dev_priv->perf.metrics_kobj) { 2021 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2022 return -EINVAL; 2023 } 2024 2025 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2026 DRM_DEBUG("Only OA report sampling supported\n"); 2027 return -EINVAL; 2028 } 2029 2030 if (!dev_priv->perf.oa.ops.enable_metric_set) { 2031 DRM_DEBUG("OA unit not supported\n"); 2032 return -ENODEV; 2033 } 2034 2035 /* To avoid the complexity of having to accurately filter 2036 * counter reports and marshal to the appropriate client 2037 * we currently only allow exclusive access 2038 */ 2039 if (dev_priv->perf.oa.exclusive_stream) { 2040 DRM_DEBUG("OA unit already in use\n"); 2041 return -EBUSY; 2042 } 2043 2044 if (!props->oa_format) { 2045 DRM_DEBUG("OA report format not specified\n"); 2046 return -EINVAL; 2047 } 2048 2049 /* We set up some ratelimit state to potentially throttle any _NOTES 2050 * about spurious, invalid OA reports which we don't forward to 2051 * userspace. 2052 * 2053 * The initialization is associated with opening the stream (not driver 2054 * init) considering we print a _NOTE about any throttling when closing 2055 * the stream instead of waiting until driver _fini which no one would 2056 * ever see. 2057 * 2058 * Using the same limiting factors as printk_ratelimit() 2059 */ 2060 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2061 5 * HZ, 10); 2062 /* Since we use a DRM_NOTE for spurious reports it would be 2063 * inconsistent to let __ratelimit() automatically print a warning for 2064 * throttling. 2065 */ 2066 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2067 RATELIMIT_MSG_ON_RELEASE); 2068 2069 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2070 2071 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2072 2073 stream->sample_flags |= SAMPLE_OA_REPORT; 2074 stream->sample_size += format_size; 2075 2076 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2077 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2078 return -EINVAL; 2079 2080 dev_priv->perf.oa.oa_buffer.format = 2081 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2082 2083 dev_priv->perf.oa.periodic = props->oa_periodic; 2084 if (dev_priv->perf.oa.periodic) 2085 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2086 2087 if (stream->ctx) { 2088 ret = oa_get_render_ctx_id(stream); 2089 if (ret) { 2090 DRM_DEBUG("Invalid context id to filter with\n"); 2091 return ret; 2092 } 2093 } 2094 2095 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2096 if (ret) { 2097 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2098 goto err_config; 2099 } 2100 2101 /* PRM - observability performance counters: 2102 * 2103 * OACONTROL, performance counter enable, note: 2104 * 2105 * "When this bit is set, in order to have coherent counts, 2106 * RC6 power state and trunk clock gating must be disabled. 2107 * This can be achieved by programming MMIO registers as 2108 * 0xA094=0 and 0xA090[31]=1" 2109 * 2110 * In our case we are expecting that taking pm + FORCEWAKE 2111 * references will effectively disable RC6. 2112 */ 2113 stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2114 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); 2115 2116 ret = alloc_oa_buffer(dev_priv); 2117 if (ret) 2118 goto err_oa_buf_alloc; 2119 2120 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2121 if (ret) 2122 goto err_lock; 2123 2124 stream->ops = &i915_oa_stream_ops; 2125 dev_priv->perf.oa.exclusive_stream = stream; 2126 2127 ret = dev_priv->perf.oa.ops.enable_metric_set(stream); 2128 if (ret) { 2129 DRM_DEBUG("Unable to enable metric set\n"); 2130 goto err_enable; 2131 } 2132 2133 mutex_unlock(&dev_priv->drm.struct_mutex); 2134 2135 return 0; 2136 2137 err_enable: 2138 dev_priv->perf.oa.exclusive_stream = NULL; 2139 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2140 mutex_unlock(&dev_priv->drm.struct_mutex); 2141 2142 err_lock: 2143 free_oa_buffer(dev_priv); 2144 2145 err_oa_buf_alloc: 2146 put_oa_config(dev_priv, stream->oa_config); 2147 2148 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 2149 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref); 2150 2151 err_config: 2152 if (stream->ctx) 2153 oa_put_render_ctx_id(stream); 2154 2155 return ret; 2156 } 2157 2158 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2159 struct intel_context *ce, 2160 u32 *regs) 2161 { 2162 struct i915_perf_stream *stream; 2163 2164 if (engine->class != RENDER_CLASS) 2165 return; 2166 2167 stream = engine->i915->perf.oa.exclusive_stream; 2168 if (stream) 2169 gen8_update_reg_state_unlocked(ce, regs, stream->oa_config); 2170 } 2171 2172 /** 2173 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2174 * @stream: An i915 perf stream 2175 * @file: An i915 perf stream file 2176 * @buf: destination buffer given by userspace 2177 * @count: the number of bytes userspace wants to read 2178 * @ppos: (inout) file seek position (unused) 2179 * 2180 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2181 * ensure that if we've successfully copied any data then reporting that takes 2182 * precedence over any internal error status, so the data isn't lost. 2183 * 2184 * For example ret will be -ENOSPC whenever there is more buffered data than 2185 * can be copied to userspace, but that's only interesting if we weren't able 2186 * to copy some data because it implies the userspace buffer is too small to 2187 * receive a single record (and we never split records). 2188 * 2189 * Another case with ret == -EFAULT is more of a grey area since it would seem 2190 * like bad form for userspace to ask us to overrun its buffer, but the user 2191 * knows best: 2192 * 2193 * http://yarchive.net/comp/linux/partial_reads_writes.html 2194 * 2195 * Returns: The number of bytes copied or a negative error code on failure. 2196 */ 2197 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2198 struct file *file, 2199 char __user *buf, 2200 size_t count, 2201 loff_t *ppos) 2202 { 2203 /* Note we keep the offset (aka bytes read) separate from any 2204 * error status so that the final check for whether we return 2205 * the bytes read with a higher precedence than any error (see 2206 * comment below) doesn't need to be handled/duplicated in 2207 * stream->ops->read() implementations. 2208 */ 2209 size_t offset = 0; 2210 int ret = stream->ops->read(stream, buf, count, &offset); 2211 2212 return offset ?: (ret ?: -EAGAIN); 2213 } 2214 2215 /** 2216 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2217 * @file: An i915 perf stream file 2218 * @buf: destination buffer given by userspace 2219 * @count: the number of bytes userspace wants to read 2220 * @ppos: (inout) file seek position (unused) 2221 * 2222 * The entry point for handling a read() on a stream file descriptor from 2223 * userspace. Most of the work is left to the i915_perf_read_locked() and 2224 * &i915_perf_stream_ops->read but to save having stream implementations (of 2225 * which we might have multiple later) we handle blocking read here. 2226 * 2227 * We can also consistently treat trying to read from a disabled stream 2228 * as an IO error so implementations can assume the stream is enabled 2229 * while reading. 2230 * 2231 * Returns: The number of bytes copied or a negative error code on failure. 2232 */ 2233 static ssize_t i915_perf_read(struct file *file, 2234 char __user *buf, 2235 size_t count, 2236 loff_t *ppos) 2237 { 2238 struct i915_perf_stream *stream = file->private_data; 2239 struct drm_i915_private *dev_priv = stream->dev_priv; 2240 ssize_t ret; 2241 2242 /* To ensure it's handled consistently we simply treat all reads of a 2243 * disabled stream as an error. In particular it might otherwise lead 2244 * to a deadlock for blocking file descriptors... 2245 */ 2246 if (!stream->enabled) 2247 return -EIO; 2248 2249 if (!(file->f_flags & O_NONBLOCK)) { 2250 /* There's the small chance of false positives from 2251 * stream->ops->wait_unlocked. 2252 * 2253 * E.g. with single context filtering since we only wait until 2254 * oabuffer has >= 1 report we don't immediately know whether 2255 * any reports really belong to the current context 2256 */ 2257 do { 2258 ret = stream->ops->wait_unlocked(stream); 2259 if (ret) 2260 return ret; 2261 2262 mutex_lock(&dev_priv->perf.lock); 2263 ret = i915_perf_read_locked(stream, file, 2264 buf, count, ppos); 2265 mutex_unlock(&dev_priv->perf.lock); 2266 } while (ret == -EAGAIN); 2267 } else { 2268 mutex_lock(&dev_priv->perf.lock); 2269 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2270 mutex_unlock(&dev_priv->perf.lock); 2271 } 2272 2273 /* We allow the poll checking to sometimes report false positive EPOLLIN 2274 * events where we might actually report EAGAIN on read() if there's 2275 * not really any data available. In this situation though we don't 2276 * want to enter a busy loop between poll() reporting a EPOLLIN event 2277 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2278 * effectively ensures we back off until the next hrtimer callback 2279 * before reporting another EPOLLIN event. 2280 */ 2281 if (ret >= 0 || ret == -EAGAIN) { 2282 /* Maybe make ->pollin per-stream state if we support multiple 2283 * concurrent streams in the future. 2284 */ 2285 dev_priv->perf.oa.pollin = false; 2286 } 2287 2288 return ret; 2289 } 2290 2291 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2292 { 2293 struct drm_i915_private *dev_priv = 2294 container_of(hrtimer, typeof(*dev_priv), 2295 perf.oa.poll_check_timer); 2296 2297 if (oa_buffer_check_unlocked(dev_priv)) { 2298 dev_priv->perf.oa.pollin = true; 2299 wake_up(&dev_priv->perf.oa.poll_wq); 2300 } 2301 2302 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2303 2304 return HRTIMER_RESTART; 2305 } 2306 2307 /** 2308 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2309 * @dev_priv: i915 device instance 2310 * @stream: An i915 perf stream 2311 * @file: An i915 perf stream file 2312 * @wait: poll() state table 2313 * 2314 * For handling userspace polling on an i915 perf stream, this calls through to 2315 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2316 * will be woken for new stream data. 2317 * 2318 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2319 * with any non-file-operation driver hooks. 2320 * 2321 * Returns: any poll events that are ready without sleeping 2322 */ 2323 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2324 struct i915_perf_stream *stream, 2325 struct file *file, 2326 poll_table *wait) 2327 { 2328 __poll_t events = 0; 2329 2330 stream->ops->poll_wait(stream, file, wait); 2331 2332 /* Note: we don't explicitly check whether there's something to read 2333 * here since this path may be very hot depending on what else 2334 * userspace is polling, or on the timeout in use. We rely solely on 2335 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2336 * samples to read. 2337 */ 2338 if (dev_priv->perf.oa.pollin) 2339 events |= EPOLLIN; 2340 2341 return events; 2342 } 2343 2344 /** 2345 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2346 * @file: An i915 perf stream file 2347 * @wait: poll() state table 2348 * 2349 * For handling userspace polling on an i915 perf stream, this ensures 2350 * poll_wait() gets called with a wait queue that will be woken for new stream 2351 * data. 2352 * 2353 * Note: Implementation deferred to i915_perf_poll_locked() 2354 * 2355 * Returns: any poll events that are ready without sleeping 2356 */ 2357 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 2358 { 2359 struct i915_perf_stream *stream = file->private_data; 2360 struct drm_i915_private *dev_priv = stream->dev_priv; 2361 __poll_t ret; 2362 2363 mutex_lock(&dev_priv->perf.lock); 2364 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2365 mutex_unlock(&dev_priv->perf.lock); 2366 2367 return ret; 2368 } 2369 2370 /** 2371 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2372 * @stream: A disabled i915 perf stream 2373 * 2374 * [Re]enables the associated capture of data for this stream. 2375 * 2376 * If a stream was previously enabled then there's currently no intention 2377 * to provide userspace any guarantee about the preservation of previously 2378 * buffered data. 2379 */ 2380 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2381 { 2382 if (stream->enabled) 2383 return; 2384 2385 /* Allow stream->ops->enable() to refer to this */ 2386 stream->enabled = true; 2387 2388 if (stream->ops->enable) 2389 stream->ops->enable(stream); 2390 } 2391 2392 /** 2393 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2394 * @stream: An enabled i915 perf stream 2395 * 2396 * Disables the associated capture of data for this stream. 2397 * 2398 * The intention is that disabling an re-enabling a stream will ideally be 2399 * cheaper than destroying and re-opening a stream with the same configuration, 2400 * though there are no formal guarantees about what state or buffered data 2401 * must be retained between disabling and re-enabling a stream. 2402 * 2403 * Note: while a stream is disabled it's considered an error for userspace 2404 * to attempt to read from the stream (-EIO). 2405 */ 2406 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2407 { 2408 if (!stream->enabled) 2409 return; 2410 2411 /* Allow stream->ops->disable() to refer to this */ 2412 stream->enabled = false; 2413 2414 if (stream->ops->disable) 2415 stream->ops->disable(stream); 2416 } 2417 2418 /** 2419 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2420 * @stream: An i915 perf stream 2421 * @cmd: the ioctl request 2422 * @arg: the ioctl data 2423 * 2424 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2425 * with any non-file-operation driver hooks. 2426 * 2427 * Returns: zero on success or a negative error code. Returns -EINVAL for 2428 * an unknown ioctl request. 2429 */ 2430 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2431 unsigned int cmd, 2432 unsigned long arg) 2433 { 2434 switch (cmd) { 2435 case I915_PERF_IOCTL_ENABLE: 2436 i915_perf_enable_locked(stream); 2437 return 0; 2438 case I915_PERF_IOCTL_DISABLE: 2439 i915_perf_disable_locked(stream); 2440 return 0; 2441 } 2442 2443 return -EINVAL; 2444 } 2445 2446 /** 2447 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2448 * @file: An i915 perf stream file 2449 * @cmd: the ioctl request 2450 * @arg: the ioctl data 2451 * 2452 * Implementation deferred to i915_perf_ioctl_locked(). 2453 * 2454 * Returns: zero on success or a negative error code. Returns -EINVAL for 2455 * an unknown ioctl request. 2456 */ 2457 static long i915_perf_ioctl(struct file *file, 2458 unsigned int cmd, 2459 unsigned long arg) 2460 { 2461 struct i915_perf_stream *stream = file->private_data; 2462 struct drm_i915_private *dev_priv = stream->dev_priv; 2463 long ret; 2464 2465 mutex_lock(&dev_priv->perf.lock); 2466 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2467 mutex_unlock(&dev_priv->perf.lock); 2468 2469 return ret; 2470 } 2471 2472 /** 2473 * i915_perf_destroy_locked - destroy an i915 perf stream 2474 * @stream: An i915 perf stream 2475 * 2476 * Frees all resources associated with the given i915 perf @stream, disabling 2477 * any associated data capture in the process. 2478 * 2479 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2480 * with any non-file-operation driver hooks. 2481 */ 2482 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2483 { 2484 if (stream->enabled) 2485 i915_perf_disable_locked(stream); 2486 2487 if (stream->ops->destroy) 2488 stream->ops->destroy(stream); 2489 2490 list_del(&stream->link); 2491 2492 if (stream->ctx) 2493 i915_gem_context_put(stream->ctx); 2494 2495 kfree(stream); 2496 } 2497 2498 /** 2499 * i915_perf_release - handles userspace close() of a stream file 2500 * @inode: anonymous inode associated with file 2501 * @file: An i915 perf stream file 2502 * 2503 * Cleans up any resources associated with an open i915 perf stream file. 2504 * 2505 * NB: close() can't really fail from the userspace point of view. 2506 * 2507 * Returns: zero on success or a negative error code. 2508 */ 2509 static int i915_perf_release(struct inode *inode, struct file *file) 2510 { 2511 struct i915_perf_stream *stream = file->private_data; 2512 struct drm_i915_private *dev_priv = stream->dev_priv; 2513 2514 mutex_lock(&dev_priv->perf.lock); 2515 i915_perf_destroy_locked(stream); 2516 mutex_unlock(&dev_priv->perf.lock); 2517 2518 return 0; 2519 } 2520 2521 2522 static const struct file_operations fops = { 2523 .owner = THIS_MODULE, 2524 .llseek = no_llseek, 2525 .release = i915_perf_release, 2526 .poll = i915_perf_poll, 2527 .read = i915_perf_read, 2528 .unlocked_ioctl = i915_perf_ioctl, 2529 /* Our ioctl have no arguments, so it's safe to use the same function 2530 * to handle 32bits compatibility. 2531 */ 2532 .compat_ioctl = i915_perf_ioctl, 2533 }; 2534 2535 2536 /** 2537 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2538 * @dev_priv: i915 device instance 2539 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2540 * @props: individually validated u64 property value pairs 2541 * @file: drm file 2542 * 2543 * See i915_perf_ioctl_open() for interface details. 2544 * 2545 * Implements further stream config validation and stream initialization on 2546 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2547 * taken to serialize with any non-file-operation driver hooks. 2548 * 2549 * Note: at this point the @props have only been validated in isolation and 2550 * it's still necessary to validate that the combination of properties makes 2551 * sense. 2552 * 2553 * In the case where userspace is interested in OA unit metrics then further 2554 * config validation and stream initialization details will be handled by 2555 * i915_oa_stream_init(). The code here should only validate config state that 2556 * will be relevant to all stream types / backends. 2557 * 2558 * Returns: zero on success or a negative error code. 2559 */ 2560 static int 2561 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2562 struct drm_i915_perf_open_param *param, 2563 struct perf_open_properties *props, 2564 struct drm_file *file) 2565 { 2566 struct i915_gem_context *specific_ctx = NULL; 2567 struct i915_perf_stream *stream = NULL; 2568 unsigned long f_flags = 0; 2569 bool privileged_op = true; 2570 int stream_fd; 2571 int ret; 2572 2573 if (props->single_context) { 2574 u32 ctx_handle = props->ctx_handle; 2575 struct drm_i915_file_private *file_priv = file->driver_priv; 2576 2577 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2578 if (!specific_ctx) { 2579 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2580 ctx_handle); 2581 ret = -ENOENT; 2582 goto err; 2583 } 2584 } 2585 2586 /* 2587 * On Haswell the OA unit supports clock gating off for a specific 2588 * context and in this mode there's no visibility of metrics for the 2589 * rest of the system, which we consider acceptable for a 2590 * non-privileged client. 2591 * 2592 * For Gen8+ the OA unit no longer supports clock gating off for a 2593 * specific context and the kernel can't securely stop the counters 2594 * from updating as system-wide / global values. Even though we can 2595 * filter reports based on the included context ID we can't block 2596 * clients from seeing the raw / global counter values via 2597 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2598 * enable the OA unit by default. 2599 */ 2600 if (IS_HASWELL(dev_priv) && specific_ctx) 2601 privileged_op = false; 2602 2603 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2604 * we check a dev.i915.perf_stream_paranoid sysctl option 2605 * to determine if it's ok to access system wide OA counters 2606 * without CAP_SYS_ADMIN privileges. 2607 */ 2608 if (privileged_op && 2609 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2610 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2611 ret = -EACCES; 2612 goto err_ctx; 2613 } 2614 2615 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2616 if (!stream) { 2617 ret = -ENOMEM; 2618 goto err_ctx; 2619 } 2620 2621 stream->dev_priv = dev_priv; 2622 stream->ctx = specific_ctx; 2623 2624 ret = i915_oa_stream_init(stream, param, props); 2625 if (ret) 2626 goto err_alloc; 2627 2628 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2629 * to have _stream_init check the combination of sample flags more 2630 * thoroughly, but still this is the expected result at this point. 2631 */ 2632 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2633 ret = -ENODEV; 2634 goto err_flags; 2635 } 2636 2637 list_add(&stream->link, &dev_priv->perf.streams); 2638 2639 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2640 f_flags |= O_CLOEXEC; 2641 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2642 f_flags |= O_NONBLOCK; 2643 2644 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2645 if (stream_fd < 0) { 2646 ret = stream_fd; 2647 goto err_open; 2648 } 2649 2650 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2651 i915_perf_enable_locked(stream); 2652 2653 return stream_fd; 2654 2655 err_open: 2656 list_del(&stream->link); 2657 err_flags: 2658 if (stream->ops->destroy) 2659 stream->ops->destroy(stream); 2660 err_alloc: 2661 kfree(stream); 2662 err_ctx: 2663 if (specific_ctx) 2664 i915_gem_context_put(specific_ctx); 2665 err: 2666 return ret; 2667 } 2668 2669 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2670 { 2671 return div64_u64(1000000000ULL * (2ULL << exponent), 2672 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz); 2673 } 2674 2675 /** 2676 * read_properties_unlocked - validate + copy userspace stream open properties 2677 * @dev_priv: i915 device instance 2678 * @uprops: The array of u64 key value pairs given by userspace 2679 * @n_props: The number of key value pairs expected in @uprops 2680 * @props: The stream configuration built up while validating properties 2681 * 2682 * Note this function only validates properties in isolation it doesn't 2683 * validate that the combination of properties makes sense or that all 2684 * properties necessary for a particular kind of stream have been set. 2685 * 2686 * Note that there currently aren't any ordering requirements for properties so 2687 * we shouldn't validate or assume anything about ordering here. This doesn't 2688 * rule out defining new properties with ordering requirements in the future. 2689 */ 2690 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2691 u64 __user *uprops, 2692 u32 n_props, 2693 struct perf_open_properties *props) 2694 { 2695 u64 __user *uprop = uprops; 2696 u32 i; 2697 2698 memset(props, 0, sizeof(struct perf_open_properties)); 2699 2700 if (!n_props) { 2701 DRM_DEBUG("No i915 perf properties given\n"); 2702 return -EINVAL; 2703 } 2704 2705 /* Considering that ID = 0 is reserved and assuming that we don't 2706 * (currently) expect any configurations to ever specify duplicate 2707 * values for a particular property ID then the last _PROP_MAX value is 2708 * one greater than the maximum number of properties we expect to get 2709 * from userspace. 2710 */ 2711 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2712 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2713 return -EINVAL; 2714 } 2715 2716 for (i = 0; i < n_props; i++) { 2717 u64 oa_period, oa_freq_hz; 2718 u64 id, value; 2719 int ret; 2720 2721 ret = get_user(id, uprop); 2722 if (ret) 2723 return ret; 2724 2725 ret = get_user(value, uprop + 1); 2726 if (ret) 2727 return ret; 2728 2729 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2730 DRM_DEBUG("Unknown i915 perf property ID\n"); 2731 return -EINVAL; 2732 } 2733 2734 switch ((enum drm_i915_perf_property_id)id) { 2735 case DRM_I915_PERF_PROP_CTX_HANDLE: 2736 props->single_context = 1; 2737 props->ctx_handle = value; 2738 break; 2739 case DRM_I915_PERF_PROP_SAMPLE_OA: 2740 if (value) 2741 props->sample_flags |= SAMPLE_OA_REPORT; 2742 break; 2743 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2744 if (value == 0) { 2745 DRM_DEBUG("Unknown OA metric set ID\n"); 2746 return -EINVAL; 2747 } 2748 props->metrics_set = value; 2749 break; 2750 case DRM_I915_PERF_PROP_OA_FORMAT: 2751 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2752 DRM_DEBUG("Out-of-range OA report format %llu\n", 2753 value); 2754 return -EINVAL; 2755 } 2756 if (!dev_priv->perf.oa.oa_formats[value].size) { 2757 DRM_DEBUG("Unsupported OA report format %llu\n", 2758 value); 2759 return -EINVAL; 2760 } 2761 props->oa_format = value; 2762 break; 2763 case DRM_I915_PERF_PROP_OA_EXPONENT: 2764 if (value > OA_EXPONENT_MAX) { 2765 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2766 OA_EXPONENT_MAX); 2767 return -EINVAL; 2768 } 2769 2770 /* Theoretically we can program the OA unit to sample 2771 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2772 * for BXT. We don't allow such high sampling 2773 * frequencies by default unless root. 2774 */ 2775 2776 BUILD_BUG_ON(sizeof(oa_period) != 8); 2777 oa_period = oa_exponent_to_ns(dev_priv, value); 2778 2779 /* This check is primarily to ensure that oa_period <= 2780 * UINT32_MAX (before passing to do_div which only 2781 * accepts a u32 denominator), but we can also skip 2782 * checking anything < 1Hz which implicitly can't be 2783 * limited via an integer oa_max_sample_rate. 2784 */ 2785 if (oa_period <= NSEC_PER_SEC) { 2786 u64 tmp = NSEC_PER_SEC; 2787 do_div(tmp, oa_period); 2788 oa_freq_hz = tmp; 2789 } else 2790 oa_freq_hz = 0; 2791 2792 if (oa_freq_hz > i915_oa_max_sample_rate && 2793 !capable(CAP_SYS_ADMIN)) { 2794 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2795 i915_oa_max_sample_rate); 2796 return -EACCES; 2797 } 2798 2799 props->oa_periodic = true; 2800 props->oa_period_exponent = value; 2801 break; 2802 case DRM_I915_PERF_PROP_MAX: 2803 MISSING_CASE(id); 2804 return -EINVAL; 2805 } 2806 2807 uprop += 2; 2808 } 2809 2810 return 0; 2811 } 2812 2813 /** 2814 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2815 * @dev: drm device 2816 * @data: ioctl data copied from userspace (unvalidated) 2817 * @file: drm file 2818 * 2819 * Validates the stream open parameters given by userspace including flags 2820 * and an array of u64 key, value pair properties. 2821 * 2822 * Very little is assumed up front about the nature of the stream being 2823 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2824 * i915-perf stream is expected to be a suitable interface for other forms of 2825 * buffered data written by the GPU besides periodic OA metrics. 2826 * 2827 * Note we copy the properties from userspace outside of the i915 perf 2828 * mutex to avoid an awkward lockdep with mmap_sem. 2829 * 2830 * Most of the implementation details are handled by 2831 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2832 * mutex for serializing with any non-file-operation driver hooks. 2833 * 2834 * Return: A newly opened i915 Perf stream file descriptor or negative 2835 * error code on failure. 2836 */ 2837 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2838 struct drm_file *file) 2839 { 2840 struct drm_i915_private *dev_priv = dev->dev_private; 2841 struct drm_i915_perf_open_param *param = data; 2842 struct perf_open_properties props; 2843 u32 known_open_flags; 2844 int ret; 2845 2846 if (!dev_priv->perf.initialized) { 2847 DRM_DEBUG("i915 perf interface not available for this system\n"); 2848 return -ENOTSUPP; 2849 } 2850 2851 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 2852 I915_PERF_FLAG_FD_NONBLOCK | 2853 I915_PERF_FLAG_DISABLED; 2854 if (param->flags & ~known_open_flags) { 2855 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 2856 return -EINVAL; 2857 } 2858 2859 ret = read_properties_unlocked(dev_priv, 2860 u64_to_user_ptr(param->properties_ptr), 2861 param->num_properties, 2862 &props); 2863 if (ret) 2864 return ret; 2865 2866 mutex_lock(&dev_priv->perf.lock); 2867 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 2868 mutex_unlock(&dev_priv->perf.lock); 2869 2870 return ret; 2871 } 2872 2873 /** 2874 * i915_perf_register - exposes i915-perf to userspace 2875 * @dev_priv: i915 device instance 2876 * 2877 * In particular OA metric sets are advertised under a sysfs metrics/ 2878 * directory allowing userspace to enumerate valid IDs that can be 2879 * used to open an i915-perf stream. 2880 */ 2881 void i915_perf_register(struct drm_i915_private *dev_priv) 2882 { 2883 int ret; 2884 2885 if (!dev_priv->perf.initialized) 2886 return; 2887 2888 /* To be sure we're synchronized with an attempted 2889 * i915_perf_open_ioctl(); considering that we register after 2890 * being exposed to userspace. 2891 */ 2892 mutex_lock(&dev_priv->perf.lock); 2893 2894 dev_priv->perf.metrics_kobj = 2895 kobject_create_and_add("metrics", 2896 &dev_priv->drm.primary->kdev->kobj); 2897 if (!dev_priv->perf.metrics_kobj) 2898 goto exit; 2899 2900 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 2901 2902 if (INTEL_GEN(dev_priv) >= 11) { 2903 i915_perf_load_test_config_icl(dev_priv); 2904 } else if (IS_CANNONLAKE(dev_priv)) { 2905 i915_perf_load_test_config_cnl(dev_priv); 2906 } else if (IS_COFFEELAKE(dev_priv)) { 2907 if (IS_CFL_GT2(dev_priv)) 2908 i915_perf_load_test_config_cflgt2(dev_priv); 2909 if (IS_CFL_GT3(dev_priv)) 2910 i915_perf_load_test_config_cflgt3(dev_priv); 2911 } else if (IS_GEMINILAKE(dev_priv)) { 2912 i915_perf_load_test_config_glk(dev_priv); 2913 } else if (IS_KABYLAKE(dev_priv)) { 2914 if (IS_KBL_GT2(dev_priv)) 2915 i915_perf_load_test_config_kblgt2(dev_priv); 2916 else if (IS_KBL_GT3(dev_priv)) 2917 i915_perf_load_test_config_kblgt3(dev_priv); 2918 } else if (IS_BROXTON(dev_priv)) { 2919 i915_perf_load_test_config_bxt(dev_priv); 2920 } else if (IS_SKYLAKE(dev_priv)) { 2921 if (IS_SKL_GT2(dev_priv)) 2922 i915_perf_load_test_config_sklgt2(dev_priv); 2923 else if (IS_SKL_GT3(dev_priv)) 2924 i915_perf_load_test_config_sklgt3(dev_priv); 2925 else if (IS_SKL_GT4(dev_priv)) 2926 i915_perf_load_test_config_sklgt4(dev_priv); 2927 } else if (IS_CHERRYVIEW(dev_priv)) { 2928 i915_perf_load_test_config_chv(dev_priv); 2929 } else if (IS_BROADWELL(dev_priv)) { 2930 i915_perf_load_test_config_bdw(dev_priv); 2931 } else if (IS_HASWELL(dev_priv)) { 2932 i915_perf_load_test_config_hsw(dev_priv); 2933 } 2934 2935 if (dev_priv->perf.oa.test_config.id == 0) 2936 goto sysfs_error; 2937 2938 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 2939 &dev_priv->perf.oa.test_config.sysfs_metric); 2940 if (ret) 2941 goto sysfs_error; 2942 2943 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 2944 2945 goto exit; 2946 2947 sysfs_error: 2948 kobject_put(dev_priv->perf.metrics_kobj); 2949 dev_priv->perf.metrics_kobj = NULL; 2950 2951 exit: 2952 mutex_unlock(&dev_priv->perf.lock); 2953 } 2954 2955 /** 2956 * i915_perf_unregister - hide i915-perf from userspace 2957 * @dev_priv: i915 device instance 2958 * 2959 * i915-perf state cleanup is split up into an 'unregister' and 2960 * 'deinit' phase where the interface is first hidden from 2961 * userspace by i915_perf_unregister() before cleaning up 2962 * remaining state in i915_perf_fini(). 2963 */ 2964 void i915_perf_unregister(struct drm_i915_private *dev_priv) 2965 { 2966 if (!dev_priv->perf.metrics_kobj) 2967 return; 2968 2969 sysfs_remove_group(dev_priv->perf.metrics_kobj, 2970 &dev_priv->perf.oa.test_config.sysfs_metric); 2971 2972 kobject_put(dev_priv->perf.metrics_kobj); 2973 dev_priv->perf.metrics_kobj = NULL; 2974 } 2975 2976 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 2977 { 2978 static const i915_reg_t flex_eu_regs[] = { 2979 EU_PERF_CNTL0, 2980 EU_PERF_CNTL1, 2981 EU_PERF_CNTL2, 2982 EU_PERF_CNTL3, 2983 EU_PERF_CNTL4, 2984 EU_PERF_CNTL5, 2985 EU_PERF_CNTL6, 2986 }; 2987 int i; 2988 2989 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 2990 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 2991 return true; 2992 } 2993 return false; 2994 } 2995 2996 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 2997 { 2998 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) && 2999 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) || 3000 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) && 3001 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) || 3002 (addr >= i915_mmio_reg_offset(OACEC0_0) && 3003 addr <= i915_mmio_reg_offset(OACEC7_1)); 3004 } 3005 3006 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3007 { 3008 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) || 3009 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) && 3010 addr <= i915_mmio_reg_offset(NOA_WRITE)) || 3011 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) && 3012 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) || 3013 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) && 3014 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI)); 3015 } 3016 3017 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3018 { 3019 return gen7_is_valid_mux_addr(dev_priv, addr) || 3020 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) || 3021 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) && 3022 addr <= i915_mmio_reg_offset(NOA_CONFIG(8))); 3023 } 3024 3025 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3026 { 3027 return gen8_is_valid_mux_addr(dev_priv, addr) || 3028 addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) || 3029 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) && 3030 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI)); 3031 } 3032 3033 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3034 { 3035 return gen7_is_valid_mux_addr(dev_priv, addr) || 3036 (addr >= 0x25100 && addr <= 0x2FF90) || 3037 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) && 3038 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) || 3039 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0); 3040 } 3041 3042 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3043 { 3044 return gen7_is_valid_mux_addr(dev_priv, addr) || 3045 (addr >= 0x182300 && addr <= 0x1823A4); 3046 } 3047 3048 static u32 mask_reg_value(u32 reg, u32 val) 3049 { 3050 /* HALF_SLICE_CHICKEN2 is programmed with a the 3051 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3052 * programmed by userspace doesn't change this. 3053 */ 3054 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg) 3055 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3056 3057 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3058 * indicated by its name and a bunch of selection fields used by OA 3059 * configs. 3060 */ 3061 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg) 3062 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3063 3064 return val; 3065 } 3066 3067 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3068 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3069 u32 __user *regs, 3070 u32 n_regs) 3071 { 3072 struct i915_oa_reg *oa_regs; 3073 int err; 3074 u32 i; 3075 3076 if (!n_regs) 3077 return NULL; 3078 3079 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3080 return ERR_PTR(-EFAULT); 3081 3082 /* No is_valid function means we're not allowing any register to be programmed. */ 3083 GEM_BUG_ON(!is_valid); 3084 if (!is_valid) 3085 return ERR_PTR(-EINVAL); 3086 3087 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3088 if (!oa_regs) 3089 return ERR_PTR(-ENOMEM); 3090 3091 for (i = 0; i < n_regs; i++) { 3092 u32 addr, value; 3093 3094 err = get_user(addr, regs); 3095 if (err) 3096 goto addr_err; 3097 3098 if (!is_valid(dev_priv, addr)) { 3099 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3100 err = -EINVAL; 3101 goto addr_err; 3102 } 3103 3104 err = get_user(value, regs + 1); 3105 if (err) 3106 goto addr_err; 3107 3108 oa_regs[i].addr = _MMIO(addr); 3109 oa_regs[i].value = mask_reg_value(addr, value); 3110 3111 regs += 2; 3112 } 3113 3114 return oa_regs; 3115 3116 addr_err: 3117 kfree(oa_regs); 3118 return ERR_PTR(err); 3119 } 3120 3121 static ssize_t show_dynamic_id(struct device *dev, 3122 struct device_attribute *attr, 3123 char *buf) 3124 { 3125 struct i915_oa_config *oa_config = 3126 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3127 3128 return sprintf(buf, "%d\n", oa_config->id); 3129 } 3130 3131 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3132 struct i915_oa_config *oa_config) 3133 { 3134 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3135 oa_config->sysfs_metric_id.attr.name = "id"; 3136 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3137 oa_config->sysfs_metric_id.show = show_dynamic_id; 3138 oa_config->sysfs_metric_id.store = NULL; 3139 3140 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3141 oa_config->attrs[1] = NULL; 3142 3143 oa_config->sysfs_metric.name = oa_config->uuid; 3144 oa_config->sysfs_metric.attrs = oa_config->attrs; 3145 3146 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3147 &oa_config->sysfs_metric); 3148 } 3149 3150 /** 3151 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3152 * @dev: drm device 3153 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3154 * userspace (unvalidated) 3155 * @file: drm file 3156 * 3157 * Validates the submitted OA register to be saved into a new OA config that 3158 * can then be used for programming the OA unit and its NOA network. 3159 * 3160 * Returns: A new allocated config number to be used with the perf open ioctl 3161 * or a negative error code on failure. 3162 */ 3163 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3164 struct drm_file *file) 3165 { 3166 struct drm_i915_private *dev_priv = dev->dev_private; 3167 struct drm_i915_perf_oa_config *args = data; 3168 struct i915_oa_config *oa_config, *tmp; 3169 int err, id; 3170 3171 if (!dev_priv->perf.initialized) { 3172 DRM_DEBUG("i915 perf interface not available for this system\n"); 3173 return -ENOTSUPP; 3174 } 3175 3176 if (!dev_priv->perf.metrics_kobj) { 3177 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3178 return -EINVAL; 3179 } 3180 3181 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3182 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3183 return -EACCES; 3184 } 3185 3186 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3187 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3188 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3189 DRM_DEBUG("No OA registers given\n"); 3190 return -EINVAL; 3191 } 3192 3193 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3194 if (!oa_config) { 3195 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3196 return -ENOMEM; 3197 } 3198 3199 atomic_set(&oa_config->ref_count, 1); 3200 3201 if (!uuid_is_valid(args->uuid)) { 3202 DRM_DEBUG("Invalid uuid format for OA config\n"); 3203 err = -EINVAL; 3204 goto reg_err; 3205 } 3206 3207 /* Last character in oa_config->uuid will be 0 because oa_config is 3208 * kzalloc. 3209 */ 3210 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3211 3212 oa_config->mux_regs_len = args->n_mux_regs; 3213 oa_config->mux_regs = 3214 alloc_oa_regs(dev_priv, 3215 dev_priv->perf.oa.ops.is_valid_mux_reg, 3216 u64_to_user_ptr(args->mux_regs_ptr), 3217 args->n_mux_regs); 3218 3219 if (IS_ERR(oa_config->mux_regs)) { 3220 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3221 err = PTR_ERR(oa_config->mux_regs); 3222 goto reg_err; 3223 } 3224 3225 oa_config->b_counter_regs_len = args->n_boolean_regs; 3226 oa_config->b_counter_regs = 3227 alloc_oa_regs(dev_priv, 3228 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3229 u64_to_user_ptr(args->boolean_regs_ptr), 3230 args->n_boolean_regs); 3231 3232 if (IS_ERR(oa_config->b_counter_regs)) { 3233 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3234 err = PTR_ERR(oa_config->b_counter_regs); 3235 goto reg_err; 3236 } 3237 3238 if (INTEL_GEN(dev_priv) < 8) { 3239 if (args->n_flex_regs != 0) { 3240 err = -EINVAL; 3241 goto reg_err; 3242 } 3243 } else { 3244 oa_config->flex_regs_len = args->n_flex_regs; 3245 oa_config->flex_regs = 3246 alloc_oa_regs(dev_priv, 3247 dev_priv->perf.oa.ops.is_valid_flex_reg, 3248 u64_to_user_ptr(args->flex_regs_ptr), 3249 args->n_flex_regs); 3250 3251 if (IS_ERR(oa_config->flex_regs)) { 3252 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3253 err = PTR_ERR(oa_config->flex_regs); 3254 goto reg_err; 3255 } 3256 } 3257 3258 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3259 if (err) 3260 goto reg_err; 3261 3262 /* We shouldn't have too many configs, so this iteration shouldn't be 3263 * too costly. 3264 */ 3265 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3266 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3267 DRM_DEBUG("OA config already exists with this uuid\n"); 3268 err = -EADDRINUSE; 3269 goto sysfs_err; 3270 } 3271 } 3272 3273 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3274 if (err) { 3275 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3276 goto sysfs_err; 3277 } 3278 3279 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3280 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3281 oa_config, 2, 3282 0, GFP_KERNEL); 3283 if (oa_config->id < 0) { 3284 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3285 err = oa_config->id; 3286 goto sysfs_err; 3287 } 3288 3289 mutex_unlock(&dev_priv->perf.metrics_lock); 3290 3291 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 3292 3293 return oa_config->id; 3294 3295 sysfs_err: 3296 mutex_unlock(&dev_priv->perf.metrics_lock); 3297 reg_err: 3298 put_oa_config(dev_priv, oa_config); 3299 DRM_DEBUG("Failed to add new OA config\n"); 3300 return err; 3301 } 3302 3303 /** 3304 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3305 * @dev: drm device 3306 * @data: ioctl data (pointer to u64 integer) copied from userspace 3307 * @file: drm file 3308 * 3309 * Configs can be removed while being used, the will stop appearing in sysfs 3310 * and their content will be freed when the stream using the config is closed. 3311 * 3312 * Returns: 0 on success or a negative error code on failure. 3313 */ 3314 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3315 struct drm_file *file) 3316 { 3317 struct drm_i915_private *dev_priv = dev->dev_private; 3318 u64 *arg = data; 3319 struct i915_oa_config *oa_config; 3320 int ret; 3321 3322 if (!dev_priv->perf.initialized) { 3323 DRM_DEBUG("i915 perf interface not available for this system\n"); 3324 return -ENOTSUPP; 3325 } 3326 3327 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3328 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3329 return -EACCES; 3330 } 3331 3332 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3333 if (ret) 3334 goto lock_err; 3335 3336 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3337 if (!oa_config) { 3338 DRM_DEBUG("Failed to remove unknown OA config\n"); 3339 ret = -ENOENT; 3340 goto config_err; 3341 } 3342 3343 GEM_BUG_ON(*arg != oa_config->id); 3344 3345 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3346 &oa_config->sysfs_metric); 3347 3348 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3349 3350 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 3351 3352 put_oa_config(dev_priv, oa_config); 3353 3354 config_err: 3355 mutex_unlock(&dev_priv->perf.metrics_lock); 3356 lock_err: 3357 return ret; 3358 } 3359 3360 static struct ctl_table oa_table[] = { 3361 { 3362 .procname = "perf_stream_paranoid", 3363 .data = &i915_perf_stream_paranoid, 3364 .maxlen = sizeof(i915_perf_stream_paranoid), 3365 .mode = 0644, 3366 .proc_handler = proc_dointvec_minmax, 3367 .extra1 = SYSCTL_ZERO, 3368 .extra2 = SYSCTL_ONE, 3369 }, 3370 { 3371 .procname = "oa_max_sample_rate", 3372 .data = &i915_oa_max_sample_rate, 3373 .maxlen = sizeof(i915_oa_max_sample_rate), 3374 .mode = 0644, 3375 .proc_handler = proc_dointvec_minmax, 3376 .extra1 = SYSCTL_ZERO, 3377 .extra2 = &oa_sample_rate_hard_limit, 3378 }, 3379 {} 3380 }; 3381 3382 static struct ctl_table i915_root[] = { 3383 { 3384 .procname = "i915", 3385 .maxlen = 0, 3386 .mode = 0555, 3387 .child = oa_table, 3388 }, 3389 {} 3390 }; 3391 3392 static struct ctl_table dev_root[] = { 3393 { 3394 .procname = "dev", 3395 .maxlen = 0, 3396 .mode = 0555, 3397 .child = i915_root, 3398 }, 3399 {} 3400 }; 3401 3402 /** 3403 * i915_perf_init - initialize i915-perf state on module load 3404 * @dev_priv: i915 device instance 3405 * 3406 * Initializes i915-perf state without exposing anything to userspace. 3407 * 3408 * Note: i915-perf initialization is split into an 'init' and 'register' 3409 * phase with the i915_perf_register() exposing state to userspace. 3410 */ 3411 void i915_perf_init(struct drm_i915_private *dev_priv) 3412 { 3413 if (IS_HASWELL(dev_priv)) { 3414 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3415 gen7_is_valid_b_counter_addr; 3416 dev_priv->perf.oa.ops.is_valid_mux_reg = 3417 hsw_is_valid_mux_addr; 3418 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3419 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3420 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3421 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3422 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3423 dev_priv->perf.oa.ops.read = gen7_oa_read; 3424 dev_priv->perf.oa.ops.oa_hw_tail_read = 3425 gen7_oa_hw_tail_read; 3426 3427 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3428 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 3429 /* Note: that although we could theoretically also support the 3430 * legacy ringbuffer mode on BDW (and earlier iterations of 3431 * this driver, before upstreaming did this) it didn't seem 3432 * worth the complexity to maintain now that BDW+ enable 3433 * execlist mode by default. 3434 */ 3435 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3436 3437 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3438 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3439 dev_priv->perf.oa.ops.read = gen8_oa_read; 3440 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3441 3442 if (IS_GEN_RANGE(dev_priv, 8, 9)) { 3443 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3444 gen7_is_valid_b_counter_addr; 3445 dev_priv->perf.oa.ops.is_valid_mux_reg = 3446 gen8_is_valid_mux_addr; 3447 dev_priv->perf.oa.ops.is_valid_flex_reg = 3448 gen8_is_valid_flex_addr; 3449 3450 if (IS_CHERRYVIEW(dev_priv)) { 3451 dev_priv->perf.oa.ops.is_valid_mux_reg = 3452 chv_is_valid_mux_addr; 3453 } 3454 3455 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3456 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3457 3458 if (IS_GEN(dev_priv, 8)) { 3459 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3460 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3461 3462 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3463 } else { 3464 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3465 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3466 3467 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3468 } 3469 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) { 3470 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3471 gen7_is_valid_b_counter_addr; 3472 dev_priv->perf.oa.ops.is_valid_mux_reg = 3473 gen10_is_valid_mux_addr; 3474 dev_priv->perf.oa.ops.is_valid_flex_reg = 3475 gen8_is_valid_flex_addr; 3476 3477 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3478 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set; 3479 3480 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3481 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3482 3483 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3484 } 3485 } 3486 3487 if (dev_priv->perf.oa.ops.enable_metric_set) { 3488 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3489 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3490 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3491 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3492 3493 INIT_LIST_HEAD(&dev_priv->perf.streams); 3494 mutex_init(&dev_priv->perf.lock); 3495 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3496 3497 oa_sample_rate_hard_limit = 1000 * 3498 (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2); 3499 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3500 3501 mutex_init(&dev_priv->perf.metrics_lock); 3502 idr_init(&dev_priv->perf.metrics_idr); 3503 3504 dev_priv->perf.initialized = true; 3505 } 3506 } 3507 3508 static int destroy_config(int id, void *p, void *data) 3509 { 3510 struct drm_i915_private *dev_priv = data; 3511 struct i915_oa_config *oa_config = p; 3512 3513 put_oa_config(dev_priv, oa_config); 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * i915_perf_fini - Counter part to i915_perf_init() 3520 * @dev_priv: i915 device instance 3521 */ 3522 void i915_perf_fini(struct drm_i915_private *dev_priv) 3523 { 3524 if (!dev_priv->perf.initialized) 3525 return; 3526 3527 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3528 idr_destroy(&dev_priv->perf.metrics_idr); 3529 3530 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3531 3532 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3533 3534 dev_priv->perf.initialized = false; 3535 } 3536