xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 4da722ca)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 
197 #include "i915_drv.h"
198 #include "i915_oa_hsw.h"
199 #include "i915_oa_bdw.h"
200 #include "i915_oa_chv.h"
201 #include "i915_oa_sklgt2.h"
202 #include "i915_oa_sklgt3.h"
203 #include "i915_oa_sklgt4.h"
204 #include "i915_oa_bxt.h"
205 #include "i915_oa_kblgt2.h"
206 #include "i915_oa_kblgt3.h"
207 #include "i915_oa_glk.h"
208 
209 /* HW requires this to be a power of two, between 128k and 16M, though driver
210  * is currently generally designed assuming the largest 16M size is used such
211  * that the overflow cases are unlikely in normal operation.
212  */
213 #define OA_BUFFER_SIZE		SZ_16M
214 
215 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
216 
217 /**
218  * DOC: OA Tail Pointer Race
219  *
220  * There's a HW race condition between OA unit tail pointer register updates and
221  * writes to memory whereby the tail pointer can sometimes get ahead of what's
222  * been written out to the OA buffer so far (in terms of what's visible to the
223  * CPU).
224  *
225  * Although this can be observed explicitly while copying reports to userspace
226  * by checking for a zeroed report-id field in tail reports, we want to account
227  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
228  * read() attempts.
229  *
230  * In effect we define a tail pointer for reading that lags the real tail
231  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
232  * time for the corresponding reports to become visible to the CPU.
233  *
234  * To manage this we actually track two tail pointers:
235  *  1) An 'aging' tail with an associated timestamp that is tracked until we
236  *     can trust the corresponding data is visible to the CPU; at which point
237  *     it is considered 'aged'.
238  *  2) An 'aged' tail that can be used for read()ing.
239  *
240  * The two separate pointers let us decouple read()s from tail pointer aging.
241  *
242  * The tail pointers are checked and updated at a limited rate within a hrtimer
243  * callback (the same callback that is used for delivering POLLIN events)
244  *
245  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
246  * indicates that an updated tail pointer is needed.
247  *
248  * Most of the implementation details for this workaround are in
249  * oa_buffer_check_unlocked() and _append_oa_reports()
250  *
251  * Note for posterity: previously the driver used to define an effective tail
252  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
253  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
254  * This was flawed considering that the OA unit may also automatically generate
255  * non-periodic reports (such as on context switch) or the OA unit may be
256  * enabled without any periodic sampling.
257  */
258 #define OA_TAIL_MARGIN_NSEC	100000ULL
259 #define INVALID_TAIL_PTR	0xffffffff
260 
261 /* frequency for checking whether the OA unit has written new reports to the
262  * circular OA buffer...
263  */
264 #define POLL_FREQUENCY 200
265 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
266 
267 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
268 static int zero;
269 static int one = 1;
270 static u32 i915_perf_stream_paranoid = true;
271 
272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
273  * of the 64bit timestamp bits to trigger reports from) but there's currently
274  * no known use case for sampling as infrequently as once per 47 thousand years.
275  *
276  * Since the timestamps included in OA reports are only 32bits it seems
277  * reasonable to limit the OA exponent where it's still possible to account for
278  * overflow in OA report timestamps.
279  */
280 #define OA_EXPONENT_MAX 31
281 
282 #define INVALID_CTX_ID 0xffffffff
283 
284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
285 #define OAREPORT_REASON_MASK           0x3f
286 #define OAREPORT_REASON_SHIFT          19
287 #define OAREPORT_REASON_TIMER          (1<<0)
288 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
289 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
290 
291 
292 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
293  *
294  * The highest sampling frequency we can theoretically program the OA unit
295  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
296  *
297  * Initialized just before we register the sysctl parameter.
298  */
299 static int oa_sample_rate_hard_limit;
300 
301 /* Theoretically we can program the OA unit to sample every 160ns but don't
302  * allow that by default unless root...
303  *
304  * The default threshold of 100000Hz is based on perf's similar
305  * kernel.perf_event_max_sample_rate sysctl parameter.
306  */
307 static u32 i915_oa_max_sample_rate = 100000;
308 
309 /* XXX: beware if future OA HW adds new report formats that the current
310  * code assumes all reports have a power-of-two size and ~(size - 1) can
311  * be used as a mask to align the OA tail pointer.
312  */
313 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
314 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
315 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
316 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
317 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
318 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
319 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
320 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
321 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
322 };
323 
324 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
325 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
326 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
327 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
328 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
329 };
330 
331 #define SAMPLE_OA_REPORT      (1<<0)
332 
333 /**
334  * struct perf_open_properties - for validated properties given to open a stream
335  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
336  * @single_context: Whether a single or all gpu contexts should be monitored
337  * @ctx_handle: A gem ctx handle for use with @single_context
338  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
339  * @oa_format: An OA unit HW report format
340  * @oa_periodic: Whether to enable periodic OA unit sampling
341  * @oa_period_exponent: The OA unit sampling period is derived from this
342  *
343  * As read_properties_unlocked() enumerates and validates the properties given
344  * to open a stream of metrics the configuration is built up in the structure
345  * which starts out zero initialized.
346  */
347 struct perf_open_properties {
348 	u32 sample_flags;
349 
350 	u64 single_context:1;
351 	u64 ctx_handle;
352 
353 	/* OA sampling state */
354 	int metrics_set;
355 	int oa_format;
356 	bool oa_periodic;
357 	int oa_period_exponent;
358 };
359 
360 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
361 {
362 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
363 }
364 
365 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
366 {
367 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
368 
369 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
370 }
371 
372 /**
373  * oa_buffer_check_unlocked - check for data and update tail ptr state
374  * @dev_priv: i915 device instance
375  *
376  * This is either called via fops (for blocking reads in user ctx) or the poll
377  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
378  * if there is data available for userspace to read.
379  *
380  * This function is central to providing a workaround for the OA unit tail
381  * pointer having a race with respect to what data is visible to the CPU.
382  * It is responsible for reading tail pointers from the hardware and giving
383  * the pointers time to 'age' before they are made available for reading.
384  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
385  *
386  * Besides returning true when there is data available to read() this function
387  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
388  * and .aged_tail_idx state used for reading.
389  *
390  * Note: It's safe to read OA config state here unlocked, assuming that this is
391  * only called while the stream is enabled, while the global OA configuration
392  * can't be modified.
393  *
394  * Returns: %true if the OA buffer contains data, else %false
395  */
396 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
397 {
398 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
399 	unsigned long flags;
400 	unsigned int aged_idx;
401 	u32 head, hw_tail, aged_tail, aging_tail;
402 	u64 now;
403 
404 	/* We have to consider the (unlikely) possibility that read() errors
405 	 * could result in an OA buffer reset which might reset the head,
406 	 * tails[] and aged_tail state.
407 	 */
408 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
409 
410 	/* NB: The head we observe here might effectively be a little out of
411 	 * date (between head and tails[aged_idx].offset if there is currently
412 	 * a read() in progress.
413 	 */
414 	head = dev_priv->perf.oa.oa_buffer.head;
415 
416 	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
417 	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
418 	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
419 
420 	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
421 
422 	/* The tail pointer increases in 64 byte increments,
423 	 * not in report_size steps...
424 	 */
425 	hw_tail &= ~(report_size - 1);
426 
427 	now = ktime_get_mono_fast_ns();
428 
429 	/* Update the aged tail
430 	 *
431 	 * Flip the tail pointer available for read()s once the aging tail is
432 	 * old enough to trust that the corresponding data will be visible to
433 	 * the CPU...
434 	 *
435 	 * Do this before updating the aging pointer in case we may be able to
436 	 * immediately start aging a new pointer too (if new data has become
437 	 * available) without needing to wait for a later hrtimer callback.
438 	 */
439 	if (aging_tail != INVALID_TAIL_PTR &&
440 	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
441 	     OA_TAIL_MARGIN_NSEC)) {
442 
443 		aged_idx ^= 1;
444 		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
445 
446 		aged_tail = aging_tail;
447 
448 		/* Mark that we need a new pointer to start aging... */
449 		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
450 		aging_tail = INVALID_TAIL_PTR;
451 	}
452 
453 	/* Update the aging tail
454 	 *
455 	 * We throttle aging tail updates until we have a new tail that
456 	 * represents >= one report more data than is already available for
457 	 * reading. This ensures there will be enough data for a successful
458 	 * read once this new pointer has aged and ensures we will give the new
459 	 * pointer time to age.
460 	 */
461 	if (aging_tail == INVALID_TAIL_PTR &&
462 	    (aged_tail == INVALID_TAIL_PTR ||
463 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
464 		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
465 		u32 gtt_offset = i915_ggtt_offset(vma);
466 
467 		/* Be paranoid and do a bounds check on the pointer read back
468 		 * from hardware, just in case some spurious hardware condition
469 		 * could put the tail out of bounds...
470 		 */
471 		if (hw_tail >= gtt_offset &&
472 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
473 			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
474 				aging_tail = hw_tail;
475 			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
476 		} else {
477 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
478 				  hw_tail);
479 		}
480 	}
481 
482 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
483 
484 	return aged_tail == INVALID_TAIL_PTR ?
485 		false : OA_TAKEN(aged_tail, head) >= report_size;
486 }
487 
488 /**
489  * append_oa_status - Appends a status record to a userspace read() buffer.
490  * @stream: An i915-perf stream opened for OA metrics
491  * @buf: destination buffer given by userspace
492  * @count: the number of bytes userspace wants to read
493  * @offset: (inout): the current position for writing into @buf
494  * @type: The kind of status to report to userspace
495  *
496  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
497  * into the userspace read() buffer.
498  *
499  * The @buf @offset will only be updated on success.
500  *
501  * Returns: 0 on success, negative error code on failure.
502  */
503 static int append_oa_status(struct i915_perf_stream *stream,
504 			    char __user *buf,
505 			    size_t count,
506 			    size_t *offset,
507 			    enum drm_i915_perf_record_type type)
508 {
509 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
510 
511 	if ((count - *offset) < header.size)
512 		return -ENOSPC;
513 
514 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
515 		return -EFAULT;
516 
517 	(*offset) += header.size;
518 
519 	return 0;
520 }
521 
522 /**
523  * append_oa_sample - Copies single OA report into userspace read() buffer.
524  * @stream: An i915-perf stream opened for OA metrics
525  * @buf: destination buffer given by userspace
526  * @count: the number of bytes userspace wants to read
527  * @offset: (inout): the current position for writing into @buf
528  * @report: A single OA report to (optionally) include as part of the sample
529  *
530  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
531  * properties when opening a stream, tracked as `stream->sample_flags`. This
532  * function copies the requested components of a single sample to the given
533  * read() @buf.
534  *
535  * The @buf @offset will only be updated on success.
536  *
537  * Returns: 0 on success, negative error code on failure.
538  */
539 static int append_oa_sample(struct i915_perf_stream *stream,
540 			    char __user *buf,
541 			    size_t count,
542 			    size_t *offset,
543 			    const u8 *report)
544 {
545 	struct drm_i915_private *dev_priv = stream->dev_priv;
546 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
547 	struct drm_i915_perf_record_header header;
548 	u32 sample_flags = stream->sample_flags;
549 
550 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
551 	header.pad = 0;
552 	header.size = stream->sample_size;
553 
554 	if ((count - *offset) < header.size)
555 		return -ENOSPC;
556 
557 	buf += *offset;
558 	if (copy_to_user(buf, &header, sizeof(header)))
559 		return -EFAULT;
560 	buf += sizeof(header);
561 
562 	if (sample_flags & SAMPLE_OA_REPORT) {
563 		if (copy_to_user(buf, report, report_size))
564 			return -EFAULT;
565 	}
566 
567 	(*offset) += header.size;
568 
569 	return 0;
570 }
571 
572 /**
573  * Copies all buffered OA reports into userspace read() buffer.
574  * @stream: An i915-perf stream opened for OA metrics
575  * @buf: destination buffer given by userspace
576  * @count: the number of bytes userspace wants to read
577  * @offset: (inout): the current position for writing into @buf
578  *
579  * Notably any error condition resulting in a short read (-%ENOSPC or
580  * -%EFAULT) will be returned even though one or more records may
581  * have been successfully copied. In this case it's up to the caller
582  * to decide if the error should be squashed before returning to
583  * userspace.
584  *
585  * Note: reports are consumed from the head, and appended to the
586  * tail, so the tail chases the head?... If you think that's mad
587  * and back-to-front you're not alone, but this follows the
588  * Gen PRM naming convention.
589  *
590  * Returns: 0 on success, negative error code on failure.
591  */
592 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
593 				  char __user *buf,
594 				  size_t count,
595 				  size_t *offset)
596 {
597 	struct drm_i915_private *dev_priv = stream->dev_priv;
598 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
599 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
600 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
601 	u32 mask = (OA_BUFFER_SIZE - 1);
602 	size_t start_offset = *offset;
603 	unsigned long flags;
604 	unsigned int aged_tail_idx;
605 	u32 head, tail;
606 	u32 taken;
607 	int ret = 0;
608 
609 	if (WARN_ON(!stream->enabled))
610 		return -EIO;
611 
612 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
613 
614 	head = dev_priv->perf.oa.oa_buffer.head;
615 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
616 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
617 
618 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
619 
620 	/*
621 	 * An invalid tail pointer here means we're still waiting for the poll
622 	 * hrtimer callback to give us a pointer
623 	 */
624 	if (tail == INVALID_TAIL_PTR)
625 		return -EAGAIN;
626 
627 	/*
628 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
629 	 * while indexing relative to oa_buf_base.
630 	 */
631 	head -= gtt_offset;
632 	tail -= gtt_offset;
633 
634 	/*
635 	 * An out of bounds or misaligned head or tail pointer implies a driver
636 	 * bug since we validate + align the tail pointers we read from the
637 	 * hardware and we are in full control of the head pointer which should
638 	 * only be incremented by multiples of the report size (notably also
639 	 * all a power of two).
640 	 */
641 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
642 		      tail > OA_BUFFER_SIZE || tail % report_size,
643 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
644 		      head, tail))
645 		return -EIO;
646 
647 
648 	for (/* none */;
649 	     (taken = OA_TAKEN(tail, head));
650 	     head = (head + report_size) & mask) {
651 		u8 *report = oa_buf_base + head;
652 		u32 *report32 = (void *)report;
653 		u32 ctx_id;
654 		u32 reason;
655 
656 		/*
657 		 * All the report sizes factor neatly into the buffer
658 		 * size so we never expect to see a report split
659 		 * between the beginning and end of the buffer.
660 		 *
661 		 * Given the initial alignment check a misalignment
662 		 * here would imply a driver bug that would result
663 		 * in an overrun.
664 		 */
665 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
666 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
667 			break;
668 		}
669 
670 		/*
671 		 * The reason field includes flags identifying what
672 		 * triggered this specific report (mostly timer
673 		 * triggered or e.g. due to a context switch).
674 		 *
675 		 * This field is never expected to be zero so we can
676 		 * check that the report isn't invalid before copying
677 		 * it to userspace...
678 		 */
679 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
680 			  OAREPORT_REASON_MASK);
681 		if (reason == 0) {
682 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
683 				DRM_NOTE("Skipping spurious, invalid OA report\n");
684 			continue;
685 		}
686 
687 		/*
688 		 * XXX: Just keep the lower 21 bits for now since I'm not
689 		 * entirely sure if the HW touches any of the higher bits in
690 		 * this field
691 		 */
692 		ctx_id = report32[2] & 0x1fffff;
693 
694 		/*
695 		 * Squash whatever is in the CTX_ID field if it's marked as
696 		 * invalid to be sure we avoid false-positive, single-context
697 		 * filtering below...
698 		 *
699 		 * Note: that we don't clear the valid_ctx_bit so userspace can
700 		 * understand that the ID has been squashed by the kernel.
701 		 */
702 		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
703 			ctx_id = report32[2] = INVALID_CTX_ID;
704 
705 		/*
706 		 * NB: For Gen 8 the OA unit no longer supports clock gating
707 		 * off for a specific context and the kernel can't securely
708 		 * stop the counters from updating as system-wide / global
709 		 * values.
710 		 *
711 		 * Automatic reports now include a context ID so reports can be
712 		 * filtered on the cpu but it's not worth trying to
713 		 * automatically subtract/hide counter progress for other
714 		 * contexts while filtering since we can't stop userspace
715 		 * issuing MI_REPORT_PERF_COUNT commands which would still
716 		 * provide a side-band view of the real values.
717 		 *
718 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
719 		 * to normalize counters for a single filtered context then it
720 		 * needs be forwarded bookend context-switch reports so that it
721 		 * can track switches in between MI_REPORT_PERF_COUNT commands
722 		 * and can itself subtract/ignore the progress of counters
723 		 * associated with other contexts. Note that the hardware
724 		 * automatically triggers reports when switching to a new
725 		 * context which are tagged with the ID of the newly active
726 		 * context. To avoid the complexity (and likely fragility) of
727 		 * reading ahead while parsing reports to try and minimize
728 		 * forwarding redundant context switch reports (i.e. between
729 		 * other, unrelated contexts) we simply elect to forward them
730 		 * all.
731 		 *
732 		 * We don't rely solely on the reason field to identify context
733 		 * switches since it's not-uncommon for periodic samples to
734 		 * identify a switch before any 'context switch' report.
735 		 */
736 		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
737 		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
738 		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
739 		     dev_priv->perf.oa.specific_ctx_id) ||
740 		    reason & OAREPORT_REASON_CTX_SWITCH) {
741 
742 			/*
743 			 * While filtering for a single context we avoid
744 			 * leaking the IDs of other contexts.
745 			 */
746 			if (dev_priv->perf.oa.exclusive_stream->ctx &&
747 			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
748 				report32[2] = INVALID_CTX_ID;
749 			}
750 
751 			ret = append_oa_sample(stream, buf, count, offset,
752 					       report);
753 			if (ret)
754 				break;
755 
756 			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
757 		}
758 
759 		/*
760 		 * The above reason field sanity check is based on
761 		 * the assumption that the OA buffer is initially
762 		 * zeroed and we reset the field after copying so the
763 		 * check is still meaningful once old reports start
764 		 * being overwritten.
765 		 */
766 		report32[0] = 0;
767 	}
768 
769 	if (start_offset != *offset) {
770 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
771 
772 		/*
773 		 * We removed the gtt_offset for the copy loop above, indexing
774 		 * relative to oa_buf_base so put back here...
775 		 */
776 		head += gtt_offset;
777 
778 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
779 		dev_priv->perf.oa.oa_buffer.head = head;
780 
781 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
782 	}
783 
784 	return ret;
785 }
786 
787 /**
788  * gen8_oa_read - copy status records then buffered OA reports
789  * @stream: An i915-perf stream opened for OA metrics
790  * @buf: destination buffer given by userspace
791  * @count: the number of bytes userspace wants to read
792  * @offset: (inout): the current position for writing into @buf
793  *
794  * Checks OA unit status registers and if necessary appends corresponding
795  * status records for userspace (such as for a buffer full condition) and then
796  * initiate appending any buffered OA reports.
797  *
798  * Updates @offset according to the number of bytes successfully copied into
799  * the userspace buffer.
800  *
801  * NB: some data may be successfully copied to the userspace buffer
802  * even if an error is returned, and this is reflected in the
803  * updated @offset.
804  *
805  * Returns: zero on success or a negative error code
806  */
807 static int gen8_oa_read(struct i915_perf_stream *stream,
808 			char __user *buf,
809 			size_t count,
810 			size_t *offset)
811 {
812 	struct drm_i915_private *dev_priv = stream->dev_priv;
813 	u32 oastatus;
814 	int ret;
815 
816 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
817 		return -EIO;
818 
819 	oastatus = I915_READ(GEN8_OASTATUS);
820 
821 	/*
822 	 * We treat OABUFFER_OVERFLOW as a significant error:
823 	 *
824 	 * Although theoretically we could handle this more gracefully
825 	 * sometimes, some Gens don't correctly suppress certain
826 	 * automatically triggered reports in this condition and so we
827 	 * have to assume that old reports are now being trampled
828 	 * over.
829 	 *
830 	 * Considering how we don't currently give userspace control
831 	 * over the OA buffer size and always configure a large 16MB
832 	 * buffer, then a buffer overflow does anyway likely indicate
833 	 * that something has gone quite badly wrong.
834 	 */
835 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
836 		ret = append_oa_status(stream, buf, count, offset,
837 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
838 		if (ret)
839 			return ret;
840 
841 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
842 			  dev_priv->perf.oa.period_exponent);
843 
844 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
845 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
846 
847 		/*
848 		 * Note: .oa_enable() is expected to re-init the oabuffer and
849 		 * reset GEN8_OASTATUS for us
850 		 */
851 		oastatus = I915_READ(GEN8_OASTATUS);
852 	}
853 
854 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
855 		ret = append_oa_status(stream, buf, count, offset,
856 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
857 		if (ret)
858 			return ret;
859 		I915_WRITE(GEN8_OASTATUS,
860 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
861 	}
862 
863 	return gen8_append_oa_reports(stream, buf, count, offset);
864 }
865 
866 /**
867  * Copies all buffered OA reports into userspace read() buffer.
868  * @stream: An i915-perf stream opened for OA metrics
869  * @buf: destination buffer given by userspace
870  * @count: the number of bytes userspace wants to read
871  * @offset: (inout): the current position for writing into @buf
872  *
873  * Notably any error condition resulting in a short read (-%ENOSPC or
874  * -%EFAULT) will be returned even though one or more records may
875  * have been successfully copied. In this case it's up to the caller
876  * to decide if the error should be squashed before returning to
877  * userspace.
878  *
879  * Note: reports are consumed from the head, and appended to the
880  * tail, so the tail chases the head?... If you think that's mad
881  * and back-to-front you're not alone, but this follows the
882  * Gen PRM naming convention.
883  *
884  * Returns: 0 on success, negative error code on failure.
885  */
886 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
887 				  char __user *buf,
888 				  size_t count,
889 				  size_t *offset)
890 {
891 	struct drm_i915_private *dev_priv = stream->dev_priv;
892 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
893 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
894 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
895 	u32 mask = (OA_BUFFER_SIZE - 1);
896 	size_t start_offset = *offset;
897 	unsigned long flags;
898 	unsigned int aged_tail_idx;
899 	u32 head, tail;
900 	u32 taken;
901 	int ret = 0;
902 
903 	if (WARN_ON(!stream->enabled))
904 		return -EIO;
905 
906 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
907 
908 	head = dev_priv->perf.oa.oa_buffer.head;
909 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
910 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
911 
912 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
913 
914 	/* An invalid tail pointer here means we're still waiting for the poll
915 	 * hrtimer callback to give us a pointer
916 	 */
917 	if (tail == INVALID_TAIL_PTR)
918 		return -EAGAIN;
919 
920 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
921 	 * while indexing relative to oa_buf_base.
922 	 */
923 	head -= gtt_offset;
924 	tail -= gtt_offset;
925 
926 	/* An out of bounds or misaligned head or tail pointer implies a driver
927 	 * bug since we validate + align the tail pointers we read from the
928 	 * hardware and we are in full control of the head pointer which should
929 	 * only be incremented by multiples of the report size (notably also
930 	 * all a power of two).
931 	 */
932 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
933 		      tail > OA_BUFFER_SIZE || tail % report_size,
934 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
935 		      head, tail))
936 		return -EIO;
937 
938 
939 	for (/* none */;
940 	     (taken = OA_TAKEN(tail, head));
941 	     head = (head + report_size) & mask) {
942 		u8 *report = oa_buf_base + head;
943 		u32 *report32 = (void *)report;
944 
945 		/* All the report sizes factor neatly into the buffer
946 		 * size so we never expect to see a report split
947 		 * between the beginning and end of the buffer.
948 		 *
949 		 * Given the initial alignment check a misalignment
950 		 * here would imply a driver bug that would result
951 		 * in an overrun.
952 		 */
953 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
954 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
955 			break;
956 		}
957 
958 		/* The report-ID field for periodic samples includes
959 		 * some undocumented flags related to what triggered
960 		 * the report and is never expected to be zero so we
961 		 * can check that the report isn't invalid before
962 		 * copying it to userspace...
963 		 */
964 		if (report32[0] == 0) {
965 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
966 				DRM_NOTE("Skipping spurious, invalid OA report\n");
967 			continue;
968 		}
969 
970 		ret = append_oa_sample(stream, buf, count, offset, report);
971 		if (ret)
972 			break;
973 
974 		/* The above report-id field sanity check is based on
975 		 * the assumption that the OA buffer is initially
976 		 * zeroed and we reset the field after copying so the
977 		 * check is still meaningful once old reports start
978 		 * being overwritten.
979 		 */
980 		report32[0] = 0;
981 	}
982 
983 	if (start_offset != *offset) {
984 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
985 
986 		/* We removed the gtt_offset for the copy loop above, indexing
987 		 * relative to oa_buf_base so put back here...
988 		 */
989 		head += gtt_offset;
990 
991 		I915_WRITE(GEN7_OASTATUS2,
992 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
993 			    OA_MEM_SELECT_GGTT));
994 		dev_priv->perf.oa.oa_buffer.head = head;
995 
996 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
997 	}
998 
999 	return ret;
1000 }
1001 
1002 /**
1003  * gen7_oa_read - copy status records then buffered OA reports
1004  * @stream: An i915-perf stream opened for OA metrics
1005  * @buf: destination buffer given by userspace
1006  * @count: the number of bytes userspace wants to read
1007  * @offset: (inout): the current position for writing into @buf
1008  *
1009  * Checks Gen 7 specific OA unit status registers and if necessary appends
1010  * corresponding status records for userspace (such as for a buffer full
1011  * condition) and then initiate appending any buffered OA reports.
1012  *
1013  * Updates @offset according to the number of bytes successfully copied into
1014  * the userspace buffer.
1015  *
1016  * Returns: zero on success or a negative error code
1017  */
1018 static int gen7_oa_read(struct i915_perf_stream *stream,
1019 			char __user *buf,
1020 			size_t count,
1021 			size_t *offset)
1022 {
1023 	struct drm_i915_private *dev_priv = stream->dev_priv;
1024 	u32 oastatus1;
1025 	int ret;
1026 
1027 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1028 		return -EIO;
1029 
1030 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1031 
1032 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1033 	 * bits while the OA unit is enabled (while the tail pointer
1034 	 * may be updated asynchronously) so we ignore status bits
1035 	 * that have already been reported to userspace.
1036 	 */
1037 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1038 
1039 	/* We treat OABUFFER_OVERFLOW as a significant error:
1040 	 *
1041 	 * - The status can be interpreted to mean that the buffer is
1042 	 *   currently full (with a higher precedence than OA_TAKEN()
1043 	 *   which will start to report a near-empty buffer after an
1044 	 *   overflow) but it's awkward that we can't clear the status
1045 	 *   on Haswell, so without a reset we won't be able to catch
1046 	 *   the state again.
1047 	 *
1048 	 * - Since it also implies the HW has started overwriting old
1049 	 *   reports it may also affect our sanity checks for invalid
1050 	 *   reports when copying to userspace that assume new reports
1051 	 *   are being written to cleared memory.
1052 	 *
1053 	 * - In the future we may want to introduce a flight recorder
1054 	 *   mode where the driver will automatically maintain a safe
1055 	 *   guard band between head/tail, avoiding this overflow
1056 	 *   condition, but we avoid the added driver complexity for
1057 	 *   now.
1058 	 */
1059 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1060 		ret = append_oa_status(stream, buf, count, offset,
1061 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1062 		if (ret)
1063 			return ret;
1064 
1065 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1066 			  dev_priv->perf.oa.period_exponent);
1067 
1068 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
1069 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
1070 
1071 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1072 	}
1073 
1074 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1075 		ret = append_oa_status(stream, buf, count, offset,
1076 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1077 		if (ret)
1078 			return ret;
1079 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
1080 			GEN7_OASTATUS1_REPORT_LOST;
1081 	}
1082 
1083 	return gen7_append_oa_reports(stream, buf, count, offset);
1084 }
1085 
1086 /**
1087  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1088  * @stream: An i915-perf stream opened for OA metrics
1089  *
1090  * Called when userspace tries to read() from a blocking stream FD opened
1091  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1092  * OA buffer and wakes us.
1093  *
1094  * Note: it's acceptable to have this return with some false positives
1095  * since any subsequent read handling will return -EAGAIN if there isn't
1096  * really data ready for userspace yet.
1097  *
1098  * Returns: zero on success or a negative error code
1099  */
1100 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1101 {
1102 	struct drm_i915_private *dev_priv = stream->dev_priv;
1103 
1104 	/* We would wait indefinitely if periodic sampling is not enabled */
1105 	if (!dev_priv->perf.oa.periodic)
1106 		return -EIO;
1107 
1108 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1109 					oa_buffer_check_unlocked(dev_priv));
1110 }
1111 
1112 /**
1113  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1114  * @stream: An i915-perf stream opened for OA metrics
1115  * @file: An i915 perf stream file
1116  * @wait: poll() state table
1117  *
1118  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1119  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1120  * when it sees data ready to read in the circular OA buffer.
1121  */
1122 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1123 			      struct file *file,
1124 			      poll_table *wait)
1125 {
1126 	struct drm_i915_private *dev_priv = stream->dev_priv;
1127 
1128 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1129 }
1130 
1131 /**
1132  * i915_oa_read - just calls through to &i915_oa_ops->read
1133  * @stream: An i915-perf stream opened for OA metrics
1134  * @buf: destination buffer given by userspace
1135  * @count: the number of bytes userspace wants to read
1136  * @offset: (inout): the current position for writing into @buf
1137  *
1138  * Updates @offset according to the number of bytes successfully copied into
1139  * the userspace buffer.
1140  *
1141  * Returns: zero on success or a negative error code
1142  */
1143 static int i915_oa_read(struct i915_perf_stream *stream,
1144 			char __user *buf,
1145 			size_t count,
1146 			size_t *offset)
1147 {
1148 	struct drm_i915_private *dev_priv = stream->dev_priv;
1149 
1150 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1151 }
1152 
1153 /**
1154  * oa_get_render_ctx_id - determine and hold ctx hw id
1155  * @stream: An i915-perf stream opened for OA metrics
1156  *
1157  * Determine the render context hw id, and ensure it remains fixed for the
1158  * lifetime of the stream. This ensures that we don't have to worry about
1159  * updating the context ID in OACONTROL on the fly.
1160  *
1161  * Returns: zero on success or a negative error code
1162  */
1163 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1164 {
1165 	struct drm_i915_private *dev_priv = stream->dev_priv;
1166 
1167 	if (i915.enable_execlists)
1168 		dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1169 	else {
1170 		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1171 		struct intel_ring *ring;
1172 		int ret;
1173 
1174 		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1175 		if (ret)
1176 			return ret;
1177 
1178 		/*
1179 		 * As the ID is the gtt offset of the context's vma we
1180 		 * pin the vma to ensure the ID remains fixed.
1181 		 *
1182 		 * NB: implied RCS engine...
1183 		 */
1184 		ring = engine->context_pin(engine, stream->ctx);
1185 		mutex_unlock(&dev_priv->drm.struct_mutex);
1186 		if (IS_ERR(ring))
1187 			return PTR_ERR(ring);
1188 
1189 
1190 		/*
1191 		 * Explicitly track the ID (instead of calling
1192 		 * i915_ggtt_offset() on the fly) considering the difference
1193 		 * with gen8+ and execlists
1194 		 */
1195 		dev_priv->perf.oa.specific_ctx_id =
1196 			i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /**
1203  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1204  * @stream: An i915-perf stream opened for OA metrics
1205  *
1206  * In case anything needed doing to ensure the context HW ID would remain valid
1207  * for the lifetime of the stream, then that can be undone here.
1208  */
1209 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1210 {
1211 	struct drm_i915_private *dev_priv = stream->dev_priv;
1212 
1213 	if (i915.enable_execlists) {
1214 		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1215 	} else {
1216 		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1217 
1218 		mutex_lock(&dev_priv->drm.struct_mutex);
1219 
1220 		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1221 		engine->context_unpin(engine, stream->ctx);
1222 
1223 		mutex_unlock(&dev_priv->drm.struct_mutex);
1224 	}
1225 }
1226 
1227 static void
1228 free_oa_buffer(struct drm_i915_private *i915)
1229 {
1230 	mutex_lock(&i915->drm.struct_mutex);
1231 
1232 	i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1233 	i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1234 	i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1235 
1236 	i915->perf.oa.oa_buffer.vma = NULL;
1237 	i915->perf.oa.oa_buffer.vaddr = NULL;
1238 
1239 	mutex_unlock(&i915->drm.struct_mutex);
1240 }
1241 
1242 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1243 {
1244 	struct drm_i915_private *dev_priv = stream->dev_priv;
1245 
1246 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1247 
1248 	/*
1249 	 * Unset exclusive_stream first, it might be checked while
1250 	 * disabling the metric set on gen8+.
1251 	 */
1252 	dev_priv->perf.oa.exclusive_stream = NULL;
1253 
1254 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1255 
1256 	free_oa_buffer(dev_priv);
1257 
1258 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1259 	intel_runtime_pm_put(dev_priv);
1260 
1261 	if (stream->ctx)
1262 		oa_put_render_ctx_id(stream);
1263 
1264 	if (dev_priv->perf.oa.spurious_report_rs.missed) {
1265 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1266 			 dev_priv->perf.oa.spurious_report_rs.missed);
1267 	}
1268 }
1269 
1270 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1271 {
1272 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1273 	unsigned long flags;
1274 
1275 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1276 
1277 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1278 	 * before OASTATUS1, but after OASTATUS2
1279 	 */
1280 	I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1281 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1282 
1283 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1284 
1285 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1286 
1287 	/* Mark that we need updated tail pointers to read from... */
1288 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1289 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1290 
1291 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1292 
1293 	/* On Haswell we have to track which OASTATUS1 flags we've
1294 	 * already seen since they can't be cleared while periodic
1295 	 * sampling is enabled.
1296 	 */
1297 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1298 
1299 	/* NB: although the OA buffer will initially be allocated
1300 	 * zeroed via shmfs (and so this memset is redundant when
1301 	 * first allocating), we may re-init the OA buffer, either
1302 	 * when re-enabling a stream or in error/reset paths.
1303 	 *
1304 	 * The reason we clear the buffer for each re-init is for the
1305 	 * sanity check in gen7_append_oa_reports() that looks at the
1306 	 * report-id field to make sure it's non-zero which relies on
1307 	 * the assumption that new reports are being written to zeroed
1308 	 * memory...
1309 	 */
1310 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1311 
1312 	/* Maybe make ->pollin per-stream state if we support multiple
1313 	 * concurrent streams in the future.
1314 	 */
1315 	dev_priv->perf.oa.pollin = false;
1316 }
1317 
1318 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1319 {
1320 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1321 	unsigned long flags;
1322 
1323 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1324 
1325 	I915_WRITE(GEN8_OASTATUS, 0);
1326 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1327 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1328 
1329 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1330 
1331 	/*
1332 	 * PRM says:
1333 	 *
1334 	 *  "This MMIO must be set before the OATAILPTR
1335 	 *  register and after the OAHEADPTR register. This is
1336 	 *  to enable proper functionality of the overflow
1337 	 *  bit."
1338 	 */
1339 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1340 		   OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1341 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1342 
1343 	/* Mark that we need updated tail pointers to read from... */
1344 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1345 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1346 
1347 	/*
1348 	 * Reset state used to recognise context switches, affecting which
1349 	 * reports we will forward to userspace while filtering for a single
1350 	 * context.
1351 	 */
1352 	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1353 
1354 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1355 
1356 	/*
1357 	 * NB: although the OA buffer will initially be allocated
1358 	 * zeroed via shmfs (and so this memset is redundant when
1359 	 * first allocating), we may re-init the OA buffer, either
1360 	 * when re-enabling a stream or in error/reset paths.
1361 	 *
1362 	 * The reason we clear the buffer for each re-init is for the
1363 	 * sanity check in gen8_append_oa_reports() that looks at the
1364 	 * reason field to make sure it's non-zero which relies on
1365 	 * the assumption that new reports are being written to zeroed
1366 	 * memory...
1367 	 */
1368 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1369 
1370 	/*
1371 	 * Maybe make ->pollin per-stream state if we support multiple
1372 	 * concurrent streams in the future.
1373 	 */
1374 	dev_priv->perf.oa.pollin = false;
1375 }
1376 
1377 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1378 {
1379 	struct drm_i915_gem_object *bo;
1380 	struct i915_vma *vma;
1381 	int ret;
1382 
1383 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1384 		return -ENODEV;
1385 
1386 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1387 	if (ret)
1388 		return ret;
1389 
1390 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1391 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1392 
1393 	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1394 	if (IS_ERR(bo)) {
1395 		DRM_ERROR("Failed to allocate OA buffer\n");
1396 		ret = PTR_ERR(bo);
1397 		goto unlock;
1398 	}
1399 
1400 	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1401 	if (ret)
1402 		goto err_unref;
1403 
1404 	/* PreHSW required 512K alignment, HSW requires 16M */
1405 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1406 	if (IS_ERR(vma)) {
1407 		ret = PTR_ERR(vma);
1408 		goto err_unref;
1409 	}
1410 	dev_priv->perf.oa.oa_buffer.vma = vma;
1411 
1412 	dev_priv->perf.oa.oa_buffer.vaddr =
1413 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1414 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1415 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1416 		goto err_unpin;
1417 	}
1418 
1419 	dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1420 
1421 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1422 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1423 			 dev_priv->perf.oa.oa_buffer.vaddr);
1424 
1425 	goto unlock;
1426 
1427 err_unpin:
1428 	__i915_vma_unpin(vma);
1429 
1430 err_unref:
1431 	i915_gem_object_put(bo);
1432 
1433 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1434 	dev_priv->perf.oa.oa_buffer.vma = NULL;
1435 
1436 unlock:
1437 	mutex_unlock(&dev_priv->drm.struct_mutex);
1438 	return ret;
1439 }
1440 
1441 static void config_oa_regs(struct drm_i915_private *dev_priv,
1442 			   const struct i915_oa_reg *regs,
1443 			   int n_regs)
1444 {
1445 	int i;
1446 
1447 	for (i = 0; i < n_regs; i++) {
1448 		const struct i915_oa_reg *reg = regs + i;
1449 
1450 		I915_WRITE(reg->addr, reg->value);
1451 	}
1452 }
1453 
1454 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
1455 {
1456 	int ret = i915_oa_select_metric_set_hsw(dev_priv);
1457 	int i;
1458 
1459 	if (ret)
1460 		return ret;
1461 
1462 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
1463 				      GT_NOA_ENABLE));
1464 
1465 	/* PRM:
1466 	 *
1467 	 * OA unit is using “crclk” for its functionality. When trunk
1468 	 * level clock gating takes place, OA clock would be gated,
1469 	 * unable to count the events from non-render clock domain.
1470 	 * Render clock gating must be disabled when OA is enabled to
1471 	 * count the events from non-render domain. Unit level clock
1472 	 * gating for RCS should also be disabled.
1473 	 */
1474 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1475 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1476 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1477 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1478 
1479 	for (i = 0; i < dev_priv->perf.oa.n_mux_configs; i++) {
1480 		config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs[i],
1481 			       dev_priv->perf.oa.mux_regs_lens[i]);
1482 	}
1483 
1484 	/* It apparently takes a fairly long time for a new MUX
1485 	 * configuration to be be applied after these register writes.
1486 	 * This delay duration was derived empirically based on the
1487 	 * render_basic config but hopefully it covers the maximum
1488 	 * configuration latency.
1489 	 *
1490 	 * As a fallback, the checks in _append_oa_reports() to skip
1491 	 * invalid OA reports do also seem to work to discard reports
1492 	 * generated before this config has completed - albeit not
1493 	 * silently.
1494 	 *
1495 	 * Unfortunately this is essentially a magic number, since we
1496 	 * don't currently know of a reliable mechanism for predicting
1497 	 * how long the MUX config will take to apply and besides
1498 	 * seeing invalid reports we don't know of a reliable way to
1499 	 * explicitly check that the MUX config has landed.
1500 	 *
1501 	 * It's even possible we've miss characterized the underlying
1502 	 * problem - it just seems like the simplest explanation why
1503 	 * a delay at this location would mitigate any invalid reports.
1504 	 */
1505 	usleep_range(15000, 20000);
1506 
1507 	config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
1508 		       dev_priv->perf.oa.b_counter_regs_len);
1509 
1510 	return 0;
1511 }
1512 
1513 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1514 {
1515 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1516 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1517 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1518 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1519 
1520 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1521 				      ~GT_NOA_ENABLE));
1522 }
1523 
1524 /*
1525  * NB: It must always remain pointer safe to run this even if the OA unit
1526  * has been disabled.
1527  *
1528  * It's fine to put out-of-date values into these per-context registers
1529  * in the case that the OA unit has been disabled.
1530  */
1531 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1532 					   u32 *reg_state)
1533 {
1534 	struct drm_i915_private *dev_priv = ctx->i915;
1535 	const struct i915_oa_reg *flex_regs = dev_priv->perf.oa.flex_regs;
1536 	int n_flex_regs = dev_priv->perf.oa.flex_regs_len;
1537 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1538 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1539 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1540 	u32 flex_mmio[] = {
1541 		i915_mmio_reg_offset(EU_PERF_CNTL0),
1542 		i915_mmio_reg_offset(EU_PERF_CNTL1),
1543 		i915_mmio_reg_offset(EU_PERF_CNTL2),
1544 		i915_mmio_reg_offset(EU_PERF_CNTL3),
1545 		i915_mmio_reg_offset(EU_PERF_CNTL4),
1546 		i915_mmio_reg_offset(EU_PERF_CNTL5),
1547 		i915_mmio_reg_offset(EU_PERF_CNTL6),
1548 	};
1549 	int i;
1550 
1551 	reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1552 	reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1553 				      GEN8_OA_TIMER_PERIOD_SHIFT) |
1554 				     (dev_priv->perf.oa.periodic ?
1555 				      GEN8_OA_TIMER_ENABLE : 0) |
1556 				     GEN8_OA_COUNTER_RESUME;
1557 
1558 	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1559 		u32 state_offset = ctx_flexeu0 + i * 2;
1560 		u32 mmio = flex_mmio[i];
1561 
1562 		/*
1563 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1564 		 * Active' event. In the future it's anticipated that there
1565 		 * will be an explicit 'No Event' we can select, but not yet...
1566 		 */
1567 		u32 value = 0;
1568 		int j;
1569 
1570 		for (j = 0; j < n_flex_regs; j++) {
1571 			if (i915_mmio_reg_offset(flex_regs[j].addr) == mmio) {
1572 				value = flex_regs[j].value;
1573 				break;
1574 			}
1575 		}
1576 
1577 		reg_state[state_offset] = mmio;
1578 		reg_state[state_offset+1] = value;
1579 	}
1580 }
1581 
1582 /*
1583  * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1584  * is only used by the kernel context.
1585  */
1586 static int gen8_emit_oa_config(struct drm_i915_gem_request *req)
1587 {
1588 	struct drm_i915_private *dev_priv = req->i915;
1589 	const struct i915_oa_reg *flex_regs = dev_priv->perf.oa.flex_regs;
1590 	int n_flex_regs = dev_priv->perf.oa.flex_regs_len;
1591 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1592 	u32 flex_mmio[] = {
1593 		i915_mmio_reg_offset(EU_PERF_CNTL0),
1594 		i915_mmio_reg_offset(EU_PERF_CNTL1),
1595 		i915_mmio_reg_offset(EU_PERF_CNTL2),
1596 		i915_mmio_reg_offset(EU_PERF_CNTL3),
1597 		i915_mmio_reg_offset(EU_PERF_CNTL4),
1598 		i915_mmio_reg_offset(EU_PERF_CNTL5),
1599 		i915_mmio_reg_offset(EU_PERF_CNTL6),
1600 	};
1601 	u32 *cs;
1602 	int i;
1603 
1604 	cs = intel_ring_begin(req, n_flex_regs * 2 + 4);
1605 	if (IS_ERR(cs))
1606 		return PTR_ERR(cs);
1607 
1608 	*cs++ = MI_LOAD_REGISTER_IMM(n_flex_regs + 1);
1609 
1610 	*cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1611 	*cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1612 		(dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1613 		GEN8_OA_COUNTER_RESUME;
1614 
1615 	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1616 		u32 mmio = flex_mmio[i];
1617 
1618 		/*
1619 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1620 		 * Active' event. In the future it's anticipated that there
1621 		 * will be an explicit 'No Event' we can select, but not
1622 		 * yet...
1623 		 */
1624 		u32 value = 0;
1625 		int j;
1626 
1627 		for (j = 0; j < n_flex_regs; j++) {
1628 			if (i915_mmio_reg_offset(flex_regs[j].addr) == mmio) {
1629 				value = flex_regs[j].value;
1630 				break;
1631 			}
1632 		}
1633 
1634 		*cs++ = mmio;
1635 		*cs++ = value;
1636 	}
1637 
1638 	*cs++ = MI_NOOP;
1639 	intel_ring_advance(req, cs);
1640 
1641 	return 0;
1642 }
1643 
1644 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv)
1645 {
1646 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
1647 	struct i915_gem_timeline *timeline;
1648 	struct drm_i915_gem_request *req;
1649 	int ret;
1650 
1651 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1652 
1653 	i915_gem_retire_requests(dev_priv);
1654 
1655 	req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1656 	if (IS_ERR(req))
1657 		return PTR_ERR(req);
1658 
1659 	ret = gen8_emit_oa_config(req);
1660 	if (ret) {
1661 		i915_add_request(req);
1662 		return ret;
1663 	}
1664 
1665 	/* Queue this switch after all other activity */
1666 	list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1667 		struct drm_i915_gem_request *prev;
1668 		struct intel_timeline *tl;
1669 
1670 		tl = &timeline->engine[engine->id];
1671 		prev = i915_gem_active_raw(&tl->last_request,
1672 					   &dev_priv->drm.struct_mutex);
1673 		if (prev)
1674 			i915_sw_fence_await_sw_fence_gfp(&req->submit,
1675 							 &prev->submit,
1676 							 GFP_KERNEL);
1677 	}
1678 
1679 	ret = i915_switch_context(req);
1680 	i915_add_request(req);
1681 
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Manages updating the per-context aspects of the OA stream
1687  * configuration across all contexts.
1688  *
1689  * The awkward consideration here is that OACTXCONTROL controls the
1690  * exponent for periodic sampling which is primarily used for system
1691  * wide profiling where we'd like a consistent sampling period even in
1692  * the face of context switches.
1693  *
1694  * Our approach of updating the register state context (as opposed to
1695  * say using a workaround batch buffer) ensures that the hardware
1696  * won't automatically reload an out-of-date timer exponent even
1697  * transiently before a WA BB could be parsed.
1698  *
1699  * This function needs to:
1700  * - Ensure the currently running context's per-context OA state is
1701  *   updated
1702  * - Ensure that all existing contexts will have the correct per-context
1703  *   OA state if they are scheduled for use.
1704  * - Ensure any new contexts will be initialized with the correct
1705  *   per-context OA state.
1706  *
1707  * Note: it's only the RCS/Render context that has any OA state.
1708  */
1709 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1710 				       bool interruptible)
1711 {
1712 	struct i915_gem_context *ctx;
1713 	int ret;
1714 	unsigned int wait_flags = I915_WAIT_LOCKED;
1715 
1716 	if (interruptible) {
1717 		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1718 		if (ret)
1719 			return ret;
1720 
1721 		wait_flags |= I915_WAIT_INTERRUPTIBLE;
1722 	} else {
1723 		mutex_lock(&dev_priv->drm.struct_mutex);
1724 	}
1725 
1726 	/* Switch away from any user context. */
1727 	ret = gen8_switch_to_updated_kernel_context(dev_priv);
1728 	if (ret)
1729 		goto out;
1730 
1731 	/*
1732 	 * The OA register config is setup through the context image. This image
1733 	 * might be written to by the GPU on context switch (in particular on
1734 	 * lite-restore). This means we can't safely update a context's image,
1735 	 * if this context is scheduled/submitted to run on the GPU.
1736 	 *
1737 	 * We could emit the OA register config through the batch buffer but
1738 	 * this might leave small interval of time where the OA unit is
1739 	 * configured at an invalid sampling period.
1740 	 *
1741 	 * So far the best way to work around this issue seems to be draining
1742 	 * the GPU from any submitted work.
1743 	 */
1744 	ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1745 	if (ret)
1746 		goto out;
1747 
1748 	/* Update all contexts now that we've stalled the submission. */
1749 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1750 		struct intel_context *ce = &ctx->engine[RCS];
1751 		u32 *regs;
1752 
1753 		/* OA settings will be set upon first use */
1754 		if (!ce->state)
1755 			continue;
1756 
1757 		regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1758 		if (IS_ERR(regs)) {
1759 			ret = PTR_ERR(regs);
1760 			goto out;
1761 		}
1762 
1763 		ce->state->obj->mm.dirty = true;
1764 		regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1765 
1766 		gen8_update_reg_state_unlocked(ctx, regs);
1767 
1768 		i915_gem_object_unpin_map(ce->state->obj);
1769 	}
1770 
1771  out:
1772 	mutex_unlock(&dev_priv->drm.struct_mutex);
1773 
1774 	return ret;
1775 }
1776 
1777 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv)
1778 {
1779 	int ret = dev_priv->perf.oa.ops.select_metric_set(dev_priv);
1780 	int i;
1781 
1782 	if (ret)
1783 		return ret;
1784 
1785 	/*
1786 	 * We disable slice/unslice clock ratio change reports on SKL since
1787 	 * they are too noisy. The HW generates a lot of redundant reports
1788 	 * where the ratio hasn't really changed causing a lot of redundant
1789 	 * work to processes and increasing the chances we'll hit buffer
1790 	 * overruns.
1791 	 *
1792 	 * Although we don't currently use the 'disable overrun' OABUFFER
1793 	 * feature it's worth noting that clock ratio reports have to be
1794 	 * disabled before considering to use that feature since the HW doesn't
1795 	 * correctly block these reports.
1796 	 *
1797 	 * Currently none of the high-level metrics we have depend on knowing
1798 	 * this ratio to normalize.
1799 	 *
1800 	 * Note: This register is not power context saved and restored, but
1801 	 * that's OK considering that we disable RC6 while the OA unit is
1802 	 * enabled.
1803 	 *
1804 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1805 	 * be read back from automatically triggered reports, as part of the
1806 	 * RPT_ID field.
1807 	 */
1808 	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
1809 	    IS_KABYLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
1810 		I915_WRITE(GEN8_OA_DEBUG,
1811 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1812 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1813 	}
1814 
1815 	/*
1816 	 * Update all contexts prior writing the mux configurations as we need
1817 	 * to make sure all slices/subslices are ON before writing to NOA
1818 	 * registers.
1819 	 */
1820 	ret = gen8_configure_all_contexts(dev_priv, true);
1821 	if (ret)
1822 		return ret;
1823 
1824 	I915_WRITE(GDT_CHICKEN_BITS, 0xA0);
1825 	for (i = 0; i < dev_priv->perf.oa.n_mux_configs; i++) {
1826 		config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs[i],
1827 			       dev_priv->perf.oa.mux_regs_lens[i]);
1828 	}
1829 	I915_WRITE(GDT_CHICKEN_BITS, 0x80);
1830 
1831 	config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
1832 		       dev_priv->perf.oa.b_counter_regs_len);
1833 
1834 	return 0;
1835 }
1836 
1837 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1838 {
1839 	/* Reset all contexts' slices/subslices configurations. */
1840 	gen8_configure_all_contexts(dev_priv, false);
1841 }
1842 
1843 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1844 {
1845 	/*
1846 	 * Reset buf pointers so we don't forward reports from before now.
1847 	 *
1848 	 * Think carefully if considering trying to avoid this, since it
1849 	 * also ensures status flags and the buffer itself are cleared
1850 	 * in error paths, and we have checks for invalid reports based
1851 	 * on the assumption that certain fields are written to zeroed
1852 	 * memory which this helps maintains.
1853 	 */
1854 	gen7_init_oa_buffer(dev_priv);
1855 
1856 	if (dev_priv->perf.oa.exclusive_stream->enabled) {
1857 		struct i915_gem_context *ctx =
1858 			dev_priv->perf.oa.exclusive_stream->ctx;
1859 		u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1860 
1861 		bool periodic = dev_priv->perf.oa.periodic;
1862 		u32 period_exponent = dev_priv->perf.oa.period_exponent;
1863 		u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1864 
1865 		I915_WRITE(GEN7_OACONTROL,
1866 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1867 			   (period_exponent <<
1868 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1869 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1870 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1871 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1872 			   GEN7_OACONTROL_ENABLE);
1873 	} else
1874 		I915_WRITE(GEN7_OACONTROL, 0);
1875 }
1876 
1877 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1878 {
1879 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1880 
1881 	/*
1882 	 * Reset buf pointers so we don't forward reports from before now.
1883 	 *
1884 	 * Think carefully if considering trying to avoid this, since it
1885 	 * also ensures status flags and the buffer itself are cleared
1886 	 * in error paths, and we have checks for invalid reports based
1887 	 * on the assumption that certain fields are written to zeroed
1888 	 * memory which this helps maintains.
1889 	 */
1890 	gen8_init_oa_buffer(dev_priv);
1891 
1892 	/*
1893 	 * Note: we don't rely on the hardware to perform single context
1894 	 * filtering and instead filter on the cpu based on the context-id
1895 	 * field of reports
1896 	 */
1897 	I915_WRITE(GEN8_OACONTROL, (report_format <<
1898 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
1899 				   GEN8_OA_COUNTER_ENABLE);
1900 }
1901 
1902 /**
1903  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1904  * @stream: An i915 perf stream opened for OA metrics
1905  *
1906  * [Re]enables hardware periodic sampling according to the period configured
1907  * when opening the stream. This also starts a hrtimer that will periodically
1908  * check for data in the circular OA buffer for notifying userspace (e.g.
1909  * during a read() or poll()).
1910  */
1911 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1912 {
1913 	struct drm_i915_private *dev_priv = stream->dev_priv;
1914 
1915 	dev_priv->perf.oa.ops.oa_enable(dev_priv);
1916 
1917 	if (dev_priv->perf.oa.periodic)
1918 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1919 			      ns_to_ktime(POLL_PERIOD),
1920 			      HRTIMER_MODE_REL_PINNED);
1921 }
1922 
1923 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1924 {
1925 	I915_WRITE(GEN7_OACONTROL, 0);
1926 }
1927 
1928 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1929 {
1930 	I915_WRITE(GEN8_OACONTROL, 0);
1931 }
1932 
1933 /**
1934  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1935  * @stream: An i915 perf stream opened for OA metrics
1936  *
1937  * Stops the OA unit from periodically writing counter reports into the
1938  * circular OA buffer. This also stops the hrtimer that periodically checks for
1939  * data in the circular OA buffer, for notifying userspace.
1940  */
1941 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1942 {
1943 	struct drm_i915_private *dev_priv = stream->dev_priv;
1944 
1945 	dev_priv->perf.oa.ops.oa_disable(dev_priv);
1946 
1947 	if (dev_priv->perf.oa.periodic)
1948 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1949 }
1950 
1951 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1952 	.destroy = i915_oa_stream_destroy,
1953 	.enable = i915_oa_stream_enable,
1954 	.disable = i915_oa_stream_disable,
1955 	.wait_unlocked = i915_oa_wait_unlocked,
1956 	.poll_wait = i915_oa_poll_wait,
1957 	.read = i915_oa_read,
1958 };
1959 
1960 /**
1961  * i915_oa_stream_init - validate combined props for OA stream and init
1962  * @stream: An i915 perf stream
1963  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1964  * @props: The property state that configures stream (individually validated)
1965  *
1966  * While read_properties_unlocked() validates properties in isolation it
1967  * doesn't ensure that the combination necessarily makes sense.
1968  *
1969  * At this point it has been determined that userspace wants a stream of
1970  * OA metrics, but still we need to further validate the combined
1971  * properties are OK.
1972  *
1973  * If the configuration makes sense then we can allocate memory for
1974  * a circular OA buffer and apply the requested metric set configuration.
1975  *
1976  * Returns: zero on success or a negative error code.
1977  */
1978 static int i915_oa_stream_init(struct i915_perf_stream *stream,
1979 			       struct drm_i915_perf_open_param *param,
1980 			       struct perf_open_properties *props)
1981 {
1982 	struct drm_i915_private *dev_priv = stream->dev_priv;
1983 	int format_size;
1984 	int ret;
1985 
1986 	/* If the sysfs metrics/ directory wasn't registered for some
1987 	 * reason then don't let userspace try their luck with config
1988 	 * IDs
1989 	 */
1990 	if (!dev_priv->perf.metrics_kobj) {
1991 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
1992 		return -EINVAL;
1993 	}
1994 
1995 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
1996 		DRM_DEBUG("Only OA report sampling supported\n");
1997 		return -EINVAL;
1998 	}
1999 
2000 	if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2001 		DRM_DEBUG("OA unit not supported\n");
2002 		return -ENODEV;
2003 	}
2004 
2005 	/* To avoid the complexity of having to accurately filter
2006 	 * counter reports and marshal to the appropriate client
2007 	 * we currently only allow exclusive access
2008 	 */
2009 	if (dev_priv->perf.oa.exclusive_stream) {
2010 		DRM_DEBUG("OA unit already in use\n");
2011 		return -EBUSY;
2012 	}
2013 
2014 	if (!props->metrics_set) {
2015 		DRM_DEBUG("OA metric set not specified\n");
2016 		return -EINVAL;
2017 	}
2018 
2019 	if (!props->oa_format) {
2020 		DRM_DEBUG("OA report format not specified\n");
2021 		return -EINVAL;
2022 	}
2023 
2024 	/* We set up some ratelimit state to potentially throttle any _NOTES
2025 	 * about spurious, invalid OA reports which we don't forward to
2026 	 * userspace.
2027 	 *
2028 	 * The initialization is associated with opening the stream (not driver
2029 	 * init) considering we print a _NOTE about any throttling when closing
2030 	 * the stream instead of waiting until driver _fini which no one would
2031 	 * ever see.
2032 	 *
2033 	 * Using the same limiting factors as printk_ratelimit()
2034 	 */
2035 	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2036 			     5 * HZ, 10);
2037 	/* Since we use a DRM_NOTE for spurious reports it would be
2038 	 * inconsistent to let __ratelimit() automatically print a warning for
2039 	 * throttling.
2040 	 */
2041 	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2042 			    RATELIMIT_MSG_ON_RELEASE);
2043 
2044 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2045 
2046 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2047 
2048 	stream->sample_flags |= SAMPLE_OA_REPORT;
2049 	stream->sample_size += format_size;
2050 
2051 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
2052 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2053 		return -EINVAL;
2054 
2055 	dev_priv->perf.oa.oa_buffer.format =
2056 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
2057 
2058 	dev_priv->perf.oa.metrics_set = props->metrics_set;
2059 
2060 	dev_priv->perf.oa.periodic = props->oa_periodic;
2061 	if (dev_priv->perf.oa.periodic)
2062 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2063 
2064 	if (stream->ctx) {
2065 		ret = oa_get_render_ctx_id(stream);
2066 		if (ret)
2067 			return ret;
2068 	}
2069 
2070 	/* PRM - observability performance counters:
2071 	 *
2072 	 *   OACONTROL, performance counter enable, note:
2073 	 *
2074 	 *   "When this bit is set, in order to have coherent counts,
2075 	 *   RC6 power state and trunk clock gating must be disabled.
2076 	 *   This can be achieved by programming MMIO registers as
2077 	 *   0xA094=0 and 0xA090[31]=1"
2078 	 *
2079 	 *   In our case we are expecting that taking pm + FORCEWAKE
2080 	 *   references will effectively disable RC6.
2081 	 */
2082 	intel_runtime_pm_get(dev_priv);
2083 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2084 
2085 	ret = alloc_oa_buffer(dev_priv);
2086 	if (ret)
2087 		goto err_oa_buf_alloc;
2088 
2089 	ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
2090 	if (ret)
2091 		goto err_enable;
2092 
2093 	stream->ops = &i915_oa_stream_ops;
2094 
2095 	dev_priv->perf.oa.exclusive_stream = stream;
2096 
2097 	return 0;
2098 
2099 err_enable:
2100 	free_oa_buffer(dev_priv);
2101 
2102 err_oa_buf_alloc:
2103 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2104 	intel_runtime_pm_put(dev_priv);
2105 	if (stream->ctx)
2106 		oa_put_render_ctx_id(stream);
2107 
2108 	return ret;
2109 }
2110 
2111 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2112 			    struct i915_gem_context *ctx,
2113 			    u32 *reg_state)
2114 {
2115 	struct drm_i915_private *dev_priv = engine->i915;
2116 
2117 	if (engine->id != RCS)
2118 		return;
2119 
2120 	if (!dev_priv->perf.initialized)
2121 		return;
2122 
2123 	gen8_update_reg_state_unlocked(ctx, reg_state);
2124 }
2125 
2126 /**
2127  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2128  * @stream: An i915 perf stream
2129  * @file: An i915 perf stream file
2130  * @buf: destination buffer given by userspace
2131  * @count: the number of bytes userspace wants to read
2132  * @ppos: (inout) file seek position (unused)
2133  *
2134  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2135  * ensure that if we've successfully copied any data then reporting that takes
2136  * precedence over any internal error status, so the data isn't lost.
2137  *
2138  * For example ret will be -ENOSPC whenever there is more buffered data than
2139  * can be copied to userspace, but that's only interesting if we weren't able
2140  * to copy some data because it implies the userspace buffer is too small to
2141  * receive a single record (and we never split records).
2142  *
2143  * Another case with ret == -EFAULT is more of a grey area since it would seem
2144  * like bad form for userspace to ask us to overrun its buffer, but the user
2145  * knows best:
2146  *
2147  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2148  *
2149  * Returns: The number of bytes copied or a negative error code on failure.
2150  */
2151 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2152 				     struct file *file,
2153 				     char __user *buf,
2154 				     size_t count,
2155 				     loff_t *ppos)
2156 {
2157 	/* Note we keep the offset (aka bytes read) separate from any
2158 	 * error status so that the final check for whether we return
2159 	 * the bytes read with a higher precedence than any error (see
2160 	 * comment below) doesn't need to be handled/duplicated in
2161 	 * stream->ops->read() implementations.
2162 	 */
2163 	size_t offset = 0;
2164 	int ret = stream->ops->read(stream, buf, count, &offset);
2165 
2166 	return offset ?: (ret ?: -EAGAIN);
2167 }
2168 
2169 /**
2170  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2171  * @file: An i915 perf stream file
2172  * @buf: destination buffer given by userspace
2173  * @count: the number of bytes userspace wants to read
2174  * @ppos: (inout) file seek position (unused)
2175  *
2176  * The entry point for handling a read() on a stream file descriptor from
2177  * userspace. Most of the work is left to the i915_perf_read_locked() and
2178  * &i915_perf_stream_ops->read but to save having stream implementations (of
2179  * which we might have multiple later) we handle blocking read here.
2180  *
2181  * We can also consistently treat trying to read from a disabled stream
2182  * as an IO error so implementations can assume the stream is enabled
2183  * while reading.
2184  *
2185  * Returns: The number of bytes copied or a negative error code on failure.
2186  */
2187 static ssize_t i915_perf_read(struct file *file,
2188 			      char __user *buf,
2189 			      size_t count,
2190 			      loff_t *ppos)
2191 {
2192 	struct i915_perf_stream *stream = file->private_data;
2193 	struct drm_i915_private *dev_priv = stream->dev_priv;
2194 	ssize_t ret;
2195 
2196 	/* To ensure it's handled consistently we simply treat all reads of a
2197 	 * disabled stream as an error. In particular it might otherwise lead
2198 	 * to a deadlock for blocking file descriptors...
2199 	 */
2200 	if (!stream->enabled)
2201 		return -EIO;
2202 
2203 	if (!(file->f_flags & O_NONBLOCK)) {
2204 		/* There's the small chance of false positives from
2205 		 * stream->ops->wait_unlocked.
2206 		 *
2207 		 * E.g. with single context filtering since we only wait until
2208 		 * oabuffer has >= 1 report we don't immediately know whether
2209 		 * any reports really belong to the current context
2210 		 */
2211 		do {
2212 			ret = stream->ops->wait_unlocked(stream);
2213 			if (ret)
2214 				return ret;
2215 
2216 			mutex_lock(&dev_priv->perf.lock);
2217 			ret = i915_perf_read_locked(stream, file,
2218 						    buf, count, ppos);
2219 			mutex_unlock(&dev_priv->perf.lock);
2220 		} while (ret == -EAGAIN);
2221 	} else {
2222 		mutex_lock(&dev_priv->perf.lock);
2223 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2224 		mutex_unlock(&dev_priv->perf.lock);
2225 	}
2226 
2227 	/* We allow the poll checking to sometimes report false positive POLLIN
2228 	 * events where we might actually report EAGAIN on read() if there's
2229 	 * not really any data available. In this situation though we don't
2230 	 * want to enter a busy loop between poll() reporting a POLLIN event
2231 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2232 	 * effectively ensures we back off until the next hrtimer callback
2233 	 * before reporting another POLLIN event.
2234 	 */
2235 	if (ret >= 0 || ret == -EAGAIN) {
2236 		/* Maybe make ->pollin per-stream state if we support multiple
2237 		 * concurrent streams in the future.
2238 		 */
2239 		dev_priv->perf.oa.pollin = false;
2240 	}
2241 
2242 	return ret;
2243 }
2244 
2245 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2246 {
2247 	struct drm_i915_private *dev_priv =
2248 		container_of(hrtimer, typeof(*dev_priv),
2249 			     perf.oa.poll_check_timer);
2250 
2251 	if (oa_buffer_check_unlocked(dev_priv)) {
2252 		dev_priv->perf.oa.pollin = true;
2253 		wake_up(&dev_priv->perf.oa.poll_wq);
2254 	}
2255 
2256 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2257 
2258 	return HRTIMER_RESTART;
2259 }
2260 
2261 /**
2262  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2263  * @dev_priv: i915 device instance
2264  * @stream: An i915 perf stream
2265  * @file: An i915 perf stream file
2266  * @wait: poll() state table
2267  *
2268  * For handling userspace polling on an i915 perf stream, this calls through to
2269  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2270  * will be woken for new stream data.
2271  *
2272  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2273  * with any non-file-operation driver hooks.
2274  *
2275  * Returns: any poll events that are ready without sleeping
2276  */
2277 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2278 					  struct i915_perf_stream *stream,
2279 					  struct file *file,
2280 					  poll_table *wait)
2281 {
2282 	unsigned int events = 0;
2283 
2284 	stream->ops->poll_wait(stream, file, wait);
2285 
2286 	/* Note: we don't explicitly check whether there's something to read
2287 	 * here since this path may be very hot depending on what else
2288 	 * userspace is polling, or on the timeout in use. We rely solely on
2289 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2290 	 * samples to read.
2291 	 */
2292 	if (dev_priv->perf.oa.pollin)
2293 		events |= POLLIN;
2294 
2295 	return events;
2296 }
2297 
2298 /**
2299  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2300  * @file: An i915 perf stream file
2301  * @wait: poll() state table
2302  *
2303  * For handling userspace polling on an i915 perf stream, this ensures
2304  * poll_wait() gets called with a wait queue that will be woken for new stream
2305  * data.
2306  *
2307  * Note: Implementation deferred to i915_perf_poll_locked()
2308  *
2309  * Returns: any poll events that are ready without sleeping
2310  */
2311 static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
2312 {
2313 	struct i915_perf_stream *stream = file->private_data;
2314 	struct drm_i915_private *dev_priv = stream->dev_priv;
2315 	int ret;
2316 
2317 	mutex_lock(&dev_priv->perf.lock);
2318 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2319 	mutex_unlock(&dev_priv->perf.lock);
2320 
2321 	return ret;
2322 }
2323 
2324 /**
2325  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2326  * @stream: A disabled i915 perf stream
2327  *
2328  * [Re]enables the associated capture of data for this stream.
2329  *
2330  * If a stream was previously enabled then there's currently no intention
2331  * to provide userspace any guarantee about the preservation of previously
2332  * buffered data.
2333  */
2334 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2335 {
2336 	if (stream->enabled)
2337 		return;
2338 
2339 	/* Allow stream->ops->enable() to refer to this */
2340 	stream->enabled = true;
2341 
2342 	if (stream->ops->enable)
2343 		stream->ops->enable(stream);
2344 }
2345 
2346 /**
2347  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2348  * @stream: An enabled i915 perf stream
2349  *
2350  * Disables the associated capture of data for this stream.
2351  *
2352  * The intention is that disabling an re-enabling a stream will ideally be
2353  * cheaper than destroying and re-opening a stream with the same configuration,
2354  * though there are no formal guarantees about what state or buffered data
2355  * must be retained between disabling and re-enabling a stream.
2356  *
2357  * Note: while a stream is disabled it's considered an error for userspace
2358  * to attempt to read from the stream (-EIO).
2359  */
2360 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2361 {
2362 	if (!stream->enabled)
2363 		return;
2364 
2365 	/* Allow stream->ops->disable() to refer to this */
2366 	stream->enabled = false;
2367 
2368 	if (stream->ops->disable)
2369 		stream->ops->disable(stream);
2370 }
2371 
2372 /**
2373  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2374  * @stream: An i915 perf stream
2375  * @cmd: the ioctl request
2376  * @arg: the ioctl data
2377  *
2378  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2379  * with any non-file-operation driver hooks.
2380  *
2381  * Returns: zero on success or a negative error code. Returns -EINVAL for
2382  * an unknown ioctl request.
2383  */
2384 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2385 				   unsigned int cmd,
2386 				   unsigned long arg)
2387 {
2388 	switch (cmd) {
2389 	case I915_PERF_IOCTL_ENABLE:
2390 		i915_perf_enable_locked(stream);
2391 		return 0;
2392 	case I915_PERF_IOCTL_DISABLE:
2393 		i915_perf_disable_locked(stream);
2394 		return 0;
2395 	}
2396 
2397 	return -EINVAL;
2398 }
2399 
2400 /**
2401  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2402  * @file: An i915 perf stream file
2403  * @cmd: the ioctl request
2404  * @arg: the ioctl data
2405  *
2406  * Implementation deferred to i915_perf_ioctl_locked().
2407  *
2408  * Returns: zero on success or a negative error code. Returns -EINVAL for
2409  * an unknown ioctl request.
2410  */
2411 static long i915_perf_ioctl(struct file *file,
2412 			    unsigned int cmd,
2413 			    unsigned long arg)
2414 {
2415 	struct i915_perf_stream *stream = file->private_data;
2416 	struct drm_i915_private *dev_priv = stream->dev_priv;
2417 	long ret;
2418 
2419 	mutex_lock(&dev_priv->perf.lock);
2420 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2421 	mutex_unlock(&dev_priv->perf.lock);
2422 
2423 	return ret;
2424 }
2425 
2426 /**
2427  * i915_perf_destroy_locked - destroy an i915 perf stream
2428  * @stream: An i915 perf stream
2429  *
2430  * Frees all resources associated with the given i915 perf @stream, disabling
2431  * any associated data capture in the process.
2432  *
2433  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2434  * with any non-file-operation driver hooks.
2435  */
2436 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2437 {
2438 	if (stream->enabled)
2439 		i915_perf_disable_locked(stream);
2440 
2441 	if (stream->ops->destroy)
2442 		stream->ops->destroy(stream);
2443 
2444 	list_del(&stream->link);
2445 
2446 	if (stream->ctx)
2447 		i915_gem_context_put_unlocked(stream->ctx);
2448 
2449 	kfree(stream);
2450 }
2451 
2452 /**
2453  * i915_perf_release - handles userspace close() of a stream file
2454  * @inode: anonymous inode associated with file
2455  * @file: An i915 perf stream file
2456  *
2457  * Cleans up any resources associated with an open i915 perf stream file.
2458  *
2459  * NB: close() can't really fail from the userspace point of view.
2460  *
2461  * Returns: zero on success or a negative error code.
2462  */
2463 static int i915_perf_release(struct inode *inode, struct file *file)
2464 {
2465 	struct i915_perf_stream *stream = file->private_data;
2466 	struct drm_i915_private *dev_priv = stream->dev_priv;
2467 
2468 	mutex_lock(&dev_priv->perf.lock);
2469 	i915_perf_destroy_locked(stream);
2470 	mutex_unlock(&dev_priv->perf.lock);
2471 
2472 	return 0;
2473 }
2474 
2475 
2476 static const struct file_operations fops = {
2477 	.owner		= THIS_MODULE,
2478 	.llseek		= no_llseek,
2479 	.release	= i915_perf_release,
2480 	.poll		= i915_perf_poll,
2481 	.read		= i915_perf_read,
2482 	.unlocked_ioctl	= i915_perf_ioctl,
2483 };
2484 
2485 
2486 static struct i915_gem_context *
2487 lookup_context(struct drm_i915_private *dev_priv,
2488 	       struct drm_i915_file_private *file_priv,
2489 	       u32 ctx_user_handle)
2490 {
2491 	struct i915_gem_context *ctx;
2492 	int ret;
2493 
2494 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2495 	if (ret)
2496 		return ERR_PTR(ret);
2497 
2498 	ctx = i915_gem_context_lookup(file_priv, ctx_user_handle);
2499 	if (!IS_ERR(ctx))
2500 		i915_gem_context_get(ctx);
2501 
2502 	mutex_unlock(&dev_priv->drm.struct_mutex);
2503 
2504 	return ctx;
2505 }
2506 
2507 /**
2508  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2509  * @dev_priv: i915 device instance
2510  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2511  * @props: individually validated u64 property value pairs
2512  * @file: drm file
2513  *
2514  * See i915_perf_ioctl_open() for interface details.
2515  *
2516  * Implements further stream config validation and stream initialization on
2517  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2518  * taken to serialize with any non-file-operation driver hooks.
2519  *
2520  * Note: at this point the @props have only been validated in isolation and
2521  * it's still necessary to validate that the combination of properties makes
2522  * sense.
2523  *
2524  * In the case where userspace is interested in OA unit metrics then further
2525  * config validation and stream initialization details will be handled by
2526  * i915_oa_stream_init(). The code here should only validate config state that
2527  * will be relevant to all stream types / backends.
2528  *
2529  * Returns: zero on success or a negative error code.
2530  */
2531 static int
2532 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2533 			    struct drm_i915_perf_open_param *param,
2534 			    struct perf_open_properties *props,
2535 			    struct drm_file *file)
2536 {
2537 	struct i915_gem_context *specific_ctx = NULL;
2538 	struct i915_perf_stream *stream = NULL;
2539 	unsigned long f_flags = 0;
2540 	bool privileged_op = true;
2541 	int stream_fd;
2542 	int ret;
2543 
2544 	if (props->single_context) {
2545 		u32 ctx_handle = props->ctx_handle;
2546 		struct drm_i915_file_private *file_priv = file->driver_priv;
2547 
2548 		specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle);
2549 		if (IS_ERR(specific_ctx)) {
2550 			ret = PTR_ERR(specific_ctx);
2551 			if (ret != -EINTR)
2552 				DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2553 					  ctx_handle);
2554 			goto err;
2555 		}
2556 	}
2557 
2558 	/*
2559 	 * On Haswell the OA unit supports clock gating off for a specific
2560 	 * context and in this mode there's no visibility of metrics for the
2561 	 * rest of the system, which we consider acceptable for a
2562 	 * non-privileged client.
2563 	 *
2564 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2565 	 * specific context and the kernel can't securely stop the counters
2566 	 * from updating as system-wide / global values. Even though we can
2567 	 * filter reports based on the included context ID we can't block
2568 	 * clients from seeing the raw / global counter values via
2569 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2570 	 * enable the OA unit by default.
2571 	 */
2572 	if (IS_HASWELL(dev_priv) && specific_ctx)
2573 		privileged_op = false;
2574 
2575 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2576 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2577 	 * to determine if it's ok to access system wide OA counters
2578 	 * without CAP_SYS_ADMIN privileges.
2579 	 */
2580 	if (privileged_op &&
2581 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2582 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2583 		ret = -EACCES;
2584 		goto err_ctx;
2585 	}
2586 
2587 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2588 	if (!stream) {
2589 		ret = -ENOMEM;
2590 		goto err_ctx;
2591 	}
2592 
2593 	stream->dev_priv = dev_priv;
2594 	stream->ctx = specific_ctx;
2595 
2596 	ret = i915_oa_stream_init(stream, param, props);
2597 	if (ret)
2598 		goto err_alloc;
2599 
2600 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2601 	 * to have _stream_init check the combination of sample flags more
2602 	 * thoroughly, but still this is the expected result at this point.
2603 	 */
2604 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2605 		ret = -ENODEV;
2606 		goto err_flags;
2607 	}
2608 
2609 	list_add(&stream->link, &dev_priv->perf.streams);
2610 
2611 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2612 		f_flags |= O_CLOEXEC;
2613 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2614 		f_flags |= O_NONBLOCK;
2615 
2616 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2617 	if (stream_fd < 0) {
2618 		ret = stream_fd;
2619 		goto err_open;
2620 	}
2621 
2622 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2623 		i915_perf_enable_locked(stream);
2624 
2625 	return stream_fd;
2626 
2627 err_open:
2628 	list_del(&stream->link);
2629 err_flags:
2630 	if (stream->ops->destroy)
2631 		stream->ops->destroy(stream);
2632 err_alloc:
2633 	kfree(stream);
2634 err_ctx:
2635 	if (specific_ctx)
2636 		i915_gem_context_put_unlocked(specific_ctx);
2637 err:
2638 	return ret;
2639 }
2640 
2641 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2642 {
2643 	return div_u64(1000000000ULL * (2ULL << exponent),
2644 		       dev_priv->perf.oa.timestamp_frequency);
2645 }
2646 
2647 /**
2648  * read_properties_unlocked - validate + copy userspace stream open properties
2649  * @dev_priv: i915 device instance
2650  * @uprops: The array of u64 key value pairs given by userspace
2651  * @n_props: The number of key value pairs expected in @uprops
2652  * @props: The stream configuration built up while validating properties
2653  *
2654  * Note this function only validates properties in isolation it doesn't
2655  * validate that the combination of properties makes sense or that all
2656  * properties necessary for a particular kind of stream have been set.
2657  *
2658  * Note that there currently aren't any ordering requirements for properties so
2659  * we shouldn't validate or assume anything about ordering here. This doesn't
2660  * rule out defining new properties with ordering requirements in the future.
2661  */
2662 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2663 				    u64 __user *uprops,
2664 				    u32 n_props,
2665 				    struct perf_open_properties *props)
2666 {
2667 	u64 __user *uprop = uprops;
2668 	int i;
2669 
2670 	memset(props, 0, sizeof(struct perf_open_properties));
2671 
2672 	if (!n_props) {
2673 		DRM_DEBUG("No i915 perf properties given\n");
2674 		return -EINVAL;
2675 	}
2676 
2677 	/* Considering that ID = 0 is reserved and assuming that we don't
2678 	 * (currently) expect any configurations to ever specify duplicate
2679 	 * values for a particular property ID then the last _PROP_MAX value is
2680 	 * one greater than the maximum number of properties we expect to get
2681 	 * from userspace.
2682 	 */
2683 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2684 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2685 		return -EINVAL;
2686 	}
2687 
2688 	for (i = 0; i < n_props; i++) {
2689 		u64 oa_period, oa_freq_hz;
2690 		u64 id, value;
2691 		int ret;
2692 
2693 		ret = get_user(id, uprop);
2694 		if (ret)
2695 			return ret;
2696 
2697 		ret = get_user(value, uprop + 1);
2698 		if (ret)
2699 			return ret;
2700 
2701 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2702 			DRM_DEBUG("Unknown i915 perf property ID\n");
2703 			return -EINVAL;
2704 		}
2705 
2706 		switch ((enum drm_i915_perf_property_id)id) {
2707 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2708 			props->single_context = 1;
2709 			props->ctx_handle = value;
2710 			break;
2711 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2712 			props->sample_flags |= SAMPLE_OA_REPORT;
2713 			break;
2714 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2715 			if (value == 0 ||
2716 			    value > dev_priv->perf.oa.n_builtin_sets) {
2717 				DRM_DEBUG("Unknown OA metric set ID\n");
2718 				return -EINVAL;
2719 			}
2720 			props->metrics_set = value;
2721 			break;
2722 		case DRM_I915_PERF_PROP_OA_FORMAT:
2723 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2724 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2725 					  value);
2726 				return -EINVAL;
2727 			}
2728 			if (!dev_priv->perf.oa.oa_formats[value].size) {
2729 				DRM_DEBUG("Unsupported OA report format %llu\n",
2730 					  value);
2731 				return -EINVAL;
2732 			}
2733 			props->oa_format = value;
2734 			break;
2735 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2736 			if (value > OA_EXPONENT_MAX) {
2737 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2738 					 OA_EXPONENT_MAX);
2739 				return -EINVAL;
2740 			}
2741 
2742 			/* Theoretically we can program the OA unit to sample
2743 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2744 			 * for BXT. We don't allow such high sampling
2745 			 * frequencies by default unless root.
2746 			 */
2747 
2748 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2749 			oa_period = oa_exponent_to_ns(dev_priv, value);
2750 
2751 			/* This check is primarily to ensure that oa_period <=
2752 			 * UINT32_MAX (before passing to do_div which only
2753 			 * accepts a u32 denominator), but we can also skip
2754 			 * checking anything < 1Hz which implicitly can't be
2755 			 * limited via an integer oa_max_sample_rate.
2756 			 */
2757 			if (oa_period <= NSEC_PER_SEC) {
2758 				u64 tmp = NSEC_PER_SEC;
2759 				do_div(tmp, oa_period);
2760 				oa_freq_hz = tmp;
2761 			} else
2762 				oa_freq_hz = 0;
2763 
2764 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2765 			    !capable(CAP_SYS_ADMIN)) {
2766 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2767 					  i915_oa_max_sample_rate);
2768 				return -EACCES;
2769 			}
2770 
2771 			props->oa_periodic = true;
2772 			props->oa_period_exponent = value;
2773 			break;
2774 		case DRM_I915_PERF_PROP_MAX:
2775 			MISSING_CASE(id);
2776 			return -EINVAL;
2777 		}
2778 
2779 		uprop += 2;
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 /**
2786  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2787  * @dev: drm device
2788  * @data: ioctl data copied from userspace (unvalidated)
2789  * @file: drm file
2790  *
2791  * Validates the stream open parameters given by userspace including flags
2792  * and an array of u64 key, value pair properties.
2793  *
2794  * Very little is assumed up front about the nature of the stream being
2795  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2796  * i915-perf stream is expected to be a suitable interface for other forms of
2797  * buffered data written by the GPU besides periodic OA metrics.
2798  *
2799  * Note we copy the properties from userspace outside of the i915 perf
2800  * mutex to avoid an awkward lockdep with mmap_sem.
2801  *
2802  * Most of the implementation details are handled by
2803  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2804  * mutex for serializing with any non-file-operation driver hooks.
2805  *
2806  * Return: A newly opened i915 Perf stream file descriptor or negative
2807  * error code on failure.
2808  */
2809 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2810 			 struct drm_file *file)
2811 {
2812 	struct drm_i915_private *dev_priv = dev->dev_private;
2813 	struct drm_i915_perf_open_param *param = data;
2814 	struct perf_open_properties props;
2815 	u32 known_open_flags;
2816 	int ret;
2817 
2818 	if (!dev_priv->perf.initialized) {
2819 		DRM_DEBUG("i915 perf interface not available for this system\n");
2820 		return -ENOTSUPP;
2821 	}
2822 
2823 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2824 			   I915_PERF_FLAG_FD_NONBLOCK |
2825 			   I915_PERF_FLAG_DISABLED;
2826 	if (param->flags & ~known_open_flags) {
2827 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2828 		return -EINVAL;
2829 	}
2830 
2831 	ret = read_properties_unlocked(dev_priv,
2832 				       u64_to_user_ptr(param->properties_ptr),
2833 				       param->num_properties,
2834 				       &props);
2835 	if (ret)
2836 		return ret;
2837 
2838 	mutex_lock(&dev_priv->perf.lock);
2839 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2840 	mutex_unlock(&dev_priv->perf.lock);
2841 
2842 	return ret;
2843 }
2844 
2845 /**
2846  * i915_perf_register - exposes i915-perf to userspace
2847  * @dev_priv: i915 device instance
2848  *
2849  * In particular OA metric sets are advertised under a sysfs metrics/
2850  * directory allowing userspace to enumerate valid IDs that can be
2851  * used to open an i915-perf stream.
2852  */
2853 void i915_perf_register(struct drm_i915_private *dev_priv)
2854 {
2855 	if (!dev_priv->perf.initialized)
2856 		return;
2857 
2858 	/* To be sure we're synchronized with an attempted
2859 	 * i915_perf_open_ioctl(); considering that we register after
2860 	 * being exposed to userspace.
2861 	 */
2862 	mutex_lock(&dev_priv->perf.lock);
2863 
2864 	dev_priv->perf.metrics_kobj =
2865 		kobject_create_and_add("metrics",
2866 				       &dev_priv->drm.primary->kdev->kobj);
2867 	if (!dev_priv->perf.metrics_kobj)
2868 		goto exit;
2869 
2870 	if (IS_HASWELL(dev_priv)) {
2871 		if (i915_perf_register_sysfs_hsw(dev_priv))
2872 			goto sysfs_error;
2873 	} else if (IS_BROADWELL(dev_priv)) {
2874 		if (i915_perf_register_sysfs_bdw(dev_priv))
2875 			goto sysfs_error;
2876 	} else if (IS_CHERRYVIEW(dev_priv)) {
2877 		if (i915_perf_register_sysfs_chv(dev_priv))
2878 			goto sysfs_error;
2879 	} else if (IS_SKYLAKE(dev_priv)) {
2880 		if (IS_SKL_GT2(dev_priv)) {
2881 			if (i915_perf_register_sysfs_sklgt2(dev_priv))
2882 				goto sysfs_error;
2883 		} else if (IS_SKL_GT3(dev_priv)) {
2884 			if (i915_perf_register_sysfs_sklgt3(dev_priv))
2885 				goto sysfs_error;
2886 		} else if (IS_SKL_GT4(dev_priv)) {
2887 			if (i915_perf_register_sysfs_sklgt4(dev_priv))
2888 				goto sysfs_error;
2889 		} else
2890 			goto sysfs_error;
2891 	} else if (IS_BROXTON(dev_priv)) {
2892 		if (i915_perf_register_sysfs_bxt(dev_priv))
2893 			goto sysfs_error;
2894 	} else if (IS_KABYLAKE(dev_priv)) {
2895 		if (IS_KBL_GT2(dev_priv)) {
2896 			if (i915_perf_register_sysfs_kblgt2(dev_priv))
2897 				goto sysfs_error;
2898 		} else if (IS_KBL_GT3(dev_priv)) {
2899 			if (i915_perf_register_sysfs_kblgt3(dev_priv))
2900 				goto sysfs_error;
2901 		} else
2902 			goto sysfs_error;
2903 	} else if (IS_GEMINILAKE(dev_priv)) {
2904 		if (i915_perf_register_sysfs_glk(dev_priv))
2905 			goto sysfs_error;
2906 	}
2907 
2908 	goto exit;
2909 
2910 sysfs_error:
2911 	kobject_put(dev_priv->perf.metrics_kobj);
2912 	dev_priv->perf.metrics_kobj = NULL;
2913 
2914 exit:
2915 	mutex_unlock(&dev_priv->perf.lock);
2916 }
2917 
2918 /**
2919  * i915_perf_unregister - hide i915-perf from userspace
2920  * @dev_priv: i915 device instance
2921  *
2922  * i915-perf state cleanup is split up into an 'unregister' and
2923  * 'deinit' phase where the interface is first hidden from
2924  * userspace by i915_perf_unregister() before cleaning up
2925  * remaining state in i915_perf_fini().
2926  */
2927 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2928 {
2929 	if (!dev_priv->perf.metrics_kobj)
2930 		return;
2931 
2932 	if (IS_HASWELL(dev_priv))
2933 		i915_perf_unregister_sysfs_hsw(dev_priv);
2934 	else if (IS_BROADWELL(dev_priv))
2935 		i915_perf_unregister_sysfs_bdw(dev_priv);
2936 	else if (IS_CHERRYVIEW(dev_priv))
2937 		i915_perf_unregister_sysfs_chv(dev_priv);
2938 	else if (IS_SKYLAKE(dev_priv)) {
2939 		if (IS_SKL_GT2(dev_priv))
2940 			i915_perf_unregister_sysfs_sklgt2(dev_priv);
2941 		else if (IS_SKL_GT3(dev_priv))
2942 			i915_perf_unregister_sysfs_sklgt3(dev_priv);
2943 		else if (IS_SKL_GT4(dev_priv))
2944 			i915_perf_unregister_sysfs_sklgt4(dev_priv);
2945 	} else if (IS_BROXTON(dev_priv))
2946 		i915_perf_unregister_sysfs_bxt(dev_priv);
2947 	else if (IS_KABYLAKE(dev_priv)) {
2948 		if (IS_KBL_GT2(dev_priv))
2949 			i915_perf_unregister_sysfs_kblgt2(dev_priv);
2950 		else if (IS_KBL_GT3(dev_priv))
2951 			i915_perf_unregister_sysfs_kblgt3(dev_priv);
2952 	} else if (IS_GEMINILAKE(dev_priv))
2953 		i915_perf_unregister_sysfs_glk(dev_priv);
2954 
2955 
2956 	kobject_put(dev_priv->perf.metrics_kobj);
2957 	dev_priv->perf.metrics_kobj = NULL;
2958 }
2959 
2960 static struct ctl_table oa_table[] = {
2961 	{
2962 	 .procname = "perf_stream_paranoid",
2963 	 .data = &i915_perf_stream_paranoid,
2964 	 .maxlen = sizeof(i915_perf_stream_paranoid),
2965 	 .mode = 0644,
2966 	 .proc_handler = proc_dointvec_minmax,
2967 	 .extra1 = &zero,
2968 	 .extra2 = &one,
2969 	 },
2970 	{
2971 	 .procname = "oa_max_sample_rate",
2972 	 .data = &i915_oa_max_sample_rate,
2973 	 .maxlen = sizeof(i915_oa_max_sample_rate),
2974 	 .mode = 0644,
2975 	 .proc_handler = proc_dointvec_minmax,
2976 	 .extra1 = &zero,
2977 	 .extra2 = &oa_sample_rate_hard_limit,
2978 	 },
2979 	{}
2980 };
2981 
2982 static struct ctl_table i915_root[] = {
2983 	{
2984 	 .procname = "i915",
2985 	 .maxlen = 0,
2986 	 .mode = 0555,
2987 	 .child = oa_table,
2988 	 },
2989 	{}
2990 };
2991 
2992 static struct ctl_table dev_root[] = {
2993 	{
2994 	 .procname = "dev",
2995 	 .maxlen = 0,
2996 	 .mode = 0555,
2997 	 .child = i915_root,
2998 	 },
2999 	{}
3000 };
3001 
3002 /**
3003  * i915_perf_init - initialize i915-perf state on module load
3004  * @dev_priv: i915 device instance
3005  *
3006  * Initializes i915-perf state without exposing anything to userspace.
3007  *
3008  * Note: i915-perf initialization is split into an 'init' and 'register'
3009  * phase with the i915_perf_register() exposing state to userspace.
3010  */
3011 void i915_perf_init(struct drm_i915_private *dev_priv)
3012 {
3013 	dev_priv->perf.oa.n_builtin_sets = 0;
3014 
3015 	if (IS_HASWELL(dev_priv)) {
3016 		dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3017 		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3018 		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3019 		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3020 		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3021 		dev_priv->perf.oa.ops.read = gen7_oa_read;
3022 		dev_priv->perf.oa.ops.oa_hw_tail_read =
3023 			gen7_oa_hw_tail_read;
3024 
3025 		dev_priv->perf.oa.timestamp_frequency = 12500000;
3026 
3027 		dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3028 
3029 		dev_priv->perf.oa.n_builtin_sets =
3030 			i915_oa_n_builtin_metric_sets_hsw;
3031 	} else if (i915.enable_execlists) {
3032 		/* Note: that although we could theoretically also support the
3033 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3034 		 * this driver, before upstreaming did this) it didn't seem
3035 		 * worth the complexity to maintain now that BDW+ enable
3036 		 * execlist mode by default.
3037 		 */
3038 
3039 		if (IS_GEN8(dev_priv)) {
3040 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3041 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3042 
3043 			dev_priv->perf.oa.timestamp_frequency = 12500000;
3044 
3045 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3046 
3047 			if (IS_BROADWELL(dev_priv)) {
3048 				dev_priv->perf.oa.n_builtin_sets =
3049 					i915_oa_n_builtin_metric_sets_bdw;
3050 				dev_priv->perf.oa.ops.select_metric_set =
3051 					i915_oa_select_metric_set_bdw;
3052 			} else if (IS_CHERRYVIEW(dev_priv)) {
3053 				dev_priv->perf.oa.n_builtin_sets =
3054 					i915_oa_n_builtin_metric_sets_chv;
3055 				dev_priv->perf.oa.ops.select_metric_set =
3056 					i915_oa_select_metric_set_chv;
3057 			}
3058 		} else if (IS_GEN9(dev_priv)) {
3059 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3060 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3061 
3062 			dev_priv->perf.oa.timestamp_frequency = 12000000;
3063 
3064 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3065 
3066 			if (IS_SKL_GT2(dev_priv)) {
3067 				dev_priv->perf.oa.n_builtin_sets =
3068 					i915_oa_n_builtin_metric_sets_sklgt2;
3069 				dev_priv->perf.oa.ops.select_metric_set =
3070 					i915_oa_select_metric_set_sklgt2;
3071 			} else if (IS_SKL_GT3(dev_priv)) {
3072 				dev_priv->perf.oa.n_builtin_sets =
3073 					i915_oa_n_builtin_metric_sets_sklgt3;
3074 				dev_priv->perf.oa.ops.select_metric_set =
3075 					i915_oa_select_metric_set_sklgt3;
3076 			} else if (IS_SKL_GT4(dev_priv)) {
3077 				dev_priv->perf.oa.n_builtin_sets =
3078 					i915_oa_n_builtin_metric_sets_sklgt4;
3079 				dev_priv->perf.oa.ops.select_metric_set =
3080 					i915_oa_select_metric_set_sklgt4;
3081 			} else if (IS_BROXTON(dev_priv)) {
3082 				dev_priv->perf.oa.timestamp_frequency = 19200000;
3083 
3084 				dev_priv->perf.oa.n_builtin_sets =
3085 					i915_oa_n_builtin_metric_sets_bxt;
3086 				dev_priv->perf.oa.ops.select_metric_set =
3087 					i915_oa_select_metric_set_bxt;
3088 			} else if (IS_KBL_GT2(dev_priv)) {
3089 				dev_priv->perf.oa.n_builtin_sets =
3090 					i915_oa_n_builtin_metric_sets_kblgt2;
3091 				dev_priv->perf.oa.ops.select_metric_set =
3092 					i915_oa_select_metric_set_kblgt2;
3093 			} else if (IS_KBL_GT3(dev_priv)) {
3094 				dev_priv->perf.oa.n_builtin_sets =
3095 					i915_oa_n_builtin_metric_sets_kblgt3;
3096 				dev_priv->perf.oa.ops.select_metric_set =
3097 					i915_oa_select_metric_set_kblgt3;
3098 			} else if (IS_GEMINILAKE(dev_priv)) {
3099 				dev_priv->perf.oa.timestamp_frequency = 19200000;
3100 
3101 				dev_priv->perf.oa.n_builtin_sets =
3102 					i915_oa_n_builtin_metric_sets_glk;
3103 				dev_priv->perf.oa.ops.select_metric_set =
3104 					i915_oa_select_metric_set_glk;
3105 			}
3106 		}
3107 
3108 		if (dev_priv->perf.oa.n_builtin_sets) {
3109 			dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3110 			dev_priv->perf.oa.ops.enable_metric_set =
3111 				gen8_enable_metric_set;
3112 			dev_priv->perf.oa.ops.disable_metric_set =
3113 				gen8_disable_metric_set;
3114 			dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3115 			dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3116 			dev_priv->perf.oa.ops.read = gen8_oa_read;
3117 			dev_priv->perf.oa.ops.oa_hw_tail_read =
3118 				gen8_oa_hw_tail_read;
3119 
3120 			dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3121 		}
3122 	}
3123 
3124 	if (dev_priv->perf.oa.n_builtin_sets) {
3125 		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3126 				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3127 		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3128 		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3129 
3130 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3131 		mutex_init(&dev_priv->perf.lock);
3132 		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3133 
3134 		oa_sample_rate_hard_limit =
3135 			dev_priv->perf.oa.timestamp_frequency / 2;
3136 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3137 
3138 		dev_priv->perf.initialized = true;
3139 	}
3140 }
3141 
3142 /**
3143  * i915_perf_fini - Counter part to i915_perf_init()
3144  * @dev_priv: i915 device instance
3145  */
3146 void i915_perf_fini(struct drm_i915_private *dev_priv)
3147 {
3148 	if (!dev_priv->perf.initialized)
3149 		return;
3150 
3151 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3152 
3153 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3154 
3155 	dev_priv->perf.initialized = false;
3156 }
3157