1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_regs.h" 210 #include "gt/intel_lrc.h" 211 #include "gt/intel_lrc_reg.h" 212 #include "gt/intel_rc6.h" 213 #include "gt/intel_ring.h" 214 #include "gt/uc/intel_guc_slpc.h" 215 216 #include "i915_drv.h" 217 #include "i915_file_private.h" 218 #include "i915_perf.h" 219 #include "i915_perf_oa_regs.h" 220 #include "i915_reg.h" 221 222 /* HW requires this to be a power of two, between 128k and 16M, though driver 223 * is currently generally designed assuming the largest 16M size is used such 224 * that the overflow cases are unlikely in normal operation. 225 */ 226 #define OA_BUFFER_SIZE SZ_16M 227 228 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 229 230 /** 231 * DOC: OA Tail Pointer Race 232 * 233 * There's a HW race condition between OA unit tail pointer register updates and 234 * writes to memory whereby the tail pointer can sometimes get ahead of what's 235 * been written out to the OA buffer so far (in terms of what's visible to the 236 * CPU). 237 * 238 * Although this can be observed explicitly while copying reports to userspace 239 * by checking for a zeroed report-id field in tail reports, we want to account 240 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 241 * redundant read() attempts. 242 * 243 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 244 * in the OA buffer, starting from the tail reported by the HW until we find a 245 * report with its first 2 dwords not 0 meaning its previous report is 246 * completely in memory and ready to be read. Those dwords are also set to 0 247 * once read and the whole buffer is cleared upon OA buffer initialization. The 248 * first dword is the reason for this report while the second is the timestamp, 249 * making the chances of having those 2 fields at 0 fairly unlikely. A more 250 * detailed explanation is available in oa_buffer_check_unlocked(). 251 * 252 * Most of the implementation details for this workaround are in 253 * oa_buffer_check_unlocked() and _append_oa_reports() 254 * 255 * Note for posterity: previously the driver used to define an effective tail 256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 258 * This was flawed considering that the OA unit may also automatically generate 259 * non-periodic reports (such as on context switch) or the OA unit may be 260 * enabled without any periodic sampling. 261 */ 262 #define OA_TAIL_MARGIN_NSEC 100000ULL 263 #define INVALID_TAIL_PTR 0xffffffff 264 265 /* The default frequency for checking whether the OA unit has written new 266 * reports to the circular OA buffer... 267 */ 268 #define DEFAULT_POLL_FREQUENCY_HZ 200 269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 270 271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 272 static u32 i915_perf_stream_paranoid = true; 273 274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 275 * of the 64bit timestamp bits to trigger reports from) but there's currently 276 * no known use case for sampling as infrequently as once per 47 thousand years. 277 * 278 * Since the timestamps included in OA reports are only 32bits it seems 279 * reasonable to limit the OA exponent where it's still possible to account for 280 * overflow in OA report timestamps. 281 */ 282 #define OA_EXPONENT_MAX 31 283 284 #define INVALID_CTX_ID 0xffffffff 285 286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 287 #define OAREPORT_REASON_MASK 0x3f 288 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 289 #define OAREPORT_REASON_SHIFT 19 290 #define OAREPORT_REASON_TIMER (1<<0) 291 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 292 #define OAREPORT_REASON_CLK_RATIO (1<<5) 293 294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 295 296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 297 * 298 * The highest sampling frequency we can theoretically program the OA unit 299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 300 * 301 * Initialized just before we register the sysctl parameter. 302 */ 303 static int oa_sample_rate_hard_limit; 304 305 /* Theoretically we can program the OA unit to sample every 160ns but don't 306 * allow that by default unless root... 307 * 308 * The default threshold of 100000Hz is based on perf's similar 309 * kernel.perf_event_max_sample_rate sysctl parameter. 310 */ 311 static u32 i915_oa_max_sample_rate = 100000; 312 313 /* XXX: beware if future OA HW adds new report formats that the current 314 * code assumes all reports have a power-of-two size and ~(size - 1) can 315 * be used as a mask to align the OA tail pointer. 316 */ 317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 318 [I915_OA_FORMAT_A13] = { 0, 64 }, 319 [I915_OA_FORMAT_A29] = { 1, 128 }, 320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 322 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 325 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 326 [I915_OA_FORMAT_A12] = { 0, 64 }, 327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 329 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 331 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 332 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 333 }; 334 335 static const u32 mtl_oa_base[] = { 336 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 337 }; 338 339 #define SAMPLE_OA_REPORT (1<<0) 340 341 /** 342 * struct perf_open_properties - for validated properties given to open a stream 343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 344 * @single_context: Whether a single or all gpu contexts should be monitored 345 * @hold_preemption: Whether the preemption is disabled for the filtered 346 * context 347 * @ctx_handle: A gem ctx handle for use with @single_context 348 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 349 * @oa_format: An OA unit HW report format 350 * @oa_periodic: Whether to enable periodic OA unit sampling 351 * @oa_period_exponent: The OA unit sampling period is derived from this 352 * @engine: The engine (typically rcs0) being monitored by the OA unit 353 * @has_sseu: Whether @sseu was specified by userspace 354 * @sseu: internal SSEU configuration computed either from the userspace 355 * specified configuration in the opening parameters or a default value 356 * (see get_default_sseu_config()) 357 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 358 * data availability 359 * 360 * As read_properties_unlocked() enumerates and validates the properties given 361 * to open a stream of metrics the configuration is built up in the structure 362 * which starts out zero initialized. 363 */ 364 struct perf_open_properties { 365 u32 sample_flags; 366 367 u64 single_context:1; 368 u64 hold_preemption:1; 369 u64 ctx_handle; 370 371 /* OA sampling state */ 372 int metrics_set; 373 int oa_format; 374 bool oa_periodic; 375 int oa_period_exponent; 376 377 struct intel_engine_cs *engine; 378 379 bool has_sseu; 380 struct intel_sseu sseu; 381 382 u64 poll_oa_period; 383 }; 384 385 struct i915_oa_config_bo { 386 struct llist_node node; 387 388 struct i915_oa_config *oa_config; 389 struct i915_vma *vma; 390 }; 391 392 static struct ctl_table_header *sysctl_header; 393 394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 395 396 void i915_oa_config_release(struct kref *ref) 397 { 398 struct i915_oa_config *oa_config = 399 container_of(ref, typeof(*oa_config), ref); 400 401 kfree(oa_config->flex_regs); 402 kfree(oa_config->b_counter_regs); 403 kfree(oa_config->mux_regs); 404 405 kfree_rcu(oa_config, rcu); 406 } 407 408 struct i915_oa_config * 409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 410 { 411 struct i915_oa_config *oa_config; 412 413 rcu_read_lock(); 414 oa_config = idr_find(&perf->metrics_idr, metrics_set); 415 if (oa_config) 416 oa_config = i915_oa_config_get(oa_config); 417 rcu_read_unlock(); 418 419 return oa_config; 420 } 421 422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 423 { 424 i915_oa_config_put(oa_bo->oa_config); 425 i915_vma_put(oa_bo->vma); 426 kfree(oa_bo); 427 } 428 429 static inline const 430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 431 { 432 return &stream->engine->oa_group->regs; 433 } 434 435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 436 { 437 struct intel_uncore *uncore = stream->uncore; 438 439 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 440 GEN12_OAG_OATAILPTR_MASK; 441 } 442 443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 444 { 445 struct intel_uncore *uncore = stream->uncore; 446 447 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 448 } 449 450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 451 { 452 struct intel_uncore *uncore = stream->uncore; 453 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 454 455 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 456 } 457 458 #define oa_report_header_64bit(__s) \ 459 ((__s)->oa_buffer.format->header == HDR_64_BIT) 460 461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 462 { 463 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 464 } 465 466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 467 { 468 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 469 (GRAPHICS_VER(stream->perf->i915) == 12 ? 470 OAREPORT_REASON_MASK_EXTENDED : 471 OAREPORT_REASON_MASK); 472 } 473 474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 475 { 476 if (oa_report_header_64bit(stream)) 477 *(u64 *)report = 0; 478 else 479 *report = 0; 480 } 481 482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 483 { 484 return !(oa_report_id(stream, report) & 485 stream->perf->gen8_valid_ctx_bit); 486 } 487 488 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 489 { 490 return oa_report_header_64bit(stream) ? 491 *((u64 *)report + 1) : 492 *((u32 *)report + 1); 493 } 494 495 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 496 { 497 if (oa_report_header_64bit(stream)) 498 *(u64 *)&report[2] = 0; 499 else 500 report[1] = 0; 501 } 502 503 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 504 { 505 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 506 507 return ctx_id & stream->specific_ctx_id_mask; 508 } 509 510 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 511 { 512 if (oa_report_header_64bit(stream)) 513 report[4] = INVALID_CTX_ID; 514 else 515 report[2] = INVALID_CTX_ID; 516 } 517 518 /** 519 * oa_buffer_check_unlocked - check for data and update tail ptr state 520 * @stream: i915 stream instance 521 * 522 * This is either called via fops (for blocking reads in user ctx) or the poll 523 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 524 * if there is data available for userspace to read. 525 * 526 * This function is central to providing a workaround for the OA unit tail 527 * pointer having a race with respect to what data is visible to the CPU. 528 * It is responsible for reading tail pointers from the hardware and giving 529 * the pointers time to 'age' before they are made available for reading. 530 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 531 * 532 * Besides returning true when there is data available to read() this function 533 * also updates the tail in the oa_buffer object. 534 * 535 * Note: It's safe to read OA config state here unlocked, assuming that this is 536 * only called while the stream is enabled, while the global OA configuration 537 * can't be modified. 538 * 539 * Returns: %true if the OA buffer contains data, else %false 540 */ 541 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 542 { 543 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 544 int report_size = stream->oa_buffer.format->size; 545 u32 head, tail, read_tail; 546 unsigned long flags; 547 bool pollin; 548 u32 hw_tail; 549 u32 partial_report_size; 550 551 /* We have to consider the (unlikely) possibility that read() errors 552 * could result in an OA buffer reset which might reset the head and 553 * tail state. 554 */ 555 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 556 557 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 558 559 /* The tail pointer increases in 64 byte increments, not in report_size 560 * steps. Also the report size may not be a power of 2. Compute 561 * potentially partially landed report in the OA buffer 562 */ 563 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 564 partial_report_size %= report_size; 565 566 /* Subtract partial amount off the tail */ 567 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 568 569 /* NB: The head we observe here might effectively be a little 570 * out of date. If a read() is in progress, the head could be 571 * anywhere between this head and stream->oa_buffer.tail. 572 */ 573 head = stream->oa_buffer.head - gtt_offset; 574 read_tail = stream->oa_buffer.tail - gtt_offset; 575 576 tail = hw_tail; 577 578 /* Walk the stream backward until we find a report with report 579 * id and timestmap not at 0. Since the circular buffer pointers 580 * progress by increments of 64 bytes and that reports can be up 581 * to 256 bytes long, we can't tell whether a report has fully 582 * landed in memory before the report id and timestamp of the 583 * following report have effectively landed. 584 * 585 * This is assuming that the writes of the OA unit land in 586 * memory in the order they were written to. 587 * If not : (╯°□°)╯︵ ┻━┻ 588 */ 589 while (OA_TAKEN(tail, read_tail) >= report_size) { 590 void *report = stream->oa_buffer.vaddr + tail; 591 592 if (oa_report_id(stream, report) || 593 oa_timestamp(stream, report)) 594 break; 595 596 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 597 } 598 599 if (OA_TAKEN(hw_tail, tail) > report_size && 600 __ratelimit(&stream->perf->tail_pointer_race)) 601 drm_notice(&stream->uncore->i915->drm, 602 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 603 head, tail, hw_tail); 604 605 stream->oa_buffer.tail = gtt_offset + tail; 606 607 pollin = OA_TAKEN(stream->oa_buffer.tail, 608 stream->oa_buffer.head) >= report_size; 609 610 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 611 612 return pollin; 613 } 614 615 /** 616 * append_oa_status - Appends a status record to a userspace read() buffer. 617 * @stream: An i915-perf stream opened for OA metrics 618 * @buf: destination buffer given by userspace 619 * @count: the number of bytes userspace wants to read 620 * @offset: (inout): the current position for writing into @buf 621 * @type: The kind of status to report to userspace 622 * 623 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 624 * into the userspace read() buffer. 625 * 626 * The @buf @offset will only be updated on success. 627 * 628 * Returns: 0 on success, negative error code on failure. 629 */ 630 static int append_oa_status(struct i915_perf_stream *stream, 631 char __user *buf, 632 size_t count, 633 size_t *offset, 634 enum drm_i915_perf_record_type type) 635 { 636 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 637 638 if ((count - *offset) < header.size) 639 return -ENOSPC; 640 641 if (copy_to_user(buf + *offset, &header, sizeof(header))) 642 return -EFAULT; 643 644 (*offset) += header.size; 645 646 return 0; 647 } 648 649 /** 650 * append_oa_sample - Copies single OA report into userspace read() buffer. 651 * @stream: An i915-perf stream opened for OA metrics 652 * @buf: destination buffer given by userspace 653 * @count: the number of bytes userspace wants to read 654 * @offset: (inout): the current position for writing into @buf 655 * @report: A single OA report to (optionally) include as part of the sample 656 * 657 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 658 * properties when opening a stream, tracked as `stream->sample_flags`. This 659 * function copies the requested components of a single sample to the given 660 * read() @buf. 661 * 662 * The @buf @offset will only be updated on success. 663 * 664 * Returns: 0 on success, negative error code on failure. 665 */ 666 static int append_oa_sample(struct i915_perf_stream *stream, 667 char __user *buf, 668 size_t count, 669 size_t *offset, 670 const u8 *report) 671 { 672 int report_size = stream->oa_buffer.format->size; 673 struct drm_i915_perf_record_header header; 674 int report_size_partial; 675 u8 *oa_buf_end; 676 677 header.type = DRM_I915_PERF_RECORD_SAMPLE; 678 header.pad = 0; 679 header.size = stream->sample_size; 680 681 if ((count - *offset) < header.size) 682 return -ENOSPC; 683 684 buf += *offset; 685 if (copy_to_user(buf, &header, sizeof(header))) 686 return -EFAULT; 687 buf += sizeof(header); 688 689 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 690 report_size_partial = oa_buf_end - report; 691 692 if (report_size_partial < report_size) { 693 if (copy_to_user(buf, report, report_size_partial)) 694 return -EFAULT; 695 buf += report_size_partial; 696 697 if (copy_to_user(buf, stream->oa_buffer.vaddr, 698 report_size - report_size_partial)) 699 return -EFAULT; 700 } else if (copy_to_user(buf, report, report_size)) { 701 return -EFAULT; 702 } 703 704 (*offset) += header.size; 705 706 return 0; 707 } 708 709 /** 710 * gen8_append_oa_reports - Copies all buffered OA reports into 711 * userspace read() buffer. 712 * @stream: An i915-perf stream opened for OA metrics 713 * @buf: destination buffer given by userspace 714 * @count: the number of bytes userspace wants to read 715 * @offset: (inout): the current position for writing into @buf 716 * 717 * Notably any error condition resulting in a short read (-%ENOSPC or 718 * -%EFAULT) will be returned even though one or more records may 719 * have been successfully copied. In this case it's up to the caller 720 * to decide if the error should be squashed before returning to 721 * userspace. 722 * 723 * Note: reports are consumed from the head, and appended to the 724 * tail, so the tail chases the head?... If you think that's mad 725 * and back-to-front you're not alone, but this follows the 726 * Gen PRM naming convention. 727 * 728 * Returns: 0 on success, negative error code on failure. 729 */ 730 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 731 char __user *buf, 732 size_t count, 733 size_t *offset) 734 { 735 struct intel_uncore *uncore = stream->uncore; 736 int report_size = stream->oa_buffer.format->size; 737 u8 *oa_buf_base = stream->oa_buffer.vaddr; 738 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 739 u32 mask = (OA_BUFFER_SIZE - 1); 740 size_t start_offset = *offset; 741 unsigned long flags; 742 u32 head, tail; 743 int ret = 0; 744 745 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 746 return -EIO; 747 748 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 749 750 head = stream->oa_buffer.head; 751 tail = stream->oa_buffer.tail; 752 753 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 754 755 /* 756 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 757 * while indexing relative to oa_buf_base. 758 */ 759 head -= gtt_offset; 760 tail -= gtt_offset; 761 762 /* 763 * An out of bounds or misaligned head or tail pointer implies a driver 764 * bug since we validate + align the tail pointers we read from the 765 * hardware and we are in full control of the head pointer which should 766 * only be incremented by multiples of the report size. 767 */ 768 if (drm_WARN_ONCE(&uncore->i915->drm, 769 head > OA_BUFFER_SIZE || 770 tail > OA_BUFFER_SIZE, 771 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 772 head, tail)) 773 return -EIO; 774 775 776 for (/* none */; 777 OA_TAKEN(tail, head); 778 head = (head + report_size) & mask) { 779 u8 *report = oa_buf_base + head; 780 u32 *report32 = (void *)report; 781 u32 ctx_id; 782 u64 reason; 783 784 /* 785 * The reason field includes flags identifying what 786 * triggered this specific report (mostly timer 787 * triggered or e.g. due to a context switch). 788 */ 789 reason = oa_report_reason(stream, report); 790 ctx_id = oa_context_id(stream, report32); 791 792 /* 793 * Squash whatever is in the CTX_ID field if it's marked as 794 * invalid to be sure we avoid false-positive, single-context 795 * filtering below... 796 * 797 * Note: that we don't clear the valid_ctx_bit so userspace can 798 * understand that the ID has been squashed by the kernel. 799 * 800 * Update: 801 * 802 * On XEHP platforms the behavior of context id valid bit has 803 * changed compared to prior platforms. To describe this, we 804 * define a few terms: 805 * 806 * context-switch-report: This is a report with the reason type 807 * being context-switch. It is generated when a context switches 808 * out. 809 * 810 * context-valid-bit: A bit that is set in the report ID field 811 * to indicate that a valid context has been loaded. 812 * 813 * gpu-idle: A condition characterized by a 814 * context-switch-report with context-valid-bit set to 0. 815 * 816 * On prior platforms, context-id-valid bit is set to 0 only 817 * when GPU goes idle. In all other reports, it is set to 1. 818 * 819 * On XEHP platforms, context-valid-bit is set to 1 in a context 820 * switch report if a new context switched in. For all other 821 * reports it is set to 0. 822 * 823 * This change in behavior causes an issue with MMIO triggered 824 * reports. MMIO triggered reports have the markers in the 825 * context ID field and the context-valid-bit is 0. The logic 826 * below to squash the context ID would render the report 827 * useless since the user will not be able to find it in the OA 828 * buffer. Since MMIO triggered reports exist only on XEHP, 829 * we should avoid squashing these for XEHP platforms. 830 */ 831 832 if (oa_report_ctx_invalid(stream, report) && 833 GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 50)) { 834 ctx_id = INVALID_CTX_ID; 835 oa_context_id_squash(stream, report32); 836 } 837 838 /* 839 * NB: For Gen 8 the OA unit no longer supports clock gating 840 * off for a specific context and the kernel can't securely 841 * stop the counters from updating as system-wide / global 842 * values. 843 * 844 * Automatic reports now include a context ID so reports can be 845 * filtered on the cpu but it's not worth trying to 846 * automatically subtract/hide counter progress for other 847 * contexts while filtering since we can't stop userspace 848 * issuing MI_REPORT_PERF_COUNT commands which would still 849 * provide a side-band view of the real values. 850 * 851 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 852 * to normalize counters for a single filtered context then it 853 * needs be forwarded bookend context-switch reports so that it 854 * can track switches in between MI_REPORT_PERF_COUNT commands 855 * and can itself subtract/ignore the progress of counters 856 * associated with other contexts. Note that the hardware 857 * automatically triggers reports when switching to a new 858 * context which are tagged with the ID of the newly active 859 * context. To avoid the complexity (and likely fragility) of 860 * reading ahead while parsing reports to try and minimize 861 * forwarding redundant context switch reports (i.e. between 862 * other, unrelated contexts) we simply elect to forward them 863 * all. 864 * 865 * We don't rely solely on the reason field to identify context 866 * switches since it's not-uncommon for periodic samples to 867 * identify a switch before any 'context switch' report. 868 */ 869 if (!stream->ctx || 870 stream->specific_ctx_id == ctx_id || 871 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 872 reason & OAREPORT_REASON_CTX_SWITCH) { 873 874 /* 875 * While filtering for a single context we avoid 876 * leaking the IDs of other contexts. 877 */ 878 if (stream->ctx && 879 stream->specific_ctx_id != ctx_id) { 880 oa_context_id_squash(stream, report32); 881 } 882 883 ret = append_oa_sample(stream, buf, count, offset, 884 report); 885 if (ret) 886 break; 887 888 stream->oa_buffer.last_ctx_id = ctx_id; 889 } 890 891 if (is_power_of_2(report_size)) { 892 /* 893 * Clear out the report id and timestamp as a means 894 * to detect unlanded reports. 895 */ 896 oa_report_id_clear(stream, report32); 897 oa_timestamp_clear(stream, report32); 898 } else { 899 u8 *oa_buf_end = stream->oa_buffer.vaddr + 900 OA_BUFFER_SIZE; 901 u32 part = oa_buf_end - (u8 *)report32; 902 903 /* Zero out the entire report */ 904 if (report_size <= part) { 905 memset(report32, 0, report_size); 906 } else { 907 memset(report32, 0, part); 908 memset(oa_buf_base, 0, report_size - part); 909 } 910 } 911 } 912 913 if (start_offset != *offset) { 914 i915_reg_t oaheadptr; 915 916 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 917 __oa_regs(stream)->oa_head_ptr : 918 GEN8_OAHEADPTR; 919 920 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 921 922 /* 923 * We removed the gtt_offset for the copy loop above, indexing 924 * relative to oa_buf_base so put back here... 925 */ 926 head += gtt_offset; 927 intel_uncore_write(uncore, oaheadptr, 928 head & GEN12_OAG_OAHEADPTR_MASK); 929 stream->oa_buffer.head = head; 930 931 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 932 } 933 934 return ret; 935 } 936 937 /** 938 * gen8_oa_read - copy status records then buffered OA reports 939 * @stream: An i915-perf stream opened for OA metrics 940 * @buf: destination buffer given by userspace 941 * @count: the number of bytes userspace wants to read 942 * @offset: (inout): the current position for writing into @buf 943 * 944 * Checks OA unit status registers and if necessary appends corresponding 945 * status records for userspace (such as for a buffer full condition) and then 946 * initiate appending any buffered OA reports. 947 * 948 * Updates @offset according to the number of bytes successfully copied into 949 * the userspace buffer. 950 * 951 * NB: some data may be successfully copied to the userspace buffer 952 * even if an error is returned, and this is reflected in the 953 * updated @offset. 954 * 955 * Returns: zero on success or a negative error code 956 */ 957 static int gen8_oa_read(struct i915_perf_stream *stream, 958 char __user *buf, 959 size_t count, 960 size_t *offset) 961 { 962 struct intel_uncore *uncore = stream->uncore; 963 u32 oastatus; 964 i915_reg_t oastatus_reg; 965 int ret; 966 967 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 968 return -EIO; 969 970 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 971 __oa_regs(stream)->oa_status : 972 GEN8_OASTATUS; 973 974 oastatus = intel_uncore_read(uncore, oastatus_reg); 975 976 /* 977 * We treat OABUFFER_OVERFLOW as a significant error: 978 * 979 * Although theoretically we could handle this more gracefully 980 * sometimes, some Gens don't correctly suppress certain 981 * automatically triggered reports in this condition and so we 982 * have to assume that old reports are now being trampled 983 * over. 984 * 985 * Considering how we don't currently give userspace control 986 * over the OA buffer size and always configure a large 16MB 987 * buffer, then a buffer overflow does anyway likely indicate 988 * that something has gone quite badly wrong. 989 */ 990 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 991 ret = append_oa_status(stream, buf, count, offset, 992 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 993 if (ret) 994 return ret; 995 996 drm_dbg(&stream->perf->i915->drm, 997 "OA buffer overflow (exponent = %d): force restart\n", 998 stream->period_exponent); 999 1000 stream->perf->ops.oa_disable(stream); 1001 stream->perf->ops.oa_enable(stream); 1002 1003 /* 1004 * Note: .oa_enable() is expected to re-init the oabuffer and 1005 * reset GEN8_OASTATUS for us 1006 */ 1007 oastatus = intel_uncore_read(uncore, oastatus_reg); 1008 } 1009 1010 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 1011 ret = append_oa_status(stream, buf, count, offset, 1012 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1013 if (ret) 1014 return ret; 1015 1016 intel_uncore_rmw(uncore, oastatus_reg, 1017 GEN8_OASTATUS_COUNTER_OVERFLOW | 1018 GEN8_OASTATUS_REPORT_LOST, 1019 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 1020 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 1021 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 1022 } 1023 1024 return gen8_append_oa_reports(stream, buf, count, offset); 1025 } 1026 1027 /** 1028 * gen7_append_oa_reports - Copies all buffered OA reports into 1029 * userspace read() buffer. 1030 * @stream: An i915-perf stream opened for OA metrics 1031 * @buf: destination buffer given by userspace 1032 * @count: the number of bytes userspace wants to read 1033 * @offset: (inout): the current position for writing into @buf 1034 * 1035 * Notably any error condition resulting in a short read (-%ENOSPC or 1036 * -%EFAULT) will be returned even though one or more records may 1037 * have been successfully copied. In this case it's up to the caller 1038 * to decide if the error should be squashed before returning to 1039 * userspace. 1040 * 1041 * Note: reports are consumed from the head, and appended to the 1042 * tail, so the tail chases the head?... If you think that's mad 1043 * and back-to-front you're not alone, but this follows the 1044 * Gen PRM naming convention. 1045 * 1046 * Returns: 0 on success, negative error code on failure. 1047 */ 1048 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1049 char __user *buf, 1050 size_t count, 1051 size_t *offset) 1052 { 1053 struct intel_uncore *uncore = stream->uncore; 1054 int report_size = stream->oa_buffer.format->size; 1055 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1056 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1057 u32 mask = (OA_BUFFER_SIZE - 1); 1058 size_t start_offset = *offset; 1059 unsigned long flags; 1060 u32 head, tail; 1061 int ret = 0; 1062 1063 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1064 return -EIO; 1065 1066 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1067 1068 head = stream->oa_buffer.head; 1069 tail = stream->oa_buffer.tail; 1070 1071 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1072 1073 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1074 * while indexing relative to oa_buf_base. 1075 */ 1076 head -= gtt_offset; 1077 tail -= gtt_offset; 1078 1079 /* An out of bounds or misaligned head or tail pointer implies a driver 1080 * bug since we validate + align the tail pointers we read from the 1081 * hardware and we are in full control of the head pointer which should 1082 * only be incremented by multiples of the report size (notably also 1083 * all a power of two). 1084 */ 1085 if (drm_WARN_ONCE(&uncore->i915->drm, 1086 head > OA_BUFFER_SIZE || head % report_size || 1087 tail > OA_BUFFER_SIZE || tail % report_size, 1088 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1089 head, tail)) 1090 return -EIO; 1091 1092 1093 for (/* none */; 1094 OA_TAKEN(tail, head); 1095 head = (head + report_size) & mask) { 1096 u8 *report = oa_buf_base + head; 1097 u32 *report32 = (void *)report; 1098 1099 /* All the report sizes factor neatly into the buffer 1100 * size so we never expect to see a report split 1101 * between the beginning and end of the buffer. 1102 * 1103 * Given the initial alignment check a misalignment 1104 * here would imply a driver bug that would result 1105 * in an overrun. 1106 */ 1107 if (drm_WARN_ON(&uncore->i915->drm, 1108 (OA_BUFFER_SIZE - head) < report_size)) { 1109 drm_err(&uncore->i915->drm, 1110 "Spurious OA head ptr: non-integral report offset\n"); 1111 break; 1112 } 1113 1114 /* The report-ID field for periodic samples includes 1115 * some undocumented flags related to what triggered 1116 * the report and is never expected to be zero so we 1117 * can check that the report isn't invalid before 1118 * copying it to userspace... 1119 */ 1120 if (report32[0] == 0) { 1121 if (__ratelimit(&stream->perf->spurious_report_rs)) 1122 drm_notice(&uncore->i915->drm, 1123 "Skipping spurious, invalid OA report\n"); 1124 continue; 1125 } 1126 1127 ret = append_oa_sample(stream, buf, count, offset, report); 1128 if (ret) 1129 break; 1130 1131 /* Clear out the first 2 dwords as a mean to detect unlanded 1132 * reports. 1133 */ 1134 report32[0] = 0; 1135 report32[1] = 0; 1136 } 1137 1138 if (start_offset != *offset) { 1139 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1140 1141 /* We removed the gtt_offset for the copy loop above, indexing 1142 * relative to oa_buf_base so put back here... 1143 */ 1144 head += gtt_offset; 1145 1146 intel_uncore_write(uncore, GEN7_OASTATUS2, 1147 (head & GEN7_OASTATUS2_HEAD_MASK) | 1148 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1149 stream->oa_buffer.head = head; 1150 1151 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1152 } 1153 1154 return ret; 1155 } 1156 1157 /** 1158 * gen7_oa_read - copy status records then buffered OA reports 1159 * @stream: An i915-perf stream opened for OA metrics 1160 * @buf: destination buffer given by userspace 1161 * @count: the number of bytes userspace wants to read 1162 * @offset: (inout): the current position for writing into @buf 1163 * 1164 * Checks Gen 7 specific OA unit status registers and if necessary appends 1165 * corresponding status records for userspace (such as for a buffer full 1166 * condition) and then initiate appending any buffered OA reports. 1167 * 1168 * Updates @offset according to the number of bytes successfully copied into 1169 * the userspace buffer. 1170 * 1171 * Returns: zero on success or a negative error code 1172 */ 1173 static int gen7_oa_read(struct i915_perf_stream *stream, 1174 char __user *buf, 1175 size_t count, 1176 size_t *offset) 1177 { 1178 struct intel_uncore *uncore = stream->uncore; 1179 u32 oastatus1; 1180 int ret; 1181 1182 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1183 return -EIO; 1184 1185 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1186 1187 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1188 * bits while the OA unit is enabled (while the tail pointer 1189 * may be updated asynchronously) so we ignore status bits 1190 * that have already been reported to userspace. 1191 */ 1192 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1193 1194 /* We treat OABUFFER_OVERFLOW as a significant error: 1195 * 1196 * - The status can be interpreted to mean that the buffer is 1197 * currently full (with a higher precedence than OA_TAKEN() 1198 * which will start to report a near-empty buffer after an 1199 * overflow) but it's awkward that we can't clear the status 1200 * on Haswell, so without a reset we won't be able to catch 1201 * the state again. 1202 * 1203 * - Since it also implies the HW has started overwriting old 1204 * reports it may also affect our sanity checks for invalid 1205 * reports when copying to userspace that assume new reports 1206 * are being written to cleared memory. 1207 * 1208 * - In the future we may want to introduce a flight recorder 1209 * mode where the driver will automatically maintain a safe 1210 * guard band between head/tail, avoiding this overflow 1211 * condition, but we avoid the added driver complexity for 1212 * now. 1213 */ 1214 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1215 ret = append_oa_status(stream, buf, count, offset, 1216 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1217 if (ret) 1218 return ret; 1219 1220 drm_dbg(&stream->perf->i915->drm, 1221 "OA buffer overflow (exponent = %d): force restart\n", 1222 stream->period_exponent); 1223 1224 stream->perf->ops.oa_disable(stream); 1225 stream->perf->ops.oa_enable(stream); 1226 1227 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1228 } 1229 1230 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1231 ret = append_oa_status(stream, buf, count, offset, 1232 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1233 if (ret) 1234 return ret; 1235 stream->perf->gen7_latched_oastatus1 |= 1236 GEN7_OASTATUS1_REPORT_LOST; 1237 } 1238 1239 return gen7_append_oa_reports(stream, buf, count, offset); 1240 } 1241 1242 /** 1243 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1244 * @stream: An i915-perf stream opened for OA metrics 1245 * 1246 * Called when userspace tries to read() from a blocking stream FD opened 1247 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1248 * OA buffer and wakes us. 1249 * 1250 * Note: it's acceptable to have this return with some false positives 1251 * since any subsequent read handling will return -EAGAIN if there isn't 1252 * really data ready for userspace yet. 1253 * 1254 * Returns: zero on success or a negative error code 1255 */ 1256 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1257 { 1258 /* We would wait indefinitely if periodic sampling is not enabled */ 1259 if (!stream->periodic) 1260 return -EIO; 1261 1262 return wait_event_interruptible(stream->poll_wq, 1263 oa_buffer_check_unlocked(stream)); 1264 } 1265 1266 /** 1267 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1268 * @stream: An i915-perf stream opened for OA metrics 1269 * @file: An i915 perf stream file 1270 * @wait: poll() state table 1271 * 1272 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1273 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1274 * when it sees data ready to read in the circular OA buffer. 1275 */ 1276 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1277 struct file *file, 1278 poll_table *wait) 1279 { 1280 poll_wait(file, &stream->poll_wq, wait); 1281 } 1282 1283 /** 1284 * i915_oa_read - just calls through to &i915_oa_ops->read 1285 * @stream: An i915-perf stream opened for OA metrics 1286 * @buf: destination buffer given by userspace 1287 * @count: the number of bytes userspace wants to read 1288 * @offset: (inout): the current position for writing into @buf 1289 * 1290 * Updates @offset according to the number of bytes successfully copied into 1291 * the userspace buffer. 1292 * 1293 * Returns: zero on success or a negative error code 1294 */ 1295 static int i915_oa_read(struct i915_perf_stream *stream, 1296 char __user *buf, 1297 size_t count, 1298 size_t *offset) 1299 { 1300 return stream->perf->ops.read(stream, buf, count, offset); 1301 } 1302 1303 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1304 { 1305 struct i915_gem_engines_iter it; 1306 struct i915_gem_context *ctx = stream->ctx; 1307 struct intel_context *ce; 1308 struct i915_gem_ww_ctx ww; 1309 int err = -ENODEV; 1310 1311 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1312 if (ce->engine != stream->engine) /* first match! */ 1313 continue; 1314 1315 err = 0; 1316 break; 1317 } 1318 i915_gem_context_unlock_engines(ctx); 1319 1320 if (err) 1321 return ERR_PTR(err); 1322 1323 i915_gem_ww_ctx_init(&ww, true); 1324 retry: 1325 /* 1326 * As the ID is the gtt offset of the context's vma we 1327 * pin the vma to ensure the ID remains fixed. 1328 */ 1329 err = intel_context_pin_ww(ce, &ww); 1330 if (err == -EDEADLK) { 1331 err = i915_gem_ww_ctx_backoff(&ww); 1332 if (!err) 1333 goto retry; 1334 } 1335 i915_gem_ww_ctx_fini(&ww); 1336 1337 if (err) 1338 return ERR_PTR(err); 1339 1340 stream->pinned_ctx = ce; 1341 return stream->pinned_ctx; 1342 } 1343 1344 static int 1345 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1346 { 1347 u32 *cs, cmd; 1348 1349 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1350 if (GRAPHICS_VER(rq->i915) >= 8) 1351 cmd++; 1352 1353 cs = intel_ring_begin(rq, 4); 1354 if (IS_ERR(cs)) 1355 return PTR_ERR(cs); 1356 1357 *cs++ = cmd; 1358 *cs++ = i915_mmio_reg_offset(reg); 1359 *cs++ = ggtt_offset; 1360 *cs++ = 0; 1361 1362 intel_ring_advance(rq, cs); 1363 1364 return 0; 1365 } 1366 1367 static int 1368 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1369 { 1370 struct i915_request *rq; 1371 int err; 1372 1373 rq = i915_request_create(ce); 1374 if (IS_ERR(rq)) 1375 return PTR_ERR(rq); 1376 1377 i915_request_get(rq); 1378 1379 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1380 1381 i915_request_add(rq); 1382 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1383 err = -ETIME; 1384 1385 i915_request_put(rq); 1386 1387 return err; 1388 } 1389 1390 static int 1391 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1392 { 1393 struct i915_vma *scratch; 1394 u32 *val; 1395 int err; 1396 1397 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1398 if (IS_ERR(scratch)) 1399 return PTR_ERR(scratch); 1400 1401 err = i915_vma_sync(scratch); 1402 if (err) 1403 goto err_scratch; 1404 1405 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1406 i915_ggtt_offset(scratch)); 1407 if (err) 1408 goto err_scratch; 1409 1410 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1411 if (IS_ERR(val)) { 1412 err = PTR_ERR(val); 1413 goto err_scratch; 1414 } 1415 1416 *ctx_id = *val; 1417 i915_gem_object_unpin_map(scratch->obj); 1418 1419 err_scratch: 1420 i915_vma_unpin_and_release(&scratch, 0); 1421 return err; 1422 } 1423 1424 /* 1425 * For execlist mode of submission, pick an unused context id 1426 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1427 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1428 * 1429 * For GuC mode of submission read context id from the upper dword of the 1430 * EXECLIST_STATUS register. Note that we read this value only once and expect 1431 * that the value stays fixed for the entire OA use case. There are cases where 1432 * GuC KMD implementation may deregister a context to reuse it's context id, but 1433 * we prevent that from happening to the OA context by pinning it. 1434 */ 1435 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1436 { 1437 u32 ctx_id, mask; 1438 int ret; 1439 1440 if (intel_engine_uses_guc(stream->engine)) { 1441 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1442 if (ret) 1443 return ret; 1444 1445 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1446 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1447 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1448 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1449 (XEHP_SW_CTX_ID_SHIFT - 32); 1450 1451 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1452 (XEHP_SW_CTX_ID_SHIFT - 32); 1453 } else { 1454 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1455 (GEN11_SW_CTX_ID_SHIFT - 32); 1456 1457 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1458 (GEN11_SW_CTX_ID_SHIFT - 32); 1459 } 1460 stream->specific_ctx_id = ctx_id & mask; 1461 stream->specific_ctx_id_mask = mask; 1462 1463 return 0; 1464 } 1465 1466 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1467 { 1468 u32 idx = *offset; 1469 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1470 bool found = false; 1471 1472 idx++; 1473 for (; idx < len; idx += 2) { 1474 if (state[idx] == reg) { 1475 found = true; 1476 break; 1477 } 1478 } 1479 1480 *offset = idx; 1481 return found; 1482 } 1483 1484 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1485 { 1486 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1487 u32 *state = ce->lrc_reg_state; 1488 1489 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1490 return U32_MAX; 1491 1492 for (offset = 0; offset < len; ) { 1493 if (IS_MI_LRI_CMD(state[offset])) { 1494 /* 1495 * We expect reg-value pairs in MI_LRI command, so 1496 * MI_LRI_LEN() should be even, if not, issue a warning. 1497 */ 1498 drm_WARN_ON(&ce->engine->i915->drm, 1499 MI_LRI_LEN(state[offset]) & 0x1); 1500 1501 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1502 break; 1503 } else { 1504 offset++; 1505 } 1506 } 1507 1508 return offset < len ? offset : U32_MAX; 1509 } 1510 1511 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1512 { 1513 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1514 struct i915_perf *perf = &ce->engine->i915->perf; 1515 u32 offset = perf->ctx_oactxctrl_offset; 1516 1517 /* Do this only once. Failure is stored as offset of U32_MAX */ 1518 if (offset) 1519 goto exit; 1520 1521 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1522 perf->ctx_oactxctrl_offset = offset; 1523 1524 drm_dbg(&ce->engine->i915->drm, 1525 "%s oa ctx control at 0x%08x dword offset\n", 1526 ce->engine->name, offset); 1527 1528 exit: 1529 return offset && offset != U32_MAX ? 0 : -ENODEV; 1530 } 1531 1532 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1533 { 1534 return engine->class == RENDER_CLASS; 1535 } 1536 1537 /** 1538 * oa_get_render_ctx_id - determine and hold ctx hw id 1539 * @stream: An i915-perf stream opened for OA metrics 1540 * 1541 * Determine the render context hw id, and ensure it remains fixed for the 1542 * lifetime of the stream. This ensures that we don't have to worry about 1543 * updating the context ID in OACONTROL on the fly. 1544 * 1545 * Returns: zero on success or a negative error code 1546 */ 1547 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1548 { 1549 struct intel_context *ce; 1550 int ret = 0; 1551 1552 ce = oa_pin_context(stream); 1553 if (IS_ERR(ce)) 1554 return PTR_ERR(ce); 1555 1556 if (engine_supports_mi_query(stream->engine) && 1557 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1558 /* 1559 * We are enabling perf query here. If we don't find the context 1560 * offset here, just return an error. 1561 */ 1562 ret = set_oa_ctx_ctrl_offset(ce); 1563 if (ret) { 1564 intel_context_unpin(ce); 1565 drm_err(&stream->perf->i915->drm, 1566 "Enabling perf query failed for %s\n", 1567 stream->engine->name); 1568 return ret; 1569 } 1570 } 1571 1572 switch (GRAPHICS_VER(ce->engine->i915)) { 1573 case 7: { 1574 /* 1575 * On Haswell we don't do any post processing of the reports 1576 * and don't need to use the mask. 1577 */ 1578 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1579 stream->specific_ctx_id_mask = 0; 1580 break; 1581 } 1582 1583 case 8: 1584 case 9: 1585 if (intel_engine_uses_guc(ce->engine)) { 1586 /* 1587 * When using GuC, the context descriptor we write in 1588 * i915 is read by GuC and rewritten before it's 1589 * actually written into the hardware. The LRCA is 1590 * what is put into the context id field of the 1591 * context descriptor by GuC. Because it's aligned to 1592 * a page, the lower 12bits are always at 0 and 1593 * dropped by GuC. They won't be part of the context 1594 * ID in the OA reports, so squash those lower bits. 1595 */ 1596 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1597 1598 /* 1599 * GuC uses the top bit to signal proxy submission, so 1600 * ignore that bit. 1601 */ 1602 stream->specific_ctx_id_mask = 1603 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1604 } else { 1605 stream->specific_ctx_id_mask = 1606 (1U << GEN8_CTX_ID_WIDTH) - 1; 1607 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1608 } 1609 break; 1610 1611 case 11: 1612 case 12: 1613 ret = gen12_get_render_context_id(stream); 1614 break; 1615 1616 default: 1617 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1618 } 1619 1620 ce->tag = stream->specific_ctx_id; 1621 1622 drm_dbg(&stream->perf->i915->drm, 1623 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1624 stream->specific_ctx_id, 1625 stream->specific_ctx_id_mask); 1626 1627 return ret; 1628 } 1629 1630 /** 1631 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1632 * @stream: An i915-perf stream opened for OA metrics 1633 * 1634 * In case anything needed doing to ensure the context HW ID would remain valid 1635 * for the lifetime of the stream, then that can be undone here. 1636 */ 1637 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1638 { 1639 struct intel_context *ce; 1640 1641 ce = fetch_and_zero(&stream->pinned_ctx); 1642 if (ce) { 1643 ce->tag = 0; /* recomputed on next submission after parking */ 1644 intel_context_unpin(ce); 1645 } 1646 1647 stream->specific_ctx_id = INVALID_CTX_ID; 1648 stream->specific_ctx_id_mask = 0; 1649 } 1650 1651 static void 1652 free_oa_buffer(struct i915_perf_stream *stream) 1653 { 1654 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1655 I915_VMA_RELEASE_MAP); 1656 1657 stream->oa_buffer.vaddr = NULL; 1658 } 1659 1660 static void 1661 free_oa_configs(struct i915_perf_stream *stream) 1662 { 1663 struct i915_oa_config_bo *oa_bo, *tmp; 1664 1665 i915_oa_config_put(stream->oa_config); 1666 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1667 free_oa_config_bo(oa_bo); 1668 } 1669 1670 static void 1671 free_noa_wait(struct i915_perf_stream *stream) 1672 { 1673 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1674 } 1675 1676 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1677 { 1678 return engine->oa_group; 1679 } 1680 1681 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1682 { 1683 return engine->oa_group && engine->oa_group->type == type; 1684 } 1685 1686 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1687 { 1688 struct i915_perf *perf = stream->perf; 1689 struct intel_gt *gt = stream->engine->gt; 1690 struct i915_perf_group *g = stream->engine->oa_group; 1691 1692 if (WARN_ON(stream != g->exclusive_stream)) 1693 return; 1694 1695 /* 1696 * Unset exclusive_stream first, it will be checked while disabling 1697 * the metric set on gen8+. 1698 * 1699 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1700 */ 1701 WRITE_ONCE(g->exclusive_stream, NULL); 1702 perf->ops.disable_metric_set(stream); 1703 1704 free_oa_buffer(stream); 1705 1706 /* 1707 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6. 1708 */ 1709 if (stream->override_gucrc) 1710 drm_WARN_ON(>->i915->drm, 1711 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc)); 1712 1713 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1714 intel_engine_pm_put(stream->engine); 1715 1716 if (stream->ctx) 1717 oa_put_render_ctx_id(stream); 1718 1719 free_oa_configs(stream); 1720 free_noa_wait(stream); 1721 1722 if (perf->spurious_report_rs.missed) { 1723 drm_notice(>->i915->drm, 1724 "%d spurious OA report notices suppressed due to ratelimiting\n", 1725 perf->spurious_report_rs.missed); 1726 } 1727 } 1728 1729 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1730 { 1731 struct intel_uncore *uncore = stream->uncore; 1732 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1733 unsigned long flags; 1734 1735 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1736 1737 /* Pre-DevBDW: OABUFFER must be set with counters off, 1738 * before OASTATUS1, but after OASTATUS2 1739 */ 1740 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1741 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1742 stream->oa_buffer.head = gtt_offset; 1743 1744 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1745 1746 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1747 gtt_offset | OABUFFER_SIZE_16M); 1748 1749 /* Mark that we need updated tail pointers to read from... */ 1750 stream->oa_buffer.tail = gtt_offset; 1751 1752 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1753 1754 /* On Haswell we have to track which OASTATUS1 flags we've 1755 * already seen since they can't be cleared while periodic 1756 * sampling is enabled. 1757 */ 1758 stream->perf->gen7_latched_oastatus1 = 0; 1759 1760 /* NB: although the OA buffer will initially be allocated 1761 * zeroed via shmfs (and so this memset is redundant when 1762 * first allocating), we may re-init the OA buffer, either 1763 * when re-enabling a stream or in error/reset paths. 1764 * 1765 * The reason we clear the buffer for each re-init is for the 1766 * sanity check in gen7_append_oa_reports() that looks at the 1767 * report-id field to make sure it's non-zero which relies on 1768 * the assumption that new reports are being written to zeroed 1769 * memory... 1770 */ 1771 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1772 } 1773 1774 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1775 { 1776 struct intel_uncore *uncore = stream->uncore; 1777 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1778 unsigned long flags; 1779 1780 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1781 1782 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1783 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1784 stream->oa_buffer.head = gtt_offset; 1785 1786 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1787 1788 /* 1789 * PRM says: 1790 * 1791 * "This MMIO must be set before the OATAILPTR 1792 * register and after the OAHEADPTR register. This is 1793 * to enable proper functionality of the overflow 1794 * bit." 1795 */ 1796 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1797 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1798 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1799 1800 /* Mark that we need updated tail pointers to read from... */ 1801 stream->oa_buffer.tail = gtt_offset; 1802 1803 /* 1804 * Reset state used to recognise context switches, affecting which 1805 * reports we will forward to userspace while filtering for a single 1806 * context. 1807 */ 1808 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1809 1810 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1811 1812 /* 1813 * NB: although the OA buffer will initially be allocated 1814 * zeroed via shmfs (and so this memset is redundant when 1815 * first allocating), we may re-init the OA buffer, either 1816 * when re-enabling a stream or in error/reset paths. 1817 * 1818 * The reason we clear the buffer for each re-init is for the 1819 * sanity check in gen8_append_oa_reports() that looks at the 1820 * reason field to make sure it's non-zero which relies on 1821 * the assumption that new reports are being written to zeroed 1822 * memory... 1823 */ 1824 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1825 } 1826 1827 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1828 { 1829 struct intel_uncore *uncore = stream->uncore; 1830 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1831 unsigned long flags; 1832 1833 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1834 1835 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1836 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1837 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1838 stream->oa_buffer.head = gtt_offset; 1839 1840 /* 1841 * PRM says: 1842 * 1843 * "This MMIO must be set before the OATAILPTR 1844 * register and after the OAHEADPTR register. This is 1845 * to enable proper functionality of the overflow 1846 * bit." 1847 */ 1848 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1849 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1850 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1851 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1852 1853 /* Mark that we need updated tail pointers to read from... */ 1854 stream->oa_buffer.tail = gtt_offset; 1855 1856 /* 1857 * Reset state used to recognise context switches, affecting which 1858 * reports we will forward to userspace while filtering for a single 1859 * context. 1860 */ 1861 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1862 1863 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1864 1865 /* 1866 * NB: although the OA buffer will initially be allocated 1867 * zeroed via shmfs (and so this memset is redundant when 1868 * first allocating), we may re-init the OA buffer, either 1869 * when re-enabling a stream or in error/reset paths. 1870 * 1871 * The reason we clear the buffer for each re-init is for the 1872 * sanity check in gen8_append_oa_reports() that looks at the 1873 * reason field to make sure it's non-zero which relies on 1874 * the assumption that new reports are being written to zeroed 1875 * memory... 1876 */ 1877 memset(stream->oa_buffer.vaddr, 0, 1878 stream->oa_buffer.vma->size); 1879 } 1880 1881 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1882 { 1883 struct drm_i915_private *i915 = stream->perf->i915; 1884 struct intel_gt *gt = stream->engine->gt; 1885 struct drm_i915_gem_object *bo; 1886 struct i915_vma *vma; 1887 int ret; 1888 1889 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1890 return -ENODEV; 1891 1892 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1893 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1894 1895 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1896 if (IS_ERR(bo)) { 1897 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1898 return PTR_ERR(bo); 1899 } 1900 1901 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1902 1903 /* PreHSW required 512K alignment, HSW requires 16M */ 1904 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1905 if (IS_ERR(vma)) { 1906 ret = PTR_ERR(vma); 1907 goto err_unref; 1908 } 1909 1910 /* 1911 * PreHSW required 512K alignment. 1912 * HSW and onwards, align to requested size of OA buffer. 1913 */ 1914 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1915 if (ret) { 1916 drm_err(>->i915->drm, "Failed to pin OA buffer %d\n", ret); 1917 goto err_unref; 1918 } 1919 1920 stream->oa_buffer.vma = vma; 1921 1922 stream->oa_buffer.vaddr = 1923 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1924 if (IS_ERR(stream->oa_buffer.vaddr)) { 1925 ret = PTR_ERR(stream->oa_buffer.vaddr); 1926 goto err_unpin; 1927 } 1928 1929 return 0; 1930 1931 err_unpin: 1932 __i915_vma_unpin(vma); 1933 1934 err_unref: 1935 i915_gem_object_put(bo); 1936 1937 stream->oa_buffer.vaddr = NULL; 1938 stream->oa_buffer.vma = NULL; 1939 1940 return ret; 1941 } 1942 1943 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1944 bool save, i915_reg_t reg, u32 offset, 1945 u32 dword_count) 1946 { 1947 u32 cmd; 1948 u32 d; 1949 1950 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1951 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1952 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1953 cmd++; 1954 1955 for (d = 0; d < dword_count; d++) { 1956 *cs++ = cmd; 1957 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1958 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1959 *cs++ = 0; 1960 } 1961 1962 return cs; 1963 } 1964 1965 static int alloc_noa_wait(struct i915_perf_stream *stream) 1966 { 1967 struct drm_i915_private *i915 = stream->perf->i915; 1968 struct intel_gt *gt = stream->engine->gt; 1969 struct drm_i915_gem_object *bo; 1970 struct i915_vma *vma; 1971 const u64 delay_ticks = 0xffffffffffffffff - 1972 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1973 atomic64_read(&stream->perf->noa_programming_delay)); 1974 const u32 base = stream->engine->mmio_base; 1975 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1976 u32 *batch, *ts0, *cs, *jump; 1977 struct i915_gem_ww_ctx ww; 1978 int ret, i; 1979 enum { 1980 START_TS, 1981 NOW_TS, 1982 DELTA_TS, 1983 JUMP_PREDICATE, 1984 DELTA_TARGET, 1985 N_CS_GPR 1986 }; 1987 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1988 MI_PREDICATE_RESULT_2_ENGINE(base) : 1989 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1990 1991 /* 1992 * gt->scratch was being used to save/restore the GPR registers, but on 1993 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1994 * causes an engine hang. Instead allocate an additional page here to 1995 * save/restore GPR registers 1996 */ 1997 bo = i915_gem_object_create_internal(i915, 8192); 1998 if (IS_ERR(bo)) { 1999 drm_err(&i915->drm, 2000 "Failed to allocate NOA wait batchbuffer\n"); 2001 return PTR_ERR(bo); 2002 } 2003 2004 i915_gem_ww_ctx_init(&ww, true); 2005 retry: 2006 ret = i915_gem_object_lock(bo, &ww); 2007 if (ret) 2008 goto out_ww; 2009 2010 /* 2011 * We pin in GGTT because we jump into this buffer now because 2012 * multiple OA config BOs will have a jump to this address and it 2013 * needs to be fixed during the lifetime of the i915/perf stream. 2014 */ 2015 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 2016 if (IS_ERR(vma)) { 2017 ret = PTR_ERR(vma); 2018 goto out_ww; 2019 } 2020 2021 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2022 if (ret) 2023 goto out_ww; 2024 2025 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 2026 if (IS_ERR(batch)) { 2027 ret = PTR_ERR(batch); 2028 goto err_unpin; 2029 } 2030 2031 stream->noa_wait = vma; 2032 2033 #define GPR_SAVE_OFFSET 4096 2034 #define PREDICATE_SAVE_OFFSET 4160 2035 2036 /* Save registers. */ 2037 for (i = 0; i < N_CS_GPR; i++) 2038 cs = save_restore_register( 2039 stream, cs, true /* save */, CS_GPR(i), 2040 GPR_SAVE_OFFSET + 8 * i, 2); 2041 cs = save_restore_register( 2042 stream, cs, true /* save */, mi_predicate_result, 2043 PREDICATE_SAVE_OFFSET, 1); 2044 2045 /* First timestamp snapshot location. */ 2046 ts0 = cs; 2047 2048 /* 2049 * Initial snapshot of the timestamp register to implement the wait. 2050 * We work with 32b values, so clear out the top 32b bits of the 2051 * register because the ALU works 64bits. 2052 */ 2053 *cs++ = MI_LOAD_REGISTER_IMM(1); 2054 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2055 *cs++ = 0; 2056 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2057 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2058 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2059 2060 /* 2061 * This is the location we're going to jump back into until the 2062 * required amount of time has passed. 2063 */ 2064 jump = cs; 2065 2066 /* 2067 * Take another snapshot of the timestamp register. Take care to clear 2068 * up the top 32bits of CS_GPR(1) as we're using it for other 2069 * operations below. 2070 */ 2071 *cs++ = MI_LOAD_REGISTER_IMM(1); 2072 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2073 *cs++ = 0; 2074 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2075 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2076 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2077 2078 /* 2079 * Do a diff between the 2 timestamps and store the result back into 2080 * CS_GPR(1). 2081 */ 2082 *cs++ = MI_MATH(5); 2083 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2084 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2085 *cs++ = MI_MATH_SUB; 2086 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2087 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2088 2089 /* 2090 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2091 * timestamp have rolled over the 32bits) into the predicate register 2092 * to be used for the predicated jump. 2093 */ 2094 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2095 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2096 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2097 2098 if (HAS_MI_SET_PREDICATE(i915)) 2099 *cs++ = MI_SET_PREDICATE | 1; 2100 2101 /* Restart from the beginning if we had timestamps roll over. */ 2102 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2103 MI_BATCH_BUFFER_START : 2104 MI_BATCH_BUFFER_START_GEN8) | 2105 MI_BATCH_PREDICATE; 2106 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2107 *cs++ = 0; 2108 2109 if (HAS_MI_SET_PREDICATE(i915)) 2110 *cs++ = MI_SET_PREDICATE; 2111 2112 /* 2113 * Now add the diff between to previous timestamps and add it to : 2114 * (((1 * << 64) - 1) - delay_ns) 2115 * 2116 * When the Carry Flag contains 1 this means the elapsed time is 2117 * longer than the expected delay, and we can exit the wait loop. 2118 */ 2119 *cs++ = MI_LOAD_REGISTER_IMM(2); 2120 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2121 *cs++ = lower_32_bits(delay_ticks); 2122 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2123 *cs++ = upper_32_bits(delay_ticks); 2124 2125 *cs++ = MI_MATH(4); 2126 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2127 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2128 *cs++ = MI_MATH_ADD; 2129 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2130 2131 *cs++ = MI_ARB_CHECK; 2132 2133 /* 2134 * Transfer the result into the predicate register to be used for the 2135 * predicated jump. 2136 */ 2137 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2138 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2139 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2140 2141 if (HAS_MI_SET_PREDICATE(i915)) 2142 *cs++ = MI_SET_PREDICATE | 1; 2143 2144 /* Predicate the jump. */ 2145 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2146 MI_BATCH_BUFFER_START : 2147 MI_BATCH_BUFFER_START_GEN8) | 2148 MI_BATCH_PREDICATE; 2149 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2150 *cs++ = 0; 2151 2152 if (HAS_MI_SET_PREDICATE(i915)) 2153 *cs++ = MI_SET_PREDICATE; 2154 2155 /* Restore registers. */ 2156 for (i = 0; i < N_CS_GPR; i++) 2157 cs = save_restore_register( 2158 stream, cs, false /* restore */, CS_GPR(i), 2159 GPR_SAVE_OFFSET + 8 * i, 2); 2160 cs = save_restore_register( 2161 stream, cs, false /* restore */, mi_predicate_result, 2162 PREDICATE_SAVE_OFFSET, 1); 2163 2164 /* And return to the ring. */ 2165 *cs++ = MI_BATCH_BUFFER_END; 2166 2167 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2168 2169 i915_gem_object_flush_map(bo); 2170 __i915_gem_object_release_map(bo); 2171 2172 goto out_ww; 2173 2174 err_unpin: 2175 i915_vma_unpin_and_release(&vma, 0); 2176 out_ww: 2177 if (ret == -EDEADLK) { 2178 ret = i915_gem_ww_ctx_backoff(&ww); 2179 if (!ret) 2180 goto retry; 2181 } 2182 i915_gem_ww_ctx_fini(&ww); 2183 if (ret) 2184 i915_gem_object_put(bo); 2185 return ret; 2186 } 2187 2188 static u32 *write_cs_mi_lri(u32 *cs, 2189 const struct i915_oa_reg *reg_data, 2190 u32 n_regs) 2191 { 2192 u32 i; 2193 2194 for (i = 0; i < n_regs; i++) { 2195 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2196 u32 n_lri = min_t(u32, 2197 n_regs - i, 2198 MI_LOAD_REGISTER_IMM_MAX_REGS); 2199 2200 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2201 } 2202 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2203 *cs++ = reg_data[i].value; 2204 } 2205 2206 return cs; 2207 } 2208 2209 static int num_lri_dwords(int num_regs) 2210 { 2211 int count = 0; 2212 2213 if (num_regs > 0) { 2214 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2215 count += num_regs * 2; 2216 } 2217 2218 return count; 2219 } 2220 2221 static struct i915_oa_config_bo * 2222 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2223 struct i915_oa_config *oa_config) 2224 { 2225 struct drm_i915_gem_object *obj; 2226 struct i915_oa_config_bo *oa_bo; 2227 struct i915_gem_ww_ctx ww; 2228 size_t config_length = 0; 2229 u32 *cs; 2230 int err; 2231 2232 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2233 if (!oa_bo) 2234 return ERR_PTR(-ENOMEM); 2235 2236 config_length += num_lri_dwords(oa_config->mux_regs_len); 2237 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2238 config_length += num_lri_dwords(oa_config->flex_regs_len); 2239 config_length += 3; /* MI_BATCH_BUFFER_START */ 2240 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2241 2242 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2243 if (IS_ERR(obj)) { 2244 err = PTR_ERR(obj); 2245 goto err_free; 2246 } 2247 2248 i915_gem_ww_ctx_init(&ww, true); 2249 retry: 2250 err = i915_gem_object_lock(obj, &ww); 2251 if (err) 2252 goto out_ww; 2253 2254 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2255 if (IS_ERR(cs)) { 2256 err = PTR_ERR(cs); 2257 goto out_ww; 2258 } 2259 2260 cs = write_cs_mi_lri(cs, 2261 oa_config->mux_regs, 2262 oa_config->mux_regs_len); 2263 cs = write_cs_mi_lri(cs, 2264 oa_config->b_counter_regs, 2265 oa_config->b_counter_regs_len); 2266 cs = write_cs_mi_lri(cs, 2267 oa_config->flex_regs, 2268 oa_config->flex_regs_len); 2269 2270 /* Jump into the active wait. */ 2271 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2272 MI_BATCH_BUFFER_START : 2273 MI_BATCH_BUFFER_START_GEN8); 2274 *cs++ = i915_ggtt_offset(stream->noa_wait); 2275 *cs++ = 0; 2276 2277 i915_gem_object_flush_map(obj); 2278 __i915_gem_object_release_map(obj); 2279 2280 oa_bo->vma = i915_vma_instance(obj, 2281 &stream->engine->gt->ggtt->vm, 2282 NULL); 2283 if (IS_ERR(oa_bo->vma)) { 2284 err = PTR_ERR(oa_bo->vma); 2285 goto out_ww; 2286 } 2287 2288 oa_bo->oa_config = i915_oa_config_get(oa_config); 2289 llist_add(&oa_bo->node, &stream->oa_config_bos); 2290 2291 out_ww: 2292 if (err == -EDEADLK) { 2293 err = i915_gem_ww_ctx_backoff(&ww); 2294 if (!err) 2295 goto retry; 2296 } 2297 i915_gem_ww_ctx_fini(&ww); 2298 2299 if (err) 2300 i915_gem_object_put(obj); 2301 err_free: 2302 if (err) { 2303 kfree(oa_bo); 2304 return ERR_PTR(err); 2305 } 2306 return oa_bo; 2307 } 2308 2309 static struct i915_vma * 2310 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2311 { 2312 struct i915_oa_config_bo *oa_bo; 2313 2314 /* 2315 * Look for the buffer in the already allocated BOs attached 2316 * to the stream. 2317 */ 2318 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2319 if (oa_bo->oa_config == oa_config && 2320 memcmp(oa_bo->oa_config->uuid, 2321 oa_config->uuid, 2322 sizeof(oa_config->uuid)) == 0) 2323 goto out; 2324 } 2325 2326 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2327 if (IS_ERR(oa_bo)) 2328 return ERR_CAST(oa_bo); 2329 2330 out: 2331 return i915_vma_get(oa_bo->vma); 2332 } 2333 2334 static int 2335 emit_oa_config(struct i915_perf_stream *stream, 2336 struct i915_oa_config *oa_config, 2337 struct intel_context *ce, 2338 struct i915_active *active) 2339 { 2340 struct i915_request *rq; 2341 struct i915_vma *vma; 2342 struct i915_gem_ww_ctx ww; 2343 int err; 2344 2345 vma = get_oa_vma(stream, oa_config); 2346 if (IS_ERR(vma)) 2347 return PTR_ERR(vma); 2348 2349 i915_gem_ww_ctx_init(&ww, true); 2350 retry: 2351 err = i915_gem_object_lock(vma->obj, &ww); 2352 if (err) 2353 goto err; 2354 2355 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2356 if (err) 2357 goto err; 2358 2359 intel_engine_pm_get(ce->engine); 2360 rq = i915_request_create(ce); 2361 intel_engine_pm_put(ce->engine); 2362 if (IS_ERR(rq)) { 2363 err = PTR_ERR(rq); 2364 goto err_vma_unpin; 2365 } 2366 2367 if (!IS_ERR_OR_NULL(active)) { 2368 /* After all individual context modifications */ 2369 err = i915_request_await_active(rq, active, 2370 I915_ACTIVE_AWAIT_ACTIVE); 2371 if (err) 2372 goto err_add_request; 2373 2374 err = i915_active_add_request(active, rq); 2375 if (err) 2376 goto err_add_request; 2377 } 2378 2379 err = i915_vma_move_to_active(vma, rq, 0); 2380 if (err) 2381 goto err_add_request; 2382 2383 err = rq->engine->emit_bb_start(rq, 2384 i915_vma_offset(vma), 0, 2385 I915_DISPATCH_SECURE); 2386 if (err) 2387 goto err_add_request; 2388 2389 err_add_request: 2390 i915_request_add(rq); 2391 err_vma_unpin: 2392 i915_vma_unpin(vma); 2393 err: 2394 if (err == -EDEADLK) { 2395 err = i915_gem_ww_ctx_backoff(&ww); 2396 if (!err) 2397 goto retry; 2398 } 2399 2400 i915_gem_ww_ctx_fini(&ww); 2401 i915_vma_put(vma); 2402 return err; 2403 } 2404 2405 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2406 { 2407 return stream->pinned_ctx ?: stream->engine->kernel_context; 2408 } 2409 2410 static int 2411 hsw_enable_metric_set(struct i915_perf_stream *stream, 2412 struct i915_active *active) 2413 { 2414 struct intel_uncore *uncore = stream->uncore; 2415 2416 /* 2417 * PRM: 2418 * 2419 * OA unit is using “crclk” for its functionality. When trunk 2420 * level clock gating takes place, OA clock would be gated, 2421 * unable to count the events from non-render clock domain. 2422 * Render clock gating must be disabled when OA is enabled to 2423 * count the events from non-render domain. Unit level clock 2424 * gating for RCS should also be disabled. 2425 */ 2426 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2427 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2428 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2429 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2430 2431 return emit_oa_config(stream, 2432 stream->oa_config, oa_context(stream), 2433 active); 2434 } 2435 2436 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2437 { 2438 struct intel_uncore *uncore = stream->uncore; 2439 2440 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2441 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2442 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2443 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2444 2445 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2446 } 2447 2448 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2449 i915_reg_t reg) 2450 { 2451 u32 mmio = i915_mmio_reg_offset(reg); 2452 int i; 2453 2454 /* 2455 * This arbitrary default will select the 'EU FPU0 Pipeline 2456 * Active' event. In the future it's anticipated that there 2457 * will be an explicit 'No Event' we can select, but not yet... 2458 */ 2459 if (!oa_config) 2460 return 0; 2461 2462 for (i = 0; i < oa_config->flex_regs_len; i++) { 2463 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2464 return oa_config->flex_regs[i].value; 2465 } 2466 2467 return 0; 2468 } 2469 /* 2470 * NB: It must always remain pointer safe to run this even if the OA unit 2471 * has been disabled. 2472 * 2473 * It's fine to put out-of-date values into these per-context registers 2474 * in the case that the OA unit has been disabled. 2475 */ 2476 static void 2477 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2478 const struct i915_perf_stream *stream) 2479 { 2480 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2481 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2482 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2483 static const i915_reg_t flex_regs[] = { 2484 EU_PERF_CNTL0, 2485 EU_PERF_CNTL1, 2486 EU_PERF_CNTL2, 2487 EU_PERF_CNTL3, 2488 EU_PERF_CNTL4, 2489 EU_PERF_CNTL5, 2490 EU_PERF_CNTL6, 2491 }; 2492 u32 *reg_state = ce->lrc_reg_state; 2493 int i; 2494 2495 reg_state[ctx_oactxctrl + 1] = 2496 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2497 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2498 GEN8_OA_COUNTER_RESUME; 2499 2500 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2501 reg_state[ctx_flexeu0 + i * 2 + 1] = 2502 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2503 } 2504 2505 struct flex { 2506 i915_reg_t reg; 2507 u32 offset; 2508 u32 value; 2509 }; 2510 2511 static int 2512 gen8_store_flex(struct i915_request *rq, 2513 struct intel_context *ce, 2514 const struct flex *flex, unsigned int count) 2515 { 2516 u32 offset; 2517 u32 *cs; 2518 2519 cs = intel_ring_begin(rq, 4 * count); 2520 if (IS_ERR(cs)) 2521 return PTR_ERR(cs); 2522 2523 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2524 do { 2525 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2526 *cs++ = offset + flex->offset * sizeof(u32); 2527 *cs++ = 0; 2528 *cs++ = flex->value; 2529 } while (flex++, --count); 2530 2531 intel_ring_advance(rq, cs); 2532 2533 return 0; 2534 } 2535 2536 static int 2537 gen8_load_flex(struct i915_request *rq, 2538 struct intel_context *ce, 2539 const struct flex *flex, unsigned int count) 2540 { 2541 u32 *cs; 2542 2543 GEM_BUG_ON(!count || count > 63); 2544 2545 cs = intel_ring_begin(rq, 2 * count + 2); 2546 if (IS_ERR(cs)) 2547 return PTR_ERR(cs); 2548 2549 *cs++ = MI_LOAD_REGISTER_IMM(count); 2550 do { 2551 *cs++ = i915_mmio_reg_offset(flex->reg); 2552 *cs++ = flex->value; 2553 } while (flex++, --count); 2554 *cs++ = MI_NOOP; 2555 2556 intel_ring_advance(rq, cs); 2557 2558 return 0; 2559 } 2560 2561 static int gen8_modify_context(struct intel_context *ce, 2562 const struct flex *flex, unsigned int count) 2563 { 2564 struct i915_request *rq; 2565 int err; 2566 2567 rq = intel_engine_create_kernel_request(ce->engine); 2568 if (IS_ERR(rq)) 2569 return PTR_ERR(rq); 2570 2571 /* Serialise with the remote context */ 2572 err = intel_context_prepare_remote_request(ce, rq); 2573 if (err == 0) 2574 err = gen8_store_flex(rq, ce, flex, count); 2575 2576 i915_request_add(rq); 2577 return err; 2578 } 2579 2580 static int 2581 gen8_modify_self(struct intel_context *ce, 2582 const struct flex *flex, unsigned int count, 2583 struct i915_active *active) 2584 { 2585 struct i915_request *rq; 2586 int err; 2587 2588 intel_engine_pm_get(ce->engine); 2589 rq = i915_request_create(ce); 2590 intel_engine_pm_put(ce->engine); 2591 if (IS_ERR(rq)) 2592 return PTR_ERR(rq); 2593 2594 if (!IS_ERR_OR_NULL(active)) { 2595 err = i915_active_add_request(active, rq); 2596 if (err) 2597 goto err_add_request; 2598 } 2599 2600 err = gen8_load_flex(rq, ce, flex, count); 2601 if (err) 2602 goto err_add_request; 2603 2604 err_add_request: 2605 i915_request_add(rq); 2606 return err; 2607 } 2608 2609 static int gen8_configure_context(struct i915_perf_stream *stream, 2610 struct i915_gem_context *ctx, 2611 struct flex *flex, unsigned int count) 2612 { 2613 struct i915_gem_engines_iter it; 2614 struct intel_context *ce; 2615 int err = 0; 2616 2617 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2618 GEM_BUG_ON(ce == ce->engine->kernel_context); 2619 2620 if (ce->engine->class != RENDER_CLASS) 2621 continue; 2622 2623 /* Otherwise OA settings will be set upon first use */ 2624 if (!intel_context_pin_if_active(ce)) 2625 continue; 2626 2627 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2628 err = gen8_modify_context(ce, flex, count); 2629 2630 intel_context_unpin(ce); 2631 if (err) 2632 break; 2633 } 2634 i915_gem_context_unlock_engines(ctx); 2635 2636 return err; 2637 } 2638 2639 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2640 struct i915_active *active) 2641 { 2642 int err; 2643 struct intel_context *ce = stream->pinned_ctx; 2644 u32 format = stream->oa_buffer.format->format; 2645 u32 offset = stream->perf->ctx_oactxctrl_offset; 2646 struct flex regs_context[] = { 2647 { 2648 GEN8_OACTXCONTROL, 2649 offset + 1, 2650 active ? GEN8_OA_COUNTER_RESUME : 0, 2651 }, 2652 }; 2653 /* Offsets in regs_lri are not used since this configuration is only 2654 * applied using LRI. Initialize the correct offsets for posterity. 2655 */ 2656 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2657 struct flex regs_lri[] = { 2658 { 2659 GEN12_OAR_OACONTROL, 2660 GEN12_OAR_OACONTROL_OFFSET + 1, 2661 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2662 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2663 }, 2664 { 2665 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2666 CTX_CONTEXT_CONTROL, 2667 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2668 active ? 2669 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2670 0) 2671 }, 2672 }; 2673 2674 /* Modify the context image of pinned context with regs_context */ 2675 err = intel_context_lock_pinned(ce); 2676 if (err) 2677 return err; 2678 2679 err = gen8_modify_context(ce, regs_context, 2680 ARRAY_SIZE(regs_context)); 2681 intel_context_unlock_pinned(ce); 2682 if (err) 2683 return err; 2684 2685 /* Apply regs_lri using LRI with pinned context */ 2686 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2687 } 2688 2689 /* 2690 * Manages updating the per-context aspects of the OA stream 2691 * configuration across all contexts. 2692 * 2693 * The awkward consideration here is that OACTXCONTROL controls the 2694 * exponent for periodic sampling which is primarily used for system 2695 * wide profiling where we'd like a consistent sampling period even in 2696 * the face of context switches. 2697 * 2698 * Our approach of updating the register state context (as opposed to 2699 * say using a workaround batch buffer) ensures that the hardware 2700 * won't automatically reload an out-of-date timer exponent even 2701 * transiently before a WA BB could be parsed. 2702 * 2703 * This function needs to: 2704 * - Ensure the currently running context's per-context OA state is 2705 * updated 2706 * - Ensure that all existing contexts will have the correct per-context 2707 * OA state if they are scheduled for use. 2708 * - Ensure any new contexts will be initialized with the correct 2709 * per-context OA state. 2710 * 2711 * Note: it's only the RCS/Render context that has any OA state. 2712 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2713 */ 2714 static int 2715 oa_configure_all_contexts(struct i915_perf_stream *stream, 2716 struct flex *regs, 2717 size_t num_regs, 2718 struct i915_active *active) 2719 { 2720 struct drm_i915_private *i915 = stream->perf->i915; 2721 struct intel_engine_cs *engine; 2722 struct intel_gt *gt = stream->engine->gt; 2723 struct i915_gem_context *ctx, *cn; 2724 int err; 2725 2726 lockdep_assert_held(>->perf.lock); 2727 2728 /* 2729 * The OA register config is setup through the context image. This image 2730 * might be written to by the GPU on context switch (in particular on 2731 * lite-restore). This means we can't safely update a context's image, 2732 * if this context is scheduled/submitted to run on the GPU. 2733 * 2734 * We could emit the OA register config through the batch buffer but 2735 * this might leave small interval of time where the OA unit is 2736 * configured at an invalid sampling period. 2737 * 2738 * Note that since we emit all requests from a single ring, there 2739 * is still an implicit global barrier here that may cause a high 2740 * priority context to wait for an otherwise independent low priority 2741 * context. Contexts idle at the time of reconfiguration are not 2742 * trapped behind the barrier. 2743 */ 2744 spin_lock(&i915->gem.contexts.lock); 2745 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2746 if (!kref_get_unless_zero(&ctx->ref)) 2747 continue; 2748 2749 spin_unlock(&i915->gem.contexts.lock); 2750 2751 err = gen8_configure_context(stream, ctx, regs, num_regs); 2752 if (err) { 2753 i915_gem_context_put(ctx); 2754 return err; 2755 } 2756 2757 spin_lock(&i915->gem.contexts.lock); 2758 list_safe_reset_next(ctx, cn, link); 2759 i915_gem_context_put(ctx); 2760 } 2761 spin_unlock(&i915->gem.contexts.lock); 2762 2763 /* 2764 * After updating all other contexts, we need to modify ourselves. 2765 * If we don't modify the kernel_context, we do not get events while 2766 * idle. 2767 */ 2768 for_each_uabi_engine(engine, i915) { 2769 struct intel_context *ce = engine->kernel_context; 2770 2771 if (engine->class != RENDER_CLASS) 2772 continue; 2773 2774 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2775 2776 err = gen8_modify_self(ce, regs, num_regs, active); 2777 if (err) 2778 return err; 2779 } 2780 2781 return 0; 2782 } 2783 2784 static int 2785 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2786 const struct i915_oa_config *oa_config, 2787 struct i915_active *active) 2788 { 2789 struct flex regs[] = { 2790 { 2791 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2792 CTX_R_PWR_CLK_STATE, 2793 }, 2794 }; 2795 2796 if (stream->engine->class != RENDER_CLASS) 2797 return 0; 2798 2799 return oa_configure_all_contexts(stream, 2800 regs, ARRAY_SIZE(regs), 2801 active); 2802 } 2803 2804 static int 2805 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2806 const struct i915_oa_config *oa_config, 2807 struct i915_active *active) 2808 { 2809 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2810 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2811 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2812 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2813 struct flex regs[] = { 2814 { 2815 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2816 CTX_R_PWR_CLK_STATE, 2817 }, 2818 { 2819 GEN8_OACTXCONTROL, 2820 ctx_oactxctrl + 1, 2821 }, 2822 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2823 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2824 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2825 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2826 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2827 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2828 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2829 }; 2830 #undef ctx_flexeuN 2831 int i; 2832 2833 regs[1].value = 2834 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2835 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2836 GEN8_OA_COUNTER_RESUME; 2837 2838 for (i = 2; i < ARRAY_SIZE(regs); i++) 2839 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2840 2841 return oa_configure_all_contexts(stream, 2842 regs, ARRAY_SIZE(regs), 2843 active); 2844 } 2845 2846 static int 2847 gen8_enable_metric_set(struct i915_perf_stream *stream, 2848 struct i915_active *active) 2849 { 2850 struct intel_uncore *uncore = stream->uncore; 2851 struct i915_oa_config *oa_config = stream->oa_config; 2852 int ret; 2853 2854 /* 2855 * We disable slice/unslice clock ratio change reports on SKL since 2856 * they are too noisy. The HW generates a lot of redundant reports 2857 * where the ratio hasn't really changed causing a lot of redundant 2858 * work to processes and increasing the chances we'll hit buffer 2859 * overruns. 2860 * 2861 * Although we don't currently use the 'disable overrun' OABUFFER 2862 * feature it's worth noting that clock ratio reports have to be 2863 * disabled before considering to use that feature since the HW doesn't 2864 * correctly block these reports. 2865 * 2866 * Currently none of the high-level metrics we have depend on knowing 2867 * this ratio to normalize. 2868 * 2869 * Note: This register is not power context saved and restored, but 2870 * that's OK considering that we disable RC6 while the OA unit is 2871 * enabled. 2872 * 2873 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2874 * be read back from automatically triggered reports, as part of the 2875 * RPT_ID field. 2876 */ 2877 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2878 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2879 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2880 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2881 } 2882 2883 /* 2884 * Update all contexts prior writing the mux configurations as we need 2885 * to make sure all slices/subslices are ON before writing to NOA 2886 * registers. 2887 */ 2888 ret = lrc_configure_all_contexts(stream, oa_config, active); 2889 if (ret) 2890 return ret; 2891 2892 return emit_oa_config(stream, 2893 stream->oa_config, oa_context(stream), 2894 active); 2895 } 2896 2897 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2898 { 2899 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2900 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2901 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2902 } 2903 2904 static int 2905 gen12_enable_metric_set(struct i915_perf_stream *stream, 2906 struct i915_active *active) 2907 { 2908 struct drm_i915_private *i915 = stream->perf->i915; 2909 struct intel_uncore *uncore = stream->uncore; 2910 struct i915_oa_config *oa_config = stream->oa_config; 2911 bool periodic = stream->periodic; 2912 u32 period_exponent = stream->period_exponent; 2913 u32 sqcnt1; 2914 int ret; 2915 2916 /* 2917 * Wa_1508761755:xehpsdv, dg2 2918 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2919 * Disable thread stall DOP gating and EU DOP gating. 2920 */ 2921 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2922 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2923 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2924 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2925 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2926 } 2927 2928 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2929 /* Disable clk ratio reports, like previous Gens. */ 2930 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2931 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2932 /* 2933 * If the user didn't require OA reports, instruct 2934 * the hardware not to emit ctx switch reports. 2935 */ 2936 oag_report_ctx_switches(stream)); 2937 2938 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2939 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2940 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2941 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2942 : 0); 2943 2944 /* 2945 * Initialize Super Queue Internal Cnt Register 2946 * Set PMON Enable in order to collect valid metrics. 2947 * Enable byets per clock reporting in OA for XEHPSDV onward. 2948 */ 2949 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2950 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2951 2952 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2953 2954 /* 2955 * Update all contexts prior writing the mux configurations as we need 2956 * to make sure all slices/subslices are ON before writing to NOA 2957 * registers. 2958 */ 2959 ret = gen12_configure_all_contexts(stream, oa_config, active); 2960 if (ret) 2961 return ret; 2962 2963 /* 2964 * For Gen12, performance counters are context 2965 * saved/restored. Only enable it for the context that 2966 * requested this. 2967 */ 2968 if (stream->ctx) { 2969 ret = gen12_configure_oar_context(stream, active); 2970 if (ret) 2971 return ret; 2972 } 2973 2974 return emit_oa_config(stream, 2975 stream->oa_config, oa_context(stream), 2976 active); 2977 } 2978 2979 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2980 { 2981 struct intel_uncore *uncore = stream->uncore; 2982 2983 /* Reset all contexts' slices/subslices configurations. */ 2984 lrc_configure_all_contexts(stream, NULL, NULL); 2985 2986 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2987 } 2988 2989 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2990 { 2991 struct intel_uncore *uncore = stream->uncore; 2992 2993 /* Reset all contexts' slices/subslices configurations. */ 2994 lrc_configure_all_contexts(stream, NULL, NULL); 2995 2996 /* Make sure we disable noa to save power. */ 2997 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2998 } 2999 3000 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 3001 { 3002 struct intel_uncore *uncore = stream->uncore; 3003 struct drm_i915_private *i915 = stream->perf->i915; 3004 u32 sqcnt1; 3005 3006 /* 3007 * Wa_1508761755:xehpsdv, dg2 3008 * Enable thread stall DOP gating and EU DOP gating. 3009 */ 3010 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 3011 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 3012 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 3013 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 3014 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 3015 } 3016 3017 /* Reset all contexts' slices/subslices configurations. */ 3018 gen12_configure_all_contexts(stream, NULL, NULL); 3019 3020 /* disable the context save/restore or OAR counters */ 3021 if (stream->ctx) 3022 gen12_configure_oar_context(stream, NULL); 3023 3024 /* Make sure we disable noa to save power. */ 3025 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 3026 3027 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 3028 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 3029 3030 /* Reset PMON Enable to save power. */ 3031 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 3032 } 3033 3034 static void gen7_oa_enable(struct i915_perf_stream *stream) 3035 { 3036 struct intel_uncore *uncore = stream->uncore; 3037 struct i915_gem_context *ctx = stream->ctx; 3038 u32 ctx_id = stream->specific_ctx_id; 3039 bool periodic = stream->periodic; 3040 u32 period_exponent = stream->period_exponent; 3041 u32 report_format = stream->oa_buffer.format->format; 3042 3043 /* 3044 * Reset buf pointers so we don't forward reports from before now. 3045 * 3046 * Think carefully if considering trying to avoid this, since it 3047 * also ensures status flags and the buffer itself are cleared 3048 * in error paths, and we have checks for invalid reports based 3049 * on the assumption that certain fields are written to zeroed 3050 * memory which this helps maintains. 3051 */ 3052 gen7_init_oa_buffer(stream); 3053 3054 intel_uncore_write(uncore, GEN7_OACONTROL, 3055 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 3056 (period_exponent << 3057 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 3058 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 3059 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 3060 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 3061 GEN7_OACONTROL_ENABLE); 3062 } 3063 3064 static void gen8_oa_enable(struct i915_perf_stream *stream) 3065 { 3066 struct intel_uncore *uncore = stream->uncore; 3067 u32 report_format = stream->oa_buffer.format->format; 3068 3069 /* 3070 * Reset buf pointers so we don't forward reports from before now. 3071 * 3072 * Think carefully if considering trying to avoid this, since it 3073 * also ensures status flags and the buffer itself are cleared 3074 * in error paths, and we have checks for invalid reports based 3075 * on the assumption that certain fields are written to zeroed 3076 * memory which this helps maintains. 3077 */ 3078 gen8_init_oa_buffer(stream); 3079 3080 /* 3081 * Note: we don't rely on the hardware to perform single context 3082 * filtering and instead filter on the cpu based on the context-id 3083 * field of reports 3084 */ 3085 intel_uncore_write(uncore, GEN8_OACONTROL, 3086 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3087 GEN8_OA_COUNTER_ENABLE); 3088 } 3089 3090 static void gen12_oa_enable(struct i915_perf_stream *stream) 3091 { 3092 const struct i915_perf_regs *regs; 3093 u32 val; 3094 3095 /* 3096 * If we don't want OA reports from the OA buffer, then we don't even 3097 * need to program the OAG unit. 3098 */ 3099 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3100 return; 3101 3102 gen12_init_oa_buffer(stream); 3103 3104 regs = __oa_regs(stream); 3105 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3106 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3107 3108 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3109 } 3110 3111 /** 3112 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3113 * @stream: An i915 perf stream opened for OA metrics 3114 * 3115 * [Re]enables hardware periodic sampling according to the period configured 3116 * when opening the stream. This also starts a hrtimer that will periodically 3117 * check for data in the circular OA buffer for notifying userspace (e.g. 3118 * during a read() or poll()). 3119 */ 3120 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3121 { 3122 stream->pollin = false; 3123 3124 stream->perf->ops.oa_enable(stream); 3125 3126 if (stream->sample_flags & SAMPLE_OA_REPORT) 3127 hrtimer_start(&stream->poll_check_timer, 3128 ns_to_ktime(stream->poll_oa_period), 3129 HRTIMER_MODE_REL_PINNED); 3130 } 3131 3132 static void gen7_oa_disable(struct i915_perf_stream *stream) 3133 { 3134 struct intel_uncore *uncore = stream->uncore; 3135 3136 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3137 if (intel_wait_for_register(uncore, 3138 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3139 50)) 3140 drm_err(&stream->perf->i915->drm, 3141 "wait for OA to be disabled timed out\n"); 3142 } 3143 3144 static void gen8_oa_disable(struct i915_perf_stream *stream) 3145 { 3146 struct intel_uncore *uncore = stream->uncore; 3147 3148 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3149 if (intel_wait_for_register(uncore, 3150 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3151 50)) 3152 drm_err(&stream->perf->i915->drm, 3153 "wait for OA to be disabled timed out\n"); 3154 } 3155 3156 static void gen12_oa_disable(struct i915_perf_stream *stream) 3157 { 3158 struct intel_uncore *uncore = stream->uncore; 3159 3160 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3161 if (intel_wait_for_register(uncore, 3162 __oa_regs(stream)->oa_ctrl, 3163 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3164 50)) 3165 drm_err(&stream->perf->i915->drm, 3166 "wait for OA to be disabled timed out\n"); 3167 3168 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3169 if (intel_wait_for_register(uncore, 3170 GEN12_OA_TLB_INV_CR, 3171 1, 0, 3172 50)) 3173 drm_err(&stream->perf->i915->drm, 3174 "wait for OA tlb invalidate timed out\n"); 3175 } 3176 3177 /** 3178 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3179 * @stream: An i915 perf stream opened for OA metrics 3180 * 3181 * Stops the OA unit from periodically writing counter reports into the 3182 * circular OA buffer. This also stops the hrtimer that periodically checks for 3183 * data in the circular OA buffer, for notifying userspace. 3184 */ 3185 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3186 { 3187 stream->perf->ops.oa_disable(stream); 3188 3189 if (stream->sample_flags & SAMPLE_OA_REPORT) 3190 hrtimer_cancel(&stream->poll_check_timer); 3191 } 3192 3193 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3194 .destroy = i915_oa_stream_destroy, 3195 .enable = i915_oa_stream_enable, 3196 .disable = i915_oa_stream_disable, 3197 .wait_unlocked = i915_oa_wait_unlocked, 3198 .poll_wait = i915_oa_poll_wait, 3199 .read = i915_oa_read, 3200 }; 3201 3202 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3203 { 3204 struct i915_active *active; 3205 int err; 3206 3207 active = i915_active_create(); 3208 if (!active) 3209 return -ENOMEM; 3210 3211 err = stream->perf->ops.enable_metric_set(stream, active); 3212 if (err == 0) 3213 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3214 3215 i915_active_put(active); 3216 return err; 3217 } 3218 3219 static void 3220 get_default_sseu_config(struct intel_sseu *out_sseu, 3221 struct intel_engine_cs *engine) 3222 { 3223 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3224 3225 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3226 3227 if (GRAPHICS_VER(engine->i915) == 11) { 3228 /* 3229 * We only need subslice count so it doesn't matter which ones 3230 * we select - just turn off low bits in the amount of half of 3231 * all available subslices per slice. 3232 */ 3233 out_sseu->subslice_mask = 3234 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3235 out_sseu->slice_mask = 0x1; 3236 } 3237 } 3238 3239 static int 3240 get_sseu_config(struct intel_sseu *out_sseu, 3241 struct intel_engine_cs *engine, 3242 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3243 { 3244 if (drm_sseu->engine.engine_class != engine->uabi_class || 3245 drm_sseu->engine.engine_instance != engine->uabi_instance) 3246 return -EINVAL; 3247 3248 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3249 } 3250 3251 /* 3252 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3253 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3254 * cases, return the adjusted CS timestamp frequency to the user. 3255 */ 3256 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3257 { 3258 struct intel_gt *gt = to_gt(i915); 3259 3260 /* Wa_18013179988 */ 3261 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 3262 intel_wakeref_t wakeref; 3263 u32 reg, shift; 3264 3265 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3266 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3267 3268 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3269 reg); 3270 3271 return to_gt(i915)->clock_frequency << (3 - shift); 3272 } 3273 3274 return to_gt(i915)->clock_frequency; 3275 } 3276 3277 /** 3278 * i915_oa_stream_init - validate combined props for OA stream and init 3279 * @stream: An i915 perf stream 3280 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3281 * @props: The property state that configures stream (individually validated) 3282 * 3283 * While read_properties_unlocked() validates properties in isolation it 3284 * doesn't ensure that the combination necessarily makes sense. 3285 * 3286 * At this point it has been determined that userspace wants a stream of 3287 * OA metrics, but still we need to further validate the combined 3288 * properties are OK. 3289 * 3290 * If the configuration makes sense then we can allocate memory for 3291 * a circular OA buffer and apply the requested metric set configuration. 3292 * 3293 * Returns: zero on success or a negative error code. 3294 */ 3295 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3296 struct drm_i915_perf_open_param *param, 3297 struct perf_open_properties *props) 3298 { 3299 struct drm_i915_private *i915 = stream->perf->i915; 3300 struct i915_perf *perf = stream->perf; 3301 struct i915_perf_group *g; 3302 struct intel_gt *gt; 3303 int ret; 3304 3305 if (!props->engine) { 3306 drm_dbg(&stream->perf->i915->drm, 3307 "OA engine not specified\n"); 3308 return -EINVAL; 3309 } 3310 gt = props->engine->gt; 3311 g = props->engine->oa_group; 3312 3313 /* 3314 * If the sysfs metrics/ directory wasn't registered for some 3315 * reason then don't let userspace try their luck with config 3316 * IDs 3317 */ 3318 if (!perf->metrics_kobj) { 3319 drm_dbg(&stream->perf->i915->drm, 3320 "OA metrics weren't advertised via sysfs\n"); 3321 return -EINVAL; 3322 } 3323 3324 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3325 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3326 drm_dbg(&stream->perf->i915->drm, 3327 "Only OA report sampling supported\n"); 3328 return -EINVAL; 3329 } 3330 3331 if (!perf->ops.enable_metric_set) { 3332 drm_dbg(&stream->perf->i915->drm, 3333 "OA unit not supported\n"); 3334 return -ENODEV; 3335 } 3336 3337 /* 3338 * To avoid the complexity of having to accurately filter 3339 * counter reports and marshal to the appropriate client 3340 * we currently only allow exclusive access 3341 */ 3342 if (g->exclusive_stream) { 3343 drm_dbg(&stream->perf->i915->drm, 3344 "OA unit already in use\n"); 3345 return -EBUSY; 3346 } 3347 3348 if (!props->oa_format) { 3349 drm_dbg(&stream->perf->i915->drm, 3350 "OA report format not specified\n"); 3351 return -EINVAL; 3352 } 3353 3354 stream->engine = props->engine; 3355 stream->uncore = stream->engine->gt->uncore; 3356 3357 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3358 3359 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3360 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3361 return -EINVAL; 3362 3363 stream->sample_flags = props->sample_flags; 3364 stream->sample_size += stream->oa_buffer.format->size; 3365 3366 stream->hold_preemption = props->hold_preemption; 3367 3368 stream->periodic = props->oa_periodic; 3369 if (stream->periodic) 3370 stream->period_exponent = props->oa_period_exponent; 3371 3372 if (stream->ctx) { 3373 ret = oa_get_render_ctx_id(stream); 3374 if (ret) { 3375 drm_dbg(&stream->perf->i915->drm, 3376 "Invalid context id to filter with\n"); 3377 return ret; 3378 } 3379 } 3380 3381 ret = alloc_noa_wait(stream); 3382 if (ret) { 3383 drm_dbg(&stream->perf->i915->drm, 3384 "Unable to allocate NOA wait batch buffer\n"); 3385 goto err_noa_wait_alloc; 3386 } 3387 3388 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3389 if (!stream->oa_config) { 3390 drm_dbg(&stream->perf->i915->drm, 3391 "Invalid OA config id=%i\n", props->metrics_set); 3392 ret = -EINVAL; 3393 goto err_config; 3394 } 3395 3396 /* PRM - observability performance counters: 3397 * 3398 * OACONTROL, performance counter enable, note: 3399 * 3400 * "When this bit is set, in order to have coherent counts, 3401 * RC6 power state and trunk clock gating must be disabled. 3402 * This can be achieved by programming MMIO registers as 3403 * 0xA094=0 and 0xA090[31]=1" 3404 * 3405 * In our case we are expecting that taking pm + FORCEWAKE 3406 * references will effectively disable RC6. 3407 */ 3408 intel_engine_pm_get(stream->engine); 3409 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3410 3411 /* 3412 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes 3413 * OA to lose the configuration state. Prevent this by overriding GUCRC 3414 * mode. 3415 */ 3416 if (intel_uc_uses_guc_rc(>->uc) && 3417 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 3418 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) { 3419 ret = intel_guc_slpc_override_gucrc_mode(>->uc.guc.slpc, 3420 SLPC_GUCRC_MODE_GUCRC_NO_RC6); 3421 if (ret) { 3422 drm_dbg(&stream->perf->i915->drm, 3423 "Unable to override gucrc mode\n"); 3424 goto err_gucrc; 3425 } 3426 3427 stream->override_gucrc = true; 3428 } 3429 3430 ret = alloc_oa_buffer(stream); 3431 if (ret) 3432 goto err_oa_buf_alloc; 3433 3434 stream->ops = &i915_oa_stream_ops; 3435 3436 stream->engine->gt->perf.sseu = props->sseu; 3437 WRITE_ONCE(g->exclusive_stream, stream); 3438 3439 ret = i915_perf_stream_enable_sync(stream); 3440 if (ret) { 3441 drm_dbg(&stream->perf->i915->drm, 3442 "Unable to enable metric set\n"); 3443 goto err_enable; 3444 } 3445 3446 drm_dbg(&stream->perf->i915->drm, 3447 "opening stream oa config uuid=%s\n", 3448 stream->oa_config->uuid); 3449 3450 hrtimer_init(&stream->poll_check_timer, 3451 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3452 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3453 init_waitqueue_head(&stream->poll_wq); 3454 spin_lock_init(&stream->oa_buffer.ptr_lock); 3455 mutex_init(&stream->lock); 3456 3457 return 0; 3458 3459 err_enable: 3460 WRITE_ONCE(g->exclusive_stream, NULL); 3461 perf->ops.disable_metric_set(stream); 3462 3463 free_oa_buffer(stream); 3464 3465 err_oa_buf_alloc: 3466 if (stream->override_gucrc) 3467 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc); 3468 3469 err_gucrc: 3470 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3471 intel_engine_pm_put(stream->engine); 3472 3473 free_oa_configs(stream); 3474 3475 err_config: 3476 free_noa_wait(stream); 3477 3478 err_noa_wait_alloc: 3479 if (stream->ctx) 3480 oa_put_render_ctx_id(stream); 3481 3482 return ret; 3483 } 3484 3485 void i915_oa_init_reg_state(const struct intel_context *ce, 3486 const struct intel_engine_cs *engine) 3487 { 3488 struct i915_perf_stream *stream; 3489 3490 if (engine->class != RENDER_CLASS) 3491 return; 3492 3493 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3494 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3495 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3496 gen8_update_reg_state_unlocked(ce, stream); 3497 } 3498 3499 /** 3500 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3501 * @file: An i915 perf stream file 3502 * @buf: destination buffer given by userspace 3503 * @count: the number of bytes userspace wants to read 3504 * @ppos: (inout) file seek position (unused) 3505 * 3506 * The entry point for handling a read() on a stream file descriptor from 3507 * userspace. Most of the work is left to the i915_perf_read_locked() and 3508 * &i915_perf_stream_ops->read but to save having stream implementations (of 3509 * which we might have multiple later) we handle blocking read here. 3510 * 3511 * We can also consistently treat trying to read from a disabled stream 3512 * as an IO error so implementations can assume the stream is enabled 3513 * while reading. 3514 * 3515 * Returns: The number of bytes copied or a negative error code on failure. 3516 */ 3517 static ssize_t i915_perf_read(struct file *file, 3518 char __user *buf, 3519 size_t count, 3520 loff_t *ppos) 3521 { 3522 struct i915_perf_stream *stream = file->private_data; 3523 size_t offset = 0; 3524 int ret; 3525 3526 /* To ensure it's handled consistently we simply treat all reads of a 3527 * disabled stream as an error. In particular it might otherwise lead 3528 * to a deadlock for blocking file descriptors... 3529 */ 3530 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3531 return -EIO; 3532 3533 if (!(file->f_flags & O_NONBLOCK)) { 3534 /* There's the small chance of false positives from 3535 * stream->ops->wait_unlocked. 3536 * 3537 * E.g. with single context filtering since we only wait until 3538 * oabuffer has >= 1 report we don't immediately know whether 3539 * any reports really belong to the current context 3540 */ 3541 do { 3542 ret = stream->ops->wait_unlocked(stream); 3543 if (ret) 3544 return ret; 3545 3546 mutex_lock(&stream->lock); 3547 ret = stream->ops->read(stream, buf, count, &offset); 3548 mutex_unlock(&stream->lock); 3549 } while (!offset && !ret); 3550 } else { 3551 mutex_lock(&stream->lock); 3552 ret = stream->ops->read(stream, buf, count, &offset); 3553 mutex_unlock(&stream->lock); 3554 } 3555 3556 /* We allow the poll checking to sometimes report false positive EPOLLIN 3557 * events where we might actually report EAGAIN on read() if there's 3558 * not really any data available. In this situation though we don't 3559 * want to enter a busy loop between poll() reporting a EPOLLIN event 3560 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3561 * effectively ensures we back off until the next hrtimer callback 3562 * before reporting another EPOLLIN event. 3563 * The exception to this is if ops->read() returned -ENOSPC which means 3564 * that more OA data is available than could fit in the user provided 3565 * buffer. In this case we want the next poll() call to not block. 3566 */ 3567 if (ret != -ENOSPC) 3568 stream->pollin = false; 3569 3570 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3571 return offset ?: (ret ?: -EAGAIN); 3572 } 3573 3574 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3575 { 3576 struct i915_perf_stream *stream = 3577 container_of(hrtimer, typeof(*stream), poll_check_timer); 3578 3579 if (oa_buffer_check_unlocked(stream)) { 3580 stream->pollin = true; 3581 wake_up(&stream->poll_wq); 3582 } 3583 3584 hrtimer_forward_now(hrtimer, 3585 ns_to_ktime(stream->poll_oa_period)); 3586 3587 return HRTIMER_RESTART; 3588 } 3589 3590 /** 3591 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3592 * @stream: An i915 perf stream 3593 * @file: An i915 perf stream file 3594 * @wait: poll() state table 3595 * 3596 * For handling userspace polling on an i915 perf stream, this calls through to 3597 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3598 * will be woken for new stream data. 3599 * 3600 * Returns: any poll events that are ready without sleeping 3601 */ 3602 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3603 struct file *file, 3604 poll_table *wait) 3605 { 3606 __poll_t events = 0; 3607 3608 stream->ops->poll_wait(stream, file, wait); 3609 3610 /* Note: we don't explicitly check whether there's something to read 3611 * here since this path may be very hot depending on what else 3612 * userspace is polling, or on the timeout in use. We rely solely on 3613 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3614 * samples to read. 3615 */ 3616 if (stream->pollin) 3617 events |= EPOLLIN; 3618 3619 return events; 3620 } 3621 3622 /** 3623 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3624 * @file: An i915 perf stream file 3625 * @wait: poll() state table 3626 * 3627 * For handling userspace polling on an i915 perf stream, this ensures 3628 * poll_wait() gets called with a wait queue that will be woken for new stream 3629 * data. 3630 * 3631 * Note: Implementation deferred to i915_perf_poll_locked() 3632 * 3633 * Returns: any poll events that are ready without sleeping 3634 */ 3635 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3636 { 3637 struct i915_perf_stream *stream = file->private_data; 3638 __poll_t ret; 3639 3640 mutex_lock(&stream->lock); 3641 ret = i915_perf_poll_locked(stream, file, wait); 3642 mutex_unlock(&stream->lock); 3643 3644 return ret; 3645 } 3646 3647 /** 3648 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3649 * @stream: A disabled i915 perf stream 3650 * 3651 * [Re]enables the associated capture of data for this stream. 3652 * 3653 * If a stream was previously enabled then there's currently no intention 3654 * to provide userspace any guarantee about the preservation of previously 3655 * buffered data. 3656 */ 3657 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3658 { 3659 if (stream->enabled) 3660 return; 3661 3662 /* Allow stream->ops->enable() to refer to this */ 3663 stream->enabled = true; 3664 3665 if (stream->ops->enable) 3666 stream->ops->enable(stream); 3667 3668 if (stream->hold_preemption) 3669 intel_context_set_nopreempt(stream->pinned_ctx); 3670 } 3671 3672 /** 3673 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3674 * @stream: An enabled i915 perf stream 3675 * 3676 * Disables the associated capture of data for this stream. 3677 * 3678 * The intention is that disabling an re-enabling a stream will ideally be 3679 * cheaper than destroying and re-opening a stream with the same configuration, 3680 * though there are no formal guarantees about what state or buffered data 3681 * must be retained between disabling and re-enabling a stream. 3682 * 3683 * Note: while a stream is disabled it's considered an error for userspace 3684 * to attempt to read from the stream (-EIO). 3685 */ 3686 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3687 { 3688 if (!stream->enabled) 3689 return; 3690 3691 /* Allow stream->ops->disable() to refer to this */ 3692 stream->enabled = false; 3693 3694 if (stream->hold_preemption) 3695 intel_context_clear_nopreempt(stream->pinned_ctx); 3696 3697 if (stream->ops->disable) 3698 stream->ops->disable(stream); 3699 } 3700 3701 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3702 unsigned long metrics_set) 3703 { 3704 struct i915_oa_config *config; 3705 long ret = stream->oa_config->id; 3706 3707 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3708 if (!config) 3709 return -EINVAL; 3710 3711 if (config != stream->oa_config) { 3712 int err; 3713 3714 /* 3715 * If OA is bound to a specific context, emit the 3716 * reconfiguration inline from that context. The update 3717 * will then be ordered with respect to submission on that 3718 * context. 3719 * 3720 * When set globally, we use a low priority kernel context, 3721 * so it will effectively take effect when idle. 3722 */ 3723 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3724 if (!err) 3725 config = xchg(&stream->oa_config, config); 3726 else 3727 ret = err; 3728 } 3729 3730 i915_oa_config_put(config); 3731 3732 return ret; 3733 } 3734 3735 /** 3736 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3737 * @stream: An i915 perf stream 3738 * @cmd: the ioctl request 3739 * @arg: the ioctl data 3740 * 3741 * Returns: zero on success or a negative error code. Returns -EINVAL for 3742 * an unknown ioctl request. 3743 */ 3744 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3745 unsigned int cmd, 3746 unsigned long arg) 3747 { 3748 switch (cmd) { 3749 case I915_PERF_IOCTL_ENABLE: 3750 i915_perf_enable_locked(stream); 3751 return 0; 3752 case I915_PERF_IOCTL_DISABLE: 3753 i915_perf_disable_locked(stream); 3754 return 0; 3755 case I915_PERF_IOCTL_CONFIG: 3756 return i915_perf_config_locked(stream, arg); 3757 } 3758 3759 return -EINVAL; 3760 } 3761 3762 /** 3763 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3764 * @file: An i915 perf stream file 3765 * @cmd: the ioctl request 3766 * @arg: the ioctl data 3767 * 3768 * Implementation deferred to i915_perf_ioctl_locked(). 3769 * 3770 * Returns: zero on success or a negative error code. Returns -EINVAL for 3771 * an unknown ioctl request. 3772 */ 3773 static long i915_perf_ioctl(struct file *file, 3774 unsigned int cmd, 3775 unsigned long arg) 3776 { 3777 struct i915_perf_stream *stream = file->private_data; 3778 long ret; 3779 3780 mutex_lock(&stream->lock); 3781 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3782 mutex_unlock(&stream->lock); 3783 3784 return ret; 3785 } 3786 3787 /** 3788 * i915_perf_destroy_locked - destroy an i915 perf stream 3789 * @stream: An i915 perf stream 3790 * 3791 * Frees all resources associated with the given i915 perf @stream, disabling 3792 * any associated data capture in the process. 3793 * 3794 * Note: The >->perf.lock mutex has been taken to serialize 3795 * with any non-file-operation driver hooks. 3796 */ 3797 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3798 { 3799 if (stream->enabled) 3800 i915_perf_disable_locked(stream); 3801 3802 if (stream->ops->destroy) 3803 stream->ops->destroy(stream); 3804 3805 if (stream->ctx) 3806 i915_gem_context_put(stream->ctx); 3807 3808 kfree(stream); 3809 } 3810 3811 /** 3812 * i915_perf_release - handles userspace close() of a stream file 3813 * @inode: anonymous inode associated with file 3814 * @file: An i915 perf stream file 3815 * 3816 * Cleans up any resources associated with an open i915 perf stream file. 3817 * 3818 * NB: close() can't really fail from the userspace point of view. 3819 * 3820 * Returns: zero on success or a negative error code. 3821 */ 3822 static int i915_perf_release(struct inode *inode, struct file *file) 3823 { 3824 struct i915_perf_stream *stream = file->private_data; 3825 struct i915_perf *perf = stream->perf; 3826 struct intel_gt *gt = stream->engine->gt; 3827 3828 /* 3829 * Within this call, we know that the fd is being closed and we have no 3830 * other user of stream->lock. Use the perf lock to destroy the stream 3831 * here. 3832 */ 3833 mutex_lock(>->perf.lock); 3834 i915_perf_destroy_locked(stream); 3835 mutex_unlock(>->perf.lock); 3836 3837 /* Release the reference the perf stream kept on the driver. */ 3838 drm_dev_put(&perf->i915->drm); 3839 3840 return 0; 3841 } 3842 3843 3844 static const struct file_operations fops = { 3845 .owner = THIS_MODULE, 3846 .llseek = no_llseek, 3847 .release = i915_perf_release, 3848 .poll = i915_perf_poll, 3849 .read = i915_perf_read, 3850 .unlocked_ioctl = i915_perf_ioctl, 3851 /* Our ioctl have no arguments, so it's safe to use the same function 3852 * to handle 32bits compatibility. 3853 */ 3854 .compat_ioctl = i915_perf_ioctl, 3855 }; 3856 3857 3858 /** 3859 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3860 * @perf: i915 perf instance 3861 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3862 * @props: individually validated u64 property value pairs 3863 * @file: drm file 3864 * 3865 * See i915_perf_ioctl_open() for interface details. 3866 * 3867 * Implements further stream config validation and stream initialization on 3868 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3869 * taken to serialize with any non-file-operation driver hooks. 3870 * 3871 * Note: at this point the @props have only been validated in isolation and 3872 * it's still necessary to validate that the combination of properties makes 3873 * sense. 3874 * 3875 * In the case where userspace is interested in OA unit metrics then further 3876 * config validation and stream initialization details will be handled by 3877 * i915_oa_stream_init(). The code here should only validate config state that 3878 * will be relevant to all stream types / backends. 3879 * 3880 * Returns: zero on success or a negative error code. 3881 */ 3882 static int 3883 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3884 struct drm_i915_perf_open_param *param, 3885 struct perf_open_properties *props, 3886 struct drm_file *file) 3887 { 3888 struct i915_gem_context *specific_ctx = NULL; 3889 struct i915_perf_stream *stream = NULL; 3890 unsigned long f_flags = 0; 3891 bool privileged_op = true; 3892 int stream_fd; 3893 int ret; 3894 3895 if (props->single_context) { 3896 u32 ctx_handle = props->ctx_handle; 3897 struct drm_i915_file_private *file_priv = file->driver_priv; 3898 3899 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3900 if (IS_ERR(specific_ctx)) { 3901 drm_dbg(&perf->i915->drm, 3902 "Failed to look up context with ID %u for opening perf stream\n", 3903 ctx_handle); 3904 ret = PTR_ERR(specific_ctx); 3905 goto err; 3906 } 3907 } 3908 3909 /* 3910 * On Haswell the OA unit supports clock gating off for a specific 3911 * context and in this mode there's no visibility of metrics for the 3912 * rest of the system, which we consider acceptable for a 3913 * non-privileged client. 3914 * 3915 * For Gen8->11 the OA unit no longer supports clock gating off for a 3916 * specific context and the kernel can't securely stop the counters 3917 * from updating as system-wide / global values. Even though we can 3918 * filter reports based on the included context ID we can't block 3919 * clients from seeing the raw / global counter values via 3920 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3921 * enable the OA unit by default. 3922 * 3923 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3924 * per context basis. So we can relax requirements there if the user 3925 * doesn't request global stream access (i.e. query based sampling 3926 * using MI_RECORD_PERF_COUNT. 3927 */ 3928 if (IS_HASWELL(perf->i915) && specific_ctx) 3929 privileged_op = false; 3930 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3931 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3932 privileged_op = false; 3933 3934 if (props->hold_preemption) { 3935 if (!props->single_context) { 3936 drm_dbg(&perf->i915->drm, 3937 "preemption disable with no context\n"); 3938 ret = -EINVAL; 3939 goto err; 3940 } 3941 privileged_op = true; 3942 } 3943 3944 /* 3945 * Asking for SSEU configuration is a priviliged operation. 3946 */ 3947 if (props->has_sseu) 3948 privileged_op = true; 3949 else 3950 get_default_sseu_config(&props->sseu, props->engine); 3951 3952 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3953 * we check a dev.i915.perf_stream_paranoid sysctl option 3954 * to determine if it's ok to access system wide OA counters 3955 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3956 */ 3957 if (privileged_op && 3958 i915_perf_stream_paranoid && !perfmon_capable()) { 3959 drm_dbg(&perf->i915->drm, 3960 "Insufficient privileges to open i915 perf stream\n"); 3961 ret = -EACCES; 3962 goto err_ctx; 3963 } 3964 3965 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3966 if (!stream) { 3967 ret = -ENOMEM; 3968 goto err_ctx; 3969 } 3970 3971 stream->perf = perf; 3972 stream->ctx = specific_ctx; 3973 stream->poll_oa_period = props->poll_oa_period; 3974 3975 ret = i915_oa_stream_init(stream, param, props); 3976 if (ret) 3977 goto err_alloc; 3978 3979 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3980 * to have _stream_init check the combination of sample flags more 3981 * thoroughly, but still this is the expected result at this point. 3982 */ 3983 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3984 ret = -ENODEV; 3985 goto err_flags; 3986 } 3987 3988 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3989 f_flags |= O_CLOEXEC; 3990 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3991 f_flags |= O_NONBLOCK; 3992 3993 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3994 if (stream_fd < 0) { 3995 ret = stream_fd; 3996 goto err_flags; 3997 } 3998 3999 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 4000 i915_perf_enable_locked(stream); 4001 4002 /* Take a reference on the driver that will be kept with stream_fd 4003 * until its release. 4004 */ 4005 drm_dev_get(&perf->i915->drm); 4006 4007 return stream_fd; 4008 4009 err_flags: 4010 if (stream->ops->destroy) 4011 stream->ops->destroy(stream); 4012 err_alloc: 4013 kfree(stream); 4014 err_ctx: 4015 if (specific_ctx) 4016 i915_gem_context_put(specific_ctx); 4017 err: 4018 return ret; 4019 } 4020 4021 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 4022 { 4023 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 4024 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 4025 4026 return div_u64(nom + den - 1, den); 4027 } 4028 4029 static __always_inline bool 4030 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 4031 { 4032 return test_bit(format, perf->format_mask); 4033 } 4034 4035 static __always_inline void 4036 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 4037 { 4038 __set_bit(format, perf->format_mask); 4039 } 4040 4041 /** 4042 * read_properties_unlocked - validate + copy userspace stream open properties 4043 * @perf: i915 perf instance 4044 * @uprops: The array of u64 key value pairs given by userspace 4045 * @n_props: The number of key value pairs expected in @uprops 4046 * @props: The stream configuration built up while validating properties 4047 * 4048 * Note this function only validates properties in isolation it doesn't 4049 * validate that the combination of properties makes sense or that all 4050 * properties necessary for a particular kind of stream have been set. 4051 * 4052 * Note that there currently aren't any ordering requirements for properties so 4053 * we shouldn't validate or assume anything about ordering here. This doesn't 4054 * rule out defining new properties with ordering requirements in the future. 4055 */ 4056 static int read_properties_unlocked(struct i915_perf *perf, 4057 u64 __user *uprops, 4058 u32 n_props, 4059 struct perf_open_properties *props) 4060 { 4061 struct drm_i915_gem_context_param_sseu user_sseu; 4062 const struct i915_oa_format *f; 4063 u64 __user *uprop = uprops; 4064 bool config_instance = false; 4065 bool config_class = false; 4066 bool config_sseu = false; 4067 u8 class, instance; 4068 u32 i; 4069 int ret; 4070 4071 memset(props, 0, sizeof(struct perf_open_properties)); 4072 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 4073 4074 /* Considering that ID = 0 is reserved and assuming that we don't 4075 * (currently) expect any configurations to ever specify duplicate 4076 * values for a particular property ID then the last _PROP_MAX value is 4077 * one greater than the maximum number of properties we expect to get 4078 * from userspace. 4079 */ 4080 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 4081 drm_dbg(&perf->i915->drm, 4082 "Invalid number of i915 perf properties given\n"); 4083 return -EINVAL; 4084 } 4085 4086 /* Defaults when class:instance is not passed */ 4087 class = I915_ENGINE_CLASS_RENDER; 4088 instance = 0; 4089 4090 for (i = 0; i < n_props; i++) { 4091 u64 oa_period, oa_freq_hz; 4092 u64 id, value; 4093 4094 ret = get_user(id, uprop); 4095 if (ret) 4096 return ret; 4097 4098 ret = get_user(value, uprop + 1); 4099 if (ret) 4100 return ret; 4101 4102 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4103 drm_dbg(&perf->i915->drm, 4104 "Unknown i915 perf property ID\n"); 4105 return -EINVAL; 4106 } 4107 4108 switch ((enum drm_i915_perf_property_id)id) { 4109 case DRM_I915_PERF_PROP_CTX_HANDLE: 4110 props->single_context = 1; 4111 props->ctx_handle = value; 4112 break; 4113 case DRM_I915_PERF_PROP_SAMPLE_OA: 4114 if (value) 4115 props->sample_flags |= SAMPLE_OA_REPORT; 4116 break; 4117 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4118 if (value == 0) { 4119 drm_dbg(&perf->i915->drm, 4120 "Unknown OA metric set ID\n"); 4121 return -EINVAL; 4122 } 4123 props->metrics_set = value; 4124 break; 4125 case DRM_I915_PERF_PROP_OA_FORMAT: 4126 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4127 drm_dbg(&perf->i915->drm, 4128 "Out-of-range OA report format %llu\n", 4129 value); 4130 return -EINVAL; 4131 } 4132 if (!oa_format_valid(perf, value)) { 4133 drm_dbg(&perf->i915->drm, 4134 "Unsupported OA report format %llu\n", 4135 value); 4136 return -EINVAL; 4137 } 4138 props->oa_format = value; 4139 break; 4140 case DRM_I915_PERF_PROP_OA_EXPONENT: 4141 if (value > OA_EXPONENT_MAX) { 4142 drm_dbg(&perf->i915->drm, 4143 "OA timer exponent too high (> %u)\n", 4144 OA_EXPONENT_MAX); 4145 return -EINVAL; 4146 } 4147 4148 /* Theoretically we can program the OA unit to sample 4149 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4150 * for BXT. We don't allow such high sampling 4151 * frequencies by default unless root. 4152 */ 4153 4154 BUILD_BUG_ON(sizeof(oa_period) != 8); 4155 oa_period = oa_exponent_to_ns(perf, value); 4156 4157 /* This check is primarily to ensure that oa_period <= 4158 * UINT32_MAX (before passing to do_div which only 4159 * accepts a u32 denominator), but we can also skip 4160 * checking anything < 1Hz which implicitly can't be 4161 * limited via an integer oa_max_sample_rate. 4162 */ 4163 if (oa_period <= NSEC_PER_SEC) { 4164 u64 tmp = NSEC_PER_SEC; 4165 do_div(tmp, oa_period); 4166 oa_freq_hz = tmp; 4167 } else 4168 oa_freq_hz = 0; 4169 4170 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4171 drm_dbg(&perf->i915->drm, 4172 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4173 i915_oa_max_sample_rate); 4174 return -EACCES; 4175 } 4176 4177 props->oa_periodic = true; 4178 props->oa_period_exponent = value; 4179 break; 4180 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4181 props->hold_preemption = !!value; 4182 break; 4183 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4184 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4185 drm_dbg(&perf->i915->drm, 4186 "SSEU config not supported on gfx %x\n", 4187 GRAPHICS_VER_FULL(perf->i915)); 4188 return -ENODEV; 4189 } 4190 4191 if (copy_from_user(&user_sseu, 4192 u64_to_user_ptr(value), 4193 sizeof(user_sseu))) { 4194 drm_dbg(&perf->i915->drm, 4195 "Unable to copy global sseu parameter\n"); 4196 return -EFAULT; 4197 } 4198 config_sseu = true; 4199 break; 4200 } 4201 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4202 if (value < 100000 /* 100us */) { 4203 drm_dbg(&perf->i915->drm, 4204 "OA availability timer too small (%lluns < 100us)\n", 4205 value); 4206 return -EINVAL; 4207 } 4208 props->poll_oa_period = value; 4209 break; 4210 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4211 class = (u8)value; 4212 config_class = true; 4213 break; 4214 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4215 instance = (u8)value; 4216 config_instance = true; 4217 break; 4218 default: 4219 MISSING_CASE(id); 4220 return -EINVAL; 4221 } 4222 4223 uprop += 2; 4224 } 4225 4226 if ((config_class && !config_instance) || 4227 (config_instance && !config_class)) { 4228 drm_dbg(&perf->i915->drm, 4229 "OA engine-class and engine-instance parameters must be passed together\n"); 4230 return -EINVAL; 4231 } 4232 4233 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4234 if (!props->engine) { 4235 drm_dbg(&perf->i915->drm, 4236 "OA engine class and instance invalid %d:%d\n", 4237 class, instance); 4238 return -EINVAL; 4239 } 4240 4241 if (!engine_supports_oa(props->engine)) { 4242 drm_dbg(&perf->i915->drm, 4243 "Engine not supported by OA %d:%d\n", 4244 class, instance); 4245 return -EINVAL; 4246 } 4247 4248 /* 4249 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4250 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4251 * does not work as expected. 4252 */ 4253 if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) && 4254 props->engine->oa_group->type == TYPE_OAM && 4255 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4256 drm_dbg(&perf->i915->drm, 4257 "OAM requires media C6 to be disabled in BIOS\n"); 4258 return -EINVAL; 4259 } 4260 4261 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4262 f = &perf->oa_formats[i]; 4263 if (!engine_supports_oa_format(props->engine, f->type)) { 4264 drm_dbg(&perf->i915->drm, 4265 "Invalid OA format %d for class %d\n", 4266 f->type, props->engine->class); 4267 return -EINVAL; 4268 } 4269 4270 if (config_sseu) { 4271 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4272 if (ret) { 4273 drm_dbg(&perf->i915->drm, 4274 "Invalid SSEU configuration\n"); 4275 return ret; 4276 } 4277 props->has_sseu = true; 4278 } 4279 4280 return 0; 4281 } 4282 4283 /** 4284 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4285 * @dev: drm device 4286 * @data: ioctl data copied from userspace (unvalidated) 4287 * @file: drm file 4288 * 4289 * Validates the stream open parameters given by userspace including flags 4290 * and an array of u64 key, value pair properties. 4291 * 4292 * Very little is assumed up front about the nature of the stream being 4293 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4294 * i915-perf stream is expected to be a suitable interface for other forms of 4295 * buffered data written by the GPU besides periodic OA metrics. 4296 * 4297 * Note we copy the properties from userspace outside of the i915 perf 4298 * mutex to avoid an awkward lockdep with mmap_lock. 4299 * 4300 * Most of the implementation details are handled by 4301 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4302 * mutex for serializing with any non-file-operation driver hooks. 4303 * 4304 * Return: A newly opened i915 Perf stream file descriptor or negative 4305 * error code on failure. 4306 */ 4307 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4308 struct drm_file *file) 4309 { 4310 struct i915_perf *perf = &to_i915(dev)->perf; 4311 struct drm_i915_perf_open_param *param = data; 4312 struct intel_gt *gt; 4313 struct perf_open_properties props; 4314 u32 known_open_flags; 4315 int ret; 4316 4317 if (!perf->i915) 4318 return -ENOTSUPP; 4319 4320 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4321 I915_PERF_FLAG_FD_NONBLOCK | 4322 I915_PERF_FLAG_DISABLED; 4323 if (param->flags & ~known_open_flags) { 4324 drm_dbg(&perf->i915->drm, 4325 "Unknown drm_i915_perf_open_param flag\n"); 4326 return -EINVAL; 4327 } 4328 4329 ret = read_properties_unlocked(perf, 4330 u64_to_user_ptr(param->properties_ptr), 4331 param->num_properties, 4332 &props); 4333 if (ret) 4334 return ret; 4335 4336 gt = props.engine->gt; 4337 4338 mutex_lock(>->perf.lock); 4339 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4340 mutex_unlock(>->perf.lock); 4341 4342 return ret; 4343 } 4344 4345 /** 4346 * i915_perf_register - exposes i915-perf to userspace 4347 * @i915: i915 device instance 4348 * 4349 * In particular OA metric sets are advertised under a sysfs metrics/ 4350 * directory allowing userspace to enumerate valid IDs that can be 4351 * used to open an i915-perf stream. 4352 */ 4353 void i915_perf_register(struct drm_i915_private *i915) 4354 { 4355 struct i915_perf *perf = &i915->perf; 4356 struct intel_gt *gt = to_gt(i915); 4357 4358 if (!perf->i915) 4359 return; 4360 4361 /* To be sure we're synchronized with an attempted 4362 * i915_perf_open_ioctl(); considering that we register after 4363 * being exposed to userspace. 4364 */ 4365 mutex_lock(>->perf.lock); 4366 4367 perf->metrics_kobj = 4368 kobject_create_and_add("metrics", 4369 &i915->drm.primary->kdev->kobj); 4370 4371 mutex_unlock(>->perf.lock); 4372 } 4373 4374 /** 4375 * i915_perf_unregister - hide i915-perf from userspace 4376 * @i915: i915 device instance 4377 * 4378 * i915-perf state cleanup is split up into an 'unregister' and 4379 * 'deinit' phase where the interface is first hidden from 4380 * userspace by i915_perf_unregister() before cleaning up 4381 * remaining state in i915_perf_fini(). 4382 */ 4383 void i915_perf_unregister(struct drm_i915_private *i915) 4384 { 4385 struct i915_perf *perf = &i915->perf; 4386 4387 if (!perf->metrics_kobj) 4388 return; 4389 4390 kobject_put(perf->metrics_kobj); 4391 perf->metrics_kobj = NULL; 4392 } 4393 4394 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4395 { 4396 static const i915_reg_t flex_eu_regs[] = { 4397 EU_PERF_CNTL0, 4398 EU_PERF_CNTL1, 4399 EU_PERF_CNTL2, 4400 EU_PERF_CNTL3, 4401 EU_PERF_CNTL4, 4402 EU_PERF_CNTL5, 4403 EU_PERF_CNTL6, 4404 }; 4405 int i; 4406 4407 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4408 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4409 return true; 4410 } 4411 return false; 4412 } 4413 4414 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4415 { 4416 while (table->start || table->end) { 4417 if (addr >= table->start && addr <= table->end) 4418 return true; 4419 4420 table++; 4421 } 4422 4423 return false; 4424 } 4425 4426 #define REG_EQUAL(addr, mmio) \ 4427 ((addr) == i915_mmio_reg_offset(mmio)) 4428 4429 static const struct i915_range gen7_oa_b_counters[] = { 4430 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4431 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4432 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4433 {} 4434 }; 4435 4436 static const struct i915_range gen12_oa_b_counters[] = { 4437 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4438 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4439 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4440 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4441 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4442 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4443 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4444 {} 4445 }; 4446 4447 static const struct i915_range mtl_oam_b_counters[] = { 4448 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4449 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4450 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4451 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4452 {} 4453 }; 4454 4455 static const struct i915_range xehp_oa_b_counters[] = { 4456 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4457 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4458 {} 4459 }; 4460 4461 static const struct i915_range gen7_oa_mux_regs[] = { 4462 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4463 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4464 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4465 {} 4466 }; 4467 4468 static const struct i915_range hsw_oa_mux_regs[] = { 4469 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4470 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4471 { .start = 0x25100, .end = 0x2ff90 }, 4472 {} 4473 }; 4474 4475 static const struct i915_range chv_oa_mux_regs[] = { 4476 { .start = 0x182300, .end = 0x1823a4 }, 4477 {} 4478 }; 4479 4480 static const struct i915_range gen8_oa_mux_regs[] = { 4481 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4482 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4483 {} 4484 }; 4485 4486 static const struct i915_range gen11_oa_mux_regs[] = { 4487 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4488 {} 4489 }; 4490 4491 static const struct i915_range gen12_oa_mux_regs[] = { 4492 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4493 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4494 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4495 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4496 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4497 {} 4498 }; 4499 4500 /* 4501 * Ref: 14010536224: 4502 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4503 */ 4504 static const struct i915_range mtl_oa_mux_regs[] = { 4505 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4506 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4507 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4508 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4509 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4510 {} 4511 }; 4512 4513 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4514 { 4515 return reg_in_range_table(addr, gen7_oa_b_counters); 4516 } 4517 4518 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4519 { 4520 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4521 reg_in_range_table(addr, gen8_oa_mux_regs); 4522 } 4523 4524 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4525 { 4526 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4527 reg_in_range_table(addr, gen8_oa_mux_regs) || 4528 reg_in_range_table(addr, gen11_oa_mux_regs); 4529 } 4530 4531 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4532 { 4533 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4534 reg_in_range_table(addr, hsw_oa_mux_regs); 4535 } 4536 4537 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4538 { 4539 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4540 reg_in_range_table(addr, chv_oa_mux_regs); 4541 } 4542 4543 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4544 { 4545 return reg_in_range_table(addr, gen12_oa_b_counters); 4546 } 4547 4548 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4549 { 4550 if (HAS_OAM(perf->i915) && 4551 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4552 return reg_in_range_table(addr, mtl_oam_b_counters); 4553 4554 return false; 4555 } 4556 4557 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4558 { 4559 return reg_in_range_table(addr, xehp_oa_b_counters) || 4560 reg_in_range_table(addr, gen12_oa_b_counters) || 4561 mtl_is_valid_oam_b_counter_addr(perf, addr); 4562 } 4563 4564 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4565 { 4566 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4567 return reg_in_range_table(addr, mtl_oa_mux_regs); 4568 else 4569 return reg_in_range_table(addr, gen12_oa_mux_regs); 4570 } 4571 4572 static u32 mask_reg_value(u32 reg, u32 val) 4573 { 4574 /* HALF_SLICE_CHICKEN2 is programmed with a the 4575 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4576 * programmed by userspace doesn't change this. 4577 */ 4578 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4579 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4580 4581 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4582 * indicated by its name and a bunch of selection fields used by OA 4583 * configs. 4584 */ 4585 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4586 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4587 4588 return val; 4589 } 4590 4591 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4592 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4593 u32 __user *regs, 4594 u32 n_regs) 4595 { 4596 struct i915_oa_reg *oa_regs; 4597 int err; 4598 u32 i; 4599 4600 if (!n_regs) 4601 return NULL; 4602 4603 /* No is_valid function means we're not allowing any register to be programmed. */ 4604 GEM_BUG_ON(!is_valid); 4605 if (!is_valid) 4606 return ERR_PTR(-EINVAL); 4607 4608 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4609 if (!oa_regs) 4610 return ERR_PTR(-ENOMEM); 4611 4612 for (i = 0; i < n_regs; i++) { 4613 u32 addr, value; 4614 4615 err = get_user(addr, regs); 4616 if (err) 4617 goto addr_err; 4618 4619 if (!is_valid(perf, addr)) { 4620 drm_dbg(&perf->i915->drm, 4621 "Invalid oa_reg address: %X\n", addr); 4622 err = -EINVAL; 4623 goto addr_err; 4624 } 4625 4626 err = get_user(value, regs + 1); 4627 if (err) 4628 goto addr_err; 4629 4630 oa_regs[i].addr = _MMIO(addr); 4631 oa_regs[i].value = mask_reg_value(addr, value); 4632 4633 regs += 2; 4634 } 4635 4636 return oa_regs; 4637 4638 addr_err: 4639 kfree(oa_regs); 4640 return ERR_PTR(err); 4641 } 4642 4643 static ssize_t show_dynamic_id(struct kobject *kobj, 4644 struct kobj_attribute *attr, 4645 char *buf) 4646 { 4647 struct i915_oa_config *oa_config = 4648 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4649 4650 return sprintf(buf, "%d\n", oa_config->id); 4651 } 4652 4653 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4654 struct i915_oa_config *oa_config) 4655 { 4656 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4657 oa_config->sysfs_metric_id.attr.name = "id"; 4658 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4659 oa_config->sysfs_metric_id.show = show_dynamic_id; 4660 oa_config->sysfs_metric_id.store = NULL; 4661 4662 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4663 oa_config->attrs[1] = NULL; 4664 4665 oa_config->sysfs_metric.name = oa_config->uuid; 4666 oa_config->sysfs_metric.attrs = oa_config->attrs; 4667 4668 return sysfs_create_group(perf->metrics_kobj, 4669 &oa_config->sysfs_metric); 4670 } 4671 4672 /** 4673 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4674 * @dev: drm device 4675 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4676 * userspace (unvalidated) 4677 * @file: drm file 4678 * 4679 * Validates the submitted OA register to be saved into a new OA config that 4680 * can then be used for programming the OA unit and its NOA network. 4681 * 4682 * Returns: A new allocated config number to be used with the perf open ioctl 4683 * or a negative error code on failure. 4684 */ 4685 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4686 struct drm_file *file) 4687 { 4688 struct i915_perf *perf = &to_i915(dev)->perf; 4689 struct drm_i915_perf_oa_config *args = data; 4690 struct i915_oa_config *oa_config, *tmp; 4691 struct i915_oa_reg *regs; 4692 int err, id; 4693 4694 if (!perf->i915) 4695 return -ENOTSUPP; 4696 4697 if (!perf->metrics_kobj) { 4698 drm_dbg(&perf->i915->drm, 4699 "OA metrics weren't advertised via sysfs\n"); 4700 return -EINVAL; 4701 } 4702 4703 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4704 drm_dbg(&perf->i915->drm, 4705 "Insufficient privileges to add i915 OA config\n"); 4706 return -EACCES; 4707 } 4708 4709 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4710 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4711 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4712 drm_dbg(&perf->i915->drm, 4713 "No OA registers given\n"); 4714 return -EINVAL; 4715 } 4716 4717 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4718 if (!oa_config) { 4719 drm_dbg(&perf->i915->drm, 4720 "Failed to allocate memory for the OA config\n"); 4721 return -ENOMEM; 4722 } 4723 4724 oa_config->perf = perf; 4725 kref_init(&oa_config->ref); 4726 4727 if (!uuid_is_valid(args->uuid)) { 4728 drm_dbg(&perf->i915->drm, 4729 "Invalid uuid format for OA config\n"); 4730 err = -EINVAL; 4731 goto reg_err; 4732 } 4733 4734 /* Last character in oa_config->uuid will be 0 because oa_config is 4735 * kzalloc. 4736 */ 4737 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4738 4739 oa_config->mux_regs_len = args->n_mux_regs; 4740 regs = alloc_oa_regs(perf, 4741 perf->ops.is_valid_mux_reg, 4742 u64_to_user_ptr(args->mux_regs_ptr), 4743 args->n_mux_regs); 4744 4745 if (IS_ERR(regs)) { 4746 drm_dbg(&perf->i915->drm, 4747 "Failed to create OA config for mux_regs\n"); 4748 err = PTR_ERR(regs); 4749 goto reg_err; 4750 } 4751 oa_config->mux_regs = regs; 4752 4753 oa_config->b_counter_regs_len = args->n_boolean_regs; 4754 regs = alloc_oa_regs(perf, 4755 perf->ops.is_valid_b_counter_reg, 4756 u64_to_user_ptr(args->boolean_regs_ptr), 4757 args->n_boolean_regs); 4758 4759 if (IS_ERR(regs)) { 4760 drm_dbg(&perf->i915->drm, 4761 "Failed to create OA config for b_counter_regs\n"); 4762 err = PTR_ERR(regs); 4763 goto reg_err; 4764 } 4765 oa_config->b_counter_regs = regs; 4766 4767 if (GRAPHICS_VER(perf->i915) < 8) { 4768 if (args->n_flex_regs != 0) { 4769 err = -EINVAL; 4770 goto reg_err; 4771 } 4772 } else { 4773 oa_config->flex_regs_len = args->n_flex_regs; 4774 regs = alloc_oa_regs(perf, 4775 perf->ops.is_valid_flex_reg, 4776 u64_to_user_ptr(args->flex_regs_ptr), 4777 args->n_flex_regs); 4778 4779 if (IS_ERR(regs)) { 4780 drm_dbg(&perf->i915->drm, 4781 "Failed to create OA config for flex_regs\n"); 4782 err = PTR_ERR(regs); 4783 goto reg_err; 4784 } 4785 oa_config->flex_regs = regs; 4786 } 4787 4788 err = mutex_lock_interruptible(&perf->metrics_lock); 4789 if (err) 4790 goto reg_err; 4791 4792 /* We shouldn't have too many configs, so this iteration shouldn't be 4793 * too costly. 4794 */ 4795 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4796 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4797 drm_dbg(&perf->i915->drm, 4798 "OA config already exists with this uuid\n"); 4799 err = -EADDRINUSE; 4800 goto sysfs_err; 4801 } 4802 } 4803 4804 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4805 if (err) { 4806 drm_dbg(&perf->i915->drm, 4807 "Failed to create sysfs entry for OA config\n"); 4808 goto sysfs_err; 4809 } 4810 4811 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4812 oa_config->id = idr_alloc(&perf->metrics_idr, 4813 oa_config, 2, 4814 0, GFP_KERNEL); 4815 if (oa_config->id < 0) { 4816 drm_dbg(&perf->i915->drm, 4817 "Failed to create sysfs entry for OA config\n"); 4818 err = oa_config->id; 4819 goto sysfs_err; 4820 } 4821 id = oa_config->id; 4822 4823 drm_dbg(&perf->i915->drm, 4824 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4825 mutex_unlock(&perf->metrics_lock); 4826 4827 return id; 4828 4829 sysfs_err: 4830 mutex_unlock(&perf->metrics_lock); 4831 reg_err: 4832 i915_oa_config_put(oa_config); 4833 drm_dbg(&perf->i915->drm, 4834 "Failed to add new OA config\n"); 4835 return err; 4836 } 4837 4838 /** 4839 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4840 * @dev: drm device 4841 * @data: ioctl data (pointer to u64 integer) copied from userspace 4842 * @file: drm file 4843 * 4844 * Configs can be removed while being used, the will stop appearing in sysfs 4845 * and their content will be freed when the stream using the config is closed. 4846 * 4847 * Returns: 0 on success or a negative error code on failure. 4848 */ 4849 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4850 struct drm_file *file) 4851 { 4852 struct i915_perf *perf = &to_i915(dev)->perf; 4853 u64 *arg = data; 4854 struct i915_oa_config *oa_config; 4855 int ret; 4856 4857 if (!perf->i915) 4858 return -ENOTSUPP; 4859 4860 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4861 drm_dbg(&perf->i915->drm, 4862 "Insufficient privileges to remove i915 OA config\n"); 4863 return -EACCES; 4864 } 4865 4866 ret = mutex_lock_interruptible(&perf->metrics_lock); 4867 if (ret) 4868 return ret; 4869 4870 oa_config = idr_find(&perf->metrics_idr, *arg); 4871 if (!oa_config) { 4872 drm_dbg(&perf->i915->drm, 4873 "Failed to remove unknown OA config\n"); 4874 ret = -ENOENT; 4875 goto err_unlock; 4876 } 4877 4878 GEM_BUG_ON(*arg != oa_config->id); 4879 4880 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4881 4882 idr_remove(&perf->metrics_idr, *arg); 4883 4884 mutex_unlock(&perf->metrics_lock); 4885 4886 drm_dbg(&perf->i915->drm, 4887 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4888 4889 i915_oa_config_put(oa_config); 4890 4891 return 0; 4892 4893 err_unlock: 4894 mutex_unlock(&perf->metrics_lock); 4895 return ret; 4896 } 4897 4898 static struct ctl_table oa_table[] = { 4899 { 4900 .procname = "perf_stream_paranoid", 4901 .data = &i915_perf_stream_paranoid, 4902 .maxlen = sizeof(i915_perf_stream_paranoid), 4903 .mode = 0644, 4904 .proc_handler = proc_dointvec_minmax, 4905 .extra1 = SYSCTL_ZERO, 4906 .extra2 = SYSCTL_ONE, 4907 }, 4908 { 4909 .procname = "oa_max_sample_rate", 4910 .data = &i915_oa_max_sample_rate, 4911 .maxlen = sizeof(i915_oa_max_sample_rate), 4912 .mode = 0644, 4913 .proc_handler = proc_dointvec_minmax, 4914 .extra1 = SYSCTL_ZERO, 4915 .extra2 = &oa_sample_rate_hard_limit, 4916 }, 4917 {} 4918 }; 4919 4920 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4921 { 4922 return 1; 4923 } 4924 4925 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4926 { 4927 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4928 /* 4929 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4930 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4931 */ 4932 drm_WARN_ON(&engine->i915->drm, 4933 engine->gt->type != GT_MEDIA); 4934 4935 return PERF_GROUP_OAM_SAMEDIA_0; 4936 } 4937 4938 return PERF_GROUP_INVALID; 4939 } 4940 4941 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4942 { 4943 switch (engine->class) { 4944 case RENDER_CLASS: 4945 return PERF_GROUP_OAG; 4946 4947 case VIDEO_DECODE_CLASS: 4948 case VIDEO_ENHANCEMENT_CLASS: 4949 return __oam_engine_group(engine); 4950 4951 default: 4952 return PERF_GROUP_INVALID; 4953 } 4954 } 4955 4956 static struct i915_perf_regs __oam_regs(u32 base) 4957 { 4958 return (struct i915_perf_regs) { 4959 base, 4960 GEN12_OAM_HEAD_POINTER(base), 4961 GEN12_OAM_TAIL_POINTER(base), 4962 GEN12_OAM_BUFFER(base), 4963 GEN12_OAM_CONTEXT_CONTROL(base), 4964 GEN12_OAM_CONTROL(base), 4965 GEN12_OAM_DEBUG(base), 4966 GEN12_OAM_STATUS(base), 4967 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4968 }; 4969 } 4970 4971 static struct i915_perf_regs __oag_regs(void) 4972 { 4973 return (struct i915_perf_regs) { 4974 0, 4975 GEN12_OAG_OAHEADPTR, 4976 GEN12_OAG_OATAILPTR, 4977 GEN12_OAG_OABUFFER, 4978 GEN12_OAG_OAGLBCTXCTRL, 4979 GEN12_OAG_OACONTROL, 4980 GEN12_OAG_OA_DEBUG, 4981 GEN12_OAG_OASTATUS, 4982 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4983 }; 4984 } 4985 4986 static void oa_init_groups(struct intel_gt *gt) 4987 { 4988 int i, num_groups = gt->perf.num_perf_groups; 4989 4990 for (i = 0; i < num_groups; i++) { 4991 struct i915_perf_group *g = >->perf.group[i]; 4992 4993 /* Fused off engines can result in a group with num_engines == 0 */ 4994 if (g->num_engines == 0) 4995 continue; 4996 4997 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4998 g->regs = __oag_regs(); 4999 g->type = TYPE_OAG; 5000 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 5001 g->regs = __oam_regs(mtl_oa_base[i]); 5002 g->type = TYPE_OAM; 5003 } 5004 } 5005 } 5006 5007 static int oa_init_gt(struct intel_gt *gt) 5008 { 5009 u32 num_groups = num_perf_groups_per_gt(gt); 5010 struct intel_engine_cs *engine; 5011 struct i915_perf_group *g; 5012 intel_engine_mask_t tmp; 5013 5014 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 5015 if (!g) 5016 return -ENOMEM; 5017 5018 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 5019 u32 index = __oa_engine_group(engine); 5020 5021 engine->oa_group = NULL; 5022 if (index < num_groups) { 5023 g[index].num_engines++; 5024 engine->oa_group = &g[index]; 5025 } 5026 } 5027 5028 gt->perf.num_perf_groups = num_groups; 5029 gt->perf.group = g; 5030 5031 oa_init_groups(gt); 5032 5033 return 0; 5034 } 5035 5036 static int oa_init_engine_groups(struct i915_perf *perf) 5037 { 5038 struct intel_gt *gt; 5039 int i, ret; 5040 5041 for_each_gt(gt, perf->i915, i) { 5042 ret = oa_init_gt(gt); 5043 if (ret) 5044 return ret; 5045 } 5046 5047 return 0; 5048 } 5049 5050 static void oa_init_supported_formats(struct i915_perf *perf) 5051 { 5052 struct drm_i915_private *i915 = perf->i915; 5053 enum intel_platform platform = INTEL_INFO(i915)->platform; 5054 5055 switch (platform) { 5056 case INTEL_HASWELL: 5057 oa_format_add(perf, I915_OA_FORMAT_A13); 5058 oa_format_add(perf, I915_OA_FORMAT_A13); 5059 oa_format_add(perf, I915_OA_FORMAT_A29); 5060 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 5061 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 5062 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 5063 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 5064 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5065 break; 5066 5067 case INTEL_BROADWELL: 5068 case INTEL_CHERRYVIEW: 5069 case INTEL_SKYLAKE: 5070 case INTEL_BROXTON: 5071 case INTEL_KABYLAKE: 5072 case INTEL_GEMINILAKE: 5073 case INTEL_COFFEELAKE: 5074 case INTEL_COMETLAKE: 5075 case INTEL_ICELAKE: 5076 case INTEL_ELKHARTLAKE: 5077 case INTEL_JASPERLAKE: 5078 case INTEL_TIGERLAKE: 5079 case INTEL_ROCKETLAKE: 5080 case INTEL_DG1: 5081 case INTEL_ALDERLAKE_S: 5082 case INTEL_ALDERLAKE_P: 5083 oa_format_add(perf, I915_OA_FORMAT_A12); 5084 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 5085 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 5086 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5087 break; 5088 5089 case INTEL_DG2: 5090 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5091 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5092 break; 5093 5094 case INTEL_METEORLAKE: 5095 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5096 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5097 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5098 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5099 break; 5100 5101 default: 5102 MISSING_CASE(platform); 5103 } 5104 } 5105 5106 static void i915_perf_init_info(struct drm_i915_private *i915) 5107 { 5108 struct i915_perf *perf = &i915->perf; 5109 5110 switch (GRAPHICS_VER(i915)) { 5111 case 8: 5112 perf->ctx_oactxctrl_offset = 0x120; 5113 perf->ctx_flexeu0_offset = 0x2ce; 5114 perf->gen8_valid_ctx_bit = BIT(25); 5115 break; 5116 case 9: 5117 perf->ctx_oactxctrl_offset = 0x128; 5118 perf->ctx_flexeu0_offset = 0x3de; 5119 perf->gen8_valid_ctx_bit = BIT(16); 5120 break; 5121 case 11: 5122 perf->ctx_oactxctrl_offset = 0x124; 5123 perf->ctx_flexeu0_offset = 0x78e; 5124 perf->gen8_valid_ctx_bit = BIT(16); 5125 break; 5126 case 12: 5127 perf->gen8_valid_ctx_bit = BIT(16); 5128 /* 5129 * Calculate offset at runtime in oa_pin_context for gen12 and 5130 * cache the value in perf->ctx_oactxctrl_offset. 5131 */ 5132 break; 5133 default: 5134 MISSING_CASE(GRAPHICS_VER(i915)); 5135 } 5136 } 5137 5138 /** 5139 * i915_perf_init - initialize i915-perf state on module bind 5140 * @i915: i915 device instance 5141 * 5142 * Initializes i915-perf state without exposing anything to userspace. 5143 * 5144 * Note: i915-perf initialization is split into an 'init' and 'register' 5145 * phase with the i915_perf_register() exposing state to userspace. 5146 */ 5147 int i915_perf_init(struct drm_i915_private *i915) 5148 { 5149 struct i915_perf *perf = &i915->perf; 5150 5151 perf->oa_formats = oa_formats; 5152 if (IS_HASWELL(i915)) { 5153 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5154 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5155 perf->ops.is_valid_flex_reg = NULL; 5156 perf->ops.enable_metric_set = hsw_enable_metric_set; 5157 perf->ops.disable_metric_set = hsw_disable_metric_set; 5158 perf->ops.oa_enable = gen7_oa_enable; 5159 perf->ops.oa_disable = gen7_oa_disable; 5160 perf->ops.read = gen7_oa_read; 5161 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5162 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5163 /* Note: that although we could theoretically also support the 5164 * legacy ringbuffer mode on BDW (and earlier iterations of 5165 * this driver, before upstreaming did this) it didn't seem 5166 * worth the complexity to maintain now that BDW+ enable 5167 * execlist mode by default. 5168 */ 5169 perf->ops.read = gen8_oa_read; 5170 i915_perf_init_info(i915); 5171 5172 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5173 perf->ops.is_valid_b_counter_reg = 5174 gen7_is_valid_b_counter_addr; 5175 perf->ops.is_valid_mux_reg = 5176 gen8_is_valid_mux_addr; 5177 perf->ops.is_valid_flex_reg = 5178 gen8_is_valid_flex_addr; 5179 5180 if (IS_CHERRYVIEW(i915)) { 5181 perf->ops.is_valid_mux_reg = 5182 chv_is_valid_mux_addr; 5183 } 5184 5185 perf->ops.oa_enable = gen8_oa_enable; 5186 perf->ops.oa_disable = gen8_oa_disable; 5187 perf->ops.enable_metric_set = gen8_enable_metric_set; 5188 perf->ops.disable_metric_set = gen8_disable_metric_set; 5189 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5190 } else if (GRAPHICS_VER(i915) == 11) { 5191 perf->ops.is_valid_b_counter_reg = 5192 gen7_is_valid_b_counter_addr; 5193 perf->ops.is_valid_mux_reg = 5194 gen11_is_valid_mux_addr; 5195 perf->ops.is_valid_flex_reg = 5196 gen8_is_valid_flex_addr; 5197 5198 perf->ops.oa_enable = gen8_oa_enable; 5199 perf->ops.oa_disable = gen8_oa_disable; 5200 perf->ops.enable_metric_set = gen8_enable_metric_set; 5201 perf->ops.disable_metric_set = gen11_disable_metric_set; 5202 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5203 } else if (GRAPHICS_VER(i915) == 12) { 5204 perf->ops.is_valid_b_counter_reg = 5205 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5206 xehp_is_valid_b_counter_addr : 5207 gen12_is_valid_b_counter_addr; 5208 perf->ops.is_valid_mux_reg = 5209 gen12_is_valid_mux_addr; 5210 perf->ops.is_valid_flex_reg = 5211 gen8_is_valid_flex_addr; 5212 5213 perf->ops.oa_enable = gen12_oa_enable; 5214 perf->ops.oa_disable = gen12_oa_disable; 5215 perf->ops.enable_metric_set = gen12_enable_metric_set; 5216 perf->ops.disable_metric_set = gen12_disable_metric_set; 5217 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5218 } 5219 } 5220 5221 if (perf->ops.enable_metric_set) { 5222 struct intel_gt *gt; 5223 int i, ret; 5224 5225 for_each_gt(gt, i915, i) 5226 mutex_init(>->perf.lock); 5227 5228 /* Choose a representative limit */ 5229 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5230 5231 mutex_init(&perf->metrics_lock); 5232 idr_init_base(&perf->metrics_idr, 1); 5233 5234 /* We set up some ratelimit state to potentially throttle any 5235 * _NOTES about spurious, invalid OA reports which we don't 5236 * forward to userspace. 5237 * 5238 * We print a _NOTE about any throttling when closing the 5239 * stream instead of waiting until driver _fini which no one 5240 * would ever see. 5241 * 5242 * Using the same limiting factors as printk_ratelimit() 5243 */ 5244 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5245 /* Since we use a DRM_NOTE for spurious reports it would be 5246 * inconsistent to let __ratelimit() automatically print a 5247 * warning for throttling. 5248 */ 5249 ratelimit_set_flags(&perf->spurious_report_rs, 5250 RATELIMIT_MSG_ON_RELEASE); 5251 5252 ratelimit_state_init(&perf->tail_pointer_race, 5253 5 * HZ, 10); 5254 ratelimit_set_flags(&perf->tail_pointer_race, 5255 RATELIMIT_MSG_ON_RELEASE); 5256 5257 atomic64_set(&perf->noa_programming_delay, 5258 500 * 1000 /* 500us */); 5259 5260 perf->i915 = i915; 5261 5262 ret = oa_init_engine_groups(perf); 5263 if (ret) { 5264 drm_err(&i915->drm, 5265 "OA initialization failed %d\n", ret); 5266 return ret; 5267 } 5268 5269 oa_init_supported_formats(perf); 5270 } 5271 5272 return 0; 5273 } 5274 5275 static int destroy_config(int id, void *p, void *data) 5276 { 5277 i915_oa_config_put(p); 5278 return 0; 5279 } 5280 5281 int i915_perf_sysctl_register(void) 5282 { 5283 sysctl_header = register_sysctl("dev/i915", oa_table); 5284 return 0; 5285 } 5286 5287 void i915_perf_sysctl_unregister(void) 5288 { 5289 unregister_sysctl_table(sysctl_header); 5290 } 5291 5292 /** 5293 * i915_perf_fini - Counter part to i915_perf_init() 5294 * @i915: i915 device instance 5295 */ 5296 void i915_perf_fini(struct drm_i915_private *i915) 5297 { 5298 struct i915_perf *perf = &i915->perf; 5299 struct intel_gt *gt; 5300 int i; 5301 5302 if (!perf->i915) 5303 return; 5304 5305 for_each_gt(gt, perf->i915, i) 5306 kfree(gt->perf.group); 5307 5308 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5309 idr_destroy(&perf->metrics_idr); 5310 5311 memset(&perf->ops, 0, sizeof(perf->ops)); 5312 perf->i915 = NULL; 5313 } 5314 5315 /** 5316 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5317 * @i915: The i915 device 5318 * 5319 * This version number is used by userspace to detect available features. 5320 */ 5321 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5322 { 5323 /* 5324 * 1: Initial version 5325 * I915_PERF_IOCTL_ENABLE 5326 * I915_PERF_IOCTL_DISABLE 5327 * 5328 * 2: Added runtime modification of OA config. 5329 * I915_PERF_IOCTL_CONFIG 5330 * 5331 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5332 * preemption on a particular context so that performance data is 5333 * accessible from a delta of MI_RPC reports without looking at the 5334 * OA buffer. 5335 * 5336 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5337 * be run for the duration of the performance recording based on 5338 * their SSEU configuration. 5339 * 5340 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5341 * interval for the hrtimer used to check for OA data. 5342 * 5343 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5344 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5345 * 5346 * 7: Add support for video decode and enhancement classes. 5347 */ 5348 5349 /* 5350 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5351 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5352 * to indicate that OA media is not supported. 5353 */ 5354 if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) { 5355 struct intel_gt *gt; 5356 int i; 5357 5358 for_each_gt(gt, i915, i) { 5359 if (gt->type == GT_MEDIA && 5360 intel_check_bios_c6_setup(>->rc6)) 5361 return 6; 5362 } 5363 } 5364 5365 return 7; 5366 } 5367 5368 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5369 #include "selftests/i915_perf.c" 5370 #endif 5371