xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 3dc4b6fb)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_pm.h"
200 #include "gt/intel_lrc_reg.h"
201 
202 #include "i915_drv.h"
203 #include "i915_perf.h"
204 #include "oa/i915_oa_hsw.h"
205 #include "oa/i915_oa_bdw.h"
206 #include "oa/i915_oa_chv.h"
207 #include "oa/i915_oa_sklgt2.h"
208 #include "oa/i915_oa_sklgt3.h"
209 #include "oa/i915_oa_sklgt4.h"
210 #include "oa/i915_oa_bxt.h"
211 #include "oa/i915_oa_kblgt2.h"
212 #include "oa/i915_oa_kblgt3.h"
213 #include "oa/i915_oa_glk.h"
214 #include "oa/i915_oa_cflgt2.h"
215 #include "oa/i915_oa_cflgt3.h"
216 #include "oa/i915_oa_cnl.h"
217 #include "oa/i915_oa_icl.h"
218 
219 /* HW requires this to be a power of two, between 128k and 16M, though driver
220  * is currently generally designed assuming the largest 16M size is used such
221  * that the overflow cases are unlikely in normal operation.
222  */
223 #define OA_BUFFER_SIZE		SZ_16M
224 
225 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
226 
227 /**
228  * DOC: OA Tail Pointer Race
229  *
230  * There's a HW race condition between OA unit tail pointer register updates and
231  * writes to memory whereby the tail pointer can sometimes get ahead of what's
232  * been written out to the OA buffer so far (in terms of what's visible to the
233  * CPU).
234  *
235  * Although this can be observed explicitly while copying reports to userspace
236  * by checking for a zeroed report-id field in tail reports, we want to account
237  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
238  * read() attempts.
239  *
240  * In effect we define a tail pointer for reading that lags the real tail
241  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
242  * time for the corresponding reports to become visible to the CPU.
243  *
244  * To manage this we actually track two tail pointers:
245  *  1) An 'aging' tail with an associated timestamp that is tracked until we
246  *     can trust the corresponding data is visible to the CPU; at which point
247  *     it is considered 'aged'.
248  *  2) An 'aged' tail that can be used for read()ing.
249  *
250  * The two separate pointers let us decouple read()s from tail pointer aging.
251  *
252  * The tail pointers are checked and updated at a limited rate within a hrtimer
253  * callback (the same callback that is used for delivering EPOLLIN events)
254  *
255  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
256  * indicates that an updated tail pointer is needed.
257  *
258  * Most of the implementation details for this workaround are in
259  * oa_buffer_check_unlocked() and _append_oa_reports()
260  *
261  * Note for posterity: previously the driver used to define an effective tail
262  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
263  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
264  * This was flawed considering that the OA unit may also automatically generate
265  * non-periodic reports (such as on context switch) or the OA unit may be
266  * enabled without any periodic sampling.
267  */
268 #define OA_TAIL_MARGIN_NSEC	100000ULL
269 #define INVALID_TAIL_PTR	0xffffffff
270 
271 /* frequency for checking whether the OA unit has written new reports to the
272  * circular OA buffer...
273  */
274 #define POLL_FREQUENCY 200
275 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
276 
277 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
278 static u32 i915_perf_stream_paranoid = true;
279 
280 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
281  * of the 64bit timestamp bits to trigger reports from) but there's currently
282  * no known use case for sampling as infrequently as once per 47 thousand years.
283  *
284  * Since the timestamps included in OA reports are only 32bits it seems
285  * reasonable to limit the OA exponent where it's still possible to account for
286  * overflow in OA report timestamps.
287  */
288 #define OA_EXPONENT_MAX 31
289 
290 #define INVALID_CTX_ID 0xffffffff
291 
292 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
293 #define OAREPORT_REASON_MASK           0x3f
294 #define OAREPORT_REASON_SHIFT          19
295 #define OAREPORT_REASON_TIMER          (1<<0)
296 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
297 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
298 
299 
300 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
301  *
302  * The highest sampling frequency we can theoretically program the OA unit
303  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
304  *
305  * Initialized just before we register the sysctl parameter.
306  */
307 static int oa_sample_rate_hard_limit;
308 
309 /* Theoretically we can program the OA unit to sample every 160ns but don't
310  * allow that by default unless root...
311  *
312  * The default threshold of 100000Hz is based on perf's similar
313  * kernel.perf_event_max_sample_rate sysctl parameter.
314  */
315 static u32 i915_oa_max_sample_rate = 100000;
316 
317 /* XXX: beware if future OA HW adds new report formats that the current
318  * code assumes all reports have a power-of-two size and ~(size - 1) can
319  * be used as a mask to align the OA tail pointer.
320  */
321 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
322 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
323 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
324 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
325 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
326 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
327 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
328 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
329 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
330 };
331 
332 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
333 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
334 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
335 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
336 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
337 };
338 
339 #define SAMPLE_OA_REPORT      (1<<0)
340 
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @ctx_handle: A gem ctx handle for use with @single_context
346  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
347  * @oa_format: An OA unit HW report format
348  * @oa_periodic: Whether to enable periodic OA unit sampling
349  * @oa_period_exponent: The OA unit sampling period is derived from this
350  *
351  * As read_properties_unlocked() enumerates and validates the properties given
352  * to open a stream of metrics the configuration is built up in the structure
353  * which starts out zero initialized.
354  */
355 struct perf_open_properties {
356 	u32 sample_flags;
357 
358 	u64 single_context:1;
359 	u64 ctx_handle;
360 
361 	/* OA sampling state */
362 	int metrics_set;
363 	int oa_format;
364 	bool oa_periodic;
365 	int oa_period_exponent;
366 };
367 
368 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
369 
370 static void free_oa_config(struct drm_i915_private *dev_priv,
371 			   struct i915_oa_config *oa_config)
372 {
373 	if (!PTR_ERR(oa_config->flex_regs))
374 		kfree(oa_config->flex_regs);
375 	if (!PTR_ERR(oa_config->b_counter_regs))
376 		kfree(oa_config->b_counter_regs);
377 	if (!PTR_ERR(oa_config->mux_regs))
378 		kfree(oa_config->mux_regs);
379 	kfree(oa_config);
380 }
381 
382 static void put_oa_config(struct drm_i915_private *dev_priv,
383 			  struct i915_oa_config *oa_config)
384 {
385 	if (!atomic_dec_and_test(&oa_config->ref_count))
386 		return;
387 
388 	free_oa_config(dev_priv, oa_config);
389 }
390 
391 static int get_oa_config(struct drm_i915_private *dev_priv,
392 			 int metrics_set,
393 			 struct i915_oa_config **out_config)
394 {
395 	int ret;
396 
397 	if (metrics_set == 1) {
398 		*out_config = &dev_priv->perf.test_config;
399 		atomic_inc(&dev_priv->perf.test_config.ref_count);
400 		return 0;
401 	}
402 
403 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
404 	if (ret)
405 		return ret;
406 
407 	*out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
408 	if (!*out_config)
409 		ret = -EINVAL;
410 	else
411 		atomic_inc(&(*out_config)->ref_count);
412 
413 	mutex_unlock(&dev_priv->perf.metrics_lock);
414 
415 	return ret;
416 }
417 
418 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
419 {
420 	struct drm_i915_private *dev_priv = stream->dev_priv;
421 
422 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
423 }
424 
425 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
426 {
427 	struct drm_i915_private *dev_priv = stream->dev_priv;
428 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
429 
430 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
431 }
432 
433 /**
434  * oa_buffer_check_unlocked - check for data and update tail ptr state
435  * @stream: i915 stream instance
436  *
437  * This is either called via fops (for blocking reads in user ctx) or the poll
438  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
439  * if there is data available for userspace to read.
440  *
441  * This function is central to providing a workaround for the OA unit tail
442  * pointer having a race with respect to what data is visible to the CPU.
443  * It is responsible for reading tail pointers from the hardware and giving
444  * the pointers time to 'age' before they are made available for reading.
445  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
446  *
447  * Besides returning true when there is data available to read() this function
448  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
449  * and .aged_tail_idx state used for reading.
450  *
451  * Note: It's safe to read OA config state here unlocked, assuming that this is
452  * only called while the stream is enabled, while the global OA configuration
453  * can't be modified.
454  *
455  * Returns: %true if the OA buffer contains data, else %false
456  */
457 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
458 {
459 	struct drm_i915_private *dev_priv = stream->dev_priv;
460 	int report_size = stream->oa_buffer.format_size;
461 	unsigned long flags;
462 	unsigned int aged_idx;
463 	u32 head, hw_tail, aged_tail, aging_tail;
464 	u64 now;
465 
466 	/* We have to consider the (unlikely) possibility that read() errors
467 	 * could result in an OA buffer reset which might reset the head,
468 	 * tails[] and aged_tail state.
469 	 */
470 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
471 
472 	/* NB: The head we observe here might effectively be a little out of
473 	 * date (between head and tails[aged_idx].offset if there is currently
474 	 * a read() in progress.
475 	 */
476 	head = stream->oa_buffer.head;
477 
478 	aged_idx = stream->oa_buffer.aged_tail_idx;
479 	aged_tail = stream->oa_buffer.tails[aged_idx].offset;
480 	aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
481 
482 	hw_tail = dev_priv->perf.ops.oa_hw_tail_read(stream);
483 
484 	/* The tail pointer increases in 64 byte increments,
485 	 * not in report_size steps...
486 	 */
487 	hw_tail &= ~(report_size - 1);
488 
489 	now = ktime_get_mono_fast_ns();
490 
491 	/* Update the aged tail
492 	 *
493 	 * Flip the tail pointer available for read()s once the aging tail is
494 	 * old enough to trust that the corresponding data will be visible to
495 	 * the CPU...
496 	 *
497 	 * Do this before updating the aging pointer in case we may be able to
498 	 * immediately start aging a new pointer too (if new data has become
499 	 * available) without needing to wait for a later hrtimer callback.
500 	 */
501 	if (aging_tail != INVALID_TAIL_PTR &&
502 	    ((now - stream->oa_buffer.aging_timestamp) >
503 	     OA_TAIL_MARGIN_NSEC)) {
504 
505 		aged_idx ^= 1;
506 		stream->oa_buffer.aged_tail_idx = aged_idx;
507 
508 		aged_tail = aging_tail;
509 
510 		/* Mark that we need a new pointer to start aging... */
511 		stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
512 		aging_tail = INVALID_TAIL_PTR;
513 	}
514 
515 	/* Update the aging tail
516 	 *
517 	 * We throttle aging tail updates until we have a new tail that
518 	 * represents >= one report more data than is already available for
519 	 * reading. This ensures there will be enough data for a successful
520 	 * read once this new pointer has aged and ensures we will give the new
521 	 * pointer time to age.
522 	 */
523 	if (aging_tail == INVALID_TAIL_PTR &&
524 	    (aged_tail == INVALID_TAIL_PTR ||
525 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
526 		struct i915_vma *vma = stream->oa_buffer.vma;
527 		u32 gtt_offset = i915_ggtt_offset(vma);
528 
529 		/* Be paranoid and do a bounds check on the pointer read back
530 		 * from hardware, just in case some spurious hardware condition
531 		 * could put the tail out of bounds...
532 		 */
533 		if (hw_tail >= gtt_offset &&
534 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
535 			stream->oa_buffer.tails[!aged_idx].offset =
536 				aging_tail = hw_tail;
537 			stream->oa_buffer.aging_timestamp = now;
538 		} else {
539 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
540 				  hw_tail);
541 		}
542 	}
543 
544 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
545 
546 	return aged_tail == INVALID_TAIL_PTR ?
547 		false : OA_TAKEN(aged_tail, head) >= report_size;
548 }
549 
550 /**
551  * append_oa_status - Appends a status record to a userspace read() buffer.
552  * @stream: An i915-perf stream opened for OA metrics
553  * @buf: destination buffer given by userspace
554  * @count: the number of bytes userspace wants to read
555  * @offset: (inout): the current position for writing into @buf
556  * @type: The kind of status to report to userspace
557  *
558  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
559  * into the userspace read() buffer.
560  *
561  * The @buf @offset will only be updated on success.
562  *
563  * Returns: 0 on success, negative error code on failure.
564  */
565 static int append_oa_status(struct i915_perf_stream *stream,
566 			    char __user *buf,
567 			    size_t count,
568 			    size_t *offset,
569 			    enum drm_i915_perf_record_type type)
570 {
571 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
572 
573 	if ((count - *offset) < header.size)
574 		return -ENOSPC;
575 
576 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
577 		return -EFAULT;
578 
579 	(*offset) += header.size;
580 
581 	return 0;
582 }
583 
584 /**
585  * append_oa_sample - Copies single OA report into userspace read() buffer.
586  * @stream: An i915-perf stream opened for OA metrics
587  * @buf: destination buffer given by userspace
588  * @count: the number of bytes userspace wants to read
589  * @offset: (inout): the current position for writing into @buf
590  * @report: A single OA report to (optionally) include as part of the sample
591  *
592  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
593  * properties when opening a stream, tracked as `stream->sample_flags`. This
594  * function copies the requested components of a single sample to the given
595  * read() @buf.
596  *
597  * The @buf @offset will only be updated on success.
598  *
599  * Returns: 0 on success, negative error code on failure.
600  */
601 static int append_oa_sample(struct i915_perf_stream *stream,
602 			    char __user *buf,
603 			    size_t count,
604 			    size_t *offset,
605 			    const u8 *report)
606 {
607 	int report_size = stream->oa_buffer.format_size;
608 	struct drm_i915_perf_record_header header;
609 	u32 sample_flags = stream->sample_flags;
610 
611 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
612 	header.pad = 0;
613 	header.size = stream->sample_size;
614 
615 	if ((count - *offset) < header.size)
616 		return -ENOSPC;
617 
618 	buf += *offset;
619 	if (copy_to_user(buf, &header, sizeof(header)))
620 		return -EFAULT;
621 	buf += sizeof(header);
622 
623 	if (sample_flags & SAMPLE_OA_REPORT) {
624 		if (copy_to_user(buf, report, report_size))
625 			return -EFAULT;
626 	}
627 
628 	(*offset) += header.size;
629 
630 	return 0;
631 }
632 
633 /**
634  * Copies all buffered OA reports into userspace read() buffer.
635  * @stream: An i915-perf stream opened for OA metrics
636  * @buf: destination buffer given by userspace
637  * @count: the number of bytes userspace wants to read
638  * @offset: (inout): the current position for writing into @buf
639  *
640  * Notably any error condition resulting in a short read (-%ENOSPC or
641  * -%EFAULT) will be returned even though one or more records may
642  * have been successfully copied. In this case it's up to the caller
643  * to decide if the error should be squashed before returning to
644  * userspace.
645  *
646  * Note: reports are consumed from the head, and appended to the
647  * tail, so the tail chases the head?... If you think that's mad
648  * and back-to-front you're not alone, but this follows the
649  * Gen PRM naming convention.
650  *
651  * Returns: 0 on success, negative error code on failure.
652  */
653 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
654 				  char __user *buf,
655 				  size_t count,
656 				  size_t *offset)
657 {
658 	struct drm_i915_private *dev_priv = stream->dev_priv;
659 	int report_size = stream->oa_buffer.format_size;
660 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
661 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
662 	u32 mask = (OA_BUFFER_SIZE - 1);
663 	size_t start_offset = *offset;
664 	unsigned long flags;
665 	unsigned int aged_tail_idx;
666 	u32 head, tail;
667 	u32 taken;
668 	int ret = 0;
669 
670 	if (WARN_ON(!stream->enabled))
671 		return -EIO;
672 
673 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
674 
675 	head = stream->oa_buffer.head;
676 	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
677 	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
678 
679 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
680 
681 	/*
682 	 * An invalid tail pointer here means we're still waiting for the poll
683 	 * hrtimer callback to give us a pointer
684 	 */
685 	if (tail == INVALID_TAIL_PTR)
686 		return -EAGAIN;
687 
688 	/*
689 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
690 	 * while indexing relative to oa_buf_base.
691 	 */
692 	head -= gtt_offset;
693 	tail -= gtt_offset;
694 
695 	/*
696 	 * An out of bounds or misaligned head or tail pointer implies a driver
697 	 * bug since we validate + align the tail pointers we read from the
698 	 * hardware and we are in full control of the head pointer which should
699 	 * only be incremented by multiples of the report size (notably also
700 	 * all a power of two).
701 	 */
702 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
703 		      tail > OA_BUFFER_SIZE || tail % report_size,
704 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
705 		      head, tail))
706 		return -EIO;
707 
708 
709 	for (/* none */;
710 	     (taken = OA_TAKEN(tail, head));
711 	     head = (head + report_size) & mask) {
712 		u8 *report = oa_buf_base + head;
713 		u32 *report32 = (void *)report;
714 		u32 ctx_id;
715 		u32 reason;
716 
717 		/*
718 		 * All the report sizes factor neatly into the buffer
719 		 * size so we never expect to see a report split
720 		 * between the beginning and end of the buffer.
721 		 *
722 		 * Given the initial alignment check a misalignment
723 		 * here would imply a driver bug that would result
724 		 * in an overrun.
725 		 */
726 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
727 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
728 			break;
729 		}
730 
731 		/*
732 		 * The reason field includes flags identifying what
733 		 * triggered this specific report (mostly timer
734 		 * triggered or e.g. due to a context switch).
735 		 *
736 		 * This field is never expected to be zero so we can
737 		 * check that the report isn't invalid before copying
738 		 * it to userspace...
739 		 */
740 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
741 			  OAREPORT_REASON_MASK);
742 		if (reason == 0) {
743 			if (__ratelimit(&dev_priv->perf.spurious_report_rs))
744 				DRM_NOTE("Skipping spurious, invalid OA report\n");
745 			continue;
746 		}
747 
748 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
749 
750 		/*
751 		 * Squash whatever is in the CTX_ID field if it's marked as
752 		 * invalid to be sure we avoid false-positive, single-context
753 		 * filtering below...
754 		 *
755 		 * Note: that we don't clear the valid_ctx_bit so userspace can
756 		 * understand that the ID has been squashed by the kernel.
757 		 */
758 		if (!(report32[0] & dev_priv->perf.gen8_valid_ctx_bit))
759 			ctx_id = report32[2] = INVALID_CTX_ID;
760 
761 		/*
762 		 * NB: For Gen 8 the OA unit no longer supports clock gating
763 		 * off for a specific context and the kernel can't securely
764 		 * stop the counters from updating as system-wide / global
765 		 * values.
766 		 *
767 		 * Automatic reports now include a context ID so reports can be
768 		 * filtered on the cpu but it's not worth trying to
769 		 * automatically subtract/hide counter progress for other
770 		 * contexts while filtering since we can't stop userspace
771 		 * issuing MI_REPORT_PERF_COUNT commands which would still
772 		 * provide a side-band view of the real values.
773 		 *
774 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
775 		 * to normalize counters for a single filtered context then it
776 		 * needs be forwarded bookend context-switch reports so that it
777 		 * can track switches in between MI_REPORT_PERF_COUNT commands
778 		 * and can itself subtract/ignore the progress of counters
779 		 * associated with other contexts. Note that the hardware
780 		 * automatically triggers reports when switching to a new
781 		 * context which are tagged with the ID of the newly active
782 		 * context. To avoid the complexity (and likely fragility) of
783 		 * reading ahead while parsing reports to try and minimize
784 		 * forwarding redundant context switch reports (i.e. between
785 		 * other, unrelated contexts) we simply elect to forward them
786 		 * all.
787 		 *
788 		 * We don't rely solely on the reason field to identify context
789 		 * switches since it's not-uncommon for periodic samples to
790 		 * identify a switch before any 'context switch' report.
791 		 */
792 		if (!dev_priv->perf.exclusive_stream->ctx ||
793 		    stream->specific_ctx_id == ctx_id ||
794 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
795 		    reason & OAREPORT_REASON_CTX_SWITCH) {
796 
797 			/*
798 			 * While filtering for a single context we avoid
799 			 * leaking the IDs of other contexts.
800 			 */
801 			if (dev_priv->perf.exclusive_stream->ctx &&
802 			    stream->specific_ctx_id != ctx_id) {
803 				report32[2] = INVALID_CTX_ID;
804 			}
805 
806 			ret = append_oa_sample(stream, buf, count, offset,
807 					       report);
808 			if (ret)
809 				break;
810 
811 			stream->oa_buffer.last_ctx_id = ctx_id;
812 		}
813 
814 		/*
815 		 * The above reason field sanity check is based on
816 		 * the assumption that the OA buffer is initially
817 		 * zeroed and we reset the field after copying so the
818 		 * check is still meaningful once old reports start
819 		 * being overwritten.
820 		 */
821 		report32[0] = 0;
822 	}
823 
824 	if (start_offset != *offset) {
825 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
826 
827 		/*
828 		 * We removed the gtt_offset for the copy loop above, indexing
829 		 * relative to oa_buf_base so put back here...
830 		 */
831 		head += gtt_offset;
832 
833 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
834 		stream->oa_buffer.head = head;
835 
836 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
837 	}
838 
839 	return ret;
840 }
841 
842 /**
843  * gen8_oa_read - copy status records then buffered OA reports
844  * @stream: An i915-perf stream opened for OA metrics
845  * @buf: destination buffer given by userspace
846  * @count: the number of bytes userspace wants to read
847  * @offset: (inout): the current position for writing into @buf
848  *
849  * Checks OA unit status registers and if necessary appends corresponding
850  * status records for userspace (such as for a buffer full condition) and then
851  * initiate appending any buffered OA reports.
852  *
853  * Updates @offset according to the number of bytes successfully copied into
854  * the userspace buffer.
855  *
856  * NB: some data may be successfully copied to the userspace buffer
857  * even if an error is returned, and this is reflected in the
858  * updated @offset.
859  *
860  * Returns: zero on success or a negative error code
861  */
862 static int gen8_oa_read(struct i915_perf_stream *stream,
863 			char __user *buf,
864 			size_t count,
865 			size_t *offset)
866 {
867 	struct drm_i915_private *dev_priv = stream->dev_priv;
868 	u32 oastatus;
869 	int ret;
870 
871 	if (WARN_ON(!stream->oa_buffer.vaddr))
872 		return -EIO;
873 
874 	oastatus = I915_READ(GEN8_OASTATUS);
875 
876 	/*
877 	 * We treat OABUFFER_OVERFLOW as a significant error:
878 	 *
879 	 * Although theoretically we could handle this more gracefully
880 	 * sometimes, some Gens don't correctly suppress certain
881 	 * automatically triggered reports in this condition and so we
882 	 * have to assume that old reports are now being trampled
883 	 * over.
884 	 *
885 	 * Considering how we don't currently give userspace control
886 	 * over the OA buffer size and always configure a large 16MB
887 	 * buffer, then a buffer overflow does anyway likely indicate
888 	 * that something has gone quite badly wrong.
889 	 */
890 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
891 		ret = append_oa_status(stream, buf, count, offset,
892 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
893 		if (ret)
894 			return ret;
895 
896 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
897 			  stream->period_exponent);
898 
899 		dev_priv->perf.ops.oa_disable(stream);
900 		dev_priv->perf.ops.oa_enable(stream);
901 
902 		/*
903 		 * Note: .oa_enable() is expected to re-init the oabuffer and
904 		 * reset GEN8_OASTATUS for us
905 		 */
906 		oastatus = I915_READ(GEN8_OASTATUS);
907 	}
908 
909 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
910 		ret = append_oa_status(stream, buf, count, offset,
911 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
912 		if (ret)
913 			return ret;
914 		I915_WRITE(GEN8_OASTATUS,
915 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
916 	}
917 
918 	return gen8_append_oa_reports(stream, buf, count, offset);
919 }
920 
921 /**
922  * Copies all buffered OA reports into userspace read() buffer.
923  * @stream: An i915-perf stream opened for OA metrics
924  * @buf: destination buffer given by userspace
925  * @count: the number of bytes userspace wants to read
926  * @offset: (inout): the current position for writing into @buf
927  *
928  * Notably any error condition resulting in a short read (-%ENOSPC or
929  * -%EFAULT) will be returned even though one or more records may
930  * have been successfully copied. In this case it's up to the caller
931  * to decide if the error should be squashed before returning to
932  * userspace.
933  *
934  * Note: reports are consumed from the head, and appended to the
935  * tail, so the tail chases the head?... If you think that's mad
936  * and back-to-front you're not alone, but this follows the
937  * Gen PRM naming convention.
938  *
939  * Returns: 0 on success, negative error code on failure.
940  */
941 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
942 				  char __user *buf,
943 				  size_t count,
944 				  size_t *offset)
945 {
946 	struct drm_i915_private *dev_priv = stream->dev_priv;
947 	int report_size = stream->oa_buffer.format_size;
948 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
949 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
950 	u32 mask = (OA_BUFFER_SIZE - 1);
951 	size_t start_offset = *offset;
952 	unsigned long flags;
953 	unsigned int aged_tail_idx;
954 	u32 head, tail;
955 	u32 taken;
956 	int ret = 0;
957 
958 	if (WARN_ON(!stream->enabled))
959 		return -EIO;
960 
961 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
962 
963 	head = stream->oa_buffer.head;
964 	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
965 	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
966 
967 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
968 
969 	/* An invalid tail pointer here means we're still waiting for the poll
970 	 * hrtimer callback to give us a pointer
971 	 */
972 	if (tail == INVALID_TAIL_PTR)
973 		return -EAGAIN;
974 
975 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
976 	 * while indexing relative to oa_buf_base.
977 	 */
978 	head -= gtt_offset;
979 	tail -= gtt_offset;
980 
981 	/* An out of bounds or misaligned head or tail pointer implies a driver
982 	 * bug since we validate + align the tail pointers we read from the
983 	 * hardware and we are in full control of the head pointer which should
984 	 * only be incremented by multiples of the report size (notably also
985 	 * all a power of two).
986 	 */
987 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
988 		      tail > OA_BUFFER_SIZE || tail % report_size,
989 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
990 		      head, tail))
991 		return -EIO;
992 
993 
994 	for (/* none */;
995 	     (taken = OA_TAKEN(tail, head));
996 	     head = (head + report_size) & mask) {
997 		u8 *report = oa_buf_base + head;
998 		u32 *report32 = (void *)report;
999 
1000 		/* All the report sizes factor neatly into the buffer
1001 		 * size so we never expect to see a report split
1002 		 * between the beginning and end of the buffer.
1003 		 *
1004 		 * Given the initial alignment check a misalignment
1005 		 * here would imply a driver bug that would result
1006 		 * in an overrun.
1007 		 */
1008 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1009 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1010 			break;
1011 		}
1012 
1013 		/* The report-ID field for periodic samples includes
1014 		 * some undocumented flags related to what triggered
1015 		 * the report and is never expected to be zero so we
1016 		 * can check that the report isn't invalid before
1017 		 * copying it to userspace...
1018 		 */
1019 		if (report32[0] == 0) {
1020 			if (__ratelimit(&dev_priv->perf.spurious_report_rs))
1021 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 			continue;
1023 		}
1024 
1025 		ret = append_oa_sample(stream, buf, count, offset, report);
1026 		if (ret)
1027 			break;
1028 
1029 		/* The above report-id field sanity check is based on
1030 		 * the assumption that the OA buffer is initially
1031 		 * zeroed and we reset the field after copying so the
1032 		 * check is still meaningful once old reports start
1033 		 * being overwritten.
1034 		 */
1035 		report32[0] = 0;
1036 	}
1037 
1038 	if (start_offset != *offset) {
1039 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1040 
1041 		/* We removed the gtt_offset for the copy loop above, indexing
1042 		 * relative to oa_buf_base so put back here...
1043 		 */
1044 		head += gtt_offset;
1045 
1046 		I915_WRITE(GEN7_OASTATUS2,
1047 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
1048 			    GEN7_OASTATUS2_MEM_SELECT_GGTT));
1049 		stream->oa_buffer.head = head;
1050 
1051 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1052 	}
1053 
1054 	return ret;
1055 }
1056 
1057 /**
1058  * gen7_oa_read - copy status records then buffered OA reports
1059  * @stream: An i915-perf stream opened for OA metrics
1060  * @buf: destination buffer given by userspace
1061  * @count: the number of bytes userspace wants to read
1062  * @offset: (inout): the current position for writing into @buf
1063  *
1064  * Checks Gen 7 specific OA unit status registers and if necessary appends
1065  * corresponding status records for userspace (such as for a buffer full
1066  * condition) and then initiate appending any buffered OA reports.
1067  *
1068  * Updates @offset according to the number of bytes successfully copied into
1069  * the userspace buffer.
1070  *
1071  * Returns: zero on success or a negative error code
1072  */
1073 static int gen7_oa_read(struct i915_perf_stream *stream,
1074 			char __user *buf,
1075 			size_t count,
1076 			size_t *offset)
1077 {
1078 	struct drm_i915_private *dev_priv = stream->dev_priv;
1079 	u32 oastatus1;
1080 	int ret;
1081 
1082 	if (WARN_ON(!stream->oa_buffer.vaddr))
1083 		return -EIO;
1084 
1085 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1086 
1087 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1088 	 * bits while the OA unit is enabled (while the tail pointer
1089 	 * may be updated asynchronously) so we ignore status bits
1090 	 * that have already been reported to userspace.
1091 	 */
1092 	oastatus1 &= ~dev_priv->perf.gen7_latched_oastatus1;
1093 
1094 	/* We treat OABUFFER_OVERFLOW as a significant error:
1095 	 *
1096 	 * - The status can be interpreted to mean that the buffer is
1097 	 *   currently full (with a higher precedence than OA_TAKEN()
1098 	 *   which will start to report a near-empty buffer after an
1099 	 *   overflow) but it's awkward that we can't clear the status
1100 	 *   on Haswell, so without a reset we won't be able to catch
1101 	 *   the state again.
1102 	 *
1103 	 * - Since it also implies the HW has started overwriting old
1104 	 *   reports it may also affect our sanity checks for invalid
1105 	 *   reports when copying to userspace that assume new reports
1106 	 *   are being written to cleared memory.
1107 	 *
1108 	 * - In the future we may want to introduce a flight recorder
1109 	 *   mode where the driver will automatically maintain a safe
1110 	 *   guard band between head/tail, avoiding this overflow
1111 	 *   condition, but we avoid the added driver complexity for
1112 	 *   now.
1113 	 */
1114 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1115 		ret = append_oa_status(stream, buf, count, offset,
1116 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1117 		if (ret)
1118 			return ret;
1119 
1120 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1121 			  stream->period_exponent);
1122 
1123 		dev_priv->perf.ops.oa_disable(stream);
1124 		dev_priv->perf.ops.oa_enable(stream);
1125 
1126 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1127 	}
1128 
1129 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1130 		ret = append_oa_status(stream, buf, count, offset,
1131 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1132 		if (ret)
1133 			return ret;
1134 		dev_priv->perf.gen7_latched_oastatus1 |=
1135 			GEN7_OASTATUS1_REPORT_LOST;
1136 	}
1137 
1138 	return gen7_append_oa_reports(stream, buf, count, offset);
1139 }
1140 
1141 /**
1142  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1143  * @stream: An i915-perf stream opened for OA metrics
1144  *
1145  * Called when userspace tries to read() from a blocking stream FD opened
1146  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1147  * OA buffer and wakes us.
1148  *
1149  * Note: it's acceptable to have this return with some false positives
1150  * since any subsequent read handling will return -EAGAIN if there isn't
1151  * really data ready for userspace yet.
1152  *
1153  * Returns: zero on success or a negative error code
1154  */
1155 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1156 {
1157 	/* We would wait indefinitely if periodic sampling is not enabled */
1158 	if (!stream->periodic)
1159 		return -EIO;
1160 
1161 	return wait_event_interruptible(stream->poll_wq,
1162 					oa_buffer_check_unlocked(stream));
1163 }
1164 
1165 /**
1166  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1167  * @stream: An i915-perf stream opened for OA metrics
1168  * @file: An i915 perf stream file
1169  * @wait: poll() state table
1170  *
1171  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1172  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1173  * when it sees data ready to read in the circular OA buffer.
1174  */
1175 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1176 			      struct file *file,
1177 			      poll_table *wait)
1178 {
1179 	poll_wait(file, &stream->poll_wq, wait);
1180 }
1181 
1182 /**
1183  * i915_oa_read - just calls through to &i915_oa_ops->read
1184  * @stream: An i915-perf stream opened for OA metrics
1185  * @buf: destination buffer given by userspace
1186  * @count: the number of bytes userspace wants to read
1187  * @offset: (inout): the current position for writing into @buf
1188  *
1189  * Updates @offset according to the number of bytes successfully copied into
1190  * the userspace buffer.
1191  *
1192  * Returns: zero on success or a negative error code
1193  */
1194 static int i915_oa_read(struct i915_perf_stream *stream,
1195 			char __user *buf,
1196 			size_t count,
1197 			size_t *offset)
1198 {
1199 	struct drm_i915_private *dev_priv = stream->dev_priv;
1200 
1201 	return dev_priv->perf.ops.read(stream, buf, count, offset);
1202 }
1203 
1204 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1205 {
1206 	struct i915_gem_engines_iter it;
1207 	struct drm_i915_private *i915 = stream->dev_priv;
1208 	struct i915_gem_context *ctx = stream->ctx;
1209 	struct intel_context *ce;
1210 	int err;
1211 
1212 	err = i915_mutex_lock_interruptible(&i915->drm);
1213 	if (err)
1214 		return ERR_PTR(err);
1215 
1216 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1217 		if (ce->engine->class != RENDER_CLASS)
1218 			continue;
1219 
1220 		/*
1221 		 * As the ID is the gtt offset of the context's vma we
1222 		 * pin the vma to ensure the ID remains fixed.
1223 		 */
1224 		err = intel_context_pin(ce);
1225 		if (err == 0) {
1226 			stream->pinned_ctx = ce;
1227 			break;
1228 		}
1229 	}
1230 	i915_gem_context_unlock_engines(ctx);
1231 
1232 	mutex_unlock(&i915->drm.struct_mutex);
1233 	if (err)
1234 		return ERR_PTR(err);
1235 
1236 	return stream->pinned_ctx;
1237 }
1238 
1239 /**
1240  * oa_get_render_ctx_id - determine and hold ctx hw id
1241  * @stream: An i915-perf stream opened for OA metrics
1242  *
1243  * Determine the render context hw id, and ensure it remains fixed for the
1244  * lifetime of the stream. This ensures that we don't have to worry about
1245  * updating the context ID in OACONTROL on the fly.
1246  *
1247  * Returns: zero on success or a negative error code
1248  */
1249 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1250 {
1251 	struct drm_i915_private *i915 = stream->dev_priv;
1252 	struct intel_context *ce;
1253 
1254 	ce = oa_pin_context(stream);
1255 	if (IS_ERR(ce))
1256 		return PTR_ERR(ce);
1257 
1258 	switch (INTEL_GEN(i915)) {
1259 	case 7: {
1260 		/*
1261 		 * On Haswell we don't do any post processing of the reports
1262 		 * and don't need to use the mask.
1263 		 */
1264 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1265 		stream->specific_ctx_id_mask = 0;
1266 		break;
1267 	}
1268 
1269 	case 8:
1270 	case 9:
1271 	case 10:
1272 		if (USES_GUC_SUBMISSION(i915)) {
1273 			/*
1274 			 * When using GuC, the context descriptor we write in
1275 			 * i915 is read by GuC and rewritten before it's
1276 			 * actually written into the hardware. The LRCA is
1277 			 * what is put into the context id field of the
1278 			 * context descriptor by GuC. Because it's aligned to
1279 			 * a page, the lower 12bits are always at 0 and
1280 			 * dropped by GuC. They won't be part of the context
1281 			 * ID in the OA reports, so squash those lower bits.
1282 			 */
1283 			stream->specific_ctx_id =
1284 				lower_32_bits(ce->lrc_desc) >> 12;
1285 
1286 			/*
1287 			 * GuC uses the top bit to signal proxy submission, so
1288 			 * ignore that bit.
1289 			 */
1290 			stream->specific_ctx_id_mask =
1291 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1292 		} else {
1293 			stream->specific_ctx_id_mask =
1294 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1295 			stream->specific_ctx_id =
1296 				upper_32_bits(ce->lrc_desc);
1297 			stream->specific_ctx_id &=
1298 				stream->specific_ctx_id_mask;
1299 		}
1300 		break;
1301 
1302 	case 11: {
1303 		stream->specific_ctx_id_mask =
1304 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1305 			((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1306 			((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1307 		stream->specific_ctx_id = upper_32_bits(ce->lrc_desc);
1308 		stream->specific_ctx_id &=
1309 			stream->specific_ctx_id_mask;
1310 		break;
1311 	}
1312 
1313 	default:
1314 		MISSING_CASE(INTEL_GEN(i915));
1315 	}
1316 
1317 	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1318 			 stream->specific_ctx_id,
1319 			 stream->specific_ctx_id_mask);
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1326  * @stream: An i915-perf stream opened for OA metrics
1327  *
1328  * In case anything needed doing to ensure the context HW ID would remain valid
1329  * for the lifetime of the stream, then that can be undone here.
1330  */
1331 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1332 {
1333 	struct drm_i915_private *dev_priv = stream->dev_priv;
1334 	struct intel_context *ce;
1335 
1336 	stream->specific_ctx_id = INVALID_CTX_ID;
1337 	stream->specific_ctx_id_mask = 0;
1338 
1339 	ce = fetch_and_zero(&stream->pinned_ctx);
1340 	if (ce) {
1341 		mutex_lock(&dev_priv->drm.struct_mutex);
1342 		intel_context_unpin(ce);
1343 		mutex_unlock(&dev_priv->drm.struct_mutex);
1344 	}
1345 }
1346 
1347 static void
1348 free_oa_buffer(struct i915_perf_stream *stream)
1349 {
1350 	struct drm_i915_private *i915 = stream->dev_priv;
1351 
1352 	mutex_lock(&i915->drm.struct_mutex);
1353 
1354 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1355 				   I915_VMA_RELEASE_MAP);
1356 
1357 	mutex_unlock(&i915->drm.struct_mutex);
1358 
1359 	stream->oa_buffer.vaddr = NULL;
1360 }
1361 
1362 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1363 {
1364 	struct drm_i915_private *dev_priv = stream->dev_priv;
1365 
1366 	BUG_ON(stream != dev_priv->perf.exclusive_stream);
1367 
1368 	/*
1369 	 * Unset exclusive_stream first, it will be checked while disabling
1370 	 * the metric set on gen8+.
1371 	 */
1372 	mutex_lock(&dev_priv->drm.struct_mutex);
1373 	dev_priv->perf.exclusive_stream = NULL;
1374 	dev_priv->perf.ops.disable_metric_set(stream);
1375 	mutex_unlock(&dev_priv->drm.struct_mutex);
1376 
1377 	free_oa_buffer(stream);
1378 
1379 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1380 	intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
1381 
1382 	if (stream->ctx)
1383 		oa_put_render_ctx_id(stream);
1384 
1385 	put_oa_config(dev_priv, stream->oa_config);
1386 
1387 	if (dev_priv->perf.spurious_report_rs.missed) {
1388 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1389 			 dev_priv->perf.spurious_report_rs.missed);
1390 	}
1391 }
1392 
1393 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1394 {
1395 	struct drm_i915_private *dev_priv = stream->dev_priv;
1396 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1397 	unsigned long flags;
1398 
1399 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1400 
1401 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1402 	 * before OASTATUS1, but after OASTATUS2
1403 	 */
1404 	I915_WRITE(GEN7_OASTATUS2,
1405 		   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1406 	stream->oa_buffer.head = gtt_offset;
1407 
1408 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1409 
1410 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1411 
1412 	/* Mark that we need updated tail pointers to read from... */
1413 	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1414 	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1415 
1416 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1417 
1418 	/* On Haswell we have to track which OASTATUS1 flags we've
1419 	 * already seen since they can't be cleared while periodic
1420 	 * sampling is enabled.
1421 	 */
1422 	dev_priv->perf.gen7_latched_oastatus1 = 0;
1423 
1424 	/* NB: although the OA buffer will initially be allocated
1425 	 * zeroed via shmfs (and so this memset is redundant when
1426 	 * first allocating), we may re-init the OA buffer, either
1427 	 * when re-enabling a stream or in error/reset paths.
1428 	 *
1429 	 * The reason we clear the buffer for each re-init is for the
1430 	 * sanity check in gen7_append_oa_reports() that looks at the
1431 	 * report-id field to make sure it's non-zero which relies on
1432 	 * the assumption that new reports are being written to zeroed
1433 	 * memory...
1434 	 */
1435 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1436 
1437 	/* Maybe make ->pollin per-stream state if we support multiple
1438 	 * concurrent streams in the future.
1439 	 */
1440 	stream->pollin = false;
1441 }
1442 
1443 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1444 {
1445 	struct drm_i915_private *dev_priv = stream->dev_priv;
1446 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1447 	unsigned long flags;
1448 
1449 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1450 
1451 	I915_WRITE(GEN8_OASTATUS, 0);
1452 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1453 	stream->oa_buffer.head = gtt_offset;
1454 
1455 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1456 
1457 	/*
1458 	 * PRM says:
1459 	 *
1460 	 *  "This MMIO must be set before the OATAILPTR
1461 	 *  register and after the OAHEADPTR register. This is
1462 	 *  to enable proper functionality of the overflow
1463 	 *  bit."
1464 	 */
1465 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1466 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1467 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1468 
1469 	/* Mark that we need updated tail pointers to read from... */
1470 	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1471 	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1472 
1473 	/*
1474 	 * Reset state used to recognise context switches, affecting which
1475 	 * reports we will forward to userspace while filtering for a single
1476 	 * context.
1477 	 */
1478 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1479 
1480 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1481 
1482 	/*
1483 	 * NB: although the OA buffer will initially be allocated
1484 	 * zeroed via shmfs (and so this memset is redundant when
1485 	 * first allocating), we may re-init the OA buffer, either
1486 	 * when re-enabling a stream or in error/reset paths.
1487 	 *
1488 	 * The reason we clear the buffer for each re-init is for the
1489 	 * sanity check in gen8_append_oa_reports() that looks at the
1490 	 * reason field to make sure it's non-zero which relies on
1491 	 * the assumption that new reports are being written to zeroed
1492 	 * memory...
1493 	 */
1494 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1495 
1496 	/*
1497 	 * Maybe make ->pollin per-stream state if we support multiple
1498 	 * concurrent streams in the future.
1499 	 */
1500 	stream->pollin = false;
1501 }
1502 
1503 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1504 {
1505 	struct drm_i915_gem_object *bo;
1506 	struct drm_i915_private *dev_priv = stream->dev_priv;
1507 	struct i915_vma *vma;
1508 	int ret;
1509 
1510 	if (WARN_ON(stream->oa_buffer.vma))
1511 		return -ENODEV;
1512 
1513 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1514 	if (ret)
1515 		return ret;
1516 
1517 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1518 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1519 
1520 	bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
1521 	if (IS_ERR(bo)) {
1522 		DRM_ERROR("Failed to allocate OA buffer\n");
1523 		ret = PTR_ERR(bo);
1524 		goto unlock;
1525 	}
1526 
1527 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1528 
1529 	/* PreHSW required 512K alignment, HSW requires 16M */
1530 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1531 	if (IS_ERR(vma)) {
1532 		ret = PTR_ERR(vma);
1533 		goto err_unref;
1534 	}
1535 	stream->oa_buffer.vma = vma;
1536 
1537 	stream->oa_buffer.vaddr =
1538 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1539 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1540 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1541 		goto err_unpin;
1542 	}
1543 
1544 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1545 			 i915_ggtt_offset(stream->oa_buffer.vma),
1546 			 stream->oa_buffer.vaddr);
1547 
1548 	goto unlock;
1549 
1550 err_unpin:
1551 	__i915_vma_unpin(vma);
1552 
1553 err_unref:
1554 	i915_gem_object_put(bo);
1555 
1556 	stream->oa_buffer.vaddr = NULL;
1557 	stream->oa_buffer.vma = NULL;
1558 
1559 unlock:
1560 	mutex_unlock(&dev_priv->drm.struct_mutex);
1561 	return ret;
1562 }
1563 
1564 static void config_oa_regs(struct drm_i915_private *dev_priv,
1565 			   const struct i915_oa_reg *regs,
1566 			   u32 n_regs)
1567 {
1568 	u32 i;
1569 
1570 	for (i = 0; i < n_regs; i++) {
1571 		const struct i915_oa_reg *reg = regs + i;
1572 
1573 		I915_WRITE(reg->addr, reg->value);
1574 	}
1575 }
1576 
1577 static void delay_after_mux(void)
1578 {
1579 	/*
1580 	 * It apparently takes a fairly long time for a new MUX
1581 	 * configuration to be be applied after these register writes.
1582 	 * This delay duration was derived empirically based on the
1583 	 * render_basic config but hopefully it covers the maximum
1584 	 * configuration latency.
1585 	 *
1586 	 * As a fallback, the checks in _append_oa_reports() to skip
1587 	 * invalid OA reports do also seem to work to discard reports
1588 	 * generated before this config has completed - albeit not
1589 	 * silently.
1590 	 *
1591 	 * Unfortunately this is essentially a magic number, since we
1592 	 * don't currently know of a reliable mechanism for predicting
1593 	 * how long the MUX config will take to apply and besides
1594 	 * seeing invalid reports we don't know of a reliable way to
1595 	 * explicitly check that the MUX config has landed.
1596 	 *
1597 	 * It's even possible we've miss characterized the underlying
1598 	 * problem - it just seems like the simplest explanation why
1599 	 * a delay at this location would mitigate any invalid reports.
1600 	 */
1601 	usleep_range(15000, 20000);
1602 }
1603 
1604 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1605 {
1606 	struct drm_i915_private *dev_priv = stream->dev_priv;
1607 	const struct i915_oa_config *oa_config = stream->oa_config;
1608 
1609 	/*
1610 	 * PRM:
1611 	 *
1612 	 * OA unit is using “crclk” for its functionality. When trunk
1613 	 * level clock gating takes place, OA clock would be gated,
1614 	 * unable to count the events from non-render clock domain.
1615 	 * Render clock gating must be disabled when OA is enabled to
1616 	 * count the events from non-render domain. Unit level clock
1617 	 * gating for RCS should also be disabled.
1618 	 */
1619 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1620 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1621 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1622 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1623 
1624 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1625 	delay_after_mux();
1626 
1627 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1628 		       oa_config->b_counter_regs_len);
1629 
1630 	return 0;
1631 }
1632 
1633 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
1634 {
1635 	struct drm_i915_private *dev_priv = stream->dev_priv;
1636 
1637 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1638 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1639 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1640 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1641 
1642 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1643 				      ~GT_NOA_ENABLE));
1644 }
1645 
1646 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
1647 			      i915_reg_t reg)
1648 {
1649 	u32 mmio = i915_mmio_reg_offset(reg);
1650 	int i;
1651 
1652 	/*
1653 	 * This arbitrary default will select the 'EU FPU0 Pipeline
1654 	 * Active' event. In the future it's anticipated that there
1655 	 * will be an explicit 'No Event' we can select, but not yet...
1656 	 */
1657 	if (!oa_config)
1658 		return 0;
1659 
1660 	for (i = 0; i < oa_config->flex_regs_len; i++) {
1661 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
1662 			return oa_config->flex_regs[i].value;
1663 	}
1664 
1665 	return 0;
1666 }
1667 /*
1668  * NB: It must always remain pointer safe to run this even if the OA unit
1669  * has been disabled.
1670  *
1671  * It's fine to put out-of-date values into these per-context registers
1672  * in the case that the OA unit has been disabled.
1673  */
1674 static void
1675 gen8_update_reg_state_unlocked(struct i915_perf_stream *stream,
1676 			       struct intel_context *ce,
1677 			       u32 *reg_state,
1678 			       const struct i915_oa_config *oa_config)
1679 {
1680 	struct drm_i915_private *i915 = ce->engine->i915;
1681 	u32 ctx_oactxctrl = i915->perf.ctx_oactxctrl_offset;
1682 	u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
1683 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1684 	i915_reg_t flex_regs[] = {
1685 		EU_PERF_CNTL0,
1686 		EU_PERF_CNTL1,
1687 		EU_PERF_CNTL2,
1688 		EU_PERF_CNTL3,
1689 		EU_PERF_CNTL4,
1690 		EU_PERF_CNTL5,
1691 		EU_PERF_CNTL6,
1692 	};
1693 	int i;
1694 
1695 	CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1696 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1697 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1698 		GEN8_OA_COUNTER_RESUME);
1699 
1700 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1701 		CTX_REG(reg_state, ctx_flexeu0 + i * 2, flex_regs[i],
1702 			oa_config_flex_reg(oa_config, flex_regs[i]));
1703 	}
1704 
1705 	CTX_REG(reg_state,
1706 		CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1707 		intel_sseu_make_rpcs(i915, &ce->sseu));
1708 }
1709 
1710 struct flex {
1711 	i915_reg_t reg;
1712 	u32 offset;
1713 	u32 value;
1714 };
1715 
1716 static int
1717 gen8_store_flex(struct i915_request *rq,
1718 		struct intel_context *ce,
1719 		const struct flex *flex, unsigned int count)
1720 {
1721 	u32 offset;
1722 	u32 *cs;
1723 
1724 	cs = intel_ring_begin(rq, 4 * count);
1725 	if (IS_ERR(cs))
1726 		return PTR_ERR(cs);
1727 
1728 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
1729 	do {
1730 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1731 		*cs++ = offset + (flex->offset + 1) * sizeof(u32);
1732 		*cs++ = 0;
1733 		*cs++ = flex->value;
1734 	} while (flex++, --count);
1735 
1736 	intel_ring_advance(rq, cs);
1737 
1738 	return 0;
1739 }
1740 
1741 static int
1742 gen8_load_flex(struct i915_request *rq,
1743 	       struct intel_context *ce,
1744 	       const struct flex *flex, unsigned int count)
1745 {
1746 	u32 *cs;
1747 
1748 	GEM_BUG_ON(!count || count > 63);
1749 
1750 	cs = intel_ring_begin(rq, 2 * count + 2);
1751 	if (IS_ERR(cs))
1752 		return PTR_ERR(cs);
1753 
1754 	*cs++ = MI_LOAD_REGISTER_IMM(count);
1755 	do {
1756 		*cs++ = i915_mmio_reg_offset(flex->reg);
1757 		*cs++ = flex->value;
1758 	} while (flex++, --count);
1759 	*cs++ = MI_NOOP;
1760 
1761 	intel_ring_advance(rq, cs);
1762 
1763 	return 0;
1764 }
1765 
1766 static int gen8_modify_context(struct intel_context *ce,
1767 			       const struct flex *flex, unsigned int count)
1768 {
1769 	struct i915_request *rq;
1770 	int err;
1771 
1772 	lockdep_assert_held(&ce->pin_mutex);
1773 
1774 	rq = i915_request_create(ce->engine->kernel_context);
1775 	if (IS_ERR(rq))
1776 		return PTR_ERR(rq);
1777 
1778 	/* Serialise with the remote context */
1779 	err = intel_context_prepare_remote_request(ce, rq);
1780 	if (err == 0)
1781 		err = gen8_store_flex(rq, ce, flex, count);
1782 
1783 	i915_request_add(rq);
1784 	return err;
1785 }
1786 
1787 static int gen8_modify_self(struct intel_context *ce,
1788 			    const struct flex *flex, unsigned int count)
1789 {
1790 	struct i915_request *rq;
1791 	int err;
1792 
1793 	rq = i915_request_create(ce);
1794 	if (IS_ERR(rq))
1795 		return PTR_ERR(rq);
1796 
1797 	err = gen8_load_flex(rq, ce, flex, count);
1798 
1799 	i915_request_add(rq);
1800 	return err;
1801 }
1802 
1803 static int gen8_configure_context(struct i915_gem_context *ctx,
1804 				  struct flex *flex, unsigned int count)
1805 {
1806 	struct i915_gem_engines_iter it;
1807 	struct intel_context *ce;
1808 	int err = 0;
1809 
1810 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1811 		GEM_BUG_ON(ce == ce->engine->kernel_context);
1812 
1813 		if (ce->engine->class != RENDER_CLASS)
1814 			continue;
1815 
1816 		err = intel_context_lock_pinned(ce);
1817 		if (err)
1818 			break;
1819 
1820 		flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
1821 
1822 		/* Otherwise OA settings will be set upon first use */
1823 		if (intel_context_is_pinned(ce))
1824 			err = gen8_modify_context(ce, flex, count);
1825 
1826 		intel_context_unlock_pinned(ce);
1827 		if (err)
1828 			break;
1829 	}
1830 	i915_gem_context_unlock_engines(ctx);
1831 
1832 	return err;
1833 }
1834 
1835 /*
1836  * Manages updating the per-context aspects of the OA stream
1837  * configuration across all contexts.
1838  *
1839  * The awkward consideration here is that OACTXCONTROL controls the
1840  * exponent for periodic sampling which is primarily used for system
1841  * wide profiling where we'd like a consistent sampling period even in
1842  * the face of context switches.
1843  *
1844  * Our approach of updating the register state context (as opposed to
1845  * say using a workaround batch buffer) ensures that the hardware
1846  * won't automatically reload an out-of-date timer exponent even
1847  * transiently before a WA BB could be parsed.
1848  *
1849  * This function needs to:
1850  * - Ensure the currently running context's per-context OA state is
1851  *   updated
1852  * - Ensure that all existing contexts will have the correct per-context
1853  *   OA state if they are scheduled for use.
1854  * - Ensure any new contexts will be initialized with the correct
1855  *   per-context OA state.
1856  *
1857  * Note: it's only the RCS/Render context that has any OA state.
1858  */
1859 static int gen8_configure_all_contexts(struct i915_perf_stream *stream,
1860 				       const struct i915_oa_config *oa_config)
1861 {
1862 	struct drm_i915_private *i915 = stream->dev_priv;
1863 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1864 	const u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
1865 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N))
1866 	struct flex regs[] = {
1867 		{
1868 			GEN8_R_PWR_CLK_STATE,
1869 			CTX_R_PWR_CLK_STATE,
1870 		},
1871 		{
1872 			GEN8_OACTXCONTROL,
1873 			i915->perf.ctx_oactxctrl_offset,
1874 			((stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1875 			 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1876 			 GEN8_OA_COUNTER_RESUME)
1877 		},
1878 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
1879 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
1880 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
1881 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
1882 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
1883 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
1884 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
1885 	};
1886 #undef ctx_flexeuN
1887 	struct intel_engine_cs *engine;
1888 	struct i915_gem_context *ctx;
1889 	int i;
1890 
1891 	for (i = 2; i < ARRAY_SIZE(regs); i++)
1892 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
1893 
1894 	lockdep_assert_held(&i915->drm.struct_mutex);
1895 
1896 	/*
1897 	 * The OA register config is setup through the context image. This image
1898 	 * might be written to by the GPU on context switch (in particular on
1899 	 * lite-restore). This means we can't safely update a context's image,
1900 	 * if this context is scheduled/submitted to run on the GPU.
1901 	 *
1902 	 * We could emit the OA register config through the batch buffer but
1903 	 * this might leave small interval of time where the OA unit is
1904 	 * configured at an invalid sampling period.
1905 	 *
1906 	 * Note that since we emit all requests from a single ring, there
1907 	 * is still an implicit global barrier here that may cause a high
1908 	 * priority context to wait for an otherwise independent low priority
1909 	 * context. Contexts idle at the time of reconfiguration are not
1910 	 * trapped behind the barrier.
1911 	 */
1912 	list_for_each_entry(ctx, &i915->contexts.list, link) {
1913 		int err;
1914 
1915 		if (ctx == i915->kernel_context)
1916 			continue;
1917 
1918 		err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs));
1919 		if (err)
1920 			return err;
1921 	}
1922 
1923 	/*
1924 	 * After updating all other contexts, we need to modify ourselves.
1925 	 * If we don't modify the kernel_context, we do not get events while
1926 	 * idle.
1927 	 */
1928 	for_each_uabi_engine(engine, i915) {
1929 		struct intel_context *ce = engine->kernel_context;
1930 		int err;
1931 
1932 		if (engine->class != RENDER_CLASS)
1933 			continue;
1934 
1935 		regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
1936 
1937 		err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs));
1938 		if (err)
1939 			return err;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1946 {
1947 	struct drm_i915_private *dev_priv = stream->dev_priv;
1948 	const struct i915_oa_config *oa_config = stream->oa_config;
1949 	int ret;
1950 
1951 	/*
1952 	 * We disable slice/unslice clock ratio change reports on SKL since
1953 	 * they are too noisy. The HW generates a lot of redundant reports
1954 	 * where the ratio hasn't really changed causing a lot of redundant
1955 	 * work to processes and increasing the chances we'll hit buffer
1956 	 * overruns.
1957 	 *
1958 	 * Although we don't currently use the 'disable overrun' OABUFFER
1959 	 * feature it's worth noting that clock ratio reports have to be
1960 	 * disabled before considering to use that feature since the HW doesn't
1961 	 * correctly block these reports.
1962 	 *
1963 	 * Currently none of the high-level metrics we have depend on knowing
1964 	 * this ratio to normalize.
1965 	 *
1966 	 * Note: This register is not power context saved and restored, but
1967 	 * that's OK considering that we disable RC6 while the OA unit is
1968 	 * enabled.
1969 	 *
1970 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1971 	 * be read back from automatically triggered reports, as part of the
1972 	 * RPT_ID field.
1973 	 */
1974 	if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1975 		I915_WRITE(GEN8_OA_DEBUG,
1976 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1977 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1978 	}
1979 
1980 	/*
1981 	 * Update all contexts prior writing the mux configurations as we need
1982 	 * to make sure all slices/subslices are ON before writing to NOA
1983 	 * registers.
1984 	 */
1985 	ret = gen8_configure_all_contexts(stream, oa_config);
1986 	if (ret)
1987 		return ret;
1988 
1989 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1990 	delay_after_mux();
1991 
1992 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1993 		       oa_config->b_counter_regs_len);
1994 
1995 	return 0;
1996 }
1997 
1998 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
1999 {
2000 	struct drm_i915_private *dev_priv = stream->dev_priv;
2001 
2002 	/* Reset all contexts' slices/subslices configurations. */
2003 	gen8_configure_all_contexts(stream, NULL);
2004 
2005 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
2006 				      ~GT_NOA_ENABLE));
2007 }
2008 
2009 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2010 {
2011 	struct drm_i915_private *dev_priv = stream->dev_priv;
2012 
2013 	/* Reset all contexts' slices/subslices configurations. */
2014 	gen8_configure_all_contexts(stream, NULL);
2015 
2016 	/* Make sure we disable noa to save power. */
2017 	I915_WRITE(RPM_CONFIG1,
2018 		   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
2019 }
2020 
2021 static void gen7_oa_enable(struct i915_perf_stream *stream)
2022 {
2023 	struct drm_i915_private *dev_priv = stream->dev_priv;
2024 	struct i915_gem_context *ctx = stream->ctx;
2025 	u32 ctx_id = stream->specific_ctx_id;
2026 	bool periodic = stream->periodic;
2027 	u32 period_exponent = stream->period_exponent;
2028 	u32 report_format = stream->oa_buffer.format;
2029 
2030 	/*
2031 	 * Reset buf pointers so we don't forward reports from before now.
2032 	 *
2033 	 * Think carefully if considering trying to avoid this, since it
2034 	 * also ensures status flags and the buffer itself are cleared
2035 	 * in error paths, and we have checks for invalid reports based
2036 	 * on the assumption that certain fields are written to zeroed
2037 	 * memory which this helps maintains.
2038 	 */
2039 	gen7_init_oa_buffer(stream);
2040 
2041 	I915_WRITE(GEN7_OACONTROL,
2042 		   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2043 		   (period_exponent <<
2044 		    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2045 		   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2046 		   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2047 		   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2048 		   GEN7_OACONTROL_ENABLE);
2049 }
2050 
2051 static void gen8_oa_enable(struct i915_perf_stream *stream)
2052 {
2053 	struct drm_i915_private *dev_priv = stream->dev_priv;
2054 	u32 report_format = stream->oa_buffer.format;
2055 
2056 	/*
2057 	 * Reset buf pointers so we don't forward reports from before now.
2058 	 *
2059 	 * Think carefully if considering trying to avoid this, since it
2060 	 * also ensures status flags and the buffer itself are cleared
2061 	 * in error paths, and we have checks for invalid reports based
2062 	 * on the assumption that certain fields are written to zeroed
2063 	 * memory which this helps maintains.
2064 	 */
2065 	gen8_init_oa_buffer(stream);
2066 
2067 	/*
2068 	 * Note: we don't rely on the hardware to perform single context
2069 	 * filtering and instead filter on the cpu based on the context-id
2070 	 * field of reports
2071 	 */
2072 	I915_WRITE(GEN8_OACONTROL, (report_format <<
2073 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
2074 				   GEN8_OA_COUNTER_ENABLE);
2075 }
2076 
2077 /**
2078  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2079  * @stream: An i915 perf stream opened for OA metrics
2080  *
2081  * [Re]enables hardware periodic sampling according to the period configured
2082  * when opening the stream. This also starts a hrtimer that will periodically
2083  * check for data in the circular OA buffer for notifying userspace (e.g.
2084  * during a read() or poll()).
2085  */
2086 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2087 {
2088 	struct drm_i915_private *dev_priv = stream->dev_priv;
2089 
2090 	dev_priv->perf.ops.oa_enable(stream);
2091 
2092 	if (stream->periodic)
2093 		hrtimer_start(&stream->poll_check_timer,
2094 			      ns_to_ktime(POLL_PERIOD),
2095 			      HRTIMER_MODE_REL_PINNED);
2096 }
2097 
2098 static void gen7_oa_disable(struct i915_perf_stream *stream)
2099 {
2100 	struct intel_uncore *uncore = &stream->dev_priv->uncore;
2101 
2102 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2103 	if (intel_wait_for_register(uncore,
2104 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2105 				    50))
2106 		DRM_ERROR("wait for OA to be disabled timed out\n");
2107 }
2108 
2109 static void gen8_oa_disable(struct i915_perf_stream *stream)
2110 {
2111 	struct intel_uncore *uncore = &stream->dev_priv->uncore;
2112 
2113 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2114 	if (intel_wait_for_register(uncore,
2115 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2116 				    50))
2117 		DRM_ERROR("wait for OA to be disabled timed out\n");
2118 }
2119 
2120 /**
2121  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2122  * @stream: An i915 perf stream opened for OA metrics
2123  *
2124  * Stops the OA unit from periodically writing counter reports into the
2125  * circular OA buffer. This also stops the hrtimer that periodically checks for
2126  * data in the circular OA buffer, for notifying userspace.
2127  */
2128 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2129 {
2130 	struct drm_i915_private *dev_priv = stream->dev_priv;
2131 
2132 	dev_priv->perf.ops.oa_disable(stream);
2133 
2134 	if (stream->periodic)
2135 		hrtimer_cancel(&stream->poll_check_timer);
2136 }
2137 
2138 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2139 	.destroy = i915_oa_stream_destroy,
2140 	.enable = i915_oa_stream_enable,
2141 	.disable = i915_oa_stream_disable,
2142 	.wait_unlocked = i915_oa_wait_unlocked,
2143 	.poll_wait = i915_oa_poll_wait,
2144 	.read = i915_oa_read,
2145 };
2146 
2147 /**
2148  * i915_oa_stream_init - validate combined props for OA stream and init
2149  * @stream: An i915 perf stream
2150  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2151  * @props: The property state that configures stream (individually validated)
2152  *
2153  * While read_properties_unlocked() validates properties in isolation it
2154  * doesn't ensure that the combination necessarily makes sense.
2155  *
2156  * At this point it has been determined that userspace wants a stream of
2157  * OA metrics, but still we need to further validate the combined
2158  * properties are OK.
2159  *
2160  * If the configuration makes sense then we can allocate memory for
2161  * a circular OA buffer and apply the requested metric set configuration.
2162  *
2163  * Returns: zero on success or a negative error code.
2164  */
2165 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2166 			       struct drm_i915_perf_open_param *param,
2167 			       struct perf_open_properties *props)
2168 {
2169 	struct drm_i915_private *dev_priv = stream->dev_priv;
2170 	int format_size;
2171 	int ret;
2172 
2173 	/* If the sysfs metrics/ directory wasn't registered for some
2174 	 * reason then don't let userspace try their luck with config
2175 	 * IDs
2176 	 */
2177 	if (!dev_priv->perf.metrics_kobj) {
2178 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2179 		return -EINVAL;
2180 	}
2181 
2182 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2183 		DRM_DEBUG("Only OA report sampling supported\n");
2184 		return -EINVAL;
2185 	}
2186 
2187 	if (!dev_priv->perf.ops.enable_metric_set) {
2188 		DRM_DEBUG("OA unit not supported\n");
2189 		return -ENODEV;
2190 	}
2191 
2192 	/* To avoid the complexity of having to accurately filter
2193 	 * counter reports and marshal to the appropriate client
2194 	 * we currently only allow exclusive access
2195 	 */
2196 	if (dev_priv->perf.exclusive_stream) {
2197 		DRM_DEBUG("OA unit already in use\n");
2198 		return -EBUSY;
2199 	}
2200 
2201 	if (!props->oa_format) {
2202 		DRM_DEBUG("OA report format not specified\n");
2203 		return -EINVAL;
2204 	}
2205 
2206 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2207 
2208 	format_size = dev_priv->perf.oa_formats[props->oa_format].size;
2209 
2210 	stream->sample_flags |= SAMPLE_OA_REPORT;
2211 	stream->sample_size += format_size;
2212 
2213 	stream->oa_buffer.format_size = format_size;
2214 	if (WARN_ON(stream->oa_buffer.format_size == 0))
2215 		return -EINVAL;
2216 
2217 	stream->oa_buffer.format =
2218 		dev_priv->perf.oa_formats[props->oa_format].format;
2219 
2220 	stream->periodic = props->oa_periodic;
2221 	if (stream->periodic)
2222 		stream->period_exponent = props->oa_period_exponent;
2223 
2224 	if (stream->ctx) {
2225 		ret = oa_get_render_ctx_id(stream);
2226 		if (ret) {
2227 			DRM_DEBUG("Invalid context id to filter with\n");
2228 			return ret;
2229 		}
2230 	}
2231 
2232 	ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2233 	if (ret) {
2234 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2235 		goto err_config;
2236 	}
2237 
2238 	/* PRM - observability performance counters:
2239 	 *
2240 	 *   OACONTROL, performance counter enable, note:
2241 	 *
2242 	 *   "When this bit is set, in order to have coherent counts,
2243 	 *   RC6 power state and trunk clock gating must be disabled.
2244 	 *   This can be achieved by programming MMIO registers as
2245 	 *   0xA094=0 and 0xA090[31]=1"
2246 	 *
2247 	 *   In our case we are expecting that taking pm + FORCEWAKE
2248 	 *   references will effectively disable RC6.
2249 	 */
2250 	stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2251 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2252 
2253 	ret = alloc_oa_buffer(stream);
2254 	if (ret)
2255 		goto err_oa_buf_alloc;
2256 
2257 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2258 	if (ret)
2259 		goto err_lock;
2260 
2261 	stream->ops = &i915_oa_stream_ops;
2262 	dev_priv->perf.exclusive_stream = stream;
2263 
2264 	ret = dev_priv->perf.ops.enable_metric_set(stream);
2265 	if (ret) {
2266 		DRM_DEBUG("Unable to enable metric set\n");
2267 		goto err_enable;
2268 	}
2269 
2270 	mutex_unlock(&dev_priv->drm.struct_mutex);
2271 
2272 	hrtimer_init(&stream->poll_check_timer,
2273 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2274 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2275 	init_waitqueue_head(&stream->poll_wq);
2276 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2277 
2278 	return 0;
2279 
2280 err_enable:
2281 	dev_priv->perf.exclusive_stream = NULL;
2282 	dev_priv->perf.ops.disable_metric_set(stream);
2283 	mutex_unlock(&dev_priv->drm.struct_mutex);
2284 
2285 err_lock:
2286 	free_oa_buffer(stream);
2287 
2288 err_oa_buf_alloc:
2289 	put_oa_config(dev_priv, stream->oa_config);
2290 
2291 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2292 	intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
2293 
2294 err_config:
2295 	if (stream->ctx)
2296 		oa_put_render_ctx_id(stream);
2297 
2298 	return ret;
2299 }
2300 
2301 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2302 			    struct intel_context *ce,
2303 			    u32 *regs)
2304 {
2305 	struct i915_perf_stream *stream;
2306 
2307 	if (engine->class != RENDER_CLASS)
2308 		return;
2309 
2310 	stream = engine->i915->perf.exclusive_stream;
2311 	if (stream)
2312 		gen8_update_reg_state_unlocked(stream, ce, regs, stream->oa_config);
2313 }
2314 
2315 /**
2316  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2317  * @stream: An i915 perf stream
2318  * @file: An i915 perf stream file
2319  * @buf: destination buffer given by userspace
2320  * @count: the number of bytes userspace wants to read
2321  * @ppos: (inout) file seek position (unused)
2322  *
2323  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2324  * ensure that if we've successfully copied any data then reporting that takes
2325  * precedence over any internal error status, so the data isn't lost.
2326  *
2327  * For example ret will be -ENOSPC whenever there is more buffered data than
2328  * can be copied to userspace, but that's only interesting if we weren't able
2329  * to copy some data because it implies the userspace buffer is too small to
2330  * receive a single record (and we never split records).
2331  *
2332  * Another case with ret == -EFAULT is more of a grey area since it would seem
2333  * like bad form for userspace to ask us to overrun its buffer, but the user
2334  * knows best:
2335  *
2336  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2337  *
2338  * Returns: The number of bytes copied or a negative error code on failure.
2339  */
2340 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2341 				     struct file *file,
2342 				     char __user *buf,
2343 				     size_t count,
2344 				     loff_t *ppos)
2345 {
2346 	/* Note we keep the offset (aka bytes read) separate from any
2347 	 * error status so that the final check for whether we return
2348 	 * the bytes read with a higher precedence than any error (see
2349 	 * comment below) doesn't need to be handled/duplicated in
2350 	 * stream->ops->read() implementations.
2351 	 */
2352 	size_t offset = 0;
2353 	int ret = stream->ops->read(stream, buf, count, &offset);
2354 
2355 	return offset ?: (ret ?: -EAGAIN);
2356 }
2357 
2358 /**
2359  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2360  * @file: An i915 perf stream file
2361  * @buf: destination buffer given by userspace
2362  * @count: the number of bytes userspace wants to read
2363  * @ppos: (inout) file seek position (unused)
2364  *
2365  * The entry point for handling a read() on a stream file descriptor from
2366  * userspace. Most of the work is left to the i915_perf_read_locked() and
2367  * &i915_perf_stream_ops->read but to save having stream implementations (of
2368  * which we might have multiple later) we handle blocking read here.
2369  *
2370  * We can also consistently treat trying to read from a disabled stream
2371  * as an IO error so implementations can assume the stream is enabled
2372  * while reading.
2373  *
2374  * Returns: The number of bytes copied or a negative error code on failure.
2375  */
2376 static ssize_t i915_perf_read(struct file *file,
2377 			      char __user *buf,
2378 			      size_t count,
2379 			      loff_t *ppos)
2380 {
2381 	struct i915_perf_stream *stream = file->private_data;
2382 	struct drm_i915_private *dev_priv = stream->dev_priv;
2383 	ssize_t ret;
2384 
2385 	/* To ensure it's handled consistently we simply treat all reads of a
2386 	 * disabled stream as an error. In particular it might otherwise lead
2387 	 * to a deadlock for blocking file descriptors...
2388 	 */
2389 	if (!stream->enabled)
2390 		return -EIO;
2391 
2392 	if (!(file->f_flags & O_NONBLOCK)) {
2393 		/* There's the small chance of false positives from
2394 		 * stream->ops->wait_unlocked.
2395 		 *
2396 		 * E.g. with single context filtering since we only wait until
2397 		 * oabuffer has >= 1 report we don't immediately know whether
2398 		 * any reports really belong to the current context
2399 		 */
2400 		do {
2401 			ret = stream->ops->wait_unlocked(stream);
2402 			if (ret)
2403 				return ret;
2404 
2405 			mutex_lock(&dev_priv->perf.lock);
2406 			ret = i915_perf_read_locked(stream, file,
2407 						    buf, count, ppos);
2408 			mutex_unlock(&dev_priv->perf.lock);
2409 		} while (ret == -EAGAIN);
2410 	} else {
2411 		mutex_lock(&dev_priv->perf.lock);
2412 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2413 		mutex_unlock(&dev_priv->perf.lock);
2414 	}
2415 
2416 	/* We allow the poll checking to sometimes report false positive EPOLLIN
2417 	 * events where we might actually report EAGAIN on read() if there's
2418 	 * not really any data available. In this situation though we don't
2419 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2420 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2421 	 * effectively ensures we back off until the next hrtimer callback
2422 	 * before reporting another EPOLLIN event.
2423 	 */
2424 	if (ret >= 0 || ret == -EAGAIN) {
2425 		/* Maybe make ->pollin per-stream state if we support multiple
2426 		 * concurrent streams in the future.
2427 		 */
2428 		stream->pollin = false;
2429 	}
2430 
2431 	return ret;
2432 }
2433 
2434 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2435 {
2436 	struct i915_perf_stream *stream =
2437 		container_of(hrtimer, typeof(*stream), poll_check_timer);
2438 
2439 	if (oa_buffer_check_unlocked(stream)) {
2440 		stream->pollin = true;
2441 		wake_up(&stream->poll_wq);
2442 	}
2443 
2444 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2445 
2446 	return HRTIMER_RESTART;
2447 }
2448 
2449 /**
2450  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2451  * @dev_priv: i915 device instance
2452  * @stream: An i915 perf stream
2453  * @file: An i915 perf stream file
2454  * @wait: poll() state table
2455  *
2456  * For handling userspace polling on an i915 perf stream, this calls through to
2457  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2458  * will be woken for new stream data.
2459  *
2460  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2461  * with any non-file-operation driver hooks.
2462  *
2463  * Returns: any poll events that are ready without sleeping
2464  */
2465 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2466 					  struct i915_perf_stream *stream,
2467 					  struct file *file,
2468 					  poll_table *wait)
2469 {
2470 	__poll_t events = 0;
2471 
2472 	stream->ops->poll_wait(stream, file, wait);
2473 
2474 	/* Note: we don't explicitly check whether there's something to read
2475 	 * here since this path may be very hot depending on what else
2476 	 * userspace is polling, or on the timeout in use. We rely solely on
2477 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2478 	 * samples to read.
2479 	 */
2480 	if (stream->pollin)
2481 		events |= EPOLLIN;
2482 
2483 	return events;
2484 }
2485 
2486 /**
2487  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2488  * @file: An i915 perf stream file
2489  * @wait: poll() state table
2490  *
2491  * For handling userspace polling on an i915 perf stream, this ensures
2492  * poll_wait() gets called with a wait queue that will be woken for new stream
2493  * data.
2494  *
2495  * Note: Implementation deferred to i915_perf_poll_locked()
2496  *
2497  * Returns: any poll events that are ready without sleeping
2498  */
2499 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2500 {
2501 	struct i915_perf_stream *stream = file->private_data;
2502 	struct drm_i915_private *dev_priv = stream->dev_priv;
2503 	__poll_t ret;
2504 
2505 	mutex_lock(&dev_priv->perf.lock);
2506 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2507 	mutex_unlock(&dev_priv->perf.lock);
2508 
2509 	return ret;
2510 }
2511 
2512 /**
2513  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2514  * @stream: A disabled i915 perf stream
2515  *
2516  * [Re]enables the associated capture of data for this stream.
2517  *
2518  * If a stream was previously enabled then there's currently no intention
2519  * to provide userspace any guarantee about the preservation of previously
2520  * buffered data.
2521  */
2522 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2523 {
2524 	if (stream->enabled)
2525 		return;
2526 
2527 	/* Allow stream->ops->enable() to refer to this */
2528 	stream->enabled = true;
2529 
2530 	if (stream->ops->enable)
2531 		stream->ops->enable(stream);
2532 }
2533 
2534 /**
2535  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2536  * @stream: An enabled i915 perf stream
2537  *
2538  * Disables the associated capture of data for this stream.
2539  *
2540  * The intention is that disabling an re-enabling a stream will ideally be
2541  * cheaper than destroying and re-opening a stream with the same configuration,
2542  * though there are no formal guarantees about what state or buffered data
2543  * must be retained between disabling and re-enabling a stream.
2544  *
2545  * Note: while a stream is disabled it's considered an error for userspace
2546  * to attempt to read from the stream (-EIO).
2547  */
2548 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2549 {
2550 	if (!stream->enabled)
2551 		return;
2552 
2553 	/* Allow stream->ops->disable() to refer to this */
2554 	stream->enabled = false;
2555 
2556 	if (stream->ops->disable)
2557 		stream->ops->disable(stream);
2558 }
2559 
2560 /**
2561  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2562  * @stream: An i915 perf stream
2563  * @cmd: the ioctl request
2564  * @arg: the ioctl data
2565  *
2566  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2567  * with any non-file-operation driver hooks.
2568  *
2569  * Returns: zero on success or a negative error code. Returns -EINVAL for
2570  * an unknown ioctl request.
2571  */
2572 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2573 				   unsigned int cmd,
2574 				   unsigned long arg)
2575 {
2576 	switch (cmd) {
2577 	case I915_PERF_IOCTL_ENABLE:
2578 		i915_perf_enable_locked(stream);
2579 		return 0;
2580 	case I915_PERF_IOCTL_DISABLE:
2581 		i915_perf_disable_locked(stream);
2582 		return 0;
2583 	}
2584 
2585 	return -EINVAL;
2586 }
2587 
2588 /**
2589  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2590  * @file: An i915 perf stream file
2591  * @cmd: the ioctl request
2592  * @arg: the ioctl data
2593  *
2594  * Implementation deferred to i915_perf_ioctl_locked().
2595  *
2596  * Returns: zero on success or a negative error code. Returns -EINVAL for
2597  * an unknown ioctl request.
2598  */
2599 static long i915_perf_ioctl(struct file *file,
2600 			    unsigned int cmd,
2601 			    unsigned long arg)
2602 {
2603 	struct i915_perf_stream *stream = file->private_data;
2604 	struct drm_i915_private *dev_priv = stream->dev_priv;
2605 	long ret;
2606 
2607 	mutex_lock(&dev_priv->perf.lock);
2608 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2609 	mutex_unlock(&dev_priv->perf.lock);
2610 
2611 	return ret;
2612 }
2613 
2614 /**
2615  * i915_perf_destroy_locked - destroy an i915 perf stream
2616  * @stream: An i915 perf stream
2617  *
2618  * Frees all resources associated with the given i915 perf @stream, disabling
2619  * any associated data capture in the process.
2620  *
2621  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2622  * with any non-file-operation driver hooks.
2623  */
2624 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2625 {
2626 	if (stream->enabled)
2627 		i915_perf_disable_locked(stream);
2628 
2629 	if (stream->ops->destroy)
2630 		stream->ops->destroy(stream);
2631 
2632 	list_del(&stream->link);
2633 
2634 	if (stream->ctx)
2635 		i915_gem_context_put(stream->ctx);
2636 
2637 	kfree(stream);
2638 }
2639 
2640 /**
2641  * i915_perf_release - handles userspace close() of a stream file
2642  * @inode: anonymous inode associated with file
2643  * @file: An i915 perf stream file
2644  *
2645  * Cleans up any resources associated with an open i915 perf stream file.
2646  *
2647  * NB: close() can't really fail from the userspace point of view.
2648  *
2649  * Returns: zero on success or a negative error code.
2650  */
2651 static int i915_perf_release(struct inode *inode, struct file *file)
2652 {
2653 	struct i915_perf_stream *stream = file->private_data;
2654 	struct drm_i915_private *dev_priv = stream->dev_priv;
2655 
2656 	mutex_lock(&dev_priv->perf.lock);
2657 	i915_perf_destroy_locked(stream);
2658 	mutex_unlock(&dev_priv->perf.lock);
2659 
2660 	/* Release the reference the perf stream kept on the driver. */
2661 	drm_dev_put(&dev_priv->drm);
2662 
2663 	return 0;
2664 }
2665 
2666 
2667 static const struct file_operations fops = {
2668 	.owner		= THIS_MODULE,
2669 	.llseek		= no_llseek,
2670 	.release	= i915_perf_release,
2671 	.poll		= i915_perf_poll,
2672 	.read		= i915_perf_read,
2673 	.unlocked_ioctl	= i915_perf_ioctl,
2674 	/* Our ioctl have no arguments, so it's safe to use the same function
2675 	 * to handle 32bits compatibility.
2676 	 */
2677 	.compat_ioctl   = i915_perf_ioctl,
2678 };
2679 
2680 
2681 /**
2682  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2683  * @dev_priv: i915 device instance
2684  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2685  * @props: individually validated u64 property value pairs
2686  * @file: drm file
2687  *
2688  * See i915_perf_ioctl_open() for interface details.
2689  *
2690  * Implements further stream config validation and stream initialization on
2691  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2692  * taken to serialize with any non-file-operation driver hooks.
2693  *
2694  * Note: at this point the @props have only been validated in isolation and
2695  * it's still necessary to validate that the combination of properties makes
2696  * sense.
2697  *
2698  * In the case where userspace is interested in OA unit metrics then further
2699  * config validation and stream initialization details will be handled by
2700  * i915_oa_stream_init(). The code here should only validate config state that
2701  * will be relevant to all stream types / backends.
2702  *
2703  * Returns: zero on success or a negative error code.
2704  */
2705 static int
2706 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2707 			    struct drm_i915_perf_open_param *param,
2708 			    struct perf_open_properties *props,
2709 			    struct drm_file *file)
2710 {
2711 	struct i915_gem_context *specific_ctx = NULL;
2712 	struct i915_perf_stream *stream = NULL;
2713 	unsigned long f_flags = 0;
2714 	bool privileged_op = true;
2715 	int stream_fd;
2716 	int ret;
2717 
2718 	if (props->single_context) {
2719 		u32 ctx_handle = props->ctx_handle;
2720 		struct drm_i915_file_private *file_priv = file->driver_priv;
2721 
2722 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2723 		if (!specific_ctx) {
2724 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2725 				  ctx_handle);
2726 			ret = -ENOENT;
2727 			goto err;
2728 		}
2729 	}
2730 
2731 	/*
2732 	 * On Haswell the OA unit supports clock gating off for a specific
2733 	 * context and in this mode there's no visibility of metrics for the
2734 	 * rest of the system, which we consider acceptable for a
2735 	 * non-privileged client.
2736 	 *
2737 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2738 	 * specific context and the kernel can't securely stop the counters
2739 	 * from updating as system-wide / global values. Even though we can
2740 	 * filter reports based on the included context ID we can't block
2741 	 * clients from seeing the raw / global counter values via
2742 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2743 	 * enable the OA unit by default.
2744 	 */
2745 	if (IS_HASWELL(dev_priv) && specific_ctx)
2746 		privileged_op = false;
2747 
2748 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2749 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2750 	 * to determine if it's ok to access system wide OA counters
2751 	 * without CAP_SYS_ADMIN privileges.
2752 	 */
2753 	if (privileged_op &&
2754 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2755 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2756 		ret = -EACCES;
2757 		goto err_ctx;
2758 	}
2759 
2760 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2761 	if (!stream) {
2762 		ret = -ENOMEM;
2763 		goto err_ctx;
2764 	}
2765 
2766 	stream->dev_priv = dev_priv;
2767 	stream->ctx = specific_ctx;
2768 
2769 	ret = i915_oa_stream_init(stream, param, props);
2770 	if (ret)
2771 		goto err_alloc;
2772 
2773 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2774 	 * to have _stream_init check the combination of sample flags more
2775 	 * thoroughly, but still this is the expected result at this point.
2776 	 */
2777 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2778 		ret = -ENODEV;
2779 		goto err_flags;
2780 	}
2781 
2782 	list_add(&stream->link, &dev_priv->perf.streams);
2783 
2784 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2785 		f_flags |= O_CLOEXEC;
2786 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2787 		f_flags |= O_NONBLOCK;
2788 
2789 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2790 	if (stream_fd < 0) {
2791 		ret = stream_fd;
2792 		goto err_open;
2793 	}
2794 
2795 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2796 		i915_perf_enable_locked(stream);
2797 
2798 	/* Take a reference on the driver that will be kept with stream_fd
2799 	 * until its release.
2800 	 */
2801 	drm_dev_get(&dev_priv->drm);
2802 
2803 	return stream_fd;
2804 
2805 err_open:
2806 	list_del(&stream->link);
2807 err_flags:
2808 	if (stream->ops->destroy)
2809 		stream->ops->destroy(stream);
2810 err_alloc:
2811 	kfree(stream);
2812 err_ctx:
2813 	if (specific_ctx)
2814 		i915_gem_context_put(specific_ctx);
2815 err:
2816 	return ret;
2817 }
2818 
2819 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2820 {
2821 	return div64_u64(1000000000ULL * (2ULL << exponent),
2822 			 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2823 }
2824 
2825 /**
2826  * read_properties_unlocked - validate + copy userspace stream open properties
2827  * @dev_priv: i915 device instance
2828  * @uprops: The array of u64 key value pairs given by userspace
2829  * @n_props: The number of key value pairs expected in @uprops
2830  * @props: The stream configuration built up while validating properties
2831  *
2832  * Note this function only validates properties in isolation it doesn't
2833  * validate that the combination of properties makes sense or that all
2834  * properties necessary for a particular kind of stream have been set.
2835  *
2836  * Note that there currently aren't any ordering requirements for properties so
2837  * we shouldn't validate or assume anything about ordering here. This doesn't
2838  * rule out defining new properties with ordering requirements in the future.
2839  */
2840 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2841 				    u64 __user *uprops,
2842 				    u32 n_props,
2843 				    struct perf_open_properties *props)
2844 {
2845 	u64 __user *uprop = uprops;
2846 	u32 i;
2847 
2848 	memset(props, 0, sizeof(struct perf_open_properties));
2849 
2850 	if (!n_props) {
2851 		DRM_DEBUG("No i915 perf properties given\n");
2852 		return -EINVAL;
2853 	}
2854 
2855 	/* Considering that ID = 0 is reserved and assuming that we don't
2856 	 * (currently) expect any configurations to ever specify duplicate
2857 	 * values for a particular property ID then the last _PROP_MAX value is
2858 	 * one greater than the maximum number of properties we expect to get
2859 	 * from userspace.
2860 	 */
2861 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2862 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2863 		return -EINVAL;
2864 	}
2865 
2866 	for (i = 0; i < n_props; i++) {
2867 		u64 oa_period, oa_freq_hz;
2868 		u64 id, value;
2869 		int ret;
2870 
2871 		ret = get_user(id, uprop);
2872 		if (ret)
2873 			return ret;
2874 
2875 		ret = get_user(value, uprop + 1);
2876 		if (ret)
2877 			return ret;
2878 
2879 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2880 			DRM_DEBUG("Unknown i915 perf property ID\n");
2881 			return -EINVAL;
2882 		}
2883 
2884 		switch ((enum drm_i915_perf_property_id)id) {
2885 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2886 			props->single_context = 1;
2887 			props->ctx_handle = value;
2888 			break;
2889 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2890 			if (value)
2891 				props->sample_flags |= SAMPLE_OA_REPORT;
2892 			break;
2893 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2894 			if (value == 0) {
2895 				DRM_DEBUG("Unknown OA metric set ID\n");
2896 				return -EINVAL;
2897 			}
2898 			props->metrics_set = value;
2899 			break;
2900 		case DRM_I915_PERF_PROP_OA_FORMAT:
2901 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2902 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2903 					  value);
2904 				return -EINVAL;
2905 			}
2906 			if (!dev_priv->perf.oa_formats[value].size) {
2907 				DRM_DEBUG("Unsupported OA report format %llu\n",
2908 					  value);
2909 				return -EINVAL;
2910 			}
2911 			props->oa_format = value;
2912 			break;
2913 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2914 			if (value > OA_EXPONENT_MAX) {
2915 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2916 					 OA_EXPONENT_MAX);
2917 				return -EINVAL;
2918 			}
2919 
2920 			/* Theoretically we can program the OA unit to sample
2921 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2922 			 * for BXT. We don't allow such high sampling
2923 			 * frequencies by default unless root.
2924 			 */
2925 
2926 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2927 			oa_period = oa_exponent_to_ns(dev_priv, value);
2928 
2929 			/* This check is primarily to ensure that oa_period <=
2930 			 * UINT32_MAX (before passing to do_div which only
2931 			 * accepts a u32 denominator), but we can also skip
2932 			 * checking anything < 1Hz which implicitly can't be
2933 			 * limited via an integer oa_max_sample_rate.
2934 			 */
2935 			if (oa_period <= NSEC_PER_SEC) {
2936 				u64 tmp = NSEC_PER_SEC;
2937 				do_div(tmp, oa_period);
2938 				oa_freq_hz = tmp;
2939 			} else
2940 				oa_freq_hz = 0;
2941 
2942 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2943 			    !capable(CAP_SYS_ADMIN)) {
2944 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2945 					  i915_oa_max_sample_rate);
2946 				return -EACCES;
2947 			}
2948 
2949 			props->oa_periodic = true;
2950 			props->oa_period_exponent = value;
2951 			break;
2952 		case DRM_I915_PERF_PROP_MAX:
2953 			MISSING_CASE(id);
2954 			return -EINVAL;
2955 		}
2956 
2957 		uprop += 2;
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 /**
2964  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2965  * @dev: drm device
2966  * @data: ioctl data copied from userspace (unvalidated)
2967  * @file: drm file
2968  *
2969  * Validates the stream open parameters given by userspace including flags
2970  * and an array of u64 key, value pair properties.
2971  *
2972  * Very little is assumed up front about the nature of the stream being
2973  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2974  * i915-perf stream is expected to be a suitable interface for other forms of
2975  * buffered data written by the GPU besides periodic OA metrics.
2976  *
2977  * Note we copy the properties from userspace outside of the i915 perf
2978  * mutex to avoid an awkward lockdep with mmap_sem.
2979  *
2980  * Most of the implementation details are handled by
2981  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2982  * mutex for serializing with any non-file-operation driver hooks.
2983  *
2984  * Return: A newly opened i915 Perf stream file descriptor or negative
2985  * error code on failure.
2986  */
2987 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2988 			 struct drm_file *file)
2989 {
2990 	struct drm_i915_private *dev_priv = dev->dev_private;
2991 	struct drm_i915_perf_open_param *param = data;
2992 	struct perf_open_properties props;
2993 	u32 known_open_flags;
2994 	int ret;
2995 
2996 	if (!dev_priv->perf.initialized) {
2997 		DRM_DEBUG("i915 perf interface not available for this system\n");
2998 		return -ENOTSUPP;
2999 	}
3000 
3001 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3002 			   I915_PERF_FLAG_FD_NONBLOCK |
3003 			   I915_PERF_FLAG_DISABLED;
3004 	if (param->flags & ~known_open_flags) {
3005 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3006 		return -EINVAL;
3007 	}
3008 
3009 	ret = read_properties_unlocked(dev_priv,
3010 				       u64_to_user_ptr(param->properties_ptr),
3011 				       param->num_properties,
3012 				       &props);
3013 	if (ret)
3014 		return ret;
3015 
3016 	mutex_lock(&dev_priv->perf.lock);
3017 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
3018 	mutex_unlock(&dev_priv->perf.lock);
3019 
3020 	return ret;
3021 }
3022 
3023 /**
3024  * i915_perf_register - exposes i915-perf to userspace
3025  * @dev_priv: i915 device instance
3026  *
3027  * In particular OA metric sets are advertised under a sysfs metrics/
3028  * directory allowing userspace to enumerate valid IDs that can be
3029  * used to open an i915-perf stream.
3030  */
3031 void i915_perf_register(struct drm_i915_private *dev_priv)
3032 {
3033 	int ret;
3034 
3035 	if (!dev_priv->perf.initialized)
3036 		return;
3037 
3038 	/* To be sure we're synchronized with an attempted
3039 	 * i915_perf_open_ioctl(); considering that we register after
3040 	 * being exposed to userspace.
3041 	 */
3042 	mutex_lock(&dev_priv->perf.lock);
3043 
3044 	dev_priv->perf.metrics_kobj =
3045 		kobject_create_and_add("metrics",
3046 				       &dev_priv->drm.primary->kdev->kobj);
3047 	if (!dev_priv->perf.metrics_kobj)
3048 		goto exit;
3049 
3050 	sysfs_attr_init(&dev_priv->perf.test_config.sysfs_metric_id.attr);
3051 
3052 	if (INTEL_GEN(dev_priv) >= 11) {
3053 		i915_perf_load_test_config_icl(dev_priv);
3054 	} else if (IS_CANNONLAKE(dev_priv)) {
3055 		i915_perf_load_test_config_cnl(dev_priv);
3056 	} else if (IS_COFFEELAKE(dev_priv)) {
3057 		if (IS_CFL_GT2(dev_priv))
3058 			i915_perf_load_test_config_cflgt2(dev_priv);
3059 		if (IS_CFL_GT3(dev_priv))
3060 			i915_perf_load_test_config_cflgt3(dev_priv);
3061 	} else if (IS_GEMINILAKE(dev_priv)) {
3062 		i915_perf_load_test_config_glk(dev_priv);
3063 	} else if (IS_KABYLAKE(dev_priv)) {
3064 		if (IS_KBL_GT2(dev_priv))
3065 			i915_perf_load_test_config_kblgt2(dev_priv);
3066 		else if (IS_KBL_GT3(dev_priv))
3067 			i915_perf_load_test_config_kblgt3(dev_priv);
3068 	} else if (IS_BROXTON(dev_priv)) {
3069 		i915_perf_load_test_config_bxt(dev_priv);
3070 	} else if (IS_SKYLAKE(dev_priv)) {
3071 		if (IS_SKL_GT2(dev_priv))
3072 			i915_perf_load_test_config_sklgt2(dev_priv);
3073 		else if (IS_SKL_GT3(dev_priv))
3074 			i915_perf_load_test_config_sklgt3(dev_priv);
3075 		else if (IS_SKL_GT4(dev_priv))
3076 			i915_perf_load_test_config_sklgt4(dev_priv);
3077 	} else if (IS_CHERRYVIEW(dev_priv)) {
3078 		i915_perf_load_test_config_chv(dev_priv);
3079 	} else if (IS_BROADWELL(dev_priv)) {
3080 		i915_perf_load_test_config_bdw(dev_priv);
3081 	} else if (IS_HASWELL(dev_priv)) {
3082 		i915_perf_load_test_config_hsw(dev_priv);
3083 }
3084 
3085 	if (dev_priv->perf.test_config.id == 0)
3086 		goto sysfs_error;
3087 
3088 	ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
3089 				 &dev_priv->perf.test_config.sysfs_metric);
3090 	if (ret)
3091 		goto sysfs_error;
3092 
3093 	atomic_set(&dev_priv->perf.test_config.ref_count, 1);
3094 
3095 	goto exit;
3096 
3097 sysfs_error:
3098 	kobject_put(dev_priv->perf.metrics_kobj);
3099 	dev_priv->perf.metrics_kobj = NULL;
3100 
3101 exit:
3102 	mutex_unlock(&dev_priv->perf.lock);
3103 }
3104 
3105 /**
3106  * i915_perf_unregister - hide i915-perf from userspace
3107  * @dev_priv: i915 device instance
3108  *
3109  * i915-perf state cleanup is split up into an 'unregister' and
3110  * 'deinit' phase where the interface is first hidden from
3111  * userspace by i915_perf_unregister() before cleaning up
3112  * remaining state in i915_perf_fini().
3113  */
3114 void i915_perf_unregister(struct drm_i915_private *dev_priv)
3115 {
3116 	if (!dev_priv->perf.metrics_kobj)
3117 		return;
3118 
3119 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3120 			   &dev_priv->perf.test_config.sysfs_metric);
3121 
3122 	kobject_put(dev_priv->perf.metrics_kobj);
3123 	dev_priv->perf.metrics_kobj = NULL;
3124 }
3125 
3126 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
3127 {
3128 	static const i915_reg_t flex_eu_regs[] = {
3129 		EU_PERF_CNTL0,
3130 		EU_PERF_CNTL1,
3131 		EU_PERF_CNTL2,
3132 		EU_PERF_CNTL3,
3133 		EU_PERF_CNTL4,
3134 		EU_PERF_CNTL5,
3135 		EU_PERF_CNTL6,
3136 	};
3137 	int i;
3138 
3139 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3140 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3141 			return true;
3142 	}
3143 	return false;
3144 }
3145 
3146 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3147 {
3148 	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3149 		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3150 		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3151 		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3152 		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
3153 		 addr <= i915_mmio_reg_offset(OACEC7_1));
3154 }
3155 
3156 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3157 {
3158 	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3159 		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3160 		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3161 		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3162 		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3163 		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3164 		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3165 }
3166 
3167 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3168 {
3169 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3170 		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3171 		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3172 		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3173 }
3174 
3175 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3176 {
3177 	return gen8_is_valid_mux_addr(dev_priv, addr) ||
3178 		addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3179 		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3180 		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3181 }
3182 
3183 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3184 {
3185 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3186 		(addr >= 0x25100 && addr <= 0x2FF90) ||
3187 		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3188 		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3189 		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3190 }
3191 
3192 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3193 {
3194 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3195 		(addr >= 0x182300 && addr <= 0x1823A4);
3196 }
3197 
3198 static u32 mask_reg_value(u32 reg, u32 val)
3199 {
3200 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3201 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3202 	 * programmed by userspace doesn't change this.
3203 	 */
3204 	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3205 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3206 
3207 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3208 	 * indicated by its name and a bunch of selection fields used by OA
3209 	 * configs.
3210 	 */
3211 	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3212 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3213 
3214 	return val;
3215 }
3216 
3217 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3218 					 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3219 					 u32 __user *regs,
3220 					 u32 n_regs)
3221 {
3222 	struct i915_oa_reg *oa_regs;
3223 	int err;
3224 	u32 i;
3225 
3226 	if (!n_regs)
3227 		return NULL;
3228 
3229 	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3230 		return ERR_PTR(-EFAULT);
3231 
3232 	/* No is_valid function means we're not allowing any register to be programmed. */
3233 	GEM_BUG_ON(!is_valid);
3234 	if (!is_valid)
3235 		return ERR_PTR(-EINVAL);
3236 
3237 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3238 	if (!oa_regs)
3239 		return ERR_PTR(-ENOMEM);
3240 
3241 	for (i = 0; i < n_regs; i++) {
3242 		u32 addr, value;
3243 
3244 		err = get_user(addr, regs);
3245 		if (err)
3246 			goto addr_err;
3247 
3248 		if (!is_valid(dev_priv, addr)) {
3249 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3250 			err = -EINVAL;
3251 			goto addr_err;
3252 		}
3253 
3254 		err = get_user(value, regs + 1);
3255 		if (err)
3256 			goto addr_err;
3257 
3258 		oa_regs[i].addr = _MMIO(addr);
3259 		oa_regs[i].value = mask_reg_value(addr, value);
3260 
3261 		regs += 2;
3262 	}
3263 
3264 	return oa_regs;
3265 
3266 addr_err:
3267 	kfree(oa_regs);
3268 	return ERR_PTR(err);
3269 }
3270 
3271 static ssize_t show_dynamic_id(struct device *dev,
3272 			       struct device_attribute *attr,
3273 			       char *buf)
3274 {
3275 	struct i915_oa_config *oa_config =
3276 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3277 
3278 	return sprintf(buf, "%d\n", oa_config->id);
3279 }
3280 
3281 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3282 					 struct i915_oa_config *oa_config)
3283 {
3284 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3285 	oa_config->sysfs_metric_id.attr.name = "id";
3286 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3287 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3288 	oa_config->sysfs_metric_id.store = NULL;
3289 
3290 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3291 	oa_config->attrs[1] = NULL;
3292 
3293 	oa_config->sysfs_metric.name = oa_config->uuid;
3294 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3295 
3296 	return sysfs_create_group(dev_priv->perf.metrics_kobj,
3297 				  &oa_config->sysfs_metric);
3298 }
3299 
3300 /**
3301  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3302  * @dev: drm device
3303  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3304  *        userspace (unvalidated)
3305  * @file: drm file
3306  *
3307  * Validates the submitted OA register to be saved into a new OA config that
3308  * can then be used for programming the OA unit and its NOA network.
3309  *
3310  * Returns: A new allocated config number to be used with the perf open ioctl
3311  * or a negative error code on failure.
3312  */
3313 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3314 			       struct drm_file *file)
3315 {
3316 	struct drm_i915_private *dev_priv = dev->dev_private;
3317 	struct drm_i915_perf_oa_config *args = data;
3318 	struct i915_oa_config *oa_config, *tmp;
3319 	int err, id;
3320 
3321 	if (!dev_priv->perf.initialized) {
3322 		DRM_DEBUG("i915 perf interface not available for this system\n");
3323 		return -ENOTSUPP;
3324 	}
3325 
3326 	if (!dev_priv->perf.metrics_kobj) {
3327 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3328 		return -EINVAL;
3329 	}
3330 
3331 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3332 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3333 		return -EACCES;
3334 	}
3335 
3336 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3337 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3338 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
3339 		DRM_DEBUG("No OA registers given\n");
3340 		return -EINVAL;
3341 	}
3342 
3343 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3344 	if (!oa_config) {
3345 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
3346 		return -ENOMEM;
3347 	}
3348 
3349 	atomic_set(&oa_config->ref_count, 1);
3350 
3351 	if (!uuid_is_valid(args->uuid)) {
3352 		DRM_DEBUG("Invalid uuid format for OA config\n");
3353 		err = -EINVAL;
3354 		goto reg_err;
3355 	}
3356 
3357 	/* Last character in oa_config->uuid will be 0 because oa_config is
3358 	 * kzalloc.
3359 	 */
3360 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3361 
3362 	oa_config->mux_regs_len = args->n_mux_regs;
3363 	oa_config->mux_regs =
3364 		alloc_oa_regs(dev_priv,
3365 			      dev_priv->perf.ops.is_valid_mux_reg,
3366 			      u64_to_user_ptr(args->mux_regs_ptr),
3367 			      args->n_mux_regs);
3368 
3369 	if (IS_ERR(oa_config->mux_regs)) {
3370 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3371 		err = PTR_ERR(oa_config->mux_regs);
3372 		goto reg_err;
3373 	}
3374 
3375 	oa_config->b_counter_regs_len = args->n_boolean_regs;
3376 	oa_config->b_counter_regs =
3377 		alloc_oa_regs(dev_priv,
3378 			      dev_priv->perf.ops.is_valid_b_counter_reg,
3379 			      u64_to_user_ptr(args->boolean_regs_ptr),
3380 			      args->n_boolean_regs);
3381 
3382 	if (IS_ERR(oa_config->b_counter_regs)) {
3383 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3384 		err = PTR_ERR(oa_config->b_counter_regs);
3385 		goto reg_err;
3386 	}
3387 
3388 	if (INTEL_GEN(dev_priv) < 8) {
3389 		if (args->n_flex_regs != 0) {
3390 			err = -EINVAL;
3391 			goto reg_err;
3392 		}
3393 	} else {
3394 		oa_config->flex_regs_len = args->n_flex_regs;
3395 		oa_config->flex_regs =
3396 			alloc_oa_regs(dev_priv,
3397 				      dev_priv->perf.ops.is_valid_flex_reg,
3398 				      u64_to_user_ptr(args->flex_regs_ptr),
3399 				      args->n_flex_regs);
3400 
3401 		if (IS_ERR(oa_config->flex_regs)) {
3402 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3403 			err = PTR_ERR(oa_config->flex_regs);
3404 			goto reg_err;
3405 		}
3406 	}
3407 
3408 	err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3409 	if (err)
3410 		goto reg_err;
3411 
3412 	/* We shouldn't have too many configs, so this iteration shouldn't be
3413 	 * too costly.
3414 	 */
3415 	idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3416 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
3417 			DRM_DEBUG("OA config already exists with this uuid\n");
3418 			err = -EADDRINUSE;
3419 			goto sysfs_err;
3420 		}
3421 	}
3422 
3423 	err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3424 	if (err) {
3425 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3426 		goto sysfs_err;
3427 	}
3428 
3429 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3430 	oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3431 				  oa_config, 2,
3432 				  0, GFP_KERNEL);
3433 	if (oa_config->id < 0) {
3434 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3435 		err = oa_config->id;
3436 		goto sysfs_err;
3437 	}
3438 
3439 	mutex_unlock(&dev_priv->perf.metrics_lock);
3440 
3441 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3442 
3443 	return oa_config->id;
3444 
3445 sysfs_err:
3446 	mutex_unlock(&dev_priv->perf.metrics_lock);
3447 reg_err:
3448 	put_oa_config(dev_priv, oa_config);
3449 	DRM_DEBUG("Failed to add new OA config\n");
3450 	return err;
3451 }
3452 
3453 /**
3454  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3455  * @dev: drm device
3456  * @data: ioctl data (pointer to u64 integer) copied from userspace
3457  * @file: drm file
3458  *
3459  * Configs can be removed while being used, the will stop appearing in sysfs
3460  * and their content will be freed when the stream using the config is closed.
3461  *
3462  * Returns: 0 on success or a negative error code on failure.
3463  */
3464 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3465 				  struct drm_file *file)
3466 {
3467 	struct drm_i915_private *dev_priv = dev->dev_private;
3468 	u64 *arg = data;
3469 	struct i915_oa_config *oa_config;
3470 	int ret;
3471 
3472 	if (!dev_priv->perf.initialized) {
3473 		DRM_DEBUG("i915 perf interface not available for this system\n");
3474 		return -ENOTSUPP;
3475 	}
3476 
3477 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3478 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3479 		return -EACCES;
3480 	}
3481 
3482 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3483 	if (ret)
3484 		goto lock_err;
3485 
3486 	oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3487 	if (!oa_config) {
3488 		DRM_DEBUG("Failed to remove unknown OA config\n");
3489 		ret = -ENOENT;
3490 		goto config_err;
3491 	}
3492 
3493 	GEM_BUG_ON(*arg != oa_config->id);
3494 
3495 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3496 			   &oa_config->sysfs_metric);
3497 
3498 	idr_remove(&dev_priv->perf.metrics_idr, *arg);
3499 
3500 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3501 
3502 	put_oa_config(dev_priv, oa_config);
3503 
3504 config_err:
3505 	mutex_unlock(&dev_priv->perf.metrics_lock);
3506 lock_err:
3507 	return ret;
3508 }
3509 
3510 static struct ctl_table oa_table[] = {
3511 	{
3512 	 .procname = "perf_stream_paranoid",
3513 	 .data = &i915_perf_stream_paranoid,
3514 	 .maxlen = sizeof(i915_perf_stream_paranoid),
3515 	 .mode = 0644,
3516 	 .proc_handler = proc_dointvec_minmax,
3517 	 .extra1 = SYSCTL_ZERO,
3518 	 .extra2 = SYSCTL_ONE,
3519 	 },
3520 	{
3521 	 .procname = "oa_max_sample_rate",
3522 	 .data = &i915_oa_max_sample_rate,
3523 	 .maxlen = sizeof(i915_oa_max_sample_rate),
3524 	 .mode = 0644,
3525 	 .proc_handler = proc_dointvec_minmax,
3526 	 .extra1 = SYSCTL_ZERO,
3527 	 .extra2 = &oa_sample_rate_hard_limit,
3528 	 },
3529 	{}
3530 };
3531 
3532 static struct ctl_table i915_root[] = {
3533 	{
3534 	 .procname = "i915",
3535 	 .maxlen = 0,
3536 	 .mode = 0555,
3537 	 .child = oa_table,
3538 	 },
3539 	{}
3540 };
3541 
3542 static struct ctl_table dev_root[] = {
3543 	{
3544 	 .procname = "dev",
3545 	 .maxlen = 0,
3546 	 .mode = 0555,
3547 	 .child = i915_root,
3548 	 },
3549 	{}
3550 };
3551 
3552 /**
3553  * i915_perf_init - initialize i915-perf state on module load
3554  * @dev_priv: i915 device instance
3555  *
3556  * Initializes i915-perf state without exposing anything to userspace.
3557  *
3558  * Note: i915-perf initialization is split into an 'init' and 'register'
3559  * phase with the i915_perf_register() exposing state to userspace.
3560  */
3561 void i915_perf_init(struct drm_i915_private *dev_priv)
3562 {
3563 	if (IS_HASWELL(dev_priv)) {
3564 		dev_priv->perf.ops.is_valid_b_counter_reg =
3565 			gen7_is_valid_b_counter_addr;
3566 		dev_priv->perf.ops.is_valid_mux_reg =
3567 			hsw_is_valid_mux_addr;
3568 		dev_priv->perf.ops.is_valid_flex_reg = NULL;
3569 		dev_priv->perf.ops.enable_metric_set = hsw_enable_metric_set;
3570 		dev_priv->perf.ops.disable_metric_set = hsw_disable_metric_set;
3571 		dev_priv->perf.ops.oa_enable = gen7_oa_enable;
3572 		dev_priv->perf.ops.oa_disable = gen7_oa_disable;
3573 		dev_priv->perf.ops.read = gen7_oa_read;
3574 		dev_priv->perf.ops.oa_hw_tail_read =
3575 			gen7_oa_hw_tail_read;
3576 
3577 		dev_priv->perf.oa_formats = hsw_oa_formats;
3578 	} else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3579 		/* Note: that although we could theoretically also support the
3580 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3581 		 * this driver, before upstreaming did this) it didn't seem
3582 		 * worth the complexity to maintain now that BDW+ enable
3583 		 * execlist mode by default.
3584 		 */
3585 		dev_priv->perf.oa_formats = gen8_plus_oa_formats;
3586 
3587 		dev_priv->perf.ops.oa_enable = gen8_oa_enable;
3588 		dev_priv->perf.ops.oa_disable = gen8_oa_disable;
3589 		dev_priv->perf.ops.read = gen8_oa_read;
3590 		dev_priv->perf.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3591 
3592 		if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3593 			dev_priv->perf.ops.is_valid_b_counter_reg =
3594 				gen7_is_valid_b_counter_addr;
3595 			dev_priv->perf.ops.is_valid_mux_reg =
3596 				gen8_is_valid_mux_addr;
3597 			dev_priv->perf.ops.is_valid_flex_reg =
3598 				gen8_is_valid_flex_addr;
3599 
3600 			if (IS_CHERRYVIEW(dev_priv)) {
3601 				dev_priv->perf.ops.is_valid_mux_reg =
3602 					chv_is_valid_mux_addr;
3603 			}
3604 
3605 			dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3606 			dev_priv->perf.ops.disable_metric_set = gen8_disable_metric_set;
3607 
3608 			if (IS_GEN(dev_priv, 8)) {
3609 				dev_priv->perf.ctx_oactxctrl_offset = 0x120;
3610 				dev_priv->perf.ctx_flexeu0_offset = 0x2ce;
3611 
3612 				dev_priv->perf.gen8_valid_ctx_bit = BIT(25);
3613 			} else {
3614 				dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3615 				dev_priv->perf.ctx_flexeu0_offset = 0x3de;
3616 
3617 				dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
3618 			}
3619 		} else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3620 			dev_priv->perf.ops.is_valid_b_counter_reg =
3621 				gen7_is_valid_b_counter_addr;
3622 			dev_priv->perf.ops.is_valid_mux_reg =
3623 				gen10_is_valid_mux_addr;
3624 			dev_priv->perf.ops.is_valid_flex_reg =
3625 				gen8_is_valid_flex_addr;
3626 
3627 			dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3628 			dev_priv->perf.ops.disable_metric_set = gen10_disable_metric_set;
3629 
3630 			if (IS_GEN(dev_priv, 10)) {
3631 				dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3632 				dev_priv->perf.ctx_flexeu0_offset = 0x3de;
3633 			} else {
3634 				dev_priv->perf.ctx_oactxctrl_offset = 0x124;
3635 				dev_priv->perf.ctx_flexeu0_offset = 0x78e;
3636 			}
3637 			dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
3638 		}
3639 	}
3640 
3641 	if (dev_priv->perf.ops.enable_metric_set) {
3642 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3643 		mutex_init(&dev_priv->perf.lock);
3644 
3645 		oa_sample_rate_hard_limit = 1000 *
3646 			(RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3647 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3648 
3649 		mutex_init(&dev_priv->perf.metrics_lock);
3650 		idr_init(&dev_priv->perf.metrics_idr);
3651 
3652 		/* We set up some ratelimit state to potentially throttle any
3653 		 * _NOTES about spurious, invalid OA reports which we don't
3654 		 * forward to userspace.
3655 		 *
3656 		 * We print a _NOTE about any throttling when closing the
3657 		 * stream instead of waiting until driver _fini which no one
3658 		 * would ever see.
3659 		 *
3660 		 * Using the same limiting factors as printk_ratelimit()
3661 		 */
3662 		ratelimit_state_init(&dev_priv->perf.spurious_report_rs,
3663 				     5 * HZ, 10);
3664 		/* Since we use a DRM_NOTE for spurious reports it would be
3665 		 * inconsistent to let __ratelimit() automatically print a
3666 		 * warning for throttling.
3667 		 */
3668 		ratelimit_set_flags(&dev_priv->perf.spurious_report_rs,
3669 				    RATELIMIT_MSG_ON_RELEASE);
3670 
3671 		dev_priv->perf.initialized = true;
3672 	}
3673 }
3674 
3675 static int destroy_config(int id, void *p, void *data)
3676 {
3677 	struct drm_i915_private *dev_priv = data;
3678 	struct i915_oa_config *oa_config = p;
3679 
3680 	put_oa_config(dev_priv, oa_config);
3681 
3682 	return 0;
3683 }
3684 
3685 /**
3686  * i915_perf_fini - Counter part to i915_perf_init()
3687  * @dev_priv: i915 device instance
3688  */
3689 void i915_perf_fini(struct drm_i915_private *dev_priv)
3690 {
3691 	if (!dev_priv->perf.initialized)
3692 		return;
3693 
3694 	idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3695 	idr_destroy(&dev_priv->perf.metrics_idr);
3696 
3697 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3698 
3699 	memset(&dev_priv->perf.ops, 0, sizeof(dev_priv->perf.ops));
3700 
3701 	dev_priv->perf.initialized = false;
3702 }
3703