1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_execlists_submission.h" 202 #include "gt/intel_gpu_commands.h" 203 #include "gt/intel_gt.h" 204 #include "gt/intel_gt_clock_utils.h" 205 #include "gt/intel_lrc.h" 206 #include "gt/intel_ring.h" 207 208 #include "i915_drv.h" 209 #include "i915_perf.h" 210 211 /* HW requires this to be a power of two, between 128k and 16M, though driver 212 * is currently generally designed assuming the largest 16M size is used such 213 * that the overflow cases are unlikely in normal operation. 214 */ 215 #define OA_BUFFER_SIZE SZ_16M 216 217 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 218 219 /** 220 * DOC: OA Tail Pointer Race 221 * 222 * There's a HW race condition between OA unit tail pointer register updates and 223 * writes to memory whereby the tail pointer can sometimes get ahead of what's 224 * been written out to the OA buffer so far (in terms of what's visible to the 225 * CPU). 226 * 227 * Although this can be observed explicitly while copying reports to userspace 228 * by checking for a zeroed report-id field in tail reports, we want to account 229 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 230 * redundant read() attempts. 231 * 232 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 233 * in the OA buffer, starting from the tail reported by the HW until we find a 234 * report with its first 2 dwords not 0 meaning its previous report is 235 * completely in memory and ready to be read. Those dwords are also set to 0 236 * once read and the whole buffer is cleared upon OA buffer initialization. The 237 * first dword is the reason for this report while the second is the timestamp, 238 * making the chances of having those 2 fields at 0 fairly unlikely. A more 239 * detailed explanation is available in oa_buffer_check_unlocked(). 240 * 241 * Most of the implementation details for this workaround are in 242 * oa_buffer_check_unlocked() and _append_oa_reports() 243 * 244 * Note for posterity: previously the driver used to define an effective tail 245 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 246 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 247 * This was flawed considering that the OA unit may also automatically generate 248 * non-periodic reports (such as on context switch) or the OA unit may be 249 * enabled without any periodic sampling. 250 */ 251 #define OA_TAIL_MARGIN_NSEC 100000ULL 252 #define INVALID_TAIL_PTR 0xffffffff 253 254 /* The default frequency for checking whether the OA unit has written new 255 * reports to the circular OA buffer... 256 */ 257 #define DEFAULT_POLL_FREQUENCY_HZ 200 258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 259 260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 261 static u32 i915_perf_stream_paranoid = true; 262 263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 264 * of the 64bit timestamp bits to trigger reports from) but there's currently 265 * no known use case for sampling as infrequently as once per 47 thousand years. 266 * 267 * Since the timestamps included in OA reports are only 32bits it seems 268 * reasonable to limit the OA exponent where it's still possible to account for 269 * overflow in OA report timestamps. 270 */ 271 #define OA_EXPONENT_MAX 31 272 273 #define INVALID_CTX_ID 0xffffffff 274 275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 276 #define OAREPORT_REASON_MASK 0x3f 277 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 278 #define OAREPORT_REASON_SHIFT 19 279 #define OAREPORT_REASON_TIMER (1<<0) 280 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 281 #define OAREPORT_REASON_CLK_RATIO (1<<5) 282 283 284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 285 * 286 * The highest sampling frequency we can theoretically program the OA unit 287 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 288 * 289 * Initialized just before we register the sysctl parameter. 290 */ 291 static int oa_sample_rate_hard_limit; 292 293 /* Theoretically we can program the OA unit to sample every 160ns but don't 294 * allow that by default unless root... 295 * 296 * The default threshold of 100000Hz is based on perf's similar 297 * kernel.perf_event_max_sample_rate sysctl parameter. 298 */ 299 static u32 i915_oa_max_sample_rate = 100000; 300 301 /* XXX: beware if future OA HW adds new report formats that the current 302 * code assumes all reports have a power-of-two size and ~(size - 1) can 303 * be used as a mask to align the OA tail pointer. 304 */ 305 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 306 [I915_OA_FORMAT_A13] = { 0, 64 }, 307 [I915_OA_FORMAT_A29] = { 1, 128 }, 308 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 309 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 310 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 311 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 312 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 313 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 }; 318 319 #define SAMPLE_OA_REPORT (1<<0) 320 321 /** 322 * struct perf_open_properties - for validated properties given to open a stream 323 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 324 * @single_context: Whether a single or all gpu contexts should be monitored 325 * @hold_preemption: Whether the preemption is disabled for the filtered 326 * context 327 * @ctx_handle: A gem ctx handle for use with @single_context 328 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 329 * @oa_format: An OA unit HW report format 330 * @oa_periodic: Whether to enable periodic OA unit sampling 331 * @oa_period_exponent: The OA unit sampling period is derived from this 332 * @engine: The engine (typically rcs0) being monitored by the OA unit 333 * @has_sseu: Whether @sseu was specified by userspace 334 * @sseu: internal SSEU configuration computed either from the userspace 335 * specified configuration in the opening parameters or a default value 336 * (see get_default_sseu_config()) 337 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 338 * data availability 339 * 340 * As read_properties_unlocked() enumerates and validates the properties given 341 * to open a stream of metrics the configuration is built up in the structure 342 * which starts out zero initialized. 343 */ 344 struct perf_open_properties { 345 u32 sample_flags; 346 347 u64 single_context:1; 348 u64 hold_preemption:1; 349 u64 ctx_handle; 350 351 /* OA sampling state */ 352 int metrics_set; 353 int oa_format; 354 bool oa_periodic; 355 int oa_period_exponent; 356 357 struct intel_engine_cs *engine; 358 359 bool has_sseu; 360 struct intel_sseu sseu; 361 362 u64 poll_oa_period; 363 }; 364 365 struct i915_oa_config_bo { 366 struct llist_node node; 367 368 struct i915_oa_config *oa_config; 369 struct i915_vma *vma; 370 }; 371 372 static struct ctl_table_header *sysctl_header; 373 374 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 375 376 void i915_oa_config_release(struct kref *ref) 377 { 378 struct i915_oa_config *oa_config = 379 container_of(ref, typeof(*oa_config), ref); 380 381 kfree(oa_config->flex_regs); 382 kfree(oa_config->b_counter_regs); 383 kfree(oa_config->mux_regs); 384 385 kfree_rcu(oa_config, rcu); 386 } 387 388 struct i915_oa_config * 389 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 390 { 391 struct i915_oa_config *oa_config; 392 393 rcu_read_lock(); 394 oa_config = idr_find(&perf->metrics_idr, metrics_set); 395 if (oa_config) 396 oa_config = i915_oa_config_get(oa_config); 397 rcu_read_unlock(); 398 399 return oa_config; 400 } 401 402 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 403 { 404 i915_oa_config_put(oa_bo->oa_config); 405 i915_vma_put(oa_bo->vma); 406 kfree(oa_bo); 407 } 408 409 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 410 { 411 struct intel_uncore *uncore = stream->uncore; 412 413 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 414 GEN12_OAG_OATAILPTR_MASK; 415 } 416 417 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 418 { 419 struct intel_uncore *uncore = stream->uncore; 420 421 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 422 } 423 424 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 425 { 426 struct intel_uncore *uncore = stream->uncore; 427 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 428 429 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 430 } 431 432 /** 433 * oa_buffer_check_unlocked - check for data and update tail ptr state 434 * @stream: i915 stream instance 435 * 436 * This is either called via fops (for blocking reads in user ctx) or the poll 437 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 438 * if there is data available for userspace to read. 439 * 440 * This function is central to providing a workaround for the OA unit tail 441 * pointer having a race with respect to what data is visible to the CPU. 442 * It is responsible for reading tail pointers from the hardware and giving 443 * the pointers time to 'age' before they are made available for reading. 444 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 445 * 446 * Besides returning true when there is data available to read() this function 447 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 448 * object. 449 * 450 * Note: It's safe to read OA config state here unlocked, assuming that this is 451 * only called while the stream is enabled, while the global OA configuration 452 * can't be modified. 453 * 454 * Returns: %true if the OA buffer contains data, else %false 455 */ 456 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 457 { 458 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 459 int report_size = stream->oa_buffer.format_size; 460 unsigned long flags; 461 bool pollin; 462 u32 hw_tail; 463 u64 now; 464 465 /* We have to consider the (unlikely) possibility that read() errors 466 * could result in an OA buffer reset which might reset the head and 467 * tail state. 468 */ 469 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 470 471 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 472 473 /* The tail pointer increases in 64 byte increments, 474 * not in report_size steps... 475 */ 476 hw_tail &= ~(report_size - 1); 477 478 now = ktime_get_mono_fast_ns(); 479 480 if (hw_tail == stream->oa_buffer.aging_tail && 481 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 482 /* If the HW tail hasn't move since the last check and the HW 483 * tail has been aging for long enough, declare it the new 484 * tail. 485 */ 486 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 487 } else { 488 u32 head, tail, aged_tail; 489 490 /* NB: The head we observe here might effectively be a little 491 * out of date. If a read() is in progress, the head could be 492 * anywhere between this head and stream->oa_buffer.tail. 493 */ 494 head = stream->oa_buffer.head - gtt_offset; 495 aged_tail = stream->oa_buffer.tail - gtt_offset; 496 497 hw_tail -= gtt_offset; 498 tail = hw_tail; 499 500 /* Walk the stream backward until we find a report with dword 0 501 * & 1 not at 0. Since the circular buffer pointers progress by 502 * increments of 64 bytes and that reports can be up to 256 503 * bytes long, we can't tell whether a report has fully landed 504 * in memory before the first 2 dwords of the following report 505 * have effectively landed. 506 * 507 * This is assuming that the writes of the OA unit land in 508 * memory in the order they were written to. 509 * If not : (╯°□°)╯︵ ┻━┻ 510 */ 511 while (OA_TAKEN(tail, aged_tail) >= report_size) { 512 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 513 514 if (report32[0] != 0 || report32[1] != 0) 515 break; 516 517 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 518 } 519 520 if (OA_TAKEN(hw_tail, tail) > report_size && 521 __ratelimit(&stream->perf->tail_pointer_race)) 522 DRM_NOTE("unlanded report(s) head=0x%x " 523 "tail=0x%x hw_tail=0x%x\n", 524 head, tail, hw_tail); 525 526 stream->oa_buffer.tail = gtt_offset + tail; 527 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 528 stream->oa_buffer.aging_timestamp = now; 529 } 530 531 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 532 stream->oa_buffer.head - gtt_offset) >= report_size; 533 534 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 535 536 return pollin; 537 } 538 539 /** 540 * append_oa_status - Appends a status record to a userspace read() buffer. 541 * @stream: An i915-perf stream opened for OA metrics 542 * @buf: destination buffer given by userspace 543 * @count: the number of bytes userspace wants to read 544 * @offset: (inout): the current position for writing into @buf 545 * @type: The kind of status to report to userspace 546 * 547 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 548 * into the userspace read() buffer. 549 * 550 * The @buf @offset will only be updated on success. 551 * 552 * Returns: 0 on success, negative error code on failure. 553 */ 554 static int append_oa_status(struct i915_perf_stream *stream, 555 char __user *buf, 556 size_t count, 557 size_t *offset, 558 enum drm_i915_perf_record_type type) 559 { 560 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 561 562 if ((count - *offset) < header.size) 563 return -ENOSPC; 564 565 if (copy_to_user(buf + *offset, &header, sizeof(header))) 566 return -EFAULT; 567 568 (*offset) += header.size; 569 570 return 0; 571 } 572 573 /** 574 * append_oa_sample - Copies single OA report into userspace read() buffer. 575 * @stream: An i915-perf stream opened for OA metrics 576 * @buf: destination buffer given by userspace 577 * @count: the number of bytes userspace wants to read 578 * @offset: (inout): the current position for writing into @buf 579 * @report: A single OA report to (optionally) include as part of the sample 580 * 581 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 582 * properties when opening a stream, tracked as `stream->sample_flags`. This 583 * function copies the requested components of a single sample to the given 584 * read() @buf. 585 * 586 * The @buf @offset will only be updated on success. 587 * 588 * Returns: 0 on success, negative error code on failure. 589 */ 590 static int append_oa_sample(struct i915_perf_stream *stream, 591 char __user *buf, 592 size_t count, 593 size_t *offset, 594 const u8 *report) 595 { 596 int report_size = stream->oa_buffer.format_size; 597 struct drm_i915_perf_record_header header; 598 599 header.type = DRM_I915_PERF_RECORD_SAMPLE; 600 header.pad = 0; 601 header.size = stream->sample_size; 602 603 if ((count - *offset) < header.size) 604 return -ENOSPC; 605 606 buf += *offset; 607 if (copy_to_user(buf, &header, sizeof(header))) 608 return -EFAULT; 609 buf += sizeof(header); 610 611 if (copy_to_user(buf, report, report_size)) 612 return -EFAULT; 613 614 (*offset) += header.size; 615 616 return 0; 617 } 618 619 /** 620 * gen8_append_oa_reports - Copies all buffered OA reports into 621 * userspace read() buffer. 622 * @stream: An i915-perf stream opened for OA metrics 623 * @buf: destination buffer given by userspace 624 * @count: the number of bytes userspace wants to read 625 * @offset: (inout): the current position for writing into @buf 626 * 627 * Notably any error condition resulting in a short read (-%ENOSPC or 628 * -%EFAULT) will be returned even though one or more records may 629 * have been successfully copied. In this case it's up to the caller 630 * to decide if the error should be squashed before returning to 631 * userspace. 632 * 633 * Note: reports are consumed from the head, and appended to the 634 * tail, so the tail chases the head?... If you think that's mad 635 * and back-to-front you're not alone, but this follows the 636 * Gen PRM naming convention. 637 * 638 * Returns: 0 on success, negative error code on failure. 639 */ 640 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 641 char __user *buf, 642 size_t count, 643 size_t *offset) 644 { 645 struct intel_uncore *uncore = stream->uncore; 646 int report_size = stream->oa_buffer.format_size; 647 u8 *oa_buf_base = stream->oa_buffer.vaddr; 648 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 649 u32 mask = (OA_BUFFER_SIZE - 1); 650 size_t start_offset = *offset; 651 unsigned long flags; 652 u32 head, tail; 653 u32 taken; 654 int ret = 0; 655 656 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 657 return -EIO; 658 659 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 660 661 head = stream->oa_buffer.head; 662 tail = stream->oa_buffer.tail; 663 664 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 665 666 /* 667 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 668 * while indexing relative to oa_buf_base. 669 */ 670 head -= gtt_offset; 671 tail -= gtt_offset; 672 673 /* 674 * An out of bounds or misaligned head or tail pointer implies a driver 675 * bug since we validate + align the tail pointers we read from the 676 * hardware and we are in full control of the head pointer which should 677 * only be incremented by multiples of the report size (notably also 678 * all a power of two). 679 */ 680 if (drm_WARN_ONCE(&uncore->i915->drm, 681 head > OA_BUFFER_SIZE || head % report_size || 682 tail > OA_BUFFER_SIZE || tail % report_size, 683 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 684 head, tail)) 685 return -EIO; 686 687 688 for (/* none */; 689 (taken = OA_TAKEN(tail, head)); 690 head = (head + report_size) & mask) { 691 u8 *report = oa_buf_base + head; 692 u32 *report32 = (void *)report; 693 u32 ctx_id; 694 u32 reason; 695 696 /* 697 * All the report sizes factor neatly into the buffer 698 * size so we never expect to see a report split 699 * between the beginning and end of the buffer. 700 * 701 * Given the initial alignment check a misalignment 702 * here would imply a driver bug that would result 703 * in an overrun. 704 */ 705 if (drm_WARN_ON(&uncore->i915->drm, 706 (OA_BUFFER_SIZE - head) < report_size)) { 707 drm_err(&uncore->i915->drm, 708 "Spurious OA head ptr: non-integral report offset\n"); 709 break; 710 } 711 712 /* 713 * The reason field includes flags identifying what 714 * triggered this specific report (mostly timer 715 * triggered or e.g. due to a context switch). 716 * 717 * This field is never expected to be zero so we can 718 * check that the report isn't invalid before copying 719 * it to userspace... 720 */ 721 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 722 (GRAPHICS_VER(stream->perf->i915) == 12 ? 723 OAREPORT_REASON_MASK_EXTENDED : 724 OAREPORT_REASON_MASK)); 725 726 ctx_id = report32[2] & stream->specific_ctx_id_mask; 727 728 /* 729 * Squash whatever is in the CTX_ID field if it's marked as 730 * invalid to be sure we avoid false-positive, single-context 731 * filtering below... 732 * 733 * Note: that we don't clear the valid_ctx_bit so userspace can 734 * understand that the ID has been squashed by the kernel. 735 */ 736 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 737 GRAPHICS_VER(stream->perf->i915) <= 11) 738 ctx_id = report32[2] = INVALID_CTX_ID; 739 740 /* 741 * NB: For Gen 8 the OA unit no longer supports clock gating 742 * off for a specific context and the kernel can't securely 743 * stop the counters from updating as system-wide / global 744 * values. 745 * 746 * Automatic reports now include a context ID so reports can be 747 * filtered on the cpu but it's not worth trying to 748 * automatically subtract/hide counter progress for other 749 * contexts while filtering since we can't stop userspace 750 * issuing MI_REPORT_PERF_COUNT commands which would still 751 * provide a side-band view of the real values. 752 * 753 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 754 * to normalize counters for a single filtered context then it 755 * needs be forwarded bookend context-switch reports so that it 756 * can track switches in between MI_REPORT_PERF_COUNT commands 757 * and can itself subtract/ignore the progress of counters 758 * associated with other contexts. Note that the hardware 759 * automatically triggers reports when switching to a new 760 * context which are tagged with the ID of the newly active 761 * context. To avoid the complexity (and likely fragility) of 762 * reading ahead while parsing reports to try and minimize 763 * forwarding redundant context switch reports (i.e. between 764 * other, unrelated contexts) we simply elect to forward them 765 * all. 766 * 767 * We don't rely solely on the reason field to identify context 768 * switches since it's not-uncommon for periodic samples to 769 * identify a switch before any 'context switch' report. 770 */ 771 if (!stream->perf->exclusive_stream->ctx || 772 stream->specific_ctx_id == ctx_id || 773 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 774 reason & OAREPORT_REASON_CTX_SWITCH) { 775 776 /* 777 * While filtering for a single context we avoid 778 * leaking the IDs of other contexts. 779 */ 780 if (stream->perf->exclusive_stream->ctx && 781 stream->specific_ctx_id != ctx_id) { 782 report32[2] = INVALID_CTX_ID; 783 } 784 785 ret = append_oa_sample(stream, buf, count, offset, 786 report); 787 if (ret) 788 break; 789 790 stream->oa_buffer.last_ctx_id = ctx_id; 791 } 792 793 /* 794 * Clear out the first 2 dword as a mean to detect unlanded 795 * reports. 796 */ 797 report32[0] = 0; 798 report32[1] = 0; 799 } 800 801 if (start_offset != *offset) { 802 i915_reg_t oaheadptr; 803 804 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 805 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 806 807 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 808 809 /* 810 * We removed the gtt_offset for the copy loop above, indexing 811 * relative to oa_buf_base so put back here... 812 */ 813 head += gtt_offset; 814 intel_uncore_write(uncore, oaheadptr, 815 head & GEN12_OAG_OAHEADPTR_MASK); 816 stream->oa_buffer.head = head; 817 818 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 819 } 820 821 return ret; 822 } 823 824 /** 825 * gen8_oa_read - copy status records then buffered OA reports 826 * @stream: An i915-perf stream opened for OA metrics 827 * @buf: destination buffer given by userspace 828 * @count: the number of bytes userspace wants to read 829 * @offset: (inout): the current position for writing into @buf 830 * 831 * Checks OA unit status registers and if necessary appends corresponding 832 * status records for userspace (such as for a buffer full condition) and then 833 * initiate appending any buffered OA reports. 834 * 835 * Updates @offset according to the number of bytes successfully copied into 836 * the userspace buffer. 837 * 838 * NB: some data may be successfully copied to the userspace buffer 839 * even if an error is returned, and this is reflected in the 840 * updated @offset. 841 * 842 * Returns: zero on success or a negative error code 843 */ 844 static int gen8_oa_read(struct i915_perf_stream *stream, 845 char __user *buf, 846 size_t count, 847 size_t *offset) 848 { 849 struct intel_uncore *uncore = stream->uncore; 850 u32 oastatus; 851 i915_reg_t oastatus_reg; 852 int ret; 853 854 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 855 return -EIO; 856 857 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 858 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 859 860 oastatus = intel_uncore_read(uncore, oastatus_reg); 861 862 /* 863 * We treat OABUFFER_OVERFLOW as a significant error: 864 * 865 * Although theoretically we could handle this more gracefully 866 * sometimes, some Gens don't correctly suppress certain 867 * automatically triggered reports in this condition and so we 868 * have to assume that old reports are now being trampled 869 * over. 870 * 871 * Considering how we don't currently give userspace control 872 * over the OA buffer size and always configure a large 16MB 873 * buffer, then a buffer overflow does anyway likely indicate 874 * that something has gone quite badly wrong. 875 */ 876 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 877 ret = append_oa_status(stream, buf, count, offset, 878 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 879 if (ret) 880 return ret; 881 882 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 883 stream->period_exponent); 884 885 stream->perf->ops.oa_disable(stream); 886 stream->perf->ops.oa_enable(stream); 887 888 /* 889 * Note: .oa_enable() is expected to re-init the oabuffer and 890 * reset GEN8_OASTATUS for us 891 */ 892 oastatus = intel_uncore_read(uncore, oastatus_reg); 893 } 894 895 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 896 ret = append_oa_status(stream, buf, count, offset, 897 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 898 if (ret) 899 return ret; 900 901 intel_uncore_rmw(uncore, oastatus_reg, 902 GEN8_OASTATUS_COUNTER_OVERFLOW | 903 GEN8_OASTATUS_REPORT_LOST, 904 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 905 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 906 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 907 } 908 909 return gen8_append_oa_reports(stream, buf, count, offset); 910 } 911 912 /** 913 * gen7_append_oa_reports - Copies all buffered OA reports into 914 * userspace read() buffer. 915 * @stream: An i915-perf stream opened for OA metrics 916 * @buf: destination buffer given by userspace 917 * @count: the number of bytes userspace wants to read 918 * @offset: (inout): the current position for writing into @buf 919 * 920 * Notably any error condition resulting in a short read (-%ENOSPC or 921 * -%EFAULT) will be returned even though one or more records may 922 * have been successfully copied. In this case it's up to the caller 923 * to decide if the error should be squashed before returning to 924 * userspace. 925 * 926 * Note: reports are consumed from the head, and appended to the 927 * tail, so the tail chases the head?... If you think that's mad 928 * and back-to-front you're not alone, but this follows the 929 * Gen PRM naming convention. 930 * 931 * Returns: 0 on success, negative error code on failure. 932 */ 933 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 934 char __user *buf, 935 size_t count, 936 size_t *offset) 937 { 938 struct intel_uncore *uncore = stream->uncore; 939 int report_size = stream->oa_buffer.format_size; 940 u8 *oa_buf_base = stream->oa_buffer.vaddr; 941 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 942 u32 mask = (OA_BUFFER_SIZE - 1); 943 size_t start_offset = *offset; 944 unsigned long flags; 945 u32 head, tail; 946 u32 taken; 947 int ret = 0; 948 949 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 950 return -EIO; 951 952 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 953 954 head = stream->oa_buffer.head; 955 tail = stream->oa_buffer.tail; 956 957 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 958 959 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 960 * while indexing relative to oa_buf_base. 961 */ 962 head -= gtt_offset; 963 tail -= gtt_offset; 964 965 /* An out of bounds or misaligned head or tail pointer implies a driver 966 * bug since we validate + align the tail pointers we read from the 967 * hardware and we are in full control of the head pointer which should 968 * only be incremented by multiples of the report size (notably also 969 * all a power of two). 970 */ 971 if (drm_WARN_ONCE(&uncore->i915->drm, 972 head > OA_BUFFER_SIZE || head % report_size || 973 tail > OA_BUFFER_SIZE || tail % report_size, 974 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 975 head, tail)) 976 return -EIO; 977 978 979 for (/* none */; 980 (taken = OA_TAKEN(tail, head)); 981 head = (head + report_size) & mask) { 982 u8 *report = oa_buf_base + head; 983 u32 *report32 = (void *)report; 984 985 /* All the report sizes factor neatly into the buffer 986 * size so we never expect to see a report split 987 * between the beginning and end of the buffer. 988 * 989 * Given the initial alignment check a misalignment 990 * here would imply a driver bug that would result 991 * in an overrun. 992 */ 993 if (drm_WARN_ON(&uncore->i915->drm, 994 (OA_BUFFER_SIZE - head) < report_size)) { 995 drm_err(&uncore->i915->drm, 996 "Spurious OA head ptr: non-integral report offset\n"); 997 break; 998 } 999 1000 /* The report-ID field for periodic samples includes 1001 * some undocumented flags related to what triggered 1002 * the report and is never expected to be zero so we 1003 * can check that the report isn't invalid before 1004 * copying it to userspace... 1005 */ 1006 if (report32[0] == 0) { 1007 if (__ratelimit(&stream->perf->spurious_report_rs)) 1008 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1009 continue; 1010 } 1011 1012 ret = append_oa_sample(stream, buf, count, offset, report); 1013 if (ret) 1014 break; 1015 1016 /* Clear out the first 2 dwords as a mean to detect unlanded 1017 * reports. 1018 */ 1019 report32[0] = 0; 1020 report32[1] = 0; 1021 } 1022 1023 if (start_offset != *offset) { 1024 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1025 1026 /* We removed the gtt_offset for the copy loop above, indexing 1027 * relative to oa_buf_base so put back here... 1028 */ 1029 head += gtt_offset; 1030 1031 intel_uncore_write(uncore, GEN7_OASTATUS2, 1032 (head & GEN7_OASTATUS2_HEAD_MASK) | 1033 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1034 stream->oa_buffer.head = head; 1035 1036 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1037 } 1038 1039 return ret; 1040 } 1041 1042 /** 1043 * gen7_oa_read - copy status records then buffered OA reports 1044 * @stream: An i915-perf stream opened for OA metrics 1045 * @buf: destination buffer given by userspace 1046 * @count: the number of bytes userspace wants to read 1047 * @offset: (inout): the current position for writing into @buf 1048 * 1049 * Checks Gen 7 specific OA unit status registers and if necessary appends 1050 * corresponding status records for userspace (such as for a buffer full 1051 * condition) and then initiate appending any buffered OA reports. 1052 * 1053 * Updates @offset according to the number of bytes successfully copied into 1054 * the userspace buffer. 1055 * 1056 * Returns: zero on success or a negative error code 1057 */ 1058 static int gen7_oa_read(struct i915_perf_stream *stream, 1059 char __user *buf, 1060 size_t count, 1061 size_t *offset) 1062 { 1063 struct intel_uncore *uncore = stream->uncore; 1064 u32 oastatus1; 1065 int ret; 1066 1067 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1068 return -EIO; 1069 1070 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1071 1072 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1073 * bits while the OA unit is enabled (while the tail pointer 1074 * may be updated asynchronously) so we ignore status bits 1075 * that have already been reported to userspace. 1076 */ 1077 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1078 1079 /* We treat OABUFFER_OVERFLOW as a significant error: 1080 * 1081 * - The status can be interpreted to mean that the buffer is 1082 * currently full (with a higher precedence than OA_TAKEN() 1083 * which will start to report a near-empty buffer after an 1084 * overflow) but it's awkward that we can't clear the status 1085 * on Haswell, so without a reset we won't be able to catch 1086 * the state again. 1087 * 1088 * - Since it also implies the HW has started overwriting old 1089 * reports it may also affect our sanity checks for invalid 1090 * reports when copying to userspace that assume new reports 1091 * are being written to cleared memory. 1092 * 1093 * - In the future we may want to introduce a flight recorder 1094 * mode where the driver will automatically maintain a safe 1095 * guard band between head/tail, avoiding this overflow 1096 * condition, but we avoid the added driver complexity for 1097 * now. 1098 */ 1099 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1100 ret = append_oa_status(stream, buf, count, offset, 1101 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1102 if (ret) 1103 return ret; 1104 1105 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1106 stream->period_exponent); 1107 1108 stream->perf->ops.oa_disable(stream); 1109 stream->perf->ops.oa_enable(stream); 1110 1111 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1112 } 1113 1114 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1115 ret = append_oa_status(stream, buf, count, offset, 1116 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1117 if (ret) 1118 return ret; 1119 stream->perf->gen7_latched_oastatus1 |= 1120 GEN7_OASTATUS1_REPORT_LOST; 1121 } 1122 1123 return gen7_append_oa_reports(stream, buf, count, offset); 1124 } 1125 1126 /** 1127 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1128 * @stream: An i915-perf stream opened for OA metrics 1129 * 1130 * Called when userspace tries to read() from a blocking stream FD opened 1131 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1132 * OA buffer and wakes us. 1133 * 1134 * Note: it's acceptable to have this return with some false positives 1135 * since any subsequent read handling will return -EAGAIN if there isn't 1136 * really data ready for userspace yet. 1137 * 1138 * Returns: zero on success or a negative error code 1139 */ 1140 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1141 { 1142 /* We would wait indefinitely if periodic sampling is not enabled */ 1143 if (!stream->periodic) 1144 return -EIO; 1145 1146 return wait_event_interruptible(stream->poll_wq, 1147 oa_buffer_check_unlocked(stream)); 1148 } 1149 1150 /** 1151 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1152 * @stream: An i915-perf stream opened for OA metrics 1153 * @file: An i915 perf stream file 1154 * @wait: poll() state table 1155 * 1156 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1157 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1158 * when it sees data ready to read in the circular OA buffer. 1159 */ 1160 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1161 struct file *file, 1162 poll_table *wait) 1163 { 1164 poll_wait(file, &stream->poll_wq, wait); 1165 } 1166 1167 /** 1168 * i915_oa_read - just calls through to &i915_oa_ops->read 1169 * @stream: An i915-perf stream opened for OA metrics 1170 * @buf: destination buffer given by userspace 1171 * @count: the number of bytes userspace wants to read 1172 * @offset: (inout): the current position for writing into @buf 1173 * 1174 * Updates @offset according to the number of bytes successfully copied into 1175 * the userspace buffer. 1176 * 1177 * Returns: zero on success or a negative error code 1178 */ 1179 static int i915_oa_read(struct i915_perf_stream *stream, 1180 char __user *buf, 1181 size_t count, 1182 size_t *offset) 1183 { 1184 return stream->perf->ops.read(stream, buf, count, offset); 1185 } 1186 1187 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1188 { 1189 struct i915_gem_engines_iter it; 1190 struct i915_gem_context *ctx = stream->ctx; 1191 struct intel_context *ce; 1192 struct i915_gem_ww_ctx ww; 1193 int err = -ENODEV; 1194 1195 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1196 if (ce->engine != stream->engine) /* first match! */ 1197 continue; 1198 1199 err = 0; 1200 break; 1201 } 1202 i915_gem_context_unlock_engines(ctx); 1203 1204 if (err) 1205 return ERR_PTR(err); 1206 1207 i915_gem_ww_ctx_init(&ww, true); 1208 retry: 1209 /* 1210 * As the ID is the gtt offset of the context's vma we 1211 * pin the vma to ensure the ID remains fixed. 1212 */ 1213 err = intel_context_pin_ww(ce, &ww); 1214 if (err == -EDEADLK) { 1215 err = i915_gem_ww_ctx_backoff(&ww); 1216 if (!err) 1217 goto retry; 1218 } 1219 i915_gem_ww_ctx_fini(&ww); 1220 1221 if (err) 1222 return ERR_PTR(err); 1223 1224 stream->pinned_ctx = ce; 1225 return stream->pinned_ctx; 1226 } 1227 1228 /** 1229 * oa_get_render_ctx_id - determine and hold ctx hw id 1230 * @stream: An i915-perf stream opened for OA metrics 1231 * 1232 * Determine the render context hw id, and ensure it remains fixed for the 1233 * lifetime of the stream. This ensures that we don't have to worry about 1234 * updating the context ID in OACONTROL on the fly. 1235 * 1236 * Returns: zero on success or a negative error code 1237 */ 1238 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1239 { 1240 struct intel_context *ce; 1241 1242 ce = oa_pin_context(stream); 1243 if (IS_ERR(ce)) 1244 return PTR_ERR(ce); 1245 1246 switch (GRAPHICS_VER(ce->engine->i915)) { 1247 case 7: { 1248 /* 1249 * On Haswell we don't do any post processing of the reports 1250 * and don't need to use the mask. 1251 */ 1252 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1253 stream->specific_ctx_id_mask = 0; 1254 break; 1255 } 1256 1257 case 8: 1258 case 9: 1259 case 10: 1260 if (intel_engine_uses_guc(ce->engine)) { 1261 /* 1262 * When using GuC, the context descriptor we write in 1263 * i915 is read by GuC and rewritten before it's 1264 * actually written into the hardware. The LRCA is 1265 * what is put into the context id field of the 1266 * context descriptor by GuC. Because it's aligned to 1267 * a page, the lower 12bits are always at 0 and 1268 * dropped by GuC. They won't be part of the context 1269 * ID in the OA reports, so squash those lower bits. 1270 */ 1271 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1272 1273 /* 1274 * GuC uses the top bit to signal proxy submission, so 1275 * ignore that bit. 1276 */ 1277 stream->specific_ctx_id_mask = 1278 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1279 } else { 1280 stream->specific_ctx_id_mask = 1281 (1U << GEN8_CTX_ID_WIDTH) - 1; 1282 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1283 } 1284 break; 1285 1286 case 11: 1287 case 12: { 1288 stream->specific_ctx_id_mask = 1289 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1290 /* 1291 * Pick an unused context id 1292 * 0 - BITS_PER_LONG are used by other contexts 1293 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1294 */ 1295 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1296 break; 1297 } 1298 1299 default: 1300 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1301 } 1302 1303 ce->tag = stream->specific_ctx_id; 1304 1305 drm_dbg(&stream->perf->i915->drm, 1306 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1307 stream->specific_ctx_id, 1308 stream->specific_ctx_id_mask); 1309 1310 return 0; 1311 } 1312 1313 /** 1314 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1315 * @stream: An i915-perf stream opened for OA metrics 1316 * 1317 * In case anything needed doing to ensure the context HW ID would remain valid 1318 * for the lifetime of the stream, then that can be undone here. 1319 */ 1320 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1321 { 1322 struct intel_context *ce; 1323 1324 ce = fetch_and_zero(&stream->pinned_ctx); 1325 if (ce) { 1326 ce->tag = 0; /* recomputed on next submission after parking */ 1327 intel_context_unpin(ce); 1328 } 1329 1330 stream->specific_ctx_id = INVALID_CTX_ID; 1331 stream->specific_ctx_id_mask = 0; 1332 } 1333 1334 static void 1335 free_oa_buffer(struct i915_perf_stream *stream) 1336 { 1337 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1338 I915_VMA_RELEASE_MAP); 1339 1340 stream->oa_buffer.vaddr = NULL; 1341 } 1342 1343 static void 1344 free_oa_configs(struct i915_perf_stream *stream) 1345 { 1346 struct i915_oa_config_bo *oa_bo, *tmp; 1347 1348 i915_oa_config_put(stream->oa_config); 1349 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1350 free_oa_config_bo(oa_bo); 1351 } 1352 1353 static void 1354 free_noa_wait(struct i915_perf_stream *stream) 1355 { 1356 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1357 } 1358 1359 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1360 { 1361 struct i915_perf *perf = stream->perf; 1362 1363 BUG_ON(stream != perf->exclusive_stream); 1364 1365 /* 1366 * Unset exclusive_stream first, it will be checked while disabling 1367 * the metric set on gen8+. 1368 * 1369 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1370 */ 1371 WRITE_ONCE(perf->exclusive_stream, NULL); 1372 perf->ops.disable_metric_set(stream); 1373 1374 free_oa_buffer(stream); 1375 1376 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1377 intel_engine_pm_put(stream->engine); 1378 1379 if (stream->ctx) 1380 oa_put_render_ctx_id(stream); 1381 1382 free_oa_configs(stream); 1383 free_noa_wait(stream); 1384 1385 if (perf->spurious_report_rs.missed) { 1386 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1387 perf->spurious_report_rs.missed); 1388 } 1389 } 1390 1391 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1392 { 1393 struct intel_uncore *uncore = stream->uncore; 1394 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1395 unsigned long flags; 1396 1397 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1398 1399 /* Pre-DevBDW: OABUFFER must be set with counters off, 1400 * before OASTATUS1, but after OASTATUS2 1401 */ 1402 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1403 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1404 stream->oa_buffer.head = gtt_offset; 1405 1406 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1407 1408 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1409 gtt_offset | OABUFFER_SIZE_16M); 1410 1411 /* Mark that we need updated tail pointers to read from... */ 1412 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1413 stream->oa_buffer.tail = gtt_offset; 1414 1415 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1416 1417 /* On Haswell we have to track which OASTATUS1 flags we've 1418 * already seen since they can't be cleared while periodic 1419 * sampling is enabled. 1420 */ 1421 stream->perf->gen7_latched_oastatus1 = 0; 1422 1423 /* NB: although the OA buffer will initially be allocated 1424 * zeroed via shmfs (and so this memset is redundant when 1425 * first allocating), we may re-init the OA buffer, either 1426 * when re-enabling a stream or in error/reset paths. 1427 * 1428 * The reason we clear the buffer for each re-init is for the 1429 * sanity check in gen7_append_oa_reports() that looks at the 1430 * report-id field to make sure it's non-zero which relies on 1431 * the assumption that new reports are being written to zeroed 1432 * memory... 1433 */ 1434 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1435 } 1436 1437 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1438 { 1439 struct intel_uncore *uncore = stream->uncore; 1440 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1444 1445 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1446 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1447 stream->oa_buffer.head = gtt_offset; 1448 1449 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1450 1451 /* 1452 * PRM says: 1453 * 1454 * "This MMIO must be set before the OATAILPTR 1455 * register and after the OAHEADPTR register. This is 1456 * to enable proper functionality of the overflow 1457 * bit." 1458 */ 1459 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1460 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1461 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1462 1463 /* Mark that we need updated tail pointers to read from... */ 1464 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1465 stream->oa_buffer.tail = gtt_offset; 1466 1467 /* 1468 * Reset state used to recognise context switches, affecting which 1469 * reports we will forward to userspace while filtering for a single 1470 * context. 1471 */ 1472 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1473 1474 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1475 1476 /* 1477 * NB: although the OA buffer will initially be allocated 1478 * zeroed via shmfs (and so this memset is redundant when 1479 * first allocating), we may re-init the OA buffer, either 1480 * when re-enabling a stream or in error/reset paths. 1481 * 1482 * The reason we clear the buffer for each re-init is for the 1483 * sanity check in gen8_append_oa_reports() that looks at the 1484 * reason field to make sure it's non-zero which relies on 1485 * the assumption that new reports are being written to zeroed 1486 * memory... 1487 */ 1488 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1489 } 1490 1491 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1492 { 1493 struct intel_uncore *uncore = stream->uncore; 1494 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1495 unsigned long flags; 1496 1497 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1498 1499 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1500 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1501 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1502 stream->oa_buffer.head = gtt_offset; 1503 1504 /* 1505 * PRM says: 1506 * 1507 * "This MMIO must be set before the OATAILPTR 1508 * register and after the OAHEADPTR register. This is 1509 * to enable proper functionality of the overflow 1510 * bit." 1511 */ 1512 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1513 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1514 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1515 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1516 1517 /* Mark that we need updated tail pointers to read from... */ 1518 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1519 stream->oa_buffer.tail = gtt_offset; 1520 1521 /* 1522 * Reset state used to recognise context switches, affecting which 1523 * reports we will forward to userspace while filtering for a single 1524 * context. 1525 */ 1526 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1527 1528 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1529 1530 /* 1531 * NB: although the OA buffer will initially be allocated 1532 * zeroed via shmfs (and so this memset is redundant when 1533 * first allocating), we may re-init the OA buffer, either 1534 * when re-enabling a stream or in error/reset paths. 1535 * 1536 * The reason we clear the buffer for each re-init is for the 1537 * sanity check in gen8_append_oa_reports() that looks at the 1538 * reason field to make sure it's non-zero which relies on 1539 * the assumption that new reports are being written to zeroed 1540 * memory... 1541 */ 1542 memset(stream->oa_buffer.vaddr, 0, 1543 stream->oa_buffer.vma->size); 1544 } 1545 1546 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1547 { 1548 struct drm_i915_private *i915 = stream->perf->i915; 1549 struct drm_i915_gem_object *bo; 1550 struct i915_vma *vma; 1551 int ret; 1552 1553 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1554 return -ENODEV; 1555 1556 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1557 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1558 1559 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1560 if (IS_ERR(bo)) { 1561 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1562 return PTR_ERR(bo); 1563 } 1564 1565 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1566 1567 /* PreHSW required 512K alignment, HSW requires 16M */ 1568 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1569 if (IS_ERR(vma)) { 1570 ret = PTR_ERR(vma); 1571 goto err_unref; 1572 } 1573 stream->oa_buffer.vma = vma; 1574 1575 stream->oa_buffer.vaddr = 1576 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1577 if (IS_ERR(stream->oa_buffer.vaddr)) { 1578 ret = PTR_ERR(stream->oa_buffer.vaddr); 1579 goto err_unpin; 1580 } 1581 1582 return 0; 1583 1584 err_unpin: 1585 __i915_vma_unpin(vma); 1586 1587 err_unref: 1588 i915_gem_object_put(bo); 1589 1590 stream->oa_buffer.vaddr = NULL; 1591 stream->oa_buffer.vma = NULL; 1592 1593 return ret; 1594 } 1595 1596 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1597 bool save, i915_reg_t reg, u32 offset, 1598 u32 dword_count) 1599 { 1600 u32 cmd; 1601 u32 d; 1602 1603 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1604 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1605 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1606 cmd++; 1607 1608 for (d = 0; d < dword_count; d++) { 1609 *cs++ = cmd; 1610 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1611 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1612 offset) + 4 * d; 1613 *cs++ = 0; 1614 } 1615 1616 return cs; 1617 } 1618 1619 static int alloc_noa_wait(struct i915_perf_stream *stream) 1620 { 1621 struct drm_i915_private *i915 = stream->perf->i915; 1622 struct drm_i915_gem_object *bo; 1623 struct i915_vma *vma; 1624 const u64 delay_ticks = 0xffffffffffffffff - 1625 intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt, 1626 atomic64_read(&stream->perf->noa_programming_delay)); 1627 const u32 base = stream->engine->mmio_base; 1628 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1629 u32 *batch, *ts0, *cs, *jump; 1630 struct i915_gem_ww_ctx ww; 1631 int ret, i; 1632 enum { 1633 START_TS, 1634 NOW_TS, 1635 DELTA_TS, 1636 JUMP_PREDICATE, 1637 DELTA_TARGET, 1638 N_CS_GPR 1639 }; 1640 1641 bo = i915_gem_object_create_internal(i915, 4096); 1642 if (IS_ERR(bo)) { 1643 drm_err(&i915->drm, 1644 "Failed to allocate NOA wait batchbuffer\n"); 1645 return PTR_ERR(bo); 1646 } 1647 1648 i915_gem_ww_ctx_init(&ww, true); 1649 retry: 1650 ret = i915_gem_object_lock(bo, &ww); 1651 if (ret) 1652 goto out_ww; 1653 1654 /* 1655 * We pin in GGTT because we jump into this buffer now because 1656 * multiple OA config BOs will have a jump to this address and it 1657 * needs to be fixed during the lifetime of the i915/perf stream. 1658 */ 1659 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH); 1660 if (IS_ERR(vma)) { 1661 ret = PTR_ERR(vma); 1662 goto out_ww; 1663 } 1664 1665 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1666 if (IS_ERR(batch)) { 1667 ret = PTR_ERR(batch); 1668 goto err_unpin; 1669 } 1670 1671 /* Save registers. */ 1672 for (i = 0; i < N_CS_GPR; i++) 1673 cs = save_restore_register( 1674 stream, cs, true /* save */, CS_GPR(i), 1675 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1676 cs = save_restore_register( 1677 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1678 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1679 1680 /* First timestamp snapshot location. */ 1681 ts0 = cs; 1682 1683 /* 1684 * Initial snapshot of the timestamp register to implement the wait. 1685 * We work with 32b values, so clear out the top 32b bits of the 1686 * register because the ALU works 64bits. 1687 */ 1688 *cs++ = MI_LOAD_REGISTER_IMM(1); 1689 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1690 *cs++ = 0; 1691 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1692 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1693 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1694 1695 /* 1696 * This is the location we're going to jump back into until the 1697 * required amount of time has passed. 1698 */ 1699 jump = cs; 1700 1701 /* 1702 * Take another snapshot of the timestamp register. Take care to clear 1703 * up the top 32bits of CS_GPR(1) as we're using it for other 1704 * operations below. 1705 */ 1706 *cs++ = MI_LOAD_REGISTER_IMM(1); 1707 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1708 *cs++ = 0; 1709 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1710 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1711 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1712 1713 /* 1714 * Do a diff between the 2 timestamps and store the result back into 1715 * CS_GPR(1). 1716 */ 1717 *cs++ = MI_MATH(5); 1718 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1719 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1720 *cs++ = MI_MATH_SUB; 1721 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1722 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1723 1724 /* 1725 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1726 * timestamp have rolled over the 32bits) into the predicate register 1727 * to be used for the predicated jump. 1728 */ 1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1730 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1731 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1732 1733 /* Restart from the beginning if we had timestamps roll over. */ 1734 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1735 MI_BATCH_BUFFER_START : 1736 MI_BATCH_BUFFER_START_GEN8) | 1737 MI_BATCH_PREDICATE; 1738 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1739 *cs++ = 0; 1740 1741 /* 1742 * Now add the diff between to previous timestamps and add it to : 1743 * (((1 * << 64) - 1) - delay_ns) 1744 * 1745 * When the Carry Flag contains 1 this means the elapsed time is 1746 * longer than the expected delay, and we can exit the wait loop. 1747 */ 1748 *cs++ = MI_LOAD_REGISTER_IMM(2); 1749 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1750 *cs++ = lower_32_bits(delay_ticks); 1751 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1752 *cs++ = upper_32_bits(delay_ticks); 1753 1754 *cs++ = MI_MATH(4); 1755 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1756 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1757 *cs++ = MI_MATH_ADD; 1758 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1759 1760 *cs++ = MI_ARB_CHECK; 1761 1762 /* 1763 * Transfer the result into the predicate register to be used for the 1764 * predicated jump. 1765 */ 1766 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1767 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1768 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1769 1770 /* Predicate the jump. */ 1771 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1772 MI_BATCH_BUFFER_START : 1773 MI_BATCH_BUFFER_START_GEN8) | 1774 MI_BATCH_PREDICATE; 1775 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1776 *cs++ = 0; 1777 1778 /* Restore registers. */ 1779 for (i = 0; i < N_CS_GPR; i++) 1780 cs = save_restore_register( 1781 stream, cs, false /* restore */, CS_GPR(i), 1782 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1783 cs = save_restore_register( 1784 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1785 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1786 1787 /* And return to the ring. */ 1788 *cs++ = MI_BATCH_BUFFER_END; 1789 1790 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1791 1792 i915_gem_object_flush_map(bo); 1793 __i915_gem_object_release_map(bo); 1794 1795 stream->noa_wait = vma; 1796 goto out_ww; 1797 1798 err_unpin: 1799 i915_vma_unpin_and_release(&vma, 0); 1800 out_ww: 1801 if (ret == -EDEADLK) { 1802 ret = i915_gem_ww_ctx_backoff(&ww); 1803 if (!ret) 1804 goto retry; 1805 } 1806 i915_gem_ww_ctx_fini(&ww); 1807 if (ret) 1808 i915_gem_object_put(bo); 1809 return ret; 1810 } 1811 1812 static u32 *write_cs_mi_lri(u32 *cs, 1813 const struct i915_oa_reg *reg_data, 1814 u32 n_regs) 1815 { 1816 u32 i; 1817 1818 for (i = 0; i < n_regs; i++) { 1819 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1820 u32 n_lri = min_t(u32, 1821 n_regs - i, 1822 MI_LOAD_REGISTER_IMM_MAX_REGS); 1823 1824 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1825 } 1826 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1827 *cs++ = reg_data[i].value; 1828 } 1829 1830 return cs; 1831 } 1832 1833 static int num_lri_dwords(int num_regs) 1834 { 1835 int count = 0; 1836 1837 if (num_regs > 0) { 1838 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1839 count += num_regs * 2; 1840 } 1841 1842 return count; 1843 } 1844 1845 static struct i915_oa_config_bo * 1846 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1847 struct i915_oa_config *oa_config) 1848 { 1849 struct drm_i915_gem_object *obj; 1850 struct i915_oa_config_bo *oa_bo; 1851 struct i915_gem_ww_ctx ww; 1852 size_t config_length = 0; 1853 u32 *cs; 1854 int err; 1855 1856 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1857 if (!oa_bo) 1858 return ERR_PTR(-ENOMEM); 1859 1860 config_length += num_lri_dwords(oa_config->mux_regs_len); 1861 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1862 config_length += num_lri_dwords(oa_config->flex_regs_len); 1863 config_length += 3; /* MI_BATCH_BUFFER_START */ 1864 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1865 1866 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1867 if (IS_ERR(obj)) { 1868 err = PTR_ERR(obj); 1869 goto err_free; 1870 } 1871 1872 i915_gem_ww_ctx_init(&ww, true); 1873 retry: 1874 err = i915_gem_object_lock(obj, &ww); 1875 if (err) 1876 goto out_ww; 1877 1878 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1879 if (IS_ERR(cs)) { 1880 err = PTR_ERR(cs); 1881 goto out_ww; 1882 } 1883 1884 cs = write_cs_mi_lri(cs, 1885 oa_config->mux_regs, 1886 oa_config->mux_regs_len); 1887 cs = write_cs_mi_lri(cs, 1888 oa_config->b_counter_regs, 1889 oa_config->b_counter_regs_len); 1890 cs = write_cs_mi_lri(cs, 1891 oa_config->flex_regs, 1892 oa_config->flex_regs_len); 1893 1894 /* Jump into the active wait. */ 1895 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 1896 MI_BATCH_BUFFER_START : 1897 MI_BATCH_BUFFER_START_GEN8); 1898 *cs++ = i915_ggtt_offset(stream->noa_wait); 1899 *cs++ = 0; 1900 1901 i915_gem_object_flush_map(obj); 1902 __i915_gem_object_release_map(obj); 1903 1904 oa_bo->vma = i915_vma_instance(obj, 1905 &stream->engine->gt->ggtt->vm, 1906 NULL); 1907 if (IS_ERR(oa_bo->vma)) { 1908 err = PTR_ERR(oa_bo->vma); 1909 goto out_ww; 1910 } 1911 1912 oa_bo->oa_config = i915_oa_config_get(oa_config); 1913 llist_add(&oa_bo->node, &stream->oa_config_bos); 1914 1915 out_ww: 1916 if (err == -EDEADLK) { 1917 err = i915_gem_ww_ctx_backoff(&ww); 1918 if (!err) 1919 goto retry; 1920 } 1921 i915_gem_ww_ctx_fini(&ww); 1922 1923 if (err) 1924 i915_gem_object_put(obj); 1925 err_free: 1926 if (err) { 1927 kfree(oa_bo); 1928 return ERR_PTR(err); 1929 } 1930 return oa_bo; 1931 } 1932 1933 static struct i915_vma * 1934 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1935 { 1936 struct i915_oa_config_bo *oa_bo; 1937 1938 /* 1939 * Look for the buffer in the already allocated BOs attached 1940 * to the stream. 1941 */ 1942 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1943 if (oa_bo->oa_config == oa_config && 1944 memcmp(oa_bo->oa_config->uuid, 1945 oa_config->uuid, 1946 sizeof(oa_config->uuid)) == 0) 1947 goto out; 1948 } 1949 1950 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1951 if (IS_ERR(oa_bo)) 1952 return ERR_CAST(oa_bo); 1953 1954 out: 1955 return i915_vma_get(oa_bo->vma); 1956 } 1957 1958 static int 1959 emit_oa_config(struct i915_perf_stream *stream, 1960 struct i915_oa_config *oa_config, 1961 struct intel_context *ce, 1962 struct i915_active *active) 1963 { 1964 struct i915_request *rq; 1965 struct i915_vma *vma; 1966 struct i915_gem_ww_ctx ww; 1967 int err; 1968 1969 vma = get_oa_vma(stream, oa_config); 1970 if (IS_ERR(vma)) 1971 return PTR_ERR(vma); 1972 1973 i915_gem_ww_ctx_init(&ww, true); 1974 retry: 1975 err = i915_gem_object_lock(vma->obj, &ww); 1976 if (err) 1977 goto err; 1978 1979 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1980 if (err) 1981 goto err; 1982 1983 intel_engine_pm_get(ce->engine); 1984 rq = i915_request_create(ce); 1985 intel_engine_pm_put(ce->engine); 1986 if (IS_ERR(rq)) { 1987 err = PTR_ERR(rq); 1988 goto err_vma_unpin; 1989 } 1990 1991 if (!IS_ERR_OR_NULL(active)) { 1992 /* After all individual context modifications */ 1993 err = i915_request_await_active(rq, active, 1994 I915_ACTIVE_AWAIT_ACTIVE); 1995 if (err) 1996 goto err_add_request; 1997 1998 err = i915_active_add_request(active, rq); 1999 if (err) 2000 goto err_add_request; 2001 } 2002 2003 err = i915_request_await_object(rq, vma->obj, 0); 2004 if (!err) 2005 err = i915_vma_move_to_active(vma, rq, 0); 2006 if (err) 2007 goto err_add_request; 2008 2009 err = rq->engine->emit_bb_start(rq, 2010 vma->node.start, 0, 2011 I915_DISPATCH_SECURE); 2012 if (err) 2013 goto err_add_request; 2014 2015 err_add_request: 2016 i915_request_add(rq); 2017 err_vma_unpin: 2018 i915_vma_unpin(vma); 2019 err: 2020 if (err == -EDEADLK) { 2021 err = i915_gem_ww_ctx_backoff(&ww); 2022 if (!err) 2023 goto retry; 2024 } 2025 2026 i915_gem_ww_ctx_fini(&ww); 2027 i915_vma_put(vma); 2028 return err; 2029 } 2030 2031 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2032 { 2033 return stream->pinned_ctx ?: stream->engine->kernel_context; 2034 } 2035 2036 static int 2037 hsw_enable_metric_set(struct i915_perf_stream *stream, 2038 struct i915_active *active) 2039 { 2040 struct intel_uncore *uncore = stream->uncore; 2041 2042 /* 2043 * PRM: 2044 * 2045 * OA unit is using “crclk” for its functionality. When trunk 2046 * level clock gating takes place, OA clock would be gated, 2047 * unable to count the events from non-render clock domain. 2048 * Render clock gating must be disabled when OA is enabled to 2049 * count the events from non-render domain. Unit level clock 2050 * gating for RCS should also be disabled. 2051 */ 2052 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2053 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2054 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2055 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2056 2057 return emit_oa_config(stream, 2058 stream->oa_config, oa_context(stream), 2059 active); 2060 } 2061 2062 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2063 { 2064 struct intel_uncore *uncore = stream->uncore; 2065 2066 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2067 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2068 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2069 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2070 2071 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2072 } 2073 2074 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2075 i915_reg_t reg) 2076 { 2077 u32 mmio = i915_mmio_reg_offset(reg); 2078 int i; 2079 2080 /* 2081 * This arbitrary default will select the 'EU FPU0 Pipeline 2082 * Active' event. In the future it's anticipated that there 2083 * will be an explicit 'No Event' we can select, but not yet... 2084 */ 2085 if (!oa_config) 2086 return 0; 2087 2088 for (i = 0; i < oa_config->flex_regs_len; i++) { 2089 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2090 return oa_config->flex_regs[i].value; 2091 } 2092 2093 return 0; 2094 } 2095 /* 2096 * NB: It must always remain pointer safe to run this even if the OA unit 2097 * has been disabled. 2098 * 2099 * It's fine to put out-of-date values into these per-context registers 2100 * in the case that the OA unit has been disabled. 2101 */ 2102 static void 2103 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2104 const struct i915_perf_stream *stream) 2105 { 2106 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2107 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2108 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2109 i915_reg_t flex_regs[] = { 2110 EU_PERF_CNTL0, 2111 EU_PERF_CNTL1, 2112 EU_PERF_CNTL2, 2113 EU_PERF_CNTL3, 2114 EU_PERF_CNTL4, 2115 EU_PERF_CNTL5, 2116 EU_PERF_CNTL6, 2117 }; 2118 u32 *reg_state = ce->lrc_reg_state; 2119 int i; 2120 2121 reg_state[ctx_oactxctrl + 1] = 2122 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2123 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2124 GEN8_OA_COUNTER_RESUME; 2125 2126 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2127 reg_state[ctx_flexeu0 + i * 2 + 1] = 2128 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2129 } 2130 2131 struct flex { 2132 i915_reg_t reg; 2133 u32 offset; 2134 u32 value; 2135 }; 2136 2137 static int 2138 gen8_store_flex(struct i915_request *rq, 2139 struct intel_context *ce, 2140 const struct flex *flex, unsigned int count) 2141 { 2142 u32 offset; 2143 u32 *cs; 2144 2145 cs = intel_ring_begin(rq, 4 * count); 2146 if (IS_ERR(cs)) 2147 return PTR_ERR(cs); 2148 2149 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2150 do { 2151 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2152 *cs++ = offset + flex->offset * sizeof(u32); 2153 *cs++ = 0; 2154 *cs++ = flex->value; 2155 } while (flex++, --count); 2156 2157 intel_ring_advance(rq, cs); 2158 2159 return 0; 2160 } 2161 2162 static int 2163 gen8_load_flex(struct i915_request *rq, 2164 struct intel_context *ce, 2165 const struct flex *flex, unsigned int count) 2166 { 2167 u32 *cs; 2168 2169 GEM_BUG_ON(!count || count > 63); 2170 2171 cs = intel_ring_begin(rq, 2 * count + 2); 2172 if (IS_ERR(cs)) 2173 return PTR_ERR(cs); 2174 2175 *cs++ = MI_LOAD_REGISTER_IMM(count); 2176 do { 2177 *cs++ = i915_mmio_reg_offset(flex->reg); 2178 *cs++ = flex->value; 2179 } while (flex++, --count); 2180 *cs++ = MI_NOOP; 2181 2182 intel_ring_advance(rq, cs); 2183 2184 return 0; 2185 } 2186 2187 static int gen8_modify_context(struct intel_context *ce, 2188 const struct flex *flex, unsigned int count) 2189 { 2190 struct i915_request *rq; 2191 int err; 2192 2193 rq = intel_engine_create_kernel_request(ce->engine); 2194 if (IS_ERR(rq)) 2195 return PTR_ERR(rq); 2196 2197 /* Serialise with the remote context */ 2198 err = intel_context_prepare_remote_request(ce, rq); 2199 if (err == 0) 2200 err = gen8_store_flex(rq, ce, flex, count); 2201 2202 i915_request_add(rq); 2203 return err; 2204 } 2205 2206 static int 2207 gen8_modify_self(struct intel_context *ce, 2208 const struct flex *flex, unsigned int count, 2209 struct i915_active *active) 2210 { 2211 struct i915_request *rq; 2212 int err; 2213 2214 intel_engine_pm_get(ce->engine); 2215 rq = i915_request_create(ce); 2216 intel_engine_pm_put(ce->engine); 2217 if (IS_ERR(rq)) 2218 return PTR_ERR(rq); 2219 2220 if (!IS_ERR_OR_NULL(active)) { 2221 err = i915_active_add_request(active, rq); 2222 if (err) 2223 goto err_add_request; 2224 } 2225 2226 err = gen8_load_flex(rq, ce, flex, count); 2227 if (err) 2228 goto err_add_request; 2229 2230 err_add_request: 2231 i915_request_add(rq); 2232 return err; 2233 } 2234 2235 static int gen8_configure_context(struct i915_gem_context *ctx, 2236 struct flex *flex, unsigned int count) 2237 { 2238 struct i915_gem_engines_iter it; 2239 struct intel_context *ce; 2240 int err = 0; 2241 2242 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2243 GEM_BUG_ON(ce == ce->engine->kernel_context); 2244 2245 if (ce->engine->class != RENDER_CLASS) 2246 continue; 2247 2248 /* Otherwise OA settings will be set upon first use */ 2249 if (!intel_context_pin_if_active(ce)) 2250 continue; 2251 2252 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2253 err = gen8_modify_context(ce, flex, count); 2254 2255 intel_context_unpin(ce); 2256 if (err) 2257 break; 2258 } 2259 i915_gem_context_unlock_engines(ctx); 2260 2261 return err; 2262 } 2263 2264 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2265 struct i915_active *active) 2266 { 2267 int err; 2268 struct intel_context *ce = stream->pinned_ctx; 2269 u32 format = stream->oa_buffer.format; 2270 struct flex regs_context[] = { 2271 { 2272 GEN8_OACTXCONTROL, 2273 stream->perf->ctx_oactxctrl_offset + 1, 2274 active ? GEN8_OA_COUNTER_RESUME : 0, 2275 }, 2276 }; 2277 /* Offsets in regs_lri are not used since this configuration is only 2278 * applied using LRI. Initialize the correct offsets for posterity. 2279 */ 2280 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2281 struct flex regs_lri[] = { 2282 { 2283 GEN12_OAR_OACONTROL, 2284 GEN12_OAR_OACONTROL_OFFSET + 1, 2285 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2286 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2287 }, 2288 { 2289 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2290 CTX_CONTEXT_CONTROL, 2291 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2292 active ? 2293 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2294 0) 2295 }, 2296 }; 2297 2298 /* Modify the context image of pinned context with regs_context*/ 2299 err = intel_context_lock_pinned(ce); 2300 if (err) 2301 return err; 2302 2303 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2304 intel_context_unlock_pinned(ce); 2305 if (err) 2306 return err; 2307 2308 /* Apply regs_lri using LRI with pinned context */ 2309 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2310 } 2311 2312 /* 2313 * Manages updating the per-context aspects of the OA stream 2314 * configuration across all contexts. 2315 * 2316 * The awkward consideration here is that OACTXCONTROL controls the 2317 * exponent for periodic sampling which is primarily used for system 2318 * wide profiling where we'd like a consistent sampling period even in 2319 * the face of context switches. 2320 * 2321 * Our approach of updating the register state context (as opposed to 2322 * say using a workaround batch buffer) ensures that the hardware 2323 * won't automatically reload an out-of-date timer exponent even 2324 * transiently before a WA BB could be parsed. 2325 * 2326 * This function needs to: 2327 * - Ensure the currently running context's per-context OA state is 2328 * updated 2329 * - Ensure that all existing contexts will have the correct per-context 2330 * OA state if they are scheduled for use. 2331 * - Ensure any new contexts will be initialized with the correct 2332 * per-context OA state. 2333 * 2334 * Note: it's only the RCS/Render context that has any OA state. 2335 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2336 */ 2337 static int 2338 oa_configure_all_contexts(struct i915_perf_stream *stream, 2339 struct flex *regs, 2340 size_t num_regs, 2341 struct i915_active *active) 2342 { 2343 struct drm_i915_private *i915 = stream->perf->i915; 2344 struct intel_engine_cs *engine; 2345 struct i915_gem_context *ctx, *cn; 2346 int err; 2347 2348 lockdep_assert_held(&stream->perf->lock); 2349 2350 /* 2351 * The OA register config is setup through the context image. This image 2352 * might be written to by the GPU on context switch (in particular on 2353 * lite-restore). This means we can't safely update a context's image, 2354 * if this context is scheduled/submitted to run on the GPU. 2355 * 2356 * We could emit the OA register config through the batch buffer but 2357 * this might leave small interval of time where the OA unit is 2358 * configured at an invalid sampling period. 2359 * 2360 * Note that since we emit all requests from a single ring, there 2361 * is still an implicit global barrier here that may cause a high 2362 * priority context to wait for an otherwise independent low priority 2363 * context. Contexts idle at the time of reconfiguration are not 2364 * trapped behind the barrier. 2365 */ 2366 spin_lock(&i915->gem.contexts.lock); 2367 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2368 if (!kref_get_unless_zero(&ctx->ref)) 2369 continue; 2370 2371 spin_unlock(&i915->gem.contexts.lock); 2372 2373 err = gen8_configure_context(ctx, regs, num_regs); 2374 if (err) { 2375 i915_gem_context_put(ctx); 2376 return err; 2377 } 2378 2379 spin_lock(&i915->gem.contexts.lock); 2380 list_safe_reset_next(ctx, cn, link); 2381 i915_gem_context_put(ctx); 2382 } 2383 spin_unlock(&i915->gem.contexts.lock); 2384 2385 /* 2386 * After updating all other contexts, we need to modify ourselves. 2387 * If we don't modify the kernel_context, we do not get events while 2388 * idle. 2389 */ 2390 for_each_uabi_engine(engine, i915) { 2391 struct intel_context *ce = engine->kernel_context; 2392 2393 if (engine->class != RENDER_CLASS) 2394 continue; 2395 2396 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2397 2398 err = gen8_modify_self(ce, regs, num_regs, active); 2399 if (err) 2400 return err; 2401 } 2402 2403 return 0; 2404 } 2405 2406 static int 2407 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2408 const struct i915_oa_config *oa_config, 2409 struct i915_active *active) 2410 { 2411 struct flex regs[] = { 2412 { 2413 GEN8_R_PWR_CLK_STATE, 2414 CTX_R_PWR_CLK_STATE, 2415 }, 2416 }; 2417 2418 return oa_configure_all_contexts(stream, 2419 regs, ARRAY_SIZE(regs), 2420 active); 2421 } 2422 2423 static int 2424 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2425 const struct i915_oa_config *oa_config, 2426 struct i915_active *active) 2427 { 2428 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2429 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2430 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2431 struct flex regs[] = { 2432 { 2433 GEN8_R_PWR_CLK_STATE, 2434 CTX_R_PWR_CLK_STATE, 2435 }, 2436 { 2437 GEN8_OACTXCONTROL, 2438 stream->perf->ctx_oactxctrl_offset + 1, 2439 }, 2440 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2441 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2442 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2443 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2444 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2445 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2446 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2447 }; 2448 #undef ctx_flexeuN 2449 int i; 2450 2451 regs[1].value = 2452 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2453 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2454 GEN8_OA_COUNTER_RESUME; 2455 2456 for (i = 2; i < ARRAY_SIZE(regs); i++) 2457 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2458 2459 return oa_configure_all_contexts(stream, 2460 regs, ARRAY_SIZE(regs), 2461 active); 2462 } 2463 2464 static int 2465 gen8_enable_metric_set(struct i915_perf_stream *stream, 2466 struct i915_active *active) 2467 { 2468 struct intel_uncore *uncore = stream->uncore; 2469 struct i915_oa_config *oa_config = stream->oa_config; 2470 int ret; 2471 2472 /* 2473 * We disable slice/unslice clock ratio change reports on SKL since 2474 * they are too noisy. The HW generates a lot of redundant reports 2475 * where the ratio hasn't really changed causing a lot of redundant 2476 * work to processes and increasing the chances we'll hit buffer 2477 * overruns. 2478 * 2479 * Although we don't currently use the 'disable overrun' OABUFFER 2480 * feature it's worth noting that clock ratio reports have to be 2481 * disabled before considering to use that feature since the HW doesn't 2482 * correctly block these reports. 2483 * 2484 * Currently none of the high-level metrics we have depend on knowing 2485 * this ratio to normalize. 2486 * 2487 * Note: This register is not power context saved and restored, but 2488 * that's OK considering that we disable RC6 while the OA unit is 2489 * enabled. 2490 * 2491 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2492 * be read back from automatically triggered reports, as part of the 2493 * RPT_ID field. 2494 */ 2495 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2496 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2497 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2498 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2499 } 2500 2501 /* 2502 * Update all contexts prior writing the mux configurations as we need 2503 * to make sure all slices/subslices are ON before writing to NOA 2504 * registers. 2505 */ 2506 ret = lrc_configure_all_contexts(stream, oa_config, active); 2507 if (ret) 2508 return ret; 2509 2510 return emit_oa_config(stream, 2511 stream->oa_config, oa_context(stream), 2512 active); 2513 } 2514 2515 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2516 { 2517 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2518 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2519 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2520 } 2521 2522 static int 2523 gen12_enable_metric_set(struct i915_perf_stream *stream, 2524 struct i915_active *active) 2525 { 2526 struct intel_uncore *uncore = stream->uncore; 2527 struct i915_oa_config *oa_config = stream->oa_config; 2528 bool periodic = stream->periodic; 2529 u32 period_exponent = stream->period_exponent; 2530 int ret; 2531 2532 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2533 /* Disable clk ratio reports, like previous Gens. */ 2534 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2535 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2536 /* 2537 * If the user didn't require OA reports, instruct 2538 * the hardware not to emit ctx switch reports. 2539 */ 2540 oag_report_ctx_switches(stream)); 2541 2542 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2543 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2544 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2545 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2546 : 0); 2547 2548 /* 2549 * Update all contexts prior writing the mux configurations as we need 2550 * to make sure all slices/subslices are ON before writing to NOA 2551 * registers. 2552 */ 2553 ret = gen12_configure_all_contexts(stream, oa_config, active); 2554 if (ret) 2555 return ret; 2556 2557 /* 2558 * For Gen12, performance counters are context 2559 * saved/restored. Only enable it for the context that 2560 * requested this. 2561 */ 2562 if (stream->ctx) { 2563 ret = gen12_configure_oar_context(stream, active); 2564 if (ret) 2565 return ret; 2566 } 2567 2568 return emit_oa_config(stream, 2569 stream->oa_config, oa_context(stream), 2570 active); 2571 } 2572 2573 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2574 { 2575 struct intel_uncore *uncore = stream->uncore; 2576 2577 /* Reset all contexts' slices/subslices configurations. */ 2578 lrc_configure_all_contexts(stream, NULL, NULL); 2579 2580 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2581 } 2582 2583 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2584 { 2585 struct intel_uncore *uncore = stream->uncore; 2586 2587 /* Reset all contexts' slices/subslices configurations. */ 2588 lrc_configure_all_contexts(stream, NULL, NULL); 2589 2590 /* Make sure we disable noa to save power. */ 2591 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2592 } 2593 2594 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2595 { 2596 struct intel_uncore *uncore = stream->uncore; 2597 2598 /* Reset all contexts' slices/subslices configurations. */ 2599 gen12_configure_all_contexts(stream, NULL, NULL); 2600 2601 /* disable the context save/restore or OAR counters */ 2602 if (stream->ctx) 2603 gen12_configure_oar_context(stream, NULL); 2604 2605 /* Make sure we disable noa to save power. */ 2606 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2607 } 2608 2609 static void gen7_oa_enable(struct i915_perf_stream *stream) 2610 { 2611 struct intel_uncore *uncore = stream->uncore; 2612 struct i915_gem_context *ctx = stream->ctx; 2613 u32 ctx_id = stream->specific_ctx_id; 2614 bool periodic = stream->periodic; 2615 u32 period_exponent = stream->period_exponent; 2616 u32 report_format = stream->oa_buffer.format; 2617 2618 /* 2619 * Reset buf pointers so we don't forward reports from before now. 2620 * 2621 * Think carefully if considering trying to avoid this, since it 2622 * also ensures status flags and the buffer itself are cleared 2623 * in error paths, and we have checks for invalid reports based 2624 * on the assumption that certain fields are written to zeroed 2625 * memory which this helps maintains. 2626 */ 2627 gen7_init_oa_buffer(stream); 2628 2629 intel_uncore_write(uncore, GEN7_OACONTROL, 2630 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2631 (period_exponent << 2632 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2633 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2634 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2635 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2636 GEN7_OACONTROL_ENABLE); 2637 } 2638 2639 static void gen8_oa_enable(struct i915_perf_stream *stream) 2640 { 2641 struct intel_uncore *uncore = stream->uncore; 2642 u32 report_format = stream->oa_buffer.format; 2643 2644 /* 2645 * Reset buf pointers so we don't forward reports from before now. 2646 * 2647 * Think carefully if considering trying to avoid this, since it 2648 * also ensures status flags and the buffer itself are cleared 2649 * in error paths, and we have checks for invalid reports based 2650 * on the assumption that certain fields are written to zeroed 2651 * memory which this helps maintains. 2652 */ 2653 gen8_init_oa_buffer(stream); 2654 2655 /* 2656 * Note: we don't rely on the hardware to perform single context 2657 * filtering and instead filter on the cpu based on the context-id 2658 * field of reports 2659 */ 2660 intel_uncore_write(uncore, GEN8_OACONTROL, 2661 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2662 GEN8_OA_COUNTER_ENABLE); 2663 } 2664 2665 static void gen12_oa_enable(struct i915_perf_stream *stream) 2666 { 2667 struct intel_uncore *uncore = stream->uncore; 2668 u32 report_format = stream->oa_buffer.format; 2669 2670 /* 2671 * If we don't want OA reports from the OA buffer, then we don't even 2672 * need to program the OAG unit. 2673 */ 2674 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2675 return; 2676 2677 gen12_init_oa_buffer(stream); 2678 2679 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2680 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2681 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2682 } 2683 2684 /** 2685 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2686 * @stream: An i915 perf stream opened for OA metrics 2687 * 2688 * [Re]enables hardware periodic sampling according to the period configured 2689 * when opening the stream. This also starts a hrtimer that will periodically 2690 * check for data in the circular OA buffer for notifying userspace (e.g. 2691 * during a read() or poll()). 2692 */ 2693 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2694 { 2695 stream->pollin = false; 2696 2697 stream->perf->ops.oa_enable(stream); 2698 2699 if (stream->sample_flags & SAMPLE_OA_REPORT) 2700 hrtimer_start(&stream->poll_check_timer, 2701 ns_to_ktime(stream->poll_oa_period), 2702 HRTIMER_MODE_REL_PINNED); 2703 } 2704 2705 static void gen7_oa_disable(struct i915_perf_stream *stream) 2706 { 2707 struct intel_uncore *uncore = stream->uncore; 2708 2709 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2710 if (intel_wait_for_register(uncore, 2711 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2712 50)) 2713 drm_err(&stream->perf->i915->drm, 2714 "wait for OA to be disabled timed out\n"); 2715 } 2716 2717 static void gen8_oa_disable(struct i915_perf_stream *stream) 2718 { 2719 struct intel_uncore *uncore = stream->uncore; 2720 2721 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2722 if (intel_wait_for_register(uncore, 2723 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2724 50)) 2725 drm_err(&stream->perf->i915->drm, 2726 "wait for OA to be disabled timed out\n"); 2727 } 2728 2729 static void gen12_oa_disable(struct i915_perf_stream *stream) 2730 { 2731 struct intel_uncore *uncore = stream->uncore; 2732 2733 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2734 if (intel_wait_for_register(uncore, 2735 GEN12_OAG_OACONTROL, 2736 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2737 50)) 2738 drm_err(&stream->perf->i915->drm, 2739 "wait for OA to be disabled timed out\n"); 2740 2741 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2742 if (intel_wait_for_register(uncore, 2743 GEN12_OA_TLB_INV_CR, 2744 1, 0, 2745 50)) 2746 drm_err(&stream->perf->i915->drm, 2747 "wait for OA tlb invalidate timed out\n"); 2748 } 2749 2750 /** 2751 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2752 * @stream: An i915 perf stream opened for OA metrics 2753 * 2754 * Stops the OA unit from periodically writing counter reports into the 2755 * circular OA buffer. This also stops the hrtimer that periodically checks for 2756 * data in the circular OA buffer, for notifying userspace. 2757 */ 2758 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2759 { 2760 stream->perf->ops.oa_disable(stream); 2761 2762 if (stream->sample_flags & SAMPLE_OA_REPORT) 2763 hrtimer_cancel(&stream->poll_check_timer); 2764 } 2765 2766 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2767 .destroy = i915_oa_stream_destroy, 2768 .enable = i915_oa_stream_enable, 2769 .disable = i915_oa_stream_disable, 2770 .wait_unlocked = i915_oa_wait_unlocked, 2771 .poll_wait = i915_oa_poll_wait, 2772 .read = i915_oa_read, 2773 }; 2774 2775 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2776 { 2777 struct i915_active *active; 2778 int err; 2779 2780 active = i915_active_create(); 2781 if (!active) 2782 return -ENOMEM; 2783 2784 err = stream->perf->ops.enable_metric_set(stream, active); 2785 if (err == 0) 2786 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2787 2788 i915_active_put(active); 2789 return err; 2790 } 2791 2792 static void 2793 get_default_sseu_config(struct intel_sseu *out_sseu, 2794 struct intel_engine_cs *engine) 2795 { 2796 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2797 2798 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2799 2800 if (GRAPHICS_VER(engine->i915) == 11) { 2801 /* 2802 * We only need subslice count so it doesn't matter which ones 2803 * we select - just turn off low bits in the amount of half of 2804 * all available subslices per slice. 2805 */ 2806 out_sseu->subslice_mask = 2807 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2808 out_sseu->slice_mask = 0x1; 2809 } 2810 } 2811 2812 static int 2813 get_sseu_config(struct intel_sseu *out_sseu, 2814 struct intel_engine_cs *engine, 2815 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2816 { 2817 if (drm_sseu->engine.engine_class != engine->uabi_class || 2818 drm_sseu->engine.engine_instance != engine->uabi_instance) 2819 return -EINVAL; 2820 2821 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2822 } 2823 2824 /** 2825 * i915_oa_stream_init - validate combined props for OA stream and init 2826 * @stream: An i915 perf stream 2827 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2828 * @props: The property state that configures stream (individually validated) 2829 * 2830 * While read_properties_unlocked() validates properties in isolation it 2831 * doesn't ensure that the combination necessarily makes sense. 2832 * 2833 * At this point it has been determined that userspace wants a stream of 2834 * OA metrics, but still we need to further validate the combined 2835 * properties are OK. 2836 * 2837 * If the configuration makes sense then we can allocate memory for 2838 * a circular OA buffer and apply the requested metric set configuration. 2839 * 2840 * Returns: zero on success or a negative error code. 2841 */ 2842 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2843 struct drm_i915_perf_open_param *param, 2844 struct perf_open_properties *props) 2845 { 2846 struct drm_i915_private *i915 = stream->perf->i915; 2847 struct i915_perf *perf = stream->perf; 2848 int format_size; 2849 int ret; 2850 2851 if (!props->engine) { 2852 DRM_DEBUG("OA engine not specified\n"); 2853 return -EINVAL; 2854 } 2855 2856 /* 2857 * If the sysfs metrics/ directory wasn't registered for some 2858 * reason then don't let userspace try their luck with config 2859 * IDs 2860 */ 2861 if (!perf->metrics_kobj) { 2862 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2863 return -EINVAL; 2864 } 2865 2866 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2867 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 2868 DRM_DEBUG("Only OA report sampling supported\n"); 2869 return -EINVAL; 2870 } 2871 2872 if (!perf->ops.enable_metric_set) { 2873 DRM_DEBUG("OA unit not supported\n"); 2874 return -ENODEV; 2875 } 2876 2877 /* 2878 * To avoid the complexity of having to accurately filter 2879 * counter reports and marshal to the appropriate client 2880 * we currently only allow exclusive access 2881 */ 2882 if (perf->exclusive_stream) { 2883 DRM_DEBUG("OA unit already in use\n"); 2884 return -EBUSY; 2885 } 2886 2887 if (!props->oa_format) { 2888 DRM_DEBUG("OA report format not specified\n"); 2889 return -EINVAL; 2890 } 2891 2892 stream->engine = props->engine; 2893 stream->uncore = stream->engine->gt->uncore; 2894 2895 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2896 2897 format_size = perf->oa_formats[props->oa_format].size; 2898 2899 stream->sample_flags = props->sample_flags; 2900 stream->sample_size += format_size; 2901 2902 stream->oa_buffer.format_size = format_size; 2903 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2904 return -EINVAL; 2905 2906 stream->hold_preemption = props->hold_preemption; 2907 2908 stream->oa_buffer.format = 2909 perf->oa_formats[props->oa_format].format; 2910 2911 stream->periodic = props->oa_periodic; 2912 if (stream->periodic) 2913 stream->period_exponent = props->oa_period_exponent; 2914 2915 if (stream->ctx) { 2916 ret = oa_get_render_ctx_id(stream); 2917 if (ret) { 2918 DRM_DEBUG("Invalid context id to filter with\n"); 2919 return ret; 2920 } 2921 } 2922 2923 ret = alloc_noa_wait(stream); 2924 if (ret) { 2925 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2926 goto err_noa_wait_alloc; 2927 } 2928 2929 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2930 if (!stream->oa_config) { 2931 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2932 ret = -EINVAL; 2933 goto err_config; 2934 } 2935 2936 /* PRM - observability performance counters: 2937 * 2938 * OACONTROL, performance counter enable, note: 2939 * 2940 * "When this bit is set, in order to have coherent counts, 2941 * RC6 power state and trunk clock gating must be disabled. 2942 * This can be achieved by programming MMIO registers as 2943 * 0xA094=0 and 0xA090[31]=1" 2944 * 2945 * In our case we are expecting that taking pm + FORCEWAKE 2946 * references will effectively disable RC6. 2947 */ 2948 intel_engine_pm_get(stream->engine); 2949 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2950 2951 ret = alloc_oa_buffer(stream); 2952 if (ret) 2953 goto err_oa_buf_alloc; 2954 2955 stream->ops = &i915_oa_stream_ops; 2956 2957 perf->sseu = props->sseu; 2958 WRITE_ONCE(perf->exclusive_stream, stream); 2959 2960 ret = i915_perf_stream_enable_sync(stream); 2961 if (ret) { 2962 DRM_DEBUG("Unable to enable metric set\n"); 2963 goto err_enable; 2964 } 2965 2966 DRM_DEBUG("opening stream oa config uuid=%s\n", 2967 stream->oa_config->uuid); 2968 2969 hrtimer_init(&stream->poll_check_timer, 2970 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2971 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2972 init_waitqueue_head(&stream->poll_wq); 2973 spin_lock_init(&stream->oa_buffer.ptr_lock); 2974 2975 return 0; 2976 2977 err_enable: 2978 WRITE_ONCE(perf->exclusive_stream, NULL); 2979 perf->ops.disable_metric_set(stream); 2980 2981 free_oa_buffer(stream); 2982 2983 err_oa_buf_alloc: 2984 free_oa_configs(stream); 2985 2986 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2987 intel_engine_pm_put(stream->engine); 2988 2989 err_config: 2990 free_noa_wait(stream); 2991 2992 err_noa_wait_alloc: 2993 if (stream->ctx) 2994 oa_put_render_ctx_id(stream); 2995 2996 return ret; 2997 } 2998 2999 void i915_oa_init_reg_state(const struct intel_context *ce, 3000 const struct intel_engine_cs *engine) 3001 { 3002 struct i915_perf_stream *stream; 3003 3004 if (engine->class != RENDER_CLASS) 3005 return; 3006 3007 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3008 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 3009 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3010 gen8_update_reg_state_unlocked(ce, stream); 3011 } 3012 3013 /** 3014 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3015 * @file: An i915 perf stream file 3016 * @buf: destination buffer given by userspace 3017 * @count: the number of bytes userspace wants to read 3018 * @ppos: (inout) file seek position (unused) 3019 * 3020 * The entry point for handling a read() on a stream file descriptor from 3021 * userspace. Most of the work is left to the i915_perf_read_locked() and 3022 * &i915_perf_stream_ops->read but to save having stream implementations (of 3023 * which we might have multiple later) we handle blocking read here. 3024 * 3025 * We can also consistently treat trying to read from a disabled stream 3026 * as an IO error so implementations can assume the stream is enabled 3027 * while reading. 3028 * 3029 * Returns: The number of bytes copied or a negative error code on failure. 3030 */ 3031 static ssize_t i915_perf_read(struct file *file, 3032 char __user *buf, 3033 size_t count, 3034 loff_t *ppos) 3035 { 3036 struct i915_perf_stream *stream = file->private_data; 3037 struct i915_perf *perf = stream->perf; 3038 size_t offset = 0; 3039 int ret; 3040 3041 /* To ensure it's handled consistently we simply treat all reads of a 3042 * disabled stream as an error. In particular it might otherwise lead 3043 * to a deadlock for blocking file descriptors... 3044 */ 3045 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3046 return -EIO; 3047 3048 if (!(file->f_flags & O_NONBLOCK)) { 3049 /* There's the small chance of false positives from 3050 * stream->ops->wait_unlocked. 3051 * 3052 * E.g. with single context filtering since we only wait until 3053 * oabuffer has >= 1 report we don't immediately know whether 3054 * any reports really belong to the current context 3055 */ 3056 do { 3057 ret = stream->ops->wait_unlocked(stream); 3058 if (ret) 3059 return ret; 3060 3061 mutex_lock(&perf->lock); 3062 ret = stream->ops->read(stream, buf, count, &offset); 3063 mutex_unlock(&perf->lock); 3064 } while (!offset && !ret); 3065 } else { 3066 mutex_lock(&perf->lock); 3067 ret = stream->ops->read(stream, buf, count, &offset); 3068 mutex_unlock(&perf->lock); 3069 } 3070 3071 /* We allow the poll checking to sometimes report false positive EPOLLIN 3072 * events where we might actually report EAGAIN on read() if there's 3073 * not really any data available. In this situation though we don't 3074 * want to enter a busy loop between poll() reporting a EPOLLIN event 3075 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3076 * effectively ensures we back off until the next hrtimer callback 3077 * before reporting another EPOLLIN event. 3078 * The exception to this is if ops->read() returned -ENOSPC which means 3079 * that more OA data is available than could fit in the user provided 3080 * buffer. In this case we want the next poll() call to not block. 3081 */ 3082 if (ret != -ENOSPC) 3083 stream->pollin = false; 3084 3085 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3086 return offset ?: (ret ?: -EAGAIN); 3087 } 3088 3089 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3090 { 3091 struct i915_perf_stream *stream = 3092 container_of(hrtimer, typeof(*stream), poll_check_timer); 3093 3094 if (oa_buffer_check_unlocked(stream)) { 3095 stream->pollin = true; 3096 wake_up(&stream->poll_wq); 3097 } 3098 3099 hrtimer_forward_now(hrtimer, 3100 ns_to_ktime(stream->poll_oa_period)); 3101 3102 return HRTIMER_RESTART; 3103 } 3104 3105 /** 3106 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3107 * @stream: An i915 perf stream 3108 * @file: An i915 perf stream file 3109 * @wait: poll() state table 3110 * 3111 * For handling userspace polling on an i915 perf stream, this calls through to 3112 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3113 * will be woken for new stream data. 3114 * 3115 * Note: The &perf->lock mutex has been taken to serialize 3116 * with any non-file-operation driver hooks. 3117 * 3118 * Returns: any poll events that are ready without sleeping 3119 */ 3120 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3121 struct file *file, 3122 poll_table *wait) 3123 { 3124 __poll_t events = 0; 3125 3126 stream->ops->poll_wait(stream, file, wait); 3127 3128 /* Note: we don't explicitly check whether there's something to read 3129 * here since this path may be very hot depending on what else 3130 * userspace is polling, or on the timeout in use. We rely solely on 3131 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3132 * samples to read. 3133 */ 3134 if (stream->pollin) 3135 events |= EPOLLIN; 3136 3137 return events; 3138 } 3139 3140 /** 3141 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3142 * @file: An i915 perf stream file 3143 * @wait: poll() state table 3144 * 3145 * For handling userspace polling on an i915 perf stream, this ensures 3146 * poll_wait() gets called with a wait queue that will be woken for new stream 3147 * data. 3148 * 3149 * Note: Implementation deferred to i915_perf_poll_locked() 3150 * 3151 * Returns: any poll events that are ready without sleeping 3152 */ 3153 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3154 { 3155 struct i915_perf_stream *stream = file->private_data; 3156 struct i915_perf *perf = stream->perf; 3157 __poll_t ret; 3158 3159 mutex_lock(&perf->lock); 3160 ret = i915_perf_poll_locked(stream, file, wait); 3161 mutex_unlock(&perf->lock); 3162 3163 return ret; 3164 } 3165 3166 /** 3167 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3168 * @stream: A disabled i915 perf stream 3169 * 3170 * [Re]enables the associated capture of data for this stream. 3171 * 3172 * If a stream was previously enabled then there's currently no intention 3173 * to provide userspace any guarantee about the preservation of previously 3174 * buffered data. 3175 */ 3176 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3177 { 3178 if (stream->enabled) 3179 return; 3180 3181 /* Allow stream->ops->enable() to refer to this */ 3182 stream->enabled = true; 3183 3184 if (stream->ops->enable) 3185 stream->ops->enable(stream); 3186 3187 if (stream->hold_preemption) 3188 intel_context_set_nopreempt(stream->pinned_ctx); 3189 } 3190 3191 /** 3192 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3193 * @stream: An enabled i915 perf stream 3194 * 3195 * Disables the associated capture of data for this stream. 3196 * 3197 * The intention is that disabling an re-enabling a stream will ideally be 3198 * cheaper than destroying and re-opening a stream with the same configuration, 3199 * though there are no formal guarantees about what state or buffered data 3200 * must be retained between disabling and re-enabling a stream. 3201 * 3202 * Note: while a stream is disabled it's considered an error for userspace 3203 * to attempt to read from the stream (-EIO). 3204 */ 3205 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3206 { 3207 if (!stream->enabled) 3208 return; 3209 3210 /* Allow stream->ops->disable() to refer to this */ 3211 stream->enabled = false; 3212 3213 if (stream->hold_preemption) 3214 intel_context_clear_nopreempt(stream->pinned_ctx); 3215 3216 if (stream->ops->disable) 3217 stream->ops->disable(stream); 3218 } 3219 3220 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3221 unsigned long metrics_set) 3222 { 3223 struct i915_oa_config *config; 3224 long ret = stream->oa_config->id; 3225 3226 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3227 if (!config) 3228 return -EINVAL; 3229 3230 if (config != stream->oa_config) { 3231 int err; 3232 3233 /* 3234 * If OA is bound to a specific context, emit the 3235 * reconfiguration inline from that context. The update 3236 * will then be ordered with respect to submission on that 3237 * context. 3238 * 3239 * When set globally, we use a low priority kernel context, 3240 * so it will effectively take effect when idle. 3241 */ 3242 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3243 if (!err) 3244 config = xchg(&stream->oa_config, config); 3245 else 3246 ret = err; 3247 } 3248 3249 i915_oa_config_put(config); 3250 3251 return ret; 3252 } 3253 3254 /** 3255 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3256 * @stream: An i915 perf stream 3257 * @cmd: the ioctl request 3258 * @arg: the ioctl data 3259 * 3260 * Note: The &perf->lock mutex has been taken to serialize 3261 * with any non-file-operation driver hooks. 3262 * 3263 * Returns: zero on success or a negative error code. Returns -EINVAL for 3264 * an unknown ioctl request. 3265 */ 3266 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3267 unsigned int cmd, 3268 unsigned long arg) 3269 { 3270 switch (cmd) { 3271 case I915_PERF_IOCTL_ENABLE: 3272 i915_perf_enable_locked(stream); 3273 return 0; 3274 case I915_PERF_IOCTL_DISABLE: 3275 i915_perf_disable_locked(stream); 3276 return 0; 3277 case I915_PERF_IOCTL_CONFIG: 3278 return i915_perf_config_locked(stream, arg); 3279 } 3280 3281 return -EINVAL; 3282 } 3283 3284 /** 3285 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3286 * @file: An i915 perf stream file 3287 * @cmd: the ioctl request 3288 * @arg: the ioctl data 3289 * 3290 * Implementation deferred to i915_perf_ioctl_locked(). 3291 * 3292 * Returns: zero on success or a negative error code. Returns -EINVAL for 3293 * an unknown ioctl request. 3294 */ 3295 static long i915_perf_ioctl(struct file *file, 3296 unsigned int cmd, 3297 unsigned long arg) 3298 { 3299 struct i915_perf_stream *stream = file->private_data; 3300 struct i915_perf *perf = stream->perf; 3301 long ret; 3302 3303 mutex_lock(&perf->lock); 3304 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3305 mutex_unlock(&perf->lock); 3306 3307 return ret; 3308 } 3309 3310 /** 3311 * i915_perf_destroy_locked - destroy an i915 perf stream 3312 * @stream: An i915 perf stream 3313 * 3314 * Frees all resources associated with the given i915 perf @stream, disabling 3315 * any associated data capture in the process. 3316 * 3317 * Note: The &perf->lock mutex has been taken to serialize 3318 * with any non-file-operation driver hooks. 3319 */ 3320 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3321 { 3322 if (stream->enabled) 3323 i915_perf_disable_locked(stream); 3324 3325 if (stream->ops->destroy) 3326 stream->ops->destroy(stream); 3327 3328 if (stream->ctx) 3329 i915_gem_context_put(stream->ctx); 3330 3331 kfree(stream); 3332 } 3333 3334 /** 3335 * i915_perf_release - handles userspace close() of a stream file 3336 * @inode: anonymous inode associated with file 3337 * @file: An i915 perf stream file 3338 * 3339 * Cleans up any resources associated with an open i915 perf stream file. 3340 * 3341 * NB: close() can't really fail from the userspace point of view. 3342 * 3343 * Returns: zero on success or a negative error code. 3344 */ 3345 static int i915_perf_release(struct inode *inode, struct file *file) 3346 { 3347 struct i915_perf_stream *stream = file->private_data; 3348 struct i915_perf *perf = stream->perf; 3349 3350 mutex_lock(&perf->lock); 3351 i915_perf_destroy_locked(stream); 3352 mutex_unlock(&perf->lock); 3353 3354 /* Release the reference the perf stream kept on the driver. */ 3355 drm_dev_put(&perf->i915->drm); 3356 3357 return 0; 3358 } 3359 3360 3361 static const struct file_operations fops = { 3362 .owner = THIS_MODULE, 3363 .llseek = no_llseek, 3364 .release = i915_perf_release, 3365 .poll = i915_perf_poll, 3366 .read = i915_perf_read, 3367 .unlocked_ioctl = i915_perf_ioctl, 3368 /* Our ioctl have no arguments, so it's safe to use the same function 3369 * to handle 32bits compatibility. 3370 */ 3371 .compat_ioctl = i915_perf_ioctl, 3372 }; 3373 3374 3375 /** 3376 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3377 * @perf: i915 perf instance 3378 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3379 * @props: individually validated u64 property value pairs 3380 * @file: drm file 3381 * 3382 * See i915_perf_ioctl_open() for interface details. 3383 * 3384 * Implements further stream config validation and stream initialization on 3385 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3386 * taken to serialize with any non-file-operation driver hooks. 3387 * 3388 * Note: at this point the @props have only been validated in isolation and 3389 * it's still necessary to validate that the combination of properties makes 3390 * sense. 3391 * 3392 * In the case where userspace is interested in OA unit metrics then further 3393 * config validation and stream initialization details will be handled by 3394 * i915_oa_stream_init(). The code here should only validate config state that 3395 * will be relevant to all stream types / backends. 3396 * 3397 * Returns: zero on success or a negative error code. 3398 */ 3399 static int 3400 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3401 struct drm_i915_perf_open_param *param, 3402 struct perf_open_properties *props, 3403 struct drm_file *file) 3404 { 3405 struct i915_gem_context *specific_ctx = NULL; 3406 struct i915_perf_stream *stream = NULL; 3407 unsigned long f_flags = 0; 3408 bool privileged_op = true; 3409 int stream_fd; 3410 int ret; 3411 3412 if (props->single_context) { 3413 u32 ctx_handle = props->ctx_handle; 3414 struct drm_i915_file_private *file_priv = file->driver_priv; 3415 3416 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3417 if (!specific_ctx) { 3418 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3419 ctx_handle); 3420 ret = -ENOENT; 3421 goto err; 3422 } 3423 } 3424 3425 /* 3426 * On Haswell the OA unit supports clock gating off for a specific 3427 * context and in this mode there's no visibility of metrics for the 3428 * rest of the system, which we consider acceptable for a 3429 * non-privileged client. 3430 * 3431 * For Gen8->11 the OA unit no longer supports clock gating off for a 3432 * specific context and the kernel can't securely stop the counters 3433 * from updating as system-wide / global values. Even though we can 3434 * filter reports based on the included context ID we can't block 3435 * clients from seeing the raw / global counter values via 3436 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3437 * enable the OA unit by default. 3438 * 3439 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3440 * per context basis. So we can relax requirements there if the user 3441 * doesn't request global stream access (i.e. query based sampling 3442 * using MI_RECORD_PERF_COUNT. 3443 */ 3444 if (IS_HASWELL(perf->i915) && specific_ctx) 3445 privileged_op = false; 3446 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3447 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3448 privileged_op = false; 3449 3450 if (props->hold_preemption) { 3451 if (!props->single_context) { 3452 DRM_DEBUG("preemption disable with no context\n"); 3453 ret = -EINVAL; 3454 goto err; 3455 } 3456 privileged_op = true; 3457 } 3458 3459 /* 3460 * Asking for SSEU configuration is a priviliged operation. 3461 */ 3462 if (props->has_sseu) 3463 privileged_op = true; 3464 else 3465 get_default_sseu_config(&props->sseu, props->engine); 3466 3467 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3468 * we check a dev.i915.perf_stream_paranoid sysctl option 3469 * to determine if it's ok to access system wide OA counters 3470 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3471 */ 3472 if (privileged_op && 3473 i915_perf_stream_paranoid && !perfmon_capable()) { 3474 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3475 ret = -EACCES; 3476 goto err_ctx; 3477 } 3478 3479 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3480 if (!stream) { 3481 ret = -ENOMEM; 3482 goto err_ctx; 3483 } 3484 3485 stream->perf = perf; 3486 stream->ctx = specific_ctx; 3487 stream->poll_oa_period = props->poll_oa_period; 3488 3489 ret = i915_oa_stream_init(stream, param, props); 3490 if (ret) 3491 goto err_alloc; 3492 3493 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3494 * to have _stream_init check the combination of sample flags more 3495 * thoroughly, but still this is the expected result at this point. 3496 */ 3497 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3498 ret = -ENODEV; 3499 goto err_flags; 3500 } 3501 3502 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3503 f_flags |= O_CLOEXEC; 3504 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3505 f_flags |= O_NONBLOCK; 3506 3507 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3508 if (stream_fd < 0) { 3509 ret = stream_fd; 3510 goto err_flags; 3511 } 3512 3513 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3514 i915_perf_enable_locked(stream); 3515 3516 /* Take a reference on the driver that will be kept with stream_fd 3517 * until its release. 3518 */ 3519 drm_dev_get(&perf->i915->drm); 3520 3521 return stream_fd; 3522 3523 err_flags: 3524 if (stream->ops->destroy) 3525 stream->ops->destroy(stream); 3526 err_alloc: 3527 kfree(stream); 3528 err_ctx: 3529 if (specific_ctx) 3530 i915_gem_context_put(specific_ctx); 3531 err: 3532 return ret; 3533 } 3534 3535 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3536 { 3537 return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt, 3538 2ULL << exponent); 3539 } 3540 3541 static __always_inline bool 3542 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3543 { 3544 return test_bit(format, perf->format_mask); 3545 } 3546 3547 static __always_inline void 3548 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3549 { 3550 __set_bit(format, perf->format_mask); 3551 } 3552 3553 /** 3554 * read_properties_unlocked - validate + copy userspace stream open properties 3555 * @perf: i915 perf instance 3556 * @uprops: The array of u64 key value pairs given by userspace 3557 * @n_props: The number of key value pairs expected in @uprops 3558 * @props: The stream configuration built up while validating properties 3559 * 3560 * Note this function only validates properties in isolation it doesn't 3561 * validate that the combination of properties makes sense or that all 3562 * properties necessary for a particular kind of stream have been set. 3563 * 3564 * Note that there currently aren't any ordering requirements for properties so 3565 * we shouldn't validate or assume anything about ordering here. This doesn't 3566 * rule out defining new properties with ordering requirements in the future. 3567 */ 3568 static int read_properties_unlocked(struct i915_perf *perf, 3569 u64 __user *uprops, 3570 u32 n_props, 3571 struct perf_open_properties *props) 3572 { 3573 u64 __user *uprop = uprops; 3574 u32 i; 3575 int ret; 3576 3577 memset(props, 0, sizeof(struct perf_open_properties)); 3578 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3579 3580 if (!n_props) { 3581 DRM_DEBUG("No i915 perf properties given\n"); 3582 return -EINVAL; 3583 } 3584 3585 /* At the moment we only support using i915-perf on the RCS. */ 3586 props->engine = intel_engine_lookup_user(perf->i915, 3587 I915_ENGINE_CLASS_RENDER, 3588 0); 3589 if (!props->engine) { 3590 DRM_DEBUG("No RENDER-capable engines\n"); 3591 return -EINVAL; 3592 } 3593 3594 /* Considering that ID = 0 is reserved and assuming that we don't 3595 * (currently) expect any configurations to ever specify duplicate 3596 * values for a particular property ID then the last _PROP_MAX value is 3597 * one greater than the maximum number of properties we expect to get 3598 * from userspace. 3599 */ 3600 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3601 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3602 return -EINVAL; 3603 } 3604 3605 for (i = 0; i < n_props; i++) { 3606 u64 oa_period, oa_freq_hz; 3607 u64 id, value; 3608 3609 ret = get_user(id, uprop); 3610 if (ret) 3611 return ret; 3612 3613 ret = get_user(value, uprop + 1); 3614 if (ret) 3615 return ret; 3616 3617 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3618 DRM_DEBUG("Unknown i915 perf property ID\n"); 3619 return -EINVAL; 3620 } 3621 3622 switch ((enum drm_i915_perf_property_id)id) { 3623 case DRM_I915_PERF_PROP_CTX_HANDLE: 3624 props->single_context = 1; 3625 props->ctx_handle = value; 3626 break; 3627 case DRM_I915_PERF_PROP_SAMPLE_OA: 3628 if (value) 3629 props->sample_flags |= SAMPLE_OA_REPORT; 3630 break; 3631 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3632 if (value == 0) { 3633 DRM_DEBUG("Unknown OA metric set ID\n"); 3634 return -EINVAL; 3635 } 3636 props->metrics_set = value; 3637 break; 3638 case DRM_I915_PERF_PROP_OA_FORMAT: 3639 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3640 DRM_DEBUG("Out-of-range OA report format %llu\n", 3641 value); 3642 return -EINVAL; 3643 } 3644 if (!oa_format_valid(perf, value)) { 3645 DRM_DEBUG("Unsupported OA report format %llu\n", 3646 value); 3647 return -EINVAL; 3648 } 3649 props->oa_format = value; 3650 break; 3651 case DRM_I915_PERF_PROP_OA_EXPONENT: 3652 if (value > OA_EXPONENT_MAX) { 3653 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3654 OA_EXPONENT_MAX); 3655 return -EINVAL; 3656 } 3657 3658 /* Theoretically we can program the OA unit to sample 3659 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3660 * for BXT. We don't allow such high sampling 3661 * frequencies by default unless root. 3662 */ 3663 3664 BUILD_BUG_ON(sizeof(oa_period) != 8); 3665 oa_period = oa_exponent_to_ns(perf, value); 3666 3667 /* This check is primarily to ensure that oa_period <= 3668 * UINT32_MAX (before passing to do_div which only 3669 * accepts a u32 denominator), but we can also skip 3670 * checking anything < 1Hz which implicitly can't be 3671 * limited via an integer oa_max_sample_rate. 3672 */ 3673 if (oa_period <= NSEC_PER_SEC) { 3674 u64 tmp = NSEC_PER_SEC; 3675 do_div(tmp, oa_period); 3676 oa_freq_hz = tmp; 3677 } else 3678 oa_freq_hz = 0; 3679 3680 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3681 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3682 i915_oa_max_sample_rate); 3683 return -EACCES; 3684 } 3685 3686 props->oa_periodic = true; 3687 props->oa_period_exponent = value; 3688 break; 3689 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3690 props->hold_preemption = !!value; 3691 break; 3692 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3693 struct drm_i915_gem_context_param_sseu user_sseu; 3694 3695 if (copy_from_user(&user_sseu, 3696 u64_to_user_ptr(value), 3697 sizeof(user_sseu))) { 3698 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3699 return -EFAULT; 3700 } 3701 3702 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3703 if (ret) { 3704 DRM_DEBUG("Invalid SSEU configuration\n"); 3705 return ret; 3706 } 3707 props->has_sseu = true; 3708 break; 3709 } 3710 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3711 if (value < 100000 /* 100us */) { 3712 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3713 value); 3714 return -EINVAL; 3715 } 3716 props->poll_oa_period = value; 3717 break; 3718 case DRM_I915_PERF_PROP_MAX: 3719 MISSING_CASE(id); 3720 return -EINVAL; 3721 } 3722 3723 uprop += 2; 3724 } 3725 3726 return 0; 3727 } 3728 3729 /** 3730 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3731 * @dev: drm device 3732 * @data: ioctl data copied from userspace (unvalidated) 3733 * @file: drm file 3734 * 3735 * Validates the stream open parameters given by userspace including flags 3736 * and an array of u64 key, value pair properties. 3737 * 3738 * Very little is assumed up front about the nature of the stream being 3739 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3740 * i915-perf stream is expected to be a suitable interface for other forms of 3741 * buffered data written by the GPU besides periodic OA metrics. 3742 * 3743 * Note we copy the properties from userspace outside of the i915 perf 3744 * mutex to avoid an awkward lockdep with mmap_lock. 3745 * 3746 * Most of the implementation details are handled by 3747 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3748 * mutex for serializing with any non-file-operation driver hooks. 3749 * 3750 * Return: A newly opened i915 Perf stream file descriptor or negative 3751 * error code on failure. 3752 */ 3753 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3754 struct drm_file *file) 3755 { 3756 struct i915_perf *perf = &to_i915(dev)->perf; 3757 struct drm_i915_perf_open_param *param = data; 3758 struct perf_open_properties props; 3759 u32 known_open_flags; 3760 int ret; 3761 3762 if (!perf->i915) { 3763 DRM_DEBUG("i915 perf interface not available for this system\n"); 3764 return -ENOTSUPP; 3765 } 3766 3767 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3768 I915_PERF_FLAG_FD_NONBLOCK | 3769 I915_PERF_FLAG_DISABLED; 3770 if (param->flags & ~known_open_flags) { 3771 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3772 return -EINVAL; 3773 } 3774 3775 ret = read_properties_unlocked(perf, 3776 u64_to_user_ptr(param->properties_ptr), 3777 param->num_properties, 3778 &props); 3779 if (ret) 3780 return ret; 3781 3782 mutex_lock(&perf->lock); 3783 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3784 mutex_unlock(&perf->lock); 3785 3786 return ret; 3787 } 3788 3789 /** 3790 * i915_perf_register - exposes i915-perf to userspace 3791 * @i915: i915 device instance 3792 * 3793 * In particular OA metric sets are advertised under a sysfs metrics/ 3794 * directory allowing userspace to enumerate valid IDs that can be 3795 * used to open an i915-perf stream. 3796 */ 3797 void i915_perf_register(struct drm_i915_private *i915) 3798 { 3799 struct i915_perf *perf = &i915->perf; 3800 3801 if (!perf->i915) 3802 return; 3803 3804 /* To be sure we're synchronized with an attempted 3805 * i915_perf_open_ioctl(); considering that we register after 3806 * being exposed to userspace. 3807 */ 3808 mutex_lock(&perf->lock); 3809 3810 perf->metrics_kobj = 3811 kobject_create_and_add("metrics", 3812 &i915->drm.primary->kdev->kobj); 3813 3814 mutex_unlock(&perf->lock); 3815 } 3816 3817 /** 3818 * i915_perf_unregister - hide i915-perf from userspace 3819 * @i915: i915 device instance 3820 * 3821 * i915-perf state cleanup is split up into an 'unregister' and 3822 * 'deinit' phase where the interface is first hidden from 3823 * userspace by i915_perf_unregister() before cleaning up 3824 * remaining state in i915_perf_fini(). 3825 */ 3826 void i915_perf_unregister(struct drm_i915_private *i915) 3827 { 3828 struct i915_perf *perf = &i915->perf; 3829 3830 if (!perf->metrics_kobj) 3831 return; 3832 3833 kobject_put(perf->metrics_kobj); 3834 perf->metrics_kobj = NULL; 3835 } 3836 3837 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3838 { 3839 static const i915_reg_t flex_eu_regs[] = { 3840 EU_PERF_CNTL0, 3841 EU_PERF_CNTL1, 3842 EU_PERF_CNTL2, 3843 EU_PERF_CNTL3, 3844 EU_PERF_CNTL4, 3845 EU_PERF_CNTL5, 3846 EU_PERF_CNTL6, 3847 }; 3848 int i; 3849 3850 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3851 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3852 return true; 3853 } 3854 return false; 3855 } 3856 3857 #define ADDR_IN_RANGE(addr, start, end) \ 3858 ((addr) >= (start) && \ 3859 (addr) <= (end)) 3860 3861 #define REG_IN_RANGE(addr, start, end) \ 3862 ((addr) >= i915_mmio_reg_offset(start) && \ 3863 (addr) <= i915_mmio_reg_offset(end)) 3864 3865 #define REG_EQUAL(addr, mmio) \ 3866 ((addr) == i915_mmio_reg_offset(mmio)) 3867 3868 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3869 { 3870 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3871 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3872 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3873 } 3874 3875 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3876 { 3877 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3878 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3879 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3880 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3881 } 3882 3883 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3884 { 3885 return gen7_is_valid_mux_addr(perf, addr) || 3886 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3887 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3888 } 3889 3890 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3891 { 3892 return gen8_is_valid_mux_addr(perf, addr) || 3893 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3894 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3895 } 3896 3897 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3898 { 3899 return gen7_is_valid_mux_addr(perf, addr) || 3900 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3901 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3902 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3903 } 3904 3905 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3906 { 3907 return gen7_is_valid_mux_addr(perf, addr) || 3908 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3909 } 3910 3911 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3912 { 3913 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3914 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3915 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3916 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3917 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3918 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3919 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3920 } 3921 3922 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3923 { 3924 return REG_EQUAL(addr, NOA_WRITE) || 3925 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3926 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3927 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3928 REG_EQUAL(addr, RPM_CONFIG0) || 3929 REG_EQUAL(addr, RPM_CONFIG1) || 3930 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3931 } 3932 3933 static u32 mask_reg_value(u32 reg, u32 val) 3934 { 3935 /* HALF_SLICE_CHICKEN2 is programmed with a the 3936 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3937 * programmed by userspace doesn't change this. 3938 */ 3939 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3940 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3941 3942 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3943 * indicated by its name and a bunch of selection fields used by OA 3944 * configs. 3945 */ 3946 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3947 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3948 3949 return val; 3950 } 3951 3952 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3953 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3954 u32 __user *regs, 3955 u32 n_regs) 3956 { 3957 struct i915_oa_reg *oa_regs; 3958 int err; 3959 u32 i; 3960 3961 if (!n_regs) 3962 return NULL; 3963 3964 /* No is_valid function means we're not allowing any register to be programmed. */ 3965 GEM_BUG_ON(!is_valid); 3966 if (!is_valid) 3967 return ERR_PTR(-EINVAL); 3968 3969 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3970 if (!oa_regs) 3971 return ERR_PTR(-ENOMEM); 3972 3973 for (i = 0; i < n_regs; i++) { 3974 u32 addr, value; 3975 3976 err = get_user(addr, regs); 3977 if (err) 3978 goto addr_err; 3979 3980 if (!is_valid(perf, addr)) { 3981 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3982 err = -EINVAL; 3983 goto addr_err; 3984 } 3985 3986 err = get_user(value, regs + 1); 3987 if (err) 3988 goto addr_err; 3989 3990 oa_regs[i].addr = _MMIO(addr); 3991 oa_regs[i].value = mask_reg_value(addr, value); 3992 3993 regs += 2; 3994 } 3995 3996 return oa_regs; 3997 3998 addr_err: 3999 kfree(oa_regs); 4000 return ERR_PTR(err); 4001 } 4002 4003 static ssize_t show_dynamic_id(struct device *dev, 4004 struct device_attribute *attr, 4005 char *buf) 4006 { 4007 struct i915_oa_config *oa_config = 4008 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4009 4010 return sprintf(buf, "%d\n", oa_config->id); 4011 } 4012 4013 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4014 struct i915_oa_config *oa_config) 4015 { 4016 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4017 oa_config->sysfs_metric_id.attr.name = "id"; 4018 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4019 oa_config->sysfs_metric_id.show = show_dynamic_id; 4020 oa_config->sysfs_metric_id.store = NULL; 4021 4022 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4023 oa_config->attrs[1] = NULL; 4024 4025 oa_config->sysfs_metric.name = oa_config->uuid; 4026 oa_config->sysfs_metric.attrs = oa_config->attrs; 4027 4028 return sysfs_create_group(perf->metrics_kobj, 4029 &oa_config->sysfs_metric); 4030 } 4031 4032 /** 4033 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4034 * @dev: drm device 4035 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4036 * userspace (unvalidated) 4037 * @file: drm file 4038 * 4039 * Validates the submitted OA register to be saved into a new OA config that 4040 * can then be used for programming the OA unit and its NOA network. 4041 * 4042 * Returns: A new allocated config number to be used with the perf open ioctl 4043 * or a negative error code on failure. 4044 */ 4045 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4046 struct drm_file *file) 4047 { 4048 struct i915_perf *perf = &to_i915(dev)->perf; 4049 struct drm_i915_perf_oa_config *args = data; 4050 struct i915_oa_config *oa_config, *tmp; 4051 struct i915_oa_reg *regs; 4052 int err, id; 4053 4054 if (!perf->i915) { 4055 DRM_DEBUG("i915 perf interface not available for this system\n"); 4056 return -ENOTSUPP; 4057 } 4058 4059 if (!perf->metrics_kobj) { 4060 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4061 return -EINVAL; 4062 } 4063 4064 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4065 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4066 return -EACCES; 4067 } 4068 4069 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4070 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4071 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4072 DRM_DEBUG("No OA registers given\n"); 4073 return -EINVAL; 4074 } 4075 4076 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4077 if (!oa_config) { 4078 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4079 return -ENOMEM; 4080 } 4081 4082 oa_config->perf = perf; 4083 kref_init(&oa_config->ref); 4084 4085 if (!uuid_is_valid(args->uuid)) { 4086 DRM_DEBUG("Invalid uuid format for OA config\n"); 4087 err = -EINVAL; 4088 goto reg_err; 4089 } 4090 4091 /* Last character in oa_config->uuid will be 0 because oa_config is 4092 * kzalloc. 4093 */ 4094 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4095 4096 oa_config->mux_regs_len = args->n_mux_regs; 4097 regs = alloc_oa_regs(perf, 4098 perf->ops.is_valid_mux_reg, 4099 u64_to_user_ptr(args->mux_regs_ptr), 4100 args->n_mux_regs); 4101 4102 if (IS_ERR(regs)) { 4103 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4104 err = PTR_ERR(regs); 4105 goto reg_err; 4106 } 4107 oa_config->mux_regs = regs; 4108 4109 oa_config->b_counter_regs_len = args->n_boolean_regs; 4110 regs = alloc_oa_regs(perf, 4111 perf->ops.is_valid_b_counter_reg, 4112 u64_to_user_ptr(args->boolean_regs_ptr), 4113 args->n_boolean_regs); 4114 4115 if (IS_ERR(regs)) { 4116 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4117 err = PTR_ERR(regs); 4118 goto reg_err; 4119 } 4120 oa_config->b_counter_regs = regs; 4121 4122 if (GRAPHICS_VER(perf->i915) < 8) { 4123 if (args->n_flex_regs != 0) { 4124 err = -EINVAL; 4125 goto reg_err; 4126 } 4127 } else { 4128 oa_config->flex_regs_len = args->n_flex_regs; 4129 regs = alloc_oa_regs(perf, 4130 perf->ops.is_valid_flex_reg, 4131 u64_to_user_ptr(args->flex_regs_ptr), 4132 args->n_flex_regs); 4133 4134 if (IS_ERR(regs)) { 4135 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4136 err = PTR_ERR(regs); 4137 goto reg_err; 4138 } 4139 oa_config->flex_regs = regs; 4140 } 4141 4142 err = mutex_lock_interruptible(&perf->metrics_lock); 4143 if (err) 4144 goto reg_err; 4145 4146 /* We shouldn't have too many configs, so this iteration shouldn't be 4147 * too costly. 4148 */ 4149 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4150 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4151 DRM_DEBUG("OA config already exists with this uuid\n"); 4152 err = -EADDRINUSE; 4153 goto sysfs_err; 4154 } 4155 } 4156 4157 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4158 if (err) { 4159 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4160 goto sysfs_err; 4161 } 4162 4163 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4164 oa_config->id = idr_alloc(&perf->metrics_idr, 4165 oa_config, 2, 4166 0, GFP_KERNEL); 4167 if (oa_config->id < 0) { 4168 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4169 err = oa_config->id; 4170 goto sysfs_err; 4171 } 4172 4173 mutex_unlock(&perf->metrics_lock); 4174 4175 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4176 4177 return oa_config->id; 4178 4179 sysfs_err: 4180 mutex_unlock(&perf->metrics_lock); 4181 reg_err: 4182 i915_oa_config_put(oa_config); 4183 DRM_DEBUG("Failed to add new OA config\n"); 4184 return err; 4185 } 4186 4187 /** 4188 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4189 * @dev: drm device 4190 * @data: ioctl data (pointer to u64 integer) copied from userspace 4191 * @file: drm file 4192 * 4193 * Configs can be removed while being used, the will stop appearing in sysfs 4194 * and their content will be freed when the stream using the config is closed. 4195 * 4196 * Returns: 0 on success or a negative error code on failure. 4197 */ 4198 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4199 struct drm_file *file) 4200 { 4201 struct i915_perf *perf = &to_i915(dev)->perf; 4202 u64 *arg = data; 4203 struct i915_oa_config *oa_config; 4204 int ret; 4205 4206 if (!perf->i915) { 4207 DRM_DEBUG("i915 perf interface not available for this system\n"); 4208 return -ENOTSUPP; 4209 } 4210 4211 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4212 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4213 return -EACCES; 4214 } 4215 4216 ret = mutex_lock_interruptible(&perf->metrics_lock); 4217 if (ret) 4218 return ret; 4219 4220 oa_config = idr_find(&perf->metrics_idr, *arg); 4221 if (!oa_config) { 4222 DRM_DEBUG("Failed to remove unknown OA config\n"); 4223 ret = -ENOENT; 4224 goto err_unlock; 4225 } 4226 4227 GEM_BUG_ON(*arg != oa_config->id); 4228 4229 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4230 4231 idr_remove(&perf->metrics_idr, *arg); 4232 4233 mutex_unlock(&perf->metrics_lock); 4234 4235 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4236 4237 i915_oa_config_put(oa_config); 4238 4239 return 0; 4240 4241 err_unlock: 4242 mutex_unlock(&perf->metrics_lock); 4243 return ret; 4244 } 4245 4246 static struct ctl_table oa_table[] = { 4247 { 4248 .procname = "perf_stream_paranoid", 4249 .data = &i915_perf_stream_paranoid, 4250 .maxlen = sizeof(i915_perf_stream_paranoid), 4251 .mode = 0644, 4252 .proc_handler = proc_dointvec_minmax, 4253 .extra1 = SYSCTL_ZERO, 4254 .extra2 = SYSCTL_ONE, 4255 }, 4256 { 4257 .procname = "oa_max_sample_rate", 4258 .data = &i915_oa_max_sample_rate, 4259 .maxlen = sizeof(i915_oa_max_sample_rate), 4260 .mode = 0644, 4261 .proc_handler = proc_dointvec_minmax, 4262 .extra1 = SYSCTL_ZERO, 4263 .extra2 = &oa_sample_rate_hard_limit, 4264 }, 4265 {} 4266 }; 4267 4268 static struct ctl_table i915_root[] = { 4269 { 4270 .procname = "i915", 4271 .maxlen = 0, 4272 .mode = 0555, 4273 .child = oa_table, 4274 }, 4275 {} 4276 }; 4277 4278 static struct ctl_table dev_root[] = { 4279 { 4280 .procname = "dev", 4281 .maxlen = 0, 4282 .mode = 0555, 4283 .child = i915_root, 4284 }, 4285 {} 4286 }; 4287 4288 static void oa_init_supported_formats(struct i915_perf *perf) 4289 { 4290 struct drm_i915_private *i915 = perf->i915; 4291 enum intel_platform platform = INTEL_INFO(i915)->platform; 4292 4293 switch (platform) { 4294 case INTEL_HASWELL: 4295 oa_format_add(perf, I915_OA_FORMAT_A13); 4296 oa_format_add(perf, I915_OA_FORMAT_A13); 4297 oa_format_add(perf, I915_OA_FORMAT_A29); 4298 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4299 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4300 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4301 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4302 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4303 break; 4304 4305 case INTEL_BROADWELL: 4306 case INTEL_CHERRYVIEW: 4307 case INTEL_SKYLAKE: 4308 case INTEL_BROXTON: 4309 case INTEL_KABYLAKE: 4310 case INTEL_GEMINILAKE: 4311 case INTEL_COFFEELAKE: 4312 case INTEL_COMETLAKE: 4313 case INTEL_CANNONLAKE: 4314 case INTEL_ICELAKE: 4315 case INTEL_ELKHARTLAKE: 4316 case INTEL_JASPERLAKE: 4317 case INTEL_TIGERLAKE: 4318 case INTEL_ROCKETLAKE: 4319 case INTEL_DG1: 4320 case INTEL_ALDERLAKE_S: 4321 case INTEL_ALDERLAKE_P: 4322 oa_format_add(perf, I915_OA_FORMAT_A12); 4323 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4324 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4325 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4326 break; 4327 4328 default: 4329 MISSING_CASE(platform); 4330 } 4331 } 4332 4333 /** 4334 * i915_perf_init - initialize i915-perf state on module bind 4335 * @i915: i915 device instance 4336 * 4337 * Initializes i915-perf state without exposing anything to userspace. 4338 * 4339 * Note: i915-perf initialization is split into an 'init' and 'register' 4340 * phase with the i915_perf_register() exposing state to userspace. 4341 */ 4342 void i915_perf_init(struct drm_i915_private *i915) 4343 { 4344 struct i915_perf *perf = &i915->perf; 4345 4346 /* XXX const struct i915_perf_ops! */ 4347 4348 perf->oa_formats = oa_formats; 4349 if (IS_HASWELL(i915)) { 4350 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4351 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4352 perf->ops.is_valid_flex_reg = NULL; 4353 perf->ops.enable_metric_set = hsw_enable_metric_set; 4354 perf->ops.disable_metric_set = hsw_disable_metric_set; 4355 perf->ops.oa_enable = gen7_oa_enable; 4356 perf->ops.oa_disable = gen7_oa_disable; 4357 perf->ops.read = gen7_oa_read; 4358 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4359 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4360 /* Note: that although we could theoretically also support the 4361 * legacy ringbuffer mode on BDW (and earlier iterations of 4362 * this driver, before upstreaming did this) it didn't seem 4363 * worth the complexity to maintain now that BDW+ enable 4364 * execlist mode by default. 4365 */ 4366 perf->ops.read = gen8_oa_read; 4367 4368 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4369 perf->ops.is_valid_b_counter_reg = 4370 gen7_is_valid_b_counter_addr; 4371 perf->ops.is_valid_mux_reg = 4372 gen8_is_valid_mux_addr; 4373 perf->ops.is_valid_flex_reg = 4374 gen8_is_valid_flex_addr; 4375 4376 if (IS_CHERRYVIEW(i915)) { 4377 perf->ops.is_valid_mux_reg = 4378 chv_is_valid_mux_addr; 4379 } 4380 4381 perf->ops.oa_enable = gen8_oa_enable; 4382 perf->ops.oa_disable = gen8_oa_disable; 4383 perf->ops.enable_metric_set = gen8_enable_metric_set; 4384 perf->ops.disable_metric_set = gen8_disable_metric_set; 4385 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4386 4387 if (GRAPHICS_VER(i915) == 8) { 4388 perf->ctx_oactxctrl_offset = 0x120; 4389 perf->ctx_flexeu0_offset = 0x2ce; 4390 4391 perf->gen8_valid_ctx_bit = BIT(25); 4392 } else { 4393 perf->ctx_oactxctrl_offset = 0x128; 4394 perf->ctx_flexeu0_offset = 0x3de; 4395 4396 perf->gen8_valid_ctx_bit = BIT(16); 4397 } 4398 } else if (IS_GRAPHICS_VER(i915, 10, 11)) { 4399 perf->ops.is_valid_b_counter_reg = 4400 gen7_is_valid_b_counter_addr; 4401 perf->ops.is_valid_mux_reg = 4402 gen10_is_valid_mux_addr; 4403 perf->ops.is_valid_flex_reg = 4404 gen8_is_valid_flex_addr; 4405 4406 perf->ops.oa_enable = gen8_oa_enable; 4407 perf->ops.oa_disable = gen8_oa_disable; 4408 perf->ops.enable_metric_set = gen8_enable_metric_set; 4409 perf->ops.disable_metric_set = gen10_disable_metric_set; 4410 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4411 4412 if (GRAPHICS_VER(i915) == 10) { 4413 perf->ctx_oactxctrl_offset = 0x128; 4414 perf->ctx_flexeu0_offset = 0x3de; 4415 } else { 4416 perf->ctx_oactxctrl_offset = 0x124; 4417 perf->ctx_flexeu0_offset = 0x78e; 4418 } 4419 perf->gen8_valid_ctx_bit = BIT(16); 4420 } else if (GRAPHICS_VER(i915) == 12) { 4421 perf->ops.is_valid_b_counter_reg = 4422 gen12_is_valid_b_counter_addr; 4423 perf->ops.is_valid_mux_reg = 4424 gen12_is_valid_mux_addr; 4425 perf->ops.is_valid_flex_reg = 4426 gen8_is_valid_flex_addr; 4427 4428 perf->ops.oa_enable = gen12_oa_enable; 4429 perf->ops.oa_disable = gen12_oa_disable; 4430 perf->ops.enable_metric_set = gen12_enable_metric_set; 4431 perf->ops.disable_metric_set = gen12_disable_metric_set; 4432 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4433 4434 perf->ctx_flexeu0_offset = 0; 4435 perf->ctx_oactxctrl_offset = 0x144; 4436 } 4437 } 4438 4439 if (perf->ops.enable_metric_set) { 4440 mutex_init(&perf->lock); 4441 4442 /* Choose a representative limit */ 4443 oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2; 4444 4445 mutex_init(&perf->metrics_lock); 4446 idr_init_base(&perf->metrics_idr, 1); 4447 4448 /* We set up some ratelimit state to potentially throttle any 4449 * _NOTES about spurious, invalid OA reports which we don't 4450 * forward to userspace. 4451 * 4452 * We print a _NOTE about any throttling when closing the 4453 * stream instead of waiting until driver _fini which no one 4454 * would ever see. 4455 * 4456 * Using the same limiting factors as printk_ratelimit() 4457 */ 4458 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4459 /* Since we use a DRM_NOTE for spurious reports it would be 4460 * inconsistent to let __ratelimit() automatically print a 4461 * warning for throttling. 4462 */ 4463 ratelimit_set_flags(&perf->spurious_report_rs, 4464 RATELIMIT_MSG_ON_RELEASE); 4465 4466 ratelimit_state_init(&perf->tail_pointer_race, 4467 5 * HZ, 10); 4468 ratelimit_set_flags(&perf->tail_pointer_race, 4469 RATELIMIT_MSG_ON_RELEASE); 4470 4471 atomic64_set(&perf->noa_programming_delay, 4472 500 * 1000 /* 500us */); 4473 4474 perf->i915 = i915; 4475 4476 oa_init_supported_formats(perf); 4477 } 4478 } 4479 4480 static int destroy_config(int id, void *p, void *data) 4481 { 4482 i915_oa_config_put(p); 4483 return 0; 4484 } 4485 4486 void i915_perf_sysctl_register(void) 4487 { 4488 sysctl_header = register_sysctl_table(dev_root); 4489 } 4490 4491 void i915_perf_sysctl_unregister(void) 4492 { 4493 unregister_sysctl_table(sysctl_header); 4494 } 4495 4496 /** 4497 * i915_perf_fini - Counter part to i915_perf_init() 4498 * @i915: i915 device instance 4499 */ 4500 void i915_perf_fini(struct drm_i915_private *i915) 4501 { 4502 struct i915_perf *perf = &i915->perf; 4503 4504 if (!perf->i915) 4505 return; 4506 4507 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4508 idr_destroy(&perf->metrics_idr); 4509 4510 memset(&perf->ops, 0, sizeof(perf->ops)); 4511 perf->i915 = NULL; 4512 } 4513 4514 /** 4515 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4516 * 4517 * This version number is used by userspace to detect available features. 4518 */ 4519 int i915_perf_ioctl_version(void) 4520 { 4521 /* 4522 * 1: Initial version 4523 * I915_PERF_IOCTL_ENABLE 4524 * I915_PERF_IOCTL_DISABLE 4525 * 4526 * 2: Added runtime modification of OA config. 4527 * I915_PERF_IOCTL_CONFIG 4528 * 4529 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4530 * preemption on a particular context so that performance data is 4531 * accessible from a delta of MI_RPC reports without looking at the 4532 * OA buffer. 4533 * 4534 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4535 * be run for the duration of the performance recording based on 4536 * their SSEU configuration. 4537 * 4538 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4539 * interval for the hrtimer used to check for OA data. 4540 */ 4541 return 5; 4542 } 4543 4544 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4545 #include "selftests/i915_perf.c" 4546 #endif 4547