1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_regs.h" 201 #include "gt/intel_engine_user.h" 202 #include "gt/intel_execlists_submission.h" 203 #include "gt/intel_gpu_commands.h" 204 #include "gt/intel_gt.h" 205 #include "gt/intel_gt_clock_utils.h" 206 #include "gt/intel_gt_regs.h" 207 #include "gt/intel_lrc.h" 208 #include "gt/intel_ring.h" 209 210 #include "i915_drv.h" 211 #include "i915_perf.h" 212 #include "i915_perf_oa_regs.h" 213 214 /* HW requires this to be a power of two, between 128k and 16M, though driver 215 * is currently generally designed assuming the largest 16M size is used such 216 * that the overflow cases are unlikely in normal operation. 217 */ 218 #define OA_BUFFER_SIZE SZ_16M 219 220 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 221 222 /** 223 * DOC: OA Tail Pointer Race 224 * 225 * There's a HW race condition between OA unit tail pointer register updates and 226 * writes to memory whereby the tail pointer can sometimes get ahead of what's 227 * been written out to the OA buffer so far (in terms of what's visible to the 228 * CPU). 229 * 230 * Although this can be observed explicitly while copying reports to userspace 231 * by checking for a zeroed report-id field in tail reports, we want to account 232 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 233 * redundant read() attempts. 234 * 235 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 236 * in the OA buffer, starting from the tail reported by the HW until we find a 237 * report with its first 2 dwords not 0 meaning its previous report is 238 * completely in memory and ready to be read. Those dwords are also set to 0 239 * once read and the whole buffer is cleared upon OA buffer initialization. The 240 * first dword is the reason for this report while the second is the timestamp, 241 * making the chances of having those 2 fields at 0 fairly unlikely. A more 242 * detailed explanation is available in oa_buffer_check_unlocked(). 243 * 244 * Most of the implementation details for this workaround are in 245 * oa_buffer_check_unlocked() and _append_oa_reports() 246 * 247 * Note for posterity: previously the driver used to define an effective tail 248 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 249 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 250 * This was flawed considering that the OA unit may also automatically generate 251 * non-periodic reports (such as on context switch) or the OA unit may be 252 * enabled without any periodic sampling. 253 */ 254 #define OA_TAIL_MARGIN_NSEC 100000ULL 255 #define INVALID_TAIL_PTR 0xffffffff 256 257 /* The default frequency for checking whether the OA unit has written new 258 * reports to the circular OA buffer... 259 */ 260 #define DEFAULT_POLL_FREQUENCY_HZ 200 261 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 262 263 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 264 static u32 i915_perf_stream_paranoid = true; 265 266 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 267 * of the 64bit timestamp bits to trigger reports from) but there's currently 268 * no known use case for sampling as infrequently as once per 47 thousand years. 269 * 270 * Since the timestamps included in OA reports are only 32bits it seems 271 * reasonable to limit the OA exponent where it's still possible to account for 272 * overflow in OA report timestamps. 273 */ 274 #define OA_EXPONENT_MAX 31 275 276 #define INVALID_CTX_ID 0xffffffff 277 278 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 279 #define OAREPORT_REASON_MASK 0x3f 280 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 281 #define OAREPORT_REASON_SHIFT 19 282 #define OAREPORT_REASON_TIMER (1<<0) 283 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 284 #define OAREPORT_REASON_CLK_RATIO (1<<5) 285 286 287 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 288 * 289 * The highest sampling frequency we can theoretically program the OA unit 290 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 291 * 292 * Initialized just before we register the sysctl parameter. 293 */ 294 static int oa_sample_rate_hard_limit; 295 296 /* Theoretically we can program the OA unit to sample every 160ns but don't 297 * allow that by default unless root... 298 * 299 * The default threshold of 100000Hz is based on perf's similar 300 * kernel.perf_event_max_sample_rate sysctl parameter. 301 */ 302 static u32 i915_oa_max_sample_rate = 100000; 303 304 /* XXX: beware if future OA HW adds new report formats that the current 305 * code assumes all reports have a power-of-two size and ~(size - 1) can 306 * be used as a mask to align the OA tail pointer. 307 */ 308 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 309 [I915_OA_FORMAT_A13] = { 0, 64 }, 310 [I915_OA_FORMAT_A29] = { 1, 128 }, 311 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 312 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 313 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 314 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 315 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 316 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 317 [I915_OA_FORMAT_A12] = { 0, 64 }, 318 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 319 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 320 }; 321 322 #define SAMPLE_OA_REPORT (1<<0) 323 324 /** 325 * struct perf_open_properties - for validated properties given to open a stream 326 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 327 * @single_context: Whether a single or all gpu contexts should be monitored 328 * @hold_preemption: Whether the preemption is disabled for the filtered 329 * context 330 * @ctx_handle: A gem ctx handle for use with @single_context 331 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 332 * @oa_format: An OA unit HW report format 333 * @oa_periodic: Whether to enable periodic OA unit sampling 334 * @oa_period_exponent: The OA unit sampling period is derived from this 335 * @engine: The engine (typically rcs0) being monitored by the OA unit 336 * @has_sseu: Whether @sseu was specified by userspace 337 * @sseu: internal SSEU configuration computed either from the userspace 338 * specified configuration in the opening parameters or a default value 339 * (see get_default_sseu_config()) 340 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 341 * data availability 342 * 343 * As read_properties_unlocked() enumerates and validates the properties given 344 * to open a stream of metrics the configuration is built up in the structure 345 * which starts out zero initialized. 346 */ 347 struct perf_open_properties { 348 u32 sample_flags; 349 350 u64 single_context:1; 351 u64 hold_preemption:1; 352 u64 ctx_handle; 353 354 /* OA sampling state */ 355 int metrics_set; 356 int oa_format; 357 bool oa_periodic; 358 int oa_period_exponent; 359 360 struct intel_engine_cs *engine; 361 362 bool has_sseu; 363 struct intel_sseu sseu; 364 365 u64 poll_oa_period; 366 }; 367 368 struct i915_oa_config_bo { 369 struct llist_node node; 370 371 struct i915_oa_config *oa_config; 372 struct i915_vma *vma; 373 }; 374 375 static struct ctl_table_header *sysctl_header; 376 377 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 378 379 void i915_oa_config_release(struct kref *ref) 380 { 381 struct i915_oa_config *oa_config = 382 container_of(ref, typeof(*oa_config), ref); 383 384 kfree(oa_config->flex_regs); 385 kfree(oa_config->b_counter_regs); 386 kfree(oa_config->mux_regs); 387 388 kfree_rcu(oa_config, rcu); 389 } 390 391 struct i915_oa_config * 392 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 393 { 394 struct i915_oa_config *oa_config; 395 396 rcu_read_lock(); 397 oa_config = idr_find(&perf->metrics_idr, metrics_set); 398 if (oa_config) 399 oa_config = i915_oa_config_get(oa_config); 400 rcu_read_unlock(); 401 402 return oa_config; 403 } 404 405 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 406 { 407 i915_oa_config_put(oa_bo->oa_config); 408 i915_vma_put(oa_bo->vma); 409 kfree(oa_bo); 410 } 411 412 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 413 { 414 struct intel_uncore *uncore = stream->uncore; 415 416 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 417 GEN12_OAG_OATAILPTR_MASK; 418 } 419 420 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 421 { 422 struct intel_uncore *uncore = stream->uncore; 423 424 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 425 } 426 427 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 428 { 429 struct intel_uncore *uncore = stream->uncore; 430 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 431 432 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 433 } 434 435 /** 436 * oa_buffer_check_unlocked - check for data and update tail ptr state 437 * @stream: i915 stream instance 438 * 439 * This is either called via fops (for blocking reads in user ctx) or the poll 440 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 441 * if there is data available for userspace to read. 442 * 443 * This function is central to providing a workaround for the OA unit tail 444 * pointer having a race with respect to what data is visible to the CPU. 445 * It is responsible for reading tail pointers from the hardware and giving 446 * the pointers time to 'age' before they are made available for reading. 447 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 448 * 449 * Besides returning true when there is data available to read() this function 450 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 451 * object. 452 * 453 * Note: It's safe to read OA config state here unlocked, assuming that this is 454 * only called while the stream is enabled, while the global OA configuration 455 * can't be modified. 456 * 457 * Returns: %true if the OA buffer contains data, else %false 458 */ 459 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 460 { 461 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 462 int report_size = stream->oa_buffer.format_size; 463 unsigned long flags; 464 bool pollin; 465 u32 hw_tail; 466 u64 now; 467 468 /* We have to consider the (unlikely) possibility that read() errors 469 * could result in an OA buffer reset which might reset the head and 470 * tail state. 471 */ 472 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 473 474 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 475 476 /* The tail pointer increases in 64 byte increments, 477 * not in report_size steps... 478 */ 479 hw_tail &= ~(report_size - 1); 480 481 now = ktime_get_mono_fast_ns(); 482 483 if (hw_tail == stream->oa_buffer.aging_tail && 484 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 485 /* If the HW tail hasn't move since the last check and the HW 486 * tail has been aging for long enough, declare it the new 487 * tail. 488 */ 489 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 490 } else { 491 u32 head, tail, aged_tail; 492 493 /* NB: The head we observe here might effectively be a little 494 * out of date. If a read() is in progress, the head could be 495 * anywhere between this head and stream->oa_buffer.tail. 496 */ 497 head = stream->oa_buffer.head - gtt_offset; 498 aged_tail = stream->oa_buffer.tail - gtt_offset; 499 500 hw_tail -= gtt_offset; 501 tail = hw_tail; 502 503 /* Walk the stream backward until we find a report with dword 0 504 * & 1 not at 0. Since the circular buffer pointers progress by 505 * increments of 64 bytes and that reports can be up to 256 506 * bytes long, we can't tell whether a report has fully landed 507 * in memory before the first 2 dwords of the following report 508 * have effectively landed. 509 * 510 * This is assuming that the writes of the OA unit land in 511 * memory in the order they were written to. 512 * If not : (╯°□°)╯︵ ┻━┻ 513 */ 514 while (OA_TAKEN(tail, aged_tail) >= report_size) { 515 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 516 517 if (report32[0] != 0 || report32[1] != 0) 518 break; 519 520 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 521 } 522 523 if (OA_TAKEN(hw_tail, tail) > report_size && 524 __ratelimit(&stream->perf->tail_pointer_race)) 525 DRM_NOTE("unlanded report(s) head=0x%x " 526 "tail=0x%x hw_tail=0x%x\n", 527 head, tail, hw_tail); 528 529 stream->oa_buffer.tail = gtt_offset + tail; 530 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 531 stream->oa_buffer.aging_timestamp = now; 532 } 533 534 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 535 stream->oa_buffer.head - gtt_offset) >= report_size; 536 537 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 538 539 return pollin; 540 } 541 542 /** 543 * append_oa_status - Appends a status record to a userspace read() buffer. 544 * @stream: An i915-perf stream opened for OA metrics 545 * @buf: destination buffer given by userspace 546 * @count: the number of bytes userspace wants to read 547 * @offset: (inout): the current position for writing into @buf 548 * @type: The kind of status to report to userspace 549 * 550 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 551 * into the userspace read() buffer. 552 * 553 * The @buf @offset will only be updated on success. 554 * 555 * Returns: 0 on success, negative error code on failure. 556 */ 557 static int append_oa_status(struct i915_perf_stream *stream, 558 char __user *buf, 559 size_t count, 560 size_t *offset, 561 enum drm_i915_perf_record_type type) 562 { 563 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 564 565 if ((count - *offset) < header.size) 566 return -ENOSPC; 567 568 if (copy_to_user(buf + *offset, &header, sizeof(header))) 569 return -EFAULT; 570 571 (*offset) += header.size; 572 573 return 0; 574 } 575 576 /** 577 * append_oa_sample - Copies single OA report into userspace read() buffer. 578 * @stream: An i915-perf stream opened for OA metrics 579 * @buf: destination buffer given by userspace 580 * @count: the number of bytes userspace wants to read 581 * @offset: (inout): the current position for writing into @buf 582 * @report: A single OA report to (optionally) include as part of the sample 583 * 584 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 585 * properties when opening a stream, tracked as `stream->sample_flags`. This 586 * function copies the requested components of a single sample to the given 587 * read() @buf. 588 * 589 * The @buf @offset will only be updated on success. 590 * 591 * Returns: 0 on success, negative error code on failure. 592 */ 593 static int append_oa_sample(struct i915_perf_stream *stream, 594 char __user *buf, 595 size_t count, 596 size_t *offset, 597 const u8 *report) 598 { 599 int report_size = stream->oa_buffer.format_size; 600 struct drm_i915_perf_record_header header; 601 602 header.type = DRM_I915_PERF_RECORD_SAMPLE; 603 header.pad = 0; 604 header.size = stream->sample_size; 605 606 if ((count - *offset) < header.size) 607 return -ENOSPC; 608 609 buf += *offset; 610 if (copy_to_user(buf, &header, sizeof(header))) 611 return -EFAULT; 612 buf += sizeof(header); 613 614 if (copy_to_user(buf, report, report_size)) 615 return -EFAULT; 616 617 (*offset) += header.size; 618 619 return 0; 620 } 621 622 /** 623 * gen8_append_oa_reports - Copies all buffered OA reports into 624 * userspace read() buffer. 625 * @stream: An i915-perf stream opened for OA metrics 626 * @buf: destination buffer given by userspace 627 * @count: the number of bytes userspace wants to read 628 * @offset: (inout): the current position for writing into @buf 629 * 630 * Notably any error condition resulting in a short read (-%ENOSPC or 631 * -%EFAULT) will be returned even though one or more records may 632 * have been successfully copied. In this case it's up to the caller 633 * to decide if the error should be squashed before returning to 634 * userspace. 635 * 636 * Note: reports are consumed from the head, and appended to the 637 * tail, so the tail chases the head?... If you think that's mad 638 * and back-to-front you're not alone, but this follows the 639 * Gen PRM naming convention. 640 * 641 * Returns: 0 on success, negative error code on failure. 642 */ 643 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 644 char __user *buf, 645 size_t count, 646 size_t *offset) 647 { 648 struct intel_uncore *uncore = stream->uncore; 649 int report_size = stream->oa_buffer.format_size; 650 u8 *oa_buf_base = stream->oa_buffer.vaddr; 651 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 652 u32 mask = (OA_BUFFER_SIZE - 1); 653 size_t start_offset = *offset; 654 unsigned long flags; 655 u32 head, tail; 656 u32 taken; 657 int ret = 0; 658 659 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 660 return -EIO; 661 662 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 663 664 head = stream->oa_buffer.head; 665 tail = stream->oa_buffer.tail; 666 667 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 668 669 /* 670 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 671 * while indexing relative to oa_buf_base. 672 */ 673 head -= gtt_offset; 674 tail -= gtt_offset; 675 676 /* 677 * An out of bounds or misaligned head or tail pointer implies a driver 678 * bug since we validate + align the tail pointers we read from the 679 * hardware and we are in full control of the head pointer which should 680 * only be incremented by multiples of the report size (notably also 681 * all a power of two). 682 */ 683 if (drm_WARN_ONCE(&uncore->i915->drm, 684 head > OA_BUFFER_SIZE || head % report_size || 685 tail > OA_BUFFER_SIZE || tail % report_size, 686 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 687 head, tail)) 688 return -EIO; 689 690 691 for (/* none */; 692 (taken = OA_TAKEN(tail, head)); 693 head = (head + report_size) & mask) { 694 u8 *report = oa_buf_base + head; 695 u32 *report32 = (void *)report; 696 u32 ctx_id; 697 u32 reason; 698 699 /* 700 * All the report sizes factor neatly into the buffer 701 * size so we never expect to see a report split 702 * between the beginning and end of the buffer. 703 * 704 * Given the initial alignment check a misalignment 705 * here would imply a driver bug that would result 706 * in an overrun. 707 */ 708 if (drm_WARN_ON(&uncore->i915->drm, 709 (OA_BUFFER_SIZE - head) < report_size)) { 710 drm_err(&uncore->i915->drm, 711 "Spurious OA head ptr: non-integral report offset\n"); 712 break; 713 } 714 715 /* 716 * The reason field includes flags identifying what 717 * triggered this specific report (mostly timer 718 * triggered or e.g. due to a context switch). 719 * 720 * This field is never expected to be zero so we can 721 * check that the report isn't invalid before copying 722 * it to userspace... 723 */ 724 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 725 (GRAPHICS_VER(stream->perf->i915) == 12 ? 726 OAREPORT_REASON_MASK_EXTENDED : 727 OAREPORT_REASON_MASK)); 728 729 ctx_id = report32[2] & stream->specific_ctx_id_mask; 730 731 /* 732 * Squash whatever is in the CTX_ID field if it's marked as 733 * invalid to be sure we avoid false-positive, single-context 734 * filtering below... 735 * 736 * Note: that we don't clear the valid_ctx_bit so userspace can 737 * understand that the ID has been squashed by the kernel. 738 */ 739 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 740 GRAPHICS_VER(stream->perf->i915) <= 11) 741 ctx_id = report32[2] = INVALID_CTX_ID; 742 743 /* 744 * NB: For Gen 8 the OA unit no longer supports clock gating 745 * off for a specific context and the kernel can't securely 746 * stop the counters from updating as system-wide / global 747 * values. 748 * 749 * Automatic reports now include a context ID so reports can be 750 * filtered on the cpu but it's not worth trying to 751 * automatically subtract/hide counter progress for other 752 * contexts while filtering since we can't stop userspace 753 * issuing MI_REPORT_PERF_COUNT commands which would still 754 * provide a side-band view of the real values. 755 * 756 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 757 * to normalize counters for a single filtered context then it 758 * needs be forwarded bookend context-switch reports so that it 759 * can track switches in between MI_REPORT_PERF_COUNT commands 760 * and can itself subtract/ignore the progress of counters 761 * associated with other contexts. Note that the hardware 762 * automatically triggers reports when switching to a new 763 * context which are tagged with the ID of the newly active 764 * context. To avoid the complexity (and likely fragility) of 765 * reading ahead while parsing reports to try and minimize 766 * forwarding redundant context switch reports (i.e. between 767 * other, unrelated contexts) we simply elect to forward them 768 * all. 769 * 770 * We don't rely solely on the reason field to identify context 771 * switches since it's not-uncommon for periodic samples to 772 * identify a switch before any 'context switch' report. 773 */ 774 if (!stream->perf->exclusive_stream->ctx || 775 stream->specific_ctx_id == ctx_id || 776 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 777 reason & OAREPORT_REASON_CTX_SWITCH) { 778 779 /* 780 * While filtering for a single context we avoid 781 * leaking the IDs of other contexts. 782 */ 783 if (stream->perf->exclusive_stream->ctx && 784 stream->specific_ctx_id != ctx_id) { 785 report32[2] = INVALID_CTX_ID; 786 } 787 788 ret = append_oa_sample(stream, buf, count, offset, 789 report); 790 if (ret) 791 break; 792 793 stream->oa_buffer.last_ctx_id = ctx_id; 794 } 795 796 /* 797 * Clear out the first 2 dword as a mean to detect unlanded 798 * reports. 799 */ 800 report32[0] = 0; 801 report32[1] = 0; 802 } 803 804 if (start_offset != *offset) { 805 i915_reg_t oaheadptr; 806 807 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 808 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 809 810 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 811 812 /* 813 * We removed the gtt_offset for the copy loop above, indexing 814 * relative to oa_buf_base so put back here... 815 */ 816 head += gtt_offset; 817 intel_uncore_write(uncore, oaheadptr, 818 head & GEN12_OAG_OAHEADPTR_MASK); 819 stream->oa_buffer.head = head; 820 821 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 822 } 823 824 return ret; 825 } 826 827 /** 828 * gen8_oa_read - copy status records then buffered OA reports 829 * @stream: An i915-perf stream opened for OA metrics 830 * @buf: destination buffer given by userspace 831 * @count: the number of bytes userspace wants to read 832 * @offset: (inout): the current position for writing into @buf 833 * 834 * Checks OA unit status registers and if necessary appends corresponding 835 * status records for userspace (such as for a buffer full condition) and then 836 * initiate appending any buffered OA reports. 837 * 838 * Updates @offset according to the number of bytes successfully copied into 839 * the userspace buffer. 840 * 841 * NB: some data may be successfully copied to the userspace buffer 842 * even if an error is returned, and this is reflected in the 843 * updated @offset. 844 * 845 * Returns: zero on success or a negative error code 846 */ 847 static int gen8_oa_read(struct i915_perf_stream *stream, 848 char __user *buf, 849 size_t count, 850 size_t *offset) 851 { 852 struct intel_uncore *uncore = stream->uncore; 853 u32 oastatus; 854 i915_reg_t oastatus_reg; 855 int ret; 856 857 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 858 return -EIO; 859 860 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 861 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 862 863 oastatus = intel_uncore_read(uncore, oastatus_reg); 864 865 /* 866 * We treat OABUFFER_OVERFLOW as a significant error: 867 * 868 * Although theoretically we could handle this more gracefully 869 * sometimes, some Gens don't correctly suppress certain 870 * automatically triggered reports in this condition and so we 871 * have to assume that old reports are now being trampled 872 * over. 873 * 874 * Considering how we don't currently give userspace control 875 * over the OA buffer size and always configure a large 16MB 876 * buffer, then a buffer overflow does anyway likely indicate 877 * that something has gone quite badly wrong. 878 */ 879 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 880 ret = append_oa_status(stream, buf, count, offset, 881 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 882 if (ret) 883 return ret; 884 885 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 886 stream->period_exponent); 887 888 stream->perf->ops.oa_disable(stream); 889 stream->perf->ops.oa_enable(stream); 890 891 /* 892 * Note: .oa_enable() is expected to re-init the oabuffer and 893 * reset GEN8_OASTATUS for us 894 */ 895 oastatus = intel_uncore_read(uncore, oastatus_reg); 896 } 897 898 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 899 ret = append_oa_status(stream, buf, count, offset, 900 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 901 if (ret) 902 return ret; 903 904 intel_uncore_rmw(uncore, oastatus_reg, 905 GEN8_OASTATUS_COUNTER_OVERFLOW | 906 GEN8_OASTATUS_REPORT_LOST, 907 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 908 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 909 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 910 } 911 912 return gen8_append_oa_reports(stream, buf, count, offset); 913 } 914 915 /** 916 * gen7_append_oa_reports - Copies all buffered OA reports into 917 * userspace read() buffer. 918 * @stream: An i915-perf stream opened for OA metrics 919 * @buf: destination buffer given by userspace 920 * @count: the number of bytes userspace wants to read 921 * @offset: (inout): the current position for writing into @buf 922 * 923 * Notably any error condition resulting in a short read (-%ENOSPC or 924 * -%EFAULT) will be returned even though one or more records may 925 * have been successfully copied. In this case it's up to the caller 926 * to decide if the error should be squashed before returning to 927 * userspace. 928 * 929 * Note: reports are consumed from the head, and appended to the 930 * tail, so the tail chases the head?... If you think that's mad 931 * and back-to-front you're not alone, but this follows the 932 * Gen PRM naming convention. 933 * 934 * Returns: 0 on success, negative error code on failure. 935 */ 936 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 937 char __user *buf, 938 size_t count, 939 size_t *offset) 940 { 941 struct intel_uncore *uncore = stream->uncore; 942 int report_size = stream->oa_buffer.format_size; 943 u8 *oa_buf_base = stream->oa_buffer.vaddr; 944 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 945 u32 mask = (OA_BUFFER_SIZE - 1); 946 size_t start_offset = *offset; 947 unsigned long flags; 948 u32 head, tail; 949 u32 taken; 950 int ret = 0; 951 952 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 953 return -EIO; 954 955 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 956 957 head = stream->oa_buffer.head; 958 tail = stream->oa_buffer.tail; 959 960 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 961 962 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 963 * while indexing relative to oa_buf_base. 964 */ 965 head -= gtt_offset; 966 tail -= gtt_offset; 967 968 /* An out of bounds or misaligned head or tail pointer implies a driver 969 * bug since we validate + align the tail pointers we read from the 970 * hardware and we are in full control of the head pointer which should 971 * only be incremented by multiples of the report size (notably also 972 * all a power of two). 973 */ 974 if (drm_WARN_ONCE(&uncore->i915->drm, 975 head > OA_BUFFER_SIZE || head % report_size || 976 tail > OA_BUFFER_SIZE || tail % report_size, 977 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 978 head, tail)) 979 return -EIO; 980 981 982 for (/* none */; 983 (taken = OA_TAKEN(tail, head)); 984 head = (head + report_size) & mask) { 985 u8 *report = oa_buf_base + head; 986 u32 *report32 = (void *)report; 987 988 /* All the report sizes factor neatly into the buffer 989 * size so we never expect to see a report split 990 * between the beginning and end of the buffer. 991 * 992 * Given the initial alignment check a misalignment 993 * here would imply a driver bug that would result 994 * in an overrun. 995 */ 996 if (drm_WARN_ON(&uncore->i915->drm, 997 (OA_BUFFER_SIZE - head) < report_size)) { 998 drm_err(&uncore->i915->drm, 999 "Spurious OA head ptr: non-integral report offset\n"); 1000 break; 1001 } 1002 1003 /* The report-ID field for periodic samples includes 1004 * some undocumented flags related to what triggered 1005 * the report and is never expected to be zero so we 1006 * can check that the report isn't invalid before 1007 * copying it to userspace... 1008 */ 1009 if (report32[0] == 0) { 1010 if (__ratelimit(&stream->perf->spurious_report_rs)) 1011 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1012 continue; 1013 } 1014 1015 ret = append_oa_sample(stream, buf, count, offset, report); 1016 if (ret) 1017 break; 1018 1019 /* Clear out the first 2 dwords as a mean to detect unlanded 1020 * reports. 1021 */ 1022 report32[0] = 0; 1023 report32[1] = 0; 1024 } 1025 1026 if (start_offset != *offset) { 1027 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1028 1029 /* We removed the gtt_offset for the copy loop above, indexing 1030 * relative to oa_buf_base so put back here... 1031 */ 1032 head += gtt_offset; 1033 1034 intel_uncore_write(uncore, GEN7_OASTATUS2, 1035 (head & GEN7_OASTATUS2_HEAD_MASK) | 1036 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1037 stream->oa_buffer.head = head; 1038 1039 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1040 } 1041 1042 return ret; 1043 } 1044 1045 /** 1046 * gen7_oa_read - copy status records then buffered OA reports 1047 * @stream: An i915-perf stream opened for OA metrics 1048 * @buf: destination buffer given by userspace 1049 * @count: the number of bytes userspace wants to read 1050 * @offset: (inout): the current position for writing into @buf 1051 * 1052 * Checks Gen 7 specific OA unit status registers and if necessary appends 1053 * corresponding status records for userspace (such as for a buffer full 1054 * condition) and then initiate appending any buffered OA reports. 1055 * 1056 * Updates @offset according to the number of bytes successfully copied into 1057 * the userspace buffer. 1058 * 1059 * Returns: zero on success or a negative error code 1060 */ 1061 static int gen7_oa_read(struct i915_perf_stream *stream, 1062 char __user *buf, 1063 size_t count, 1064 size_t *offset) 1065 { 1066 struct intel_uncore *uncore = stream->uncore; 1067 u32 oastatus1; 1068 int ret; 1069 1070 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1071 return -EIO; 1072 1073 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1074 1075 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1076 * bits while the OA unit is enabled (while the tail pointer 1077 * may be updated asynchronously) so we ignore status bits 1078 * that have already been reported to userspace. 1079 */ 1080 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1081 1082 /* We treat OABUFFER_OVERFLOW as a significant error: 1083 * 1084 * - The status can be interpreted to mean that the buffer is 1085 * currently full (with a higher precedence than OA_TAKEN() 1086 * which will start to report a near-empty buffer after an 1087 * overflow) but it's awkward that we can't clear the status 1088 * on Haswell, so without a reset we won't be able to catch 1089 * the state again. 1090 * 1091 * - Since it also implies the HW has started overwriting old 1092 * reports it may also affect our sanity checks for invalid 1093 * reports when copying to userspace that assume new reports 1094 * are being written to cleared memory. 1095 * 1096 * - In the future we may want to introduce a flight recorder 1097 * mode where the driver will automatically maintain a safe 1098 * guard band between head/tail, avoiding this overflow 1099 * condition, but we avoid the added driver complexity for 1100 * now. 1101 */ 1102 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1103 ret = append_oa_status(stream, buf, count, offset, 1104 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1105 if (ret) 1106 return ret; 1107 1108 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1109 stream->period_exponent); 1110 1111 stream->perf->ops.oa_disable(stream); 1112 stream->perf->ops.oa_enable(stream); 1113 1114 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1115 } 1116 1117 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1118 ret = append_oa_status(stream, buf, count, offset, 1119 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1120 if (ret) 1121 return ret; 1122 stream->perf->gen7_latched_oastatus1 |= 1123 GEN7_OASTATUS1_REPORT_LOST; 1124 } 1125 1126 return gen7_append_oa_reports(stream, buf, count, offset); 1127 } 1128 1129 /** 1130 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1131 * @stream: An i915-perf stream opened for OA metrics 1132 * 1133 * Called when userspace tries to read() from a blocking stream FD opened 1134 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1135 * OA buffer and wakes us. 1136 * 1137 * Note: it's acceptable to have this return with some false positives 1138 * since any subsequent read handling will return -EAGAIN if there isn't 1139 * really data ready for userspace yet. 1140 * 1141 * Returns: zero on success or a negative error code 1142 */ 1143 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1144 { 1145 /* We would wait indefinitely if periodic sampling is not enabled */ 1146 if (!stream->periodic) 1147 return -EIO; 1148 1149 return wait_event_interruptible(stream->poll_wq, 1150 oa_buffer_check_unlocked(stream)); 1151 } 1152 1153 /** 1154 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1155 * @stream: An i915-perf stream opened for OA metrics 1156 * @file: An i915 perf stream file 1157 * @wait: poll() state table 1158 * 1159 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1160 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1161 * when it sees data ready to read in the circular OA buffer. 1162 */ 1163 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1164 struct file *file, 1165 poll_table *wait) 1166 { 1167 poll_wait(file, &stream->poll_wq, wait); 1168 } 1169 1170 /** 1171 * i915_oa_read - just calls through to &i915_oa_ops->read 1172 * @stream: An i915-perf stream opened for OA metrics 1173 * @buf: destination buffer given by userspace 1174 * @count: the number of bytes userspace wants to read 1175 * @offset: (inout): the current position for writing into @buf 1176 * 1177 * Updates @offset according to the number of bytes successfully copied into 1178 * the userspace buffer. 1179 * 1180 * Returns: zero on success or a negative error code 1181 */ 1182 static int i915_oa_read(struct i915_perf_stream *stream, 1183 char __user *buf, 1184 size_t count, 1185 size_t *offset) 1186 { 1187 return stream->perf->ops.read(stream, buf, count, offset); 1188 } 1189 1190 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1191 { 1192 struct i915_gem_engines_iter it; 1193 struct i915_gem_context *ctx = stream->ctx; 1194 struct intel_context *ce; 1195 struct i915_gem_ww_ctx ww; 1196 int err = -ENODEV; 1197 1198 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1199 if (ce->engine != stream->engine) /* first match! */ 1200 continue; 1201 1202 err = 0; 1203 break; 1204 } 1205 i915_gem_context_unlock_engines(ctx); 1206 1207 if (err) 1208 return ERR_PTR(err); 1209 1210 i915_gem_ww_ctx_init(&ww, true); 1211 retry: 1212 /* 1213 * As the ID is the gtt offset of the context's vma we 1214 * pin the vma to ensure the ID remains fixed. 1215 */ 1216 err = intel_context_pin_ww(ce, &ww); 1217 if (err == -EDEADLK) { 1218 err = i915_gem_ww_ctx_backoff(&ww); 1219 if (!err) 1220 goto retry; 1221 } 1222 i915_gem_ww_ctx_fini(&ww); 1223 1224 if (err) 1225 return ERR_PTR(err); 1226 1227 stream->pinned_ctx = ce; 1228 return stream->pinned_ctx; 1229 } 1230 1231 /** 1232 * oa_get_render_ctx_id - determine and hold ctx hw id 1233 * @stream: An i915-perf stream opened for OA metrics 1234 * 1235 * Determine the render context hw id, and ensure it remains fixed for the 1236 * lifetime of the stream. This ensures that we don't have to worry about 1237 * updating the context ID in OACONTROL on the fly. 1238 * 1239 * Returns: zero on success or a negative error code 1240 */ 1241 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1242 { 1243 struct intel_context *ce; 1244 1245 ce = oa_pin_context(stream); 1246 if (IS_ERR(ce)) 1247 return PTR_ERR(ce); 1248 1249 switch (GRAPHICS_VER(ce->engine->i915)) { 1250 case 7: { 1251 /* 1252 * On Haswell we don't do any post processing of the reports 1253 * and don't need to use the mask. 1254 */ 1255 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1256 stream->specific_ctx_id_mask = 0; 1257 break; 1258 } 1259 1260 case 8: 1261 case 9: 1262 if (intel_engine_uses_guc(ce->engine)) { 1263 /* 1264 * When using GuC, the context descriptor we write in 1265 * i915 is read by GuC and rewritten before it's 1266 * actually written into the hardware. The LRCA is 1267 * what is put into the context id field of the 1268 * context descriptor by GuC. Because it's aligned to 1269 * a page, the lower 12bits are always at 0 and 1270 * dropped by GuC. They won't be part of the context 1271 * ID in the OA reports, so squash those lower bits. 1272 */ 1273 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1274 1275 /* 1276 * GuC uses the top bit to signal proxy submission, so 1277 * ignore that bit. 1278 */ 1279 stream->specific_ctx_id_mask = 1280 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1281 } else { 1282 stream->specific_ctx_id_mask = 1283 (1U << GEN8_CTX_ID_WIDTH) - 1; 1284 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1285 } 1286 break; 1287 1288 case 11: 1289 case 12: 1290 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) { 1291 stream->specific_ctx_id_mask = 1292 ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1293 (XEHP_SW_CTX_ID_SHIFT - 32); 1294 stream->specific_ctx_id = 1295 (XEHP_MAX_CONTEXT_HW_ID - 1) << 1296 (XEHP_SW_CTX_ID_SHIFT - 32); 1297 } else { 1298 stream->specific_ctx_id_mask = 1299 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1300 /* 1301 * Pick an unused context id 1302 * 0 - BITS_PER_LONG are used by other contexts 1303 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1304 */ 1305 stream->specific_ctx_id = 1306 (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1307 } 1308 break; 1309 1310 default: 1311 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1312 } 1313 1314 ce->tag = stream->specific_ctx_id; 1315 1316 drm_dbg(&stream->perf->i915->drm, 1317 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1318 stream->specific_ctx_id, 1319 stream->specific_ctx_id_mask); 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1326 * @stream: An i915-perf stream opened for OA metrics 1327 * 1328 * In case anything needed doing to ensure the context HW ID would remain valid 1329 * for the lifetime of the stream, then that can be undone here. 1330 */ 1331 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1332 { 1333 struct intel_context *ce; 1334 1335 ce = fetch_and_zero(&stream->pinned_ctx); 1336 if (ce) { 1337 ce->tag = 0; /* recomputed on next submission after parking */ 1338 intel_context_unpin(ce); 1339 } 1340 1341 stream->specific_ctx_id = INVALID_CTX_ID; 1342 stream->specific_ctx_id_mask = 0; 1343 } 1344 1345 static void 1346 free_oa_buffer(struct i915_perf_stream *stream) 1347 { 1348 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1349 I915_VMA_RELEASE_MAP); 1350 1351 stream->oa_buffer.vaddr = NULL; 1352 } 1353 1354 static void 1355 free_oa_configs(struct i915_perf_stream *stream) 1356 { 1357 struct i915_oa_config_bo *oa_bo, *tmp; 1358 1359 i915_oa_config_put(stream->oa_config); 1360 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1361 free_oa_config_bo(oa_bo); 1362 } 1363 1364 static void 1365 free_noa_wait(struct i915_perf_stream *stream) 1366 { 1367 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1368 } 1369 1370 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1371 { 1372 struct i915_perf *perf = stream->perf; 1373 1374 BUG_ON(stream != perf->exclusive_stream); 1375 1376 /* 1377 * Unset exclusive_stream first, it will be checked while disabling 1378 * the metric set on gen8+. 1379 * 1380 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1381 */ 1382 WRITE_ONCE(perf->exclusive_stream, NULL); 1383 perf->ops.disable_metric_set(stream); 1384 1385 free_oa_buffer(stream); 1386 1387 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1388 intel_engine_pm_put(stream->engine); 1389 1390 if (stream->ctx) 1391 oa_put_render_ctx_id(stream); 1392 1393 free_oa_configs(stream); 1394 free_noa_wait(stream); 1395 1396 if (perf->spurious_report_rs.missed) { 1397 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1398 perf->spurious_report_rs.missed); 1399 } 1400 } 1401 1402 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1403 { 1404 struct intel_uncore *uncore = stream->uncore; 1405 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1406 unsigned long flags; 1407 1408 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1409 1410 /* Pre-DevBDW: OABUFFER must be set with counters off, 1411 * before OASTATUS1, but after OASTATUS2 1412 */ 1413 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1414 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1415 stream->oa_buffer.head = gtt_offset; 1416 1417 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1418 1419 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1420 gtt_offset | OABUFFER_SIZE_16M); 1421 1422 /* Mark that we need updated tail pointers to read from... */ 1423 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1424 stream->oa_buffer.tail = gtt_offset; 1425 1426 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1427 1428 /* On Haswell we have to track which OASTATUS1 flags we've 1429 * already seen since they can't be cleared while periodic 1430 * sampling is enabled. 1431 */ 1432 stream->perf->gen7_latched_oastatus1 = 0; 1433 1434 /* NB: although the OA buffer will initially be allocated 1435 * zeroed via shmfs (and so this memset is redundant when 1436 * first allocating), we may re-init the OA buffer, either 1437 * when re-enabling a stream or in error/reset paths. 1438 * 1439 * The reason we clear the buffer for each re-init is for the 1440 * sanity check in gen7_append_oa_reports() that looks at the 1441 * report-id field to make sure it's non-zero which relies on 1442 * the assumption that new reports are being written to zeroed 1443 * memory... 1444 */ 1445 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1446 } 1447 1448 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1449 { 1450 struct intel_uncore *uncore = stream->uncore; 1451 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1452 unsigned long flags; 1453 1454 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1455 1456 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1457 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1458 stream->oa_buffer.head = gtt_offset; 1459 1460 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1461 1462 /* 1463 * PRM says: 1464 * 1465 * "This MMIO must be set before the OATAILPTR 1466 * register and after the OAHEADPTR register. This is 1467 * to enable proper functionality of the overflow 1468 * bit." 1469 */ 1470 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1471 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1472 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1473 1474 /* Mark that we need updated tail pointers to read from... */ 1475 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1476 stream->oa_buffer.tail = gtt_offset; 1477 1478 /* 1479 * Reset state used to recognise context switches, affecting which 1480 * reports we will forward to userspace while filtering for a single 1481 * context. 1482 */ 1483 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1484 1485 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1486 1487 /* 1488 * NB: although the OA buffer will initially be allocated 1489 * zeroed via shmfs (and so this memset is redundant when 1490 * first allocating), we may re-init the OA buffer, either 1491 * when re-enabling a stream or in error/reset paths. 1492 * 1493 * The reason we clear the buffer for each re-init is for the 1494 * sanity check in gen8_append_oa_reports() that looks at the 1495 * reason field to make sure it's non-zero which relies on 1496 * the assumption that new reports are being written to zeroed 1497 * memory... 1498 */ 1499 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1500 } 1501 1502 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1503 { 1504 struct intel_uncore *uncore = stream->uncore; 1505 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1509 1510 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1511 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1512 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1513 stream->oa_buffer.head = gtt_offset; 1514 1515 /* 1516 * PRM says: 1517 * 1518 * "This MMIO must be set before the OATAILPTR 1519 * register and after the OAHEADPTR register. This is 1520 * to enable proper functionality of the overflow 1521 * bit." 1522 */ 1523 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1524 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1525 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1526 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1527 1528 /* Mark that we need updated tail pointers to read from... */ 1529 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1530 stream->oa_buffer.tail = gtt_offset; 1531 1532 /* 1533 * Reset state used to recognise context switches, affecting which 1534 * reports we will forward to userspace while filtering for a single 1535 * context. 1536 */ 1537 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1538 1539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1540 1541 /* 1542 * NB: although the OA buffer will initially be allocated 1543 * zeroed via shmfs (and so this memset is redundant when 1544 * first allocating), we may re-init the OA buffer, either 1545 * when re-enabling a stream or in error/reset paths. 1546 * 1547 * The reason we clear the buffer for each re-init is for the 1548 * sanity check in gen8_append_oa_reports() that looks at the 1549 * reason field to make sure it's non-zero which relies on 1550 * the assumption that new reports are being written to zeroed 1551 * memory... 1552 */ 1553 memset(stream->oa_buffer.vaddr, 0, 1554 stream->oa_buffer.vma->size); 1555 } 1556 1557 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1558 { 1559 struct drm_i915_private *i915 = stream->perf->i915; 1560 struct drm_i915_gem_object *bo; 1561 struct i915_vma *vma; 1562 int ret; 1563 1564 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1565 return -ENODEV; 1566 1567 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1568 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1569 1570 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1571 if (IS_ERR(bo)) { 1572 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1573 return PTR_ERR(bo); 1574 } 1575 1576 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1577 1578 /* PreHSW required 512K alignment, HSW requires 16M */ 1579 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1580 if (IS_ERR(vma)) { 1581 ret = PTR_ERR(vma); 1582 goto err_unref; 1583 } 1584 stream->oa_buffer.vma = vma; 1585 1586 stream->oa_buffer.vaddr = 1587 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1588 if (IS_ERR(stream->oa_buffer.vaddr)) { 1589 ret = PTR_ERR(stream->oa_buffer.vaddr); 1590 goto err_unpin; 1591 } 1592 1593 return 0; 1594 1595 err_unpin: 1596 __i915_vma_unpin(vma); 1597 1598 err_unref: 1599 i915_gem_object_put(bo); 1600 1601 stream->oa_buffer.vaddr = NULL; 1602 stream->oa_buffer.vma = NULL; 1603 1604 return ret; 1605 } 1606 1607 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1608 bool save, i915_reg_t reg, u32 offset, 1609 u32 dword_count) 1610 { 1611 u32 cmd; 1612 u32 d; 1613 1614 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1615 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1616 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1617 cmd++; 1618 1619 for (d = 0; d < dword_count; d++) { 1620 *cs++ = cmd; 1621 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1622 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1623 offset) + 4 * d; 1624 *cs++ = 0; 1625 } 1626 1627 return cs; 1628 } 1629 1630 static int alloc_noa_wait(struct i915_perf_stream *stream) 1631 { 1632 struct drm_i915_private *i915 = stream->perf->i915; 1633 struct drm_i915_gem_object *bo; 1634 struct i915_vma *vma; 1635 const u64 delay_ticks = 0xffffffffffffffff - 1636 intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt, 1637 atomic64_read(&stream->perf->noa_programming_delay)); 1638 const u32 base = stream->engine->mmio_base; 1639 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1640 u32 *batch, *ts0, *cs, *jump; 1641 struct i915_gem_ww_ctx ww; 1642 int ret, i; 1643 enum { 1644 START_TS, 1645 NOW_TS, 1646 DELTA_TS, 1647 JUMP_PREDICATE, 1648 DELTA_TARGET, 1649 N_CS_GPR 1650 }; 1651 1652 bo = i915_gem_object_create_internal(i915, 4096); 1653 if (IS_ERR(bo)) { 1654 drm_err(&i915->drm, 1655 "Failed to allocate NOA wait batchbuffer\n"); 1656 return PTR_ERR(bo); 1657 } 1658 1659 i915_gem_ww_ctx_init(&ww, true); 1660 retry: 1661 ret = i915_gem_object_lock(bo, &ww); 1662 if (ret) 1663 goto out_ww; 1664 1665 /* 1666 * We pin in GGTT because we jump into this buffer now because 1667 * multiple OA config BOs will have a jump to this address and it 1668 * needs to be fixed during the lifetime of the i915/perf stream. 1669 */ 1670 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH); 1671 if (IS_ERR(vma)) { 1672 ret = PTR_ERR(vma); 1673 goto out_ww; 1674 } 1675 1676 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1677 if (IS_ERR(batch)) { 1678 ret = PTR_ERR(batch); 1679 goto err_unpin; 1680 } 1681 1682 /* Save registers. */ 1683 for (i = 0; i < N_CS_GPR; i++) 1684 cs = save_restore_register( 1685 stream, cs, true /* save */, CS_GPR(i), 1686 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1687 cs = save_restore_register( 1688 stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1689 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1690 1691 /* First timestamp snapshot location. */ 1692 ts0 = cs; 1693 1694 /* 1695 * Initial snapshot of the timestamp register to implement the wait. 1696 * We work with 32b values, so clear out the top 32b bits of the 1697 * register because the ALU works 64bits. 1698 */ 1699 *cs++ = MI_LOAD_REGISTER_IMM(1); 1700 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1701 *cs++ = 0; 1702 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1703 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1704 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1705 1706 /* 1707 * This is the location we're going to jump back into until the 1708 * required amount of time has passed. 1709 */ 1710 jump = cs; 1711 1712 /* 1713 * Take another snapshot of the timestamp register. Take care to clear 1714 * up the top 32bits of CS_GPR(1) as we're using it for other 1715 * operations below. 1716 */ 1717 *cs++ = MI_LOAD_REGISTER_IMM(1); 1718 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1719 *cs++ = 0; 1720 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1721 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1722 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1723 1724 /* 1725 * Do a diff between the 2 timestamps and store the result back into 1726 * CS_GPR(1). 1727 */ 1728 *cs++ = MI_MATH(5); 1729 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1730 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1731 *cs++ = MI_MATH_SUB; 1732 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1733 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1734 1735 /* 1736 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1737 * timestamp have rolled over the 32bits) into the predicate register 1738 * to be used for the predicated jump. 1739 */ 1740 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1741 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1742 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1743 1744 /* Restart from the beginning if we had timestamps roll over. */ 1745 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1746 MI_BATCH_BUFFER_START : 1747 MI_BATCH_BUFFER_START_GEN8) | 1748 MI_BATCH_PREDICATE; 1749 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1750 *cs++ = 0; 1751 1752 /* 1753 * Now add the diff between to previous timestamps and add it to : 1754 * (((1 * << 64) - 1) - delay_ns) 1755 * 1756 * When the Carry Flag contains 1 this means the elapsed time is 1757 * longer than the expected delay, and we can exit the wait loop. 1758 */ 1759 *cs++ = MI_LOAD_REGISTER_IMM(2); 1760 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1761 *cs++ = lower_32_bits(delay_ticks); 1762 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1763 *cs++ = upper_32_bits(delay_ticks); 1764 1765 *cs++ = MI_MATH(4); 1766 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1767 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1768 *cs++ = MI_MATH_ADD; 1769 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1770 1771 *cs++ = MI_ARB_CHECK; 1772 1773 /* 1774 * Transfer the result into the predicate register to be used for the 1775 * predicated jump. 1776 */ 1777 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1778 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1779 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1780 1781 /* Predicate the jump. */ 1782 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1783 MI_BATCH_BUFFER_START : 1784 MI_BATCH_BUFFER_START_GEN8) | 1785 MI_BATCH_PREDICATE; 1786 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1787 *cs++ = 0; 1788 1789 /* Restore registers. */ 1790 for (i = 0; i < N_CS_GPR; i++) 1791 cs = save_restore_register( 1792 stream, cs, false /* restore */, CS_GPR(i), 1793 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1794 cs = save_restore_register( 1795 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1796 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1797 1798 /* And return to the ring. */ 1799 *cs++ = MI_BATCH_BUFFER_END; 1800 1801 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1802 1803 i915_gem_object_flush_map(bo); 1804 __i915_gem_object_release_map(bo); 1805 1806 stream->noa_wait = vma; 1807 goto out_ww; 1808 1809 err_unpin: 1810 i915_vma_unpin_and_release(&vma, 0); 1811 out_ww: 1812 if (ret == -EDEADLK) { 1813 ret = i915_gem_ww_ctx_backoff(&ww); 1814 if (!ret) 1815 goto retry; 1816 } 1817 i915_gem_ww_ctx_fini(&ww); 1818 if (ret) 1819 i915_gem_object_put(bo); 1820 return ret; 1821 } 1822 1823 static u32 *write_cs_mi_lri(u32 *cs, 1824 const struct i915_oa_reg *reg_data, 1825 u32 n_regs) 1826 { 1827 u32 i; 1828 1829 for (i = 0; i < n_regs; i++) { 1830 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1831 u32 n_lri = min_t(u32, 1832 n_regs - i, 1833 MI_LOAD_REGISTER_IMM_MAX_REGS); 1834 1835 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1836 } 1837 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1838 *cs++ = reg_data[i].value; 1839 } 1840 1841 return cs; 1842 } 1843 1844 static int num_lri_dwords(int num_regs) 1845 { 1846 int count = 0; 1847 1848 if (num_regs > 0) { 1849 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1850 count += num_regs * 2; 1851 } 1852 1853 return count; 1854 } 1855 1856 static struct i915_oa_config_bo * 1857 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1858 struct i915_oa_config *oa_config) 1859 { 1860 struct drm_i915_gem_object *obj; 1861 struct i915_oa_config_bo *oa_bo; 1862 struct i915_gem_ww_ctx ww; 1863 size_t config_length = 0; 1864 u32 *cs; 1865 int err; 1866 1867 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1868 if (!oa_bo) 1869 return ERR_PTR(-ENOMEM); 1870 1871 config_length += num_lri_dwords(oa_config->mux_regs_len); 1872 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1873 config_length += num_lri_dwords(oa_config->flex_regs_len); 1874 config_length += 3; /* MI_BATCH_BUFFER_START */ 1875 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1876 1877 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1878 if (IS_ERR(obj)) { 1879 err = PTR_ERR(obj); 1880 goto err_free; 1881 } 1882 1883 i915_gem_ww_ctx_init(&ww, true); 1884 retry: 1885 err = i915_gem_object_lock(obj, &ww); 1886 if (err) 1887 goto out_ww; 1888 1889 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1890 if (IS_ERR(cs)) { 1891 err = PTR_ERR(cs); 1892 goto out_ww; 1893 } 1894 1895 cs = write_cs_mi_lri(cs, 1896 oa_config->mux_regs, 1897 oa_config->mux_regs_len); 1898 cs = write_cs_mi_lri(cs, 1899 oa_config->b_counter_regs, 1900 oa_config->b_counter_regs_len); 1901 cs = write_cs_mi_lri(cs, 1902 oa_config->flex_regs, 1903 oa_config->flex_regs_len); 1904 1905 /* Jump into the active wait. */ 1906 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 1907 MI_BATCH_BUFFER_START : 1908 MI_BATCH_BUFFER_START_GEN8); 1909 *cs++ = i915_ggtt_offset(stream->noa_wait); 1910 *cs++ = 0; 1911 1912 i915_gem_object_flush_map(obj); 1913 __i915_gem_object_release_map(obj); 1914 1915 oa_bo->vma = i915_vma_instance(obj, 1916 &stream->engine->gt->ggtt->vm, 1917 NULL); 1918 if (IS_ERR(oa_bo->vma)) { 1919 err = PTR_ERR(oa_bo->vma); 1920 goto out_ww; 1921 } 1922 1923 oa_bo->oa_config = i915_oa_config_get(oa_config); 1924 llist_add(&oa_bo->node, &stream->oa_config_bos); 1925 1926 out_ww: 1927 if (err == -EDEADLK) { 1928 err = i915_gem_ww_ctx_backoff(&ww); 1929 if (!err) 1930 goto retry; 1931 } 1932 i915_gem_ww_ctx_fini(&ww); 1933 1934 if (err) 1935 i915_gem_object_put(obj); 1936 err_free: 1937 if (err) { 1938 kfree(oa_bo); 1939 return ERR_PTR(err); 1940 } 1941 return oa_bo; 1942 } 1943 1944 static struct i915_vma * 1945 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1946 { 1947 struct i915_oa_config_bo *oa_bo; 1948 1949 /* 1950 * Look for the buffer in the already allocated BOs attached 1951 * to the stream. 1952 */ 1953 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1954 if (oa_bo->oa_config == oa_config && 1955 memcmp(oa_bo->oa_config->uuid, 1956 oa_config->uuid, 1957 sizeof(oa_config->uuid)) == 0) 1958 goto out; 1959 } 1960 1961 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1962 if (IS_ERR(oa_bo)) 1963 return ERR_CAST(oa_bo); 1964 1965 out: 1966 return i915_vma_get(oa_bo->vma); 1967 } 1968 1969 static int 1970 emit_oa_config(struct i915_perf_stream *stream, 1971 struct i915_oa_config *oa_config, 1972 struct intel_context *ce, 1973 struct i915_active *active) 1974 { 1975 struct i915_request *rq; 1976 struct i915_vma *vma; 1977 struct i915_gem_ww_ctx ww; 1978 int err; 1979 1980 vma = get_oa_vma(stream, oa_config); 1981 if (IS_ERR(vma)) 1982 return PTR_ERR(vma); 1983 1984 i915_gem_ww_ctx_init(&ww, true); 1985 retry: 1986 err = i915_gem_object_lock(vma->obj, &ww); 1987 if (err) 1988 goto err; 1989 1990 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1991 if (err) 1992 goto err; 1993 1994 intel_engine_pm_get(ce->engine); 1995 rq = i915_request_create(ce); 1996 intel_engine_pm_put(ce->engine); 1997 if (IS_ERR(rq)) { 1998 err = PTR_ERR(rq); 1999 goto err_vma_unpin; 2000 } 2001 2002 if (!IS_ERR_OR_NULL(active)) { 2003 /* After all individual context modifications */ 2004 err = i915_request_await_active(rq, active, 2005 I915_ACTIVE_AWAIT_ACTIVE); 2006 if (err) 2007 goto err_add_request; 2008 2009 err = i915_active_add_request(active, rq); 2010 if (err) 2011 goto err_add_request; 2012 } 2013 2014 err = i915_request_await_object(rq, vma->obj, 0); 2015 if (!err) 2016 err = i915_vma_move_to_active(vma, rq, 0); 2017 if (err) 2018 goto err_add_request; 2019 2020 err = rq->engine->emit_bb_start(rq, 2021 vma->node.start, 0, 2022 I915_DISPATCH_SECURE); 2023 if (err) 2024 goto err_add_request; 2025 2026 err_add_request: 2027 i915_request_add(rq); 2028 err_vma_unpin: 2029 i915_vma_unpin(vma); 2030 err: 2031 if (err == -EDEADLK) { 2032 err = i915_gem_ww_ctx_backoff(&ww); 2033 if (!err) 2034 goto retry; 2035 } 2036 2037 i915_gem_ww_ctx_fini(&ww); 2038 i915_vma_put(vma); 2039 return err; 2040 } 2041 2042 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2043 { 2044 return stream->pinned_ctx ?: stream->engine->kernel_context; 2045 } 2046 2047 static int 2048 hsw_enable_metric_set(struct i915_perf_stream *stream, 2049 struct i915_active *active) 2050 { 2051 struct intel_uncore *uncore = stream->uncore; 2052 2053 /* 2054 * PRM: 2055 * 2056 * OA unit is using “crclk” for its functionality. When trunk 2057 * level clock gating takes place, OA clock would be gated, 2058 * unable to count the events from non-render clock domain. 2059 * Render clock gating must be disabled when OA is enabled to 2060 * count the events from non-render domain. Unit level clock 2061 * gating for RCS should also be disabled. 2062 */ 2063 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2064 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2065 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2066 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2067 2068 return emit_oa_config(stream, 2069 stream->oa_config, oa_context(stream), 2070 active); 2071 } 2072 2073 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2074 { 2075 struct intel_uncore *uncore = stream->uncore; 2076 2077 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2078 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2079 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2080 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2081 2082 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2083 } 2084 2085 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2086 i915_reg_t reg) 2087 { 2088 u32 mmio = i915_mmio_reg_offset(reg); 2089 int i; 2090 2091 /* 2092 * This arbitrary default will select the 'EU FPU0 Pipeline 2093 * Active' event. In the future it's anticipated that there 2094 * will be an explicit 'No Event' we can select, but not yet... 2095 */ 2096 if (!oa_config) 2097 return 0; 2098 2099 for (i = 0; i < oa_config->flex_regs_len; i++) { 2100 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2101 return oa_config->flex_regs[i].value; 2102 } 2103 2104 return 0; 2105 } 2106 /* 2107 * NB: It must always remain pointer safe to run this even if the OA unit 2108 * has been disabled. 2109 * 2110 * It's fine to put out-of-date values into these per-context registers 2111 * in the case that the OA unit has been disabled. 2112 */ 2113 static void 2114 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2115 const struct i915_perf_stream *stream) 2116 { 2117 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2118 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2119 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2120 i915_reg_t flex_regs[] = { 2121 EU_PERF_CNTL0, 2122 EU_PERF_CNTL1, 2123 EU_PERF_CNTL2, 2124 EU_PERF_CNTL3, 2125 EU_PERF_CNTL4, 2126 EU_PERF_CNTL5, 2127 EU_PERF_CNTL6, 2128 }; 2129 u32 *reg_state = ce->lrc_reg_state; 2130 int i; 2131 2132 reg_state[ctx_oactxctrl + 1] = 2133 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2134 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2135 GEN8_OA_COUNTER_RESUME; 2136 2137 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2138 reg_state[ctx_flexeu0 + i * 2 + 1] = 2139 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2140 } 2141 2142 struct flex { 2143 i915_reg_t reg; 2144 u32 offset; 2145 u32 value; 2146 }; 2147 2148 static int 2149 gen8_store_flex(struct i915_request *rq, 2150 struct intel_context *ce, 2151 const struct flex *flex, unsigned int count) 2152 { 2153 u32 offset; 2154 u32 *cs; 2155 2156 cs = intel_ring_begin(rq, 4 * count); 2157 if (IS_ERR(cs)) 2158 return PTR_ERR(cs); 2159 2160 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2161 do { 2162 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2163 *cs++ = offset + flex->offset * sizeof(u32); 2164 *cs++ = 0; 2165 *cs++ = flex->value; 2166 } while (flex++, --count); 2167 2168 intel_ring_advance(rq, cs); 2169 2170 return 0; 2171 } 2172 2173 static int 2174 gen8_load_flex(struct i915_request *rq, 2175 struct intel_context *ce, 2176 const struct flex *flex, unsigned int count) 2177 { 2178 u32 *cs; 2179 2180 GEM_BUG_ON(!count || count > 63); 2181 2182 cs = intel_ring_begin(rq, 2 * count + 2); 2183 if (IS_ERR(cs)) 2184 return PTR_ERR(cs); 2185 2186 *cs++ = MI_LOAD_REGISTER_IMM(count); 2187 do { 2188 *cs++ = i915_mmio_reg_offset(flex->reg); 2189 *cs++ = flex->value; 2190 } while (flex++, --count); 2191 *cs++ = MI_NOOP; 2192 2193 intel_ring_advance(rq, cs); 2194 2195 return 0; 2196 } 2197 2198 static int gen8_modify_context(struct intel_context *ce, 2199 const struct flex *flex, unsigned int count) 2200 { 2201 struct i915_request *rq; 2202 int err; 2203 2204 rq = intel_engine_create_kernel_request(ce->engine); 2205 if (IS_ERR(rq)) 2206 return PTR_ERR(rq); 2207 2208 /* Serialise with the remote context */ 2209 err = intel_context_prepare_remote_request(ce, rq); 2210 if (err == 0) 2211 err = gen8_store_flex(rq, ce, flex, count); 2212 2213 i915_request_add(rq); 2214 return err; 2215 } 2216 2217 static int 2218 gen8_modify_self(struct intel_context *ce, 2219 const struct flex *flex, unsigned int count, 2220 struct i915_active *active) 2221 { 2222 struct i915_request *rq; 2223 int err; 2224 2225 intel_engine_pm_get(ce->engine); 2226 rq = i915_request_create(ce); 2227 intel_engine_pm_put(ce->engine); 2228 if (IS_ERR(rq)) 2229 return PTR_ERR(rq); 2230 2231 if (!IS_ERR_OR_NULL(active)) { 2232 err = i915_active_add_request(active, rq); 2233 if (err) 2234 goto err_add_request; 2235 } 2236 2237 err = gen8_load_flex(rq, ce, flex, count); 2238 if (err) 2239 goto err_add_request; 2240 2241 err_add_request: 2242 i915_request_add(rq); 2243 return err; 2244 } 2245 2246 static int gen8_configure_context(struct i915_gem_context *ctx, 2247 struct flex *flex, unsigned int count) 2248 { 2249 struct i915_gem_engines_iter it; 2250 struct intel_context *ce; 2251 int err = 0; 2252 2253 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2254 GEM_BUG_ON(ce == ce->engine->kernel_context); 2255 2256 if (ce->engine->class != RENDER_CLASS) 2257 continue; 2258 2259 /* Otherwise OA settings will be set upon first use */ 2260 if (!intel_context_pin_if_active(ce)) 2261 continue; 2262 2263 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2264 err = gen8_modify_context(ce, flex, count); 2265 2266 intel_context_unpin(ce); 2267 if (err) 2268 break; 2269 } 2270 i915_gem_context_unlock_engines(ctx); 2271 2272 return err; 2273 } 2274 2275 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2276 struct i915_active *active) 2277 { 2278 int err; 2279 struct intel_context *ce = stream->pinned_ctx; 2280 u32 format = stream->oa_buffer.format; 2281 struct flex regs_context[] = { 2282 { 2283 GEN8_OACTXCONTROL, 2284 stream->perf->ctx_oactxctrl_offset + 1, 2285 active ? GEN8_OA_COUNTER_RESUME : 0, 2286 }, 2287 }; 2288 /* Offsets in regs_lri are not used since this configuration is only 2289 * applied using LRI. Initialize the correct offsets for posterity. 2290 */ 2291 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2292 struct flex regs_lri[] = { 2293 { 2294 GEN12_OAR_OACONTROL, 2295 GEN12_OAR_OACONTROL_OFFSET + 1, 2296 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2297 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2298 }, 2299 { 2300 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2301 CTX_CONTEXT_CONTROL, 2302 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2303 active ? 2304 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2305 0) 2306 }, 2307 }; 2308 2309 /* Modify the context image of pinned context with regs_context*/ 2310 err = intel_context_lock_pinned(ce); 2311 if (err) 2312 return err; 2313 2314 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2315 intel_context_unlock_pinned(ce); 2316 if (err) 2317 return err; 2318 2319 /* Apply regs_lri using LRI with pinned context */ 2320 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2321 } 2322 2323 /* 2324 * Manages updating the per-context aspects of the OA stream 2325 * configuration across all contexts. 2326 * 2327 * The awkward consideration here is that OACTXCONTROL controls the 2328 * exponent for periodic sampling which is primarily used for system 2329 * wide profiling where we'd like a consistent sampling period even in 2330 * the face of context switches. 2331 * 2332 * Our approach of updating the register state context (as opposed to 2333 * say using a workaround batch buffer) ensures that the hardware 2334 * won't automatically reload an out-of-date timer exponent even 2335 * transiently before a WA BB could be parsed. 2336 * 2337 * This function needs to: 2338 * - Ensure the currently running context's per-context OA state is 2339 * updated 2340 * - Ensure that all existing contexts will have the correct per-context 2341 * OA state if they are scheduled for use. 2342 * - Ensure any new contexts will be initialized with the correct 2343 * per-context OA state. 2344 * 2345 * Note: it's only the RCS/Render context that has any OA state. 2346 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2347 */ 2348 static int 2349 oa_configure_all_contexts(struct i915_perf_stream *stream, 2350 struct flex *regs, 2351 size_t num_regs, 2352 struct i915_active *active) 2353 { 2354 struct drm_i915_private *i915 = stream->perf->i915; 2355 struct intel_engine_cs *engine; 2356 struct i915_gem_context *ctx, *cn; 2357 int err; 2358 2359 lockdep_assert_held(&stream->perf->lock); 2360 2361 /* 2362 * The OA register config is setup through the context image. This image 2363 * might be written to by the GPU on context switch (in particular on 2364 * lite-restore). This means we can't safely update a context's image, 2365 * if this context is scheduled/submitted to run on the GPU. 2366 * 2367 * We could emit the OA register config through the batch buffer but 2368 * this might leave small interval of time where the OA unit is 2369 * configured at an invalid sampling period. 2370 * 2371 * Note that since we emit all requests from a single ring, there 2372 * is still an implicit global barrier here that may cause a high 2373 * priority context to wait for an otherwise independent low priority 2374 * context. Contexts idle at the time of reconfiguration are not 2375 * trapped behind the barrier. 2376 */ 2377 spin_lock(&i915->gem.contexts.lock); 2378 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2379 if (!kref_get_unless_zero(&ctx->ref)) 2380 continue; 2381 2382 spin_unlock(&i915->gem.contexts.lock); 2383 2384 err = gen8_configure_context(ctx, regs, num_regs); 2385 if (err) { 2386 i915_gem_context_put(ctx); 2387 return err; 2388 } 2389 2390 spin_lock(&i915->gem.contexts.lock); 2391 list_safe_reset_next(ctx, cn, link); 2392 i915_gem_context_put(ctx); 2393 } 2394 spin_unlock(&i915->gem.contexts.lock); 2395 2396 /* 2397 * After updating all other contexts, we need to modify ourselves. 2398 * If we don't modify the kernel_context, we do not get events while 2399 * idle. 2400 */ 2401 for_each_uabi_engine(engine, i915) { 2402 struct intel_context *ce = engine->kernel_context; 2403 2404 if (engine->class != RENDER_CLASS) 2405 continue; 2406 2407 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2408 2409 err = gen8_modify_self(ce, regs, num_regs, active); 2410 if (err) 2411 return err; 2412 } 2413 2414 return 0; 2415 } 2416 2417 static int 2418 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2419 const struct i915_oa_config *oa_config, 2420 struct i915_active *active) 2421 { 2422 struct flex regs[] = { 2423 { 2424 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2425 CTX_R_PWR_CLK_STATE, 2426 }, 2427 }; 2428 2429 return oa_configure_all_contexts(stream, 2430 regs, ARRAY_SIZE(regs), 2431 active); 2432 } 2433 2434 static int 2435 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2436 const struct i915_oa_config *oa_config, 2437 struct i915_active *active) 2438 { 2439 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2440 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2441 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2442 struct flex regs[] = { 2443 { 2444 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2445 CTX_R_PWR_CLK_STATE, 2446 }, 2447 { 2448 GEN8_OACTXCONTROL, 2449 stream->perf->ctx_oactxctrl_offset + 1, 2450 }, 2451 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2452 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2453 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2454 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2455 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2456 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2457 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2458 }; 2459 #undef ctx_flexeuN 2460 int i; 2461 2462 regs[1].value = 2463 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2464 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2465 GEN8_OA_COUNTER_RESUME; 2466 2467 for (i = 2; i < ARRAY_SIZE(regs); i++) 2468 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2469 2470 return oa_configure_all_contexts(stream, 2471 regs, ARRAY_SIZE(regs), 2472 active); 2473 } 2474 2475 static int 2476 gen8_enable_metric_set(struct i915_perf_stream *stream, 2477 struct i915_active *active) 2478 { 2479 struct intel_uncore *uncore = stream->uncore; 2480 struct i915_oa_config *oa_config = stream->oa_config; 2481 int ret; 2482 2483 /* 2484 * We disable slice/unslice clock ratio change reports on SKL since 2485 * they are too noisy. The HW generates a lot of redundant reports 2486 * where the ratio hasn't really changed causing a lot of redundant 2487 * work to processes and increasing the chances we'll hit buffer 2488 * overruns. 2489 * 2490 * Although we don't currently use the 'disable overrun' OABUFFER 2491 * feature it's worth noting that clock ratio reports have to be 2492 * disabled before considering to use that feature since the HW doesn't 2493 * correctly block these reports. 2494 * 2495 * Currently none of the high-level metrics we have depend on knowing 2496 * this ratio to normalize. 2497 * 2498 * Note: This register is not power context saved and restored, but 2499 * that's OK considering that we disable RC6 while the OA unit is 2500 * enabled. 2501 * 2502 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2503 * be read back from automatically triggered reports, as part of the 2504 * RPT_ID field. 2505 */ 2506 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2507 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2508 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2509 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2510 } 2511 2512 /* 2513 * Update all contexts prior writing the mux configurations as we need 2514 * to make sure all slices/subslices are ON before writing to NOA 2515 * registers. 2516 */ 2517 ret = lrc_configure_all_contexts(stream, oa_config, active); 2518 if (ret) 2519 return ret; 2520 2521 return emit_oa_config(stream, 2522 stream->oa_config, oa_context(stream), 2523 active); 2524 } 2525 2526 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2527 { 2528 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2529 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2530 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2531 } 2532 2533 static int 2534 gen12_enable_metric_set(struct i915_perf_stream *stream, 2535 struct i915_active *active) 2536 { 2537 struct intel_uncore *uncore = stream->uncore; 2538 struct i915_oa_config *oa_config = stream->oa_config; 2539 bool periodic = stream->periodic; 2540 u32 period_exponent = stream->period_exponent; 2541 int ret; 2542 2543 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2544 /* Disable clk ratio reports, like previous Gens. */ 2545 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2546 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2547 /* 2548 * If the user didn't require OA reports, instruct 2549 * the hardware not to emit ctx switch reports. 2550 */ 2551 oag_report_ctx_switches(stream)); 2552 2553 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2554 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2555 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2556 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2557 : 0); 2558 2559 /* 2560 * Update all contexts prior writing the mux configurations as we need 2561 * to make sure all slices/subslices are ON before writing to NOA 2562 * registers. 2563 */ 2564 ret = gen12_configure_all_contexts(stream, oa_config, active); 2565 if (ret) 2566 return ret; 2567 2568 /* 2569 * For Gen12, performance counters are context 2570 * saved/restored. Only enable it for the context that 2571 * requested this. 2572 */ 2573 if (stream->ctx) { 2574 ret = gen12_configure_oar_context(stream, active); 2575 if (ret) 2576 return ret; 2577 } 2578 2579 return emit_oa_config(stream, 2580 stream->oa_config, oa_context(stream), 2581 active); 2582 } 2583 2584 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2585 { 2586 struct intel_uncore *uncore = stream->uncore; 2587 2588 /* Reset all contexts' slices/subslices configurations. */ 2589 lrc_configure_all_contexts(stream, NULL, NULL); 2590 2591 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2592 } 2593 2594 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2595 { 2596 struct intel_uncore *uncore = stream->uncore; 2597 2598 /* Reset all contexts' slices/subslices configurations. */ 2599 lrc_configure_all_contexts(stream, NULL, NULL); 2600 2601 /* Make sure we disable noa to save power. */ 2602 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2603 } 2604 2605 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2606 { 2607 struct intel_uncore *uncore = stream->uncore; 2608 2609 /* Reset all contexts' slices/subslices configurations. */ 2610 gen12_configure_all_contexts(stream, NULL, NULL); 2611 2612 /* disable the context save/restore or OAR counters */ 2613 if (stream->ctx) 2614 gen12_configure_oar_context(stream, NULL); 2615 2616 /* Make sure we disable noa to save power. */ 2617 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2618 } 2619 2620 static void gen7_oa_enable(struct i915_perf_stream *stream) 2621 { 2622 struct intel_uncore *uncore = stream->uncore; 2623 struct i915_gem_context *ctx = stream->ctx; 2624 u32 ctx_id = stream->specific_ctx_id; 2625 bool periodic = stream->periodic; 2626 u32 period_exponent = stream->period_exponent; 2627 u32 report_format = stream->oa_buffer.format; 2628 2629 /* 2630 * Reset buf pointers so we don't forward reports from before now. 2631 * 2632 * Think carefully if considering trying to avoid this, since it 2633 * also ensures status flags and the buffer itself are cleared 2634 * in error paths, and we have checks for invalid reports based 2635 * on the assumption that certain fields are written to zeroed 2636 * memory which this helps maintains. 2637 */ 2638 gen7_init_oa_buffer(stream); 2639 2640 intel_uncore_write(uncore, GEN7_OACONTROL, 2641 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2642 (period_exponent << 2643 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2644 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2645 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2646 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2647 GEN7_OACONTROL_ENABLE); 2648 } 2649 2650 static void gen8_oa_enable(struct i915_perf_stream *stream) 2651 { 2652 struct intel_uncore *uncore = stream->uncore; 2653 u32 report_format = stream->oa_buffer.format; 2654 2655 /* 2656 * Reset buf pointers so we don't forward reports from before now. 2657 * 2658 * Think carefully if considering trying to avoid this, since it 2659 * also ensures status flags and the buffer itself are cleared 2660 * in error paths, and we have checks for invalid reports based 2661 * on the assumption that certain fields are written to zeroed 2662 * memory which this helps maintains. 2663 */ 2664 gen8_init_oa_buffer(stream); 2665 2666 /* 2667 * Note: we don't rely on the hardware to perform single context 2668 * filtering and instead filter on the cpu based on the context-id 2669 * field of reports 2670 */ 2671 intel_uncore_write(uncore, GEN8_OACONTROL, 2672 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2673 GEN8_OA_COUNTER_ENABLE); 2674 } 2675 2676 static void gen12_oa_enable(struct i915_perf_stream *stream) 2677 { 2678 struct intel_uncore *uncore = stream->uncore; 2679 u32 report_format = stream->oa_buffer.format; 2680 2681 /* 2682 * If we don't want OA reports from the OA buffer, then we don't even 2683 * need to program the OAG unit. 2684 */ 2685 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2686 return; 2687 2688 gen12_init_oa_buffer(stream); 2689 2690 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2691 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2692 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2693 } 2694 2695 /** 2696 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2697 * @stream: An i915 perf stream opened for OA metrics 2698 * 2699 * [Re]enables hardware periodic sampling according to the period configured 2700 * when opening the stream. This also starts a hrtimer that will periodically 2701 * check for data in the circular OA buffer for notifying userspace (e.g. 2702 * during a read() or poll()). 2703 */ 2704 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2705 { 2706 stream->pollin = false; 2707 2708 stream->perf->ops.oa_enable(stream); 2709 2710 if (stream->sample_flags & SAMPLE_OA_REPORT) 2711 hrtimer_start(&stream->poll_check_timer, 2712 ns_to_ktime(stream->poll_oa_period), 2713 HRTIMER_MODE_REL_PINNED); 2714 } 2715 2716 static void gen7_oa_disable(struct i915_perf_stream *stream) 2717 { 2718 struct intel_uncore *uncore = stream->uncore; 2719 2720 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2721 if (intel_wait_for_register(uncore, 2722 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2723 50)) 2724 drm_err(&stream->perf->i915->drm, 2725 "wait for OA to be disabled timed out\n"); 2726 } 2727 2728 static void gen8_oa_disable(struct i915_perf_stream *stream) 2729 { 2730 struct intel_uncore *uncore = stream->uncore; 2731 2732 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2733 if (intel_wait_for_register(uncore, 2734 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2735 50)) 2736 drm_err(&stream->perf->i915->drm, 2737 "wait for OA to be disabled timed out\n"); 2738 } 2739 2740 static void gen12_oa_disable(struct i915_perf_stream *stream) 2741 { 2742 struct intel_uncore *uncore = stream->uncore; 2743 2744 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2745 if (intel_wait_for_register(uncore, 2746 GEN12_OAG_OACONTROL, 2747 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2748 50)) 2749 drm_err(&stream->perf->i915->drm, 2750 "wait for OA to be disabled timed out\n"); 2751 2752 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2753 if (intel_wait_for_register(uncore, 2754 GEN12_OA_TLB_INV_CR, 2755 1, 0, 2756 50)) 2757 drm_err(&stream->perf->i915->drm, 2758 "wait for OA tlb invalidate timed out\n"); 2759 } 2760 2761 /** 2762 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2763 * @stream: An i915 perf stream opened for OA metrics 2764 * 2765 * Stops the OA unit from periodically writing counter reports into the 2766 * circular OA buffer. This also stops the hrtimer that periodically checks for 2767 * data in the circular OA buffer, for notifying userspace. 2768 */ 2769 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2770 { 2771 stream->perf->ops.oa_disable(stream); 2772 2773 if (stream->sample_flags & SAMPLE_OA_REPORT) 2774 hrtimer_cancel(&stream->poll_check_timer); 2775 } 2776 2777 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2778 .destroy = i915_oa_stream_destroy, 2779 .enable = i915_oa_stream_enable, 2780 .disable = i915_oa_stream_disable, 2781 .wait_unlocked = i915_oa_wait_unlocked, 2782 .poll_wait = i915_oa_poll_wait, 2783 .read = i915_oa_read, 2784 }; 2785 2786 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2787 { 2788 struct i915_active *active; 2789 int err; 2790 2791 active = i915_active_create(); 2792 if (!active) 2793 return -ENOMEM; 2794 2795 err = stream->perf->ops.enable_metric_set(stream, active); 2796 if (err == 0) 2797 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2798 2799 i915_active_put(active); 2800 return err; 2801 } 2802 2803 static void 2804 get_default_sseu_config(struct intel_sseu *out_sseu, 2805 struct intel_engine_cs *engine) 2806 { 2807 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2808 2809 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2810 2811 if (GRAPHICS_VER(engine->i915) == 11) { 2812 /* 2813 * We only need subslice count so it doesn't matter which ones 2814 * we select - just turn off low bits in the amount of half of 2815 * all available subslices per slice. 2816 */ 2817 out_sseu->subslice_mask = 2818 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2819 out_sseu->slice_mask = 0x1; 2820 } 2821 } 2822 2823 static int 2824 get_sseu_config(struct intel_sseu *out_sseu, 2825 struct intel_engine_cs *engine, 2826 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2827 { 2828 if (drm_sseu->engine.engine_class != engine->uabi_class || 2829 drm_sseu->engine.engine_instance != engine->uabi_instance) 2830 return -EINVAL; 2831 2832 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2833 } 2834 2835 /** 2836 * i915_oa_stream_init - validate combined props for OA stream and init 2837 * @stream: An i915 perf stream 2838 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2839 * @props: The property state that configures stream (individually validated) 2840 * 2841 * While read_properties_unlocked() validates properties in isolation it 2842 * doesn't ensure that the combination necessarily makes sense. 2843 * 2844 * At this point it has been determined that userspace wants a stream of 2845 * OA metrics, but still we need to further validate the combined 2846 * properties are OK. 2847 * 2848 * If the configuration makes sense then we can allocate memory for 2849 * a circular OA buffer and apply the requested metric set configuration. 2850 * 2851 * Returns: zero on success or a negative error code. 2852 */ 2853 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2854 struct drm_i915_perf_open_param *param, 2855 struct perf_open_properties *props) 2856 { 2857 struct drm_i915_private *i915 = stream->perf->i915; 2858 struct i915_perf *perf = stream->perf; 2859 int format_size; 2860 int ret; 2861 2862 if (!props->engine) { 2863 DRM_DEBUG("OA engine not specified\n"); 2864 return -EINVAL; 2865 } 2866 2867 /* 2868 * If the sysfs metrics/ directory wasn't registered for some 2869 * reason then don't let userspace try their luck with config 2870 * IDs 2871 */ 2872 if (!perf->metrics_kobj) { 2873 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2874 return -EINVAL; 2875 } 2876 2877 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2878 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 2879 DRM_DEBUG("Only OA report sampling supported\n"); 2880 return -EINVAL; 2881 } 2882 2883 if (!perf->ops.enable_metric_set) { 2884 DRM_DEBUG("OA unit not supported\n"); 2885 return -ENODEV; 2886 } 2887 2888 /* 2889 * To avoid the complexity of having to accurately filter 2890 * counter reports and marshal to the appropriate client 2891 * we currently only allow exclusive access 2892 */ 2893 if (perf->exclusive_stream) { 2894 DRM_DEBUG("OA unit already in use\n"); 2895 return -EBUSY; 2896 } 2897 2898 if (!props->oa_format) { 2899 DRM_DEBUG("OA report format not specified\n"); 2900 return -EINVAL; 2901 } 2902 2903 stream->engine = props->engine; 2904 stream->uncore = stream->engine->gt->uncore; 2905 2906 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2907 2908 format_size = perf->oa_formats[props->oa_format].size; 2909 2910 stream->sample_flags = props->sample_flags; 2911 stream->sample_size += format_size; 2912 2913 stream->oa_buffer.format_size = format_size; 2914 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2915 return -EINVAL; 2916 2917 stream->hold_preemption = props->hold_preemption; 2918 2919 stream->oa_buffer.format = 2920 perf->oa_formats[props->oa_format].format; 2921 2922 stream->periodic = props->oa_periodic; 2923 if (stream->periodic) 2924 stream->period_exponent = props->oa_period_exponent; 2925 2926 if (stream->ctx) { 2927 ret = oa_get_render_ctx_id(stream); 2928 if (ret) { 2929 DRM_DEBUG("Invalid context id to filter with\n"); 2930 return ret; 2931 } 2932 } 2933 2934 ret = alloc_noa_wait(stream); 2935 if (ret) { 2936 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2937 goto err_noa_wait_alloc; 2938 } 2939 2940 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2941 if (!stream->oa_config) { 2942 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2943 ret = -EINVAL; 2944 goto err_config; 2945 } 2946 2947 /* PRM - observability performance counters: 2948 * 2949 * OACONTROL, performance counter enable, note: 2950 * 2951 * "When this bit is set, in order to have coherent counts, 2952 * RC6 power state and trunk clock gating must be disabled. 2953 * This can be achieved by programming MMIO registers as 2954 * 0xA094=0 and 0xA090[31]=1" 2955 * 2956 * In our case we are expecting that taking pm + FORCEWAKE 2957 * references will effectively disable RC6. 2958 */ 2959 intel_engine_pm_get(stream->engine); 2960 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2961 2962 ret = alloc_oa_buffer(stream); 2963 if (ret) 2964 goto err_oa_buf_alloc; 2965 2966 stream->ops = &i915_oa_stream_ops; 2967 2968 perf->sseu = props->sseu; 2969 WRITE_ONCE(perf->exclusive_stream, stream); 2970 2971 ret = i915_perf_stream_enable_sync(stream); 2972 if (ret) { 2973 DRM_DEBUG("Unable to enable metric set\n"); 2974 goto err_enable; 2975 } 2976 2977 DRM_DEBUG("opening stream oa config uuid=%s\n", 2978 stream->oa_config->uuid); 2979 2980 hrtimer_init(&stream->poll_check_timer, 2981 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2982 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2983 init_waitqueue_head(&stream->poll_wq); 2984 spin_lock_init(&stream->oa_buffer.ptr_lock); 2985 2986 return 0; 2987 2988 err_enable: 2989 WRITE_ONCE(perf->exclusive_stream, NULL); 2990 perf->ops.disable_metric_set(stream); 2991 2992 free_oa_buffer(stream); 2993 2994 err_oa_buf_alloc: 2995 free_oa_configs(stream); 2996 2997 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2998 intel_engine_pm_put(stream->engine); 2999 3000 err_config: 3001 free_noa_wait(stream); 3002 3003 err_noa_wait_alloc: 3004 if (stream->ctx) 3005 oa_put_render_ctx_id(stream); 3006 3007 return ret; 3008 } 3009 3010 void i915_oa_init_reg_state(const struct intel_context *ce, 3011 const struct intel_engine_cs *engine) 3012 { 3013 struct i915_perf_stream *stream; 3014 3015 if (engine->class != RENDER_CLASS) 3016 return; 3017 3018 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3019 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 3020 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3021 gen8_update_reg_state_unlocked(ce, stream); 3022 } 3023 3024 /** 3025 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3026 * @file: An i915 perf stream file 3027 * @buf: destination buffer given by userspace 3028 * @count: the number of bytes userspace wants to read 3029 * @ppos: (inout) file seek position (unused) 3030 * 3031 * The entry point for handling a read() on a stream file descriptor from 3032 * userspace. Most of the work is left to the i915_perf_read_locked() and 3033 * &i915_perf_stream_ops->read but to save having stream implementations (of 3034 * which we might have multiple later) we handle blocking read here. 3035 * 3036 * We can also consistently treat trying to read from a disabled stream 3037 * as an IO error so implementations can assume the stream is enabled 3038 * while reading. 3039 * 3040 * Returns: The number of bytes copied or a negative error code on failure. 3041 */ 3042 static ssize_t i915_perf_read(struct file *file, 3043 char __user *buf, 3044 size_t count, 3045 loff_t *ppos) 3046 { 3047 struct i915_perf_stream *stream = file->private_data; 3048 struct i915_perf *perf = stream->perf; 3049 size_t offset = 0; 3050 int ret; 3051 3052 /* To ensure it's handled consistently we simply treat all reads of a 3053 * disabled stream as an error. In particular it might otherwise lead 3054 * to a deadlock for blocking file descriptors... 3055 */ 3056 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3057 return -EIO; 3058 3059 if (!(file->f_flags & O_NONBLOCK)) { 3060 /* There's the small chance of false positives from 3061 * stream->ops->wait_unlocked. 3062 * 3063 * E.g. with single context filtering since we only wait until 3064 * oabuffer has >= 1 report we don't immediately know whether 3065 * any reports really belong to the current context 3066 */ 3067 do { 3068 ret = stream->ops->wait_unlocked(stream); 3069 if (ret) 3070 return ret; 3071 3072 mutex_lock(&perf->lock); 3073 ret = stream->ops->read(stream, buf, count, &offset); 3074 mutex_unlock(&perf->lock); 3075 } while (!offset && !ret); 3076 } else { 3077 mutex_lock(&perf->lock); 3078 ret = stream->ops->read(stream, buf, count, &offset); 3079 mutex_unlock(&perf->lock); 3080 } 3081 3082 /* We allow the poll checking to sometimes report false positive EPOLLIN 3083 * events where we might actually report EAGAIN on read() if there's 3084 * not really any data available. In this situation though we don't 3085 * want to enter a busy loop between poll() reporting a EPOLLIN event 3086 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3087 * effectively ensures we back off until the next hrtimer callback 3088 * before reporting another EPOLLIN event. 3089 * The exception to this is if ops->read() returned -ENOSPC which means 3090 * that more OA data is available than could fit in the user provided 3091 * buffer. In this case we want the next poll() call to not block. 3092 */ 3093 if (ret != -ENOSPC) 3094 stream->pollin = false; 3095 3096 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3097 return offset ?: (ret ?: -EAGAIN); 3098 } 3099 3100 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3101 { 3102 struct i915_perf_stream *stream = 3103 container_of(hrtimer, typeof(*stream), poll_check_timer); 3104 3105 if (oa_buffer_check_unlocked(stream)) { 3106 stream->pollin = true; 3107 wake_up(&stream->poll_wq); 3108 } 3109 3110 hrtimer_forward_now(hrtimer, 3111 ns_to_ktime(stream->poll_oa_period)); 3112 3113 return HRTIMER_RESTART; 3114 } 3115 3116 /** 3117 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3118 * @stream: An i915 perf stream 3119 * @file: An i915 perf stream file 3120 * @wait: poll() state table 3121 * 3122 * For handling userspace polling on an i915 perf stream, this calls through to 3123 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3124 * will be woken for new stream data. 3125 * 3126 * Note: The &perf->lock mutex has been taken to serialize 3127 * with any non-file-operation driver hooks. 3128 * 3129 * Returns: any poll events that are ready without sleeping 3130 */ 3131 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3132 struct file *file, 3133 poll_table *wait) 3134 { 3135 __poll_t events = 0; 3136 3137 stream->ops->poll_wait(stream, file, wait); 3138 3139 /* Note: we don't explicitly check whether there's something to read 3140 * here since this path may be very hot depending on what else 3141 * userspace is polling, or on the timeout in use. We rely solely on 3142 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3143 * samples to read. 3144 */ 3145 if (stream->pollin) 3146 events |= EPOLLIN; 3147 3148 return events; 3149 } 3150 3151 /** 3152 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3153 * @file: An i915 perf stream file 3154 * @wait: poll() state table 3155 * 3156 * For handling userspace polling on an i915 perf stream, this ensures 3157 * poll_wait() gets called with a wait queue that will be woken for new stream 3158 * data. 3159 * 3160 * Note: Implementation deferred to i915_perf_poll_locked() 3161 * 3162 * Returns: any poll events that are ready without sleeping 3163 */ 3164 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3165 { 3166 struct i915_perf_stream *stream = file->private_data; 3167 struct i915_perf *perf = stream->perf; 3168 __poll_t ret; 3169 3170 mutex_lock(&perf->lock); 3171 ret = i915_perf_poll_locked(stream, file, wait); 3172 mutex_unlock(&perf->lock); 3173 3174 return ret; 3175 } 3176 3177 /** 3178 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3179 * @stream: A disabled i915 perf stream 3180 * 3181 * [Re]enables the associated capture of data for this stream. 3182 * 3183 * If a stream was previously enabled then there's currently no intention 3184 * to provide userspace any guarantee about the preservation of previously 3185 * buffered data. 3186 */ 3187 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3188 { 3189 if (stream->enabled) 3190 return; 3191 3192 /* Allow stream->ops->enable() to refer to this */ 3193 stream->enabled = true; 3194 3195 if (stream->ops->enable) 3196 stream->ops->enable(stream); 3197 3198 if (stream->hold_preemption) 3199 intel_context_set_nopreempt(stream->pinned_ctx); 3200 } 3201 3202 /** 3203 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3204 * @stream: An enabled i915 perf stream 3205 * 3206 * Disables the associated capture of data for this stream. 3207 * 3208 * The intention is that disabling an re-enabling a stream will ideally be 3209 * cheaper than destroying and re-opening a stream with the same configuration, 3210 * though there are no formal guarantees about what state or buffered data 3211 * must be retained between disabling and re-enabling a stream. 3212 * 3213 * Note: while a stream is disabled it's considered an error for userspace 3214 * to attempt to read from the stream (-EIO). 3215 */ 3216 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3217 { 3218 if (!stream->enabled) 3219 return; 3220 3221 /* Allow stream->ops->disable() to refer to this */ 3222 stream->enabled = false; 3223 3224 if (stream->hold_preemption) 3225 intel_context_clear_nopreempt(stream->pinned_ctx); 3226 3227 if (stream->ops->disable) 3228 stream->ops->disable(stream); 3229 } 3230 3231 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3232 unsigned long metrics_set) 3233 { 3234 struct i915_oa_config *config; 3235 long ret = stream->oa_config->id; 3236 3237 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3238 if (!config) 3239 return -EINVAL; 3240 3241 if (config != stream->oa_config) { 3242 int err; 3243 3244 /* 3245 * If OA is bound to a specific context, emit the 3246 * reconfiguration inline from that context. The update 3247 * will then be ordered with respect to submission on that 3248 * context. 3249 * 3250 * When set globally, we use a low priority kernel context, 3251 * so it will effectively take effect when idle. 3252 */ 3253 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3254 if (!err) 3255 config = xchg(&stream->oa_config, config); 3256 else 3257 ret = err; 3258 } 3259 3260 i915_oa_config_put(config); 3261 3262 return ret; 3263 } 3264 3265 /** 3266 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3267 * @stream: An i915 perf stream 3268 * @cmd: the ioctl request 3269 * @arg: the ioctl data 3270 * 3271 * Note: The &perf->lock mutex has been taken to serialize 3272 * with any non-file-operation driver hooks. 3273 * 3274 * Returns: zero on success or a negative error code. Returns -EINVAL for 3275 * an unknown ioctl request. 3276 */ 3277 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3278 unsigned int cmd, 3279 unsigned long arg) 3280 { 3281 switch (cmd) { 3282 case I915_PERF_IOCTL_ENABLE: 3283 i915_perf_enable_locked(stream); 3284 return 0; 3285 case I915_PERF_IOCTL_DISABLE: 3286 i915_perf_disable_locked(stream); 3287 return 0; 3288 case I915_PERF_IOCTL_CONFIG: 3289 return i915_perf_config_locked(stream, arg); 3290 } 3291 3292 return -EINVAL; 3293 } 3294 3295 /** 3296 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3297 * @file: An i915 perf stream file 3298 * @cmd: the ioctl request 3299 * @arg: the ioctl data 3300 * 3301 * Implementation deferred to i915_perf_ioctl_locked(). 3302 * 3303 * Returns: zero on success or a negative error code. Returns -EINVAL for 3304 * an unknown ioctl request. 3305 */ 3306 static long i915_perf_ioctl(struct file *file, 3307 unsigned int cmd, 3308 unsigned long arg) 3309 { 3310 struct i915_perf_stream *stream = file->private_data; 3311 struct i915_perf *perf = stream->perf; 3312 long ret; 3313 3314 mutex_lock(&perf->lock); 3315 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3316 mutex_unlock(&perf->lock); 3317 3318 return ret; 3319 } 3320 3321 /** 3322 * i915_perf_destroy_locked - destroy an i915 perf stream 3323 * @stream: An i915 perf stream 3324 * 3325 * Frees all resources associated with the given i915 perf @stream, disabling 3326 * any associated data capture in the process. 3327 * 3328 * Note: The &perf->lock mutex has been taken to serialize 3329 * with any non-file-operation driver hooks. 3330 */ 3331 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3332 { 3333 if (stream->enabled) 3334 i915_perf_disable_locked(stream); 3335 3336 if (stream->ops->destroy) 3337 stream->ops->destroy(stream); 3338 3339 if (stream->ctx) 3340 i915_gem_context_put(stream->ctx); 3341 3342 kfree(stream); 3343 } 3344 3345 /** 3346 * i915_perf_release - handles userspace close() of a stream file 3347 * @inode: anonymous inode associated with file 3348 * @file: An i915 perf stream file 3349 * 3350 * Cleans up any resources associated with an open i915 perf stream file. 3351 * 3352 * NB: close() can't really fail from the userspace point of view. 3353 * 3354 * Returns: zero on success or a negative error code. 3355 */ 3356 static int i915_perf_release(struct inode *inode, struct file *file) 3357 { 3358 struct i915_perf_stream *stream = file->private_data; 3359 struct i915_perf *perf = stream->perf; 3360 3361 mutex_lock(&perf->lock); 3362 i915_perf_destroy_locked(stream); 3363 mutex_unlock(&perf->lock); 3364 3365 /* Release the reference the perf stream kept on the driver. */ 3366 drm_dev_put(&perf->i915->drm); 3367 3368 return 0; 3369 } 3370 3371 3372 static const struct file_operations fops = { 3373 .owner = THIS_MODULE, 3374 .llseek = no_llseek, 3375 .release = i915_perf_release, 3376 .poll = i915_perf_poll, 3377 .read = i915_perf_read, 3378 .unlocked_ioctl = i915_perf_ioctl, 3379 /* Our ioctl have no arguments, so it's safe to use the same function 3380 * to handle 32bits compatibility. 3381 */ 3382 .compat_ioctl = i915_perf_ioctl, 3383 }; 3384 3385 3386 /** 3387 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3388 * @perf: i915 perf instance 3389 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3390 * @props: individually validated u64 property value pairs 3391 * @file: drm file 3392 * 3393 * See i915_perf_ioctl_open() for interface details. 3394 * 3395 * Implements further stream config validation and stream initialization on 3396 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3397 * taken to serialize with any non-file-operation driver hooks. 3398 * 3399 * Note: at this point the @props have only been validated in isolation and 3400 * it's still necessary to validate that the combination of properties makes 3401 * sense. 3402 * 3403 * In the case where userspace is interested in OA unit metrics then further 3404 * config validation and stream initialization details will be handled by 3405 * i915_oa_stream_init(). The code here should only validate config state that 3406 * will be relevant to all stream types / backends. 3407 * 3408 * Returns: zero on success or a negative error code. 3409 */ 3410 static int 3411 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3412 struct drm_i915_perf_open_param *param, 3413 struct perf_open_properties *props, 3414 struct drm_file *file) 3415 { 3416 struct i915_gem_context *specific_ctx = NULL; 3417 struct i915_perf_stream *stream = NULL; 3418 unsigned long f_flags = 0; 3419 bool privileged_op = true; 3420 int stream_fd; 3421 int ret; 3422 3423 if (props->single_context) { 3424 u32 ctx_handle = props->ctx_handle; 3425 struct drm_i915_file_private *file_priv = file->driver_priv; 3426 3427 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3428 if (IS_ERR(specific_ctx)) { 3429 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3430 ctx_handle); 3431 ret = PTR_ERR(specific_ctx); 3432 goto err; 3433 } 3434 } 3435 3436 /* 3437 * On Haswell the OA unit supports clock gating off for a specific 3438 * context and in this mode there's no visibility of metrics for the 3439 * rest of the system, which we consider acceptable for a 3440 * non-privileged client. 3441 * 3442 * For Gen8->11 the OA unit no longer supports clock gating off for a 3443 * specific context and the kernel can't securely stop the counters 3444 * from updating as system-wide / global values. Even though we can 3445 * filter reports based on the included context ID we can't block 3446 * clients from seeing the raw / global counter values via 3447 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3448 * enable the OA unit by default. 3449 * 3450 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3451 * per context basis. So we can relax requirements there if the user 3452 * doesn't request global stream access (i.e. query based sampling 3453 * using MI_RECORD_PERF_COUNT. 3454 */ 3455 if (IS_HASWELL(perf->i915) && specific_ctx) 3456 privileged_op = false; 3457 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3458 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3459 privileged_op = false; 3460 3461 if (props->hold_preemption) { 3462 if (!props->single_context) { 3463 DRM_DEBUG("preemption disable with no context\n"); 3464 ret = -EINVAL; 3465 goto err; 3466 } 3467 privileged_op = true; 3468 } 3469 3470 /* 3471 * Asking for SSEU configuration is a priviliged operation. 3472 */ 3473 if (props->has_sseu) 3474 privileged_op = true; 3475 else 3476 get_default_sseu_config(&props->sseu, props->engine); 3477 3478 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3479 * we check a dev.i915.perf_stream_paranoid sysctl option 3480 * to determine if it's ok to access system wide OA counters 3481 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3482 */ 3483 if (privileged_op && 3484 i915_perf_stream_paranoid && !perfmon_capable()) { 3485 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3486 ret = -EACCES; 3487 goto err_ctx; 3488 } 3489 3490 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3491 if (!stream) { 3492 ret = -ENOMEM; 3493 goto err_ctx; 3494 } 3495 3496 stream->perf = perf; 3497 stream->ctx = specific_ctx; 3498 stream->poll_oa_period = props->poll_oa_period; 3499 3500 ret = i915_oa_stream_init(stream, param, props); 3501 if (ret) 3502 goto err_alloc; 3503 3504 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3505 * to have _stream_init check the combination of sample flags more 3506 * thoroughly, but still this is the expected result at this point. 3507 */ 3508 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3509 ret = -ENODEV; 3510 goto err_flags; 3511 } 3512 3513 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3514 f_flags |= O_CLOEXEC; 3515 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3516 f_flags |= O_NONBLOCK; 3517 3518 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3519 if (stream_fd < 0) { 3520 ret = stream_fd; 3521 goto err_flags; 3522 } 3523 3524 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3525 i915_perf_enable_locked(stream); 3526 3527 /* Take a reference on the driver that will be kept with stream_fd 3528 * until its release. 3529 */ 3530 drm_dev_get(&perf->i915->drm); 3531 3532 return stream_fd; 3533 3534 err_flags: 3535 if (stream->ops->destroy) 3536 stream->ops->destroy(stream); 3537 err_alloc: 3538 kfree(stream); 3539 err_ctx: 3540 if (specific_ctx) 3541 i915_gem_context_put(specific_ctx); 3542 err: 3543 return ret; 3544 } 3545 3546 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3547 { 3548 return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt, 3549 2ULL << exponent); 3550 } 3551 3552 static __always_inline bool 3553 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3554 { 3555 return test_bit(format, perf->format_mask); 3556 } 3557 3558 static __always_inline void 3559 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3560 { 3561 __set_bit(format, perf->format_mask); 3562 } 3563 3564 /** 3565 * read_properties_unlocked - validate + copy userspace stream open properties 3566 * @perf: i915 perf instance 3567 * @uprops: The array of u64 key value pairs given by userspace 3568 * @n_props: The number of key value pairs expected in @uprops 3569 * @props: The stream configuration built up while validating properties 3570 * 3571 * Note this function only validates properties in isolation it doesn't 3572 * validate that the combination of properties makes sense or that all 3573 * properties necessary for a particular kind of stream have been set. 3574 * 3575 * Note that there currently aren't any ordering requirements for properties so 3576 * we shouldn't validate or assume anything about ordering here. This doesn't 3577 * rule out defining new properties with ordering requirements in the future. 3578 */ 3579 static int read_properties_unlocked(struct i915_perf *perf, 3580 u64 __user *uprops, 3581 u32 n_props, 3582 struct perf_open_properties *props) 3583 { 3584 u64 __user *uprop = uprops; 3585 u32 i; 3586 int ret; 3587 3588 memset(props, 0, sizeof(struct perf_open_properties)); 3589 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3590 3591 if (!n_props) { 3592 DRM_DEBUG("No i915 perf properties given\n"); 3593 return -EINVAL; 3594 } 3595 3596 /* At the moment we only support using i915-perf on the RCS. */ 3597 props->engine = intel_engine_lookup_user(perf->i915, 3598 I915_ENGINE_CLASS_RENDER, 3599 0); 3600 if (!props->engine) { 3601 DRM_DEBUG("No RENDER-capable engines\n"); 3602 return -EINVAL; 3603 } 3604 3605 /* Considering that ID = 0 is reserved and assuming that we don't 3606 * (currently) expect any configurations to ever specify duplicate 3607 * values for a particular property ID then the last _PROP_MAX value is 3608 * one greater than the maximum number of properties we expect to get 3609 * from userspace. 3610 */ 3611 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3612 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3613 return -EINVAL; 3614 } 3615 3616 for (i = 0; i < n_props; i++) { 3617 u64 oa_period, oa_freq_hz; 3618 u64 id, value; 3619 3620 ret = get_user(id, uprop); 3621 if (ret) 3622 return ret; 3623 3624 ret = get_user(value, uprop + 1); 3625 if (ret) 3626 return ret; 3627 3628 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3629 DRM_DEBUG("Unknown i915 perf property ID\n"); 3630 return -EINVAL; 3631 } 3632 3633 switch ((enum drm_i915_perf_property_id)id) { 3634 case DRM_I915_PERF_PROP_CTX_HANDLE: 3635 props->single_context = 1; 3636 props->ctx_handle = value; 3637 break; 3638 case DRM_I915_PERF_PROP_SAMPLE_OA: 3639 if (value) 3640 props->sample_flags |= SAMPLE_OA_REPORT; 3641 break; 3642 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3643 if (value == 0) { 3644 DRM_DEBUG("Unknown OA metric set ID\n"); 3645 return -EINVAL; 3646 } 3647 props->metrics_set = value; 3648 break; 3649 case DRM_I915_PERF_PROP_OA_FORMAT: 3650 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3651 DRM_DEBUG("Out-of-range OA report format %llu\n", 3652 value); 3653 return -EINVAL; 3654 } 3655 if (!oa_format_valid(perf, value)) { 3656 DRM_DEBUG("Unsupported OA report format %llu\n", 3657 value); 3658 return -EINVAL; 3659 } 3660 props->oa_format = value; 3661 break; 3662 case DRM_I915_PERF_PROP_OA_EXPONENT: 3663 if (value > OA_EXPONENT_MAX) { 3664 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3665 OA_EXPONENT_MAX); 3666 return -EINVAL; 3667 } 3668 3669 /* Theoretically we can program the OA unit to sample 3670 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3671 * for BXT. We don't allow such high sampling 3672 * frequencies by default unless root. 3673 */ 3674 3675 BUILD_BUG_ON(sizeof(oa_period) != 8); 3676 oa_period = oa_exponent_to_ns(perf, value); 3677 3678 /* This check is primarily to ensure that oa_period <= 3679 * UINT32_MAX (before passing to do_div which only 3680 * accepts a u32 denominator), but we can also skip 3681 * checking anything < 1Hz which implicitly can't be 3682 * limited via an integer oa_max_sample_rate. 3683 */ 3684 if (oa_period <= NSEC_PER_SEC) { 3685 u64 tmp = NSEC_PER_SEC; 3686 do_div(tmp, oa_period); 3687 oa_freq_hz = tmp; 3688 } else 3689 oa_freq_hz = 0; 3690 3691 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3692 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3693 i915_oa_max_sample_rate); 3694 return -EACCES; 3695 } 3696 3697 props->oa_periodic = true; 3698 props->oa_period_exponent = value; 3699 break; 3700 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3701 props->hold_preemption = !!value; 3702 break; 3703 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3704 struct drm_i915_gem_context_param_sseu user_sseu; 3705 3706 if (copy_from_user(&user_sseu, 3707 u64_to_user_ptr(value), 3708 sizeof(user_sseu))) { 3709 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3710 return -EFAULT; 3711 } 3712 3713 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3714 if (ret) { 3715 DRM_DEBUG("Invalid SSEU configuration\n"); 3716 return ret; 3717 } 3718 props->has_sseu = true; 3719 break; 3720 } 3721 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3722 if (value < 100000 /* 100us */) { 3723 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3724 value); 3725 return -EINVAL; 3726 } 3727 props->poll_oa_period = value; 3728 break; 3729 case DRM_I915_PERF_PROP_MAX: 3730 MISSING_CASE(id); 3731 return -EINVAL; 3732 } 3733 3734 uprop += 2; 3735 } 3736 3737 return 0; 3738 } 3739 3740 /** 3741 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3742 * @dev: drm device 3743 * @data: ioctl data copied from userspace (unvalidated) 3744 * @file: drm file 3745 * 3746 * Validates the stream open parameters given by userspace including flags 3747 * and an array of u64 key, value pair properties. 3748 * 3749 * Very little is assumed up front about the nature of the stream being 3750 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3751 * i915-perf stream is expected to be a suitable interface for other forms of 3752 * buffered data written by the GPU besides periodic OA metrics. 3753 * 3754 * Note we copy the properties from userspace outside of the i915 perf 3755 * mutex to avoid an awkward lockdep with mmap_lock. 3756 * 3757 * Most of the implementation details are handled by 3758 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3759 * mutex for serializing with any non-file-operation driver hooks. 3760 * 3761 * Return: A newly opened i915 Perf stream file descriptor or negative 3762 * error code on failure. 3763 */ 3764 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3765 struct drm_file *file) 3766 { 3767 struct i915_perf *perf = &to_i915(dev)->perf; 3768 struct drm_i915_perf_open_param *param = data; 3769 struct perf_open_properties props; 3770 u32 known_open_flags; 3771 int ret; 3772 3773 if (!perf->i915) { 3774 DRM_DEBUG("i915 perf interface not available for this system\n"); 3775 return -ENOTSUPP; 3776 } 3777 3778 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3779 I915_PERF_FLAG_FD_NONBLOCK | 3780 I915_PERF_FLAG_DISABLED; 3781 if (param->flags & ~known_open_flags) { 3782 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3783 return -EINVAL; 3784 } 3785 3786 ret = read_properties_unlocked(perf, 3787 u64_to_user_ptr(param->properties_ptr), 3788 param->num_properties, 3789 &props); 3790 if (ret) 3791 return ret; 3792 3793 mutex_lock(&perf->lock); 3794 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3795 mutex_unlock(&perf->lock); 3796 3797 return ret; 3798 } 3799 3800 /** 3801 * i915_perf_register - exposes i915-perf to userspace 3802 * @i915: i915 device instance 3803 * 3804 * In particular OA metric sets are advertised under a sysfs metrics/ 3805 * directory allowing userspace to enumerate valid IDs that can be 3806 * used to open an i915-perf stream. 3807 */ 3808 void i915_perf_register(struct drm_i915_private *i915) 3809 { 3810 struct i915_perf *perf = &i915->perf; 3811 3812 if (!perf->i915) 3813 return; 3814 3815 /* To be sure we're synchronized with an attempted 3816 * i915_perf_open_ioctl(); considering that we register after 3817 * being exposed to userspace. 3818 */ 3819 mutex_lock(&perf->lock); 3820 3821 perf->metrics_kobj = 3822 kobject_create_and_add("metrics", 3823 &i915->drm.primary->kdev->kobj); 3824 3825 mutex_unlock(&perf->lock); 3826 } 3827 3828 /** 3829 * i915_perf_unregister - hide i915-perf from userspace 3830 * @i915: i915 device instance 3831 * 3832 * i915-perf state cleanup is split up into an 'unregister' and 3833 * 'deinit' phase where the interface is first hidden from 3834 * userspace by i915_perf_unregister() before cleaning up 3835 * remaining state in i915_perf_fini(). 3836 */ 3837 void i915_perf_unregister(struct drm_i915_private *i915) 3838 { 3839 struct i915_perf *perf = &i915->perf; 3840 3841 if (!perf->metrics_kobj) 3842 return; 3843 3844 kobject_put(perf->metrics_kobj); 3845 perf->metrics_kobj = NULL; 3846 } 3847 3848 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3849 { 3850 static const i915_reg_t flex_eu_regs[] = { 3851 EU_PERF_CNTL0, 3852 EU_PERF_CNTL1, 3853 EU_PERF_CNTL2, 3854 EU_PERF_CNTL3, 3855 EU_PERF_CNTL4, 3856 EU_PERF_CNTL5, 3857 EU_PERF_CNTL6, 3858 }; 3859 int i; 3860 3861 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3862 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3863 return true; 3864 } 3865 return false; 3866 } 3867 3868 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 3869 { 3870 while (table->start || table->end) { 3871 if (addr >= table->start && addr <= table->end) 3872 return true; 3873 3874 table++; 3875 } 3876 3877 return false; 3878 } 3879 3880 #define REG_EQUAL(addr, mmio) \ 3881 ((addr) == i915_mmio_reg_offset(mmio)) 3882 3883 static const struct i915_range gen7_oa_b_counters[] = { 3884 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 3885 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 3886 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 3887 {} 3888 }; 3889 3890 static const struct i915_range gen12_oa_b_counters[] = { 3891 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 3892 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 3893 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 3894 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 3895 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 3896 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 3897 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 3898 {} 3899 }; 3900 3901 static const struct i915_range gen7_oa_mux_regs[] = { 3902 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 3903 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 3904 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 3905 {} 3906 }; 3907 3908 static const struct i915_range hsw_oa_mux_regs[] = { 3909 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 3910 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 3911 { .start = 0x25100, .end = 0x2ff90 }, 3912 {} 3913 }; 3914 3915 static const struct i915_range chv_oa_mux_regs[] = { 3916 { .start = 0x182300, .end = 0x1823a4 }, 3917 {} 3918 }; 3919 3920 static const struct i915_range gen8_oa_mux_regs[] = { 3921 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 3922 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 3923 {} 3924 }; 3925 3926 static const struct i915_range gen11_oa_mux_regs[] = { 3927 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 3928 {} 3929 }; 3930 3931 static const struct i915_range gen12_oa_mux_regs[] = { 3932 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 3933 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 3934 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 3935 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 3936 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 3937 {} 3938 }; 3939 3940 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3941 { 3942 return reg_in_range_table(addr, gen7_oa_b_counters); 3943 } 3944 3945 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3946 { 3947 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3948 reg_in_range_table(addr, gen8_oa_mux_regs); 3949 } 3950 3951 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3952 { 3953 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3954 reg_in_range_table(addr, gen8_oa_mux_regs) || 3955 reg_in_range_table(addr, gen11_oa_mux_regs); 3956 } 3957 3958 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3959 { 3960 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3961 reg_in_range_table(addr, hsw_oa_mux_regs); 3962 } 3963 3964 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3965 { 3966 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3967 reg_in_range_table(addr, chv_oa_mux_regs); 3968 } 3969 3970 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3971 { 3972 return reg_in_range_table(addr, gen12_oa_b_counters); 3973 } 3974 3975 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3976 { 3977 return reg_in_range_table(addr, gen12_oa_mux_regs); 3978 } 3979 3980 static u32 mask_reg_value(u32 reg, u32 val) 3981 { 3982 /* HALF_SLICE_CHICKEN2 is programmed with a the 3983 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3984 * programmed by userspace doesn't change this. 3985 */ 3986 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3987 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3988 3989 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3990 * indicated by its name and a bunch of selection fields used by OA 3991 * configs. 3992 */ 3993 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3994 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3995 3996 return val; 3997 } 3998 3999 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4000 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4001 u32 __user *regs, 4002 u32 n_regs) 4003 { 4004 struct i915_oa_reg *oa_regs; 4005 int err; 4006 u32 i; 4007 4008 if (!n_regs) 4009 return NULL; 4010 4011 /* No is_valid function means we're not allowing any register to be programmed. */ 4012 GEM_BUG_ON(!is_valid); 4013 if (!is_valid) 4014 return ERR_PTR(-EINVAL); 4015 4016 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4017 if (!oa_regs) 4018 return ERR_PTR(-ENOMEM); 4019 4020 for (i = 0; i < n_regs; i++) { 4021 u32 addr, value; 4022 4023 err = get_user(addr, regs); 4024 if (err) 4025 goto addr_err; 4026 4027 if (!is_valid(perf, addr)) { 4028 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 4029 err = -EINVAL; 4030 goto addr_err; 4031 } 4032 4033 err = get_user(value, regs + 1); 4034 if (err) 4035 goto addr_err; 4036 4037 oa_regs[i].addr = _MMIO(addr); 4038 oa_regs[i].value = mask_reg_value(addr, value); 4039 4040 regs += 2; 4041 } 4042 4043 return oa_regs; 4044 4045 addr_err: 4046 kfree(oa_regs); 4047 return ERR_PTR(err); 4048 } 4049 4050 static ssize_t show_dynamic_id(struct device *dev, 4051 struct device_attribute *attr, 4052 char *buf) 4053 { 4054 struct i915_oa_config *oa_config = 4055 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4056 4057 return sprintf(buf, "%d\n", oa_config->id); 4058 } 4059 4060 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4061 struct i915_oa_config *oa_config) 4062 { 4063 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4064 oa_config->sysfs_metric_id.attr.name = "id"; 4065 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4066 oa_config->sysfs_metric_id.show = show_dynamic_id; 4067 oa_config->sysfs_metric_id.store = NULL; 4068 4069 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4070 oa_config->attrs[1] = NULL; 4071 4072 oa_config->sysfs_metric.name = oa_config->uuid; 4073 oa_config->sysfs_metric.attrs = oa_config->attrs; 4074 4075 return sysfs_create_group(perf->metrics_kobj, 4076 &oa_config->sysfs_metric); 4077 } 4078 4079 /** 4080 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4081 * @dev: drm device 4082 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4083 * userspace (unvalidated) 4084 * @file: drm file 4085 * 4086 * Validates the submitted OA register to be saved into a new OA config that 4087 * can then be used for programming the OA unit and its NOA network. 4088 * 4089 * Returns: A new allocated config number to be used with the perf open ioctl 4090 * or a negative error code on failure. 4091 */ 4092 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4093 struct drm_file *file) 4094 { 4095 struct i915_perf *perf = &to_i915(dev)->perf; 4096 struct drm_i915_perf_oa_config *args = data; 4097 struct i915_oa_config *oa_config, *tmp; 4098 struct i915_oa_reg *regs; 4099 int err, id; 4100 4101 if (!perf->i915) { 4102 DRM_DEBUG("i915 perf interface not available for this system\n"); 4103 return -ENOTSUPP; 4104 } 4105 4106 if (!perf->metrics_kobj) { 4107 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4108 return -EINVAL; 4109 } 4110 4111 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4112 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4113 return -EACCES; 4114 } 4115 4116 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4117 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4118 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4119 DRM_DEBUG("No OA registers given\n"); 4120 return -EINVAL; 4121 } 4122 4123 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4124 if (!oa_config) { 4125 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4126 return -ENOMEM; 4127 } 4128 4129 oa_config->perf = perf; 4130 kref_init(&oa_config->ref); 4131 4132 if (!uuid_is_valid(args->uuid)) { 4133 DRM_DEBUG("Invalid uuid format for OA config\n"); 4134 err = -EINVAL; 4135 goto reg_err; 4136 } 4137 4138 /* Last character in oa_config->uuid will be 0 because oa_config is 4139 * kzalloc. 4140 */ 4141 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4142 4143 oa_config->mux_regs_len = args->n_mux_regs; 4144 regs = alloc_oa_regs(perf, 4145 perf->ops.is_valid_mux_reg, 4146 u64_to_user_ptr(args->mux_regs_ptr), 4147 args->n_mux_regs); 4148 4149 if (IS_ERR(regs)) { 4150 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4151 err = PTR_ERR(regs); 4152 goto reg_err; 4153 } 4154 oa_config->mux_regs = regs; 4155 4156 oa_config->b_counter_regs_len = args->n_boolean_regs; 4157 regs = alloc_oa_regs(perf, 4158 perf->ops.is_valid_b_counter_reg, 4159 u64_to_user_ptr(args->boolean_regs_ptr), 4160 args->n_boolean_regs); 4161 4162 if (IS_ERR(regs)) { 4163 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4164 err = PTR_ERR(regs); 4165 goto reg_err; 4166 } 4167 oa_config->b_counter_regs = regs; 4168 4169 if (GRAPHICS_VER(perf->i915) < 8) { 4170 if (args->n_flex_regs != 0) { 4171 err = -EINVAL; 4172 goto reg_err; 4173 } 4174 } else { 4175 oa_config->flex_regs_len = args->n_flex_regs; 4176 regs = alloc_oa_regs(perf, 4177 perf->ops.is_valid_flex_reg, 4178 u64_to_user_ptr(args->flex_regs_ptr), 4179 args->n_flex_regs); 4180 4181 if (IS_ERR(regs)) { 4182 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4183 err = PTR_ERR(regs); 4184 goto reg_err; 4185 } 4186 oa_config->flex_regs = regs; 4187 } 4188 4189 err = mutex_lock_interruptible(&perf->metrics_lock); 4190 if (err) 4191 goto reg_err; 4192 4193 /* We shouldn't have too many configs, so this iteration shouldn't be 4194 * too costly. 4195 */ 4196 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4197 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4198 DRM_DEBUG("OA config already exists with this uuid\n"); 4199 err = -EADDRINUSE; 4200 goto sysfs_err; 4201 } 4202 } 4203 4204 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4205 if (err) { 4206 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4207 goto sysfs_err; 4208 } 4209 4210 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4211 oa_config->id = idr_alloc(&perf->metrics_idr, 4212 oa_config, 2, 4213 0, GFP_KERNEL); 4214 if (oa_config->id < 0) { 4215 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4216 err = oa_config->id; 4217 goto sysfs_err; 4218 } 4219 4220 mutex_unlock(&perf->metrics_lock); 4221 4222 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4223 4224 return oa_config->id; 4225 4226 sysfs_err: 4227 mutex_unlock(&perf->metrics_lock); 4228 reg_err: 4229 i915_oa_config_put(oa_config); 4230 DRM_DEBUG("Failed to add new OA config\n"); 4231 return err; 4232 } 4233 4234 /** 4235 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4236 * @dev: drm device 4237 * @data: ioctl data (pointer to u64 integer) copied from userspace 4238 * @file: drm file 4239 * 4240 * Configs can be removed while being used, the will stop appearing in sysfs 4241 * and their content will be freed when the stream using the config is closed. 4242 * 4243 * Returns: 0 on success or a negative error code on failure. 4244 */ 4245 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4246 struct drm_file *file) 4247 { 4248 struct i915_perf *perf = &to_i915(dev)->perf; 4249 u64 *arg = data; 4250 struct i915_oa_config *oa_config; 4251 int ret; 4252 4253 if (!perf->i915) { 4254 DRM_DEBUG("i915 perf interface not available for this system\n"); 4255 return -ENOTSUPP; 4256 } 4257 4258 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4259 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4260 return -EACCES; 4261 } 4262 4263 ret = mutex_lock_interruptible(&perf->metrics_lock); 4264 if (ret) 4265 return ret; 4266 4267 oa_config = idr_find(&perf->metrics_idr, *arg); 4268 if (!oa_config) { 4269 DRM_DEBUG("Failed to remove unknown OA config\n"); 4270 ret = -ENOENT; 4271 goto err_unlock; 4272 } 4273 4274 GEM_BUG_ON(*arg != oa_config->id); 4275 4276 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4277 4278 idr_remove(&perf->metrics_idr, *arg); 4279 4280 mutex_unlock(&perf->metrics_lock); 4281 4282 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4283 4284 i915_oa_config_put(oa_config); 4285 4286 return 0; 4287 4288 err_unlock: 4289 mutex_unlock(&perf->metrics_lock); 4290 return ret; 4291 } 4292 4293 static struct ctl_table oa_table[] = { 4294 { 4295 .procname = "perf_stream_paranoid", 4296 .data = &i915_perf_stream_paranoid, 4297 .maxlen = sizeof(i915_perf_stream_paranoid), 4298 .mode = 0644, 4299 .proc_handler = proc_dointvec_minmax, 4300 .extra1 = SYSCTL_ZERO, 4301 .extra2 = SYSCTL_ONE, 4302 }, 4303 { 4304 .procname = "oa_max_sample_rate", 4305 .data = &i915_oa_max_sample_rate, 4306 .maxlen = sizeof(i915_oa_max_sample_rate), 4307 .mode = 0644, 4308 .proc_handler = proc_dointvec_minmax, 4309 .extra1 = SYSCTL_ZERO, 4310 .extra2 = &oa_sample_rate_hard_limit, 4311 }, 4312 {} 4313 }; 4314 4315 static void oa_init_supported_formats(struct i915_perf *perf) 4316 { 4317 struct drm_i915_private *i915 = perf->i915; 4318 enum intel_platform platform = INTEL_INFO(i915)->platform; 4319 4320 switch (platform) { 4321 case INTEL_HASWELL: 4322 oa_format_add(perf, I915_OA_FORMAT_A13); 4323 oa_format_add(perf, I915_OA_FORMAT_A13); 4324 oa_format_add(perf, I915_OA_FORMAT_A29); 4325 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4326 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4327 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4328 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4329 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4330 break; 4331 4332 case INTEL_BROADWELL: 4333 case INTEL_CHERRYVIEW: 4334 case INTEL_SKYLAKE: 4335 case INTEL_BROXTON: 4336 case INTEL_KABYLAKE: 4337 case INTEL_GEMINILAKE: 4338 case INTEL_COFFEELAKE: 4339 case INTEL_COMETLAKE: 4340 case INTEL_ICELAKE: 4341 case INTEL_ELKHARTLAKE: 4342 case INTEL_JASPERLAKE: 4343 case INTEL_TIGERLAKE: 4344 case INTEL_ROCKETLAKE: 4345 case INTEL_DG1: 4346 case INTEL_ALDERLAKE_S: 4347 case INTEL_ALDERLAKE_P: 4348 oa_format_add(perf, I915_OA_FORMAT_A12); 4349 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4350 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4351 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4352 break; 4353 4354 default: 4355 MISSING_CASE(platform); 4356 } 4357 } 4358 4359 /** 4360 * i915_perf_init - initialize i915-perf state on module bind 4361 * @i915: i915 device instance 4362 * 4363 * Initializes i915-perf state without exposing anything to userspace. 4364 * 4365 * Note: i915-perf initialization is split into an 'init' and 'register' 4366 * phase with the i915_perf_register() exposing state to userspace. 4367 */ 4368 void i915_perf_init(struct drm_i915_private *i915) 4369 { 4370 struct i915_perf *perf = &i915->perf; 4371 4372 /* XXX const struct i915_perf_ops! */ 4373 4374 perf->oa_formats = oa_formats; 4375 if (IS_HASWELL(i915)) { 4376 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4377 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4378 perf->ops.is_valid_flex_reg = NULL; 4379 perf->ops.enable_metric_set = hsw_enable_metric_set; 4380 perf->ops.disable_metric_set = hsw_disable_metric_set; 4381 perf->ops.oa_enable = gen7_oa_enable; 4382 perf->ops.oa_disable = gen7_oa_disable; 4383 perf->ops.read = gen7_oa_read; 4384 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4385 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4386 /* Note: that although we could theoretically also support the 4387 * legacy ringbuffer mode on BDW (and earlier iterations of 4388 * this driver, before upstreaming did this) it didn't seem 4389 * worth the complexity to maintain now that BDW+ enable 4390 * execlist mode by default. 4391 */ 4392 perf->ops.read = gen8_oa_read; 4393 4394 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4395 perf->ops.is_valid_b_counter_reg = 4396 gen7_is_valid_b_counter_addr; 4397 perf->ops.is_valid_mux_reg = 4398 gen8_is_valid_mux_addr; 4399 perf->ops.is_valid_flex_reg = 4400 gen8_is_valid_flex_addr; 4401 4402 if (IS_CHERRYVIEW(i915)) { 4403 perf->ops.is_valid_mux_reg = 4404 chv_is_valid_mux_addr; 4405 } 4406 4407 perf->ops.oa_enable = gen8_oa_enable; 4408 perf->ops.oa_disable = gen8_oa_disable; 4409 perf->ops.enable_metric_set = gen8_enable_metric_set; 4410 perf->ops.disable_metric_set = gen8_disable_metric_set; 4411 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4412 4413 if (GRAPHICS_VER(i915) == 8) { 4414 perf->ctx_oactxctrl_offset = 0x120; 4415 perf->ctx_flexeu0_offset = 0x2ce; 4416 4417 perf->gen8_valid_ctx_bit = BIT(25); 4418 } else { 4419 perf->ctx_oactxctrl_offset = 0x128; 4420 perf->ctx_flexeu0_offset = 0x3de; 4421 4422 perf->gen8_valid_ctx_bit = BIT(16); 4423 } 4424 } else if (GRAPHICS_VER(i915) == 11) { 4425 perf->ops.is_valid_b_counter_reg = 4426 gen7_is_valid_b_counter_addr; 4427 perf->ops.is_valid_mux_reg = 4428 gen11_is_valid_mux_addr; 4429 perf->ops.is_valid_flex_reg = 4430 gen8_is_valid_flex_addr; 4431 4432 perf->ops.oa_enable = gen8_oa_enable; 4433 perf->ops.oa_disable = gen8_oa_disable; 4434 perf->ops.enable_metric_set = gen8_enable_metric_set; 4435 perf->ops.disable_metric_set = gen11_disable_metric_set; 4436 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4437 4438 perf->ctx_oactxctrl_offset = 0x124; 4439 perf->ctx_flexeu0_offset = 0x78e; 4440 4441 perf->gen8_valid_ctx_bit = BIT(16); 4442 } else if (GRAPHICS_VER(i915) == 12) { 4443 perf->ops.is_valid_b_counter_reg = 4444 gen12_is_valid_b_counter_addr; 4445 perf->ops.is_valid_mux_reg = 4446 gen12_is_valid_mux_addr; 4447 perf->ops.is_valid_flex_reg = 4448 gen8_is_valid_flex_addr; 4449 4450 perf->ops.oa_enable = gen12_oa_enable; 4451 perf->ops.oa_disable = gen12_oa_disable; 4452 perf->ops.enable_metric_set = gen12_enable_metric_set; 4453 perf->ops.disable_metric_set = gen12_disable_metric_set; 4454 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4455 4456 perf->ctx_flexeu0_offset = 0; 4457 perf->ctx_oactxctrl_offset = 0x144; 4458 } 4459 } 4460 4461 if (perf->ops.enable_metric_set) { 4462 mutex_init(&perf->lock); 4463 4464 /* Choose a representative limit */ 4465 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4466 4467 mutex_init(&perf->metrics_lock); 4468 idr_init_base(&perf->metrics_idr, 1); 4469 4470 /* We set up some ratelimit state to potentially throttle any 4471 * _NOTES about spurious, invalid OA reports which we don't 4472 * forward to userspace. 4473 * 4474 * We print a _NOTE about any throttling when closing the 4475 * stream instead of waiting until driver _fini which no one 4476 * would ever see. 4477 * 4478 * Using the same limiting factors as printk_ratelimit() 4479 */ 4480 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4481 /* Since we use a DRM_NOTE for spurious reports it would be 4482 * inconsistent to let __ratelimit() automatically print a 4483 * warning for throttling. 4484 */ 4485 ratelimit_set_flags(&perf->spurious_report_rs, 4486 RATELIMIT_MSG_ON_RELEASE); 4487 4488 ratelimit_state_init(&perf->tail_pointer_race, 4489 5 * HZ, 10); 4490 ratelimit_set_flags(&perf->tail_pointer_race, 4491 RATELIMIT_MSG_ON_RELEASE); 4492 4493 atomic64_set(&perf->noa_programming_delay, 4494 500 * 1000 /* 500us */); 4495 4496 perf->i915 = i915; 4497 4498 oa_init_supported_formats(perf); 4499 } 4500 } 4501 4502 static int destroy_config(int id, void *p, void *data) 4503 { 4504 i915_oa_config_put(p); 4505 return 0; 4506 } 4507 4508 int i915_perf_sysctl_register(void) 4509 { 4510 sysctl_header = register_sysctl("dev/i915", oa_table); 4511 return 0; 4512 } 4513 4514 void i915_perf_sysctl_unregister(void) 4515 { 4516 unregister_sysctl_table(sysctl_header); 4517 } 4518 4519 /** 4520 * i915_perf_fini - Counter part to i915_perf_init() 4521 * @i915: i915 device instance 4522 */ 4523 void i915_perf_fini(struct drm_i915_private *i915) 4524 { 4525 struct i915_perf *perf = &i915->perf; 4526 4527 if (!perf->i915) 4528 return; 4529 4530 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4531 idr_destroy(&perf->metrics_idr); 4532 4533 memset(&perf->ops, 0, sizeof(perf->ops)); 4534 perf->i915 = NULL; 4535 } 4536 4537 /** 4538 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4539 * 4540 * This version number is used by userspace to detect available features. 4541 */ 4542 int i915_perf_ioctl_version(void) 4543 { 4544 /* 4545 * 1: Initial version 4546 * I915_PERF_IOCTL_ENABLE 4547 * I915_PERF_IOCTL_DISABLE 4548 * 4549 * 2: Added runtime modification of OA config. 4550 * I915_PERF_IOCTL_CONFIG 4551 * 4552 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4553 * preemption on a particular context so that performance data is 4554 * accessible from a delta of MI_RPC reports without looking at the 4555 * OA buffer. 4556 * 4557 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4558 * be run for the duration of the performance recording based on 4559 * their SSEU configuration. 4560 * 4561 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4562 * interval for the hrtimer used to check for OA data. 4563 */ 4564 return 5; 4565 } 4566 4567 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4568 #include "selftests/i915_perf.c" 4569 #endif 4570