1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "i915_drv.h" 199 #include "i915_oa_hsw.h" 200 #include "i915_oa_bdw.h" 201 #include "i915_oa_chv.h" 202 #include "i915_oa_sklgt2.h" 203 #include "i915_oa_sklgt3.h" 204 #include "i915_oa_sklgt4.h" 205 #include "i915_oa_bxt.h" 206 #include "i915_oa_kblgt2.h" 207 #include "i915_oa_kblgt3.h" 208 #include "i915_oa_glk.h" 209 #include "i915_oa_cflgt2.h" 210 211 /* HW requires this to be a power of two, between 128k and 16M, though driver 212 * is currently generally designed assuming the largest 16M size is used such 213 * that the overflow cases are unlikely in normal operation. 214 */ 215 #define OA_BUFFER_SIZE SZ_16M 216 217 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 218 219 /** 220 * DOC: OA Tail Pointer Race 221 * 222 * There's a HW race condition between OA unit tail pointer register updates and 223 * writes to memory whereby the tail pointer can sometimes get ahead of what's 224 * been written out to the OA buffer so far (in terms of what's visible to the 225 * CPU). 226 * 227 * Although this can be observed explicitly while copying reports to userspace 228 * by checking for a zeroed report-id field in tail reports, we want to account 229 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 230 * read() attempts. 231 * 232 * In effect we define a tail pointer for reading that lags the real tail 233 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 234 * time for the corresponding reports to become visible to the CPU. 235 * 236 * To manage this we actually track two tail pointers: 237 * 1) An 'aging' tail with an associated timestamp that is tracked until we 238 * can trust the corresponding data is visible to the CPU; at which point 239 * it is considered 'aged'. 240 * 2) An 'aged' tail that can be used for read()ing. 241 * 242 * The two separate pointers let us decouple read()s from tail pointer aging. 243 * 244 * The tail pointers are checked and updated at a limited rate within a hrtimer 245 * callback (the same callback that is used for delivering POLLIN events) 246 * 247 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 248 * indicates that an updated tail pointer is needed. 249 * 250 * Most of the implementation details for this workaround are in 251 * oa_buffer_check_unlocked() and _append_oa_reports() 252 * 253 * Note for posterity: previously the driver used to define an effective tail 254 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 255 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 256 * This was flawed considering that the OA unit may also automatically generate 257 * non-periodic reports (such as on context switch) or the OA unit may be 258 * enabled without any periodic sampling. 259 */ 260 #define OA_TAIL_MARGIN_NSEC 100000ULL 261 #define INVALID_TAIL_PTR 0xffffffff 262 263 /* frequency for checking whether the OA unit has written new reports to the 264 * circular OA buffer... 265 */ 266 #define POLL_FREQUENCY 200 267 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 268 269 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 270 static int zero; 271 static int one = 1; 272 static u32 i915_perf_stream_paranoid = true; 273 274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 275 * of the 64bit timestamp bits to trigger reports from) but there's currently 276 * no known use case for sampling as infrequently as once per 47 thousand years. 277 * 278 * Since the timestamps included in OA reports are only 32bits it seems 279 * reasonable to limit the OA exponent where it's still possible to account for 280 * overflow in OA report timestamps. 281 */ 282 #define OA_EXPONENT_MAX 31 283 284 #define INVALID_CTX_ID 0xffffffff 285 286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 287 #define OAREPORT_REASON_MASK 0x3f 288 #define OAREPORT_REASON_SHIFT 19 289 #define OAREPORT_REASON_TIMER (1<<0) 290 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 291 #define OAREPORT_REASON_CLK_RATIO (1<<5) 292 293 294 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 295 * 296 * The highest sampling frequency we can theoretically program the OA unit 297 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 298 * 299 * Initialized just before we register the sysctl parameter. 300 */ 301 static int oa_sample_rate_hard_limit; 302 303 /* Theoretically we can program the OA unit to sample every 160ns but don't 304 * allow that by default unless root... 305 * 306 * The default threshold of 100000Hz is based on perf's similar 307 * kernel.perf_event_max_sample_rate sysctl parameter. 308 */ 309 static u32 i915_oa_max_sample_rate = 100000; 310 311 /* XXX: beware if future OA HW adds new report formats that the current 312 * code assumes all reports have a power-of-two size and ~(size - 1) can 313 * be used as a mask to align the OA tail pointer. 314 */ 315 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 316 [I915_OA_FORMAT_A13] = { 0, 64 }, 317 [I915_OA_FORMAT_A29] = { 1, 128 }, 318 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 319 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 320 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 321 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 322 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 323 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 324 }; 325 326 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A12] = { 0, 64 }, 328 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 331 }; 332 333 #define SAMPLE_OA_REPORT (1<<0) 334 335 /** 336 * struct perf_open_properties - for validated properties given to open a stream 337 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 338 * @single_context: Whether a single or all gpu contexts should be monitored 339 * @ctx_handle: A gem ctx handle for use with @single_context 340 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 341 * @oa_format: An OA unit HW report format 342 * @oa_periodic: Whether to enable periodic OA unit sampling 343 * @oa_period_exponent: The OA unit sampling period is derived from this 344 * 345 * As read_properties_unlocked() enumerates and validates the properties given 346 * to open a stream of metrics the configuration is built up in the structure 347 * which starts out zero initialized. 348 */ 349 struct perf_open_properties { 350 u32 sample_flags; 351 352 u64 single_context:1; 353 u64 ctx_handle; 354 355 /* OA sampling state */ 356 int metrics_set; 357 int oa_format; 358 bool oa_periodic; 359 int oa_period_exponent; 360 }; 361 362 static void free_oa_config(struct drm_i915_private *dev_priv, 363 struct i915_oa_config *oa_config) 364 { 365 if (!PTR_ERR(oa_config->flex_regs)) 366 kfree(oa_config->flex_regs); 367 if (!PTR_ERR(oa_config->b_counter_regs)) 368 kfree(oa_config->b_counter_regs); 369 if (!PTR_ERR(oa_config->mux_regs)) 370 kfree(oa_config->mux_regs); 371 kfree(oa_config); 372 } 373 374 static void put_oa_config(struct drm_i915_private *dev_priv, 375 struct i915_oa_config *oa_config) 376 { 377 if (!atomic_dec_and_test(&oa_config->ref_count)) 378 return; 379 380 free_oa_config(dev_priv, oa_config); 381 } 382 383 static int get_oa_config(struct drm_i915_private *dev_priv, 384 int metrics_set, 385 struct i915_oa_config **out_config) 386 { 387 int ret; 388 389 if (metrics_set == 1) { 390 *out_config = &dev_priv->perf.oa.test_config; 391 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 392 return 0; 393 } 394 395 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 396 if (ret) 397 return ret; 398 399 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 400 if (!*out_config) 401 ret = -EINVAL; 402 else 403 atomic_inc(&(*out_config)->ref_count); 404 405 mutex_unlock(&dev_priv->perf.metrics_lock); 406 407 return ret; 408 } 409 410 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 411 { 412 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 413 } 414 415 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 416 { 417 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 418 419 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 420 } 421 422 /** 423 * oa_buffer_check_unlocked - check for data and update tail ptr state 424 * @dev_priv: i915 device instance 425 * 426 * This is either called via fops (for blocking reads in user ctx) or the poll 427 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 428 * if there is data available for userspace to read. 429 * 430 * This function is central to providing a workaround for the OA unit tail 431 * pointer having a race with respect to what data is visible to the CPU. 432 * It is responsible for reading tail pointers from the hardware and giving 433 * the pointers time to 'age' before they are made available for reading. 434 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 435 * 436 * Besides returning true when there is data available to read() this function 437 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 438 * and .aged_tail_idx state used for reading. 439 * 440 * Note: It's safe to read OA config state here unlocked, assuming that this is 441 * only called while the stream is enabled, while the global OA configuration 442 * can't be modified. 443 * 444 * Returns: %true if the OA buffer contains data, else %false 445 */ 446 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 447 { 448 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 449 unsigned long flags; 450 unsigned int aged_idx; 451 u32 head, hw_tail, aged_tail, aging_tail; 452 u64 now; 453 454 /* We have to consider the (unlikely) possibility that read() errors 455 * could result in an OA buffer reset which might reset the head, 456 * tails[] and aged_tail state. 457 */ 458 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 459 460 /* NB: The head we observe here might effectively be a little out of 461 * date (between head and tails[aged_idx].offset if there is currently 462 * a read() in progress. 463 */ 464 head = dev_priv->perf.oa.oa_buffer.head; 465 466 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 467 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 468 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 469 470 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 471 472 /* The tail pointer increases in 64 byte increments, 473 * not in report_size steps... 474 */ 475 hw_tail &= ~(report_size - 1); 476 477 now = ktime_get_mono_fast_ns(); 478 479 /* Update the aged tail 480 * 481 * Flip the tail pointer available for read()s once the aging tail is 482 * old enough to trust that the corresponding data will be visible to 483 * the CPU... 484 * 485 * Do this before updating the aging pointer in case we may be able to 486 * immediately start aging a new pointer too (if new data has become 487 * available) without needing to wait for a later hrtimer callback. 488 */ 489 if (aging_tail != INVALID_TAIL_PTR && 490 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 491 OA_TAIL_MARGIN_NSEC)) { 492 493 aged_idx ^= 1; 494 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 495 496 aged_tail = aging_tail; 497 498 /* Mark that we need a new pointer to start aging... */ 499 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 500 aging_tail = INVALID_TAIL_PTR; 501 } 502 503 /* Update the aging tail 504 * 505 * We throttle aging tail updates until we have a new tail that 506 * represents >= one report more data than is already available for 507 * reading. This ensures there will be enough data for a successful 508 * read once this new pointer has aged and ensures we will give the new 509 * pointer time to age. 510 */ 511 if (aging_tail == INVALID_TAIL_PTR && 512 (aged_tail == INVALID_TAIL_PTR || 513 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 514 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 515 u32 gtt_offset = i915_ggtt_offset(vma); 516 517 /* Be paranoid and do a bounds check on the pointer read back 518 * from hardware, just in case some spurious hardware condition 519 * could put the tail out of bounds... 520 */ 521 if (hw_tail >= gtt_offset && 522 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 523 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 524 aging_tail = hw_tail; 525 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 526 } else { 527 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 528 hw_tail); 529 } 530 } 531 532 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 533 534 return aged_tail == INVALID_TAIL_PTR ? 535 false : OA_TAKEN(aged_tail, head) >= report_size; 536 } 537 538 /** 539 * append_oa_status - Appends a status record to a userspace read() buffer. 540 * @stream: An i915-perf stream opened for OA metrics 541 * @buf: destination buffer given by userspace 542 * @count: the number of bytes userspace wants to read 543 * @offset: (inout): the current position for writing into @buf 544 * @type: The kind of status to report to userspace 545 * 546 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 547 * into the userspace read() buffer. 548 * 549 * The @buf @offset will only be updated on success. 550 * 551 * Returns: 0 on success, negative error code on failure. 552 */ 553 static int append_oa_status(struct i915_perf_stream *stream, 554 char __user *buf, 555 size_t count, 556 size_t *offset, 557 enum drm_i915_perf_record_type type) 558 { 559 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 560 561 if ((count - *offset) < header.size) 562 return -ENOSPC; 563 564 if (copy_to_user(buf + *offset, &header, sizeof(header))) 565 return -EFAULT; 566 567 (*offset) += header.size; 568 569 return 0; 570 } 571 572 /** 573 * append_oa_sample - Copies single OA report into userspace read() buffer. 574 * @stream: An i915-perf stream opened for OA metrics 575 * @buf: destination buffer given by userspace 576 * @count: the number of bytes userspace wants to read 577 * @offset: (inout): the current position for writing into @buf 578 * @report: A single OA report to (optionally) include as part of the sample 579 * 580 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 581 * properties when opening a stream, tracked as `stream->sample_flags`. This 582 * function copies the requested components of a single sample to the given 583 * read() @buf. 584 * 585 * The @buf @offset will only be updated on success. 586 * 587 * Returns: 0 on success, negative error code on failure. 588 */ 589 static int append_oa_sample(struct i915_perf_stream *stream, 590 char __user *buf, 591 size_t count, 592 size_t *offset, 593 const u8 *report) 594 { 595 struct drm_i915_private *dev_priv = stream->dev_priv; 596 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 597 struct drm_i915_perf_record_header header; 598 u32 sample_flags = stream->sample_flags; 599 600 header.type = DRM_I915_PERF_RECORD_SAMPLE; 601 header.pad = 0; 602 header.size = stream->sample_size; 603 604 if ((count - *offset) < header.size) 605 return -ENOSPC; 606 607 buf += *offset; 608 if (copy_to_user(buf, &header, sizeof(header))) 609 return -EFAULT; 610 buf += sizeof(header); 611 612 if (sample_flags & SAMPLE_OA_REPORT) { 613 if (copy_to_user(buf, report, report_size)) 614 return -EFAULT; 615 } 616 617 (*offset) += header.size; 618 619 return 0; 620 } 621 622 /** 623 * Copies all buffered OA reports into userspace read() buffer. 624 * @stream: An i915-perf stream opened for OA metrics 625 * @buf: destination buffer given by userspace 626 * @count: the number of bytes userspace wants to read 627 * @offset: (inout): the current position for writing into @buf 628 * 629 * Notably any error condition resulting in a short read (-%ENOSPC or 630 * -%EFAULT) will be returned even though one or more records may 631 * have been successfully copied. In this case it's up to the caller 632 * to decide if the error should be squashed before returning to 633 * userspace. 634 * 635 * Note: reports are consumed from the head, and appended to the 636 * tail, so the tail chases the head?... If you think that's mad 637 * and back-to-front you're not alone, but this follows the 638 * Gen PRM naming convention. 639 * 640 * Returns: 0 on success, negative error code on failure. 641 */ 642 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 643 char __user *buf, 644 size_t count, 645 size_t *offset) 646 { 647 struct drm_i915_private *dev_priv = stream->dev_priv; 648 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 649 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 650 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 651 u32 mask = (OA_BUFFER_SIZE - 1); 652 size_t start_offset = *offset; 653 unsigned long flags; 654 unsigned int aged_tail_idx; 655 u32 head, tail; 656 u32 taken; 657 int ret = 0; 658 659 if (WARN_ON(!stream->enabled)) 660 return -EIO; 661 662 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 663 664 head = dev_priv->perf.oa.oa_buffer.head; 665 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 666 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 667 668 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 669 670 /* 671 * An invalid tail pointer here means we're still waiting for the poll 672 * hrtimer callback to give us a pointer 673 */ 674 if (tail == INVALID_TAIL_PTR) 675 return -EAGAIN; 676 677 /* 678 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 679 * while indexing relative to oa_buf_base. 680 */ 681 head -= gtt_offset; 682 tail -= gtt_offset; 683 684 /* 685 * An out of bounds or misaligned head or tail pointer implies a driver 686 * bug since we validate + align the tail pointers we read from the 687 * hardware and we are in full control of the head pointer which should 688 * only be incremented by multiples of the report size (notably also 689 * all a power of two). 690 */ 691 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 692 tail > OA_BUFFER_SIZE || tail % report_size, 693 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 694 head, tail)) 695 return -EIO; 696 697 698 for (/* none */; 699 (taken = OA_TAKEN(tail, head)); 700 head = (head + report_size) & mask) { 701 u8 *report = oa_buf_base + head; 702 u32 *report32 = (void *)report; 703 u32 ctx_id; 704 u32 reason; 705 706 /* 707 * All the report sizes factor neatly into the buffer 708 * size so we never expect to see a report split 709 * between the beginning and end of the buffer. 710 * 711 * Given the initial alignment check a misalignment 712 * here would imply a driver bug that would result 713 * in an overrun. 714 */ 715 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 716 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 717 break; 718 } 719 720 /* 721 * The reason field includes flags identifying what 722 * triggered this specific report (mostly timer 723 * triggered or e.g. due to a context switch). 724 * 725 * This field is never expected to be zero so we can 726 * check that the report isn't invalid before copying 727 * it to userspace... 728 */ 729 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 730 OAREPORT_REASON_MASK); 731 if (reason == 0) { 732 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 733 DRM_NOTE("Skipping spurious, invalid OA report\n"); 734 continue; 735 } 736 737 /* 738 * XXX: Just keep the lower 21 bits for now since I'm not 739 * entirely sure if the HW touches any of the higher bits in 740 * this field 741 */ 742 ctx_id = report32[2] & 0x1fffff; 743 744 /* 745 * Squash whatever is in the CTX_ID field if it's marked as 746 * invalid to be sure we avoid false-positive, single-context 747 * filtering below... 748 * 749 * Note: that we don't clear the valid_ctx_bit so userspace can 750 * understand that the ID has been squashed by the kernel. 751 */ 752 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 753 ctx_id = report32[2] = INVALID_CTX_ID; 754 755 /* 756 * NB: For Gen 8 the OA unit no longer supports clock gating 757 * off for a specific context and the kernel can't securely 758 * stop the counters from updating as system-wide / global 759 * values. 760 * 761 * Automatic reports now include a context ID so reports can be 762 * filtered on the cpu but it's not worth trying to 763 * automatically subtract/hide counter progress for other 764 * contexts while filtering since we can't stop userspace 765 * issuing MI_REPORT_PERF_COUNT commands which would still 766 * provide a side-band view of the real values. 767 * 768 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 769 * to normalize counters for a single filtered context then it 770 * needs be forwarded bookend context-switch reports so that it 771 * can track switches in between MI_REPORT_PERF_COUNT commands 772 * and can itself subtract/ignore the progress of counters 773 * associated with other contexts. Note that the hardware 774 * automatically triggers reports when switching to a new 775 * context which are tagged with the ID of the newly active 776 * context. To avoid the complexity (and likely fragility) of 777 * reading ahead while parsing reports to try and minimize 778 * forwarding redundant context switch reports (i.e. between 779 * other, unrelated contexts) we simply elect to forward them 780 * all. 781 * 782 * We don't rely solely on the reason field to identify context 783 * switches since it's not-uncommon for periodic samples to 784 * identify a switch before any 'context switch' report. 785 */ 786 if (!dev_priv->perf.oa.exclusive_stream->ctx || 787 dev_priv->perf.oa.specific_ctx_id == ctx_id || 788 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 789 dev_priv->perf.oa.specific_ctx_id) || 790 reason & OAREPORT_REASON_CTX_SWITCH) { 791 792 /* 793 * While filtering for a single context we avoid 794 * leaking the IDs of other contexts. 795 */ 796 if (dev_priv->perf.oa.exclusive_stream->ctx && 797 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 798 report32[2] = INVALID_CTX_ID; 799 } 800 801 ret = append_oa_sample(stream, buf, count, offset, 802 report); 803 if (ret) 804 break; 805 806 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 807 } 808 809 /* 810 * The above reason field sanity check is based on 811 * the assumption that the OA buffer is initially 812 * zeroed and we reset the field after copying so the 813 * check is still meaningful once old reports start 814 * being overwritten. 815 */ 816 report32[0] = 0; 817 } 818 819 if (start_offset != *offset) { 820 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 821 822 /* 823 * We removed the gtt_offset for the copy loop above, indexing 824 * relative to oa_buf_base so put back here... 825 */ 826 head += gtt_offset; 827 828 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 829 dev_priv->perf.oa.oa_buffer.head = head; 830 831 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 832 } 833 834 return ret; 835 } 836 837 /** 838 * gen8_oa_read - copy status records then buffered OA reports 839 * @stream: An i915-perf stream opened for OA metrics 840 * @buf: destination buffer given by userspace 841 * @count: the number of bytes userspace wants to read 842 * @offset: (inout): the current position for writing into @buf 843 * 844 * Checks OA unit status registers and if necessary appends corresponding 845 * status records for userspace (such as for a buffer full condition) and then 846 * initiate appending any buffered OA reports. 847 * 848 * Updates @offset according to the number of bytes successfully copied into 849 * the userspace buffer. 850 * 851 * NB: some data may be successfully copied to the userspace buffer 852 * even if an error is returned, and this is reflected in the 853 * updated @offset. 854 * 855 * Returns: zero on success or a negative error code 856 */ 857 static int gen8_oa_read(struct i915_perf_stream *stream, 858 char __user *buf, 859 size_t count, 860 size_t *offset) 861 { 862 struct drm_i915_private *dev_priv = stream->dev_priv; 863 u32 oastatus; 864 int ret; 865 866 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 867 return -EIO; 868 869 oastatus = I915_READ(GEN8_OASTATUS); 870 871 /* 872 * We treat OABUFFER_OVERFLOW as a significant error: 873 * 874 * Although theoretically we could handle this more gracefully 875 * sometimes, some Gens don't correctly suppress certain 876 * automatically triggered reports in this condition and so we 877 * have to assume that old reports are now being trampled 878 * over. 879 * 880 * Considering how we don't currently give userspace control 881 * over the OA buffer size and always configure a large 16MB 882 * buffer, then a buffer overflow does anyway likely indicate 883 * that something has gone quite badly wrong. 884 */ 885 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 886 ret = append_oa_status(stream, buf, count, offset, 887 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 888 if (ret) 889 return ret; 890 891 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 892 dev_priv->perf.oa.period_exponent); 893 894 dev_priv->perf.oa.ops.oa_disable(dev_priv); 895 dev_priv->perf.oa.ops.oa_enable(dev_priv); 896 897 /* 898 * Note: .oa_enable() is expected to re-init the oabuffer and 899 * reset GEN8_OASTATUS for us 900 */ 901 oastatus = I915_READ(GEN8_OASTATUS); 902 } 903 904 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 905 ret = append_oa_status(stream, buf, count, offset, 906 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 907 if (ret) 908 return ret; 909 I915_WRITE(GEN8_OASTATUS, 910 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 911 } 912 913 return gen8_append_oa_reports(stream, buf, count, offset); 914 } 915 916 /** 917 * Copies all buffered OA reports into userspace read() buffer. 918 * @stream: An i915-perf stream opened for OA metrics 919 * @buf: destination buffer given by userspace 920 * @count: the number of bytes userspace wants to read 921 * @offset: (inout): the current position for writing into @buf 922 * 923 * Notably any error condition resulting in a short read (-%ENOSPC or 924 * -%EFAULT) will be returned even though one or more records may 925 * have been successfully copied. In this case it's up to the caller 926 * to decide if the error should be squashed before returning to 927 * userspace. 928 * 929 * Note: reports are consumed from the head, and appended to the 930 * tail, so the tail chases the head?... If you think that's mad 931 * and back-to-front you're not alone, but this follows the 932 * Gen PRM naming convention. 933 * 934 * Returns: 0 on success, negative error code on failure. 935 */ 936 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 937 char __user *buf, 938 size_t count, 939 size_t *offset) 940 { 941 struct drm_i915_private *dev_priv = stream->dev_priv; 942 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 943 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 944 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 945 u32 mask = (OA_BUFFER_SIZE - 1); 946 size_t start_offset = *offset; 947 unsigned long flags; 948 unsigned int aged_tail_idx; 949 u32 head, tail; 950 u32 taken; 951 int ret = 0; 952 953 if (WARN_ON(!stream->enabled)) 954 return -EIO; 955 956 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 957 958 head = dev_priv->perf.oa.oa_buffer.head; 959 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 960 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 961 962 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 963 964 /* An invalid tail pointer here means we're still waiting for the poll 965 * hrtimer callback to give us a pointer 966 */ 967 if (tail == INVALID_TAIL_PTR) 968 return -EAGAIN; 969 970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 971 * while indexing relative to oa_buf_base. 972 */ 973 head -= gtt_offset; 974 tail -= gtt_offset; 975 976 /* An out of bounds or misaligned head or tail pointer implies a driver 977 * bug since we validate + align the tail pointers we read from the 978 * hardware and we are in full control of the head pointer which should 979 * only be incremented by multiples of the report size (notably also 980 * all a power of two). 981 */ 982 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 983 tail > OA_BUFFER_SIZE || tail % report_size, 984 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 985 head, tail)) 986 return -EIO; 987 988 989 for (/* none */; 990 (taken = OA_TAKEN(tail, head)); 991 head = (head + report_size) & mask) { 992 u8 *report = oa_buf_base + head; 993 u32 *report32 = (void *)report; 994 995 /* All the report sizes factor neatly into the buffer 996 * size so we never expect to see a report split 997 * between the beginning and end of the buffer. 998 * 999 * Given the initial alignment check a misalignment 1000 * here would imply a driver bug that would result 1001 * in an overrun. 1002 */ 1003 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1004 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1005 break; 1006 } 1007 1008 /* The report-ID field for periodic samples includes 1009 * some undocumented flags related to what triggered 1010 * the report and is never expected to be zero so we 1011 * can check that the report isn't invalid before 1012 * copying it to userspace... 1013 */ 1014 if (report32[0] == 0) { 1015 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1016 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1017 continue; 1018 } 1019 1020 ret = append_oa_sample(stream, buf, count, offset, report); 1021 if (ret) 1022 break; 1023 1024 /* The above report-id field sanity check is based on 1025 * the assumption that the OA buffer is initially 1026 * zeroed and we reset the field after copying so the 1027 * check is still meaningful once old reports start 1028 * being overwritten. 1029 */ 1030 report32[0] = 0; 1031 } 1032 1033 if (start_offset != *offset) { 1034 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1035 1036 /* We removed the gtt_offset for the copy loop above, indexing 1037 * relative to oa_buf_base so put back here... 1038 */ 1039 head += gtt_offset; 1040 1041 I915_WRITE(GEN7_OASTATUS2, 1042 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1043 OA_MEM_SELECT_GGTT)); 1044 dev_priv->perf.oa.oa_buffer.head = head; 1045 1046 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1047 } 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * gen7_oa_read - copy status records then buffered OA reports 1054 * @stream: An i915-perf stream opened for OA metrics 1055 * @buf: destination buffer given by userspace 1056 * @count: the number of bytes userspace wants to read 1057 * @offset: (inout): the current position for writing into @buf 1058 * 1059 * Checks Gen 7 specific OA unit status registers and if necessary appends 1060 * corresponding status records for userspace (such as for a buffer full 1061 * condition) and then initiate appending any buffered OA reports. 1062 * 1063 * Updates @offset according to the number of bytes successfully copied into 1064 * the userspace buffer. 1065 * 1066 * Returns: zero on success or a negative error code 1067 */ 1068 static int gen7_oa_read(struct i915_perf_stream *stream, 1069 char __user *buf, 1070 size_t count, 1071 size_t *offset) 1072 { 1073 struct drm_i915_private *dev_priv = stream->dev_priv; 1074 u32 oastatus1; 1075 int ret; 1076 1077 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1078 return -EIO; 1079 1080 oastatus1 = I915_READ(GEN7_OASTATUS1); 1081 1082 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1083 * bits while the OA unit is enabled (while the tail pointer 1084 * may be updated asynchronously) so we ignore status bits 1085 * that have already been reported to userspace. 1086 */ 1087 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1088 1089 /* We treat OABUFFER_OVERFLOW as a significant error: 1090 * 1091 * - The status can be interpreted to mean that the buffer is 1092 * currently full (with a higher precedence than OA_TAKEN() 1093 * which will start to report a near-empty buffer after an 1094 * overflow) but it's awkward that we can't clear the status 1095 * on Haswell, so without a reset we won't be able to catch 1096 * the state again. 1097 * 1098 * - Since it also implies the HW has started overwriting old 1099 * reports it may also affect our sanity checks for invalid 1100 * reports when copying to userspace that assume new reports 1101 * are being written to cleared memory. 1102 * 1103 * - In the future we may want to introduce a flight recorder 1104 * mode where the driver will automatically maintain a safe 1105 * guard band between head/tail, avoiding this overflow 1106 * condition, but we avoid the added driver complexity for 1107 * now. 1108 */ 1109 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1110 ret = append_oa_status(stream, buf, count, offset, 1111 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1112 if (ret) 1113 return ret; 1114 1115 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1116 dev_priv->perf.oa.period_exponent); 1117 1118 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1119 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1120 1121 oastatus1 = I915_READ(GEN7_OASTATUS1); 1122 } 1123 1124 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1125 ret = append_oa_status(stream, buf, count, offset, 1126 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1127 if (ret) 1128 return ret; 1129 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1130 GEN7_OASTATUS1_REPORT_LOST; 1131 } 1132 1133 return gen7_append_oa_reports(stream, buf, count, offset); 1134 } 1135 1136 /** 1137 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1138 * @stream: An i915-perf stream opened for OA metrics 1139 * 1140 * Called when userspace tries to read() from a blocking stream FD opened 1141 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1142 * OA buffer and wakes us. 1143 * 1144 * Note: it's acceptable to have this return with some false positives 1145 * since any subsequent read handling will return -EAGAIN if there isn't 1146 * really data ready for userspace yet. 1147 * 1148 * Returns: zero on success or a negative error code 1149 */ 1150 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1151 { 1152 struct drm_i915_private *dev_priv = stream->dev_priv; 1153 1154 /* We would wait indefinitely if periodic sampling is not enabled */ 1155 if (!dev_priv->perf.oa.periodic) 1156 return -EIO; 1157 1158 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1159 oa_buffer_check_unlocked(dev_priv)); 1160 } 1161 1162 /** 1163 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1164 * @stream: An i915-perf stream opened for OA metrics 1165 * @file: An i915 perf stream file 1166 * @wait: poll() state table 1167 * 1168 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1169 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1170 * when it sees data ready to read in the circular OA buffer. 1171 */ 1172 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1173 struct file *file, 1174 poll_table *wait) 1175 { 1176 struct drm_i915_private *dev_priv = stream->dev_priv; 1177 1178 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1179 } 1180 1181 /** 1182 * i915_oa_read - just calls through to &i915_oa_ops->read 1183 * @stream: An i915-perf stream opened for OA metrics 1184 * @buf: destination buffer given by userspace 1185 * @count: the number of bytes userspace wants to read 1186 * @offset: (inout): the current position for writing into @buf 1187 * 1188 * Updates @offset according to the number of bytes successfully copied into 1189 * the userspace buffer. 1190 * 1191 * Returns: zero on success or a negative error code 1192 */ 1193 static int i915_oa_read(struct i915_perf_stream *stream, 1194 char __user *buf, 1195 size_t count, 1196 size_t *offset) 1197 { 1198 struct drm_i915_private *dev_priv = stream->dev_priv; 1199 1200 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1201 } 1202 1203 /** 1204 * oa_get_render_ctx_id - determine and hold ctx hw id 1205 * @stream: An i915-perf stream opened for OA metrics 1206 * 1207 * Determine the render context hw id, and ensure it remains fixed for the 1208 * lifetime of the stream. This ensures that we don't have to worry about 1209 * updating the context ID in OACONTROL on the fly. 1210 * 1211 * Returns: zero on success or a negative error code 1212 */ 1213 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1214 { 1215 struct drm_i915_private *dev_priv = stream->dev_priv; 1216 1217 if (i915_modparams.enable_execlists) 1218 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id; 1219 else { 1220 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1221 struct intel_ring *ring; 1222 int ret; 1223 1224 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1225 if (ret) 1226 return ret; 1227 1228 /* 1229 * As the ID is the gtt offset of the context's vma we 1230 * pin the vma to ensure the ID remains fixed. 1231 * 1232 * NB: implied RCS engine... 1233 */ 1234 ring = engine->context_pin(engine, stream->ctx); 1235 mutex_unlock(&dev_priv->drm.struct_mutex); 1236 if (IS_ERR(ring)) 1237 return PTR_ERR(ring); 1238 1239 1240 /* 1241 * Explicitly track the ID (instead of calling 1242 * i915_ggtt_offset() on the fly) considering the difference 1243 * with gen8+ and execlists 1244 */ 1245 dev_priv->perf.oa.specific_ctx_id = 1246 i915_ggtt_offset(stream->ctx->engine[engine->id].state); 1247 } 1248 1249 return 0; 1250 } 1251 1252 /** 1253 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1254 * @stream: An i915-perf stream opened for OA metrics 1255 * 1256 * In case anything needed doing to ensure the context HW ID would remain valid 1257 * for the lifetime of the stream, then that can be undone here. 1258 */ 1259 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1260 { 1261 struct drm_i915_private *dev_priv = stream->dev_priv; 1262 1263 if (i915_modparams.enable_execlists) { 1264 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1265 } else { 1266 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1267 1268 mutex_lock(&dev_priv->drm.struct_mutex); 1269 1270 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1271 engine->context_unpin(engine, stream->ctx); 1272 1273 mutex_unlock(&dev_priv->drm.struct_mutex); 1274 } 1275 } 1276 1277 static void 1278 free_oa_buffer(struct drm_i915_private *i915) 1279 { 1280 mutex_lock(&i915->drm.struct_mutex); 1281 1282 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj); 1283 i915_vma_unpin(i915->perf.oa.oa_buffer.vma); 1284 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj); 1285 1286 i915->perf.oa.oa_buffer.vma = NULL; 1287 i915->perf.oa.oa_buffer.vaddr = NULL; 1288 1289 mutex_unlock(&i915->drm.struct_mutex); 1290 } 1291 1292 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1293 { 1294 struct drm_i915_private *dev_priv = stream->dev_priv; 1295 1296 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1297 1298 /* 1299 * Unset exclusive_stream first, it will be checked while disabling 1300 * the metric set on gen8+. 1301 */ 1302 mutex_lock(&dev_priv->drm.struct_mutex); 1303 dev_priv->perf.oa.exclusive_stream = NULL; 1304 mutex_unlock(&dev_priv->drm.struct_mutex); 1305 1306 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1307 1308 free_oa_buffer(dev_priv); 1309 1310 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1311 intel_runtime_pm_put(dev_priv); 1312 1313 if (stream->ctx) 1314 oa_put_render_ctx_id(stream); 1315 1316 put_oa_config(dev_priv, stream->oa_config); 1317 1318 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1319 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1320 dev_priv->perf.oa.spurious_report_rs.missed); 1321 } 1322 } 1323 1324 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1325 { 1326 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1327 unsigned long flags; 1328 1329 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1330 1331 /* Pre-DevBDW: OABUFFER must be set with counters off, 1332 * before OASTATUS1, but after OASTATUS2 1333 */ 1334 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */ 1335 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1336 1337 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1338 1339 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1340 1341 /* Mark that we need updated tail pointers to read from... */ 1342 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1343 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1344 1345 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1346 1347 /* On Haswell we have to track which OASTATUS1 flags we've 1348 * already seen since they can't be cleared while periodic 1349 * sampling is enabled. 1350 */ 1351 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1352 1353 /* NB: although the OA buffer will initially be allocated 1354 * zeroed via shmfs (and so this memset is redundant when 1355 * first allocating), we may re-init the OA buffer, either 1356 * when re-enabling a stream or in error/reset paths. 1357 * 1358 * The reason we clear the buffer for each re-init is for the 1359 * sanity check in gen7_append_oa_reports() that looks at the 1360 * report-id field to make sure it's non-zero which relies on 1361 * the assumption that new reports are being written to zeroed 1362 * memory... 1363 */ 1364 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1365 1366 /* Maybe make ->pollin per-stream state if we support multiple 1367 * concurrent streams in the future. 1368 */ 1369 dev_priv->perf.oa.pollin = false; 1370 } 1371 1372 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1373 { 1374 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1375 unsigned long flags; 1376 1377 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1378 1379 I915_WRITE(GEN8_OASTATUS, 0); 1380 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1381 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1382 1383 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1384 1385 /* 1386 * PRM says: 1387 * 1388 * "This MMIO must be set before the OATAILPTR 1389 * register and after the OAHEADPTR register. This is 1390 * to enable proper functionality of the overflow 1391 * bit." 1392 */ 1393 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1394 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT); 1395 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1396 1397 /* Mark that we need updated tail pointers to read from... */ 1398 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1399 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1400 1401 /* 1402 * Reset state used to recognise context switches, affecting which 1403 * reports we will forward to userspace while filtering for a single 1404 * context. 1405 */ 1406 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1407 1408 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1409 1410 /* 1411 * NB: although the OA buffer will initially be allocated 1412 * zeroed via shmfs (and so this memset is redundant when 1413 * first allocating), we may re-init the OA buffer, either 1414 * when re-enabling a stream or in error/reset paths. 1415 * 1416 * The reason we clear the buffer for each re-init is for the 1417 * sanity check in gen8_append_oa_reports() that looks at the 1418 * reason field to make sure it's non-zero which relies on 1419 * the assumption that new reports are being written to zeroed 1420 * memory... 1421 */ 1422 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1423 1424 /* 1425 * Maybe make ->pollin per-stream state if we support multiple 1426 * concurrent streams in the future. 1427 */ 1428 dev_priv->perf.oa.pollin = false; 1429 } 1430 1431 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1432 { 1433 struct drm_i915_gem_object *bo; 1434 struct i915_vma *vma; 1435 int ret; 1436 1437 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1438 return -ENODEV; 1439 1440 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1441 if (ret) 1442 return ret; 1443 1444 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1445 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1446 1447 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE); 1448 if (IS_ERR(bo)) { 1449 DRM_ERROR("Failed to allocate OA buffer\n"); 1450 ret = PTR_ERR(bo); 1451 goto unlock; 1452 } 1453 1454 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC); 1455 if (ret) 1456 goto err_unref; 1457 1458 /* PreHSW required 512K alignment, HSW requires 16M */ 1459 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1460 if (IS_ERR(vma)) { 1461 ret = PTR_ERR(vma); 1462 goto err_unref; 1463 } 1464 dev_priv->perf.oa.oa_buffer.vma = vma; 1465 1466 dev_priv->perf.oa.oa_buffer.vaddr = 1467 i915_gem_object_pin_map(bo, I915_MAP_WB); 1468 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1469 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1470 goto err_unpin; 1471 } 1472 1473 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv); 1474 1475 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1476 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1477 dev_priv->perf.oa.oa_buffer.vaddr); 1478 1479 goto unlock; 1480 1481 err_unpin: 1482 __i915_vma_unpin(vma); 1483 1484 err_unref: 1485 i915_gem_object_put(bo); 1486 1487 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1488 dev_priv->perf.oa.oa_buffer.vma = NULL; 1489 1490 unlock: 1491 mutex_unlock(&dev_priv->drm.struct_mutex); 1492 return ret; 1493 } 1494 1495 static void config_oa_regs(struct drm_i915_private *dev_priv, 1496 const struct i915_oa_reg *regs, 1497 u32 n_regs) 1498 { 1499 u32 i; 1500 1501 for (i = 0; i < n_regs; i++) { 1502 const struct i915_oa_reg *reg = regs + i; 1503 1504 I915_WRITE(reg->addr, reg->value); 1505 } 1506 } 1507 1508 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv, 1509 const struct i915_oa_config *oa_config) 1510 { 1511 /* PRM: 1512 * 1513 * OA unit is using “crclk” for its functionality. When trunk 1514 * level clock gating takes place, OA clock would be gated, 1515 * unable to count the events from non-render clock domain. 1516 * Render clock gating must be disabled when OA is enabled to 1517 * count the events from non-render domain. Unit level clock 1518 * gating for RCS should also be disabled. 1519 */ 1520 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1521 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1522 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1523 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1524 1525 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1526 1527 /* It apparently takes a fairly long time for a new MUX 1528 * configuration to be be applied after these register writes. 1529 * This delay duration was derived empirically based on the 1530 * render_basic config but hopefully it covers the maximum 1531 * configuration latency. 1532 * 1533 * As a fallback, the checks in _append_oa_reports() to skip 1534 * invalid OA reports do also seem to work to discard reports 1535 * generated before this config has completed - albeit not 1536 * silently. 1537 * 1538 * Unfortunately this is essentially a magic number, since we 1539 * don't currently know of a reliable mechanism for predicting 1540 * how long the MUX config will take to apply and besides 1541 * seeing invalid reports we don't know of a reliable way to 1542 * explicitly check that the MUX config has landed. 1543 * 1544 * It's even possible we've miss characterized the underlying 1545 * problem - it just seems like the simplest explanation why 1546 * a delay at this location would mitigate any invalid reports. 1547 */ 1548 usleep_range(15000, 20000); 1549 1550 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1551 oa_config->b_counter_regs_len); 1552 1553 return 0; 1554 } 1555 1556 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1557 { 1558 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1559 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1560 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1561 GEN7_DOP_CLOCK_GATE_ENABLE)); 1562 1563 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1564 ~GT_NOA_ENABLE)); 1565 } 1566 1567 /* 1568 * NB: It must always remain pointer safe to run this even if the OA unit 1569 * has been disabled. 1570 * 1571 * It's fine to put out-of-date values into these per-context registers 1572 * in the case that the OA unit has been disabled. 1573 */ 1574 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx, 1575 u32 *reg_state, 1576 const struct i915_oa_config *oa_config) 1577 { 1578 struct drm_i915_private *dev_priv = ctx->i915; 1579 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 1580 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 1581 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1582 u32 flex_mmio[] = { 1583 i915_mmio_reg_offset(EU_PERF_CNTL0), 1584 i915_mmio_reg_offset(EU_PERF_CNTL1), 1585 i915_mmio_reg_offset(EU_PERF_CNTL2), 1586 i915_mmio_reg_offset(EU_PERF_CNTL3), 1587 i915_mmio_reg_offset(EU_PERF_CNTL4), 1588 i915_mmio_reg_offset(EU_PERF_CNTL5), 1589 i915_mmio_reg_offset(EU_PERF_CNTL6), 1590 }; 1591 int i; 1592 1593 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL); 1594 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent << 1595 GEN8_OA_TIMER_PERIOD_SHIFT) | 1596 (dev_priv->perf.oa.periodic ? 1597 GEN8_OA_TIMER_ENABLE : 0) | 1598 GEN8_OA_COUNTER_RESUME; 1599 1600 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) { 1601 u32 state_offset = ctx_flexeu0 + i * 2; 1602 u32 mmio = flex_mmio[i]; 1603 1604 /* 1605 * This arbitrary default will select the 'EU FPU0 Pipeline 1606 * Active' event. In the future it's anticipated that there 1607 * will be an explicit 'No Event' we can select, but not yet... 1608 */ 1609 u32 value = 0; 1610 1611 if (oa_config) { 1612 u32 j; 1613 1614 for (j = 0; j < oa_config->flex_regs_len; j++) { 1615 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1616 value = oa_config->flex_regs[j].value; 1617 break; 1618 } 1619 } 1620 } 1621 1622 reg_state[state_offset] = mmio; 1623 reg_state[state_offset+1] = value; 1624 } 1625 } 1626 1627 /* 1628 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This 1629 * is only used by the kernel context. 1630 */ 1631 static int gen8_emit_oa_config(struct drm_i915_gem_request *req, 1632 const struct i915_oa_config *oa_config) 1633 { 1634 struct drm_i915_private *dev_priv = req->i915; 1635 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1636 u32 flex_mmio[] = { 1637 i915_mmio_reg_offset(EU_PERF_CNTL0), 1638 i915_mmio_reg_offset(EU_PERF_CNTL1), 1639 i915_mmio_reg_offset(EU_PERF_CNTL2), 1640 i915_mmio_reg_offset(EU_PERF_CNTL3), 1641 i915_mmio_reg_offset(EU_PERF_CNTL4), 1642 i915_mmio_reg_offset(EU_PERF_CNTL5), 1643 i915_mmio_reg_offset(EU_PERF_CNTL6), 1644 }; 1645 u32 *cs; 1646 int i; 1647 1648 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4); 1649 if (IS_ERR(cs)) 1650 return PTR_ERR(cs); 1651 1652 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1); 1653 1654 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL); 1655 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1656 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1657 GEN8_OA_COUNTER_RESUME; 1658 1659 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) { 1660 u32 mmio = flex_mmio[i]; 1661 1662 /* 1663 * This arbitrary default will select the 'EU FPU0 Pipeline 1664 * Active' event. In the future it's anticipated that there 1665 * will be an explicit 'No Event' we can select, but not 1666 * yet... 1667 */ 1668 u32 value = 0; 1669 1670 if (oa_config) { 1671 u32 j; 1672 1673 for (j = 0; j < oa_config->flex_regs_len; j++) { 1674 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1675 value = oa_config->flex_regs[j].value; 1676 break; 1677 } 1678 } 1679 } 1680 1681 *cs++ = mmio; 1682 *cs++ = value; 1683 } 1684 1685 *cs++ = MI_NOOP; 1686 intel_ring_advance(req, cs); 1687 1688 return 0; 1689 } 1690 1691 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv, 1692 const struct i915_oa_config *oa_config) 1693 { 1694 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1695 struct i915_gem_timeline *timeline; 1696 struct drm_i915_gem_request *req; 1697 int ret; 1698 1699 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1700 1701 i915_gem_retire_requests(dev_priv); 1702 1703 req = i915_gem_request_alloc(engine, dev_priv->kernel_context); 1704 if (IS_ERR(req)) 1705 return PTR_ERR(req); 1706 1707 ret = gen8_emit_oa_config(req, oa_config); 1708 if (ret) { 1709 i915_add_request(req); 1710 return ret; 1711 } 1712 1713 /* Queue this switch after all other activity */ 1714 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) { 1715 struct drm_i915_gem_request *prev; 1716 struct intel_timeline *tl; 1717 1718 tl = &timeline->engine[engine->id]; 1719 prev = i915_gem_active_raw(&tl->last_request, 1720 &dev_priv->drm.struct_mutex); 1721 if (prev) 1722 i915_sw_fence_await_sw_fence_gfp(&req->submit, 1723 &prev->submit, 1724 GFP_KERNEL); 1725 } 1726 1727 ret = i915_switch_context(req); 1728 i915_add_request(req); 1729 1730 return ret; 1731 } 1732 1733 /* 1734 * Manages updating the per-context aspects of the OA stream 1735 * configuration across all contexts. 1736 * 1737 * The awkward consideration here is that OACTXCONTROL controls the 1738 * exponent for periodic sampling which is primarily used for system 1739 * wide profiling where we'd like a consistent sampling period even in 1740 * the face of context switches. 1741 * 1742 * Our approach of updating the register state context (as opposed to 1743 * say using a workaround batch buffer) ensures that the hardware 1744 * won't automatically reload an out-of-date timer exponent even 1745 * transiently before a WA BB could be parsed. 1746 * 1747 * This function needs to: 1748 * - Ensure the currently running context's per-context OA state is 1749 * updated 1750 * - Ensure that all existing contexts will have the correct per-context 1751 * OA state if they are scheduled for use. 1752 * - Ensure any new contexts will be initialized with the correct 1753 * per-context OA state. 1754 * 1755 * Note: it's only the RCS/Render context that has any OA state. 1756 */ 1757 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv, 1758 const struct i915_oa_config *oa_config, 1759 bool interruptible) 1760 { 1761 struct i915_gem_context *ctx; 1762 int ret; 1763 unsigned int wait_flags = I915_WAIT_LOCKED; 1764 1765 if (interruptible) { 1766 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1767 if (ret) 1768 return ret; 1769 1770 wait_flags |= I915_WAIT_INTERRUPTIBLE; 1771 } else { 1772 mutex_lock(&dev_priv->drm.struct_mutex); 1773 } 1774 1775 /* Switch away from any user context. */ 1776 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config); 1777 if (ret) 1778 goto out; 1779 1780 /* 1781 * The OA register config is setup through the context image. This image 1782 * might be written to by the GPU on context switch (in particular on 1783 * lite-restore). This means we can't safely update a context's image, 1784 * if this context is scheduled/submitted to run on the GPU. 1785 * 1786 * We could emit the OA register config through the batch buffer but 1787 * this might leave small interval of time where the OA unit is 1788 * configured at an invalid sampling period. 1789 * 1790 * So far the best way to work around this issue seems to be draining 1791 * the GPU from any submitted work. 1792 */ 1793 ret = i915_gem_wait_for_idle(dev_priv, wait_flags); 1794 if (ret) 1795 goto out; 1796 1797 /* Update all contexts now that we've stalled the submission. */ 1798 list_for_each_entry(ctx, &dev_priv->contexts.list, link) { 1799 struct intel_context *ce = &ctx->engine[RCS]; 1800 u32 *regs; 1801 1802 /* OA settings will be set upon first use */ 1803 if (!ce->state) 1804 continue; 1805 1806 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB); 1807 if (IS_ERR(regs)) { 1808 ret = PTR_ERR(regs); 1809 goto out; 1810 } 1811 1812 ce->state->obj->mm.dirty = true; 1813 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs); 1814 1815 gen8_update_reg_state_unlocked(ctx, regs, oa_config); 1816 1817 i915_gem_object_unpin_map(ce->state->obj); 1818 } 1819 1820 out: 1821 mutex_unlock(&dev_priv->drm.struct_mutex); 1822 1823 return ret; 1824 } 1825 1826 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv, 1827 const struct i915_oa_config *oa_config) 1828 { 1829 int ret; 1830 1831 /* 1832 * We disable slice/unslice clock ratio change reports on SKL since 1833 * they are too noisy. The HW generates a lot of redundant reports 1834 * where the ratio hasn't really changed causing a lot of redundant 1835 * work to processes and increasing the chances we'll hit buffer 1836 * overruns. 1837 * 1838 * Although we don't currently use the 'disable overrun' OABUFFER 1839 * feature it's worth noting that clock ratio reports have to be 1840 * disabled before considering to use that feature since the HW doesn't 1841 * correctly block these reports. 1842 * 1843 * Currently none of the high-level metrics we have depend on knowing 1844 * this ratio to normalize. 1845 * 1846 * Note: This register is not power context saved and restored, but 1847 * that's OK considering that we disable RC6 while the OA unit is 1848 * enabled. 1849 * 1850 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1851 * be read back from automatically triggered reports, as part of the 1852 * RPT_ID field. 1853 */ 1854 if (IS_GEN9(dev_priv)) { 1855 I915_WRITE(GEN8_OA_DEBUG, 1856 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1857 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1858 } 1859 1860 /* 1861 * Update all contexts prior writing the mux configurations as we need 1862 * to make sure all slices/subslices are ON before writing to NOA 1863 * registers. 1864 */ 1865 ret = gen8_configure_all_contexts(dev_priv, oa_config, true); 1866 if (ret) 1867 return ret; 1868 1869 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1870 1871 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1872 oa_config->b_counter_regs_len); 1873 1874 return 0; 1875 } 1876 1877 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1878 { 1879 /* Reset all contexts' slices/subslices configurations. */ 1880 gen8_configure_all_contexts(dev_priv, NULL, false); 1881 1882 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1883 ~GT_NOA_ENABLE)); 1884 1885 } 1886 1887 static void gen7_oa_enable(struct drm_i915_private *dev_priv) 1888 { 1889 /* 1890 * Reset buf pointers so we don't forward reports from before now. 1891 * 1892 * Think carefully if considering trying to avoid this, since it 1893 * also ensures status flags and the buffer itself are cleared 1894 * in error paths, and we have checks for invalid reports based 1895 * on the assumption that certain fields are written to zeroed 1896 * memory which this helps maintains. 1897 */ 1898 gen7_init_oa_buffer(dev_priv); 1899 1900 if (dev_priv->perf.oa.exclusive_stream->enabled) { 1901 struct i915_gem_context *ctx = 1902 dev_priv->perf.oa.exclusive_stream->ctx; 1903 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1904 1905 bool periodic = dev_priv->perf.oa.periodic; 1906 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1907 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1908 1909 I915_WRITE(GEN7_OACONTROL, 1910 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1911 (period_exponent << 1912 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1913 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1914 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1915 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1916 GEN7_OACONTROL_ENABLE); 1917 } else 1918 I915_WRITE(GEN7_OACONTROL, 0); 1919 } 1920 1921 static void gen8_oa_enable(struct drm_i915_private *dev_priv) 1922 { 1923 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1924 1925 /* 1926 * Reset buf pointers so we don't forward reports from before now. 1927 * 1928 * Think carefully if considering trying to avoid this, since it 1929 * also ensures status flags and the buffer itself are cleared 1930 * in error paths, and we have checks for invalid reports based 1931 * on the assumption that certain fields are written to zeroed 1932 * memory which this helps maintains. 1933 */ 1934 gen8_init_oa_buffer(dev_priv); 1935 1936 /* 1937 * Note: we don't rely on the hardware to perform single context 1938 * filtering and instead filter on the cpu based on the context-id 1939 * field of reports 1940 */ 1941 I915_WRITE(GEN8_OACONTROL, (report_format << 1942 GEN8_OA_REPORT_FORMAT_SHIFT) | 1943 GEN8_OA_COUNTER_ENABLE); 1944 } 1945 1946 /** 1947 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1948 * @stream: An i915 perf stream opened for OA metrics 1949 * 1950 * [Re]enables hardware periodic sampling according to the period configured 1951 * when opening the stream. This also starts a hrtimer that will periodically 1952 * check for data in the circular OA buffer for notifying userspace (e.g. 1953 * during a read() or poll()). 1954 */ 1955 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1956 { 1957 struct drm_i915_private *dev_priv = stream->dev_priv; 1958 1959 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1960 1961 if (dev_priv->perf.oa.periodic) 1962 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1963 ns_to_ktime(POLL_PERIOD), 1964 HRTIMER_MODE_REL_PINNED); 1965 } 1966 1967 static void gen7_oa_disable(struct drm_i915_private *dev_priv) 1968 { 1969 I915_WRITE(GEN7_OACONTROL, 0); 1970 } 1971 1972 static void gen8_oa_disable(struct drm_i915_private *dev_priv) 1973 { 1974 I915_WRITE(GEN8_OACONTROL, 0); 1975 } 1976 1977 /** 1978 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1979 * @stream: An i915 perf stream opened for OA metrics 1980 * 1981 * Stops the OA unit from periodically writing counter reports into the 1982 * circular OA buffer. This also stops the hrtimer that periodically checks for 1983 * data in the circular OA buffer, for notifying userspace. 1984 */ 1985 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1986 { 1987 struct drm_i915_private *dev_priv = stream->dev_priv; 1988 1989 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1990 1991 if (dev_priv->perf.oa.periodic) 1992 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1993 } 1994 1995 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1996 .destroy = i915_oa_stream_destroy, 1997 .enable = i915_oa_stream_enable, 1998 .disable = i915_oa_stream_disable, 1999 .wait_unlocked = i915_oa_wait_unlocked, 2000 .poll_wait = i915_oa_poll_wait, 2001 .read = i915_oa_read, 2002 }; 2003 2004 /** 2005 * i915_oa_stream_init - validate combined props for OA stream and init 2006 * @stream: An i915 perf stream 2007 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2008 * @props: The property state that configures stream (individually validated) 2009 * 2010 * While read_properties_unlocked() validates properties in isolation it 2011 * doesn't ensure that the combination necessarily makes sense. 2012 * 2013 * At this point it has been determined that userspace wants a stream of 2014 * OA metrics, but still we need to further validate the combined 2015 * properties are OK. 2016 * 2017 * If the configuration makes sense then we can allocate memory for 2018 * a circular OA buffer and apply the requested metric set configuration. 2019 * 2020 * Returns: zero on success or a negative error code. 2021 */ 2022 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2023 struct drm_i915_perf_open_param *param, 2024 struct perf_open_properties *props) 2025 { 2026 struct drm_i915_private *dev_priv = stream->dev_priv; 2027 int format_size; 2028 int ret; 2029 2030 /* If the sysfs metrics/ directory wasn't registered for some 2031 * reason then don't let userspace try their luck with config 2032 * IDs 2033 */ 2034 if (!dev_priv->perf.metrics_kobj) { 2035 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2036 return -EINVAL; 2037 } 2038 2039 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2040 DRM_DEBUG("Only OA report sampling supported\n"); 2041 return -EINVAL; 2042 } 2043 2044 if (!dev_priv->perf.oa.ops.init_oa_buffer) { 2045 DRM_DEBUG("OA unit not supported\n"); 2046 return -ENODEV; 2047 } 2048 2049 /* To avoid the complexity of having to accurately filter 2050 * counter reports and marshal to the appropriate client 2051 * we currently only allow exclusive access 2052 */ 2053 if (dev_priv->perf.oa.exclusive_stream) { 2054 DRM_DEBUG("OA unit already in use\n"); 2055 return -EBUSY; 2056 } 2057 2058 if (!props->oa_format) { 2059 DRM_DEBUG("OA report format not specified\n"); 2060 return -EINVAL; 2061 } 2062 2063 /* We set up some ratelimit state to potentially throttle any _NOTES 2064 * about spurious, invalid OA reports which we don't forward to 2065 * userspace. 2066 * 2067 * The initialization is associated with opening the stream (not driver 2068 * init) considering we print a _NOTE about any throttling when closing 2069 * the stream instead of waiting until driver _fini which no one would 2070 * ever see. 2071 * 2072 * Using the same limiting factors as printk_ratelimit() 2073 */ 2074 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2075 5 * HZ, 10); 2076 /* Since we use a DRM_NOTE for spurious reports it would be 2077 * inconsistent to let __ratelimit() automatically print a warning for 2078 * throttling. 2079 */ 2080 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2081 RATELIMIT_MSG_ON_RELEASE); 2082 2083 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2084 2085 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2086 2087 stream->sample_flags |= SAMPLE_OA_REPORT; 2088 stream->sample_size += format_size; 2089 2090 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2091 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2092 return -EINVAL; 2093 2094 dev_priv->perf.oa.oa_buffer.format = 2095 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2096 2097 dev_priv->perf.oa.periodic = props->oa_periodic; 2098 if (dev_priv->perf.oa.periodic) 2099 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2100 2101 if (stream->ctx) { 2102 ret = oa_get_render_ctx_id(stream); 2103 if (ret) 2104 return ret; 2105 } 2106 2107 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2108 if (ret) 2109 goto err_config; 2110 2111 /* PRM - observability performance counters: 2112 * 2113 * OACONTROL, performance counter enable, note: 2114 * 2115 * "When this bit is set, in order to have coherent counts, 2116 * RC6 power state and trunk clock gating must be disabled. 2117 * This can be achieved by programming MMIO registers as 2118 * 0xA094=0 and 0xA090[31]=1" 2119 * 2120 * In our case we are expecting that taking pm + FORCEWAKE 2121 * references will effectively disable RC6. 2122 */ 2123 intel_runtime_pm_get(dev_priv); 2124 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 2125 2126 ret = alloc_oa_buffer(dev_priv); 2127 if (ret) 2128 goto err_oa_buf_alloc; 2129 2130 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv, 2131 stream->oa_config); 2132 if (ret) 2133 goto err_enable; 2134 2135 stream->ops = &i915_oa_stream_ops; 2136 2137 /* Lock device for exclusive_stream access late because 2138 * enable_metric_set() might lock as well on gen8+. 2139 */ 2140 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2141 if (ret) 2142 goto err_lock; 2143 2144 dev_priv->perf.oa.exclusive_stream = stream; 2145 2146 mutex_unlock(&dev_priv->drm.struct_mutex); 2147 2148 return 0; 2149 2150 err_lock: 2151 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2152 2153 err_enable: 2154 free_oa_buffer(dev_priv); 2155 2156 err_oa_buf_alloc: 2157 put_oa_config(dev_priv, stream->oa_config); 2158 2159 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 2160 intel_runtime_pm_put(dev_priv); 2161 2162 err_config: 2163 if (stream->ctx) 2164 oa_put_render_ctx_id(stream); 2165 2166 return ret; 2167 } 2168 2169 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2170 struct i915_gem_context *ctx, 2171 u32 *reg_state) 2172 { 2173 struct i915_perf_stream *stream; 2174 2175 if (engine->id != RCS) 2176 return; 2177 2178 stream = engine->i915->perf.oa.exclusive_stream; 2179 if (stream) 2180 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config); 2181 } 2182 2183 /** 2184 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2185 * @stream: An i915 perf stream 2186 * @file: An i915 perf stream file 2187 * @buf: destination buffer given by userspace 2188 * @count: the number of bytes userspace wants to read 2189 * @ppos: (inout) file seek position (unused) 2190 * 2191 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2192 * ensure that if we've successfully copied any data then reporting that takes 2193 * precedence over any internal error status, so the data isn't lost. 2194 * 2195 * For example ret will be -ENOSPC whenever there is more buffered data than 2196 * can be copied to userspace, but that's only interesting if we weren't able 2197 * to copy some data because it implies the userspace buffer is too small to 2198 * receive a single record (and we never split records). 2199 * 2200 * Another case with ret == -EFAULT is more of a grey area since it would seem 2201 * like bad form for userspace to ask us to overrun its buffer, but the user 2202 * knows best: 2203 * 2204 * http://yarchive.net/comp/linux/partial_reads_writes.html 2205 * 2206 * Returns: The number of bytes copied or a negative error code on failure. 2207 */ 2208 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2209 struct file *file, 2210 char __user *buf, 2211 size_t count, 2212 loff_t *ppos) 2213 { 2214 /* Note we keep the offset (aka bytes read) separate from any 2215 * error status so that the final check for whether we return 2216 * the bytes read with a higher precedence than any error (see 2217 * comment below) doesn't need to be handled/duplicated in 2218 * stream->ops->read() implementations. 2219 */ 2220 size_t offset = 0; 2221 int ret = stream->ops->read(stream, buf, count, &offset); 2222 2223 return offset ?: (ret ?: -EAGAIN); 2224 } 2225 2226 /** 2227 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2228 * @file: An i915 perf stream file 2229 * @buf: destination buffer given by userspace 2230 * @count: the number of bytes userspace wants to read 2231 * @ppos: (inout) file seek position (unused) 2232 * 2233 * The entry point for handling a read() on a stream file descriptor from 2234 * userspace. Most of the work is left to the i915_perf_read_locked() and 2235 * &i915_perf_stream_ops->read but to save having stream implementations (of 2236 * which we might have multiple later) we handle blocking read here. 2237 * 2238 * We can also consistently treat trying to read from a disabled stream 2239 * as an IO error so implementations can assume the stream is enabled 2240 * while reading. 2241 * 2242 * Returns: The number of bytes copied or a negative error code on failure. 2243 */ 2244 static ssize_t i915_perf_read(struct file *file, 2245 char __user *buf, 2246 size_t count, 2247 loff_t *ppos) 2248 { 2249 struct i915_perf_stream *stream = file->private_data; 2250 struct drm_i915_private *dev_priv = stream->dev_priv; 2251 ssize_t ret; 2252 2253 /* To ensure it's handled consistently we simply treat all reads of a 2254 * disabled stream as an error. In particular it might otherwise lead 2255 * to a deadlock for blocking file descriptors... 2256 */ 2257 if (!stream->enabled) 2258 return -EIO; 2259 2260 if (!(file->f_flags & O_NONBLOCK)) { 2261 /* There's the small chance of false positives from 2262 * stream->ops->wait_unlocked. 2263 * 2264 * E.g. with single context filtering since we only wait until 2265 * oabuffer has >= 1 report we don't immediately know whether 2266 * any reports really belong to the current context 2267 */ 2268 do { 2269 ret = stream->ops->wait_unlocked(stream); 2270 if (ret) 2271 return ret; 2272 2273 mutex_lock(&dev_priv->perf.lock); 2274 ret = i915_perf_read_locked(stream, file, 2275 buf, count, ppos); 2276 mutex_unlock(&dev_priv->perf.lock); 2277 } while (ret == -EAGAIN); 2278 } else { 2279 mutex_lock(&dev_priv->perf.lock); 2280 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2281 mutex_unlock(&dev_priv->perf.lock); 2282 } 2283 2284 /* We allow the poll checking to sometimes report false positive POLLIN 2285 * events where we might actually report EAGAIN on read() if there's 2286 * not really any data available. In this situation though we don't 2287 * want to enter a busy loop between poll() reporting a POLLIN event 2288 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2289 * effectively ensures we back off until the next hrtimer callback 2290 * before reporting another POLLIN event. 2291 */ 2292 if (ret >= 0 || ret == -EAGAIN) { 2293 /* Maybe make ->pollin per-stream state if we support multiple 2294 * concurrent streams in the future. 2295 */ 2296 dev_priv->perf.oa.pollin = false; 2297 } 2298 2299 return ret; 2300 } 2301 2302 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2303 { 2304 struct drm_i915_private *dev_priv = 2305 container_of(hrtimer, typeof(*dev_priv), 2306 perf.oa.poll_check_timer); 2307 2308 if (oa_buffer_check_unlocked(dev_priv)) { 2309 dev_priv->perf.oa.pollin = true; 2310 wake_up(&dev_priv->perf.oa.poll_wq); 2311 } 2312 2313 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2314 2315 return HRTIMER_RESTART; 2316 } 2317 2318 /** 2319 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2320 * @dev_priv: i915 device instance 2321 * @stream: An i915 perf stream 2322 * @file: An i915 perf stream file 2323 * @wait: poll() state table 2324 * 2325 * For handling userspace polling on an i915 perf stream, this calls through to 2326 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2327 * will be woken for new stream data. 2328 * 2329 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2330 * with any non-file-operation driver hooks. 2331 * 2332 * Returns: any poll events that are ready without sleeping 2333 */ 2334 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2335 struct i915_perf_stream *stream, 2336 struct file *file, 2337 poll_table *wait) 2338 { 2339 unsigned int events = 0; 2340 2341 stream->ops->poll_wait(stream, file, wait); 2342 2343 /* Note: we don't explicitly check whether there's something to read 2344 * here since this path may be very hot depending on what else 2345 * userspace is polling, or on the timeout in use. We rely solely on 2346 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2347 * samples to read. 2348 */ 2349 if (dev_priv->perf.oa.pollin) 2350 events |= POLLIN; 2351 2352 return events; 2353 } 2354 2355 /** 2356 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2357 * @file: An i915 perf stream file 2358 * @wait: poll() state table 2359 * 2360 * For handling userspace polling on an i915 perf stream, this ensures 2361 * poll_wait() gets called with a wait queue that will be woken for new stream 2362 * data. 2363 * 2364 * Note: Implementation deferred to i915_perf_poll_locked() 2365 * 2366 * Returns: any poll events that are ready without sleeping 2367 */ 2368 static unsigned int i915_perf_poll(struct file *file, poll_table *wait) 2369 { 2370 struct i915_perf_stream *stream = file->private_data; 2371 struct drm_i915_private *dev_priv = stream->dev_priv; 2372 int ret; 2373 2374 mutex_lock(&dev_priv->perf.lock); 2375 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2376 mutex_unlock(&dev_priv->perf.lock); 2377 2378 return ret; 2379 } 2380 2381 /** 2382 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2383 * @stream: A disabled i915 perf stream 2384 * 2385 * [Re]enables the associated capture of data for this stream. 2386 * 2387 * If a stream was previously enabled then there's currently no intention 2388 * to provide userspace any guarantee about the preservation of previously 2389 * buffered data. 2390 */ 2391 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2392 { 2393 if (stream->enabled) 2394 return; 2395 2396 /* Allow stream->ops->enable() to refer to this */ 2397 stream->enabled = true; 2398 2399 if (stream->ops->enable) 2400 stream->ops->enable(stream); 2401 } 2402 2403 /** 2404 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2405 * @stream: An enabled i915 perf stream 2406 * 2407 * Disables the associated capture of data for this stream. 2408 * 2409 * The intention is that disabling an re-enabling a stream will ideally be 2410 * cheaper than destroying and re-opening a stream with the same configuration, 2411 * though there are no formal guarantees about what state or buffered data 2412 * must be retained between disabling and re-enabling a stream. 2413 * 2414 * Note: while a stream is disabled it's considered an error for userspace 2415 * to attempt to read from the stream (-EIO). 2416 */ 2417 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2418 { 2419 if (!stream->enabled) 2420 return; 2421 2422 /* Allow stream->ops->disable() to refer to this */ 2423 stream->enabled = false; 2424 2425 if (stream->ops->disable) 2426 stream->ops->disable(stream); 2427 } 2428 2429 /** 2430 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2431 * @stream: An i915 perf stream 2432 * @cmd: the ioctl request 2433 * @arg: the ioctl data 2434 * 2435 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2436 * with any non-file-operation driver hooks. 2437 * 2438 * Returns: zero on success or a negative error code. Returns -EINVAL for 2439 * an unknown ioctl request. 2440 */ 2441 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2442 unsigned int cmd, 2443 unsigned long arg) 2444 { 2445 switch (cmd) { 2446 case I915_PERF_IOCTL_ENABLE: 2447 i915_perf_enable_locked(stream); 2448 return 0; 2449 case I915_PERF_IOCTL_DISABLE: 2450 i915_perf_disable_locked(stream); 2451 return 0; 2452 } 2453 2454 return -EINVAL; 2455 } 2456 2457 /** 2458 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2459 * @file: An i915 perf stream file 2460 * @cmd: the ioctl request 2461 * @arg: the ioctl data 2462 * 2463 * Implementation deferred to i915_perf_ioctl_locked(). 2464 * 2465 * Returns: zero on success or a negative error code. Returns -EINVAL for 2466 * an unknown ioctl request. 2467 */ 2468 static long i915_perf_ioctl(struct file *file, 2469 unsigned int cmd, 2470 unsigned long arg) 2471 { 2472 struct i915_perf_stream *stream = file->private_data; 2473 struct drm_i915_private *dev_priv = stream->dev_priv; 2474 long ret; 2475 2476 mutex_lock(&dev_priv->perf.lock); 2477 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2478 mutex_unlock(&dev_priv->perf.lock); 2479 2480 return ret; 2481 } 2482 2483 /** 2484 * i915_perf_destroy_locked - destroy an i915 perf stream 2485 * @stream: An i915 perf stream 2486 * 2487 * Frees all resources associated with the given i915 perf @stream, disabling 2488 * any associated data capture in the process. 2489 * 2490 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2491 * with any non-file-operation driver hooks. 2492 */ 2493 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2494 { 2495 if (stream->enabled) 2496 i915_perf_disable_locked(stream); 2497 2498 if (stream->ops->destroy) 2499 stream->ops->destroy(stream); 2500 2501 list_del(&stream->link); 2502 2503 if (stream->ctx) 2504 i915_gem_context_put(stream->ctx); 2505 2506 kfree(stream); 2507 } 2508 2509 /** 2510 * i915_perf_release - handles userspace close() of a stream file 2511 * @inode: anonymous inode associated with file 2512 * @file: An i915 perf stream file 2513 * 2514 * Cleans up any resources associated with an open i915 perf stream file. 2515 * 2516 * NB: close() can't really fail from the userspace point of view. 2517 * 2518 * Returns: zero on success or a negative error code. 2519 */ 2520 static int i915_perf_release(struct inode *inode, struct file *file) 2521 { 2522 struct i915_perf_stream *stream = file->private_data; 2523 struct drm_i915_private *dev_priv = stream->dev_priv; 2524 2525 mutex_lock(&dev_priv->perf.lock); 2526 i915_perf_destroy_locked(stream); 2527 mutex_unlock(&dev_priv->perf.lock); 2528 2529 return 0; 2530 } 2531 2532 2533 static const struct file_operations fops = { 2534 .owner = THIS_MODULE, 2535 .llseek = no_llseek, 2536 .release = i915_perf_release, 2537 .poll = i915_perf_poll, 2538 .read = i915_perf_read, 2539 .unlocked_ioctl = i915_perf_ioctl, 2540 /* Our ioctl have no arguments, so it's safe to use the same function 2541 * to handle 32bits compatibility. 2542 */ 2543 .compat_ioctl = i915_perf_ioctl, 2544 }; 2545 2546 2547 /** 2548 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2549 * @dev_priv: i915 device instance 2550 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2551 * @props: individually validated u64 property value pairs 2552 * @file: drm file 2553 * 2554 * See i915_perf_ioctl_open() for interface details. 2555 * 2556 * Implements further stream config validation and stream initialization on 2557 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2558 * taken to serialize with any non-file-operation driver hooks. 2559 * 2560 * Note: at this point the @props have only been validated in isolation and 2561 * it's still necessary to validate that the combination of properties makes 2562 * sense. 2563 * 2564 * In the case where userspace is interested in OA unit metrics then further 2565 * config validation and stream initialization details will be handled by 2566 * i915_oa_stream_init(). The code here should only validate config state that 2567 * will be relevant to all stream types / backends. 2568 * 2569 * Returns: zero on success or a negative error code. 2570 */ 2571 static int 2572 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2573 struct drm_i915_perf_open_param *param, 2574 struct perf_open_properties *props, 2575 struct drm_file *file) 2576 { 2577 struct i915_gem_context *specific_ctx = NULL; 2578 struct i915_perf_stream *stream = NULL; 2579 unsigned long f_flags = 0; 2580 bool privileged_op = true; 2581 int stream_fd; 2582 int ret; 2583 2584 if (props->single_context) { 2585 u32 ctx_handle = props->ctx_handle; 2586 struct drm_i915_file_private *file_priv = file->driver_priv; 2587 2588 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2589 if (!specific_ctx) { 2590 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2591 ctx_handle); 2592 ret = -ENOENT; 2593 goto err; 2594 } 2595 } 2596 2597 /* 2598 * On Haswell the OA unit supports clock gating off for a specific 2599 * context and in this mode there's no visibility of metrics for the 2600 * rest of the system, which we consider acceptable for a 2601 * non-privileged client. 2602 * 2603 * For Gen8+ the OA unit no longer supports clock gating off for a 2604 * specific context and the kernel can't securely stop the counters 2605 * from updating as system-wide / global values. Even though we can 2606 * filter reports based on the included context ID we can't block 2607 * clients from seeing the raw / global counter values via 2608 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2609 * enable the OA unit by default. 2610 */ 2611 if (IS_HASWELL(dev_priv) && specific_ctx) 2612 privileged_op = false; 2613 2614 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2615 * we check a dev.i915.perf_stream_paranoid sysctl option 2616 * to determine if it's ok to access system wide OA counters 2617 * without CAP_SYS_ADMIN privileges. 2618 */ 2619 if (privileged_op && 2620 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2621 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2622 ret = -EACCES; 2623 goto err_ctx; 2624 } 2625 2626 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2627 if (!stream) { 2628 ret = -ENOMEM; 2629 goto err_ctx; 2630 } 2631 2632 stream->dev_priv = dev_priv; 2633 stream->ctx = specific_ctx; 2634 2635 ret = i915_oa_stream_init(stream, param, props); 2636 if (ret) 2637 goto err_alloc; 2638 2639 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2640 * to have _stream_init check the combination of sample flags more 2641 * thoroughly, but still this is the expected result at this point. 2642 */ 2643 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2644 ret = -ENODEV; 2645 goto err_flags; 2646 } 2647 2648 list_add(&stream->link, &dev_priv->perf.streams); 2649 2650 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2651 f_flags |= O_CLOEXEC; 2652 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2653 f_flags |= O_NONBLOCK; 2654 2655 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2656 if (stream_fd < 0) { 2657 ret = stream_fd; 2658 goto err_open; 2659 } 2660 2661 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2662 i915_perf_enable_locked(stream); 2663 2664 return stream_fd; 2665 2666 err_open: 2667 list_del(&stream->link); 2668 err_flags: 2669 if (stream->ops->destroy) 2670 stream->ops->destroy(stream); 2671 err_alloc: 2672 kfree(stream); 2673 err_ctx: 2674 if (specific_ctx) 2675 i915_gem_context_put(specific_ctx); 2676 err: 2677 return ret; 2678 } 2679 2680 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2681 { 2682 return div_u64(1000000000ULL * (2ULL << exponent), 2683 dev_priv->perf.oa.timestamp_frequency); 2684 } 2685 2686 /** 2687 * read_properties_unlocked - validate + copy userspace stream open properties 2688 * @dev_priv: i915 device instance 2689 * @uprops: The array of u64 key value pairs given by userspace 2690 * @n_props: The number of key value pairs expected in @uprops 2691 * @props: The stream configuration built up while validating properties 2692 * 2693 * Note this function only validates properties in isolation it doesn't 2694 * validate that the combination of properties makes sense or that all 2695 * properties necessary for a particular kind of stream have been set. 2696 * 2697 * Note that there currently aren't any ordering requirements for properties so 2698 * we shouldn't validate or assume anything about ordering here. This doesn't 2699 * rule out defining new properties with ordering requirements in the future. 2700 */ 2701 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2702 u64 __user *uprops, 2703 u32 n_props, 2704 struct perf_open_properties *props) 2705 { 2706 u64 __user *uprop = uprops; 2707 u32 i; 2708 2709 memset(props, 0, sizeof(struct perf_open_properties)); 2710 2711 if (!n_props) { 2712 DRM_DEBUG("No i915 perf properties given\n"); 2713 return -EINVAL; 2714 } 2715 2716 /* Considering that ID = 0 is reserved and assuming that we don't 2717 * (currently) expect any configurations to ever specify duplicate 2718 * values for a particular property ID then the last _PROP_MAX value is 2719 * one greater than the maximum number of properties we expect to get 2720 * from userspace. 2721 */ 2722 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2723 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2724 return -EINVAL; 2725 } 2726 2727 for (i = 0; i < n_props; i++) { 2728 u64 oa_period, oa_freq_hz; 2729 u64 id, value; 2730 int ret; 2731 2732 ret = get_user(id, uprop); 2733 if (ret) 2734 return ret; 2735 2736 ret = get_user(value, uprop + 1); 2737 if (ret) 2738 return ret; 2739 2740 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2741 DRM_DEBUG("Unknown i915 perf property ID\n"); 2742 return -EINVAL; 2743 } 2744 2745 switch ((enum drm_i915_perf_property_id)id) { 2746 case DRM_I915_PERF_PROP_CTX_HANDLE: 2747 props->single_context = 1; 2748 props->ctx_handle = value; 2749 break; 2750 case DRM_I915_PERF_PROP_SAMPLE_OA: 2751 props->sample_flags |= SAMPLE_OA_REPORT; 2752 break; 2753 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2754 if (value == 0) { 2755 DRM_DEBUG("Unknown OA metric set ID\n"); 2756 return -EINVAL; 2757 } 2758 props->metrics_set = value; 2759 break; 2760 case DRM_I915_PERF_PROP_OA_FORMAT: 2761 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2762 DRM_DEBUG("Out-of-range OA report format %llu\n", 2763 value); 2764 return -EINVAL; 2765 } 2766 if (!dev_priv->perf.oa.oa_formats[value].size) { 2767 DRM_DEBUG("Unsupported OA report format %llu\n", 2768 value); 2769 return -EINVAL; 2770 } 2771 props->oa_format = value; 2772 break; 2773 case DRM_I915_PERF_PROP_OA_EXPONENT: 2774 if (value > OA_EXPONENT_MAX) { 2775 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2776 OA_EXPONENT_MAX); 2777 return -EINVAL; 2778 } 2779 2780 /* Theoretically we can program the OA unit to sample 2781 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2782 * for BXT. We don't allow such high sampling 2783 * frequencies by default unless root. 2784 */ 2785 2786 BUILD_BUG_ON(sizeof(oa_period) != 8); 2787 oa_period = oa_exponent_to_ns(dev_priv, value); 2788 2789 /* This check is primarily to ensure that oa_period <= 2790 * UINT32_MAX (before passing to do_div which only 2791 * accepts a u32 denominator), but we can also skip 2792 * checking anything < 1Hz which implicitly can't be 2793 * limited via an integer oa_max_sample_rate. 2794 */ 2795 if (oa_period <= NSEC_PER_SEC) { 2796 u64 tmp = NSEC_PER_SEC; 2797 do_div(tmp, oa_period); 2798 oa_freq_hz = tmp; 2799 } else 2800 oa_freq_hz = 0; 2801 2802 if (oa_freq_hz > i915_oa_max_sample_rate && 2803 !capable(CAP_SYS_ADMIN)) { 2804 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2805 i915_oa_max_sample_rate); 2806 return -EACCES; 2807 } 2808 2809 props->oa_periodic = true; 2810 props->oa_period_exponent = value; 2811 break; 2812 case DRM_I915_PERF_PROP_MAX: 2813 MISSING_CASE(id); 2814 return -EINVAL; 2815 } 2816 2817 uprop += 2; 2818 } 2819 2820 return 0; 2821 } 2822 2823 /** 2824 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2825 * @dev: drm device 2826 * @data: ioctl data copied from userspace (unvalidated) 2827 * @file: drm file 2828 * 2829 * Validates the stream open parameters given by userspace including flags 2830 * and an array of u64 key, value pair properties. 2831 * 2832 * Very little is assumed up front about the nature of the stream being 2833 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2834 * i915-perf stream is expected to be a suitable interface for other forms of 2835 * buffered data written by the GPU besides periodic OA metrics. 2836 * 2837 * Note we copy the properties from userspace outside of the i915 perf 2838 * mutex to avoid an awkward lockdep with mmap_sem. 2839 * 2840 * Most of the implementation details are handled by 2841 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2842 * mutex for serializing with any non-file-operation driver hooks. 2843 * 2844 * Return: A newly opened i915 Perf stream file descriptor or negative 2845 * error code on failure. 2846 */ 2847 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2848 struct drm_file *file) 2849 { 2850 struct drm_i915_private *dev_priv = dev->dev_private; 2851 struct drm_i915_perf_open_param *param = data; 2852 struct perf_open_properties props; 2853 u32 known_open_flags; 2854 int ret; 2855 2856 if (!dev_priv->perf.initialized) { 2857 DRM_DEBUG("i915 perf interface not available for this system\n"); 2858 return -ENOTSUPP; 2859 } 2860 2861 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 2862 I915_PERF_FLAG_FD_NONBLOCK | 2863 I915_PERF_FLAG_DISABLED; 2864 if (param->flags & ~known_open_flags) { 2865 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 2866 return -EINVAL; 2867 } 2868 2869 ret = read_properties_unlocked(dev_priv, 2870 u64_to_user_ptr(param->properties_ptr), 2871 param->num_properties, 2872 &props); 2873 if (ret) 2874 return ret; 2875 2876 mutex_lock(&dev_priv->perf.lock); 2877 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 2878 mutex_unlock(&dev_priv->perf.lock); 2879 2880 return ret; 2881 } 2882 2883 /** 2884 * i915_perf_register - exposes i915-perf to userspace 2885 * @dev_priv: i915 device instance 2886 * 2887 * In particular OA metric sets are advertised under a sysfs metrics/ 2888 * directory allowing userspace to enumerate valid IDs that can be 2889 * used to open an i915-perf stream. 2890 */ 2891 void i915_perf_register(struct drm_i915_private *dev_priv) 2892 { 2893 int ret; 2894 2895 if (!dev_priv->perf.initialized) 2896 return; 2897 2898 /* To be sure we're synchronized with an attempted 2899 * i915_perf_open_ioctl(); considering that we register after 2900 * being exposed to userspace. 2901 */ 2902 mutex_lock(&dev_priv->perf.lock); 2903 2904 dev_priv->perf.metrics_kobj = 2905 kobject_create_and_add("metrics", 2906 &dev_priv->drm.primary->kdev->kobj); 2907 if (!dev_priv->perf.metrics_kobj) 2908 goto exit; 2909 2910 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 2911 2912 if (IS_HASWELL(dev_priv)) { 2913 i915_perf_load_test_config_hsw(dev_priv); 2914 } else if (IS_BROADWELL(dev_priv)) { 2915 i915_perf_load_test_config_bdw(dev_priv); 2916 } else if (IS_CHERRYVIEW(dev_priv)) { 2917 i915_perf_load_test_config_chv(dev_priv); 2918 } else if (IS_SKYLAKE(dev_priv)) { 2919 if (IS_SKL_GT2(dev_priv)) 2920 i915_perf_load_test_config_sklgt2(dev_priv); 2921 else if (IS_SKL_GT3(dev_priv)) 2922 i915_perf_load_test_config_sklgt3(dev_priv); 2923 else if (IS_SKL_GT4(dev_priv)) 2924 i915_perf_load_test_config_sklgt4(dev_priv); 2925 } else if (IS_BROXTON(dev_priv)) { 2926 i915_perf_load_test_config_bxt(dev_priv); 2927 } else if (IS_KABYLAKE(dev_priv)) { 2928 if (IS_KBL_GT2(dev_priv)) 2929 i915_perf_load_test_config_kblgt2(dev_priv); 2930 else if (IS_KBL_GT3(dev_priv)) 2931 i915_perf_load_test_config_kblgt3(dev_priv); 2932 } else if (IS_GEMINILAKE(dev_priv)) { 2933 i915_perf_load_test_config_glk(dev_priv); 2934 } else if (IS_COFFEELAKE(dev_priv)) { 2935 if (IS_CFL_GT2(dev_priv)) 2936 i915_perf_load_test_config_cflgt2(dev_priv); 2937 } 2938 2939 if (dev_priv->perf.oa.test_config.id == 0) 2940 goto sysfs_error; 2941 2942 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 2943 &dev_priv->perf.oa.test_config.sysfs_metric); 2944 if (ret) 2945 goto sysfs_error; 2946 2947 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 2948 2949 goto exit; 2950 2951 sysfs_error: 2952 kobject_put(dev_priv->perf.metrics_kobj); 2953 dev_priv->perf.metrics_kobj = NULL; 2954 2955 exit: 2956 mutex_unlock(&dev_priv->perf.lock); 2957 } 2958 2959 /** 2960 * i915_perf_unregister - hide i915-perf from userspace 2961 * @dev_priv: i915 device instance 2962 * 2963 * i915-perf state cleanup is split up into an 'unregister' and 2964 * 'deinit' phase where the interface is first hidden from 2965 * userspace by i915_perf_unregister() before cleaning up 2966 * remaining state in i915_perf_fini(). 2967 */ 2968 void i915_perf_unregister(struct drm_i915_private *dev_priv) 2969 { 2970 if (!dev_priv->perf.metrics_kobj) 2971 return; 2972 2973 sysfs_remove_group(dev_priv->perf.metrics_kobj, 2974 &dev_priv->perf.oa.test_config.sysfs_metric); 2975 2976 kobject_put(dev_priv->perf.metrics_kobj); 2977 dev_priv->perf.metrics_kobj = NULL; 2978 } 2979 2980 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 2981 { 2982 static const i915_reg_t flex_eu_regs[] = { 2983 EU_PERF_CNTL0, 2984 EU_PERF_CNTL1, 2985 EU_PERF_CNTL2, 2986 EU_PERF_CNTL3, 2987 EU_PERF_CNTL4, 2988 EU_PERF_CNTL5, 2989 EU_PERF_CNTL6, 2990 }; 2991 int i; 2992 2993 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 2994 if (flex_eu_regs[i].reg == addr) 2995 return true; 2996 } 2997 return false; 2998 } 2999 3000 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 3001 { 3002 return (addr >= OASTARTTRIG1.reg && addr <= OASTARTTRIG8.reg) || 3003 (addr >= OAREPORTTRIG1.reg && addr <= OAREPORTTRIG8.reg) || 3004 (addr >= OACEC0_0.reg && addr <= OACEC7_1.reg); 3005 } 3006 3007 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3008 { 3009 return addr == HALF_SLICE_CHICKEN2.reg || 3010 (addr >= MICRO_BP0_0.reg && addr <= NOA_WRITE.reg) || 3011 (addr >= OA_PERFCNT1_LO.reg && addr <= OA_PERFCNT2_HI.reg) || 3012 (addr >= OA_PERFMATRIX_LO.reg && addr <= OA_PERFMATRIX_HI.reg); 3013 } 3014 3015 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3016 { 3017 return gen7_is_valid_mux_addr(dev_priv, addr) || 3018 addr == WAIT_FOR_RC6_EXIT.reg || 3019 (addr >= RPM_CONFIG0.reg && addr <= NOA_CONFIG(8).reg); 3020 } 3021 3022 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3023 { 3024 return gen7_is_valid_mux_addr(dev_priv, addr) || 3025 (addr >= 0x25100 && addr <= 0x2FF90) || 3026 addr == 0x9ec0; 3027 } 3028 3029 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3030 { 3031 return gen7_is_valid_mux_addr(dev_priv, addr) || 3032 (addr >= 0x182300 && addr <= 0x1823A4); 3033 } 3034 3035 static uint32_t mask_reg_value(u32 reg, u32 val) 3036 { 3037 /* HALF_SLICE_CHICKEN2 is programmed with a the 3038 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3039 * programmed by userspace doesn't change this. 3040 */ 3041 if (HALF_SLICE_CHICKEN2.reg == reg) 3042 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3043 3044 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3045 * indicated by its name and a bunch of selection fields used by OA 3046 * configs. 3047 */ 3048 if (WAIT_FOR_RC6_EXIT.reg == reg) 3049 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3050 3051 return val; 3052 } 3053 3054 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3055 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3056 u32 __user *regs, 3057 u32 n_regs) 3058 { 3059 struct i915_oa_reg *oa_regs; 3060 int err; 3061 u32 i; 3062 3063 if (!n_regs) 3064 return NULL; 3065 3066 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2)) 3067 return ERR_PTR(-EFAULT); 3068 3069 /* No is_valid function means we're not allowing any register to be programmed. */ 3070 GEM_BUG_ON(!is_valid); 3071 if (!is_valid) 3072 return ERR_PTR(-EINVAL); 3073 3074 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3075 if (!oa_regs) 3076 return ERR_PTR(-ENOMEM); 3077 3078 for (i = 0; i < n_regs; i++) { 3079 u32 addr, value; 3080 3081 err = get_user(addr, regs); 3082 if (err) 3083 goto addr_err; 3084 3085 if (!is_valid(dev_priv, addr)) { 3086 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3087 err = -EINVAL; 3088 goto addr_err; 3089 } 3090 3091 err = get_user(value, regs + 1); 3092 if (err) 3093 goto addr_err; 3094 3095 oa_regs[i].addr = _MMIO(addr); 3096 oa_regs[i].value = mask_reg_value(addr, value); 3097 3098 regs += 2; 3099 } 3100 3101 return oa_regs; 3102 3103 addr_err: 3104 kfree(oa_regs); 3105 return ERR_PTR(err); 3106 } 3107 3108 static ssize_t show_dynamic_id(struct device *dev, 3109 struct device_attribute *attr, 3110 char *buf) 3111 { 3112 struct i915_oa_config *oa_config = 3113 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3114 3115 return sprintf(buf, "%d\n", oa_config->id); 3116 } 3117 3118 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3119 struct i915_oa_config *oa_config) 3120 { 3121 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3122 oa_config->sysfs_metric_id.attr.name = "id"; 3123 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3124 oa_config->sysfs_metric_id.show = show_dynamic_id; 3125 oa_config->sysfs_metric_id.store = NULL; 3126 3127 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3128 oa_config->attrs[1] = NULL; 3129 3130 oa_config->sysfs_metric.name = oa_config->uuid; 3131 oa_config->sysfs_metric.attrs = oa_config->attrs; 3132 3133 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3134 &oa_config->sysfs_metric); 3135 } 3136 3137 /** 3138 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3139 * @dev: drm device 3140 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3141 * userspace (unvalidated) 3142 * @file: drm file 3143 * 3144 * Validates the submitted OA register to be saved into a new OA config that 3145 * can then be used for programming the OA unit and its NOA network. 3146 * 3147 * Returns: A new allocated config number to be used with the perf open ioctl 3148 * or a negative error code on failure. 3149 */ 3150 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3151 struct drm_file *file) 3152 { 3153 struct drm_i915_private *dev_priv = dev->dev_private; 3154 struct drm_i915_perf_oa_config *args = data; 3155 struct i915_oa_config *oa_config, *tmp; 3156 int err, id; 3157 3158 if (!dev_priv->perf.initialized) { 3159 DRM_DEBUG("i915 perf interface not available for this system\n"); 3160 return -ENOTSUPP; 3161 } 3162 3163 if (!dev_priv->perf.metrics_kobj) { 3164 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3165 return -EINVAL; 3166 } 3167 3168 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3169 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3170 return -EACCES; 3171 } 3172 3173 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3174 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3175 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3176 DRM_DEBUG("No OA registers given\n"); 3177 return -EINVAL; 3178 } 3179 3180 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3181 if (!oa_config) { 3182 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3183 return -ENOMEM; 3184 } 3185 3186 atomic_set(&oa_config->ref_count, 1); 3187 3188 if (!uuid_is_valid(args->uuid)) { 3189 DRM_DEBUG("Invalid uuid format for OA config\n"); 3190 err = -EINVAL; 3191 goto reg_err; 3192 } 3193 3194 /* Last character in oa_config->uuid will be 0 because oa_config is 3195 * kzalloc. 3196 */ 3197 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3198 3199 oa_config->mux_regs_len = args->n_mux_regs; 3200 oa_config->mux_regs = 3201 alloc_oa_regs(dev_priv, 3202 dev_priv->perf.oa.ops.is_valid_mux_reg, 3203 u64_to_user_ptr(args->mux_regs_ptr), 3204 args->n_mux_regs); 3205 3206 if (IS_ERR(oa_config->mux_regs)) { 3207 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3208 err = PTR_ERR(oa_config->mux_regs); 3209 goto reg_err; 3210 } 3211 3212 oa_config->b_counter_regs_len = args->n_boolean_regs; 3213 oa_config->b_counter_regs = 3214 alloc_oa_regs(dev_priv, 3215 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3216 u64_to_user_ptr(args->boolean_regs_ptr), 3217 args->n_boolean_regs); 3218 3219 if (IS_ERR(oa_config->b_counter_regs)) { 3220 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3221 err = PTR_ERR(oa_config->b_counter_regs); 3222 goto reg_err; 3223 } 3224 3225 if (INTEL_GEN(dev_priv) < 8) { 3226 if (args->n_flex_regs != 0) { 3227 err = -EINVAL; 3228 goto reg_err; 3229 } 3230 } else { 3231 oa_config->flex_regs_len = args->n_flex_regs; 3232 oa_config->flex_regs = 3233 alloc_oa_regs(dev_priv, 3234 dev_priv->perf.oa.ops.is_valid_flex_reg, 3235 u64_to_user_ptr(args->flex_regs_ptr), 3236 args->n_flex_regs); 3237 3238 if (IS_ERR(oa_config->flex_regs)) { 3239 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3240 err = PTR_ERR(oa_config->flex_regs); 3241 goto reg_err; 3242 } 3243 } 3244 3245 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3246 if (err) 3247 goto reg_err; 3248 3249 /* We shouldn't have too many configs, so this iteration shouldn't be 3250 * too costly. 3251 */ 3252 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3253 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3254 DRM_DEBUG("OA config already exists with this uuid\n"); 3255 err = -EADDRINUSE; 3256 goto sysfs_err; 3257 } 3258 } 3259 3260 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3261 if (err) { 3262 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3263 goto sysfs_err; 3264 } 3265 3266 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3267 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3268 oa_config, 2, 3269 0, GFP_KERNEL); 3270 if (oa_config->id < 0) { 3271 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3272 err = oa_config->id; 3273 goto sysfs_err; 3274 } 3275 3276 mutex_unlock(&dev_priv->perf.metrics_lock); 3277 3278 return oa_config->id; 3279 3280 sysfs_err: 3281 mutex_unlock(&dev_priv->perf.metrics_lock); 3282 reg_err: 3283 put_oa_config(dev_priv, oa_config); 3284 DRM_DEBUG("Failed to add new OA config\n"); 3285 return err; 3286 } 3287 3288 /** 3289 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3290 * @dev: drm device 3291 * @data: ioctl data (pointer to u64 integer) copied from userspace 3292 * @file: drm file 3293 * 3294 * Configs can be removed while being used, the will stop appearing in sysfs 3295 * and their content will be freed when the stream using the config is closed. 3296 * 3297 * Returns: 0 on success or a negative error code on failure. 3298 */ 3299 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3300 struct drm_file *file) 3301 { 3302 struct drm_i915_private *dev_priv = dev->dev_private; 3303 u64 *arg = data; 3304 struct i915_oa_config *oa_config; 3305 int ret; 3306 3307 if (!dev_priv->perf.initialized) { 3308 DRM_DEBUG("i915 perf interface not available for this system\n"); 3309 return -ENOTSUPP; 3310 } 3311 3312 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3313 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3314 return -EACCES; 3315 } 3316 3317 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3318 if (ret) 3319 goto lock_err; 3320 3321 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3322 if (!oa_config) { 3323 DRM_DEBUG("Failed to remove unknown OA config\n"); 3324 ret = -ENOENT; 3325 goto config_err; 3326 } 3327 3328 GEM_BUG_ON(*arg != oa_config->id); 3329 3330 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3331 &oa_config->sysfs_metric); 3332 3333 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3334 put_oa_config(dev_priv, oa_config); 3335 3336 config_err: 3337 mutex_unlock(&dev_priv->perf.metrics_lock); 3338 lock_err: 3339 return ret; 3340 } 3341 3342 static struct ctl_table oa_table[] = { 3343 { 3344 .procname = "perf_stream_paranoid", 3345 .data = &i915_perf_stream_paranoid, 3346 .maxlen = sizeof(i915_perf_stream_paranoid), 3347 .mode = 0644, 3348 .proc_handler = proc_dointvec_minmax, 3349 .extra1 = &zero, 3350 .extra2 = &one, 3351 }, 3352 { 3353 .procname = "oa_max_sample_rate", 3354 .data = &i915_oa_max_sample_rate, 3355 .maxlen = sizeof(i915_oa_max_sample_rate), 3356 .mode = 0644, 3357 .proc_handler = proc_dointvec_minmax, 3358 .extra1 = &zero, 3359 .extra2 = &oa_sample_rate_hard_limit, 3360 }, 3361 {} 3362 }; 3363 3364 static struct ctl_table i915_root[] = { 3365 { 3366 .procname = "i915", 3367 .maxlen = 0, 3368 .mode = 0555, 3369 .child = oa_table, 3370 }, 3371 {} 3372 }; 3373 3374 static struct ctl_table dev_root[] = { 3375 { 3376 .procname = "dev", 3377 .maxlen = 0, 3378 .mode = 0555, 3379 .child = i915_root, 3380 }, 3381 {} 3382 }; 3383 3384 /** 3385 * i915_perf_init - initialize i915-perf state on module load 3386 * @dev_priv: i915 device instance 3387 * 3388 * Initializes i915-perf state without exposing anything to userspace. 3389 * 3390 * Note: i915-perf initialization is split into an 'init' and 'register' 3391 * phase with the i915_perf_register() exposing state to userspace. 3392 */ 3393 void i915_perf_init(struct drm_i915_private *dev_priv) 3394 { 3395 dev_priv->perf.oa.timestamp_frequency = 0; 3396 3397 if (IS_HASWELL(dev_priv)) { 3398 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3399 gen7_is_valid_b_counter_addr; 3400 dev_priv->perf.oa.ops.is_valid_mux_reg = 3401 hsw_is_valid_mux_addr; 3402 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3403 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer; 3404 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3405 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3406 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3407 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3408 dev_priv->perf.oa.ops.read = gen7_oa_read; 3409 dev_priv->perf.oa.ops.oa_hw_tail_read = 3410 gen7_oa_hw_tail_read; 3411 3412 dev_priv->perf.oa.timestamp_frequency = 12500000; 3413 3414 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3415 } else if (i915_modparams.enable_execlists) { 3416 /* Note: that although we could theoretically also support the 3417 * legacy ringbuffer mode on BDW (and earlier iterations of 3418 * this driver, before upstreaming did this) it didn't seem 3419 * worth the complexity to maintain now that BDW+ enable 3420 * execlist mode by default. 3421 */ 3422 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3423 gen7_is_valid_b_counter_addr; 3424 dev_priv->perf.oa.ops.is_valid_mux_reg = 3425 gen8_is_valid_mux_addr; 3426 dev_priv->perf.oa.ops.is_valid_flex_reg = 3427 gen8_is_valid_flex_addr; 3428 3429 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer; 3430 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3431 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3432 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3433 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3434 dev_priv->perf.oa.ops.read = gen8_oa_read; 3435 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3436 3437 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3438 3439 if (IS_GEN8(dev_priv)) { 3440 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3441 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3442 3443 dev_priv->perf.oa.timestamp_frequency = 12500000; 3444 3445 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3446 if (IS_CHERRYVIEW(dev_priv)) { 3447 dev_priv->perf.oa.ops.is_valid_mux_reg = 3448 chv_is_valid_mux_addr; 3449 } 3450 } else if (IS_GEN9(dev_priv)) { 3451 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3452 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3453 3454 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3455 3456 switch (dev_priv->info.platform) { 3457 case INTEL_BROXTON: 3458 case INTEL_GEMINILAKE: 3459 dev_priv->perf.oa.timestamp_frequency = 19200000; 3460 break; 3461 case INTEL_SKYLAKE: 3462 case INTEL_KABYLAKE: 3463 case INTEL_COFFEELAKE: 3464 dev_priv->perf.oa.timestamp_frequency = 12000000; 3465 break; 3466 default: 3467 /* Leave timestamp_frequency to 0 so we can 3468 * detect unsupported platforms. 3469 */ 3470 break; 3471 } 3472 } 3473 } 3474 3475 if (dev_priv->perf.oa.timestamp_frequency) { 3476 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3477 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3478 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3479 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3480 3481 INIT_LIST_HEAD(&dev_priv->perf.streams); 3482 mutex_init(&dev_priv->perf.lock); 3483 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3484 3485 oa_sample_rate_hard_limit = 3486 dev_priv->perf.oa.timestamp_frequency / 2; 3487 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3488 3489 mutex_init(&dev_priv->perf.metrics_lock); 3490 idr_init(&dev_priv->perf.metrics_idr); 3491 3492 dev_priv->perf.initialized = true; 3493 } 3494 } 3495 3496 static int destroy_config(int id, void *p, void *data) 3497 { 3498 struct drm_i915_private *dev_priv = data; 3499 struct i915_oa_config *oa_config = p; 3500 3501 put_oa_config(dev_priv, oa_config); 3502 3503 return 0; 3504 } 3505 3506 /** 3507 * i915_perf_fini - Counter part to i915_perf_init() 3508 * @dev_priv: i915 device instance 3509 */ 3510 void i915_perf_fini(struct drm_i915_private *dev_priv) 3511 { 3512 if (!dev_priv->perf.initialized) 3513 return; 3514 3515 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3516 idr_destroy(&dev_priv->perf.metrics_idr); 3517 3518 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3519 3520 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3521 3522 dev_priv->perf.initialized = false; 3523 } 3524