1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 #include "oa/i915_oa_hsw.h" 208 #include "oa/i915_oa_bdw.h" 209 #include "oa/i915_oa_chv.h" 210 #include "oa/i915_oa_sklgt2.h" 211 #include "oa/i915_oa_sklgt3.h" 212 #include "oa/i915_oa_sklgt4.h" 213 #include "oa/i915_oa_bxt.h" 214 #include "oa/i915_oa_kblgt2.h" 215 #include "oa/i915_oa_kblgt3.h" 216 #include "oa/i915_oa_glk.h" 217 #include "oa/i915_oa_cflgt2.h" 218 #include "oa/i915_oa_cflgt3.h" 219 #include "oa/i915_oa_cnl.h" 220 #include "oa/i915_oa_icl.h" 221 #include "oa/i915_oa_tgl.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 242 * read() attempts. 243 * 244 * In effect we define a tail pointer for reading that lags the real tail 245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 246 * time for the corresponding reports to become visible to the CPU. 247 * 248 * To manage this we actually track two tail pointers: 249 * 1) An 'aging' tail with an associated timestamp that is tracked until we 250 * can trust the corresponding data is visible to the CPU; at which point 251 * it is considered 'aged'. 252 * 2) An 'aged' tail that can be used for read()ing. 253 * 254 * The two separate pointers let us decouple read()s from tail pointer aging. 255 * 256 * The tail pointers are checked and updated at a limited rate within a hrtimer 257 * callback (the same callback that is used for delivering EPOLLIN events) 258 * 259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 260 * indicates that an updated tail pointer is needed. 261 * 262 * Most of the implementation details for this workaround are in 263 * oa_buffer_check_unlocked() and _append_oa_reports() 264 * 265 * Note for posterity: previously the driver used to define an effective tail 266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 268 * This was flawed considering that the OA unit may also automatically generate 269 * non-periodic reports (such as on context switch) or the OA unit may be 270 * enabled without any periodic sampling. 271 */ 272 #define OA_TAIL_MARGIN_NSEC 100000ULL 273 #define INVALID_TAIL_PTR 0xffffffff 274 275 /* frequency for checking whether the OA unit has written new reports to the 276 * circular OA buffer... 277 */ 278 #define POLL_FREQUENCY 200 279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 280 281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 282 static u32 i915_perf_stream_paranoid = true; 283 284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 285 * of the 64bit timestamp bits to trigger reports from) but there's currently 286 * no known use case for sampling as infrequently as once per 47 thousand years. 287 * 288 * Since the timestamps included in OA reports are only 32bits it seems 289 * reasonable to limit the OA exponent where it's still possible to account for 290 * overflow in OA report timestamps. 291 */ 292 #define OA_EXPONENT_MAX 31 293 294 #define INVALID_CTX_ID 0xffffffff 295 296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 297 #define OAREPORT_REASON_MASK 0x3f 298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 299 #define OAREPORT_REASON_SHIFT 19 300 #define OAREPORT_REASON_TIMER (1<<0) 301 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 302 #define OAREPORT_REASON_CLK_RATIO (1<<5) 303 304 305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 306 * 307 * The highest sampling frequency we can theoretically program the OA unit 308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 309 * 310 * Initialized just before we register the sysctl parameter. 311 */ 312 static int oa_sample_rate_hard_limit; 313 314 /* Theoretically we can program the OA unit to sample every 160ns but don't 315 * allow that by default unless root... 316 * 317 * The default threshold of 100000Hz is based on perf's similar 318 * kernel.perf_event_max_sample_rate sysctl parameter. 319 */ 320 static u32 i915_oa_max_sample_rate = 100000; 321 322 /* XXX: beware if future OA HW adds new report formats that the current 323 * code assumes all reports have a power-of-two size and ~(size - 1) can 324 * be used as a mask to align the OA tail pointer. 325 */ 326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A13] = { 0, 64 }, 328 [I915_OA_FORMAT_A29] = { 1, 128 }, 329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 331 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 338 [I915_OA_FORMAT_A12] = { 0, 64 }, 339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 341 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 342 }; 343 344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 346 }; 347 348 #define SAMPLE_OA_REPORT (1<<0) 349 350 /** 351 * struct perf_open_properties - for validated properties given to open a stream 352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 353 * @single_context: Whether a single or all gpu contexts should be monitored 354 * @hold_preemption: Whether the preemption is disabled for the filtered 355 * context 356 * @ctx_handle: A gem ctx handle for use with @single_context 357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 358 * @oa_format: An OA unit HW report format 359 * @oa_periodic: Whether to enable periodic OA unit sampling 360 * @oa_period_exponent: The OA unit sampling period is derived from this 361 * @engine: The engine (typically rcs0) being monitored by the OA unit 362 * 363 * As read_properties_unlocked() enumerates and validates the properties given 364 * to open a stream of metrics the configuration is built up in the structure 365 * which starts out zero initialized. 366 */ 367 struct perf_open_properties { 368 u32 sample_flags; 369 370 u64 single_context:1; 371 u64 hold_preemption:1; 372 u64 ctx_handle; 373 374 /* OA sampling state */ 375 int metrics_set; 376 int oa_format; 377 bool oa_periodic; 378 int oa_period_exponent; 379 380 struct intel_engine_cs *engine; 381 }; 382 383 struct i915_oa_config_bo { 384 struct llist_node node; 385 386 struct i915_oa_config *oa_config; 387 struct i915_vma *vma; 388 }; 389 390 static struct ctl_table_header *sysctl_header; 391 392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 393 394 void i915_oa_config_release(struct kref *ref) 395 { 396 struct i915_oa_config *oa_config = 397 container_of(ref, typeof(*oa_config), ref); 398 399 kfree(oa_config->flex_regs); 400 kfree(oa_config->b_counter_regs); 401 kfree(oa_config->mux_regs); 402 403 kfree_rcu(oa_config, rcu); 404 } 405 406 struct i915_oa_config * 407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 408 { 409 struct i915_oa_config *oa_config; 410 411 rcu_read_lock(); 412 if (metrics_set == 1) 413 oa_config = &perf->test_config; 414 else 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 435 GEN12_OAG_OATAILPTR_MASK; 436 } 437 438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 439 { 440 struct intel_uncore *uncore = stream->uncore; 441 442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 443 } 444 445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 446 { 447 struct intel_uncore *uncore = stream->uncore; 448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 449 450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 451 } 452 453 /** 454 * oa_buffer_check_unlocked - check for data and update tail ptr state 455 * @stream: i915 stream instance 456 * 457 * This is either called via fops (for blocking reads in user ctx) or the poll 458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 459 * if there is data available for userspace to read. 460 * 461 * This function is central to providing a workaround for the OA unit tail 462 * pointer having a race with respect to what data is visible to the CPU. 463 * It is responsible for reading tail pointers from the hardware and giving 464 * the pointers time to 'age' before they are made available for reading. 465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 466 * 467 * Besides returning true when there is data available to read() this function 468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 469 * and .aged_tail_idx state used for reading. 470 * 471 * Note: It's safe to read OA config state here unlocked, assuming that this is 472 * only called while the stream is enabled, while the global OA configuration 473 * can't be modified. 474 * 475 * Returns: %true if the OA buffer contains data, else %false 476 */ 477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 478 { 479 int report_size = stream->oa_buffer.format_size; 480 unsigned long flags; 481 unsigned int aged_idx; 482 u32 head, hw_tail, aged_tail, aging_tail; 483 u64 now; 484 485 /* We have to consider the (unlikely) possibility that read() errors 486 * could result in an OA buffer reset which might reset the head, 487 * tails[] and aged_tail state. 488 */ 489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 490 491 /* NB: The head we observe here might effectively be a little out of 492 * date (between head and tails[aged_idx].offset if there is currently 493 * a read() in progress. 494 */ 495 head = stream->oa_buffer.head; 496 497 aged_idx = stream->oa_buffer.aged_tail_idx; 498 aged_tail = stream->oa_buffer.tails[aged_idx].offset; 499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset; 500 501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 502 503 /* The tail pointer increases in 64 byte increments, 504 * not in report_size steps... 505 */ 506 hw_tail &= ~(report_size - 1); 507 508 now = ktime_get_mono_fast_ns(); 509 510 /* Update the aged tail 511 * 512 * Flip the tail pointer available for read()s once the aging tail is 513 * old enough to trust that the corresponding data will be visible to 514 * the CPU... 515 * 516 * Do this before updating the aging pointer in case we may be able to 517 * immediately start aging a new pointer too (if new data has become 518 * available) without needing to wait for a later hrtimer callback. 519 */ 520 if (aging_tail != INVALID_TAIL_PTR && 521 ((now - stream->oa_buffer.aging_timestamp) > 522 OA_TAIL_MARGIN_NSEC)) { 523 524 aged_idx ^= 1; 525 stream->oa_buffer.aged_tail_idx = aged_idx; 526 527 aged_tail = aging_tail; 528 529 /* Mark that we need a new pointer to start aging... */ 530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 531 aging_tail = INVALID_TAIL_PTR; 532 } 533 534 /* Update the aging tail 535 * 536 * We throttle aging tail updates until we have a new tail that 537 * represents >= one report more data than is already available for 538 * reading. This ensures there will be enough data for a successful 539 * read once this new pointer has aged and ensures we will give the new 540 * pointer time to age. 541 */ 542 if (aging_tail == INVALID_TAIL_PTR && 543 (aged_tail == INVALID_TAIL_PTR || 544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 545 struct i915_vma *vma = stream->oa_buffer.vma; 546 u32 gtt_offset = i915_ggtt_offset(vma); 547 548 /* Be paranoid and do a bounds check on the pointer read back 549 * from hardware, just in case some spurious hardware condition 550 * could put the tail out of bounds... 551 */ 552 if (hw_tail >= gtt_offset && 553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 554 stream->oa_buffer.tails[!aged_idx].offset = 555 aging_tail = hw_tail; 556 stream->oa_buffer.aging_timestamp = now; 557 } else { 558 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n", 559 hw_tail); 560 } 561 } 562 563 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 564 565 return aged_tail == INVALID_TAIL_PTR ? 566 false : OA_TAKEN(aged_tail, head) >= report_size; 567 } 568 569 /** 570 * append_oa_status - Appends a status record to a userspace read() buffer. 571 * @stream: An i915-perf stream opened for OA metrics 572 * @buf: destination buffer given by userspace 573 * @count: the number of bytes userspace wants to read 574 * @offset: (inout): the current position for writing into @buf 575 * @type: The kind of status to report to userspace 576 * 577 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 578 * into the userspace read() buffer. 579 * 580 * The @buf @offset will only be updated on success. 581 * 582 * Returns: 0 on success, negative error code on failure. 583 */ 584 static int append_oa_status(struct i915_perf_stream *stream, 585 char __user *buf, 586 size_t count, 587 size_t *offset, 588 enum drm_i915_perf_record_type type) 589 { 590 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 591 592 if ((count - *offset) < header.size) 593 return -ENOSPC; 594 595 if (copy_to_user(buf + *offset, &header, sizeof(header))) 596 return -EFAULT; 597 598 (*offset) += header.size; 599 600 return 0; 601 } 602 603 /** 604 * append_oa_sample - Copies single OA report into userspace read() buffer. 605 * @stream: An i915-perf stream opened for OA metrics 606 * @buf: destination buffer given by userspace 607 * @count: the number of bytes userspace wants to read 608 * @offset: (inout): the current position for writing into @buf 609 * @report: A single OA report to (optionally) include as part of the sample 610 * 611 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 612 * properties when opening a stream, tracked as `stream->sample_flags`. This 613 * function copies the requested components of a single sample to the given 614 * read() @buf. 615 * 616 * The @buf @offset will only be updated on success. 617 * 618 * Returns: 0 on success, negative error code on failure. 619 */ 620 static int append_oa_sample(struct i915_perf_stream *stream, 621 char __user *buf, 622 size_t count, 623 size_t *offset, 624 const u8 *report) 625 { 626 int report_size = stream->oa_buffer.format_size; 627 struct drm_i915_perf_record_header header; 628 u32 sample_flags = stream->sample_flags; 629 630 header.type = DRM_I915_PERF_RECORD_SAMPLE; 631 header.pad = 0; 632 header.size = stream->sample_size; 633 634 if ((count - *offset) < header.size) 635 return -ENOSPC; 636 637 buf += *offset; 638 if (copy_to_user(buf, &header, sizeof(header))) 639 return -EFAULT; 640 buf += sizeof(header); 641 642 if (sample_flags & SAMPLE_OA_REPORT) { 643 if (copy_to_user(buf, report, report_size)) 644 return -EFAULT; 645 } 646 647 (*offset) += header.size; 648 649 return 0; 650 } 651 652 /** 653 * Copies all buffered OA reports into userspace read() buffer. 654 * @stream: An i915-perf stream opened for OA metrics 655 * @buf: destination buffer given by userspace 656 * @count: the number of bytes userspace wants to read 657 * @offset: (inout): the current position for writing into @buf 658 * 659 * Notably any error condition resulting in a short read (-%ENOSPC or 660 * -%EFAULT) will be returned even though one or more records may 661 * have been successfully copied. In this case it's up to the caller 662 * to decide if the error should be squashed before returning to 663 * userspace. 664 * 665 * Note: reports are consumed from the head, and appended to the 666 * tail, so the tail chases the head?... If you think that's mad 667 * and back-to-front you're not alone, but this follows the 668 * Gen PRM naming convention. 669 * 670 * Returns: 0 on success, negative error code on failure. 671 */ 672 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 673 char __user *buf, 674 size_t count, 675 size_t *offset) 676 { 677 struct intel_uncore *uncore = stream->uncore; 678 int report_size = stream->oa_buffer.format_size; 679 u8 *oa_buf_base = stream->oa_buffer.vaddr; 680 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 681 u32 mask = (OA_BUFFER_SIZE - 1); 682 size_t start_offset = *offset; 683 unsigned long flags; 684 unsigned int aged_tail_idx; 685 u32 head, tail; 686 u32 taken; 687 int ret = 0; 688 689 if (WARN_ON(!stream->enabled)) 690 return -EIO; 691 692 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 693 694 head = stream->oa_buffer.head; 695 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 696 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 697 698 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 699 700 /* 701 * An invalid tail pointer here means we're still waiting for the poll 702 * hrtimer callback to give us a pointer 703 */ 704 if (tail == INVALID_TAIL_PTR) 705 return -EAGAIN; 706 707 /* 708 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 709 * while indexing relative to oa_buf_base. 710 */ 711 head -= gtt_offset; 712 tail -= gtt_offset; 713 714 /* 715 * An out of bounds or misaligned head or tail pointer implies a driver 716 * bug since we validate + align the tail pointers we read from the 717 * hardware and we are in full control of the head pointer which should 718 * only be incremented by multiples of the report size (notably also 719 * all a power of two). 720 */ 721 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 722 tail > OA_BUFFER_SIZE || tail % report_size, 723 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 724 head, tail)) 725 return -EIO; 726 727 728 for (/* none */; 729 (taken = OA_TAKEN(tail, head)); 730 head = (head + report_size) & mask) { 731 u8 *report = oa_buf_base + head; 732 u32 *report32 = (void *)report; 733 u32 ctx_id; 734 u32 reason; 735 736 /* 737 * All the report sizes factor neatly into the buffer 738 * size so we never expect to see a report split 739 * between the beginning and end of the buffer. 740 * 741 * Given the initial alignment check a misalignment 742 * here would imply a driver bug that would result 743 * in an overrun. 744 */ 745 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 746 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 747 break; 748 } 749 750 /* 751 * The reason field includes flags identifying what 752 * triggered this specific report (mostly timer 753 * triggered or e.g. due to a context switch). 754 * 755 * This field is never expected to be zero so we can 756 * check that the report isn't invalid before copying 757 * it to userspace... 758 */ 759 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 760 (IS_GEN(stream->perf->i915, 12) ? 761 OAREPORT_REASON_MASK_EXTENDED : 762 OAREPORT_REASON_MASK)); 763 if (reason == 0) { 764 if (__ratelimit(&stream->perf->spurious_report_rs)) 765 DRM_NOTE("Skipping spurious, invalid OA report\n"); 766 continue; 767 } 768 769 ctx_id = report32[2] & stream->specific_ctx_id_mask; 770 771 /* 772 * Squash whatever is in the CTX_ID field if it's marked as 773 * invalid to be sure we avoid false-positive, single-context 774 * filtering below... 775 * 776 * Note: that we don't clear the valid_ctx_bit so userspace can 777 * understand that the ID has been squashed by the kernel. 778 */ 779 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 780 INTEL_GEN(stream->perf->i915) <= 11) 781 ctx_id = report32[2] = INVALID_CTX_ID; 782 783 /* 784 * NB: For Gen 8 the OA unit no longer supports clock gating 785 * off for a specific context and the kernel can't securely 786 * stop the counters from updating as system-wide / global 787 * values. 788 * 789 * Automatic reports now include a context ID so reports can be 790 * filtered on the cpu but it's not worth trying to 791 * automatically subtract/hide counter progress for other 792 * contexts while filtering since we can't stop userspace 793 * issuing MI_REPORT_PERF_COUNT commands which would still 794 * provide a side-band view of the real values. 795 * 796 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 797 * to normalize counters for a single filtered context then it 798 * needs be forwarded bookend context-switch reports so that it 799 * can track switches in between MI_REPORT_PERF_COUNT commands 800 * and can itself subtract/ignore the progress of counters 801 * associated with other contexts. Note that the hardware 802 * automatically triggers reports when switching to a new 803 * context which are tagged with the ID of the newly active 804 * context. To avoid the complexity (and likely fragility) of 805 * reading ahead while parsing reports to try and minimize 806 * forwarding redundant context switch reports (i.e. between 807 * other, unrelated contexts) we simply elect to forward them 808 * all. 809 * 810 * We don't rely solely on the reason field to identify context 811 * switches since it's not-uncommon for periodic samples to 812 * identify a switch before any 'context switch' report. 813 */ 814 if (!stream->perf->exclusive_stream->ctx || 815 stream->specific_ctx_id == ctx_id || 816 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 817 reason & OAREPORT_REASON_CTX_SWITCH) { 818 819 /* 820 * While filtering for a single context we avoid 821 * leaking the IDs of other contexts. 822 */ 823 if (stream->perf->exclusive_stream->ctx && 824 stream->specific_ctx_id != ctx_id) { 825 report32[2] = INVALID_CTX_ID; 826 } 827 828 ret = append_oa_sample(stream, buf, count, offset, 829 report); 830 if (ret) 831 break; 832 833 stream->oa_buffer.last_ctx_id = ctx_id; 834 } 835 836 /* 837 * The above reason field sanity check is based on 838 * the assumption that the OA buffer is initially 839 * zeroed and we reset the field after copying so the 840 * check is still meaningful once old reports start 841 * being overwritten. 842 */ 843 report32[0] = 0; 844 } 845 846 if (start_offset != *offset) { 847 i915_reg_t oaheadptr; 848 849 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 850 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 851 852 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 853 854 /* 855 * We removed the gtt_offset for the copy loop above, indexing 856 * relative to oa_buf_base so put back here... 857 */ 858 head += gtt_offset; 859 intel_uncore_write(uncore, oaheadptr, 860 head & GEN12_OAG_OAHEADPTR_MASK); 861 stream->oa_buffer.head = head; 862 863 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 864 } 865 866 return ret; 867 } 868 869 /** 870 * gen8_oa_read - copy status records then buffered OA reports 871 * @stream: An i915-perf stream opened for OA metrics 872 * @buf: destination buffer given by userspace 873 * @count: the number of bytes userspace wants to read 874 * @offset: (inout): the current position for writing into @buf 875 * 876 * Checks OA unit status registers and if necessary appends corresponding 877 * status records for userspace (such as for a buffer full condition) and then 878 * initiate appending any buffered OA reports. 879 * 880 * Updates @offset according to the number of bytes successfully copied into 881 * the userspace buffer. 882 * 883 * NB: some data may be successfully copied to the userspace buffer 884 * even if an error is returned, and this is reflected in the 885 * updated @offset. 886 * 887 * Returns: zero on success or a negative error code 888 */ 889 static int gen8_oa_read(struct i915_perf_stream *stream, 890 char __user *buf, 891 size_t count, 892 size_t *offset) 893 { 894 struct intel_uncore *uncore = stream->uncore; 895 u32 oastatus; 896 i915_reg_t oastatus_reg; 897 int ret; 898 899 if (WARN_ON(!stream->oa_buffer.vaddr)) 900 return -EIO; 901 902 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 903 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 904 905 oastatus = intel_uncore_read(uncore, oastatus_reg); 906 907 /* 908 * We treat OABUFFER_OVERFLOW as a significant error: 909 * 910 * Although theoretically we could handle this more gracefully 911 * sometimes, some Gens don't correctly suppress certain 912 * automatically triggered reports in this condition and so we 913 * have to assume that old reports are now being trampled 914 * over. 915 * 916 * Considering how we don't currently give userspace control 917 * over the OA buffer size and always configure a large 16MB 918 * buffer, then a buffer overflow does anyway likely indicate 919 * that something has gone quite badly wrong. 920 */ 921 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 922 ret = append_oa_status(stream, buf, count, offset, 923 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 924 if (ret) 925 return ret; 926 927 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 928 stream->period_exponent); 929 930 stream->perf->ops.oa_disable(stream); 931 stream->perf->ops.oa_enable(stream); 932 933 /* 934 * Note: .oa_enable() is expected to re-init the oabuffer and 935 * reset GEN8_OASTATUS for us 936 */ 937 oastatus = intel_uncore_read(uncore, oastatus_reg); 938 } 939 940 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 941 ret = append_oa_status(stream, buf, count, offset, 942 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 943 if (ret) 944 return ret; 945 intel_uncore_write(uncore, oastatus_reg, 946 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 947 } 948 949 return gen8_append_oa_reports(stream, buf, count, offset); 950 } 951 952 /** 953 * Copies all buffered OA reports into userspace read() buffer. 954 * @stream: An i915-perf stream opened for OA metrics 955 * @buf: destination buffer given by userspace 956 * @count: the number of bytes userspace wants to read 957 * @offset: (inout): the current position for writing into @buf 958 * 959 * Notably any error condition resulting in a short read (-%ENOSPC or 960 * -%EFAULT) will be returned even though one or more records may 961 * have been successfully copied. In this case it's up to the caller 962 * to decide if the error should be squashed before returning to 963 * userspace. 964 * 965 * Note: reports are consumed from the head, and appended to the 966 * tail, so the tail chases the head?... If you think that's mad 967 * and back-to-front you're not alone, but this follows the 968 * Gen PRM naming convention. 969 * 970 * Returns: 0 on success, negative error code on failure. 971 */ 972 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 973 char __user *buf, 974 size_t count, 975 size_t *offset) 976 { 977 struct intel_uncore *uncore = stream->uncore; 978 int report_size = stream->oa_buffer.format_size; 979 u8 *oa_buf_base = stream->oa_buffer.vaddr; 980 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 981 u32 mask = (OA_BUFFER_SIZE - 1); 982 size_t start_offset = *offset; 983 unsigned long flags; 984 unsigned int aged_tail_idx; 985 u32 head, tail; 986 u32 taken; 987 int ret = 0; 988 989 if (WARN_ON(!stream->enabled)) 990 return -EIO; 991 992 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 993 994 head = stream->oa_buffer.head; 995 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 996 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 997 998 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 999 1000 /* An invalid tail pointer here means we're still waiting for the poll 1001 * hrtimer callback to give us a pointer 1002 */ 1003 if (tail == INVALID_TAIL_PTR) 1004 return -EAGAIN; 1005 1006 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1007 * while indexing relative to oa_buf_base. 1008 */ 1009 head -= gtt_offset; 1010 tail -= gtt_offset; 1011 1012 /* An out of bounds or misaligned head or tail pointer implies a driver 1013 * bug since we validate + align the tail pointers we read from the 1014 * hardware and we are in full control of the head pointer which should 1015 * only be incremented by multiples of the report size (notably also 1016 * all a power of two). 1017 */ 1018 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 1019 tail > OA_BUFFER_SIZE || tail % report_size, 1020 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1021 head, tail)) 1022 return -EIO; 1023 1024 1025 for (/* none */; 1026 (taken = OA_TAKEN(tail, head)); 1027 head = (head + report_size) & mask) { 1028 u8 *report = oa_buf_base + head; 1029 u32 *report32 = (void *)report; 1030 1031 /* All the report sizes factor neatly into the buffer 1032 * size so we never expect to see a report split 1033 * between the beginning and end of the buffer. 1034 * 1035 * Given the initial alignment check a misalignment 1036 * here would imply a driver bug that would result 1037 * in an overrun. 1038 */ 1039 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1040 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1041 break; 1042 } 1043 1044 /* The report-ID field for periodic samples includes 1045 * some undocumented flags related to what triggered 1046 * the report and is never expected to be zero so we 1047 * can check that the report isn't invalid before 1048 * copying it to userspace... 1049 */ 1050 if (report32[0] == 0) { 1051 if (__ratelimit(&stream->perf->spurious_report_rs)) 1052 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1053 continue; 1054 } 1055 1056 ret = append_oa_sample(stream, buf, count, offset, report); 1057 if (ret) 1058 break; 1059 1060 /* The above report-id field sanity check is based on 1061 * the assumption that the OA buffer is initially 1062 * zeroed and we reset the field after copying so the 1063 * check is still meaningful once old reports start 1064 * being overwritten. 1065 */ 1066 report32[0] = 0; 1067 } 1068 1069 if (start_offset != *offset) { 1070 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1071 1072 /* We removed the gtt_offset for the copy loop above, indexing 1073 * relative to oa_buf_base so put back here... 1074 */ 1075 head += gtt_offset; 1076 1077 intel_uncore_write(uncore, GEN7_OASTATUS2, 1078 (head & GEN7_OASTATUS2_HEAD_MASK) | 1079 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1080 stream->oa_buffer.head = head; 1081 1082 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1083 } 1084 1085 return ret; 1086 } 1087 1088 /** 1089 * gen7_oa_read - copy status records then buffered OA reports 1090 * @stream: An i915-perf stream opened for OA metrics 1091 * @buf: destination buffer given by userspace 1092 * @count: the number of bytes userspace wants to read 1093 * @offset: (inout): the current position for writing into @buf 1094 * 1095 * Checks Gen 7 specific OA unit status registers and if necessary appends 1096 * corresponding status records for userspace (such as for a buffer full 1097 * condition) and then initiate appending any buffered OA reports. 1098 * 1099 * Updates @offset according to the number of bytes successfully copied into 1100 * the userspace buffer. 1101 * 1102 * Returns: zero on success or a negative error code 1103 */ 1104 static int gen7_oa_read(struct i915_perf_stream *stream, 1105 char __user *buf, 1106 size_t count, 1107 size_t *offset) 1108 { 1109 struct intel_uncore *uncore = stream->uncore; 1110 u32 oastatus1; 1111 int ret; 1112 1113 if (WARN_ON(!stream->oa_buffer.vaddr)) 1114 return -EIO; 1115 1116 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1117 1118 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1119 * bits while the OA unit is enabled (while the tail pointer 1120 * may be updated asynchronously) so we ignore status bits 1121 * that have already been reported to userspace. 1122 */ 1123 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1124 1125 /* We treat OABUFFER_OVERFLOW as a significant error: 1126 * 1127 * - The status can be interpreted to mean that the buffer is 1128 * currently full (with a higher precedence than OA_TAKEN() 1129 * which will start to report a near-empty buffer after an 1130 * overflow) but it's awkward that we can't clear the status 1131 * on Haswell, so without a reset we won't be able to catch 1132 * the state again. 1133 * 1134 * - Since it also implies the HW has started overwriting old 1135 * reports it may also affect our sanity checks for invalid 1136 * reports when copying to userspace that assume new reports 1137 * are being written to cleared memory. 1138 * 1139 * - In the future we may want to introduce a flight recorder 1140 * mode where the driver will automatically maintain a safe 1141 * guard band between head/tail, avoiding this overflow 1142 * condition, but we avoid the added driver complexity for 1143 * now. 1144 */ 1145 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1146 ret = append_oa_status(stream, buf, count, offset, 1147 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1148 if (ret) 1149 return ret; 1150 1151 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1152 stream->period_exponent); 1153 1154 stream->perf->ops.oa_disable(stream); 1155 stream->perf->ops.oa_enable(stream); 1156 1157 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1158 } 1159 1160 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1161 ret = append_oa_status(stream, buf, count, offset, 1162 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1163 if (ret) 1164 return ret; 1165 stream->perf->gen7_latched_oastatus1 |= 1166 GEN7_OASTATUS1_REPORT_LOST; 1167 } 1168 1169 return gen7_append_oa_reports(stream, buf, count, offset); 1170 } 1171 1172 /** 1173 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1174 * @stream: An i915-perf stream opened for OA metrics 1175 * 1176 * Called when userspace tries to read() from a blocking stream FD opened 1177 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1178 * OA buffer and wakes us. 1179 * 1180 * Note: it's acceptable to have this return with some false positives 1181 * since any subsequent read handling will return -EAGAIN if there isn't 1182 * really data ready for userspace yet. 1183 * 1184 * Returns: zero on success or a negative error code 1185 */ 1186 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1187 { 1188 /* We would wait indefinitely if periodic sampling is not enabled */ 1189 if (!stream->periodic) 1190 return -EIO; 1191 1192 return wait_event_interruptible(stream->poll_wq, 1193 oa_buffer_check_unlocked(stream)); 1194 } 1195 1196 /** 1197 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1198 * @stream: An i915-perf stream opened for OA metrics 1199 * @file: An i915 perf stream file 1200 * @wait: poll() state table 1201 * 1202 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1203 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1204 * when it sees data ready to read in the circular OA buffer. 1205 */ 1206 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1207 struct file *file, 1208 poll_table *wait) 1209 { 1210 poll_wait(file, &stream->poll_wq, wait); 1211 } 1212 1213 /** 1214 * i915_oa_read - just calls through to &i915_oa_ops->read 1215 * @stream: An i915-perf stream opened for OA metrics 1216 * @buf: destination buffer given by userspace 1217 * @count: the number of bytes userspace wants to read 1218 * @offset: (inout): the current position for writing into @buf 1219 * 1220 * Updates @offset according to the number of bytes successfully copied into 1221 * the userspace buffer. 1222 * 1223 * Returns: zero on success or a negative error code 1224 */ 1225 static int i915_oa_read(struct i915_perf_stream *stream, 1226 char __user *buf, 1227 size_t count, 1228 size_t *offset) 1229 { 1230 return stream->perf->ops.read(stream, buf, count, offset); 1231 } 1232 1233 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1234 { 1235 struct i915_gem_engines_iter it; 1236 struct i915_gem_context *ctx = stream->ctx; 1237 struct intel_context *ce; 1238 int err; 1239 1240 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1241 if (ce->engine != stream->engine) /* first match! */ 1242 continue; 1243 1244 /* 1245 * As the ID is the gtt offset of the context's vma we 1246 * pin the vma to ensure the ID remains fixed. 1247 */ 1248 err = intel_context_pin(ce); 1249 if (err == 0) { 1250 stream->pinned_ctx = ce; 1251 break; 1252 } 1253 } 1254 i915_gem_context_unlock_engines(ctx); 1255 1256 return stream->pinned_ctx; 1257 } 1258 1259 /** 1260 * oa_get_render_ctx_id - determine and hold ctx hw id 1261 * @stream: An i915-perf stream opened for OA metrics 1262 * 1263 * Determine the render context hw id, and ensure it remains fixed for the 1264 * lifetime of the stream. This ensures that we don't have to worry about 1265 * updating the context ID in OACONTROL on the fly. 1266 * 1267 * Returns: zero on success or a negative error code 1268 */ 1269 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1270 { 1271 struct intel_context *ce; 1272 1273 ce = oa_pin_context(stream); 1274 if (IS_ERR(ce)) 1275 return PTR_ERR(ce); 1276 1277 switch (INTEL_GEN(ce->engine->i915)) { 1278 case 7: { 1279 /* 1280 * On Haswell we don't do any post processing of the reports 1281 * and don't need to use the mask. 1282 */ 1283 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1284 stream->specific_ctx_id_mask = 0; 1285 break; 1286 } 1287 1288 case 8: 1289 case 9: 1290 case 10: 1291 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1292 stream->specific_ctx_id_mask = 1293 (1U << GEN8_CTX_ID_WIDTH) - 1; 1294 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1295 } else { 1296 /* 1297 * When using GuC, the context descriptor we write in 1298 * i915 is read by GuC and rewritten before it's 1299 * actually written into the hardware. The LRCA is 1300 * what is put into the context id field of the 1301 * context descriptor by GuC. Because it's aligned to 1302 * a page, the lower 12bits are always at 0 and 1303 * dropped by GuC. They won't be part of the context 1304 * ID in the OA reports, so squash those lower bits. 1305 */ 1306 stream->specific_ctx_id = 1307 lower_32_bits(ce->lrc_desc) >> 12; 1308 1309 /* 1310 * GuC uses the top bit to signal proxy submission, so 1311 * ignore that bit. 1312 */ 1313 stream->specific_ctx_id_mask = 1314 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1315 } 1316 break; 1317 1318 case 11: 1319 case 12: { 1320 stream->specific_ctx_id_mask = 1321 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1322 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1323 break; 1324 } 1325 1326 default: 1327 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1328 } 1329 1330 ce->tag = stream->specific_ctx_id_mask; 1331 1332 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1333 stream->specific_ctx_id, 1334 stream->specific_ctx_id_mask); 1335 1336 return 0; 1337 } 1338 1339 /** 1340 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1341 * @stream: An i915-perf stream opened for OA metrics 1342 * 1343 * In case anything needed doing to ensure the context HW ID would remain valid 1344 * for the lifetime of the stream, then that can be undone here. 1345 */ 1346 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1347 { 1348 struct intel_context *ce; 1349 1350 ce = fetch_and_zero(&stream->pinned_ctx); 1351 if (ce) { 1352 ce->tag = 0; /* recomputed on next submission after parking */ 1353 intel_context_unpin(ce); 1354 } 1355 1356 stream->specific_ctx_id = INVALID_CTX_ID; 1357 stream->specific_ctx_id_mask = 0; 1358 } 1359 1360 static void 1361 free_oa_buffer(struct i915_perf_stream *stream) 1362 { 1363 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1364 I915_VMA_RELEASE_MAP); 1365 1366 stream->oa_buffer.vaddr = NULL; 1367 } 1368 1369 static void 1370 free_oa_configs(struct i915_perf_stream *stream) 1371 { 1372 struct i915_oa_config_bo *oa_bo, *tmp; 1373 1374 i915_oa_config_put(stream->oa_config); 1375 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1376 free_oa_config_bo(oa_bo); 1377 } 1378 1379 static void 1380 free_noa_wait(struct i915_perf_stream *stream) 1381 { 1382 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1383 } 1384 1385 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1386 { 1387 struct i915_perf *perf = stream->perf; 1388 1389 BUG_ON(stream != perf->exclusive_stream); 1390 1391 /* 1392 * Unset exclusive_stream first, it will be checked while disabling 1393 * the metric set on gen8+. 1394 */ 1395 perf->exclusive_stream = NULL; 1396 perf->ops.disable_metric_set(stream); 1397 1398 free_oa_buffer(stream); 1399 1400 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1401 intel_engine_pm_put(stream->engine); 1402 1403 if (stream->ctx) 1404 oa_put_render_ctx_id(stream); 1405 1406 free_oa_configs(stream); 1407 free_noa_wait(stream); 1408 1409 if (perf->spurious_report_rs.missed) { 1410 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1411 perf->spurious_report_rs.missed); 1412 } 1413 } 1414 1415 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1416 { 1417 struct intel_uncore *uncore = stream->uncore; 1418 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1419 unsigned long flags; 1420 1421 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1422 1423 /* Pre-DevBDW: OABUFFER must be set with counters off, 1424 * before OASTATUS1, but after OASTATUS2 1425 */ 1426 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1427 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1428 stream->oa_buffer.head = gtt_offset; 1429 1430 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1431 1432 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1433 gtt_offset | OABUFFER_SIZE_16M); 1434 1435 /* Mark that we need updated tail pointers to read from... */ 1436 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1437 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1438 1439 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1440 1441 /* On Haswell we have to track which OASTATUS1 flags we've 1442 * already seen since they can't be cleared while periodic 1443 * sampling is enabled. 1444 */ 1445 stream->perf->gen7_latched_oastatus1 = 0; 1446 1447 /* NB: although the OA buffer will initially be allocated 1448 * zeroed via shmfs (and so this memset is redundant when 1449 * first allocating), we may re-init the OA buffer, either 1450 * when re-enabling a stream or in error/reset paths. 1451 * 1452 * The reason we clear the buffer for each re-init is for the 1453 * sanity check in gen7_append_oa_reports() that looks at the 1454 * report-id field to make sure it's non-zero which relies on 1455 * the assumption that new reports are being written to zeroed 1456 * memory... 1457 */ 1458 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1459 1460 stream->pollin = false; 1461 } 1462 1463 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1464 { 1465 struct intel_uncore *uncore = stream->uncore; 1466 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1470 1471 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1472 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1473 stream->oa_buffer.head = gtt_offset; 1474 1475 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1476 1477 /* 1478 * PRM says: 1479 * 1480 * "This MMIO must be set before the OATAILPTR 1481 * register and after the OAHEADPTR register. This is 1482 * to enable proper functionality of the overflow 1483 * bit." 1484 */ 1485 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1486 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1487 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1488 1489 /* Mark that we need updated tail pointers to read from... */ 1490 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1491 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1492 1493 /* 1494 * Reset state used to recognise context switches, affecting which 1495 * reports we will forward to userspace while filtering for a single 1496 * context. 1497 */ 1498 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1499 1500 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1501 1502 /* 1503 * NB: although the OA buffer will initially be allocated 1504 * zeroed via shmfs (and so this memset is redundant when 1505 * first allocating), we may re-init the OA buffer, either 1506 * when re-enabling a stream or in error/reset paths. 1507 * 1508 * The reason we clear the buffer for each re-init is for the 1509 * sanity check in gen8_append_oa_reports() that looks at the 1510 * reason field to make sure it's non-zero which relies on 1511 * the assumption that new reports are being written to zeroed 1512 * memory... 1513 */ 1514 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1515 1516 stream->pollin = false; 1517 } 1518 1519 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1520 { 1521 struct intel_uncore *uncore = stream->uncore; 1522 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1523 unsigned long flags; 1524 1525 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1526 1527 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1528 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1529 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1530 stream->oa_buffer.head = gtt_offset; 1531 1532 /* 1533 * PRM says: 1534 * 1535 * "This MMIO must be set before the OATAILPTR 1536 * register and after the OAHEADPTR register. This is 1537 * to enable proper functionality of the overflow 1538 * bit." 1539 */ 1540 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1541 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1542 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1543 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1544 1545 /* Mark that we need updated tail pointers to read from... */ 1546 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1547 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1548 1549 /* 1550 * Reset state used to recognise context switches, affecting which 1551 * reports we will forward to userspace while filtering for a single 1552 * context. 1553 */ 1554 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1555 1556 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1557 1558 /* 1559 * NB: although the OA buffer will initially be allocated 1560 * zeroed via shmfs (and so this memset is redundant when 1561 * first allocating), we may re-init the OA buffer, either 1562 * when re-enabling a stream or in error/reset paths. 1563 * 1564 * The reason we clear the buffer for each re-init is for the 1565 * sanity check in gen8_append_oa_reports() that looks at the 1566 * reason field to make sure it's non-zero which relies on 1567 * the assumption that new reports are being written to zeroed 1568 * memory... 1569 */ 1570 memset(stream->oa_buffer.vaddr, 0, 1571 stream->oa_buffer.vma->size); 1572 1573 stream->pollin = false; 1574 } 1575 1576 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1577 { 1578 struct drm_i915_gem_object *bo; 1579 struct i915_vma *vma; 1580 int ret; 1581 1582 if (WARN_ON(stream->oa_buffer.vma)) 1583 return -ENODEV; 1584 1585 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1586 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1587 1588 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1589 if (IS_ERR(bo)) { 1590 DRM_ERROR("Failed to allocate OA buffer\n"); 1591 return PTR_ERR(bo); 1592 } 1593 1594 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1595 1596 /* PreHSW required 512K alignment, HSW requires 16M */ 1597 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1598 if (IS_ERR(vma)) { 1599 ret = PTR_ERR(vma); 1600 goto err_unref; 1601 } 1602 stream->oa_buffer.vma = vma; 1603 1604 stream->oa_buffer.vaddr = 1605 i915_gem_object_pin_map(bo, I915_MAP_WB); 1606 if (IS_ERR(stream->oa_buffer.vaddr)) { 1607 ret = PTR_ERR(stream->oa_buffer.vaddr); 1608 goto err_unpin; 1609 } 1610 1611 return 0; 1612 1613 err_unpin: 1614 __i915_vma_unpin(vma); 1615 1616 err_unref: 1617 i915_gem_object_put(bo); 1618 1619 stream->oa_buffer.vaddr = NULL; 1620 stream->oa_buffer.vma = NULL; 1621 1622 return ret; 1623 } 1624 1625 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1626 bool save, i915_reg_t reg, u32 offset, 1627 u32 dword_count) 1628 { 1629 u32 cmd; 1630 u32 d; 1631 1632 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1633 if (INTEL_GEN(stream->perf->i915) >= 8) 1634 cmd++; 1635 1636 for (d = 0; d < dword_count; d++) { 1637 *cs++ = cmd; 1638 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1639 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1640 offset) + 4 * d; 1641 *cs++ = 0; 1642 } 1643 1644 return cs; 1645 } 1646 1647 static int alloc_noa_wait(struct i915_perf_stream *stream) 1648 { 1649 struct drm_i915_private *i915 = stream->perf->i915; 1650 struct drm_i915_gem_object *bo; 1651 struct i915_vma *vma; 1652 const u64 delay_ticks = 0xffffffffffffffff - 1653 DIV64_U64_ROUND_UP( 1654 atomic64_read(&stream->perf->noa_programming_delay) * 1655 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz, 1656 1000000ull); 1657 const u32 base = stream->engine->mmio_base; 1658 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1659 u32 *batch, *ts0, *cs, *jump; 1660 int ret, i; 1661 enum { 1662 START_TS, 1663 NOW_TS, 1664 DELTA_TS, 1665 JUMP_PREDICATE, 1666 DELTA_TARGET, 1667 N_CS_GPR 1668 }; 1669 1670 bo = i915_gem_object_create_internal(i915, 4096); 1671 if (IS_ERR(bo)) { 1672 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n"); 1673 return PTR_ERR(bo); 1674 } 1675 1676 /* 1677 * We pin in GGTT because we jump into this buffer now because 1678 * multiple OA config BOs will have a jump to this address and it 1679 * needs to be fixed during the lifetime of the i915/perf stream. 1680 */ 1681 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1682 if (IS_ERR(vma)) { 1683 ret = PTR_ERR(vma); 1684 goto err_unref; 1685 } 1686 1687 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1688 if (IS_ERR(batch)) { 1689 ret = PTR_ERR(batch); 1690 goto err_unpin; 1691 } 1692 1693 /* Save registers. */ 1694 for (i = 0; i < N_CS_GPR; i++) 1695 cs = save_restore_register( 1696 stream, cs, true /* save */, CS_GPR(i), 1697 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1698 cs = save_restore_register( 1699 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1700 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1701 1702 /* First timestamp snapshot location. */ 1703 ts0 = cs; 1704 1705 /* 1706 * Initial snapshot of the timestamp register to implement the wait. 1707 * We work with 32b values, so clear out the top 32b bits of the 1708 * register because the ALU works 64bits. 1709 */ 1710 *cs++ = MI_LOAD_REGISTER_IMM(1); 1711 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1712 *cs++ = 0; 1713 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1714 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1715 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1716 1717 /* 1718 * This is the location we're going to jump back into until the 1719 * required amount of time has passed. 1720 */ 1721 jump = cs; 1722 1723 /* 1724 * Take another snapshot of the timestamp register. Take care to clear 1725 * up the top 32bits of CS_GPR(1) as we're using it for other 1726 * operations below. 1727 */ 1728 *cs++ = MI_LOAD_REGISTER_IMM(1); 1729 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1730 *cs++ = 0; 1731 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1732 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1733 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1734 1735 /* 1736 * Do a diff between the 2 timestamps and store the result back into 1737 * CS_GPR(1). 1738 */ 1739 *cs++ = MI_MATH(5); 1740 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1741 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1742 *cs++ = MI_MATH_SUB; 1743 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1744 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1745 1746 /* 1747 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1748 * timestamp have rolled over the 32bits) into the predicate register 1749 * to be used for the predicated jump. 1750 */ 1751 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1752 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1753 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1754 1755 /* Restart from the beginning if we had timestamps roll over. */ 1756 *cs++ = (INTEL_GEN(i915) < 8 ? 1757 MI_BATCH_BUFFER_START : 1758 MI_BATCH_BUFFER_START_GEN8) | 1759 MI_BATCH_PREDICATE; 1760 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1761 *cs++ = 0; 1762 1763 /* 1764 * Now add the diff between to previous timestamps and add it to : 1765 * (((1 * << 64) - 1) - delay_ns) 1766 * 1767 * When the Carry Flag contains 1 this means the elapsed time is 1768 * longer than the expected delay, and we can exit the wait loop. 1769 */ 1770 *cs++ = MI_LOAD_REGISTER_IMM(2); 1771 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1772 *cs++ = lower_32_bits(delay_ticks); 1773 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1774 *cs++ = upper_32_bits(delay_ticks); 1775 1776 *cs++ = MI_MATH(4); 1777 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1778 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1779 *cs++ = MI_MATH_ADD; 1780 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1781 1782 *cs++ = MI_ARB_CHECK; 1783 1784 /* 1785 * Transfer the result into the predicate register to be used for the 1786 * predicated jump. 1787 */ 1788 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1789 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1790 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1791 1792 /* Predicate the jump. */ 1793 *cs++ = (INTEL_GEN(i915) < 8 ? 1794 MI_BATCH_BUFFER_START : 1795 MI_BATCH_BUFFER_START_GEN8) | 1796 MI_BATCH_PREDICATE; 1797 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1798 *cs++ = 0; 1799 1800 /* Restore registers. */ 1801 for (i = 0; i < N_CS_GPR; i++) 1802 cs = save_restore_register( 1803 stream, cs, false /* restore */, CS_GPR(i), 1804 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1805 cs = save_restore_register( 1806 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1807 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1808 1809 /* And return to the ring. */ 1810 *cs++ = MI_BATCH_BUFFER_END; 1811 1812 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1813 1814 i915_gem_object_flush_map(bo); 1815 i915_gem_object_unpin_map(bo); 1816 1817 stream->noa_wait = vma; 1818 return 0; 1819 1820 err_unpin: 1821 i915_vma_unpin_and_release(&vma, 0); 1822 err_unref: 1823 i915_gem_object_put(bo); 1824 return ret; 1825 } 1826 1827 static u32 *write_cs_mi_lri(u32 *cs, 1828 const struct i915_oa_reg *reg_data, 1829 u32 n_regs) 1830 { 1831 u32 i; 1832 1833 for (i = 0; i < n_regs; i++) { 1834 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1835 u32 n_lri = min_t(u32, 1836 n_regs - i, 1837 MI_LOAD_REGISTER_IMM_MAX_REGS); 1838 1839 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1840 } 1841 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1842 *cs++ = reg_data[i].value; 1843 } 1844 1845 return cs; 1846 } 1847 1848 static int num_lri_dwords(int num_regs) 1849 { 1850 int count = 0; 1851 1852 if (num_regs > 0) { 1853 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1854 count += num_regs * 2; 1855 } 1856 1857 return count; 1858 } 1859 1860 static struct i915_oa_config_bo * 1861 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1862 struct i915_oa_config *oa_config) 1863 { 1864 struct drm_i915_gem_object *obj; 1865 struct i915_oa_config_bo *oa_bo; 1866 size_t config_length = 0; 1867 u32 *cs; 1868 int err; 1869 1870 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1871 if (!oa_bo) 1872 return ERR_PTR(-ENOMEM); 1873 1874 config_length += num_lri_dwords(oa_config->mux_regs_len); 1875 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1876 config_length += num_lri_dwords(oa_config->flex_regs_len); 1877 config_length += 3; /* MI_BATCH_BUFFER_START */ 1878 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1879 1880 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1881 if (IS_ERR(obj)) { 1882 err = PTR_ERR(obj); 1883 goto err_free; 1884 } 1885 1886 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1887 if (IS_ERR(cs)) { 1888 err = PTR_ERR(cs); 1889 goto err_oa_bo; 1890 } 1891 1892 cs = write_cs_mi_lri(cs, 1893 oa_config->mux_regs, 1894 oa_config->mux_regs_len); 1895 cs = write_cs_mi_lri(cs, 1896 oa_config->b_counter_regs, 1897 oa_config->b_counter_regs_len); 1898 cs = write_cs_mi_lri(cs, 1899 oa_config->flex_regs, 1900 oa_config->flex_regs_len); 1901 1902 /* Jump into the active wait. */ 1903 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1904 MI_BATCH_BUFFER_START : 1905 MI_BATCH_BUFFER_START_GEN8); 1906 *cs++ = i915_ggtt_offset(stream->noa_wait); 1907 *cs++ = 0; 1908 1909 i915_gem_object_flush_map(obj); 1910 i915_gem_object_unpin_map(obj); 1911 1912 oa_bo->vma = i915_vma_instance(obj, 1913 &stream->engine->gt->ggtt->vm, 1914 NULL); 1915 if (IS_ERR(oa_bo->vma)) { 1916 err = PTR_ERR(oa_bo->vma); 1917 goto err_oa_bo; 1918 } 1919 1920 oa_bo->oa_config = i915_oa_config_get(oa_config); 1921 llist_add(&oa_bo->node, &stream->oa_config_bos); 1922 1923 return oa_bo; 1924 1925 err_oa_bo: 1926 i915_gem_object_put(obj); 1927 err_free: 1928 kfree(oa_bo); 1929 return ERR_PTR(err); 1930 } 1931 1932 static struct i915_vma * 1933 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1934 { 1935 struct i915_oa_config_bo *oa_bo; 1936 1937 /* 1938 * Look for the buffer in the already allocated BOs attached 1939 * to the stream. 1940 */ 1941 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1942 if (oa_bo->oa_config == oa_config && 1943 memcmp(oa_bo->oa_config->uuid, 1944 oa_config->uuid, 1945 sizeof(oa_config->uuid)) == 0) 1946 goto out; 1947 } 1948 1949 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1950 if (IS_ERR(oa_bo)) 1951 return ERR_CAST(oa_bo); 1952 1953 out: 1954 return i915_vma_get(oa_bo->vma); 1955 } 1956 1957 static struct i915_request * 1958 emit_oa_config(struct i915_perf_stream *stream, 1959 struct i915_oa_config *oa_config, 1960 struct intel_context *ce) 1961 { 1962 struct i915_request *rq; 1963 struct i915_vma *vma; 1964 int err; 1965 1966 vma = get_oa_vma(stream, oa_config); 1967 if (IS_ERR(vma)) 1968 return ERR_CAST(vma); 1969 1970 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1971 if (err) 1972 goto err_vma_put; 1973 1974 intel_engine_pm_get(ce->engine); 1975 rq = i915_request_create(ce); 1976 intel_engine_pm_put(ce->engine); 1977 if (IS_ERR(rq)) { 1978 err = PTR_ERR(rq); 1979 goto err_vma_unpin; 1980 } 1981 1982 i915_vma_lock(vma); 1983 err = i915_request_await_object(rq, vma->obj, 0); 1984 if (!err) 1985 err = i915_vma_move_to_active(vma, rq, 0); 1986 i915_vma_unlock(vma); 1987 if (err) 1988 goto err_add_request; 1989 1990 err = rq->engine->emit_bb_start(rq, 1991 vma->node.start, 0, 1992 I915_DISPATCH_SECURE); 1993 if (err) 1994 goto err_add_request; 1995 1996 i915_request_get(rq); 1997 err_add_request: 1998 i915_request_add(rq); 1999 err_vma_unpin: 2000 i915_vma_unpin(vma); 2001 err_vma_put: 2002 i915_vma_put(vma); 2003 return err ? ERR_PTR(err) : rq; 2004 } 2005 2006 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2007 { 2008 return stream->pinned_ctx ?: stream->engine->kernel_context; 2009 } 2010 2011 static struct i915_request * 2012 hsw_enable_metric_set(struct i915_perf_stream *stream) 2013 { 2014 struct intel_uncore *uncore = stream->uncore; 2015 2016 /* 2017 * PRM: 2018 * 2019 * OA unit is using “crclk” for its functionality. When trunk 2020 * level clock gating takes place, OA clock would be gated, 2021 * unable to count the events from non-render clock domain. 2022 * Render clock gating must be disabled when OA is enabled to 2023 * count the events from non-render domain. Unit level clock 2024 * gating for RCS should also be disabled. 2025 */ 2026 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2027 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2028 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2029 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2030 2031 return emit_oa_config(stream, stream->oa_config, oa_context(stream)); 2032 } 2033 2034 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2035 { 2036 struct intel_uncore *uncore = stream->uncore; 2037 2038 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2039 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2040 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2041 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2042 2043 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2044 } 2045 2046 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2047 i915_reg_t reg) 2048 { 2049 u32 mmio = i915_mmio_reg_offset(reg); 2050 int i; 2051 2052 /* 2053 * This arbitrary default will select the 'EU FPU0 Pipeline 2054 * Active' event. In the future it's anticipated that there 2055 * will be an explicit 'No Event' we can select, but not yet... 2056 */ 2057 if (!oa_config) 2058 return 0; 2059 2060 for (i = 0; i < oa_config->flex_regs_len; i++) { 2061 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2062 return oa_config->flex_regs[i].value; 2063 } 2064 2065 return 0; 2066 } 2067 /* 2068 * NB: It must always remain pointer safe to run this even if the OA unit 2069 * has been disabled. 2070 * 2071 * It's fine to put out-of-date values into these per-context registers 2072 * in the case that the OA unit has been disabled. 2073 */ 2074 static void 2075 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2076 const struct i915_perf_stream *stream) 2077 { 2078 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2079 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2080 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2081 i915_reg_t flex_regs[] = { 2082 EU_PERF_CNTL0, 2083 EU_PERF_CNTL1, 2084 EU_PERF_CNTL2, 2085 EU_PERF_CNTL3, 2086 EU_PERF_CNTL4, 2087 EU_PERF_CNTL5, 2088 EU_PERF_CNTL6, 2089 }; 2090 u32 *reg_state = ce->lrc_reg_state; 2091 int i; 2092 2093 reg_state[ctx_oactxctrl + 1] = 2094 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2095 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2096 GEN8_OA_COUNTER_RESUME; 2097 2098 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2099 reg_state[ctx_flexeu0 + i * 2 + 1] = 2100 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2101 2102 reg_state[CTX_R_PWR_CLK_STATE] = 2103 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu); 2104 } 2105 2106 struct flex { 2107 i915_reg_t reg; 2108 u32 offset; 2109 u32 value; 2110 }; 2111 2112 static int 2113 gen8_store_flex(struct i915_request *rq, 2114 struct intel_context *ce, 2115 const struct flex *flex, unsigned int count) 2116 { 2117 u32 offset; 2118 u32 *cs; 2119 2120 cs = intel_ring_begin(rq, 4 * count); 2121 if (IS_ERR(cs)) 2122 return PTR_ERR(cs); 2123 2124 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 2125 do { 2126 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2127 *cs++ = offset + flex->offset * sizeof(u32); 2128 *cs++ = 0; 2129 *cs++ = flex->value; 2130 } while (flex++, --count); 2131 2132 intel_ring_advance(rq, cs); 2133 2134 return 0; 2135 } 2136 2137 static int 2138 gen8_load_flex(struct i915_request *rq, 2139 struct intel_context *ce, 2140 const struct flex *flex, unsigned int count) 2141 { 2142 u32 *cs; 2143 2144 GEM_BUG_ON(!count || count > 63); 2145 2146 cs = intel_ring_begin(rq, 2 * count + 2); 2147 if (IS_ERR(cs)) 2148 return PTR_ERR(cs); 2149 2150 *cs++ = MI_LOAD_REGISTER_IMM(count); 2151 do { 2152 *cs++ = i915_mmio_reg_offset(flex->reg); 2153 *cs++ = flex->value; 2154 } while (flex++, --count); 2155 *cs++ = MI_NOOP; 2156 2157 intel_ring_advance(rq, cs); 2158 2159 return 0; 2160 } 2161 2162 static int gen8_modify_context(struct intel_context *ce, 2163 const struct flex *flex, unsigned int count) 2164 { 2165 struct i915_request *rq; 2166 int err; 2167 2168 rq = intel_engine_create_kernel_request(ce->engine); 2169 if (IS_ERR(rq)) 2170 return PTR_ERR(rq); 2171 2172 /* Serialise with the remote context */ 2173 err = intel_context_prepare_remote_request(ce, rq); 2174 if (err == 0) 2175 err = gen8_store_flex(rq, ce, flex, count); 2176 2177 i915_request_add(rq); 2178 return err; 2179 } 2180 2181 static int gen8_modify_self(struct intel_context *ce, 2182 const struct flex *flex, unsigned int count) 2183 { 2184 struct i915_request *rq; 2185 int err; 2186 2187 rq = i915_request_create(ce); 2188 if (IS_ERR(rq)) 2189 return PTR_ERR(rq); 2190 2191 err = gen8_load_flex(rq, ce, flex, count); 2192 2193 i915_request_add(rq); 2194 return err; 2195 } 2196 2197 static int gen8_configure_context(struct i915_gem_context *ctx, 2198 struct flex *flex, unsigned int count) 2199 { 2200 struct i915_gem_engines_iter it; 2201 struct intel_context *ce; 2202 int err = 0; 2203 2204 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2205 GEM_BUG_ON(ce == ce->engine->kernel_context); 2206 2207 if (ce->engine->class != RENDER_CLASS) 2208 continue; 2209 2210 /* Otherwise OA settings will be set upon first use */ 2211 if (!intel_context_pin_if_active(ce)) 2212 continue; 2213 2214 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2215 err = gen8_modify_context(ce, flex, count); 2216 2217 intel_context_unpin(ce); 2218 if (err) 2219 break; 2220 } 2221 i915_gem_context_unlock_engines(ctx); 2222 2223 return err; 2224 } 2225 2226 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable) 2227 { 2228 int err; 2229 struct intel_context *ce = stream->pinned_ctx; 2230 u32 format = stream->oa_buffer.format; 2231 struct flex regs_context[] = { 2232 { 2233 GEN8_OACTXCONTROL, 2234 stream->perf->ctx_oactxctrl_offset + 1, 2235 enable ? GEN8_OA_COUNTER_RESUME : 0, 2236 }, 2237 }; 2238 /* Offsets in regs_lri are not used since this configuration is only 2239 * applied using LRI. Initialize the correct offsets for posterity. 2240 */ 2241 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2242 struct flex regs_lri[] = { 2243 { 2244 GEN12_OAR_OACONTROL, 2245 GEN12_OAR_OACONTROL_OFFSET + 1, 2246 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2247 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2248 }, 2249 { 2250 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2251 CTX_CONTEXT_CONTROL, 2252 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2253 enable ? 2254 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2255 0) 2256 }, 2257 }; 2258 2259 /* Modify the context image of pinned context with regs_context*/ 2260 err = intel_context_lock_pinned(ce); 2261 if (err) 2262 return err; 2263 2264 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2265 intel_context_unlock_pinned(ce); 2266 if (err) 2267 return err; 2268 2269 /* Apply regs_lri using LRI with pinned context */ 2270 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri)); 2271 } 2272 2273 /* 2274 * Manages updating the per-context aspects of the OA stream 2275 * configuration across all contexts. 2276 * 2277 * The awkward consideration here is that OACTXCONTROL controls the 2278 * exponent for periodic sampling which is primarily used for system 2279 * wide profiling where we'd like a consistent sampling period even in 2280 * the face of context switches. 2281 * 2282 * Our approach of updating the register state context (as opposed to 2283 * say using a workaround batch buffer) ensures that the hardware 2284 * won't automatically reload an out-of-date timer exponent even 2285 * transiently before a WA BB could be parsed. 2286 * 2287 * This function needs to: 2288 * - Ensure the currently running context's per-context OA state is 2289 * updated 2290 * - Ensure that all existing contexts will have the correct per-context 2291 * OA state if they are scheduled for use. 2292 * - Ensure any new contexts will be initialized with the correct 2293 * per-context OA state. 2294 * 2295 * Note: it's only the RCS/Render context that has any OA state. 2296 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2297 */ 2298 static int oa_configure_all_contexts(struct i915_perf_stream *stream, 2299 struct flex *regs, 2300 size_t num_regs) 2301 { 2302 struct drm_i915_private *i915 = stream->perf->i915; 2303 struct intel_engine_cs *engine; 2304 struct i915_gem_context *ctx, *cn; 2305 int err; 2306 2307 lockdep_assert_held(&stream->perf->lock); 2308 2309 /* 2310 * The OA register config is setup through the context image. This image 2311 * might be written to by the GPU on context switch (in particular on 2312 * lite-restore). This means we can't safely update a context's image, 2313 * if this context is scheduled/submitted to run on the GPU. 2314 * 2315 * We could emit the OA register config through the batch buffer but 2316 * this might leave small interval of time where the OA unit is 2317 * configured at an invalid sampling period. 2318 * 2319 * Note that since we emit all requests from a single ring, there 2320 * is still an implicit global barrier here that may cause a high 2321 * priority context to wait for an otherwise independent low priority 2322 * context. Contexts idle at the time of reconfiguration are not 2323 * trapped behind the barrier. 2324 */ 2325 spin_lock(&i915->gem.contexts.lock); 2326 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2327 if (!kref_get_unless_zero(&ctx->ref)) 2328 continue; 2329 2330 spin_unlock(&i915->gem.contexts.lock); 2331 2332 err = gen8_configure_context(ctx, regs, num_regs); 2333 if (err) { 2334 i915_gem_context_put(ctx); 2335 return err; 2336 } 2337 2338 spin_lock(&i915->gem.contexts.lock); 2339 list_safe_reset_next(ctx, cn, link); 2340 i915_gem_context_put(ctx); 2341 } 2342 spin_unlock(&i915->gem.contexts.lock); 2343 2344 /* 2345 * After updating all other contexts, we need to modify ourselves. 2346 * If we don't modify the kernel_context, we do not get events while 2347 * idle. 2348 */ 2349 for_each_uabi_engine(engine, i915) { 2350 struct intel_context *ce = engine->kernel_context; 2351 2352 if (engine->class != RENDER_CLASS) 2353 continue; 2354 2355 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2356 2357 err = gen8_modify_self(ce, regs, num_regs); 2358 if (err) 2359 return err; 2360 } 2361 2362 return 0; 2363 } 2364 2365 static int gen12_configure_all_contexts(struct i915_perf_stream *stream, 2366 const struct i915_oa_config *oa_config) 2367 { 2368 struct flex regs[] = { 2369 { 2370 GEN8_R_PWR_CLK_STATE, 2371 CTX_R_PWR_CLK_STATE, 2372 }, 2373 }; 2374 2375 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2376 } 2377 2378 static int lrc_configure_all_contexts(struct i915_perf_stream *stream, 2379 const struct i915_oa_config *oa_config) 2380 { 2381 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2382 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2383 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2384 struct flex regs[] = { 2385 { 2386 GEN8_R_PWR_CLK_STATE, 2387 CTX_R_PWR_CLK_STATE, 2388 }, 2389 { 2390 GEN8_OACTXCONTROL, 2391 stream->perf->ctx_oactxctrl_offset + 1, 2392 }, 2393 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2394 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2395 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2396 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2397 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2398 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2399 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2400 }; 2401 #undef ctx_flexeuN 2402 int i; 2403 2404 regs[1].value = 2405 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2406 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2407 GEN8_OA_COUNTER_RESUME; 2408 2409 for (i = 2; i < ARRAY_SIZE(regs); i++) 2410 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2411 2412 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2413 } 2414 2415 static struct i915_request * 2416 gen8_enable_metric_set(struct i915_perf_stream *stream) 2417 { 2418 struct intel_uncore *uncore = stream->uncore; 2419 struct i915_oa_config *oa_config = stream->oa_config; 2420 int ret; 2421 2422 /* 2423 * We disable slice/unslice clock ratio change reports on SKL since 2424 * they are too noisy. The HW generates a lot of redundant reports 2425 * where the ratio hasn't really changed causing a lot of redundant 2426 * work to processes and increasing the chances we'll hit buffer 2427 * overruns. 2428 * 2429 * Although we don't currently use the 'disable overrun' OABUFFER 2430 * feature it's worth noting that clock ratio reports have to be 2431 * disabled before considering to use that feature since the HW doesn't 2432 * correctly block these reports. 2433 * 2434 * Currently none of the high-level metrics we have depend on knowing 2435 * this ratio to normalize. 2436 * 2437 * Note: This register is not power context saved and restored, but 2438 * that's OK considering that we disable RC6 while the OA unit is 2439 * enabled. 2440 * 2441 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2442 * be read back from automatically triggered reports, as part of the 2443 * RPT_ID field. 2444 */ 2445 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2446 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2447 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2448 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2449 } 2450 2451 /* 2452 * Update all contexts prior writing the mux configurations as we need 2453 * to make sure all slices/subslices are ON before writing to NOA 2454 * registers. 2455 */ 2456 ret = lrc_configure_all_contexts(stream, oa_config); 2457 if (ret) 2458 return ERR_PTR(ret); 2459 2460 return emit_oa_config(stream, oa_config, oa_context(stream)); 2461 } 2462 2463 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2464 { 2465 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2466 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2467 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2468 } 2469 2470 static struct i915_request * 2471 gen12_enable_metric_set(struct i915_perf_stream *stream) 2472 { 2473 struct intel_uncore *uncore = stream->uncore; 2474 struct i915_oa_config *oa_config = stream->oa_config; 2475 bool periodic = stream->periodic; 2476 u32 period_exponent = stream->period_exponent; 2477 int ret; 2478 2479 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2480 /* Disable clk ratio reports, like previous Gens. */ 2481 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2482 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2483 /* 2484 * If the user didn't require OA reports, instruct 2485 * the hardware not to emit ctx switch reports. 2486 */ 2487 oag_report_ctx_switches(stream)); 2488 2489 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2490 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2491 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2492 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2493 : 0); 2494 2495 /* 2496 * Update all contexts prior writing the mux configurations as we need 2497 * to make sure all slices/subslices are ON before writing to NOA 2498 * registers. 2499 */ 2500 ret = gen12_configure_all_contexts(stream, oa_config); 2501 if (ret) 2502 return ERR_PTR(ret); 2503 2504 /* 2505 * For Gen12, performance counters are context 2506 * saved/restored. Only enable it for the context that 2507 * requested this. 2508 */ 2509 if (stream->ctx) { 2510 ret = gen12_configure_oar_context(stream, true); 2511 if (ret) 2512 return ERR_PTR(ret); 2513 } 2514 2515 return emit_oa_config(stream, oa_config, oa_context(stream)); 2516 } 2517 2518 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2519 { 2520 struct intel_uncore *uncore = stream->uncore; 2521 2522 /* Reset all contexts' slices/subslices configurations. */ 2523 lrc_configure_all_contexts(stream, NULL); 2524 2525 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2526 } 2527 2528 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2529 { 2530 struct intel_uncore *uncore = stream->uncore; 2531 2532 /* Reset all contexts' slices/subslices configurations. */ 2533 lrc_configure_all_contexts(stream, NULL); 2534 2535 /* Make sure we disable noa to save power. */ 2536 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2537 } 2538 2539 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2540 { 2541 struct intel_uncore *uncore = stream->uncore; 2542 2543 /* Reset all contexts' slices/subslices configurations. */ 2544 gen12_configure_all_contexts(stream, NULL); 2545 2546 /* disable the context save/restore or OAR counters */ 2547 if (stream->ctx) 2548 gen12_configure_oar_context(stream, false); 2549 2550 /* Make sure we disable noa to save power. */ 2551 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2552 } 2553 2554 static void gen7_oa_enable(struct i915_perf_stream *stream) 2555 { 2556 struct intel_uncore *uncore = stream->uncore; 2557 struct i915_gem_context *ctx = stream->ctx; 2558 u32 ctx_id = stream->specific_ctx_id; 2559 bool periodic = stream->periodic; 2560 u32 period_exponent = stream->period_exponent; 2561 u32 report_format = stream->oa_buffer.format; 2562 2563 /* 2564 * Reset buf pointers so we don't forward reports from before now. 2565 * 2566 * Think carefully if considering trying to avoid this, since it 2567 * also ensures status flags and the buffer itself are cleared 2568 * in error paths, and we have checks for invalid reports based 2569 * on the assumption that certain fields are written to zeroed 2570 * memory which this helps maintains. 2571 */ 2572 gen7_init_oa_buffer(stream); 2573 2574 intel_uncore_write(uncore, GEN7_OACONTROL, 2575 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2576 (period_exponent << 2577 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2578 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2579 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2580 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2581 GEN7_OACONTROL_ENABLE); 2582 } 2583 2584 static void gen8_oa_enable(struct i915_perf_stream *stream) 2585 { 2586 struct intel_uncore *uncore = stream->uncore; 2587 u32 report_format = stream->oa_buffer.format; 2588 2589 /* 2590 * Reset buf pointers so we don't forward reports from before now. 2591 * 2592 * Think carefully if considering trying to avoid this, since it 2593 * also ensures status flags and the buffer itself are cleared 2594 * in error paths, and we have checks for invalid reports based 2595 * on the assumption that certain fields are written to zeroed 2596 * memory which this helps maintains. 2597 */ 2598 gen8_init_oa_buffer(stream); 2599 2600 /* 2601 * Note: we don't rely on the hardware to perform single context 2602 * filtering and instead filter on the cpu based on the context-id 2603 * field of reports 2604 */ 2605 intel_uncore_write(uncore, GEN8_OACONTROL, 2606 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2607 GEN8_OA_COUNTER_ENABLE); 2608 } 2609 2610 static void gen12_oa_enable(struct i915_perf_stream *stream) 2611 { 2612 struct intel_uncore *uncore = stream->uncore; 2613 u32 report_format = stream->oa_buffer.format; 2614 2615 /* 2616 * If we don't want OA reports from the OA buffer, then we don't even 2617 * need to program the OAG unit. 2618 */ 2619 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2620 return; 2621 2622 gen12_init_oa_buffer(stream); 2623 2624 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2625 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2626 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2627 } 2628 2629 /** 2630 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2631 * @stream: An i915 perf stream opened for OA metrics 2632 * 2633 * [Re]enables hardware periodic sampling according to the period configured 2634 * when opening the stream. This also starts a hrtimer that will periodically 2635 * check for data in the circular OA buffer for notifying userspace (e.g. 2636 * during a read() or poll()). 2637 */ 2638 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2639 { 2640 stream->perf->ops.oa_enable(stream); 2641 2642 if (stream->periodic) 2643 hrtimer_start(&stream->poll_check_timer, 2644 ns_to_ktime(POLL_PERIOD), 2645 HRTIMER_MODE_REL_PINNED); 2646 } 2647 2648 static void gen7_oa_disable(struct i915_perf_stream *stream) 2649 { 2650 struct intel_uncore *uncore = stream->uncore; 2651 2652 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2653 if (intel_wait_for_register(uncore, 2654 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2655 50)) 2656 DRM_ERROR("wait for OA to be disabled timed out\n"); 2657 } 2658 2659 static void gen8_oa_disable(struct i915_perf_stream *stream) 2660 { 2661 struct intel_uncore *uncore = stream->uncore; 2662 2663 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2664 if (intel_wait_for_register(uncore, 2665 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2666 50)) 2667 DRM_ERROR("wait for OA to be disabled timed out\n"); 2668 } 2669 2670 static void gen12_oa_disable(struct i915_perf_stream *stream) 2671 { 2672 struct intel_uncore *uncore = stream->uncore; 2673 2674 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2675 if (intel_wait_for_register(uncore, 2676 GEN12_OAG_OACONTROL, 2677 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2678 50)) 2679 DRM_ERROR("wait for OA to be disabled timed out\n"); 2680 } 2681 2682 /** 2683 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2684 * @stream: An i915 perf stream opened for OA metrics 2685 * 2686 * Stops the OA unit from periodically writing counter reports into the 2687 * circular OA buffer. This also stops the hrtimer that periodically checks for 2688 * data in the circular OA buffer, for notifying userspace. 2689 */ 2690 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2691 { 2692 stream->perf->ops.oa_disable(stream); 2693 2694 if (stream->periodic) 2695 hrtimer_cancel(&stream->poll_check_timer); 2696 } 2697 2698 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2699 .destroy = i915_oa_stream_destroy, 2700 .enable = i915_oa_stream_enable, 2701 .disable = i915_oa_stream_disable, 2702 .wait_unlocked = i915_oa_wait_unlocked, 2703 .poll_wait = i915_oa_poll_wait, 2704 .read = i915_oa_read, 2705 }; 2706 2707 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2708 { 2709 struct i915_request *rq; 2710 2711 rq = stream->perf->ops.enable_metric_set(stream); 2712 if (IS_ERR(rq)) 2713 return PTR_ERR(rq); 2714 2715 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); 2716 i915_request_put(rq); 2717 2718 return 0; 2719 } 2720 2721 /** 2722 * i915_oa_stream_init - validate combined props for OA stream and init 2723 * @stream: An i915 perf stream 2724 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2725 * @props: The property state that configures stream (individually validated) 2726 * 2727 * While read_properties_unlocked() validates properties in isolation it 2728 * doesn't ensure that the combination necessarily makes sense. 2729 * 2730 * At this point it has been determined that userspace wants a stream of 2731 * OA metrics, but still we need to further validate the combined 2732 * properties are OK. 2733 * 2734 * If the configuration makes sense then we can allocate memory for 2735 * a circular OA buffer and apply the requested metric set configuration. 2736 * 2737 * Returns: zero on success or a negative error code. 2738 */ 2739 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2740 struct drm_i915_perf_open_param *param, 2741 struct perf_open_properties *props) 2742 { 2743 struct i915_perf *perf = stream->perf; 2744 int format_size; 2745 int ret; 2746 2747 if (!props->engine) { 2748 DRM_DEBUG("OA engine not specified\n"); 2749 return -EINVAL; 2750 } 2751 2752 /* 2753 * If the sysfs metrics/ directory wasn't registered for some 2754 * reason then don't let userspace try their luck with config 2755 * IDs 2756 */ 2757 if (!perf->metrics_kobj) { 2758 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2759 return -EINVAL; 2760 } 2761 2762 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2763 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2764 DRM_DEBUG("Only OA report sampling supported\n"); 2765 return -EINVAL; 2766 } 2767 2768 if (!perf->ops.enable_metric_set) { 2769 DRM_DEBUG("OA unit not supported\n"); 2770 return -ENODEV; 2771 } 2772 2773 /* 2774 * To avoid the complexity of having to accurately filter 2775 * counter reports and marshal to the appropriate client 2776 * we currently only allow exclusive access 2777 */ 2778 if (perf->exclusive_stream) { 2779 DRM_DEBUG("OA unit already in use\n"); 2780 return -EBUSY; 2781 } 2782 2783 if (!props->oa_format) { 2784 DRM_DEBUG("OA report format not specified\n"); 2785 return -EINVAL; 2786 } 2787 2788 stream->engine = props->engine; 2789 stream->uncore = stream->engine->gt->uncore; 2790 2791 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2792 2793 format_size = perf->oa_formats[props->oa_format].size; 2794 2795 stream->sample_flags = props->sample_flags; 2796 stream->sample_size += format_size; 2797 2798 stream->oa_buffer.format_size = format_size; 2799 if (WARN_ON(stream->oa_buffer.format_size == 0)) 2800 return -EINVAL; 2801 2802 stream->hold_preemption = props->hold_preemption; 2803 2804 stream->oa_buffer.format = 2805 perf->oa_formats[props->oa_format].format; 2806 2807 stream->periodic = props->oa_periodic; 2808 if (stream->periodic) 2809 stream->period_exponent = props->oa_period_exponent; 2810 2811 if (stream->ctx) { 2812 ret = oa_get_render_ctx_id(stream); 2813 if (ret) { 2814 DRM_DEBUG("Invalid context id to filter with\n"); 2815 return ret; 2816 } 2817 } 2818 2819 ret = alloc_noa_wait(stream); 2820 if (ret) { 2821 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2822 goto err_noa_wait_alloc; 2823 } 2824 2825 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2826 if (!stream->oa_config) { 2827 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2828 ret = -EINVAL; 2829 goto err_config; 2830 } 2831 2832 /* PRM - observability performance counters: 2833 * 2834 * OACONTROL, performance counter enable, note: 2835 * 2836 * "When this bit is set, in order to have coherent counts, 2837 * RC6 power state and trunk clock gating must be disabled. 2838 * This can be achieved by programming MMIO registers as 2839 * 0xA094=0 and 0xA090[31]=1" 2840 * 2841 * In our case we are expecting that taking pm + FORCEWAKE 2842 * references will effectively disable RC6. 2843 */ 2844 intel_engine_pm_get(stream->engine); 2845 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2846 2847 ret = alloc_oa_buffer(stream); 2848 if (ret) 2849 goto err_oa_buf_alloc; 2850 2851 stream->ops = &i915_oa_stream_ops; 2852 perf->exclusive_stream = stream; 2853 2854 ret = i915_perf_stream_enable_sync(stream); 2855 if (ret) { 2856 DRM_DEBUG("Unable to enable metric set\n"); 2857 goto err_enable; 2858 } 2859 2860 DRM_DEBUG("opening stream oa config uuid=%s\n", 2861 stream->oa_config->uuid); 2862 2863 hrtimer_init(&stream->poll_check_timer, 2864 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2865 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2866 init_waitqueue_head(&stream->poll_wq); 2867 spin_lock_init(&stream->oa_buffer.ptr_lock); 2868 2869 return 0; 2870 2871 err_enable: 2872 perf->exclusive_stream = NULL; 2873 perf->ops.disable_metric_set(stream); 2874 2875 free_oa_buffer(stream); 2876 2877 err_oa_buf_alloc: 2878 free_oa_configs(stream); 2879 2880 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2881 intel_engine_pm_put(stream->engine); 2882 2883 err_config: 2884 free_noa_wait(stream); 2885 2886 err_noa_wait_alloc: 2887 if (stream->ctx) 2888 oa_put_render_ctx_id(stream); 2889 2890 return ret; 2891 } 2892 2893 void i915_oa_init_reg_state(const struct intel_context *ce, 2894 const struct intel_engine_cs *engine) 2895 { 2896 struct i915_perf_stream *stream; 2897 2898 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2899 2900 if (engine->class != RENDER_CLASS) 2901 return; 2902 2903 stream = engine->i915->perf.exclusive_stream; 2904 /* 2905 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller 2906 * is already doing that, so nothing to be done for gen12 here. 2907 */ 2908 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2909 gen8_update_reg_state_unlocked(ce, stream); 2910 } 2911 2912 /** 2913 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2914 * @stream: An i915 perf stream 2915 * @file: An i915 perf stream file 2916 * @buf: destination buffer given by userspace 2917 * @count: the number of bytes userspace wants to read 2918 * @ppos: (inout) file seek position (unused) 2919 * 2920 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2921 * ensure that if we've successfully copied any data then reporting that takes 2922 * precedence over any internal error status, so the data isn't lost. 2923 * 2924 * For example ret will be -ENOSPC whenever there is more buffered data than 2925 * can be copied to userspace, but that's only interesting if we weren't able 2926 * to copy some data because it implies the userspace buffer is too small to 2927 * receive a single record (and we never split records). 2928 * 2929 * Another case with ret == -EFAULT is more of a grey area since it would seem 2930 * like bad form for userspace to ask us to overrun its buffer, but the user 2931 * knows best: 2932 * 2933 * http://yarchive.net/comp/linux/partial_reads_writes.html 2934 * 2935 * Returns: The number of bytes copied or a negative error code on failure. 2936 */ 2937 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2938 struct file *file, 2939 char __user *buf, 2940 size_t count, 2941 loff_t *ppos) 2942 { 2943 /* Note we keep the offset (aka bytes read) separate from any 2944 * error status so that the final check for whether we return 2945 * the bytes read with a higher precedence than any error (see 2946 * comment below) doesn't need to be handled/duplicated in 2947 * stream->ops->read() implementations. 2948 */ 2949 size_t offset = 0; 2950 int ret = stream->ops->read(stream, buf, count, &offset); 2951 2952 return offset ?: (ret ?: -EAGAIN); 2953 } 2954 2955 /** 2956 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2957 * @file: An i915 perf stream file 2958 * @buf: destination buffer given by userspace 2959 * @count: the number of bytes userspace wants to read 2960 * @ppos: (inout) file seek position (unused) 2961 * 2962 * The entry point for handling a read() on a stream file descriptor from 2963 * userspace. Most of the work is left to the i915_perf_read_locked() and 2964 * &i915_perf_stream_ops->read but to save having stream implementations (of 2965 * which we might have multiple later) we handle blocking read here. 2966 * 2967 * We can also consistently treat trying to read from a disabled stream 2968 * as an IO error so implementations can assume the stream is enabled 2969 * while reading. 2970 * 2971 * Returns: The number of bytes copied or a negative error code on failure. 2972 */ 2973 static ssize_t i915_perf_read(struct file *file, 2974 char __user *buf, 2975 size_t count, 2976 loff_t *ppos) 2977 { 2978 struct i915_perf_stream *stream = file->private_data; 2979 struct i915_perf *perf = stream->perf; 2980 ssize_t ret; 2981 2982 /* To ensure it's handled consistently we simply treat all reads of a 2983 * disabled stream as an error. In particular it might otherwise lead 2984 * to a deadlock for blocking file descriptors... 2985 */ 2986 if (!stream->enabled) 2987 return -EIO; 2988 2989 if (!(file->f_flags & O_NONBLOCK)) { 2990 /* There's the small chance of false positives from 2991 * stream->ops->wait_unlocked. 2992 * 2993 * E.g. with single context filtering since we only wait until 2994 * oabuffer has >= 1 report we don't immediately know whether 2995 * any reports really belong to the current context 2996 */ 2997 do { 2998 ret = stream->ops->wait_unlocked(stream); 2999 if (ret) 3000 return ret; 3001 3002 mutex_lock(&perf->lock); 3003 ret = i915_perf_read_locked(stream, file, 3004 buf, count, ppos); 3005 mutex_unlock(&perf->lock); 3006 } while (ret == -EAGAIN); 3007 } else { 3008 mutex_lock(&perf->lock); 3009 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 3010 mutex_unlock(&perf->lock); 3011 } 3012 3013 /* We allow the poll checking to sometimes report false positive EPOLLIN 3014 * events where we might actually report EAGAIN on read() if there's 3015 * not really any data available. In this situation though we don't 3016 * want to enter a busy loop between poll() reporting a EPOLLIN event 3017 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3018 * effectively ensures we back off until the next hrtimer callback 3019 * before reporting another EPOLLIN event. 3020 */ 3021 if (ret >= 0 || ret == -EAGAIN) { 3022 /* Maybe make ->pollin per-stream state if we support multiple 3023 * concurrent streams in the future. 3024 */ 3025 stream->pollin = false; 3026 } 3027 3028 return ret; 3029 } 3030 3031 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3032 { 3033 struct i915_perf_stream *stream = 3034 container_of(hrtimer, typeof(*stream), poll_check_timer); 3035 3036 if (oa_buffer_check_unlocked(stream)) { 3037 stream->pollin = true; 3038 wake_up(&stream->poll_wq); 3039 } 3040 3041 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 3042 3043 return HRTIMER_RESTART; 3044 } 3045 3046 /** 3047 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3048 * @stream: An i915 perf stream 3049 * @file: An i915 perf stream file 3050 * @wait: poll() state table 3051 * 3052 * For handling userspace polling on an i915 perf stream, this calls through to 3053 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3054 * will be woken for new stream data. 3055 * 3056 * Note: The &perf->lock mutex has been taken to serialize 3057 * with any non-file-operation driver hooks. 3058 * 3059 * Returns: any poll events that are ready without sleeping 3060 */ 3061 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3062 struct file *file, 3063 poll_table *wait) 3064 { 3065 __poll_t events = 0; 3066 3067 stream->ops->poll_wait(stream, file, wait); 3068 3069 /* Note: we don't explicitly check whether there's something to read 3070 * here since this path may be very hot depending on what else 3071 * userspace is polling, or on the timeout in use. We rely solely on 3072 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3073 * samples to read. 3074 */ 3075 if (stream->pollin) 3076 events |= EPOLLIN; 3077 3078 return events; 3079 } 3080 3081 /** 3082 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3083 * @file: An i915 perf stream file 3084 * @wait: poll() state table 3085 * 3086 * For handling userspace polling on an i915 perf stream, this ensures 3087 * poll_wait() gets called with a wait queue that will be woken for new stream 3088 * data. 3089 * 3090 * Note: Implementation deferred to i915_perf_poll_locked() 3091 * 3092 * Returns: any poll events that are ready without sleeping 3093 */ 3094 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3095 { 3096 struct i915_perf_stream *stream = file->private_data; 3097 struct i915_perf *perf = stream->perf; 3098 __poll_t ret; 3099 3100 mutex_lock(&perf->lock); 3101 ret = i915_perf_poll_locked(stream, file, wait); 3102 mutex_unlock(&perf->lock); 3103 3104 return ret; 3105 } 3106 3107 /** 3108 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3109 * @stream: A disabled i915 perf stream 3110 * 3111 * [Re]enables the associated capture of data for this stream. 3112 * 3113 * If a stream was previously enabled then there's currently no intention 3114 * to provide userspace any guarantee about the preservation of previously 3115 * buffered data. 3116 */ 3117 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3118 { 3119 if (stream->enabled) 3120 return; 3121 3122 /* Allow stream->ops->enable() to refer to this */ 3123 stream->enabled = true; 3124 3125 if (stream->ops->enable) 3126 stream->ops->enable(stream); 3127 3128 if (stream->hold_preemption) 3129 intel_context_set_nopreempt(stream->pinned_ctx); 3130 } 3131 3132 /** 3133 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3134 * @stream: An enabled i915 perf stream 3135 * 3136 * Disables the associated capture of data for this stream. 3137 * 3138 * The intention is that disabling an re-enabling a stream will ideally be 3139 * cheaper than destroying and re-opening a stream with the same configuration, 3140 * though there are no formal guarantees about what state or buffered data 3141 * must be retained between disabling and re-enabling a stream. 3142 * 3143 * Note: while a stream is disabled it's considered an error for userspace 3144 * to attempt to read from the stream (-EIO). 3145 */ 3146 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3147 { 3148 if (!stream->enabled) 3149 return; 3150 3151 /* Allow stream->ops->disable() to refer to this */ 3152 stream->enabled = false; 3153 3154 if (stream->hold_preemption) 3155 intel_context_clear_nopreempt(stream->pinned_ctx); 3156 3157 if (stream->ops->disable) 3158 stream->ops->disable(stream); 3159 } 3160 3161 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3162 unsigned long metrics_set) 3163 { 3164 struct i915_oa_config *config; 3165 long ret = stream->oa_config->id; 3166 3167 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3168 if (!config) 3169 return -EINVAL; 3170 3171 if (config != stream->oa_config) { 3172 struct i915_request *rq; 3173 3174 /* 3175 * If OA is bound to a specific context, emit the 3176 * reconfiguration inline from that context. The update 3177 * will then be ordered with respect to submission on that 3178 * context. 3179 * 3180 * When set globally, we use a low priority kernel context, 3181 * so it will effectively take effect when idle. 3182 */ 3183 rq = emit_oa_config(stream, config, oa_context(stream)); 3184 if (!IS_ERR(rq)) { 3185 config = xchg(&stream->oa_config, config); 3186 i915_request_put(rq); 3187 } else { 3188 ret = PTR_ERR(rq); 3189 } 3190 } 3191 3192 i915_oa_config_put(config); 3193 3194 return ret; 3195 } 3196 3197 /** 3198 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3199 * @stream: An i915 perf stream 3200 * @cmd: the ioctl request 3201 * @arg: the ioctl data 3202 * 3203 * Note: The &perf->lock mutex has been taken to serialize 3204 * with any non-file-operation driver hooks. 3205 * 3206 * Returns: zero on success or a negative error code. Returns -EINVAL for 3207 * an unknown ioctl request. 3208 */ 3209 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3210 unsigned int cmd, 3211 unsigned long arg) 3212 { 3213 switch (cmd) { 3214 case I915_PERF_IOCTL_ENABLE: 3215 i915_perf_enable_locked(stream); 3216 return 0; 3217 case I915_PERF_IOCTL_DISABLE: 3218 i915_perf_disable_locked(stream); 3219 return 0; 3220 case I915_PERF_IOCTL_CONFIG: 3221 return i915_perf_config_locked(stream, arg); 3222 } 3223 3224 return -EINVAL; 3225 } 3226 3227 /** 3228 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3229 * @file: An i915 perf stream file 3230 * @cmd: the ioctl request 3231 * @arg: the ioctl data 3232 * 3233 * Implementation deferred to i915_perf_ioctl_locked(). 3234 * 3235 * Returns: zero on success or a negative error code. Returns -EINVAL for 3236 * an unknown ioctl request. 3237 */ 3238 static long i915_perf_ioctl(struct file *file, 3239 unsigned int cmd, 3240 unsigned long arg) 3241 { 3242 struct i915_perf_stream *stream = file->private_data; 3243 struct i915_perf *perf = stream->perf; 3244 long ret; 3245 3246 mutex_lock(&perf->lock); 3247 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3248 mutex_unlock(&perf->lock); 3249 3250 return ret; 3251 } 3252 3253 /** 3254 * i915_perf_destroy_locked - destroy an i915 perf stream 3255 * @stream: An i915 perf stream 3256 * 3257 * Frees all resources associated with the given i915 perf @stream, disabling 3258 * any associated data capture in the process. 3259 * 3260 * Note: The &perf->lock mutex has been taken to serialize 3261 * with any non-file-operation driver hooks. 3262 */ 3263 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3264 { 3265 if (stream->enabled) 3266 i915_perf_disable_locked(stream); 3267 3268 if (stream->ops->destroy) 3269 stream->ops->destroy(stream); 3270 3271 if (stream->ctx) 3272 i915_gem_context_put(stream->ctx); 3273 3274 kfree(stream); 3275 } 3276 3277 /** 3278 * i915_perf_release - handles userspace close() of a stream file 3279 * @inode: anonymous inode associated with file 3280 * @file: An i915 perf stream file 3281 * 3282 * Cleans up any resources associated with an open i915 perf stream file. 3283 * 3284 * NB: close() can't really fail from the userspace point of view. 3285 * 3286 * Returns: zero on success or a negative error code. 3287 */ 3288 static int i915_perf_release(struct inode *inode, struct file *file) 3289 { 3290 struct i915_perf_stream *stream = file->private_data; 3291 struct i915_perf *perf = stream->perf; 3292 3293 mutex_lock(&perf->lock); 3294 i915_perf_destroy_locked(stream); 3295 mutex_unlock(&perf->lock); 3296 3297 /* Release the reference the perf stream kept on the driver. */ 3298 drm_dev_put(&perf->i915->drm); 3299 3300 return 0; 3301 } 3302 3303 3304 static const struct file_operations fops = { 3305 .owner = THIS_MODULE, 3306 .llseek = no_llseek, 3307 .release = i915_perf_release, 3308 .poll = i915_perf_poll, 3309 .read = i915_perf_read, 3310 .unlocked_ioctl = i915_perf_ioctl, 3311 /* Our ioctl have no arguments, so it's safe to use the same function 3312 * to handle 32bits compatibility. 3313 */ 3314 .compat_ioctl = i915_perf_ioctl, 3315 }; 3316 3317 3318 /** 3319 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3320 * @perf: i915 perf instance 3321 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3322 * @props: individually validated u64 property value pairs 3323 * @file: drm file 3324 * 3325 * See i915_perf_ioctl_open() for interface details. 3326 * 3327 * Implements further stream config validation and stream initialization on 3328 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3329 * taken to serialize with any non-file-operation driver hooks. 3330 * 3331 * Note: at this point the @props have only been validated in isolation and 3332 * it's still necessary to validate that the combination of properties makes 3333 * sense. 3334 * 3335 * In the case where userspace is interested in OA unit metrics then further 3336 * config validation and stream initialization details will be handled by 3337 * i915_oa_stream_init(). The code here should only validate config state that 3338 * will be relevant to all stream types / backends. 3339 * 3340 * Returns: zero on success or a negative error code. 3341 */ 3342 static int 3343 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3344 struct drm_i915_perf_open_param *param, 3345 struct perf_open_properties *props, 3346 struct drm_file *file) 3347 { 3348 struct i915_gem_context *specific_ctx = NULL; 3349 struct i915_perf_stream *stream = NULL; 3350 unsigned long f_flags = 0; 3351 bool privileged_op = true; 3352 int stream_fd; 3353 int ret; 3354 3355 if (props->single_context) { 3356 u32 ctx_handle = props->ctx_handle; 3357 struct drm_i915_file_private *file_priv = file->driver_priv; 3358 3359 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3360 if (!specific_ctx) { 3361 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3362 ctx_handle); 3363 ret = -ENOENT; 3364 goto err; 3365 } 3366 } 3367 3368 /* 3369 * On Haswell the OA unit supports clock gating off for a specific 3370 * context and in this mode there's no visibility of metrics for the 3371 * rest of the system, which we consider acceptable for a 3372 * non-privileged client. 3373 * 3374 * For Gen8->11 the OA unit no longer supports clock gating off for a 3375 * specific context and the kernel can't securely stop the counters 3376 * from updating as system-wide / global values. Even though we can 3377 * filter reports based on the included context ID we can't block 3378 * clients from seeing the raw / global counter values via 3379 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3380 * enable the OA unit by default. 3381 * 3382 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3383 * per context basis. So we can relax requirements there if the user 3384 * doesn't request global stream access (i.e. query based sampling 3385 * using MI_RECORD_PERF_COUNT. 3386 */ 3387 if (IS_HASWELL(perf->i915) && specific_ctx) 3388 privileged_op = false; 3389 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3390 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3391 privileged_op = false; 3392 3393 if (props->hold_preemption) { 3394 if (!props->single_context) { 3395 DRM_DEBUG("preemption disable with no context\n"); 3396 ret = -EINVAL; 3397 goto err; 3398 } 3399 privileged_op = true; 3400 } 3401 3402 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3403 * we check a dev.i915.perf_stream_paranoid sysctl option 3404 * to determine if it's ok to access system wide OA counters 3405 * without CAP_SYS_ADMIN privileges. 3406 */ 3407 if (privileged_op && 3408 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3409 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3410 ret = -EACCES; 3411 goto err_ctx; 3412 } 3413 3414 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3415 if (!stream) { 3416 ret = -ENOMEM; 3417 goto err_ctx; 3418 } 3419 3420 stream->perf = perf; 3421 stream->ctx = specific_ctx; 3422 3423 ret = i915_oa_stream_init(stream, param, props); 3424 if (ret) 3425 goto err_alloc; 3426 3427 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3428 * to have _stream_init check the combination of sample flags more 3429 * thoroughly, but still this is the expected result at this point. 3430 */ 3431 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3432 ret = -ENODEV; 3433 goto err_flags; 3434 } 3435 3436 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3437 f_flags |= O_CLOEXEC; 3438 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3439 f_flags |= O_NONBLOCK; 3440 3441 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3442 if (stream_fd < 0) { 3443 ret = stream_fd; 3444 goto err_flags; 3445 } 3446 3447 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3448 i915_perf_enable_locked(stream); 3449 3450 /* Take a reference on the driver that will be kept with stream_fd 3451 * until its release. 3452 */ 3453 drm_dev_get(&perf->i915->drm); 3454 3455 return stream_fd; 3456 3457 err_flags: 3458 if (stream->ops->destroy) 3459 stream->ops->destroy(stream); 3460 err_alloc: 3461 kfree(stream); 3462 err_ctx: 3463 if (specific_ctx) 3464 i915_gem_context_put(specific_ctx); 3465 err: 3466 return ret; 3467 } 3468 3469 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3470 { 3471 return div64_u64(1000000000ULL * (2ULL << exponent), 3472 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz); 3473 } 3474 3475 /** 3476 * read_properties_unlocked - validate + copy userspace stream open properties 3477 * @perf: i915 perf instance 3478 * @uprops: The array of u64 key value pairs given by userspace 3479 * @n_props: The number of key value pairs expected in @uprops 3480 * @props: The stream configuration built up while validating properties 3481 * 3482 * Note this function only validates properties in isolation it doesn't 3483 * validate that the combination of properties makes sense or that all 3484 * properties necessary for a particular kind of stream have been set. 3485 * 3486 * Note that there currently aren't any ordering requirements for properties so 3487 * we shouldn't validate or assume anything about ordering here. This doesn't 3488 * rule out defining new properties with ordering requirements in the future. 3489 */ 3490 static int read_properties_unlocked(struct i915_perf *perf, 3491 u64 __user *uprops, 3492 u32 n_props, 3493 struct perf_open_properties *props) 3494 { 3495 u64 __user *uprop = uprops; 3496 u32 i; 3497 3498 memset(props, 0, sizeof(struct perf_open_properties)); 3499 3500 if (!n_props) { 3501 DRM_DEBUG("No i915 perf properties given\n"); 3502 return -EINVAL; 3503 } 3504 3505 /* At the moment we only support using i915-perf on the RCS. */ 3506 props->engine = intel_engine_lookup_user(perf->i915, 3507 I915_ENGINE_CLASS_RENDER, 3508 0); 3509 if (!props->engine) { 3510 DRM_DEBUG("No RENDER-capable engines\n"); 3511 return -EINVAL; 3512 } 3513 3514 /* Considering that ID = 0 is reserved and assuming that we don't 3515 * (currently) expect any configurations to ever specify duplicate 3516 * values for a particular property ID then the last _PROP_MAX value is 3517 * one greater than the maximum number of properties we expect to get 3518 * from userspace. 3519 */ 3520 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3521 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3522 return -EINVAL; 3523 } 3524 3525 for (i = 0; i < n_props; i++) { 3526 u64 oa_period, oa_freq_hz; 3527 u64 id, value; 3528 int ret; 3529 3530 ret = get_user(id, uprop); 3531 if (ret) 3532 return ret; 3533 3534 ret = get_user(value, uprop + 1); 3535 if (ret) 3536 return ret; 3537 3538 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3539 DRM_DEBUG("Unknown i915 perf property ID\n"); 3540 return -EINVAL; 3541 } 3542 3543 switch ((enum drm_i915_perf_property_id)id) { 3544 case DRM_I915_PERF_PROP_CTX_HANDLE: 3545 props->single_context = 1; 3546 props->ctx_handle = value; 3547 break; 3548 case DRM_I915_PERF_PROP_SAMPLE_OA: 3549 if (value) 3550 props->sample_flags |= SAMPLE_OA_REPORT; 3551 break; 3552 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3553 if (value == 0) { 3554 DRM_DEBUG("Unknown OA metric set ID\n"); 3555 return -EINVAL; 3556 } 3557 props->metrics_set = value; 3558 break; 3559 case DRM_I915_PERF_PROP_OA_FORMAT: 3560 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3561 DRM_DEBUG("Out-of-range OA report format %llu\n", 3562 value); 3563 return -EINVAL; 3564 } 3565 if (!perf->oa_formats[value].size) { 3566 DRM_DEBUG("Unsupported OA report format %llu\n", 3567 value); 3568 return -EINVAL; 3569 } 3570 props->oa_format = value; 3571 break; 3572 case DRM_I915_PERF_PROP_OA_EXPONENT: 3573 if (value > OA_EXPONENT_MAX) { 3574 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3575 OA_EXPONENT_MAX); 3576 return -EINVAL; 3577 } 3578 3579 /* Theoretically we can program the OA unit to sample 3580 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3581 * for BXT. We don't allow such high sampling 3582 * frequencies by default unless root. 3583 */ 3584 3585 BUILD_BUG_ON(sizeof(oa_period) != 8); 3586 oa_period = oa_exponent_to_ns(perf, value); 3587 3588 /* This check is primarily to ensure that oa_period <= 3589 * UINT32_MAX (before passing to do_div which only 3590 * accepts a u32 denominator), but we can also skip 3591 * checking anything < 1Hz which implicitly can't be 3592 * limited via an integer oa_max_sample_rate. 3593 */ 3594 if (oa_period <= NSEC_PER_SEC) { 3595 u64 tmp = NSEC_PER_SEC; 3596 do_div(tmp, oa_period); 3597 oa_freq_hz = tmp; 3598 } else 3599 oa_freq_hz = 0; 3600 3601 if (oa_freq_hz > i915_oa_max_sample_rate && 3602 !capable(CAP_SYS_ADMIN)) { 3603 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 3604 i915_oa_max_sample_rate); 3605 return -EACCES; 3606 } 3607 3608 props->oa_periodic = true; 3609 props->oa_period_exponent = value; 3610 break; 3611 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3612 props->hold_preemption = !!value; 3613 break; 3614 case DRM_I915_PERF_PROP_MAX: 3615 MISSING_CASE(id); 3616 return -EINVAL; 3617 } 3618 3619 uprop += 2; 3620 } 3621 3622 return 0; 3623 } 3624 3625 /** 3626 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3627 * @dev: drm device 3628 * @data: ioctl data copied from userspace (unvalidated) 3629 * @file: drm file 3630 * 3631 * Validates the stream open parameters given by userspace including flags 3632 * and an array of u64 key, value pair properties. 3633 * 3634 * Very little is assumed up front about the nature of the stream being 3635 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3636 * i915-perf stream is expected to be a suitable interface for other forms of 3637 * buffered data written by the GPU besides periodic OA metrics. 3638 * 3639 * Note we copy the properties from userspace outside of the i915 perf 3640 * mutex to avoid an awkward lockdep with mmap_sem. 3641 * 3642 * Most of the implementation details are handled by 3643 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3644 * mutex for serializing with any non-file-operation driver hooks. 3645 * 3646 * Return: A newly opened i915 Perf stream file descriptor or negative 3647 * error code on failure. 3648 */ 3649 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3650 struct drm_file *file) 3651 { 3652 struct i915_perf *perf = &to_i915(dev)->perf; 3653 struct drm_i915_perf_open_param *param = data; 3654 struct perf_open_properties props; 3655 u32 known_open_flags; 3656 int ret; 3657 3658 if (!perf->i915) { 3659 DRM_DEBUG("i915 perf interface not available for this system\n"); 3660 return -ENOTSUPP; 3661 } 3662 3663 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3664 I915_PERF_FLAG_FD_NONBLOCK | 3665 I915_PERF_FLAG_DISABLED; 3666 if (param->flags & ~known_open_flags) { 3667 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3668 return -EINVAL; 3669 } 3670 3671 ret = read_properties_unlocked(perf, 3672 u64_to_user_ptr(param->properties_ptr), 3673 param->num_properties, 3674 &props); 3675 if (ret) 3676 return ret; 3677 3678 mutex_lock(&perf->lock); 3679 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3680 mutex_unlock(&perf->lock); 3681 3682 return ret; 3683 } 3684 3685 /** 3686 * i915_perf_register - exposes i915-perf to userspace 3687 * @i915: i915 device instance 3688 * 3689 * In particular OA metric sets are advertised under a sysfs metrics/ 3690 * directory allowing userspace to enumerate valid IDs that can be 3691 * used to open an i915-perf stream. 3692 */ 3693 void i915_perf_register(struct drm_i915_private *i915) 3694 { 3695 struct i915_perf *perf = &i915->perf; 3696 int ret; 3697 3698 if (!perf->i915) 3699 return; 3700 3701 /* To be sure we're synchronized with an attempted 3702 * i915_perf_open_ioctl(); considering that we register after 3703 * being exposed to userspace. 3704 */ 3705 mutex_lock(&perf->lock); 3706 3707 perf->metrics_kobj = 3708 kobject_create_and_add("metrics", 3709 &i915->drm.primary->kdev->kobj); 3710 if (!perf->metrics_kobj) 3711 goto exit; 3712 3713 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr); 3714 3715 if (IS_TIGERLAKE(i915)) { 3716 i915_perf_load_test_config_tgl(i915); 3717 } else if (INTEL_GEN(i915) >= 11) { 3718 i915_perf_load_test_config_icl(i915); 3719 } else if (IS_CANNONLAKE(i915)) { 3720 i915_perf_load_test_config_cnl(i915); 3721 } else if (IS_COFFEELAKE(i915)) { 3722 if (IS_CFL_GT2(i915)) 3723 i915_perf_load_test_config_cflgt2(i915); 3724 if (IS_CFL_GT3(i915)) 3725 i915_perf_load_test_config_cflgt3(i915); 3726 } else if (IS_GEMINILAKE(i915)) { 3727 i915_perf_load_test_config_glk(i915); 3728 } else if (IS_KABYLAKE(i915)) { 3729 if (IS_KBL_GT2(i915)) 3730 i915_perf_load_test_config_kblgt2(i915); 3731 else if (IS_KBL_GT3(i915)) 3732 i915_perf_load_test_config_kblgt3(i915); 3733 } else if (IS_BROXTON(i915)) { 3734 i915_perf_load_test_config_bxt(i915); 3735 } else if (IS_SKYLAKE(i915)) { 3736 if (IS_SKL_GT2(i915)) 3737 i915_perf_load_test_config_sklgt2(i915); 3738 else if (IS_SKL_GT3(i915)) 3739 i915_perf_load_test_config_sklgt3(i915); 3740 else if (IS_SKL_GT4(i915)) 3741 i915_perf_load_test_config_sklgt4(i915); 3742 } else if (IS_CHERRYVIEW(i915)) { 3743 i915_perf_load_test_config_chv(i915); 3744 } else if (IS_BROADWELL(i915)) { 3745 i915_perf_load_test_config_bdw(i915); 3746 } else if (IS_HASWELL(i915)) { 3747 i915_perf_load_test_config_hsw(i915); 3748 } 3749 3750 if (perf->test_config.id == 0) 3751 goto sysfs_error; 3752 3753 ret = sysfs_create_group(perf->metrics_kobj, 3754 &perf->test_config.sysfs_metric); 3755 if (ret) 3756 goto sysfs_error; 3757 3758 perf->test_config.perf = perf; 3759 kref_init(&perf->test_config.ref); 3760 3761 goto exit; 3762 3763 sysfs_error: 3764 kobject_put(perf->metrics_kobj); 3765 perf->metrics_kobj = NULL; 3766 3767 exit: 3768 mutex_unlock(&perf->lock); 3769 } 3770 3771 /** 3772 * i915_perf_unregister - hide i915-perf from userspace 3773 * @i915: i915 device instance 3774 * 3775 * i915-perf state cleanup is split up into an 'unregister' and 3776 * 'deinit' phase where the interface is first hidden from 3777 * userspace by i915_perf_unregister() before cleaning up 3778 * remaining state in i915_perf_fini(). 3779 */ 3780 void i915_perf_unregister(struct drm_i915_private *i915) 3781 { 3782 struct i915_perf *perf = &i915->perf; 3783 3784 if (!perf->metrics_kobj) 3785 return; 3786 3787 sysfs_remove_group(perf->metrics_kobj, 3788 &perf->test_config.sysfs_metric); 3789 3790 kobject_put(perf->metrics_kobj); 3791 perf->metrics_kobj = NULL; 3792 } 3793 3794 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3795 { 3796 static const i915_reg_t flex_eu_regs[] = { 3797 EU_PERF_CNTL0, 3798 EU_PERF_CNTL1, 3799 EU_PERF_CNTL2, 3800 EU_PERF_CNTL3, 3801 EU_PERF_CNTL4, 3802 EU_PERF_CNTL5, 3803 EU_PERF_CNTL6, 3804 }; 3805 int i; 3806 3807 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3808 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3809 return true; 3810 } 3811 return false; 3812 } 3813 3814 #define ADDR_IN_RANGE(addr, start, end) \ 3815 ((addr) >= (start) && \ 3816 (addr) <= (end)) 3817 3818 #define REG_IN_RANGE(addr, start, end) \ 3819 ((addr) >= i915_mmio_reg_offset(start) && \ 3820 (addr) <= i915_mmio_reg_offset(end)) 3821 3822 #define REG_EQUAL(addr, mmio) \ 3823 ((addr) == i915_mmio_reg_offset(mmio)) 3824 3825 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3826 { 3827 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3828 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3829 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3830 } 3831 3832 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3833 { 3834 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3835 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3836 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3837 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3838 } 3839 3840 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3841 { 3842 return gen7_is_valid_mux_addr(perf, addr) || 3843 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3844 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3845 } 3846 3847 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3848 { 3849 return gen8_is_valid_mux_addr(perf, addr) || 3850 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3851 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3852 } 3853 3854 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3855 { 3856 return gen7_is_valid_mux_addr(perf, addr) || 3857 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3858 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3859 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3860 } 3861 3862 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3863 { 3864 return gen7_is_valid_mux_addr(perf, addr) || 3865 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3866 } 3867 3868 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3869 { 3870 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3871 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3872 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3873 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3874 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3875 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3876 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3877 } 3878 3879 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3880 { 3881 return REG_EQUAL(addr, NOA_WRITE) || 3882 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3883 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3884 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3885 REG_EQUAL(addr, RPM_CONFIG0) || 3886 REG_EQUAL(addr, RPM_CONFIG1) || 3887 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3888 } 3889 3890 static u32 mask_reg_value(u32 reg, u32 val) 3891 { 3892 /* HALF_SLICE_CHICKEN2 is programmed with a the 3893 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3894 * programmed by userspace doesn't change this. 3895 */ 3896 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3897 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3898 3899 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3900 * indicated by its name and a bunch of selection fields used by OA 3901 * configs. 3902 */ 3903 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3904 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3905 3906 return val; 3907 } 3908 3909 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3910 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3911 u32 __user *regs, 3912 u32 n_regs) 3913 { 3914 struct i915_oa_reg *oa_regs; 3915 int err; 3916 u32 i; 3917 3918 if (!n_regs) 3919 return NULL; 3920 3921 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3922 return ERR_PTR(-EFAULT); 3923 3924 /* No is_valid function means we're not allowing any register to be programmed. */ 3925 GEM_BUG_ON(!is_valid); 3926 if (!is_valid) 3927 return ERR_PTR(-EINVAL); 3928 3929 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3930 if (!oa_regs) 3931 return ERR_PTR(-ENOMEM); 3932 3933 for (i = 0; i < n_regs; i++) { 3934 u32 addr, value; 3935 3936 err = get_user(addr, regs); 3937 if (err) 3938 goto addr_err; 3939 3940 if (!is_valid(perf, addr)) { 3941 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3942 err = -EINVAL; 3943 goto addr_err; 3944 } 3945 3946 err = get_user(value, regs + 1); 3947 if (err) 3948 goto addr_err; 3949 3950 oa_regs[i].addr = _MMIO(addr); 3951 oa_regs[i].value = mask_reg_value(addr, value); 3952 3953 regs += 2; 3954 } 3955 3956 return oa_regs; 3957 3958 addr_err: 3959 kfree(oa_regs); 3960 return ERR_PTR(err); 3961 } 3962 3963 static ssize_t show_dynamic_id(struct device *dev, 3964 struct device_attribute *attr, 3965 char *buf) 3966 { 3967 struct i915_oa_config *oa_config = 3968 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3969 3970 return sprintf(buf, "%d\n", oa_config->id); 3971 } 3972 3973 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3974 struct i915_oa_config *oa_config) 3975 { 3976 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3977 oa_config->sysfs_metric_id.attr.name = "id"; 3978 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3979 oa_config->sysfs_metric_id.show = show_dynamic_id; 3980 oa_config->sysfs_metric_id.store = NULL; 3981 3982 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3983 oa_config->attrs[1] = NULL; 3984 3985 oa_config->sysfs_metric.name = oa_config->uuid; 3986 oa_config->sysfs_metric.attrs = oa_config->attrs; 3987 3988 return sysfs_create_group(perf->metrics_kobj, 3989 &oa_config->sysfs_metric); 3990 } 3991 3992 /** 3993 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3994 * @dev: drm device 3995 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3996 * userspace (unvalidated) 3997 * @file: drm file 3998 * 3999 * Validates the submitted OA register to be saved into a new OA config that 4000 * can then be used for programming the OA unit and its NOA network. 4001 * 4002 * Returns: A new allocated config number to be used with the perf open ioctl 4003 * or a negative error code on failure. 4004 */ 4005 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4006 struct drm_file *file) 4007 { 4008 struct i915_perf *perf = &to_i915(dev)->perf; 4009 struct drm_i915_perf_oa_config *args = data; 4010 struct i915_oa_config *oa_config, *tmp; 4011 struct i915_oa_reg *regs; 4012 int err, id; 4013 4014 if (!perf->i915) { 4015 DRM_DEBUG("i915 perf interface not available for this system\n"); 4016 return -ENOTSUPP; 4017 } 4018 4019 if (!perf->metrics_kobj) { 4020 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4021 return -EINVAL; 4022 } 4023 4024 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4025 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4026 return -EACCES; 4027 } 4028 4029 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4030 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4031 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4032 DRM_DEBUG("No OA registers given\n"); 4033 return -EINVAL; 4034 } 4035 4036 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4037 if (!oa_config) { 4038 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4039 return -ENOMEM; 4040 } 4041 4042 oa_config->perf = perf; 4043 kref_init(&oa_config->ref); 4044 4045 if (!uuid_is_valid(args->uuid)) { 4046 DRM_DEBUG("Invalid uuid format for OA config\n"); 4047 err = -EINVAL; 4048 goto reg_err; 4049 } 4050 4051 /* Last character in oa_config->uuid will be 0 because oa_config is 4052 * kzalloc. 4053 */ 4054 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4055 4056 oa_config->mux_regs_len = args->n_mux_regs; 4057 regs = alloc_oa_regs(perf, 4058 perf->ops.is_valid_mux_reg, 4059 u64_to_user_ptr(args->mux_regs_ptr), 4060 args->n_mux_regs); 4061 4062 if (IS_ERR(regs)) { 4063 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4064 err = PTR_ERR(regs); 4065 goto reg_err; 4066 } 4067 oa_config->mux_regs = regs; 4068 4069 oa_config->b_counter_regs_len = args->n_boolean_regs; 4070 regs = alloc_oa_regs(perf, 4071 perf->ops.is_valid_b_counter_reg, 4072 u64_to_user_ptr(args->boolean_regs_ptr), 4073 args->n_boolean_regs); 4074 4075 if (IS_ERR(regs)) { 4076 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4077 err = PTR_ERR(regs); 4078 goto reg_err; 4079 } 4080 oa_config->b_counter_regs = regs; 4081 4082 if (INTEL_GEN(perf->i915) < 8) { 4083 if (args->n_flex_regs != 0) { 4084 err = -EINVAL; 4085 goto reg_err; 4086 } 4087 } else { 4088 oa_config->flex_regs_len = args->n_flex_regs; 4089 regs = alloc_oa_regs(perf, 4090 perf->ops.is_valid_flex_reg, 4091 u64_to_user_ptr(args->flex_regs_ptr), 4092 args->n_flex_regs); 4093 4094 if (IS_ERR(regs)) { 4095 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4096 err = PTR_ERR(regs); 4097 goto reg_err; 4098 } 4099 oa_config->flex_regs = regs; 4100 } 4101 4102 err = mutex_lock_interruptible(&perf->metrics_lock); 4103 if (err) 4104 goto reg_err; 4105 4106 /* We shouldn't have too many configs, so this iteration shouldn't be 4107 * too costly. 4108 */ 4109 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4110 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4111 DRM_DEBUG("OA config already exists with this uuid\n"); 4112 err = -EADDRINUSE; 4113 goto sysfs_err; 4114 } 4115 } 4116 4117 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4118 if (err) { 4119 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4120 goto sysfs_err; 4121 } 4122 4123 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4124 oa_config->id = idr_alloc(&perf->metrics_idr, 4125 oa_config, 2, 4126 0, GFP_KERNEL); 4127 if (oa_config->id < 0) { 4128 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4129 err = oa_config->id; 4130 goto sysfs_err; 4131 } 4132 4133 mutex_unlock(&perf->metrics_lock); 4134 4135 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4136 4137 return oa_config->id; 4138 4139 sysfs_err: 4140 mutex_unlock(&perf->metrics_lock); 4141 reg_err: 4142 i915_oa_config_put(oa_config); 4143 DRM_DEBUG("Failed to add new OA config\n"); 4144 return err; 4145 } 4146 4147 /** 4148 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4149 * @dev: drm device 4150 * @data: ioctl data (pointer to u64 integer) copied from userspace 4151 * @file: drm file 4152 * 4153 * Configs can be removed while being used, the will stop appearing in sysfs 4154 * and their content will be freed when the stream using the config is closed. 4155 * 4156 * Returns: 0 on success or a negative error code on failure. 4157 */ 4158 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4159 struct drm_file *file) 4160 { 4161 struct i915_perf *perf = &to_i915(dev)->perf; 4162 u64 *arg = data; 4163 struct i915_oa_config *oa_config; 4164 int ret; 4165 4166 if (!perf->i915) { 4167 DRM_DEBUG("i915 perf interface not available for this system\n"); 4168 return -ENOTSUPP; 4169 } 4170 4171 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4172 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4173 return -EACCES; 4174 } 4175 4176 ret = mutex_lock_interruptible(&perf->metrics_lock); 4177 if (ret) 4178 return ret; 4179 4180 oa_config = idr_find(&perf->metrics_idr, *arg); 4181 if (!oa_config) { 4182 DRM_DEBUG("Failed to remove unknown OA config\n"); 4183 ret = -ENOENT; 4184 goto err_unlock; 4185 } 4186 4187 GEM_BUG_ON(*arg != oa_config->id); 4188 4189 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4190 4191 idr_remove(&perf->metrics_idr, *arg); 4192 4193 mutex_unlock(&perf->metrics_lock); 4194 4195 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4196 4197 i915_oa_config_put(oa_config); 4198 4199 return 0; 4200 4201 err_unlock: 4202 mutex_unlock(&perf->metrics_lock); 4203 return ret; 4204 } 4205 4206 static struct ctl_table oa_table[] = { 4207 { 4208 .procname = "perf_stream_paranoid", 4209 .data = &i915_perf_stream_paranoid, 4210 .maxlen = sizeof(i915_perf_stream_paranoid), 4211 .mode = 0644, 4212 .proc_handler = proc_dointvec_minmax, 4213 .extra1 = SYSCTL_ZERO, 4214 .extra2 = SYSCTL_ONE, 4215 }, 4216 { 4217 .procname = "oa_max_sample_rate", 4218 .data = &i915_oa_max_sample_rate, 4219 .maxlen = sizeof(i915_oa_max_sample_rate), 4220 .mode = 0644, 4221 .proc_handler = proc_dointvec_minmax, 4222 .extra1 = SYSCTL_ZERO, 4223 .extra2 = &oa_sample_rate_hard_limit, 4224 }, 4225 {} 4226 }; 4227 4228 static struct ctl_table i915_root[] = { 4229 { 4230 .procname = "i915", 4231 .maxlen = 0, 4232 .mode = 0555, 4233 .child = oa_table, 4234 }, 4235 {} 4236 }; 4237 4238 static struct ctl_table dev_root[] = { 4239 { 4240 .procname = "dev", 4241 .maxlen = 0, 4242 .mode = 0555, 4243 .child = i915_root, 4244 }, 4245 {} 4246 }; 4247 4248 /** 4249 * i915_perf_init - initialize i915-perf state on module bind 4250 * @i915: i915 device instance 4251 * 4252 * Initializes i915-perf state without exposing anything to userspace. 4253 * 4254 * Note: i915-perf initialization is split into an 'init' and 'register' 4255 * phase with the i915_perf_register() exposing state to userspace. 4256 */ 4257 void i915_perf_init(struct drm_i915_private *i915) 4258 { 4259 struct i915_perf *perf = &i915->perf; 4260 4261 /* XXX const struct i915_perf_ops! */ 4262 4263 if (IS_HASWELL(i915)) { 4264 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4265 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4266 perf->ops.is_valid_flex_reg = NULL; 4267 perf->ops.enable_metric_set = hsw_enable_metric_set; 4268 perf->ops.disable_metric_set = hsw_disable_metric_set; 4269 perf->ops.oa_enable = gen7_oa_enable; 4270 perf->ops.oa_disable = gen7_oa_disable; 4271 perf->ops.read = gen7_oa_read; 4272 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4273 4274 perf->oa_formats = hsw_oa_formats; 4275 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4276 /* Note: that although we could theoretically also support the 4277 * legacy ringbuffer mode on BDW (and earlier iterations of 4278 * this driver, before upstreaming did this) it didn't seem 4279 * worth the complexity to maintain now that BDW+ enable 4280 * execlist mode by default. 4281 */ 4282 perf->ops.read = gen8_oa_read; 4283 4284 if (IS_GEN_RANGE(i915, 8, 9)) { 4285 perf->oa_formats = gen8_plus_oa_formats; 4286 4287 perf->ops.is_valid_b_counter_reg = 4288 gen7_is_valid_b_counter_addr; 4289 perf->ops.is_valid_mux_reg = 4290 gen8_is_valid_mux_addr; 4291 perf->ops.is_valid_flex_reg = 4292 gen8_is_valid_flex_addr; 4293 4294 if (IS_CHERRYVIEW(i915)) { 4295 perf->ops.is_valid_mux_reg = 4296 chv_is_valid_mux_addr; 4297 } 4298 4299 perf->ops.oa_enable = gen8_oa_enable; 4300 perf->ops.oa_disable = gen8_oa_disable; 4301 perf->ops.enable_metric_set = gen8_enable_metric_set; 4302 perf->ops.disable_metric_set = gen8_disable_metric_set; 4303 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4304 4305 if (IS_GEN(i915, 8)) { 4306 perf->ctx_oactxctrl_offset = 0x120; 4307 perf->ctx_flexeu0_offset = 0x2ce; 4308 4309 perf->gen8_valid_ctx_bit = BIT(25); 4310 } else { 4311 perf->ctx_oactxctrl_offset = 0x128; 4312 perf->ctx_flexeu0_offset = 0x3de; 4313 4314 perf->gen8_valid_ctx_bit = BIT(16); 4315 } 4316 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4317 perf->oa_formats = gen8_plus_oa_formats; 4318 4319 perf->ops.is_valid_b_counter_reg = 4320 gen7_is_valid_b_counter_addr; 4321 perf->ops.is_valid_mux_reg = 4322 gen10_is_valid_mux_addr; 4323 perf->ops.is_valid_flex_reg = 4324 gen8_is_valid_flex_addr; 4325 4326 perf->ops.oa_enable = gen8_oa_enable; 4327 perf->ops.oa_disable = gen8_oa_disable; 4328 perf->ops.enable_metric_set = gen8_enable_metric_set; 4329 perf->ops.disable_metric_set = gen10_disable_metric_set; 4330 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4331 4332 if (IS_GEN(i915, 10)) { 4333 perf->ctx_oactxctrl_offset = 0x128; 4334 perf->ctx_flexeu0_offset = 0x3de; 4335 } else { 4336 perf->ctx_oactxctrl_offset = 0x124; 4337 perf->ctx_flexeu0_offset = 0x78e; 4338 } 4339 perf->gen8_valid_ctx_bit = BIT(16); 4340 } else if (IS_GEN(i915, 12)) { 4341 perf->oa_formats = gen12_oa_formats; 4342 4343 perf->ops.is_valid_b_counter_reg = 4344 gen12_is_valid_b_counter_addr; 4345 perf->ops.is_valid_mux_reg = 4346 gen12_is_valid_mux_addr; 4347 perf->ops.is_valid_flex_reg = 4348 gen8_is_valid_flex_addr; 4349 4350 perf->ops.oa_enable = gen12_oa_enable; 4351 perf->ops.oa_disable = gen12_oa_disable; 4352 perf->ops.enable_metric_set = gen12_enable_metric_set; 4353 perf->ops.disable_metric_set = gen12_disable_metric_set; 4354 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4355 4356 perf->ctx_flexeu0_offset = 0; 4357 perf->ctx_oactxctrl_offset = 0x144; 4358 } 4359 } 4360 4361 if (perf->ops.enable_metric_set) { 4362 mutex_init(&perf->lock); 4363 4364 oa_sample_rate_hard_limit = 1000 * 4365 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2); 4366 4367 mutex_init(&perf->metrics_lock); 4368 idr_init(&perf->metrics_idr); 4369 4370 /* We set up some ratelimit state to potentially throttle any 4371 * _NOTES about spurious, invalid OA reports which we don't 4372 * forward to userspace. 4373 * 4374 * We print a _NOTE about any throttling when closing the 4375 * stream instead of waiting until driver _fini which no one 4376 * would ever see. 4377 * 4378 * Using the same limiting factors as printk_ratelimit() 4379 */ 4380 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4381 /* Since we use a DRM_NOTE for spurious reports it would be 4382 * inconsistent to let __ratelimit() automatically print a 4383 * warning for throttling. 4384 */ 4385 ratelimit_set_flags(&perf->spurious_report_rs, 4386 RATELIMIT_MSG_ON_RELEASE); 4387 4388 atomic64_set(&perf->noa_programming_delay, 4389 500 * 1000 /* 500us */); 4390 4391 perf->i915 = i915; 4392 } 4393 } 4394 4395 static int destroy_config(int id, void *p, void *data) 4396 { 4397 i915_oa_config_put(p); 4398 return 0; 4399 } 4400 4401 void i915_perf_sysctl_register(void) 4402 { 4403 sysctl_header = register_sysctl_table(dev_root); 4404 } 4405 4406 void i915_perf_sysctl_unregister(void) 4407 { 4408 unregister_sysctl_table(sysctl_header); 4409 } 4410 4411 /** 4412 * i915_perf_fini - Counter part to i915_perf_init() 4413 * @i915: i915 device instance 4414 */ 4415 void i915_perf_fini(struct drm_i915_private *i915) 4416 { 4417 struct i915_perf *perf = &i915->perf; 4418 4419 if (!perf->i915) 4420 return; 4421 4422 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4423 idr_destroy(&perf->metrics_idr); 4424 4425 memset(&perf->ops, 0, sizeof(perf->ops)); 4426 perf->i915 = NULL; 4427 } 4428 4429 /** 4430 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4431 * 4432 * This version number is used by userspace to detect available features. 4433 */ 4434 int i915_perf_ioctl_version(void) 4435 { 4436 /* 4437 * 1: Initial version 4438 * I915_PERF_IOCTL_ENABLE 4439 * I915_PERF_IOCTL_DISABLE 4440 * 4441 * 2: Added runtime modification of OA config. 4442 * I915_PERF_IOCTL_CONFIG 4443 * 4444 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4445 * preemption on a particular context so that performance data is 4446 * accessible from a delta of MI_RPC reports without looking at the 4447 * OA buffer. 4448 */ 4449 return 3; 4450 } 4451 4452 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4453 #include "selftests/i915_perf.c" 4454 #endif 4455