xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 21225873)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_regs.h"
210 #include "gt/intel_lrc.h"
211 #include "gt/intel_lrc_reg.h"
212 #include "gt/intel_rc6.h"
213 #include "gt/intel_ring.h"
214 #include "gt/uc/intel_guc_slpc.h"
215 
216 #include "i915_drv.h"
217 #include "i915_file_private.h"
218 #include "i915_perf.h"
219 #include "i915_perf_oa_regs.h"
220 #include "i915_reg.h"
221 
222 /* HW requires this to be a power of two, between 128k and 16M, though driver
223  * is currently generally designed assuming the largest 16M size is used such
224  * that the overflow cases are unlikely in normal operation.
225  */
226 #define OA_BUFFER_SIZE		SZ_16M
227 
228 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
229 
230 /**
231  * DOC: OA Tail Pointer Race
232  *
233  * There's a HW race condition between OA unit tail pointer register updates and
234  * writes to memory whereby the tail pointer can sometimes get ahead of what's
235  * been written out to the OA buffer so far (in terms of what's visible to the
236  * CPU).
237  *
238  * Although this can be observed explicitly while copying reports to userspace
239  * by checking for a zeroed report-id field in tail reports, we want to account
240  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241  * redundant read() attempts.
242  *
243  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244  * in the OA buffer, starting from the tail reported by the HW until we find a
245  * report with its first 2 dwords not 0 meaning its previous report is
246  * completely in memory and ready to be read. Those dwords are also set to 0
247  * once read and the whole buffer is cleared upon OA buffer initialization. The
248  * first dword is the reason for this report while the second is the timestamp,
249  * making the chances of having those 2 fields at 0 fairly unlikely. A more
250  * detailed explanation is available in oa_buffer_check_unlocked().
251  *
252  * Most of the implementation details for this workaround are in
253  * oa_buffer_check_unlocked() and _append_oa_reports()
254  *
255  * Note for posterity: previously the driver used to define an effective tail
256  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258  * This was flawed considering that the OA unit may also automatically generate
259  * non-periodic reports (such as on context switch) or the OA unit may be
260  * enabled without any periodic sampling.
261  */
262 #define OA_TAIL_MARGIN_NSEC	100000ULL
263 #define INVALID_TAIL_PTR	0xffffffff
264 
265 /* The default frequency for checking whether the OA unit has written new
266  * reports to the circular OA buffer...
267  */
268 #define DEFAULT_POLL_FREQUENCY_HZ 200
269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270 
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static u32 i915_perf_stream_paranoid = true;
273 
274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
275  * of the 64bit timestamp bits to trigger reports from) but there's currently
276  * no known use case for sampling as infrequently as once per 47 thousand years.
277  *
278  * Since the timestamps included in OA reports are only 32bits it seems
279  * reasonable to limit the OA exponent where it's still possible to account for
280  * overflow in OA report timestamps.
281  */
282 #define OA_EXPONENT_MAX 31
283 
284 #define INVALID_CTX_ID 0xffffffff
285 
286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287 #define OAREPORT_REASON_MASK           0x3f
288 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
289 #define OAREPORT_REASON_SHIFT          19
290 #define OAREPORT_REASON_TIMER          (1<<0)
291 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
292 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
293 
294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295 
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297  *
298  * The highest sampling frequency we can theoretically program the OA unit
299  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300  *
301  * Initialized just before we register the sysctl parameter.
302  */
303 static int oa_sample_rate_hard_limit;
304 
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306  * allow that by default unless root...
307  *
308  * The default threshold of 100000Hz is based on perf's similar
309  * kernel.perf_event_max_sample_rate sysctl parameter.
310  */
311 static u32 i915_oa_max_sample_rate = 100000;
312 
313 /* XXX: beware if future OA HW adds new report formats that the current
314  * code assumes all reports have a power-of-two size and ~(size - 1) can
315  * be used as a mask to align the OA tail pointer.
316  */
317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
327 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
328 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
330 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
331 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
332 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
333 };
334 
335 static const u32 mtl_oa_base[] = {
336 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337 };
338 
339 #define SAMPLE_OA_REPORT      (1<<0)
340 
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @hold_preemption: Whether the preemption is disabled for the filtered
346  *                   context
347  * @ctx_handle: A gem ctx handle for use with @single_context
348  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349  * @oa_format: An OA unit HW report format
350  * @oa_periodic: Whether to enable periodic OA unit sampling
351  * @oa_period_exponent: The OA unit sampling period is derived from this
352  * @engine: The engine (typically rcs0) being monitored by the OA unit
353  * @has_sseu: Whether @sseu was specified by userspace
354  * @sseu: internal SSEU configuration computed either from the userspace
355  *        specified configuration in the opening parameters or a default value
356  *        (see get_default_sseu_config())
357  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358  * data availability
359  *
360  * As read_properties_unlocked() enumerates and validates the properties given
361  * to open a stream of metrics the configuration is built up in the structure
362  * which starts out zero initialized.
363  */
364 struct perf_open_properties {
365 	u32 sample_flags;
366 
367 	u64 single_context:1;
368 	u64 hold_preemption:1;
369 	u64 ctx_handle;
370 
371 	/* OA sampling state */
372 	int metrics_set;
373 	int oa_format;
374 	bool oa_periodic;
375 	int oa_period_exponent;
376 
377 	struct intel_engine_cs *engine;
378 
379 	bool has_sseu;
380 	struct intel_sseu sseu;
381 
382 	u64 poll_oa_period;
383 };
384 
385 struct i915_oa_config_bo {
386 	struct llist_node node;
387 
388 	struct i915_oa_config *oa_config;
389 	struct i915_vma *vma;
390 };
391 
392 static struct ctl_table_header *sysctl_header;
393 
394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395 
396 void i915_oa_config_release(struct kref *ref)
397 {
398 	struct i915_oa_config *oa_config =
399 		container_of(ref, typeof(*oa_config), ref);
400 
401 	kfree(oa_config->flex_regs);
402 	kfree(oa_config->b_counter_regs);
403 	kfree(oa_config->mux_regs);
404 
405 	kfree_rcu(oa_config, rcu);
406 }
407 
408 struct i915_oa_config *
409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410 {
411 	struct i915_oa_config *oa_config;
412 
413 	rcu_read_lock();
414 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 	if (oa_config)
416 		oa_config = i915_oa_config_get(oa_config);
417 	rcu_read_unlock();
418 
419 	return oa_config;
420 }
421 
422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 {
424 	i915_oa_config_put(oa_bo->oa_config);
425 	i915_vma_put(oa_bo->vma);
426 	kfree(oa_bo);
427 }
428 
429 static inline const
430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431 {
432 	return &stream->engine->oa_group->regs;
433 }
434 
435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 	struct intel_uncore *uncore = stream->uncore;
438 
439 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440 	       GEN12_OAG_OATAILPTR_MASK;
441 }
442 
443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444 {
445 	struct intel_uncore *uncore = stream->uncore;
446 
447 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448 }
449 
450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451 {
452 	struct intel_uncore *uncore = stream->uncore;
453 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454 
455 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456 }
457 
458 #define oa_report_header_64bit(__s) \
459 	((__s)->oa_buffer.format->header == HDR_64_BIT)
460 
461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462 {
463 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464 }
465 
466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467 {
468 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
470 		OAREPORT_REASON_MASK_EXTENDED :
471 		OAREPORT_REASON_MASK);
472 }
473 
474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475 {
476 	if (oa_report_header_64bit(stream))
477 		*(u64 *)report = 0;
478 	else
479 		*report = 0;
480 }
481 
482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483 {
484 	return !(oa_report_id(stream, report) &
485 	       stream->perf->gen8_valid_ctx_bit) &&
486 	       GRAPHICS_VER(stream->perf->i915) <= 11;
487 }
488 
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 	return oa_report_header_64bit(stream) ?
492 		*((u64 *)report + 1) :
493 		*((u32 *)report + 1);
494 }
495 
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 	if (oa_report_header_64bit(stream))
499 		*(u64 *)&report[2] = 0;
500 	else
501 		report[1] = 0;
502 }
503 
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507 
508 	return ctx_id & stream->specific_ctx_id_mask;
509 }
510 
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 	if (oa_report_header_64bit(stream))
514 		report[4] = INVALID_CTX_ID;
515 	else
516 		report[2] = INVALID_CTX_ID;
517 }
518 
519 /**
520  * oa_buffer_check_unlocked - check for data and update tail ptr state
521  * @stream: i915 stream instance
522  *
523  * This is either called via fops (for blocking reads in user ctx) or the poll
524  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525  * if there is data available for userspace to read.
526  *
527  * This function is central to providing a workaround for the OA unit tail
528  * pointer having a race with respect to what data is visible to the CPU.
529  * It is responsible for reading tail pointers from the hardware and giving
530  * the pointers time to 'age' before they are made available for reading.
531  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532  *
533  * Besides returning true when there is data available to read() this function
534  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
535  * object.
536  *
537  * Note: It's safe to read OA config state here unlocked, assuming that this is
538  * only called while the stream is enabled, while the global OA configuration
539  * can't be modified.
540  *
541  * Returns: %true if the OA buffer contains data, else %false
542  */
543 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
544 {
545 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
546 	int report_size = stream->oa_buffer.format->size;
547 	unsigned long flags;
548 	bool pollin;
549 	u32 hw_tail;
550 	u64 now;
551 	u32 partial_report_size;
552 
553 	/* We have to consider the (unlikely) possibility that read() errors
554 	 * could result in an OA buffer reset which might reset the head and
555 	 * tail state.
556 	 */
557 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
558 
559 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
560 
561 	/* The tail pointer increases in 64 byte increments, not in report_size
562 	 * steps. Also the report size may not be a power of 2. Compute
563 	 * potentially partially landed report in the OA buffer
564 	 */
565 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
566 	partial_report_size %= report_size;
567 
568 	/* Subtract partial amount off the tail */
569 	hw_tail = gtt_offset + OA_TAKEN(hw_tail, partial_report_size);
570 
571 	now = ktime_get_mono_fast_ns();
572 
573 	if (hw_tail == stream->oa_buffer.aging_tail &&
574 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
575 		/* If the HW tail hasn't move since the last check and the HW
576 		 * tail has been aging for long enough, declare it the new
577 		 * tail.
578 		 */
579 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
580 	} else {
581 		u32 head, tail, aged_tail;
582 
583 		/* NB: The head we observe here might effectively be a little
584 		 * out of date. If a read() is in progress, the head could be
585 		 * anywhere between this head and stream->oa_buffer.tail.
586 		 */
587 		head = stream->oa_buffer.head - gtt_offset;
588 		aged_tail = stream->oa_buffer.tail - gtt_offset;
589 
590 		hw_tail -= gtt_offset;
591 		tail = hw_tail;
592 
593 		/* Walk the stream backward until we find a report with report
594 		 * id and timestmap not at 0. Since the circular buffer pointers
595 		 * progress by increments of 64 bytes and that reports can be up
596 		 * to 256 bytes long, we can't tell whether a report has fully
597 		 * landed in memory before the report id and timestamp of the
598 		 * following report have effectively landed.
599 		 *
600 		 * This is assuming that the writes of the OA unit land in
601 		 * memory in the order they were written to.
602 		 * If not : (╯°□°)╯︵ ┻━┻
603 		 */
604 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
605 			void *report = stream->oa_buffer.vaddr + tail;
606 
607 			if (oa_report_id(stream, report) ||
608 			    oa_timestamp(stream, report))
609 				break;
610 
611 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
612 		}
613 
614 		if (OA_TAKEN(hw_tail, tail) > report_size &&
615 		    __ratelimit(&stream->perf->tail_pointer_race))
616 			drm_notice(&stream->uncore->i915->drm,
617 				   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
618 				   head, tail, hw_tail);
619 
620 		stream->oa_buffer.tail = gtt_offset + tail;
621 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
622 		stream->oa_buffer.aging_timestamp = now;
623 	}
624 
625 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
626 			  stream->oa_buffer.head - gtt_offset) >= report_size;
627 
628 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
629 
630 	return pollin;
631 }
632 
633 /**
634  * append_oa_status - Appends a status record to a userspace read() buffer.
635  * @stream: An i915-perf stream opened for OA metrics
636  * @buf: destination buffer given by userspace
637  * @count: the number of bytes userspace wants to read
638  * @offset: (inout): the current position for writing into @buf
639  * @type: The kind of status to report to userspace
640  *
641  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
642  * into the userspace read() buffer.
643  *
644  * The @buf @offset will only be updated on success.
645  *
646  * Returns: 0 on success, negative error code on failure.
647  */
648 static int append_oa_status(struct i915_perf_stream *stream,
649 			    char __user *buf,
650 			    size_t count,
651 			    size_t *offset,
652 			    enum drm_i915_perf_record_type type)
653 {
654 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
655 
656 	if ((count - *offset) < header.size)
657 		return -ENOSPC;
658 
659 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
660 		return -EFAULT;
661 
662 	(*offset) += header.size;
663 
664 	return 0;
665 }
666 
667 /**
668  * append_oa_sample - Copies single OA report into userspace read() buffer.
669  * @stream: An i915-perf stream opened for OA metrics
670  * @buf: destination buffer given by userspace
671  * @count: the number of bytes userspace wants to read
672  * @offset: (inout): the current position for writing into @buf
673  * @report: A single OA report to (optionally) include as part of the sample
674  *
675  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
676  * properties when opening a stream, tracked as `stream->sample_flags`. This
677  * function copies the requested components of a single sample to the given
678  * read() @buf.
679  *
680  * The @buf @offset will only be updated on success.
681  *
682  * Returns: 0 on success, negative error code on failure.
683  */
684 static int append_oa_sample(struct i915_perf_stream *stream,
685 			    char __user *buf,
686 			    size_t count,
687 			    size_t *offset,
688 			    const u8 *report)
689 {
690 	int report_size = stream->oa_buffer.format->size;
691 	struct drm_i915_perf_record_header header;
692 	int report_size_partial;
693 	u8 *oa_buf_end;
694 
695 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
696 	header.pad = 0;
697 	header.size = stream->sample_size;
698 
699 	if ((count - *offset) < header.size)
700 		return -ENOSPC;
701 
702 	buf += *offset;
703 	if (copy_to_user(buf, &header, sizeof(header)))
704 		return -EFAULT;
705 	buf += sizeof(header);
706 
707 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
708 	report_size_partial = oa_buf_end - report;
709 
710 	if (report_size_partial < report_size) {
711 		if (copy_to_user(buf, report, report_size_partial))
712 			return -EFAULT;
713 		buf += report_size_partial;
714 
715 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
716 				 report_size - report_size_partial))
717 			return -EFAULT;
718 	} else if (copy_to_user(buf, report, report_size)) {
719 		return -EFAULT;
720 	}
721 
722 	(*offset) += header.size;
723 
724 	return 0;
725 }
726 
727 /**
728  * gen8_append_oa_reports - Copies all buffered OA reports into
729  *			    userspace read() buffer.
730  * @stream: An i915-perf stream opened for OA metrics
731  * @buf: destination buffer given by userspace
732  * @count: the number of bytes userspace wants to read
733  * @offset: (inout): the current position for writing into @buf
734  *
735  * Notably any error condition resulting in a short read (-%ENOSPC or
736  * -%EFAULT) will be returned even though one or more records may
737  * have been successfully copied. In this case it's up to the caller
738  * to decide if the error should be squashed before returning to
739  * userspace.
740  *
741  * Note: reports are consumed from the head, and appended to the
742  * tail, so the tail chases the head?... If you think that's mad
743  * and back-to-front you're not alone, but this follows the
744  * Gen PRM naming convention.
745  *
746  * Returns: 0 on success, negative error code on failure.
747  */
748 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
749 				  char __user *buf,
750 				  size_t count,
751 				  size_t *offset)
752 {
753 	struct intel_uncore *uncore = stream->uncore;
754 	int report_size = stream->oa_buffer.format->size;
755 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
756 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
757 	u32 mask = (OA_BUFFER_SIZE - 1);
758 	size_t start_offset = *offset;
759 	unsigned long flags;
760 	u32 head, tail;
761 	int ret = 0;
762 
763 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
764 		return -EIO;
765 
766 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
767 
768 	head = stream->oa_buffer.head;
769 	tail = stream->oa_buffer.tail;
770 
771 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
772 
773 	/*
774 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
775 	 * while indexing relative to oa_buf_base.
776 	 */
777 	head -= gtt_offset;
778 	tail -= gtt_offset;
779 
780 	/*
781 	 * An out of bounds or misaligned head or tail pointer implies a driver
782 	 * bug since we validate + align the tail pointers we read from the
783 	 * hardware and we are in full control of the head pointer which should
784 	 * only be incremented by multiples of the report size.
785 	 */
786 	if (drm_WARN_ONCE(&uncore->i915->drm,
787 			  head > OA_BUFFER_SIZE ||
788 			  tail > OA_BUFFER_SIZE,
789 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
790 			  head, tail))
791 		return -EIO;
792 
793 
794 	for (/* none */;
795 	     OA_TAKEN(tail, head);
796 	     head = (head + report_size) & mask) {
797 		u8 *report = oa_buf_base + head;
798 		u32 *report32 = (void *)report;
799 		u32 ctx_id;
800 		u64 reason;
801 
802 		/*
803 		 * The reason field includes flags identifying what
804 		 * triggered this specific report (mostly timer
805 		 * triggered or e.g. due to a context switch).
806 		 *
807 		 * In MMIO triggered reports, some platforms do not set the
808 		 * reason bit in this field and it is valid to have a reason
809 		 * field of zero.
810 		 */
811 		reason = oa_report_reason(stream, report);
812 		ctx_id = oa_context_id(stream, report32);
813 
814 		/*
815 		 * Squash whatever is in the CTX_ID field if it's marked as
816 		 * invalid to be sure we avoid false-positive, single-context
817 		 * filtering below...
818 		 *
819 		 * Note: that we don't clear the valid_ctx_bit so userspace can
820 		 * understand that the ID has been squashed by the kernel.
821 		 */
822 		if (oa_report_ctx_invalid(stream, report)) {
823 			ctx_id = INVALID_CTX_ID;
824 			oa_context_id_squash(stream, report32);
825 		}
826 
827 		/*
828 		 * NB: For Gen 8 the OA unit no longer supports clock gating
829 		 * off for a specific context and the kernel can't securely
830 		 * stop the counters from updating as system-wide / global
831 		 * values.
832 		 *
833 		 * Automatic reports now include a context ID so reports can be
834 		 * filtered on the cpu but it's not worth trying to
835 		 * automatically subtract/hide counter progress for other
836 		 * contexts while filtering since we can't stop userspace
837 		 * issuing MI_REPORT_PERF_COUNT commands which would still
838 		 * provide a side-band view of the real values.
839 		 *
840 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
841 		 * to normalize counters for a single filtered context then it
842 		 * needs be forwarded bookend context-switch reports so that it
843 		 * can track switches in between MI_REPORT_PERF_COUNT commands
844 		 * and can itself subtract/ignore the progress of counters
845 		 * associated with other contexts. Note that the hardware
846 		 * automatically triggers reports when switching to a new
847 		 * context which are tagged with the ID of the newly active
848 		 * context. To avoid the complexity (and likely fragility) of
849 		 * reading ahead while parsing reports to try and minimize
850 		 * forwarding redundant context switch reports (i.e. between
851 		 * other, unrelated contexts) we simply elect to forward them
852 		 * all.
853 		 *
854 		 * We don't rely solely on the reason field to identify context
855 		 * switches since it's not-uncommon for periodic samples to
856 		 * identify a switch before any 'context switch' report.
857 		 */
858 		if (!stream->ctx ||
859 		    stream->specific_ctx_id == ctx_id ||
860 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
861 		    reason & OAREPORT_REASON_CTX_SWITCH) {
862 
863 			/*
864 			 * While filtering for a single context we avoid
865 			 * leaking the IDs of other contexts.
866 			 */
867 			if (stream->ctx &&
868 			    stream->specific_ctx_id != ctx_id) {
869 				oa_context_id_squash(stream, report32);
870 			}
871 
872 			ret = append_oa_sample(stream, buf, count, offset,
873 					       report);
874 			if (ret)
875 				break;
876 
877 			stream->oa_buffer.last_ctx_id = ctx_id;
878 		}
879 
880 		if (is_power_of_2(report_size)) {
881 			/*
882 			 * Clear out the report id and timestamp as a means
883 			 * to detect unlanded reports.
884 			 */
885 			oa_report_id_clear(stream, report32);
886 			oa_timestamp_clear(stream, report32);
887 		} else {
888 			/* Zero out the entire report */
889 			memset(report32, 0, report_size);
890 		}
891 	}
892 
893 	if (start_offset != *offset) {
894 		i915_reg_t oaheadptr;
895 
896 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
897 			    __oa_regs(stream)->oa_head_ptr :
898 			    GEN8_OAHEADPTR;
899 
900 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
901 
902 		/*
903 		 * We removed the gtt_offset for the copy loop above, indexing
904 		 * relative to oa_buf_base so put back here...
905 		 */
906 		head += gtt_offset;
907 		intel_uncore_write(uncore, oaheadptr,
908 				   head & GEN12_OAG_OAHEADPTR_MASK);
909 		stream->oa_buffer.head = head;
910 
911 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
912 	}
913 
914 	return ret;
915 }
916 
917 /**
918  * gen8_oa_read - copy status records then buffered OA reports
919  * @stream: An i915-perf stream opened for OA metrics
920  * @buf: destination buffer given by userspace
921  * @count: the number of bytes userspace wants to read
922  * @offset: (inout): the current position for writing into @buf
923  *
924  * Checks OA unit status registers and if necessary appends corresponding
925  * status records for userspace (such as for a buffer full condition) and then
926  * initiate appending any buffered OA reports.
927  *
928  * Updates @offset according to the number of bytes successfully copied into
929  * the userspace buffer.
930  *
931  * NB: some data may be successfully copied to the userspace buffer
932  * even if an error is returned, and this is reflected in the
933  * updated @offset.
934  *
935  * Returns: zero on success or a negative error code
936  */
937 static int gen8_oa_read(struct i915_perf_stream *stream,
938 			char __user *buf,
939 			size_t count,
940 			size_t *offset)
941 {
942 	struct intel_uncore *uncore = stream->uncore;
943 	u32 oastatus;
944 	i915_reg_t oastatus_reg;
945 	int ret;
946 
947 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
948 		return -EIO;
949 
950 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
951 		       __oa_regs(stream)->oa_status :
952 		       GEN8_OASTATUS;
953 
954 	oastatus = intel_uncore_read(uncore, oastatus_reg);
955 
956 	/*
957 	 * We treat OABUFFER_OVERFLOW as a significant error:
958 	 *
959 	 * Although theoretically we could handle this more gracefully
960 	 * sometimes, some Gens don't correctly suppress certain
961 	 * automatically triggered reports in this condition and so we
962 	 * have to assume that old reports are now being trampled
963 	 * over.
964 	 *
965 	 * Considering how we don't currently give userspace control
966 	 * over the OA buffer size and always configure a large 16MB
967 	 * buffer, then a buffer overflow does anyway likely indicate
968 	 * that something has gone quite badly wrong.
969 	 */
970 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
971 		ret = append_oa_status(stream, buf, count, offset,
972 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
973 		if (ret)
974 			return ret;
975 
976 		drm_dbg(&stream->perf->i915->drm,
977 			"OA buffer overflow (exponent = %d): force restart\n",
978 			stream->period_exponent);
979 
980 		stream->perf->ops.oa_disable(stream);
981 		stream->perf->ops.oa_enable(stream);
982 
983 		/*
984 		 * Note: .oa_enable() is expected to re-init the oabuffer and
985 		 * reset GEN8_OASTATUS for us
986 		 */
987 		oastatus = intel_uncore_read(uncore, oastatus_reg);
988 	}
989 
990 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
991 		ret = append_oa_status(stream, buf, count, offset,
992 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
993 		if (ret)
994 			return ret;
995 
996 		intel_uncore_rmw(uncore, oastatus_reg,
997 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
998 				 GEN8_OASTATUS_REPORT_LOST,
999 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
1000 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
1001 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
1002 	}
1003 
1004 	return gen8_append_oa_reports(stream, buf, count, offset);
1005 }
1006 
1007 /**
1008  * gen7_append_oa_reports - Copies all buffered OA reports into
1009  *			    userspace read() buffer.
1010  * @stream: An i915-perf stream opened for OA metrics
1011  * @buf: destination buffer given by userspace
1012  * @count: the number of bytes userspace wants to read
1013  * @offset: (inout): the current position for writing into @buf
1014  *
1015  * Notably any error condition resulting in a short read (-%ENOSPC or
1016  * -%EFAULT) will be returned even though one or more records may
1017  * have been successfully copied. In this case it's up to the caller
1018  * to decide if the error should be squashed before returning to
1019  * userspace.
1020  *
1021  * Note: reports are consumed from the head, and appended to the
1022  * tail, so the tail chases the head?... If you think that's mad
1023  * and back-to-front you're not alone, but this follows the
1024  * Gen PRM naming convention.
1025  *
1026  * Returns: 0 on success, negative error code on failure.
1027  */
1028 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1029 				  char __user *buf,
1030 				  size_t count,
1031 				  size_t *offset)
1032 {
1033 	struct intel_uncore *uncore = stream->uncore;
1034 	int report_size = stream->oa_buffer.format->size;
1035 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1036 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1037 	u32 mask = (OA_BUFFER_SIZE - 1);
1038 	size_t start_offset = *offset;
1039 	unsigned long flags;
1040 	u32 head, tail;
1041 	int ret = 0;
1042 
1043 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1044 		return -EIO;
1045 
1046 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1047 
1048 	head = stream->oa_buffer.head;
1049 	tail = stream->oa_buffer.tail;
1050 
1051 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1052 
1053 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1054 	 * while indexing relative to oa_buf_base.
1055 	 */
1056 	head -= gtt_offset;
1057 	tail -= gtt_offset;
1058 
1059 	/* An out of bounds or misaligned head or tail pointer implies a driver
1060 	 * bug since we validate + align the tail pointers we read from the
1061 	 * hardware and we are in full control of the head pointer which should
1062 	 * only be incremented by multiples of the report size (notably also
1063 	 * all a power of two).
1064 	 */
1065 	if (drm_WARN_ONCE(&uncore->i915->drm,
1066 			  head > OA_BUFFER_SIZE || head % report_size ||
1067 			  tail > OA_BUFFER_SIZE || tail % report_size,
1068 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1069 			  head, tail))
1070 		return -EIO;
1071 
1072 
1073 	for (/* none */;
1074 	     OA_TAKEN(tail, head);
1075 	     head = (head + report_size) & mask) {
1076 		u8 *report = oa_buf_base + head;
1077 		u32 *report32 = (void *)report;
1078 
1079 		/* All the report sizes factor neatly into the buffer
1080 		 * size so we never expect to see a report split
1081 		 * between the beginning and end of the buffer.
1082 		 *
1083 		 * Given the initial alignment check a misalignment
1084 		 * here would imply a driver bug that would result
1085 		 * in an overrun.
1086 		 */
1087 		if (drm_WARN_ON(&uncore->i915->drm,
1088 				(OA_BUFFER_SIZE - head) < report_size)) {
1089 			drm_err(&uncore->i915->drm,
1090 				"Spurious OA head ptr: non-integral report offset\n");
1091 			break;
1092 		}
1093 
1094 		/* The report-ID field for periodic samples includes
1095 		 * some undocumented flags related to what triggered
1096 		 * the report and is never expected to be zero so we
1097 		 * can check that the report isn't invalid before
1098 		 * copying it to userspace...
1099 		 */
1100 		if (report32[0] == 0) {
1101 			if (__ratelimit(&stream->perf->spurious_report_rs))
1102 				drm_notice(&uncore->i915->drm,
1103 					   "Skipping spurious, invalid OA report\n");
1104 			continue;
1105 		}
1106 
1107 		ret = append_oa_sample(stream, buf, count, offset, report);
1108 		if (ret)
1109 			break;
1110 
1111 		/* Clear out the first 2 dwords as a mean to detect unlanded
1112 		 * reports.
1113 		 */
1114 		report32[0] = 0;
1115 		report32[1] = 0;
1116 	}
1117 
1118 	if (start_offset != *offset) {
1119 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1120 
1121 		/* We removed the gtt_offset for the copy loop above, indexing
1122 		 * relative to oa_buf_base so put back here...
1123 		 */
1124 		head += gtt_offset;
1125 
1126 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1127 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1128 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1129 		stream->oa_buffer.head = head;
1130 
1131 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1132 	}
1133 
1134 	return ret;
1135 }
1136 
1137 /**
1138  * gen7_oa_read - copy status records then buffered OA reports
1139  * @stream: An i915-perf stream opened for OA metrics
1140  * @buf: destination buffer given by userspace
1141  * @count: the number of bytes userspace wants to read
1142  * @offset: (inout): the current position for writing into @buf
1143  *
1144  * Checks Gen 7 specific OA unit status registers and if necessary appends
1145  * corresponding status records for userspace (such as for a buffer full
1146  * condition) and then initiate appending any buffered OA reports.
1147  *
1148  * Updates @offset according to the number of bytes successfully copied into
1149  * the userspace buffer.
1150  *
1151  * Returns: zero on success or a negative error code
1152  */
1153 static int gen7_oa_read(struct i915_perf_stream *stream,
1154 			char __user *buf,
1155 			size_t count,
1156 			size_t *offset)
1157 {
1158 	struct intel_uncore *uncore = stream->uncore;
1159 	u32 oastatus1;
1160 	int ret;
1161 
1162 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1163 		return -EIO;
1164 
1165 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1166 
1167 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1168 	 * bits while the OA unit is enabled (while the tail pointer
1169 	 * may be updated asynchronously) so we ignore status bits
1170 	 * that have already been reported to userspace.
1171 	 */
1172 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1173 
1174 	/* We treat OABUFFER_OVERFLOW as a significant error:
1175 	 *
1176 	 * - The status can be interpreted to mean that the buffer is
1177 	 *   currently full (with a higher precedence than OA_TAKEN()
1178 	 *   which will start to report a near-empty buffer after an
1179 	 *   overflow) but it's awkward that we can't clear the status
1180 	 *   on Haswell, so without a reset we won't be able to catch
1181 	 *   the state again.
1182 	 *
1183 	 * - Since it also implies the HW has started overwriting old
1184 	 *   reports it may also affect our sanity checks for invalid
1185 	 *   reports when copying to userspace that assume new reports
1186 	 *   are being written to cleared memory.
1187 	 *
1188 	 * - In the future we may want to introduce a flight recorder
1189 	 *   mode where the driver will automatically maintain a safe
1190 	 *   guard band between head/tail, avoiding this overflow
1191 	 *   condition, but we avoid the added driver complexity for
1192 	 *   now.
1193 	 */
1194 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1195 		ret = append_oa_status(stream, buf, count, offset,
1196 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1197 		if (ret)
1198 			return ret;
1199 
1200 		drm_dbg(&stream->perf->i915->drm,
1201 			"OA buffer overflow (exponent = %d): force restart\n",
1202 			stream->period_exponent);
1203 
1204 		stream->perf->ops.oa_disable(stream);
1205 		stream->perf->ops.oa_enable(stream);
1206 
1207 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1208 	}
1209 
1210 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1211 		ret = append_oa_status(stream, buf, count, offset,
1212 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1213 		if (ret)
1214 			return ret;
1215 		stream->perf->gen7_latched_oastatus1 |=
1216 			GEN7_OASTATUS1_REPORT_LOST;
1217 	}
1218 
1219 	return gen7_append_oa_reports(stream, buf, count, offset);
1220 }
1221 
1222 /**
1223  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1224  * @stream: An i915-perf stream opened for OA metrics
1225  *
1226  * Called when userspace tries to read() from a blocking stream FD opened
1227  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1228  * OA buffer and wakes us.
1229  *
1230  * Note: it's acceptable to have this return with some false positives
1231  * since any subsequent read handling will return -EAGAIN if there isn't
1232  * really data ready for userspace yet.
1233  *
1234  * Returns: zero on success or a negative error code
1235  */
1236 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1237 {
1238 	/* We would wait indefinitely if periodic sampling is not enabled */
1239 	if (!stream->periodic)
1240 		return -EIO;
1241 
1242 	return wait_event_interruptible(stream->poll_wq,
1243 					oa_buffer_check_unlocked(stream));
1244 }
1245 
1246 /**
1247  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1248  * @stream: An i915-perf stream opened for OA metrics
1249  * @file: An i915 perf stream file
1250  * @wait: poll() state table
1251  *
1252  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1253  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1254  * when it sees data ready to read in the circular OA buffer.
1255  */
1256 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1257 			      struct file *file,
1258 			      poll_table *wait)
1259 {
1260 	poll_wait(file, &stream->poll_wq, wait);
1261 }
1262 
1263 /**
1264  * i915_oa_read - just calls through to &i915_oa_ops->read
1265  * @stream: An i915-perf stream opened for OA metrics
1266  * @buf: destination buffer given by userspace
1267  * @count: the number of bytes userspace wants to read
1268  * @offset: (inout): the current position for writing into @buf
1269  *
1270  * Updates @offset according to the number of bytes successfully copied into
1271  * the userspace buffer.
1272  *
1273  * Returns: zero on success or a negative error code
1274  */
1275 static int i915_oa_read(struct i915_perf_stream *stream,
1276 			char __user *buf,
1277 			size_t count,
1278 			size_t *offset)
1279 {
1280 	return stream->perf->ops.read(stream, buf, count, offset);
1281 }
1282 
1283 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1284 {
1285 	struct i915_gem_engines_iter it;
1286 	struct i915_gem_context *ctx = stream->ctx;
1287 	struct intel_context *ce;
1288 	struct i915_gem_ww_ctx ww;
1289 	int err = -ENODEV;
1290 
1291 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1292 		if (ce->engine != stream->engine) /* first match! */
1293 			continue;
1294 
1295 		err = 0;
1296 		break;
1297 	}
1298 	i915_gem_context_unlock_engines(ctx);
1299 
1300 	if (err)
1301 		return ERR_PTR(err);
1302 
1303 	i915_gem_ww_ctx_init(&ww, true);
1304 retry:
1305 	/*
1306 	 * As the ID is the gtt offset of the context's vma we
1307 	 * pin the vma to ensure the ID remains fixed.
1308 	 */
1309 	err = intel_context_pin_ww(ce, &ww);
1310 	if (err == -EDEADLK) {
1311 		err = i915_gem_ww_ctx_backoff(&ww);
1312 		if (!err)
1313 			goto retry;
1314 	}
1315 	i915_gem_ww_ctx_fini(&ww);
1316 
1317 	if (err)
1318 		return ERR_PTR(err);
1319 
1320 	stream->pinned_ctx = ce;
1321 	return stream->pinned_ctx;
1322 }
1323 
1324 static int
1325 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1326 {
1327 	u32 *cs, cmd;
1328 
1329 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1330 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1331 		cmd++;
1332 
1333 	cs = intel_ring_begin(rq, 4);
1334 	if (IS_ERR(cs))
1335 		return PTR_ERR(cs);
1336 
1337 	*cs++ = cmd;
1338 	*cs++ = i915_mmio_reg_offset(reg);
1339 	*cs++ = ggtt_offset;
1340 	*cs++ = 0;
1341 
1342 	intel_ring_advance(rq, cs);
1343 
1344 	return 0;
1345 }
1346 
1347 static int
1348 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1349 {
1350 	struct i915_request *rq;
1351 	int err;
1352 
1353 	rq = i915_request_create(ce);
1354 	if (IS_ERR(rq))
1355 		return PTR_ERR(rq);
1356 
1357 	i915_request_get(rq);
1358 
1359 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1360 
1361 	i915_request_add(rq);
1362 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1363 		err = -ETIME;
1364 
1365 	i915_request_put(rq);
1366 
1367 	return err;
1368 }
1369 
1370 static int
1371 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1372 {
1373 	struct i915_vma *scratch;
1374 	u32 *val;
1375 	int err;
1376 
1377 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1378 	if (IS_ERR(scratch))
1379 		return PTR_ERR(scratch);
1380 
1381 	err = i915_vma_sync(scratch);
1382 	if (err)
1383 		goto err_scratch;
1384 
1385 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1386 			 i915_ggtt_offset(scratch));
1387 	if (err)
1388 		goto err_scratch;
1389 
1390 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1391 	if (IS_ERR(val)) {
1392 		err = PTR_ERR(val);
1393 		goto err_scratch;
1394 	}
1395 
1396 	*ctx_id = *val;
1397 	i915_gem_object_unpin_map(scratch->obj);
1398 
1399 err_scratch:
1400 	i915_vma_unpin_and_release(&scratch, 0);
1401 	return err;
1402 }
1403 
1404 /*
1405  * For execlist mode of submission, pick an unused context id
1406  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1407  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1408  *
1409  * For GuC mode of submission read context id from the upper dword of the
1410  * EXECLIST_STATUS register. Note that we read this value only once and expect
1411  * that the value stays fixed for the entire OA use case. There are cases where
1412  * GuC KMD implementation may deregister a context to reuse it's context id, but
1413  * we prevent that from happening to the OA context by pinning it.
1414  */
1415 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1416 {
1417 	u32 ctx_id, mask;
1418 	int ret;
1419 
1420 	if (intel_engine_uses_guc(stream->engine)) {
1421 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1422 		if (ret)
1423 			return ret;
1424 
1425 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1426 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1427 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1428 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1429 			(XEHP_SW_CTX_ID_SHIFT - 32);
1430 
1431 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1432 			(XEHP_SW_CTX_ID_SHIFT - 32);
1433 	} else {
1434 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1435 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1436 
1437 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1438 			(GEN11_SW_CTX_ID_SHIFT - 32);
1439 	}
1440 	stream->specific_ctx_id = ctx_id & mask;
1441 	stream->specific_ctx_id_mask = mask;
1442 
1443 	return 0;
1444 }
1445 
1446 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1447 {
1448 	u32 idx = *offset;
1449 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1450 	bool found = false;
1451 
1452 	idx++;
1453 	for (; idx < len; idx += 2) {
1454 		if (state[idx] == reg) {
1455 			found = true;
1456 			break;
1457 		}
1458 	}
1459 
1460 	*offset = idx;
1461 	return found;
1462 }
1463 
1464 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1465 {
1466 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1467 	u32 *state = ce->lrc_reg_state;
1468 
1469 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1470 		return U32_MAX;
1471 
1472 	for (offset = 0; offset < len; ) {
1473 		if (IS_MI_LRI_CMD(state[offset])) {
1474 			/*
1475 			 * We expect reg-value pairs in MI_LRI command, so
1476 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1477 			 */
1478 			drm_WARN_ON(&ce->engine->i915->drm,
1479 				    MI_LRI_LEN(state[offset]) & 0x1);
1480 
1481 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1482 				break;
1483 		} else {
1484 			offset++;
1485 		}
1486 	}
1487 
1488 	return offset < len ? offset : U32_MAX;
1489 }
1490 
1491 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1492 {
1493 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1494 	struct i915_perf *perf = &ce->engine->i915->perf;
1495 	u32 offset = perf->ctx_oactxctrl_offset;
1496 
1497 	/* Do this only once. Failure is stored as offset of U32_MAX */
1498 	if (offset)
1499 		goto exit;
1500 
1501 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1502 	perf->ctx_oactxctrl_offset = offset;
1503 
1504 	drm_dbg(&ce->engine->i915->drm,
1505 		"%s oa ctx control at 0x%08x dword offset\n",
1506 		ce->engine->name, offset);
1507 
1508 exit:
1509 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1510 }
1511 
1512 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1513 {
1514 	return engine->class == RENDER_CLASS;
1515 }
1516 
1517 /**
1518  * oa_get_render_ctx_id - determine and hold ctx hw id
1519  * @stream: An i915-perf stream opened for OA metrics
1520  *
1521  * Determine the render context hw id, and ensure it remains fixed for the
1522  * lifetime of the stream. This ensures that we don't have to worry about
1523  * updating the context ID in OACONTROL on the fly.
1524  *
1525  * Returns: zero on success or a negative error code
1526  */
1527 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1528 {
1529 	struct intel_context *ce;
1530 	int ret = 0;
1531 
1532 	ce = oa_pin_context(stream);
1533 	if (IS_ERR(ce))
1534 		return PTR_ERR(ce);
1535 
1536 	if (engine_supports_mi_query(stream->engine) &&
1537 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1538 		/*
1539 		 * We are enabling perf query here. If we don't find the context
1540 		 * offset here, just return an error.
1541 		 */
1542 		ret = set_oa_ctx_ctrl_offset(ce);
1543 		if (ret) {
1544 			intel_context_unpin(ce);
1545 			drm_err(&stream->perf->i915->drm,
1546 				"Enabling perf query failed for %s\n",
1547 				stream->engine->name);
1548 			return ret;
1549 		}
1550 	}
1551 
1552 	switch (GRAPHICS_VER(ce->engine->i915)) {
1553 	case 7: {
1554 		/*
1555 		 * On Haswell we don't do any post processing of the reports
1556 		 * and don't need to use the mask.
1557 		 */
1558 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1559 		stream->specific_ctx_id_mask = 0;
1560 		break;
1561 	}
1562 
1563 	case 8:
1564 	case 9:
1565 		if (intel_engine_uses_guc(ce->engine)) {
1566 			/*
1567 			 * When using GuC, the context descriptor we write in
1568 			 * i915 is read by GuC and rewritten before it's
1569 			 * actually written into the hardware. The LRCA is
1570 			 * what is put into the context id field of the
1571 			 * context descriptor by GuC. Because it's aligned to
1572 			 * a page, the lower 12bits are always at 0 and
1573 			 * dropped by GuC. They won't be part of the context
1574 			 * ID in the OA reports, so squash those lower bits.
1575 			 */
1576 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1577 
1578 			/*
1579 			 * GuC uses the top bit to signal proxy submission, so
1580 			 * ignore that bit.
1581 			 */
1582 			stream->specific_ctx_id_mask =
1583 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1584 		} else {
1585 			stream->specific_ctx_id_mask =
1586 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1587 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1588 		}
1589 		break;
1590 
1591 	case 11:
1592 	case 12:
1593 		ret = gen12_get_render_context_id(stream);
1594 		break;
1595 
1596 	default:
1597 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1598 	}
1599 
1600 	ce->tag = stream->specific_ctx_id;
1601 
1602 	drm_dbg(&stream->perf->i915->drm,
1603 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1604 		stream->specific_ctx_id,
1605 		stream->specific_ctx_id_mask);
1606 
1607 	return ret;
1608 }
1609 
1610 /**
1611  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1612  * @stream: An i915-perf stream opened for OA metrics
1613  *
1614  * In case anything needed doing to ensure the context HW ID would remain valid
1615  * for the lifetime of the stream, then that can be undone here.
1616  */
1617 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1618 {
1619 	struct intel_context *ce;
1620 
1621 	ce = fetch_and_zero(&stream->pinned_ctx);
1622 	if (ce) {
1623 		ce->tag = 0; /* recomputed on next submission after parking */
1624 		intel_context_unpin(ce);
1625 	}
1626 
1627 	stream->specific_ctx_id = INVALID_CTX_ID;
1628 	stream->specific_ctx_id_mask = 0;
1629 }
1630 
1631 static void
1632 free_oa_buffer(struct i915_perf_stream *stream)
1633 {
1634 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1635 				   I915_VMA_RELEASE_MAP);
1636 
1637 	stream->oa_buffer.vaddr = NULL;
1638 }
1639 
1640 static void
1641 free_oa_configs(struct i915_perf_stream *stream)
1642 {
1643 	struct i915_oa_config_bo *oa_bo, *tmp;
1644 
1645 	i915_oa_config_put(stream->oa_config);
1646 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1647 		free_oa_config_bo(oa_bo);
1648 }
1649 
1650 static void
1651 free_noa_wait(struct i915_perf_stream *stream)
1652 {
1653 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1654 }
1655 
1656 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1657 {
1658 	return engine->oa_group;
1659 }
1660 
1661 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1662 {
1663 	return engine->oa_group && engine->oa_group->type == type;
1664 }
1665 
1666 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1667 {
1668 	struct i915_perf *perf = stream->perf;
1669 	struct intel_gt *gt = stream->engine->gt;
1670 	struct i915_perf_group *g = stream->engine->oa_group;
1671 
1672 	if (WARN_ON(stream != g->exclusive_stream))
1673 		return;
1674 
1675 	/*
1676 	 * Unset exclusive_stream first, it will be checked while disabling
1677 	 * the metric set on gen8+.
1678 	 *
1679 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1680 	 */
1681 	WRITE_ONCE(g->exclusive_stream, NULL);
1682 	perf->ops.disable_metric_set(stream);
1683 
1684 	free_oa_buffer(stream);
1685 
1686 	/*
1687 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1688 	 */
1689 	if (stream->override_gucrc)
1690 		drm_WARN_ON(&gt->i915->drm,
1691 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1692 
1693 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1694 	intel_engine_pm_put(stream->engine);
1695 
1696 	if (stream->ctx)
1697 		oa_put_render_ctx_id(stream);
1698 
1699 	free_oa_configs(stream);
1700 	free_noa_wait(stream);
1701 
1702 	if (perf->spurious_report_rs.missed) {
1703 		drm_notice(&gt->i915->drm,
1704 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1705 			   perf->spurious_report_rs.missed);
1706 	}
1707 }
1708 
1709 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1710 {
1711 	struct intel_uncore *uncore = stream->uncore;
1712 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1713 	unsigned long flags;
1714 
1715 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1716 
1717 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1718 	 * before OASTATUS1, but after OASTATUS2
1719 	 */
1720 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1721 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1722 	stream->oa_buffer.head = gtt_offset;
1723 
1724 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1725 
1726 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1727 			   gtt_offset | OABUFFER_SIZE_16M);
1728 
1729 	/* Mark that we need updated tail pointers to read from... */
1730 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1731 	stream->oa_buffer.tail = gtt_offset;
1732 
1733 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1734 
1735 	/* On Haswell we have to track which OASTATUS1 flags we've
1736 	 * already seen since they can't be cleared while periodic
1737 	 * sampling is enabled.
1738 	 */
1739 	stream->perf->gen7_latched_oastatus1 = 0;
1740 
1741 	/* NB: although the OA buffer will initially be allocated
1742 	 * zeroed via shmfs (and so this memset is redundant when
1743 	 * first allocating), we may re-init the OA buffer, either
1744 	 * when re-enabling a stream or in error/reset paths.
1745 	 *
1746 	 * The reason we clear the buffer for each re-init is for the
1747 	 * sanity check in gen7_append_oa_reports() that looks at the
1748 	 * report-id field to make sure it's non-zero which relies on
1749 	 * the assumption that new reports are being written to zeroed
1750 	 * memory...
1751 	 */
1752 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1753 }
1754 
1755 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1756 {
1757 	struct intel_uncore *uncore = stream->uncore;
1758 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1759 	unsigned long flags;
1760 
1761 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1762 
1763 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1764 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1765 	stream->oa_buffer.head = gtt_offset;
1766 
1767 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1768 
1769 	/*
1770 	 * PRM says:
1771 	 *
1772 	 *  "This MMIO must be set before the OATAILPTR
1773 	 *  register and after the OAHEADPTR register. This is
1774 	 *  to enable proper functionality of the overflow
1775 	 *  bit."
1776 	 */
1777 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1778 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1779 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1780 
1781 	/* Mark that we need updated tail pointers to read from... */
1782 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1783 	stream->oa_buffer.tail = gtt_offset;
1784 
1785 	/*
1786 	 * Reset state used to recognise context switches, affecting which
1787 	 * reports we will forward to userspace while filtering for a single
1788 	 * context.
1789 	 */
1790 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1791 
1792 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1793 
1794 	/*
1795 	 * NB: although the OA buffer will initially be allocated
1796 	 * zeroed via shmfs (and so this memset is redundant when
1797 	 * first allocating), we may re-init the OA buffer, either
1798 	 * when re-enabling a stream or in error/reset paths.
1799 	 *
1800 	 * The reason we clear the buffer for each re-init is for the
1801 	 * sanity check in gen8_append_oa_reports() that looks at the
1802 	 * reason field to make sure it's non-zero which relies on
1803 	 * the assumption that new reports are being written to zeroed
1804 	 * memory...
1805 	 */
1806 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1807 }
1808 
1809 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1810 {
1811 	struct intel_uncore *uncore = stream->uncore;
1812 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1813 	unsigned long flags;
1814 
1815 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1816 
1817 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1818 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1819 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1820 	stream->oa_buffer.head = gtt_offset;
1821 
1822 	/*
1823 	 * PRM says:
1824 	 *
1825 	 *  "This MMIO must be set before the OATAILPTR
1826 	 *  register and after the OAHEADPTR register. This is
1827 	 *  to enable proper functionality of the overflow
1828 	 *  bit."
1829 	 */
1830 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1831 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1832 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1833 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1834 
1835 	/* Mark that we need updated tail pointers to read from... */
1836 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1837 	stream->oa_buffer.tail = gtt_offset;
1838 
1839 	/*
1840 	 * Reset state used to recognise context switches, affecting which
1841 	 * reports we will forward to userspace while filtering for a single
1842 	 * context.
1843 	 */
1844 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1845 
1846 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1847 
1848 	/*
1849 	 * NB: although the OA buffer will initially be allocated
1850 	 * zeroed via shmfs (and so this memset is redundant when
1851 	 * first allocating), we may re-init the OA buffer, either
1852 	 * when re-enabling a stream or in error/reset paths.
1853 	 *
1854 	 * The reason we clear the buffer for each re-init is for the
1855 	 * sanity check in gen8_append_oa_reports() that looks at the
1856 	 * reason field to make sure it's non-zero which relies on
1857 	 * the assumption that new reports are being written to zeroed
1858 	 * memory...
1859 	 */
1860 	memset(stream->oa_buffer.vaddr, 0,
1861 	       stream->oa_buffer.vma->size);
1862 }
1863 
1864 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1865 {
1866 	struct drm_i915_private *i915 = stream->perf->i915;
1867 	struct intel_gt *gt = stream->engine->gt;
1868 	struct drm_i915_gem_object *bo;
1869 	struct i915_vma *vma;
1870 	int ret;
1871 
1872 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1873 		return -ENODEV;
1874 
1875 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1876 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1877 
1878 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1879 	if (IS_ERR(bo)) {
1880 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1881 		return PTR_ERR(bo);
1882 	}
1883 
1884 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1885 
1886 	/* PreHSW required 512K alignment, HSW requires 16M */
1887 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1888 	if (IS_ERR(vma)) {
1889 		ret = PTR_ERR(vma);
1890 		goto err_unref;
1891 	}
1892 
1893 	/*
1894 	 * PreHSW required 512K alignment.
1895 	 * HSW and onwards, align to requested size of OA buffer.
1896 	 */
1897 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1898 	if (ret) {
1899 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1900 		goto err_unref;
1901 	}
1902 
1903 	stream->oa_buffer.vma = vma;
1904 
1905 	stream->oa_buffer.vaddr =
1906 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1907 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1908 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1909 		goto err_unpin;
1910 	}
1911 
1912 	return 0;
1913 
1914 err_unpin:
1915 	__i915_vma_unpin(vma);
1916 
1917 err_unref:
1918 	i915_gem_object_put(bo);
1919 
1920 	stream->oa_buffer.vaddr = NULL;
1921 	stream->oa_buffer.vma = NULL;
1922 
1923 	return ret;
1924 }
1925 
1926 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1927 				  bool save, i915_reg_t reg, u32 offset,
1928 				  u32 dword_count)
1929 {
1930 	u32 cmd;
1931 	u32 d;
1932 
1933 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1934 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1935 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1936 		cmd++;
1937 
1938 	for (d = 0; d < dword_count; d++) {
1939 		*cs++ = cmd;
1940 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1941 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1942 		*cs++ = 0;
1943 	}
1944 
1945 	return cs;
1946 }
1947 
1948 static int alloc_noa_wait(struct i915_perf_stream *stream)
1949 {
1950 	struct drm_i915_private *i915 = stream->perf->i915;
1951 	struct intel_gt *gt = stream->engine->gt;
1952 	struct drm_i915_gem_object *bo;
1953 	struct i915_vma *vma;
1954 	const u64 delay_ticks = 0xffffffffffffffff -
1955 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1956 		atomic64_read(&stream->perf->noa_programming_delay));
1957 	const u32 base = stream->engine->mmio_base;
1958 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1959 	u32 *batch, *ts0, *cs, *jump;
1960 	struct i915_gem_ww_ctx ww;
1961 	int ret, i;
1962 	enum {
1963 		START_TS,
1964 		NOW_TS,
1965 		DELTA_TS,
1966 		JUMP_PREDICATE,
1967 		DELTA_TARGET,
1968 		N_CS_GPR
1969 	};
1970 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1971 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1972 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1973 
1974 	/*
1975 	 * gt->scratch was being used to save/restore the GPR registers, but on
1976 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1977 	 * causes an engine hang. Instead allocate an additional page here to
1978 	 * save/restore GPR registers
1979 	 */
1980 	bo = i915_gem_object_create_internal(i915, 8192);
1981 	if (IS_ERR(bo)) {
1982 		drm_err(&i915->drm,
1983 			"Failed to allocate NOA wait batchbuffer\n");
1984 		return PTR_ERR(bo);
1985 	}
1986 
1987 	i915_gem_ww_ctx_init(&ww, true);
1988 retry:
1989 	ret = i915_gem_object_lock(bo, &ww);
1990 	if (ret)
1991 		goto out_ww;
1992 
1993 	/*
1994 	 * We pin in GGTT because we jump into this buffer now because
1995 	 * multiple OA config BOs will have a jump to this address and it
1996 	 * needs to be fixed during the lifetime of the i915/perf stream.
1997 	 */
1998 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1999 	if (IS_ERR(vma)) {
2000 		ret = PTR_ERR(vma);
2001 		goto out_ww;
2002 	}
2003 
2004 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2005 	if (ret)
2006 		goto out_ww;
2007 
2008 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
2009 	if (IS_ERR(batch)) {
2010 		ret = PTR_ERR(batch);
2011 		goto err_unpin;
2012 	}
2013 
2014 	stream->noa_wait = vma;
2015 
2016 #define GPR_SAVE_OFFSET 4096
2017 #define PREDICATE_SAVE_OFFSET 4160
2018 
2019 	/* Save registers. */
2020 	for (i = 0; i < N_CS_GPR; i++)
2021 		cs = save_restore_register(
2022 			stream, cs, true /* save */, CS_GPR(i),
2023 			GPR_SAVE_OFFSET + 8 * i, 2);
2024 	cs = save_restore_register(
2025 		stream, cs, true /* save */, mi_predicate_result,
2026 		PREDICATE_SAVE_OFFSET, 1);
2027 
2028 	/* First timestamp snapshot location. */
2029 	ts0 = cs;
2030 
2031 	/*
2032 	 * Initial snapshot of the timestamp register to implement the wait.
2033 	 * We work with 32b values, so clear out the top 32b bits of the
2034 	 * register because the ALU works 64bits.
2035 	 */
2036 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2037 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2038 	*cs++ = 0;
2039 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2040 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2041 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2042 
2043 	/*
2044 	 * This is the location we're going to jump back into until the
2045 	 * required amount of time has passed.
2046 	 */
2047 	jump = cs;
2048 
2049 	/*
2050 	 * Take another snapshot of the timestamp register. Take care to clear
2051 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2052 	 * operations below.
2053 	 */
2054 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2055 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2056 	*cs++ = 0;
2057 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2058 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2059 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2060 
2061 	/*
2062 	 * Do a diff between the 2 timestamps and store the result back into
2063 	 * CS_GPR(1).
2064 	 */
2065 	*cs++ = MI_MATH(5);
2066 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2067 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2068 	*cs++ = MI_MATH_SUB;
2069 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2070 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2071 
2072 	/*
2073 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2074 	 * timestamp have rolled over the 32bits) into the predicate register
2075 	 * to be used for the predicated jump.
2076 	 */
2077 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2078 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2079 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2080 
2081 	if (HAS_MI_SET_PREDICATE(i915))
2082 		*cs++ = MI_SET_PREDICATE | 1;
2083 
2084 	/* Restart from the beginning if we had timestamps roll over. */
2085 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2086 		 MI_BATCH_BUFFER_START :
2087 		 MI_BATCH_BUFFER_START_GEN8) |
2088 		MI_BATCH_PREDICATE;
2089 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2090 	*cs++ = 0;
2091 
2092 	if (HAS_MI_SET_PREDICATE(i915))
2093 		*cs++ = MI_SET_PREDICATE;
2094 
2095 	/*
2096 	 * Now add the diff between to previous timestamps and add it to :
2097 	 *      (((1 * << 64) - 1) - delay_ns)
2098 	 *
2099 	 * When the Carry Flag contains 1 this means the elapsed time is
2100 	 * longer than the expected delay, and we can exit the wait loop.
2101 	 */
2102 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2103 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2104 	*cs++ = lower_32_bits(delay_ticks);
2105 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2106 	*cs++ = upper_32_bits(delay_ticks);
2107 
2108 	*cs++ = MI_MATH(4);
2109 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2110 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2111 	*cs++ = MI_MATH_ADD;
2112 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2113 
2114 	*cs++ = MI_ARB_CHECK;
2115 
2116 	/*
2117 	 * Transfer the result into the predicate register to be used for the
2118 	 * predicated jump.
2119 	 */
2120 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2121 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2122 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2123 
2124 	if (HAS_MI_SET_PREDICATE(i915))
2125 		*cs++ = MI_SET_PREDICATE | 1;
2126 
2127 	/* Predicate the jump.  */
2128 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2129 		 MI_BATCH_BUFFER_START :
2130 		 MI_BATCH_BUFFER_START_GEN8) |
2131 		MI_BATCH_PREDICATE;
2132 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2133 	*cs++ = 0;
2134 
2135 	if (HAS_MI_SET_PREDICATE(i915))
2136 		*cs++ = MI_SET_PREDICATE;
2137 
2138 	/* Restore registers. */
2139 	for (i = 0; i < N_CS_GPR; i++)
2140 		cs = save_restore_register(
2141 			stream, cs, false /* restore */, CS_GPR(i),
2142 			GPR_SAVE_OFFSET + 8 * i, 2);
2143 	cs = save_restore_register(
2144 		stream, cs, false /* restore */, mi_predicate_result,
2145 		PREDICATE_SAVE_OFFSET, 1);
2146 
2147 	/* And return to the ring. */
2148 	*cs++ = MI_BATCH_BUFFER_END;
2149 
2150 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2151 
2152 	i915_gem_object_flush_map(bo);
2153 	__i915_gem_object_release_map(bo);
2154 
2155 	goto out_ww;
2156 
2157 err_unpin:
2158 	i915_vma_unpin_and_release(&vma, 0);
2159 out_ww:
2160 	if (ret == -EDEADLK) {
2161 		ret = i915_gem_ww_ctx_backoff(&ww);
2162 		if (!ret)
2163 			goto retry;
2164 	}
2165 	i915_gem_ww_ctx_fini(&ww);
2166 	if (ret)
2167 		i915_gem_object_put(bo);
2168 	return ret;
2169 }
2170 
2171 static u32 *write_cs_mi_lri(u32 *cs,
2172 			    const struct i915_oa_reg *reg_data,
2173 			    u32 n_regs)
2174 {
2175 	u32 i;
2176 
2177 	for (i = 0; i < n_regs; i++) {
2178 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2179 			u32 n_lri = min_t(u32,
2180 					  n_regs - i,
2181 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2182 
2183 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2184 		}
2185 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2186 		*cs++ = reg_data[i].value;
2187 	}
2188 
2189 	return cs;
2190 }
2191 
2192 static int num_lri_dwords(int num_regs)
2193 {
2194 	int count = 0;
2195 
2196 	if (num_regs > 0) {
2197 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2198 		count += num_regs * 2;
2199 	}
2200 
2201 	return count;
2202 }
2203 
2204 static struct i915_oa_config_bo *
2205 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2206 		       struct i915_oa_config *oa_config)
2207 {
2208 	struct drm_i915_gem_object *obj;
2209 	struct i915_oa_config_bo *oa_bo;
2210 	struct i915_gem_ww_ctx ww;
2211 	size_t config_length = 0;
2212 	u32 *cs;
2213 	int err;
2214 
2215 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2216 	if (!oa_bo)
2217 		return ERR_PTR(-ENOMEM);
2218 
2219 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2220 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2221 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2222 	config_length += 3; /* MI_BATCH_BUFFER_START */
2223 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2224 
2225 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2226 	if (IS_ERR(obj)) {
2227 		err = PTR_ERR(obj);
2228 		goto err_free;
2229 	}
2230 
2231 	i915_gem_ww_ctx_init(&ww, true);
2232 retry:
2233 	err = i915_gem_object_lock(obj, &ww);
2234 	if (err)
2235 		goto out_ww;
2236 
2237 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2238 	if (IS_ERR(cs)) {
2239 		err = PTR_ERR(cs);
2240 		goto out_ww;
2241 	}
2242 
2243 	cs = write_cs_mi_lri(cs,
2244 			     oa_config->mux_regs,
2245 			     oa_config->mux_regs_len);
2246 	cs = write_cs_mi_lri(cs,
2247 			     oa_config->b_counter_regs,
2248 			     oa_config->b_counter_regs_len);
2249 	cs = write_cs_mi_lri(cs,
2250 			     oa_config->flex_regs,
2251 			     oa_config->flex_regs_len);
2252 
2253 	/* Jump into the active wait. */
2254 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2255 		 MI_BATCH_BUFFER_START :
2256 		 MI_BATCH_BUFFER_START_GEN8);
2257 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2258 	*cs++ = 0;
2259 
2260 	i915_gem_object_flush_map(obj);
2261 	__i915_gem_object_release_map(obj);
2262 
2263 	oa_bo->vma = i915_vma_instance(obj,
2264 				       &stream->engine->gt->ggtt->vm,
2265 				       NULL);
2266 	if (IS_ERR(oa_bo->vma)) {
2267 		err = PTR_ERR(oa_bo->vma);
2268 		goto out_ww;
2269 	}
2270 
2271 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2272 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2273 
2274 out_ww:
2275 	if (err == -EDEADLK) {
2276 		err = i915_gem_ww_ctx_backoff(&ww);
2277 		if (!err)
2278 			goto retry;
2279 	}
2280 	i915_gem_ww_ctx_fini(&ww);
2281 
2282 	if (err)
2283 		i915_gem_object_put(obj);
2284 err_free:
2285 	if (err) {
2286 		kfree(oa_bo);
2287 		return ERR_PTR(err);
2288 	}
2289 	return oa_bo;
2290 }
2291 
2292 static struct i915_vma *
2293 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2294 {
2295 	struct i915_oa_config_bo *oa_bo;
2296 
2297 	/*
2298 	 * Look for the buffer in the already allocated BOs attached
2299 	 * to the stream.
2300 	 */
2301 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2302 		if (oa_bo->oa_config == oa_config &&
2303 		    memcmp(oa_bo->oa_config->uuid,
2304 			   oa_config->uuid,
2305 			   sizeof(oa_config->uuid)) == 0)
2306 			goto out;
2307 	}
2308 
2309 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2310 	if (IS_ERR(oa_bo))
2311 		return ERR_CAST(oa_bo);
2312 
2313 out:
2314 	return i915_vma_get(oa_bo->vma);
2315 }
2316 
2317 static int
2318 emit_oa_config(struct i915_perf_stream *stream,
2319 	       struct i915_oa_config *oa_config,
2320 	       struct intel_context *ce,
2321 	       struct i915_active *active)
2322 {
2323 	struct i915_request *rq;
2324 	struct i915_vma *vma;
2325 	struct i915_gem_ww_ctx ww;
2326 	int err;
2327 
2328 	vma = get_oa_vma(stream, oa_config);
2329 	if (IS_ERR(vma))
2330 		return PTR_ERR(vma);
2331 
2332 	i915_gem_ww_ctx_init(&ww, true);
2333 retry:
2334 	err = i915_gem_object_lock(vma->obj, &ww);
2335 	if (err)
2336 		goto err;
2337 
2338 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2339 	if (err)
2340 		goto err;
2341 
2342 	intel_engine_pm_get(ce->engine);
2343 	rq = i915_request_create(ce);
2344 	intel_engine_pm_put(ce->engine);
2345 	if (IS_ERR(rq)) {
2346 		err = PTR_ERR(rq);
2347 		goto err_vma_unpin;
2348 	}
2349 
2350 	if (!IS_ERR_OR_NULL(active)) {
2351 		/* After all individual context modifications */
2352 		err = i915_request_await_active(rq, active,
2353 						I915_ACTIVE_AWAIT_ACTIVE);
2354 		if (err)
2355 			goto err_add_request;
2356 
2357 		err = i915_active_add_request(active, rq);
2358 		if (err)
2359 			goto err_add_request;
2360 	}
2361 
2362 	err = i915_vma_move_to_active(vma, rq, 0);
2363 	if (err)
2364 		goto err_add_request;
2365 
2366 	err = rq->engine->emit_bb_start(rq,
2367 					i915_vma_offset(vma), 0,
2368 					I915_DISPATCH_SECURE);
2369 	if (err)
2370 		goto err_add_request;
2371 
2372 err_add_request:
2373 	i915_request_add(rq);
2374 err_vma_unpin:
2375 	i915_vma_unpin(vma);
2376 err:
2377 	if (err == -EDEADLK) {
2378 		err = i915_gem_ww_ctx_backoff(&ww);
2379 		if (!err)
2380 			goto retry;
2381 	}
2382 
2383 	i915_gem_ww_ctx_fini(&ww);
2384 	i915_vma_put(vma);
2385 	return err;
2386 }
2387 
2388 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2389 {
2390 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2391 }
2392 
2393 static int
2394 hsw_enable_metric_set(struct i915_perf_stream *stream,
2395 		      struct i915_active *active)
2396 {
2397 	struct intel_uncore *uncore = stream->uncore;
2398 
2399 	/*
2400 	 * PRM:
2401 	 *
2402 	 * OA unit is using “crclk” for its functionality. When trunk
2403 	 * level clock gating takes place, OA clock would be gated,
2404 	 * unable to count the events from non-render clock domain.
2405 	 * Render clock gating must be disabled when OA is enabled to
2406 	 * count the events from non-render domain. Unit level clock
2407 	 * gating for RCS should also be disabled.
2408 	 */
2409 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2410 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2411 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2412 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2413 
2414 	return emit_oa_config(stream,
2415 			      stream->oa_config, oa_context(stream),
2416 			      active);
2417 }
2418 
2419 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2420 {
2421 	struct intel_uncore *uncore = stream->uncore;
2422 
2423 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2424 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2425 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2426 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2427 
2428 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2429 }
2430 
2431 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2432 			      i915_reg_t reg)
2433 {
2434 	u32 mmio = i915_mmio_reg_offset(reg);
2435 	int i;
2436 
2437 	/*
2438 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2439 	 * Active' event. In the future it's anticipated that there
2440 	 * will be an explicit 'No Event' we can select, but not yet...
2441 	 */
2442 	if (!oa_config)
2443 		return 0;
2444 
2445 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2446 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2447 			return oa_config->flex_regs[i].value;
2448 	}
2449 
2450 	return 0;
2451 }
2452 /*
2453  * NB: It must always remain pointer safe to run this even if the OA unit
2454  * has been disabled.
2455  *
2456  * It's fine to put out-of-date values into these per-context registers
2457  * in the case that the OA unit has been disabled.
2458  */
2459 static void
2460 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2461 			       const struct i915_perf_stream *stream)
2462 {
2463 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2464 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2465 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2466 	static const i915_reg_t flex_regs[] = {
2467 		EU_PERF_CNTL0,
2468 		EU_PERF_CNTL1,
2469 		EU_PERF_CNTL2,
2470 		EU_PERF_CNTL3,
2471 		EU_PERF_CNTL4,
2472 		EU_PERF_CNTL5,
2473 		EU_PERF_CNTL6,
2474 	};
2475 	u32 *reg_state = ce->lrc_reg_state;
2476 	int i;
2477 
2478 	reg_state[ctx_oactxctrl + 1] =
2479 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2480 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2481 		GEN8_OA_COUNTER_RESUME;
2482 
2483 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2484 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2485 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2486 }
2487 
2488 struct flex {
2489 	i915_reg_t reg;
2490 	u32 offset;
2491 	u32 value;
2492 };
2493 
2494 static int
2495 gen8_store_flex(struct i915_request *rq,
2496 		struct intel_context *ce,
2497 		const struct flex *flex, unsigned int count)
2498 {
2499 	u32 offset;
2500 	u32 *cs;
2501 
2502 	cs = intel_ring_begin(rq, 4 * count);
2503 	if (IS_ERR(cs))
2504 		return PTR_ERR(cs);
2505 
2506 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2507 	do {
2508 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2509 		*cs++ = offset + flex->offset * sizeof(u32);
2510 		*cs++ = 0;
2511 		*cs++ = flex->value;
2512 	} while (flex++, --count);
2513 
2514 	intel_ring_advance(rq, cs);
2515 
2516 	return 0;
2517 }
2518 
2519 static int
2520 gen8_load_flex(struct i915_request *rq,
2521 	       struct intel_context *ce,
2522 	       const struct flex *flex, unsigned int count)
2523 {
2524 	u32 *cs;
2525 
2526 	GEM_BUG_ON(!count || count > 63);
2527 
2528 	cs = intel_ring_begin(rq, 2 * count + 2);
2529 	if (IS_ERR(cs))
2530 		return PTR_ERR(cs);
2531 
2532 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2533 	do {
2534 		*cs++ = i915_mmio_reg_offset(flex->reg);
2535 		*cs++ = flex->value;
2536 	} while (flex++, --count);
2537 	*cs++ = MI_NOOP;
2538 
2539 	intel_ring_advance(rq, cs);
2540 
2541 	return 0;
2542 }
2543 
2544 static int gen8_modify_context(struct intel_context *ce,
2545 			       const struct flex *flex, unsigned int count)
2546 {
2547 	struct i915_request *rq;
2548 	int err;
2549 
2550 	rq = intel_engine_create_kernel_request(ce->engine);
2551 	if (IS_ERR(rq))
2552 		return PTR_ERR(rq);
2553 
2554 	/* Serialise with the remote context */
2555 	err = intel_context_prepare_remote_request(ce, rq);
2556 	if (err == 0)
2557 		err = gen8_store_flex(rq, ce, flex, count);
2558 
2559 	i915_request_add(rq);
2560 	return err;
2561 }
2562 
2563 static int
2564 gen8_modify_self(struct intel_context *ce,
2565 		 const struct flex *flex, unsigned int count,
2566 		 struct i915_active *active)
2567 {
2568 	struct i915_request *rq;
2569 	int err;
2570 
2571 	intel_engine_pm_get(ce->engine);
2572 	rq = i915_request_create(ce);
2573 	intel_engine_pm_put(ce->engine);
2574 	if (IS_ERR(rq))
2575 		return PTR_ERR(rq);
2576 
2577 	if (!IS_ERR_OR_NULL(active)) {
2578 		err = i915_active_add_request(active, rq);
2579 		if (err)
2580 			goto err_add_request;
2581 	}
2582 
2583 	err = gen8_load_flex(rq, ce, flex, count);
2584 	if (err)
2585 		goto err_add_request;
2586 
2587 err_add_request:
2588 	i915_request_add(rq);
2589 	return err;
2590 }
2591 
2592 static int gen8_configure_context(struct i915_perf_stream *stream,
2593 				  struct i915_gem_context *ctx,
2594 				  struct flex *flex, unsigned int count)
2595 {
2596 	struct i915_gem_engines_iter it;
2597 	struct intel_context *ce;
2598 	int err = 0;
2599 
2600 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2601 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2602 
2603 		if (ce->engine->class != RENDER_CLASS)
2604 			continue;
2605 
2606 		/* Otherwise OA settings will be set upon first use */
2607 		if (!intel_context_pin_if_active(ce))
2608 			continue;
2609 
2610 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2611 		err = gen8_modify_context(ce, flex, count);
2612 
2613 		intel_context_unpin(ce);
2614 		if (err)
2615 			break;
2616 	}
2617 	i915_gem_context_unlock_engines(ctx);
2618 
2619 	return err;
2620 }
2621 
2622 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2623 				       struct i915_active *active)
2624 {
2625 	int err;
2626 	struct intel_context *ce = stream->pinned_ctx;
2627 	u32 format = stream->oa_buffer.format->format;
2628 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2629 	struct flex regs_context[] = {
2630 		{
2631 			GEN8_OACTXCONTROL,
2632 			offset + 1,
2633 			active ? GEN8_OA_COUNTER_RESUME : 0,
2634 		},
2635 	};
2636 	/* Offsets in regs_lri are not used since this configuration is only
2637 	 * applied using LRI. Initialize the correct offsets for posterity.
2638 	 */
2639 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2640 	struct flex regs_lri[] = {
2641 		{
2642 			GEN12_OAR_OACONTROL,
2643 			GEN12_OAR_OACONTROL_OFFSET + 1,
2644 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2645 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2646 		},
2647 		{
2648 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2649 			CTX_CONTEXT_CONTROL,
2650 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2651 				      active ?
2652 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2653 				      0)
2654 		},
2655 	};
2656 
2657 	/* Modify the context image of pinned context with regs_context */
2658 	err = intel_context_lock_pinned(ce);
2659 	if (err)
2660 		return err;
2661 
2662 	err = gen8_modify_context(ce, regs_context,
2663 				  ARRAY_SIZE(regs_context));
2664 	intel_context_unlock_pinned(ce);
2665 	if (err)
2666 		return err;
2667 
2668 	/* Apply regs_lri using LRI with pinned context */
2669 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2670 }
2671 
2672 /*
2673  * Manages updating the per-context aspects of the OA stream
2674  * configuration across all contexts.
2675  *
2676  * The awkward consideration here is that OACTXCONTROL controls the
2677  * exponent for periodic sampling which is primarily used for system
2678  * wide profiling where we'd like a consistent sampling period even in
2679  * the face of context switches.
2680  *
2681  * Our approach of updating the register state context (as opposed to
2682  * say using a workaround batch buffer) ensures that the hardware
2683  * won't automatically reload an out-of-date timer exponent even
2684  * transiently before a WA BB could be parsed.
2685  *
2686  * This function needs to:
2687  * - Ensure the currently running context's per-context OA state is
2688  *   updated
2689  * - Ensure that all existing contexts will have the correct per-context
2690  *   OA state if they are scheduled for use.
2691  * - Ensure any new contexts will be initialized with the correct
2692  *   per-context OA state.
2693  *
2694  * Note: it's only the RCS/Render context that has any OA state.
2695  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2696  */
2697 static int
2698 oa_configure_all_contexts(struct i915_perf_stream *stream,
2699 			  struct flex *regs,
2700 			  size_t num_regs,
2701 			  struct i915_active *active)
2702 {
2703 	struct drm_i915_private *i915 = stream->perf->i915;
2704 	struct intel_engine_cs *engine;
2705 	struct intel_gt *gt = stream->engine->gt;
2706 	struct i915_gem_context *ctx, *cn;
2707 	int err;
2708 
2709 	lockdep_assert_held(&gt->perf.lock);
2710 
2711 	/*
2712 	 * The OA register config is setup through the context image. This image
2713 	 * might be written to by the GPU on context switch (in particular on
2714 	 * lite-restore). This means we can't safely update a context's image,
2715 	 * if this context is scheduled/submitted to run on the GPU.
2716 	 *
2717 	 * We could emit the OA register config through the batch buffer but
2718 	 * this might leave small interval of time where the OA unit is
2719 	 * configured at an invalid sampling period.
2720 	 *
2721 	 * Note that since we emit all requests from a single ring, there
2722 	 * is still an implicit global barrier here that may cause a high
2723 	 * priority context to wait for an otherwise independent low priority
2724 	 * context. Contexts idle at the time of reconfiguration are not
2725 	 * trapped behind the barrier.
2726 	 */
2727 	spin_lock(&i915->gem.contexts.lock);
2728 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2729 		if (!kref_get_unless_zero(&ctx->ref))
2730 			continue;
2731 
2732 		spin_unlock(&i915->gem.contexts.lock);
2733 
2734 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2735 		if (err) {
2736 			i915_gem_context_put(ctx);
2737 			return err;
2738 		}
2739 
2740 		spin_lock(&i915->gem.contexts.lock);
2741 		list_safe_reset_next(ctx, cn, link);
2742 		i915_gem_context_put(ctx);
2743 	}
2744 	spin_unlock(&i915->gem.contexts.lock);
2745 
2746 	/*
2747 	 * After updating all other contexts, we need to modify ourselves.
2748 	 * If we don't modify the kernel_context, we do not get events while
2749 	 * idle.
2750 	 */
2751 	for_each_uabi_engine(engine, i915) {
2752 		struct intel_context *ce = engine->kernel_context;
2753 
2754 		if (engine->class != RENDER_CLASS)
2755 			continue;
2756 
2757 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2758 
2759 		err = gen8_modify_self(ce, regs, num_regs, active);
2760 		if (err)
2761 			return err;
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 static int
2768 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2769 			     const struct i915_oa_config *oa_config,
2770 			     struct i915_active *active)
2771 {
2772 	struct flex regs[] = {
2773 		{
2774 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2775 			CTX_R_PWR_CLK_STATE,
2776 		},
2777 	};
2778 
2779 	if (stream->engine->class != RENDER_CLASS)
2780 		return 0;
2781 
2782 	return oa_configure_all_contexts(stream,
2783 					 regs, ARRAY_SIZE(regs),
2784 					 active);
2785 }
2786 
2787 static int
2788 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2789 			   const struct i915_oa_config *oa_config,
2790 			   struct i915_active *active)
2791 {
2792 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2793 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2794 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2795 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2796 	struct flex regs[] = {
2797 		{
2798 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2799 			CTX_R_PWR_CLK_STATE,
2800 		},
2801 		{
2802 			GEN8_OACTXCONTROL,
2803 			ctx_oactxctrl + 1,
2804 		},
2805 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2806 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2807 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2808 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2809 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2810 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2811 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2812 	};
2813 #undef ctx_flexeuN
2814 	int i;
2815 
2816 	regs[1].value =
2817 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2818 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2819 		GEN8_OA_COUNTER_RESUME;
2820 
2821 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2822 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2823 
2824 	return oa_configure_all_contexts(stream,
2825 					 regs, ARRAY_SIZE(regs),
2826 					 active);
2827 }
2828 
2829 static int
2830 gen8_enable_metric_set(struct i915_perf_stream *stream,
2831 		       struct i915_active *active)
2832 {
2833 	struct intel_uncore *uncore = stream->uncore;
2834 	struct i915_oa_config *oa_config = stream->oa_config;
2835 	int ret;
2836 
2837 	/*
2838 	 * We disable slice/unslice clock ratio change reports on SKL since
2839 	 * they are too noisy. The HW generates a lot of redundant reports
2840 	 * where the ratio hasn't really changed causing a lot of redundant
2841 	 * work to processes and increasing the chances we'll hit buffer
2842 	 * overruns.
2843 	 *
2844 	 * Although we don't currently use the 'disable overrun' OABUFFER
2845 	 * feature it's worth noting that clock ratio reports have to be
2846 	 * disabled before considering to use that feature since the HW doesn't
2847 	 * correctly block these reports.
2848 	 *
2849 	 * Currently none of the high-level metrics we have depend on knowing
2850 	 * this ratio to normalize.
2851 	 *
2852 	 * Note: This register is not power context saved and restored, but
2853 	 * that's OK considering that we disable RC6 while the OA unit is
2854 	 * enabled.
2855 	 *
2856 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2857 	 * be read back from automatically triggered reports, as part of the
2858 	 * RPT_ID field.
2859 	 */
2860 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2861 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2862 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2863 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2864 	}
2865 
2866 	/*
2867 	 * Update all contexts prior writing the mux configurations as we need
2868 	 * to make sure all slices/subslices are ON before writing to NOA
2869 	 * registers.
2870 	 */
2871 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2872 	if (ret)
2873 		return ret;
2874 
2875 	return emit_oa_config(stream,
2876 			      stream->oa_config, oa_context(stream),
2877 			      active);
2878 }
2879 
2880 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2881 {
2882 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2883 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2884 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2885 }
2886 
2887 static int
2888 gen12_enable_metric_set(struct i915_perf_stream *stream,
2889 			struct i915_active *active)
2890 {
2891 	struct drm_i915_private *i915 = stream->perf->i915;
2892 	struct intel_uncore *uncore = stream->uncore;
2893 	struct i915_oa_config *oa_config = stream->oa_config;
2894 	bool periodic = stream->periodic;
2895 	u32 period_exponent = stream->period_exponent;
2896 	u32 sqcnt1;
2897 	int ret;
2898 
2899 	/*
2900 	 * Wa_1508761755:xehpsdv, dg2
2901 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2902 	 * Disable thread stall DOP gating and EU DOP gating.
2903 	 */
2904 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2905 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2906 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2907 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2908 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2909 	}
2910 
2911 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2912 			   /* Disable clk ratio reports, like previous Gens. */
2913 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2914 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2915 			   /*
2916 			    * If the user didn't require OA reports, instruct
2917 			    * the hardware not to emit ctx switch reports.
2918 			    */
2919 			   oag_report_ctx_switches(stream));
2920 
2921 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2922 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2923 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2924 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2925 			    : 0);
2926 
2927 	/*
2928 	 * Initialize Super Queue Internal Cnt Register
2929 	 * Set PMON Enable in order to collect valid metrics.
2930 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2931 	 */
2932 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2933 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2934 
2935 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2936 
2937 	/*
2938 	 * Update all contexts prior writing the mux configurations as we need
2939 	 * to make sure all slices/subslices are ON before writing to NOA
2940 	 * registers.
2941 	 */
2942 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2943 	if (ret)
2944 		return ret;
2945 
2946 	/*
2947 	 * For Gen12, performance counters are context
2948 	 * saved/restored. Only enable it for the context that
2949 	 * requested this.
2950 	 */
2951 	if (stream->ctx) {
2952 		ret = gen12_configure_oar_context(stream, active);
2953 		if (ret)
2954 			return ret;
2955 	}
2956 
2957 	return emit_oa_config(stream,
2958 			      stream->oa_config, oa_context(stream),
2959 			      active);
2960 }
2961 
2962 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2963 {
2964 	struct intel_uncore *uncore = stream->uncore;
2965 
2966 	/* Reset all contexts' slices/subslices configurations. */
2967 	lrc_configure_all_contexts(stream, NULL, NULL);
2968 
2969 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2970 }
2971 
2972 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2973 {
2974 	struct intel_uncore *uncore = stream->uncore;
2975 
2976 	/* Reset all contexts' slices/subslices configurations. */
2977 	lrc_configure_all_contexts(stream, NULL, NULL);
2978 
2979 	/* Make sure we disable noa to save power. */
2980 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2981 }
2982 
2983 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2984 {
2985 	struct intel_uncore *uncore = stream->uncore;
2986 	struct drm_i915_private *i915 = stream->perf->i915;
2987 	u32 sqcnt1;
2988 
2989 	/*
2990 	 * Wa_1508761755:xehpsdv, dg2
2991 	 * Enable thread stall DOP gating and EU DOP gating.
2992 	 */
2993 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2994 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2995 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2996 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2997 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2998 	}
2999 
3000 	/* Reset all contexts' slices/subslices configurations. */
3001 	gen12_configure_all_contexts(stream, NULL, NULL);
3002 
3003 	/* disable the context save/restore or OAR counters */
3004 	if (stream->ctx)
3005 		gen12_configure_oar_context(stream, NULL);
3006 
3007 	/* Make sure we disable noa to save power. */
3008 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
3009 
3010 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
3011 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
3012 
3013 	/* Reset PMON Enable to save power. */
3014 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
3015 }
3016 
3017 static void gen7_oa_enable(struct i915_perf_stream *stream)
3018 {
3019 	struct intel_uncore *uncore = stream->uncore;
3020 	struct i915_gem_context *ctx = stream->ctx;
3021 	u32 ctx_id = stream->specific_ctx_id;
3022 	bool periodic = stream->periodic;
3023 	u32 period_exponent = stream->period_exponent;
3024 	u32 report_format = stream->oa_buffer.format->format;
3025 
3026 	/*
3027 	 * Reset buf pointers so we don't forward reports from before now.
3028 	 *
3029 	 * Think carefully if considering trying to avoid this, since it
3030 	 * also ensures status flags and the buffer itself are cleared
3031 	 * in error paths, and we have checks for invalid reports based
3032 	 * on the assumption that certain fields are written to zeroed
3033 	 * memory which this helps maintains.
3034 	 */
3035 	gen7_init_oa_buffer(stream);
3036 
3037 	intel_uncore_write(uncore, GEN7_OACONTROL,
3038 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3039 			   (period_exponent <<
3040 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3041 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3042 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3043 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3044 			   GEN7_OACONTROL_ENABLE);
3045 }
3046 
3047 static void gen8_oa_enable(struct i915_perf_stream *stream)
3048 {
3049 	struct intel_uncore *uncore = stream->uncore;
3050 	u32 report_format = stream->oa_buffer.format->format;
3051 
3052 	/*
3053 	 * Reset buf pointers so we don't forward reports from before now.
3054 	 *
3055 	 * Think carefully if considering trying to avoid this, since it
3056 	 * also ensures status flags and the buffer itself are cleared
3057 	 * in error paths, and we have checks for invalid reports based
3058 	 * on the assumption that certain fields are written to zeroed
3059 	 * memory which this helps maintains.
3060 	 */
3061 	gen8_init_oa_buffer(stream);
3062 
3063 	/*
3064 	 * Note: we don't rely on the hardware to perform single context
3065 	 * filtering and instead filter on the cpu based on the context-id
3066 	 * field of reports
3067 	 */
3068 	intel_uncore_write(uncore, GEN8_OACONTROL,
3069 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3070 			   GEN8_OA_COUNTER_ENABLE);
3071 }
3072 
3073 static void gen12_oa_enable(struct i915_perf_stream *stream)
3074 {
3075 	const struct i915_perf_regs *regs;
3076 	u32 val;
3077 
3078 	/*
3079 	 * If we don't want OA reports from the OA buffer, then we don't even
3080 	 * need to program the OAG unit.
3081 	 */
3082 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3083 		return;
3084 
3085 	gen12_init_oa_buffer(stream);
3086 
3087 	regs = __oa_regs(stream);
3088 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3089 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3090 
3091 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3092 }
3093 
3094 /**
3095  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3096  * @stream: An i915 perf stream opened for OA metrics
3097  *
3098  * [Re]enables hardware periodic sampling according to the period configured
3099  * when opening the stream. This also starts a hrtimer that will periodically
3100  * check for data in the circular OA buffer for notifying userspace (e.g.
3101  * during a read() or poll()).
3102  */
3103 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3104 {
3105 	stream->pollin = false;
3106 
3107 	stream->perf->ops.oa_enable(stream);
3108 
3109 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3110 		hrtimer_start(&stream->poll_check_timer,
3111 			      ns_to_ktime(stream->poll_oa_period),
3112 			      HRTIMER_MODE_REL_PINNED);
3113 }
3114 
3115 static void gen7_oa_disable(struct i915_perf_stream *stream)
3116 {
3117 	struct intel_uncore *uncore = stream->uncore;
3118 
3119 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3120 	if (intel_wait_for_register(uncore,
3121 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3122 				    50))
3123 		drm_err(&stream->perf->i915->drm,
3124 			"wait for OA to be disabled timed out\n");
3125 }
3126 
3127 static void gen8_oa_disable(struct i915_perf_stream *stream)
3128 {
3129 	struct intel_uncore *uncore = stream->uncore;
3130 
3131 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3132 	if (intel_wait_for_register(uncore,
3133 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3134 				    50))
3135 		drm_err(&stream->perf->i915->drm,
3136 			"wait for OA to be disabled timed out\n");
3137 }
3138 
3139 static void gen12_oa_disable(struct i915_perf_stream *stream)
3140 {
3141 	struct intel_uncore *uncore = stream->uncore;
3142 
3143 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3144 	if (intel_wait_for_register(uncore,
3145 				    __oa_regs(stream)->oa_ctrl,
3146 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3147 				    50))
3148 		drm_err(&stream->perf->i915->drm,
3149 			"wait for OA to be disabled timed out\n");
3150 
3151 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3152 	if (intel_wait_for_register(uncore,
3153 				    GEN12_OA_TLB_INV_CR,
3154 				    1, 0,
3155 				    50))
3156 		drm_err(&stream->perf->i915->drm,
3157 			"wait for OA tlb invalidate timed out\n");
3158 }
3159 
3160 /**
3161  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3162  * @stream: An i915 perf stream opened for OA metrics
3163  *
3164  * Stops the OA unit from periodically writing counter reports into the
3165  * circular OA buffer. This also stops the hrtimer that periodically checks for
3166  * data in the circular OA buffer, for notifying userspace.
3167  */
3168 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3169 {
3170 	stream->perf->ops.oa_disable(stream);
3171 
3172 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3173 		hrtimer_cancel(&stream->poll_check_timer);
3174 }
3175 
3176 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3177 	.destroy = i915_oa_stream_destroy,
3178 	.enable = i915_oa_stream_enable,
3179 	.disable = i915_oa_stream_disable,
3180 	.wait_unlocked = i915_oa_wait_unlocked,
3181 	.poll_wait = i915_oa_poll_wait,
3182 	.read = i915_oa_read,
3183 };
3184 
3185 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3186 {
3187 	struct i915_active *active;
3188 	int err;
3189 
3190 	active = i915_active_create();
3191 	if (!active)
3192 		return -ENOMEM;
3193 
3194 	err = stream->perf->ops.enable_metric_set(stream, active);
3195 	if (err == 0)
3196 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3197 
3198 	i915_active_put(active);
3199 	return err;
3200 }
3201 
3202 static void
3203 get_default_sseu_config(struct intel_sseu *out_sseu,
3204 			struct intel_engine_cs *engine)
3205 {
3206 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3207 
3208 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3209 
3210 	if (GRAPHICS_VER(engine->i915) == 11) {
3211 		/*
3212 		 * We only need subslice count so it doesn't matter which ones
3213 		 * we select - just turn off low bits in the amount of half of
3214 		 * all available subslices per slice.
3215 		 */
3216 		out_sseu->subslice_mask =
3217 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3218 		out_sseu->slice_mask = 0x1;
3219 	}
3220 }
3221 
3222 static int
3223 get_sseu_config(struct intel_sseu *out_sseu,
3224 		struct intel_engine_cs *engine,
3225 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3226 {
3227 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3228 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3229 		return -EINVAL;
3230 
3231 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3232 }
3233 
3234 /*
3235  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3236  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3237  * cases, return the adjusted CS timestamp frequency to the user.
3238  */
3239 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3240 {
3241 	/*
3242 	 * Wa_18013179988:dg2
3243 	 * Wa_14015846243:mtl
3244 	 */
3245 	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3246 		intel_wakeref_t wakeref;
3247 		u32 reg, shift;
3248 
3249 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3250 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3251 
3252 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3253 				      reg);
3254 
3255 		return to_gt(i915)->clock_frequency << (3 - shift);
3256 	}
3257 
3258 	return to_gt(i915)->clock_frequency;
3259 }
3260 
3261 /**
3262  * i915_oa_stream_init - validate combined props for OA stream and init
3263  * @stream: An i915 perf stream
3264  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3265  * @props: The property state that configures stream (individually validated)
3266  *
3267  * While read_properties_unlocked() validates properties in isolation it
3268  * doesn't ensure that the combination necessarily makes sense.
3269  *
3270  * At this point it has been determined that userspace wants a stream of
3271  * OA metrics, but still we need to further validate the combined
3272  * properties are OK.
3273  *
3274  * If the configuration makes sense then we can allocate memory for
3275  * a circular OA buffer and apply the requested metric set configuration.
3276  *
3277  * Returns: zero on success or a negative error code.
3278  */
3279 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3280 			       struct drm_i915_perf_open_param *param,
3281 			       struct perf_open_properties *props)
3282 {
3283 	struct drm_i915_private *i915 = stream->perf->i915;
3284 	struct i915_perf *perf = stream->perf;
3285 	struct i915_perf_group *g;
3286 	struct intel_gt *gt;
3287 	int ret;
3288 
3289 	if (!props->engine) {
3290 		drm_dbg(&stream->perf->i915->drm,
3291 			"OA engine not specified\n");
3292 		return -EINVAL;
3293 	}
3294 	gt = props->engine->gt;
3295 	g = props->engine->oa_group;
3296 
3297 	/*
3298 	 * If the sysfs metrics/ directory wasn't registered for some
3299 	 * reason then don't let userspace try their luck with config
3300 	 * IDs
3301 	 */
3302 	if (!perf->metrics_kobj) {
3303 		drm_dbg(&stream->perf->i915->drm,
3304 			"OA metrics weren't advertised via sysfs\n");
3305 		return -EINVAL;
3306 	}
3307 
3308 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3309 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3310 		drm_dbg(&stream->perf->i915->drm,
3311 			"Only OA report sampling supported\n");
3312 		return -EINVAL;
3313 	}
3314 
3315 	if (!perf->ops.enable_metric_set) {
3316 		drm_dbg(&stream->perf->i915->drm,
3317 			"OA unit not supported\n");
3318 		return -ENODEV;
3319 	}
3320 
3321 	/*
3322 	 * To avoid the complexity of having to accurately filter
3323 	 * counter reports and marshal to the appropriate client
3324 	 * we currently only allow exclusive access
3325 	 */
3326 	if (g->exclusive_stream) {
3327 		drm_dbg(&stream->perf->i915->drm,
3328 			"OA unit already in use\n");
3329 		return -EBUSY;
3330 	}
3331 
3332 	if (!props->oa_format) {
3333 		drm_dbg(&stream->perf->i915->drm,
3334 			"OA report format not specified\n");
3335 		return -EINVAL;
3336 	}
3337 
3338 	stream->engine = props->engine;
3339 	stream->uncore = stream->engine->gt->uncore;
3340 
3341 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3342 
3343 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3344 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3345 		return -EINVAL;
3346 
3347 	stream->sample_flags = props->sample_flags;
3348 	stream->sample_size += stream->oa_buffer.format->size;
3349 
3350 	stream->hold_preemption = props->hold_preemption;
3351 
3352 	stream->periodic = props->oa_periodic;
3353 	if (stream->periodic)
3354 		stream->period_exponent = props->oa_period_exponent;
3355 
3356 	if (stream->ctx) {
3357 		ret = oa_get_render_ctx_id(stream);
3358 		if (ret) {
3359 			drm_dbg(&stream->perf->i915->drm,
3360 				"Invalid context id to filter with\n");
3361 			return ret;
3362 		}
3363 	}
3364 
3365 	ret = alloc_noa_wait(stream);
3366 	if (ret) {
3367 		drm_dbg(&stream->perf->i915->drm,
3368 			"Unable to allocate NOA wait batch buffer\n");
3369 		goto err_noa_wait_alloc;
3370 	}
3371 
3372 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3373 	if (!stream->oa_config) {
3374 		drm_dbg(&stream->perf->i915->drm,
3375 			"Invalid OA config id=%i\n", props->metrics_set);
3376 		ret = -EINVAL;
3377 		goto err_config;
3378 	}
3379 
3380 	/* PRM - observability performance counters:
3381 	 *
3382 	 *   OACONTROL, performance counter enable, note:
3383 	 *
3384 	 *   "When this bit is set, in order to have coherent counts,
3385 	 *   RC6 power state and trunk clock gating must be disabled.
3386 	 *   This can be achieved by programming MMIO registers as
3387 	 *   0xA094=0 and 0xA090[31]=1"
3388 	 *
3389 	 *   In our case we are expecting that taking pm + FORCEWAKE
3390 	 *   references will effectively disable RC6.
3391 	 */
3392 	intel_engine_pm_get(stream->engine);
3393 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3394 
3395 	/*
3396 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3397 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3398 	 * mode.
3399 	 */
3400 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3401 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3402 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3403 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3404 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3405 		if (ret) {
3406 			drm_dbg(&stream->perf->i915->drm,
3407 				"Unable to override gucrc mode\n");
3408 			goto err_gucrc;
3409 		}
3410 
3411 		stream->override_gucrc = true;
3412 	}
3413 
3414 	ret = alloc_oa_buffer(stream);
3415 	if (ret)
3416 		goto err_oa_buf_alloc;
3417 
3418 	stream->ops = &i915_oa_stream_ops;
3419 
3420 	stream->engine->gt->perf.sseu = props->sseu;
3421 	WRITE_ONCE(g->exclusive_stream, stream);
3422 
3423 	ret = i915_perf_stream_enable_sync(stream);
3424 	if (ret) {
3425 		drm_dbg(&stream->perf->i915->drm,
3426 			"Unable to enable metric set\n");
3427 		goto err_enable;
3428 	}
3429 
3430 	drm_dbg(&stream->perf->i915->drm,
3431 		"opening stream oa config uuid=%s\n",
3432 		  stream->oa_config->uuid);
3433 
3434 	hrtimer_init(&stream->poll_check_timer,
3435 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3436 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3437 	init_waitqueue_head(&stream->poll_wq);
3438 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3439 	mutex_init(&stream->lock);
3440 
3441 	return 0;
3442 
3443 err_enable:
3444 	WRITE_ONCE(g->exclusive_stream, NULL);
3445 	perf->ops.disable_metric_set(stream);
3446 
3447 	free_oa_buffer(stream);
3448 
3449 err_oa_buf_alloc:
3450 	if (stream->override_gucrc)
3451 		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3452 
3453 err_gucrc:
3454 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3455 	intel_engine_pm_put(stream->engine);
3456 
3457 	free_oa_configs(stream);
3458 
3459 err_config:
3460 	free_noa_wait(stream);
3461 
3462 err_noa_wait_alloc:
3463 	if (stream->ctx)
3464 		oa_put_render_ctx_id(stream);
3465 
3466 	return ret;
3467 }
3468 
3469 void i915_oa_init_reg_state(const struct intel_context *ce,
3470 			    const struct intel_engine_cs *engine)
3471 {
3472 	struct i915_perf_stream *stream;
3473 
3474 	if (engine->class != RENDER_CLASS)
3475 		return;
3476 
3477 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3478 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3479 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3480 		gen8_update_reg_state_unlocked(ce, stream);
3481 }
3482 
3483 /**
3484  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3485  * @file: An i915 perf stream file
3486  * @buf: destination buffer given by userspace
3487  * @count: the number of bytes userspace wants to read
3488  * @ppos: (inout) file seek position (unused)
3489  *
3490  * The entry point for handling a read() on a stream file descriptor from
3491  * userspace. Most of the work is left to the i915_perf_read_locked() and
3492  * &i915_perf_stream_ops->read but to save having stream implementations (of
3493  * which we might have multiple later) we handle blocking read here.
3494  *
3495  * We can also consistently treat trying to read from a disabled stream
3496  * as an IO error so implementations can assume the stream is enabled
3497  * while reading.
3498  *
3499  * Returns: The number of bytes copied or a negative error code on failure.
3500  */
3501 static ssize_t i915_perf_read(struct file *file,
3502 			      char __user *buf,
3503 			      size_t count,
3504 			      loff_t *ppos)
3505 {
3506 	struct i915_perf_stream *stream = file->private_data;
3507 	size_t offset = 0;
3508 	int ret;
3509 
3510 	/* To ensure it's handled consistently we simply treat all reads of a
3511 	 * disabled stream as an error. In particular it might otherwise lead
3512 	 * to a deadlock for blocking file descriptors...
3513 	 */
3514 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3515 		return -EIO;
3516 
3517 	if (!(file->f_flags & O_NONBLOCK)) {
3518 		/* There's the small chance of false positives from
3519 		 * stream->ops->wait_unlocked.
3520 		 *
3521 		 * E.g. with single context filtering since we only wait until
3522 		 * oabuffer has >= 1 report we don't immediately know whether
3523 		 * any reports really belong to the current context
3524 		 */
3525 		do {
3526 			ret = stream->ops->wait_unlocked(stream);
3527 			if (ret)
3528 				return ret;
3529 
3530 			mutex_lock(&stream->lock);
3531 			ret = stream->ops->read(stream, buf, count, &offset);
3532 			mutex_unlock(&stream->lock);
3533 		} while (!offset && !ret);
3534 	} else {
3535 		mutex_lock(&stream->lock);
3536 		ret = stream->ops->read(stream, buf, count, &offset);
3537 		mutex_unlock(&stream->lock);
3538 	}
3539 
3540 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3541 	 * events where we might actually report EAGAIN on read() if there's
3542 	 * not really any data available. In this situation though we don't
3543 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3544 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3545 	 * effectively ensures we back off until the next hrtimer callback
3546 	 * before reporting another EPOLLIN event.
3547 	 * The exception to this is if ops->read() returned -ENOSPC which means
3548 	 * that more OA data is available than could fit in the user provided
3549 	 * buffer. In this case we want the next poll() call to not block.
3550 	 */
3551 	if (ret != -ENOSPC)
3552 		stream->pollin = false;
3553 
3554 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3555 	return offset ?: (ret ?: -EAGAIN);
3556 }
3557 
3558 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3559 {
3560 	struct i915_perf_stream *stream =
3561 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3562 
3563 	if (oa_buffer_check_unlocked(stream)) {
3564 		stream->pollin = true;
3565 		wake_up(&stream->poll_wq);
3566 	}
3567 
3568 	hrtimer_forward_now(hrtimer,
3569 			    ns_to_ktime(stream->poll_oa_period));
3570 
3571 	return HRTIMER_RESTART;
3572 }
3573 
3574 /**
3575  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3576  * @stream: An i915 perf stream
3577  * @file: An i915 perf stream file
3578  * @wait: poll() state table
3579  *
3580  * For handling userspace polling on an i915 perf stream, this calls through to
3581  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3582  * will be woken for new stream data.
3583  *
3584  * Returns: any poll events that are ready without sleeping
3585  */
3586 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3587 				      struct file *file,
3588 				      poll_table *wait)
3589 {
3590 	__poll_t events = 0;
3591 
3592 	stream->ops->poll_wait(stream, file, wait);
3593 
3594 	/* Note: we don't explicitly check whether there's something to read
3595 	 * here since this path may be very hot depending on what else
3596 	 * userspace is polling, or on the timeout in use. We rely solely on
3597 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3598 	 * samples to read.
3599 	 */
3600 	if (stream->pollin)
3601 		events |= EPOLLIN;
3602 
3603 	return events;
3604 }
3605 
3606 /**
3607  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3608  * @file: An i915 perf stream file
3609  * @wait: poll() state table
3610  *
3611  * For handling userspace polling on an i915 perf stream, this ensures
3612  * poll_wait() gets called with a wait queue that will be woken for new stream
3613  * data.
3614  *
3615  * Note: Implementation deferred to i915_perf_poll_locked()
3616  *
3617  * Returns: any poll events that are ready without sleeping
3618  */
3619 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3620 {
3621 	struct i915_perf_stream *stream = file->private_data;
3622 	__poll_t ret;
3623 
3624 	mutex_lock(&stream->lock);
3625 	ret = i915_perf_poll_locked(stream, file, wait);
3626 	mutex_unlock(&stream->lock);
3627 
3628 	return ret;
3629 }
3630 
3631 /**
3632  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3633  * @stream: A disabled i915 perf stream
3634  *
3635  * [Re]enables the associated capture of data for this stream.
3636  *
3637  * If a stream was previously enabled then there's currently no intention
3638  * to provide userspace any guarantee about the preservation of previously
3639  * buffered data.
3640  */
3641 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3642 {
3643 	if (stream->enabled)
3644 		return;
3645 
3646 	/* Allow stream->ops->enable() to refer to this */
3647 	stream->enabled = true;
3648 
3649 	if (stream->ops->enable)
3650 		stream->ops->enable(stream);
3651 
3652 	if (stream->hold_preemption)
3653 		intel_context_set_nopreempt(stream->pinned_ctx);
3654 }
3655 
3656 /**
3657  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3658  * @stream: An enabled i915 perf stream
3659  *
3660  * Disables the associated capture of data for this stream.
3661  *
3662  * The intention is that disabling an re-enabling a stream will ideally be
3663  * cheaper than destroying and re-opening a stream with the same configuration,
3664  * though there are no formal guarantees about what state or buffered data
3665  * must be retained between disabling and re-enabling a stream.
3666  *
3667  * Note: while a stream is disabled it's considered an error for userspace
3668  * to attempt to read from the stream (-EIO).
3669  */
3670 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3671 {
3672 	if (!stream->enabled)
3673 		return;
3674 
3675 	/* Allow stream->ops->disable() to refer to this */
3676 	stream->enabled = false;
3677 
3678 	if (stream->hold_preemption)
3679 		intel_context_clear_nopreempt(stream->pinned_ctx);
3680 
3681 	if (stream->ops->disable)
3682 		stream->ops->disable(stream);
3683 }
3684 
3685 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3686 				    unsigned long metrics_set)
3687 {
3688 	struct i915_oa_config *config;
3689 	long ret = stream->oa_config->id;
3690 
3691 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3692 	if (!config)
3693 		return -EINVAL;
3694 
3695 	if (config != stream->oa_config) {
3696 		int err;
3697 
3698 		/*
3699 		 * If OA is bound to a specific context, emit the
3700 		 * reconfiguration inline from that context. The update
3701 		 * will then be ordered with respect to submission on that
3702 		 * context.
3703 		 *
3704 		 * When set globally, we use a low priority kernel context,
3705 		 * so it will effectively take effect when idle.
3706 		 */
3707 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3708 		if (!err)
3709 			config = xchg(&stream->oa_config, config);
3710 		else
3711 			ret = err;
3712 	}
3713 
3714 	i915_oa_config_put(config);
3715 
3716 	return ret;
3717 }
3718 
3719 /**
3720  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3721  * @stream: An i915 perf stream
3722  * @cmd: the ioctl request
3723  * @arg: the ioctl data
3724  *
3725  * Returns: zero on success or a negative error code. Returns -EINVAL for
3726  * an unknown ioctl request.
3727  */
3728 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3729 				   unsigned int cmd,
3730 				   unsigned long arg)
3731 {
3732 	switch (cmd) {
3733 	case I915_PERF_IOCTL_ENABLE:
3734 		i915_perf_enable_locked(stream);
3735 		return 0;
3736 	case I915_PERF_IOCTL_DISABLE:
3737 		i915_perf_disable_locked(stream);
3738 		return 0;
3739 	case I915_PERF_IOCTL_CONFIG:
3740 		return i915_perf_config_locked(stream, arg);
3741 	}
3742 
3743 	return -EINVAL;
3744 }
3745 
3746 /**
3747  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3748  * @file: An i915 perf stream file
3749  * @cmd: the ioctl request
3750  * @arg: the ioctl data
3751  *
3752  * Implementation deferred to i915_perf_ioctl_locked().
3753  *
3754  * Returns: zero on success or a negative error code. Returns -EINVAL for
3755  * an unknown ioctl request.
3756  */
3757 static long i915_perf_ioctl(struct file *file,
3758 			    unsigned int cmd,
3759 			    unsigned long arg)
3760 {
3761 	struct i915_perf_stream *stream = file->private_data;
3762 	long ret;
3763 
3764 	mutex_lock(&stream->lock);
3765 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3766 	mutex_unlock(&stream->lock);
3767 
3768 	return ret;
3769 }
3770 
3771 /**
3772  * i915_perf_destroy_locked - destroy an i915 perf stream
3773  * @stream: An i915 perf stream
3774  *
3775  * Frees all resources associated with the given i915 perf @stream, disabling
3776  * any associated data capture in the process.
3777  *
3778  * Note: The &gt->perf.lock mutex has been taken to serialize
3779  * with any non-file-operation driver hooks.
3780  */
3781 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3782 {
3783 	if (stream->enabled)
3784 		i915_perf_disable_locked(stream);
3785 
3786 	if (stream->ops->destroy)
3787 		stream->ops->destroy(stream);
3788 
3789 	if (stream->ctx)
3790 		i915_gem_context_put(stream->ctx);
3791 
3792 	kfree(stream);
3793 }
3794 
3795 /**
3796  * i915_perf_release - handles userspace close() of a stream file
3797  * @inode: anonymous inode associated with file
3798  * @file: An i915 perf stream file
3799  *
3800  * Cleans up any resources associated with an open i915 perf stream file.
3801  *
3802  * NB: close() can't really fail from the userspace point of view.
3803  *
3804  * Returns: zero on success or a negative error code.
3805  */
3806 static int i915_perf_release(struct inode *inode, struct file *file)
3807 {
3808 	struct i915_perf_stream *stream = file->private_data;
3809 	struct i915_perf *perf = stream->perf;
3810 	struct intel_gt *gt = stream->engine->gt;
3811 
3812 	/*
3813 	 * Within this call, we know that the fd is being closed and we have no
3814 	 * other user of stream->lock. Use the perf lock to destroy the stream
3815 	 * here.
3816 	 */
3817 	mutex_lock(&gt->perf.lock);
3818 	i915_perf_destroy_locked(stream);
3819 	mutex_unlock(&gt->perf.lock);
3820 
3821 	/* Release the reference the perf stream kept on the driver. */
3822 	drm_dev_put(&perf->i915->drm);
3823 
3824 	return 0;
3825 }
3826 
3827 
3828 static const struct file_operations fops = {
3829 	.owner		= THIS_MODULE,
3830 	.llseek		= no_llseek,
3831 	.release	= i915_perf_release,
3832 	.poll		= i915_perf_poll,
3833 	.read		= i915_perf_read,
3834 	.unlocked_ioctl	= i915_perf_ioctl,
3835 	/* Our ioctl have no arguments, so it's safe to use the same function
3836 	 * to handle 32bits compatibility.
3837 	 */
3838 	.compat_ioctl   = i915_perf_ioctl,
3839 };
3840 
3841 
3842 /**
3843  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3844  * @perf: i915 perf instance
3845  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3846  * @props: individually validated u64 property value pairs
3847  * @file: drm file
3848  *
3849  * See i915_perf_ioctl_open() for interface details.
3850  *
3851  * Implements further stream config validation and stream initialization on
3852  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3853  * taken to serialize with any non-file-operation driver hooks.
3854  *
3855  * Note: at this point the @props have only been validated in isolation and
3856  * it's still necessary to validate that the combination of properties makes
3857  * sense.
3858  *
3859  * In the case where userspace is interested in OA unit metrics then further
3860  * config validation and stream initialization details will be handled by
3861  * i915_oa_stream_init(). The code here should only validate config state that
3862  * will be relevant to all stream types / backends.
3863  *
3864  * Returns: zero on success or a negative error code.
3865  */
3866 static int
3867 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3868 			    struct drm_i915_perf_open_param *param,
3869 			    struct perf_open_properties *props,
3870 			    struct drm_file *file)
3871 {
3872 	struct i915_gem_context *specific_ctx = NULL;
3873 	struct i915_perf_stream *stream = NULL;
3874 	unsigned long f_flags = 0;
3875 	bool privileged_op = true;
3876 	int stream_fd;
3877 	int ret;
3878 
3879 	if (props->single_context) {
3880 		u32 ctx_handle = props->ctx_handle;
3881 		struct drm_i915_file_private *file_priv = file->driver_priv;
3882 
3883 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3884 		if (IS_ERR(specific_ctx)) {
3885 			drm_dbg(&perf->i915->drm,
3886 				"Failed to look up context with ID %u for opening perf stream\n",
3887 				  ctx_handle);
3888 			ret = PTR_ERR(specific_ctx);
3889 			goto err;
3890 		}
3891 	}
3892 
3893 	/*
3894 	 * On Haswell the OA unit supports clock gating off for a specific
3895 	 * context and in this mode there's no visibility of metrics for the
3896 	 * rest of the system, which we consider acceptable for a
3897 	 * non-privileged client.
3898 	 *
3899 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3900 	 * specific context and the kernel can't securely stop the counters
3901 	 * from updating as system-wide / global values. Even though we can
3902 	 * filter reports based on the included context ID we can't block
3903 	 * clients from seeing the raw / global counter values via
3904 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3905 	 * enable the OA unit by default.
3906 	 *
3907 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3908 	 * per context basis. So we can relax requirements there if the user
3909 	 * doesn't request global stream access (i.e. query based sampling
3910 	 * using MI_RECORD_PERF_COUNT.
3911 	 */
3912 	if (IS_HASWELL(perf->i915) && specific_ctx)
3913 		privileged_op = false;
3914 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3915 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3916 		privileged_op = false;
3917 
3918 	if (props->hold_preemption) {
3919 		if (!props->single_context) {
3920 			drm_dbg(&perf->i915->drm,
3921 				"preemption disable with no context\n");
3922 			ret = -EINVAL;
3923 			goto err;
3924 		}
3925 		privileged_op = true;
3926 	}
3927 
3928 	/*
3929 	 * Asking for SSEU configuration is a priviliged operation.
3930 	 */
3931 	if (props->has_sseu)
3932 		privileged_op = true;
3933 	else
3934 		get_default_sseu_config(&props->sseu, props->engine);
3935 
3936 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3937 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3938 	 * to determine if it's ok to access system wide OA counters
3939 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3940 	 */
3941 	if (privileged_op &&
3942 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3943 		drm_dbg(&perf->i915->drm,
3944 			"Insufficient privileges to open i915 perf stream\n");
3945 		ret = -EACCES;
3946 		goto err_ctx;
3947 	}
3948 
3949 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3950 	if (!stream) {
3951 		ret = -ENOMEM;
3952 		goto err_ctx;
3953 	}
3954 
3955 	stream->perf = perf;
3956 	stream->ctx = specific_ctx;
3957 	stream->poll_oa_period = props->poll_oa_period;
3958 
3959 	ret = i915_oa_stream_init(stream, param, props);
3960 	if (ret)
3961 		goto err_alloc;
3962 
3963 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3964 	 * to have _stream_init check the combination of sample flags more
3965 	 * thoroughly, but still this is the expected result at this point.
3966 	 */
3967 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3968 		ret = -ENODEV;
3969 		goto err_flags;
3970 	}
3971 
3972 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3973 		f_flags |= O_CLOEXEC;
3974 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3975 		f_flags |= O_NONBLOCK;
3976 
3977 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3978 	if (stream_fd < 0) {
3979 		ret = stream_fd;
3980 		goto err_flags;
3981 	}
3982 
3983 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3984 		i915_perf_enable_locked(stream);
3985 
3986 	/* Take a reference on the driver that will be kept with stream_fd
3987 	 * until its release.
3988 	 */
3989 	drm_dev_get(&perf->i915->drm);
3990 
3991 	return stream_fd;
3992 
3993 err_flags:
3994 	if (stream->ops->destroy)
3995 		stream->ops->destroy(stream);
3996 err_alloc:
3997 	kfree(stream);
3998 err_ctx:
3999 	if (specific_ctx)
4000 		i915_gem_context_put(specific_ctx);
4001 err:
4002 	return ret;
4003 }
4004 
4005 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
4006 {
4007 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
4008 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
4009 
4010 	return div_u64(nom + den - 1, den);
4011 }
4012 
4013 static __always_inline bool
4014 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
4015 {
4016 	return test_bit(format, perf->format_mask);
4017 }
4018 
4019 static __always_inline void
4020 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4021 {
4022 	__set_bit(format, perf->format_mask);
4023 }
4024 
4025 /**
4026  * read_properties_unlocked - validate + copy userspace stream open properties
4027  * @perf: i915 perf instance
4028  * @uprops: The array of u64 key value pairs given by userspace
4029  * @n_props: The number of key value pairs expected in @uprops
4030  * @props: The stream configuration built up while validating properties
4031  *
4032  * Note this function only validates properties in isolation it doesn't
4033  * validate that the combination of properties makes sense or that all
4034  * properties necessary for a particular kind of stream have been set.
4035  *
4036  * Note that there currently aren't any ordering requirements for properties so
4037  * we shouldn't validate or assume anything about ordering here. This doesn't
4038  * rule out defining new properties with ordering requirements in the future.
4039  */
4040 static int read_properties_unlocked(struct i915_perf *perf,
4041 				    u64 __user *uprops,
4042 				    u32 n_props,
4043 				    struct perf_open_properties *props)
4044 {
4045 	struct drm_i915_gem_context_param_sseu user_sseu;
4046 	const struct i915_oa_format *f;
4047 	u64 __user *uprop = uprops;
4048 	bool config_instance = false;
4049 	bool config_class = false;
4050 	bool config_sseu = false;
4051 	u8 class, instance;
4052 	u32 i;
4053 	int ret;
4054 
4055 	memset(props, 0, sizeof(struct perf_open_properties));
4056 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4057 
4058 	/* Considering that ID = 0 is reserved and assuming that we don't
4059 	 * (currently) expect any configurations to ever specify duplicate
4060 	 * values for a particular property ID then the last _PROP_MAX value is
4061 	 * one greater than the maximum number of properties we expect to get
4062 	 * from userspace.
4063 	 */
4064 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4065 		drm_dbg(&perf->i915->drm,
4066 			"Invalid number of i915 perf properties given\n");
4067 		return -EINVAL;
4068 	}
4069 
4070 	/* Defaults when class:instance is not passed */
4071 	class = I915_ENGINE_CLASS_RENDER;
4072 	instance = 0;
4073 
4074 	for (i = 0; i < n_props; i++) {
4075 		u64 oa_period, oa_freq_hz;
4076 		u64 id, value;
4077 
4078 		ret = get_user(id, uprop);
4079 		if (ret)
4080 			return ret;
4081 
4082 		ret = get_user(value, uprop + 1);
4083 		if (ret)
4084 			return ret;
4085 
4086 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4087 			drm_dbg(&perf->i915->drm,
4088 				"Unknown i915 perf property ID\n");
4089 			return -EINVAL;
4090 		}
4091 
4092 		switch ((enum drm_i915_perf_property_id)id) {
4093 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4094 			props->single_context = 1;
4095 			props->ctx_handle = value;
4096 			break;
4097 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4098 			if (value)
4099 				props->sample_flags |= SAMPLE_OA_REPORT;
4100 			break;
4101 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4102 			if (value == 0) {
4103 				drm_dbg(&perf->i915->drm,
4104 					"Unknown OA metric set ID\n");
4105 				return -EINVAL;
4106 			}
4107 			props->metrics_set = value;
4108 			break;
4109 		case DRM_I915_PERF_PROP_OA_FORMAT:
4110 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4111 				drm_dbg(&perf->i915->drm,
4112 					"Out-of-range OA report format %llu\n",
4113 					  value);
4114 				return -EINVAL;
4115 			}
4116 			if (!oa_format_valid(perf, value)) {
4117 				drm_dbg(&perf->i915->drm,
4118 					"Unsupported OA report format %llu\n",
4119 					  value);
4120 				return -EINVAL;
4121 			}
4122 			props->oa_format = value;
4123 			break;
4124 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4125 			if (value > OA_EXPONENT_MAX) {
4126 				drm_dbg(&perf->i915->drm,
4127 					"OA timer exponent too high (> %u)\n",
4128 					 OA_EXPONENT_MAX);
4129 				return -EINVAL;
4130 			}
4131 
4132 			/* Theoretically we can program the OA unit to sample
4133 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4134 			 * for BXT. We don't allow such high sampling
4135 			 * frequencies by default unless root.
4136 			 */
4137 
4138 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4139 			oa_period = oa_exponent_to_ns(perf, value);
4140 
4141 			/* This check is primarily to ensure that oa_period <=
4142 			 * UINT32_MAX (before passing to do_div which only
4143 			 * accepts a u32 denominator), but we can also skip
4144 			 * checking anything < 1Hz which implicitly can't be
4145 			 * limited via an integer oa_max_sample_rate.
4146 			 */
4147 			if (oa_period <= NSEC_PER_SEC) {
4148 				u64 tmp = NSEC_PER_SEC;
4149 				do_div(tmp, oa_period);
4150 				oa_freq_hz = tmp;
4151 			} else
4152 				oa_freq_hz = 0;
4153 
4154 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4155 				drm_dbg(&perf->i915->drm,
4156 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4157 					  i915_oa_max_sample_rate);
4158 				return -EACCES;
4159 			}
4160 
4161 			props->oa_periodic = true;
4162 			props->oa_period_exponent = value;
4163 			break;
4164 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4165 			props->hold_preemption = !!value;
4166 			break;
4167 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4168 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4169 				drm_dbg(&perf->i915->drm,
4170 					"SSEU config not supported on gfx %x\n",
4171 					GRAPHICS_VER_FULL(perf->i915));
4172 				return -ENODEV;
4173 			}
4174 
4175 			if (copy_from_user(&user_sseu,
4176 					   u64_to_user_ptr(value),
4177 					   sizeof(user_sseu))) {
4178 				drm_dbg(&perf->i915->drm,
4179 					"Unable to copy global sseu parameter\n");
4180 				return -EFAULT;
4181 			}
4182 			config_sseu = true;
4183 			break;
4184 		}
4185 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4186 			if (value < 100000 /* 100us */) {
4187 				drm_dbg(&perf->i915->drm,
4188 					"OA availability timer too small (%lluns < 100us)\n",
4189 					  value);
4190 				return -EINVAL;
4191 			}
4192 			props->poll_oa_period = value;
4193 			break;
4194 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4195 			class = (u8)value;
4196 			config_class = true;
4197 			break;
4198 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4199 			instance = (u8)value;
4200 			config_instance = true;
4201 			break;
4202 		default:
4203 			MISSING_CASE(id);
4204 			return -EINVAL;
4205 		}
4206 
4207 		uprop += 2;
4208 	}
4209 
4210 	if ((config_class && !config_instance) ||
4211 	    (config_instance && !config_class)) {
4212 		drm_dbg(&perf->i915->drm,
4213 			"OA engine-class and engine-instance parameters must be passed together\n");
4214 		return -EINVAL;
4215 	}
4216 
4217 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4218 	if (!props->engine) {
4219 		drm_dbg(&perf->i915->drm,
4220 			"OA engine class and instance invalid %d:%d\n",
4221 			class, instance);
4222 		return -EINVAL;
4223 	}
4224 
4225 	if (!engine_supports_oa(props->engine)) {
4226 		drm_dbg(&perf->i915->drm,
4227 			"Engine not supported by OA %d:%d\n",
4228 			class, instance);
4229 		return -EINVAL;
4230 	}
4231 
4232 	/*
4233 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4234 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4235 	 * does not work as expected.
4236 	 */
4237 	if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4238 	    props->engine->oa_group->type == TYPE_OAM &&
4239 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4240 		drm_dbg(&perf->i915->drm,
4241 			"OAM requires media C6 to be disabled in BIOS\n");
4242 		return -EINVAL;
4243 	}
4244 
4245 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4246 	f = &perf->oa_formats[i];
4247 	if (!engine_supports_oa_format(props->engine, f->type)) {
4248 		drm_dbg(&perf->i915->drm,
4249 			"Invalid OA format %d for class %d\n",
4250 			f->type, props->engine->class);
4251 		return -EINVAL;
4252 	}
4253 
4254 	if (config_sseu) {
4255 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4256 		if (ret) {
4257 			drm_dbg(&perf->i915->drm,
4258 				"Invalid SSEU configuration\n");
4259 			return ret;
4260 		}
4261 		props->has_sseu = true;
4262 	}
4263 
4264 	return 0;
4265 }
4266 
4267 /**
4268  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4269  * @dev: drm device
4270  * @data: ioctl data copied from userspace (unvalidated)
4271  * @file: drm file
4272  *
4273  * Validates the stream open parameters given by userspace including flags
4274  * and an array of u64 key, value pair properties.
4275  *
4276  * Very little is assumed up front about the nature of the stream being
4277  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4278  * i915-perf stream is expected to be a suitable interface for other forms of
4279  * buffered data written by the GPU besides periodic OA metrics.
4280  *
4281  * Note we copy the properties from userspace outside of the i915 perf
4282  * mutex to avoid an awkward lockdep with mmap_lock.
4283  *
4284  * Most of the implementation details are handled by
4285  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4286  * mutex for serializing with any non-file-operation driver hooks.
4287  *
4288  * Return: A newly opened i915 Perf stream file descriptor or negative
4289  * error code on failure.
4290  */
4291 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4292 			 struct drm_file *file)
4293 {
4294 	struct i915_perf *perf = &to_i915(dev)->perf;
4295 	struct drm_i915_perf_open_param *param = data;
4296 	struct intel_gt *gt;
4297 	struct perf_open_properties props;
4298 	u32 known_open_flags;
4299 	int ret;
4300 
4301 	if (!perf->i915) {
4302 		drm_dbg(&perf->i915->drm,
4303 			"i915 perf interface not available for this system\n");
4304 		return -ENOTSUPP;
4305 	}
4306 
4307 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4308 			   I915_PERF_FLAG_FD_NONBLOCK |
4309 			   I915_PERF_FLAG_DISABLED;
4310 	if (param->flags & ~known_open_flags) {
4311 		drm_dbg(&perf->i915->drm,
4312 			"Unknown drm_i915_perf_open_param flag\n");
4313 		return -EINVAL;
4314 	}
4315 
4316 	ret = read_properties_unlocked(perf,
4317 				       u64_to_user_ptr(param->properties_ptr),
4318 				       param->num_properties,
4319 				       &props);
4320 	if (ret)
4321 		return ret;
4322 
4323 	gt = props.engine->gt;
4324 
4325 	mutex_lock(&gt->perf.lock);
4326 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4327 	mutex_unlock(&gt->perf.lock);
4328 
4329 	return ret;
4330 }
4331 
4332 /**
4333  * i915_perf_register - exposes i915-perf to userspace
4334  * @i915: i915 device instance
4335  *
4336  * In particular OA metric sets are advertised under a sysfs metrics/
4337  * directory allowing userspace to enumerate valid IDs that can be
4338  * used to open an i915-perf stream.
4339  */
4340 void i915_perf_register(struct drm_i915_private *i915)
4341 {
4342 	struct i915_perf *perf = &i915->perf;
4343 	struct intel_gt *gt = to_gt(i915);
4344 
4345 	if (!perf->i915)
4346 		return;
4347 
4348 	/* To be sure we're synchronized with an attempted
4349 	 * i915_perf_open_ioctl(); considering that we register after
4350 	 * being exposed to userspace.
4351 	 */
4352 	mutex_lock(&gt->perf.lock);
4353 
4354 	perf->metrics_kobj =
4355 		kobject_create_and_add("metrics",
4356 				       &i915->drm.primary->kdev->kobj);
4357 
4358 	mutex_unlock(&gt->perf.lock);
4359 }
4360 
4361 /**
4362  * i915_perf_unregister - hide i915-perf from userspace
4363  * @i915: i915 device instance
4364  *
4365  * i915-perf state cleanup is split up into an 'unregister' and
4366  * 'deinit' phase where the interface is first hidden from
4367  * userspace by i915_perf_unregister() before cleaning up
4368  * remaining state in i915_perf_fini().
4369  */
4370 void i915_perf_unregister(struct drm_i915_private *i915)
4371 {
4372 	struct i915_perf *perf = &i915->perf;
4373 
4374 	if (!perf->metrics_kobj)
4375 		return;
4376 
4377 	kobject_put(perf->metrics_kobj);
4378 	perf->metrics_kobj = NULL;
4379 }
4380 
4381 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4382 {
4383 	static const i915_reg_t flex_eu_regs[] = {
4384 		EU_PERF_CNTL0,
4385 		EU_PERF_CNTL1,
4386 		EU_PERF_CNTL2,
4387 		EU_PERF_CNTL3,
4388 		EU_PERF_CNTL4,
4389 		EU_PERF_CNTL5,
4390 		EU_PERF_CNTL6,
4391 	};
4392 	int i;
4393 
4394 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4395 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4396 			return true;
4397 	}
4398 	return false;
4399 }
4400 
4401 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4402 {
4403 	while (table->start || table->end) {
4404 		if (addr >= table->start && addr <= table->end)
4405 			return true;
4406 
4407 		table++;
4408 	}
4409 
4410 	return false;
4411 }
4412 
4413 #define REG_EQUAL(addr, mmio) \
4414 	((addr) == i915_mmio_reg_offset(mmio))
4415 
4416 static const struct i915_range gen7_oa_b_counters[] = {
4417 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4418 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4419 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4420 	{}
4421 };
4422 
4423 static const struct i915_range gen12_oa_b_counters[] = {
4424 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4425 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4426 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4427 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4428 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4429 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4430 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4431 	{}
4432 };
4433 
4434 static const struct i915_range mtl_oam_b_counters[] = {
4435 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4436 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4437 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4438 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4439 	{}
4440 };
4441 
4442 static const struct i915_range xehp_oa_b_counters[] = {
4443 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4444 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4445 };
4446 
4447 static const struct i915_range gen7_oa_mux_regs[] = {
4448 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4449 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4450 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4451 	{}
4452 };
4453 
4454 static const struct i915_range hsw_oa_mux_regs[] = {
4455 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4456 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4457 	{ .start = 0x25100, .end = 0x2ff90 },
4458 	{}
4459 };
4460 
4461 static const struct i915_range chv_oa_mux_regs[] = {
4462 	{ .start = 0x182300, .end = 0x1823a4 },
4463 	{}
4464 };
4465 
4466 static const struct i915_range gen8_oa_mux_regs[] = {
4467 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4468 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4469 	{}
4470 };
4471 
4472 static const struct i915_range gen11_oa_mux_regs[] = {
4473 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4474 	{}
4475 };
4476 
4477 static const struct i915_range gen12_oa_mux_regs[] = {
4478 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4479 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4480 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4481 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4482 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4483 	{}
4484 };
4485 
4486 /*
4487  * Ref: 14010536224:
4488  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4489  */
4490 static const struct i915_range mtl_oa_mux_regs[] = {
4491 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4492 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4493 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4494 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4495 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4496 	{}
4497 };
4498 
4499 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4500 {
4501 	return reg_in_range_table(addr, gen7_oa_b_counters);
4502 }
4503 
4504 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4505 {
4506 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4507 		reg_in_range_table(addr, gen8_oa_mux_regs);
4508 }
4509 
4510 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4511 {
4512 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4513 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4514 		reg_in_range_table(addr, gen11_oa_mux_regs);
4515 }
4516 
4517 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4518 {
4519 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4520 		reg_in_range_table(addr, hsw_oa_mux_regs);
4521 }
4522 
4523 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4524 {
4525 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4526 		reg_in_range_table(addr, chv_oa_mux_regs);
4527 }
4528 
4529 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4530 {
4531 	return reg_in_range_table(addr, gen12_oa_b_counters);
4532 }
4533 
4534 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4535 {
4536 	if (HAS_OAM(perf->i915) &&
4537 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4538 		return reg_in_range_table(addr, mtl_oam_b_counters);
4539 
4540 	return false;
4541 }
4542 
4543 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4544 {
4545 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4546 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4547 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4548 }
4549 
4550 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4551 {
4552 	if (IS_METEORLAKE(perf->i915))
4553 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4554 	else
4555 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4556 }
4557 
4558 static u32 mask_reg_value(u32 reg, u32 val)
4559 {
4560 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4561 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4562 	 * programmed by userspace doesn't change this.
4563 	 */
4564 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4565 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4566 
4567 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4568 	 * indicated by its name and a bunch of selection fields used by OA
4569 	 * configs.
4570 	 */
4571 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4572 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4573 
4574 	return val;
4575 }
4576 
4577 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4578 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4579 					 u32 __user *regs,
4580 					 u32 n_regs)
4581 {
4582 	struct i915_oa_reg *oa_regs;
4583 	int err;
4584 	u32 i;
4585 
4586 	if (!n_regs)
4587 		return NULL;
4588 
4589 	/* No is_valid function means we're not allowing any register to be programmed. */
4590 	GEM_BUG_ON(!is_valid);
4591 	if (!is_valid)
4592 		return ERR_PTR(-EINVAL);
4593 
4594 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4595 	if (!oa_regs)
4596 		return ERR_PTR(-ENOMEM);
4597 
4598 	for (i = 0; i < n_regs; i++) {
4599 		u32 addr, value;
4600 
4601 		err = get_user(addr, regs);
4602 		if (err)
4603 			goto addr_err;
4604 
4605 		if (!is_valid(perf, addr)) {
4606 			drm_dbg(&perf->i915->drm,
4607 				"Invalid oa_reg address: %X\n", addr);
4608 			err = -EINVAL;
4609 			goto addr_err;
4610 		}
4611 
4612 		err = get_user(value, regs + 1);
4613 		if (err)
4614 			goto addr_err;
4615 
4616 		oa_regs[i].addr = _MMIO(addr);
4617 		oa_regs[i].value = mask_reg_value(addr, value);
4618 
4619 		regs += 2;
4620 	}
4621 
4622 	return oa_regs;
4623 
4624 addr_err:
4625 	kfree(oa_regs);
4626 	return ERR_PTR(err);
4627 }
4628 
4629 static ssize_t show_dynamic_id(struct kobject *kobj,
4630 			       struct kobj_attribute *attr,
4631 			       char *buf)
4632 {
4633 	struct i915_oa_config *oa_config =
4634 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4635 
4636 	return sprintf(buf, "%d\n", oa_config->id);
4637 }
4638 
4639 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4640 					 struct i915_oa_config *oa_config)
4641 {
4642 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4643 	oa_config->sysfs_metric_id.attr.name = "id";
4644 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4645 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4646 	oa_config->sysfs_metric_id.store = NULL;
4647 
4648 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4649 	oa_config->attrs[1] = NULL;
4650 
4651 	oa_config->sysfs_metric.name = oa_config->uuid;
4652 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4653 
4654 	return sysfs_create_group(perf->metrics_kobj,
4655 				  &oa_config->sysfs_metric);
4656 }
4657 
4658 /**
4659  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4660  * @dev: drm device
4661  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4662  *        userspace (unvalidated)
4663  * @file: drm file
4664  *
4665  * Validates the submitted OA register to be saved into a new OA config that
4666  * can then be used for programming the OA unit and its NOA network.
4667  *
4668  * Returns: A new allocated config number to be used with the perf open ioctl
4669  * or a negative error code on failure.
4670  */
4671 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4672 			       struct drm_file *file)
4673 {
4674 	struct i915_perf *perf = &to_i915(dev)->perf;
4675 	struct drm_i915_perf_oa_config *args = data;
4676 	struct i915_oa_config *oa_config, *tmp;
4677 	struct i915_oa_reg *regs;
4678 	int err, id;
4679 
4680 	if (!perf->i915) {
4681 		drm_dbg(&perf->i915->drm,
4682 			"i915 perf interface not available for this system\n");
4683 		return -ENOTSUPP;
4684 	}
4685 
4686 	if (!perf->metrics_kobj) {
4687 		drm_dbg(&perf->i915->drm,
4688 			"OA metrics weren't advertised via sysfs\n");
4689 		return -EINVAL;
4690 	}
4691 
4692 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4693 		drm_dbg(&perf->i915->drm,
4694 			"Insufficient privileges to add i915 OA config\n");
4695 		return -EACCES;
4696 	}
4697 
4698 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4699 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4700 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4701 		drm_dbg(&perf->i915->drm,
4702 			"No OA registers given\n");
4703 		return -EINVAL;
4704 	}
4705 
4706 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4707 	if (!oa_config) {
4708 		drm_dbg(&perf->i915->drm,
4709 			"Failed to allocate memory for the OA config\n");
4710 		return -ENOMEM;
4711 	}
4712 
4713 	oa_config->perf = perf;
4714 	kref_init(&oa_config->ref);
4715 
4716 	if (!uuid_is_valid(args->uuid)) {
4717 		drm_dbg(&perf->i915->drm,
4718 			"Invalid uuid format for OA config\n");
4719 		err = -EINVAL;
4720 		goto reg_err;
4721 	}
4722 
4723 	/* Last character in oa_config->uuid will be 0 because oa_config is
4724 	 * kzalloc.
4725 	 */
4726 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4727 
4728 	oa_config->mux_regs_len = args->n_mux_regs;
4729 	regs = alloc_oa_regs(perf,
4730 			     perf->ops.is_valid_mux_reg,
4731 			     u64_to_user_ptr(args->mux_regs_ptr),
4732 			     args->n_mux_regs);
4733 
4734 	if (IS_ERR(regs)) {
4735 		drm_dbg(&perf->i915->drm,
4736 			"Failed to create OA config for mux_regs\n");
4737 		err = PTR_ERR(regs);
4738 		goto reg_err;
4739 	}
4740 	oa_config->mux_regs = regs;
4741 
4742 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4743 	regs = alloc_oa_regs(perf,
4744 			     perf->ops.is_valid_b_counter_reg,
4745 			     u64_to_user_ptr(args->boolean_regs_ptr),
4746 			     args->n_boolean_regs);
4747 
4748 	if (IS_ERR(regs)) {
4749 		drm_dbg(&perf->i915->drm,
4750 			"Failed to create OA config for b_counter_regs\n");
4751 		err = PTR_ERR(regs);
4752 		goto reg_err;
4753 	}
4754 	oa_config->b_counter_regs = regs;
4755 
4756 	if (GRAPHICS_VER(perf->i915) < 8) {
4757 		if (args->n_flex_regs != 0) {
4758 			err = -EINVAL;
4759 			goto reg_err;
4760 		}
4761 	} else {
4762 		oa_config->flex_regs_len = args->n_flex_regs;
4763 		regs = alloc_oa_regs(perf,
4764 				     perf->ops.is_valid_flex_reg,
4765 				     u64_to_user_ptr(args->flex_regs_ptr),
4766 				     args->n_flex_regs);
4767 
4768 		if (IS_ERR(regs)) {
4769 			drm_dbg(&perf->i915->drm,
4770 				"Failed to create OA config for flex_regs\n");
4771 			err = PTR_ERR(regs);
4772 			goto reg_err;
4773 		}
4774 		oa_config->flex_regs = regs;
4775 	}
4776 
4777 	err = mutex_lock_interruptible(&perf->metrics_lock);
4778 	if (err)
4779 		goto reg_err;
4780 
4781 	/* We shouldn't have too many configs, so this iteration shouldn't be
4782 	 * too costly.
4783 	 */
4784 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4785 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4786 			drm_dbg(&perf->i915->drm,
4787 				"OA config already exists with this uuid\n");
4788 			err = -EADDRINUSE;
4789 			goto sysfs_err;
4790 		}
4791 	}
4792 
4793 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4794 	if (err) {
4795 		drm_dbg(&perf->i915->drm,
4796 			"Failed to create sysfs entry for OA config\n");
4797 		goto sysfs_err;
4798 	}
4799 
4800 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4801 	oa_config->id = idr_alloc(&perf->metrics_idr,
4802 				  oa_config, 2,
4803 				  0, GFP_KERNEL);
4804 	if (oa_config->id < 0) {
4805 		drm_dbg(&perf->i915->drm,
4806 			"Failed to create sysfs entry for OA config\n");
4807 		err = oa_config->id;
4808 		goto sysfs_err;
4809 	}
4810 	id = oa_config->id;
4811 
4812 	drm_dbg(&perf->i915->drm,
4813 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4814 	mutex_unlock(&perf->metrics_lock);
4815 
4816 	return id;
4817 
4818 sysfs_err:
4819 	mutex_unlock(&perf->metrics_lock);
4820 reg_err:
4821 	i915_oa_config_put(oa_config);
4822 	drm_dbg(&perf->i915->drm,
4823 		"Failed to add new OA config\n");
4824 	return err;
4825 }
4826 
4827 /**
4828  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4829  * @dev: drm device
4830  * @data: ioctl data (pointer to u64 integer) copied from userspace
4831  * @file: drm file
4832  *
4833  * Configs can be removed while being used, the will stop appearing in sysfs
4834  * and their content will be freed when the stream using the config is closed.
4835  *
4836  * Returns: 0 on success or a negative error code on failure.
4837  */
4838 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4839 				  struct drm_file *file)
4840 {
4841 	struct i915_perf *perf = &to_i915(dev)->perf;
4842 	u64 *arg = data;
4843 	struct i915_oa_config *oa_config;
4844 	int ret;
4845 
4846 	if (!perf->i915) {
4847 		drm_dbg(&perf->i915->drm,
4848 			"i915 perf interface not available for this system\n");
4849 		return -ENOTSUPP;
4850 	}
4851 
4852 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4853 		drm_dbg(&perf->i915->drm,
4854 			"Insufficient privileges to remove i915 OA config\n");
4855 		return -EACCES;
4856 	}
4857 
4858 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4859 	if (ret)
4860 		return ret;
4861 
4862 	oa_config = idr_find(&perf->metrics_idr, *arg);
4863 	if (!oa_config) {
4864 		drm_dbg(&perf->i915->drm,
4865 			"Failed to remove unknown OA config\n");
4866 		ret = -ENOENT;
4867 		goto err_unlock;
4868 	}
4869 
4870 	GEM_BUG_ON(*arg != oa_config->id);
4871 
4872 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4873 
4874 	idr_remove(&perf->metrics_idr, *arg);
4875 
4876 	mutex_unlock(&perf->metrics_lock);
4877 
4878 	drm_dbg(&perf->i915->drm,
4879 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4880 
4881 	i915_oa_config_put(oa_config);
4882 
4883 	return 0;
4884 
4885 err_unlock:
4886 	mutex_unlock(&perf->metrics_lock);
4887 	return ret;
4888 }
4889 
4890 static struct ctl_table oa_table[] = {
4891 	{
4892 	 .procname = "perf_stream_paranoid",
4893 	 .data = &i915_perf_stream_paranoid,
4894 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4895 	 .mode = 0644,
4896 	 .proc_handler = proc_dointvec_minmax,
4897 	 .extra1 = SYSCTL_ZERO,
4898 	 .extra2 = SYSCTL_ONE,
4899 	 },
4900 	{
4901 	 .procname = "oa_max_sample_rate",
4902 	 .data = &i915_oa_max_sample_rate,
4903 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4904 	 .mode = 0644,
4905 	 .proc_handler = proc_dointvec_minmax,
4906 	 .extra1 = SYSCTL_ZERO,
4907 	 .extra2 = &oa_sample_rate_hard_limit,
4908 	 },
4909 	{}
4910 };
4911 
4912 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4913 {
4914 	return 1;
4915 }
4916 
4917 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4918 {
4919 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4920 		/*
4921 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4922 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4923 		 */
4924 		drm_WARN_ON(&engine->i915->drm,
4925 			    engine->gt->type != GT_MEDIA);
4926 
4927 		return PERF_GROUP_OAM_SAMEDIA_0;
4928 	}
4929 
4930 	return PERF_GROUP_INVALID;
4931 }
4932 
4933 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4934 {
4935 	switch (engine->class) {
4936 	case RENDER_CLASS:
4937 		return PERF_GROUP_OAG;
4938 
4939 	case VIDEO_DECODE_CLASS:
4940 	case VIDEO_ENHANCEMENT_CLASS:
4941 		return __oam_engine_group(engine);
4942 
4943 	default:
4944 		return PERF_GROUP_INVALID;
4945 	}
4946 }
4947 
4948 static struct i915_perf_regs __oam_regs(u32 base)
4949 {
4950 	return (struct i915_perf_regs) {
4951 		base,
4952 		GEN12_OAM_HEAD_POINTER(base),
4953 		GEN12_OAM_TAIL_POINTER(base),
4954 		GEN12_OAM_BUFFER(base),
4955 		GEN12_OAM_CONTEXT_CONTROL(base),
4956 		GEN12_OAM_CONTROL(base),
4957 		GEN12_OAM_DEBUG(base),
4958 		GEN12_OAM_STATUS(base),
4959 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4960 	};
4961 }
4962 
4963 static struct i915_perf_regs __oag_regs(void)
4964 {
4965 	return (struct i915_perf_regs) {
4966 		0,
4967 		GEN12_OAG_OAHEADPTR,
4968 		GEN12_OAG_OATAILPTR,
4969 		GEN12_OAG_OABUFFER,
4970 		GEN12_OAG_OAGLBCTXCTRL,
4971 		GEN12_OAG_OACONTROL,
4972 		GEN12_OAG_OA_DEBUG,
4973 		GEN12_OAG_OASTATUS,
4974 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4975 	};
4976 }
4977 
4978 static void oa_init_groups(struct intel_gt *gt)
4979 {
4980 	int i, num_groups = gt->perf.num_perf_groups;
4981 
4982 	for (i = 0; i < num_groups; i++) {
4983 		struct i915_perf_group *g = &gt->perf.group[i];
4984 
4985 		/* Fused off engines can result in a group with num_engines == 0 */
4986 		if (g->num_engines == 0)
4987 			continue;
4988 
4989 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4990 			g->regs = __oag_regs();
4991 			g->type = TYPE_OAG;
4992 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4993 			g->regs = __oam_regs(mtl_oa_base[i]);
4994 			g->type = TYPE_OAM;
4995 		}
4996 	}
4997 }
4998 
4999 static int oa_init_gt(struct intel_gt *gt)
5000 {
5001 	u32 num_groups = num_perf_groups_per_gt(gt);
5002 	struct intel_engine_cs *engine;
5003 	struct i915_perf_group *g;
5004 	intel_engine_mask_t tmp;
5005 
5006 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
5007 	if (!g)
5008 		return -ENOMEM;
5009 
5010 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
5011 		u32 index = __oa_engine_group(engine);
5012 
5013 		engine->oa_group = NULL;
5014 		if (index < num_groups) {
5015 			g[index].num_engines++;
5016 			engine->oa_group = &g[index];
5017 		}
5018 	}
5019 
5020 	gt->perf.num_perf_groups = num_groups;
5021 	gt->perf.group = g;
5022 
5023 	oa_init_groups(gt);
5024 
5025 	return 0;
5026 }
5027 
5028 static int oa_init_engine_groups(struct i915_perf *perf)
5029 {
5030 	struct intel_gt *gt;
5031 	int i, ret;
5032 
5033 	for_each_gt(gt, perf->i915, i) {
5034 		ret = oa_init_gt(gt);
5035 		if (ret)
5036 			return ret;
5037 	}
5038 
5039 	return 0;
5040 }
5041 
5042 static void oa_init_supported_formats(struct i915_perf *perf)
5043 {
5044 	struct drm_i915_private *i915 = perf->i915;
5045 	enum intel_platform platform = INTEL_INFO(i915)->platform;
5046 
5047 	switch (platform) {
5048 	case INTEL_HASWELL:
5049 		oa_format_add(perf, I915_OA_FORMAT_A13);
5050 		oa_format_add(perf, I915_OA_FORMAT_A13);
5051 		oa_format_add(perf, I915_OA_FORMAT_A29);
5052 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5053 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5054 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5055 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5056 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5057 		break;
5058 
5059 	case INTEL_BROADWELL:
5060 	case INTEL_CHERRYVIEW:
5061 	case INTEL_SKYLAKE:
5062 	case INTEL_BROXTON:
5063 	case INTEL_KABYLAKE:
5064 	case INTEL_GEMINILAKE:
5065 	case INTEL_COFFEELAKE:
5066 	case INTEL_COMETLAKE:
5067 	case INTEL_ICELAKE:
5068 	case INTEL_ELKHARTLAKE:
5069 	case INTEL_JASPERLAKE:
5070 	case INTEL_TIGERLAKE:
5071 	case INTEL_ROCKETLAKE:
5072 	case INTEL_DG1:
5073 	case INTEL_ALDERLAKE_S:
5074 	case INTEL_ALDERLAKE_P:
5075 		oa_format_add(perf, I915_OA_FORMAT_A12);
5076 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5077 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5078 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5079 		break;
5080 
5081 	case INTEL_DG2:
5082 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5083 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5084 		break;
5085 
5086 	case INTEL_METEORLAKE:
5087 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5088 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5089 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5090 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5091 		break;
5092 
5093 	default:
5094 		MISSING_CASE(platform);
5095 	}
5096 }
5097 
5098 static void i915_perf_init_info(struct drm_i915_private *i915)
5099 {
5100 	struct i915_perf *perf = &i915->perf;
5101 
5102 	switch (GRAPHICS_VER(i915)) {
5103 	case 8:
5104 		perf->ctx_oactxctrl_offset = 0x120;
5105 		perf->ctx_flexeu0_offset = 0x2ce;
5106 		perf->gen8_valid_ctx_bit = BIT(25);
5107 		break;
5108 	case 9:
5109 		perf->ctx_oactxctrl_offset = 0x128;
5110 		perf->ctx_flexeu0_offset = 0x3de;
5111 		perf->gen8_valid_ctx_bit = BIT(16);
5112 		break;
5113 	case 11:
5114 		perf->ctx_oactxctrl_offset = 0x124;
5115 		perf->ctx_flexeu0_offset = 0x78e;
5116 		perf->gen8_valid_ctx_bit = BIT(16);
5117 		break;
5118 	case 12:
5119 		/*
5120 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5121 		 * cache the value in perf->ctx_oactxctrl_offset.
5122 		 */
5123 		break;
5124 	default:
5125 		MISSING_CASE(GRAPHICS_VER(i915));
5126 	}
5127 }
5128 
5129 /**
5130  * i915_perf_init - initialize i915-perf state on module bind
5131  * @i915: i915 device instance
5132  *
5133  * Initializes i915-perf state without exposing anything to userspace.
5134  *
5135  * Note: i915-perf initialization is split into an 'init' and 'register'
5136  * phase with the i915_perf_register() exposing state to userspace.
5137  */
5138 int i915_perf_init(struct drm_i915_private *i915)
5139 {
5140 	struct i915_perf *perf = &i915->perf;
5141 
5142 	perf->oa_formats = oa_formats;
5143 	if (IS_HASWELL(i915)) {
5144 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5145 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5146 		perf->ops.is_valid_flex_reg = NULL;
5147 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5148 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5149 		perf->ops.oa_enable = gen7_oa_enable;
5150 		perf->ops.oa_disable = gen7_oa_disable;
5151 		perf->ops.read = gen7_oa_read;
5152 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5153 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5154 		/* Note: that although we could theoretically also support the
5155 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5156 		 * this driver, before upstreaming did this) it didn't seem
5157 		 * worth the complexity to maintain now that BDW+ enable
5158 		 * execlist mode by default.
5159 		 */
5160 		perf->ops.read = gen8_oa_read;
5161 		i915_perf_init_info(i915);
5162 
5163 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5164 			perf->ops.is_valid_b_counter_reg =
5165 				gen7_is_valid_b_counter_addr;
5166 			perf->ops.is_valid_mux_reg =
5167 				gen8_is_valid_mux_addr;
5168 			perf->ops.is_valid_flex_reg =
5169 				gen8_is_valid_flex_addr;
5170 
5171 			if (IS_CHERRYVIEW(i915)) {
5172 				perf->ops.is_valid_mux_reg =
5173 					chv_is_valid_mux_addr;
5174 			}
5175 
5176 			perf->ops.oa_enable = gen8_oa_enable;
5177 			perf->ops.oa_disable = gen8_oa_disable;
5178 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5179 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5180 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5181 		} else if (GRAPHICS_VER(i915) == 11) {
5182 			perf->ops.is_valid_b_counter_reg =
5183 				gen7_is_valid_b_counter_addr;
5184 			perf->ops.is_valid_mux_reg =
5185 				gen11_is_valid_mux_addr;
5186 			perf->ops.is_valid_flex_reg =
5187 				gen8_is_valid_flex_addr;
5188 
5189 			perf->ops.oa_enable = gen8_oa_enable;
5190 			perf->ops.oa_disable = gen8_oa_disable;
5191 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5192 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5193 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5194 		} else if (GRAPHICS_VER(i915) == 12) {
5195 			perf->ops.is_valid_b_counter_reg =
5196 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5197 				xehp_is_valid_b_counter_addr :
5198 				gen12_is_valid_b_counter_addr;
5199 			perf->ops.is_valid_mux_reg =
5200 				gen12_is_valid_mux_addr;
5201 			perf->ops.is_valid_flex_reg =
5202 				gen8_is_valid_flex_addr;
5203 
5204 			perf->ops.oa_enable = gen12_oa_enable;
5205 			perf->ops.oa_disable = gen12_oa_disable;
5206 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5207 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5208 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5209 		}
5210 	}
5211 
5212 	if (perf->ops.enable_metric_set) {
5213 		struct intel_gt *gt;
5214 		int i, ret;
5215 
5216 		for_each_gt(gt, i915, i)
5217 			mutex_init(&gt->perf.lock);
5218 
5219 		/* Choose a representative limit */
5220 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5221 
5222 		mutex_init(&perf->metrics_lock);
5223 		idr_init_base(&perf->metrics_idr, 1);
5224 
5225 		/* We set up some ratelimit state to potentially throttle any
5226 		 * _NOTES about spurious, invalid OA reports which we don't
5227 		 * forward to userspace.
5228 		 *
5229 		 * We print a _NOTE about any throttling when closing the
5230 		 * stream instead of waiting until driver _fini which no one
5231 		 * would ever see.
5232 		 *
5233 		 * Using the same limiting factors as printk_ratelimit()
5234 		 */
5235 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5236 		/* Since we use a DRM_NOTE for spurious reports it would be
5237 		 * inconsistent to let __ratelimit() automatically print a
5238 		 * warning for throttling.
5239 		 */
5240 		ratelimit_set_flags(&perf->spurious_report_rs,
5241 				    RATELIMIT_MSG_ON_RELEASE);
5242 
5243 		ratelimit_state_init(&perf->tail_pointer_race,
5244 				     5 * HZ, 10);
5245 		ratelimit_set_flags(&perf->tail_pointer_race,
5246 				    RATELIMIT_MSG_ON_RELEASE);
5247 
5248 		atomic64_set(&perf->noa_programming_delay,
5249 			     500 * 1000 /* 500us */);
5250 
5251 		perf->i915 = i915;
5252 
5253 		ret = oa_init_engine_groups(perf);
5254 		if (ret) {
5255 			drm_err(&i915->drm,
5256 				"OA initialization failed %d\n", ret);
5257 			return ret;
5258 		}
5259 
5260 		oa_init_supported_formats(perf);
5261 	}
5262 
5263 	return 0;
5264 }
5265 
5266 static int destroy_config(int id, void *p, void *data)
5267 {
5268 	i915_oa_config_put(p);
5269 	return 0;
5270 }
5271 
5272 int i915_perf_sysctl_register(void)
5273 {
5274 	sysctl_header = register_sysctl("dev/i915", oa_table);
5275 	return 0;
5276 }
5277 
5278 void i915_perf_sysctl_unregister(void)
5279 {
5280 	unregister_sysctl_table(sysctl_header);
5281 }
5282 
5283 /**
5284  * i915_perf_fini - Counter part to i915_perf_init()
5285  * @i915: i915 device instance
5286  */
5287 void i915_perf_fini(struct drm_i915_private *i915)
5288 {
5289 	struct i915_perf *perf = &i915->perf;
5290 	struct intel_gt *gt;
5291 	int i;
5292 
5293 	if (!perf->i915)
5294 		return;
5295 
5296 	for_each_gt(gt, perf->i915, i)
5297 		kfree(gt->perf.group);
5298 
5299 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5300 	idr_destroy(&perf->metrics_idr);
5301 
5302 	memset(&perf->ops, 0, sizeof(perf->ops));
5303 	perf->i915 = NULL;
5304 }
5305 
5306 /**
5307  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5308  *
5309  * This version number is used by userspace to detect available features.
5310  */
5311 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5312 {
5313 	/*
5314 	 * 1: Initial version
5315 	 *   I915_PERF_IOCTL_ENABLE
5316 	 *   I915_PERF_IOCTL_DISABLE
5317 	 *
5318 	 * 2: Added runtime modification of OA config.
5319 	 *   I915_PERF_IOCTL_CONFIG
5320 	 *
5321 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5322 	 *    preemption on a particular context so that performance data is
5323 	 *    accessible from a delta of MI_RPC reports without looking at the
5324 	 *    OA buffer.
5325 	 *
5326 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5327 	 *    be run for the duration of the performance recording based on
5328 	 *    their SSEU configuration.
5329 	 *
5330 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5331 	 *    interval for the hrtimer used to check for OA data.
5332 	 *
5333 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5334 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5335 	 *
5336 	 * 7: Add support for video decode and enhancement classes.
5337 	 */
5338 
5339 	/*
5340 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5341 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5342 	 * to indicate that OA media is not supported.
5343 	 */
5344 	if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5345 		struct intel_gt *gt;
5346 		int i;
5347 
5348 		for_each_gt(gt, i915, i) {
5349 			if (gt->type == GT_MEDIA &&
5350 			    intel_check_bios_c6_setup(&gt->rc6))
5351 				return 6;
5352 		}
5353 	}
5354 
5355 	return 7;
5356 }
5357 
5358 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5359 #include "selftests/i915_perf.c"
5360 #endif
5361