1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 #include "oa/i915_oa_hsw.h" 208 #include "oa/i915_oa_bdw.h" 209 #include "oa/i915_oa_chv.h" 210 #include "oa/i915_oa_sklgt2.h" 211 #include "oa/i915_oa_sklgt3.h" 212 #include "oa/i915_oa_sklgt4.h" 213 #include "oa/i915_oa_bxt.h" 214 #include "oa/i915_oa_kblgt2.h" 215 #include "oa/i915_oa_kblgt3.h" 216 #include "oa/i915_oa_glk.h" 217 #include "oa/i915_oa_cflgt2.h" 218 #include "oa/i915_oa_cflgt3.h" 219 #include "oa/i915_oa_cnl.h" 220 #include "oa/i915_oa_icl.h" 221 #include "oa/i915_oa_tgl.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 242 * read() attempts. 243 * 244 * In effect we define a tail pointer for reading that lags the real tail 245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 246 * time for the corresponding reports to become visible to the CPU. 247 * 248 * To manage this we actually track two tail pointers: 249 * 1) An 'aging' tail with an associated timestamp that is tracked until we 250 * can trust the corresponding data is visible to the CPU; at which point 251 * it is considered 'aged'. 252 * 2) An 'aged' tail that can be used for read()ing. 253 * 254 * The two separate pointers let us decouple read()s from tail pointer aging. 255 * 256 * The tail pointers are checked and updated at a limited rate within a hrtimer 257 * callback (the same callback that is used for delivering EPOLLIN events) 258 * 259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 260 * indicates that an updated tail pointer is needed. 261 * 262 * Most of the implementation details for this workaround are in 263 * oa_buffer_check_unlocked() and _append_oa_reports() 264 * 265 * Note for posterity: previously the driver used to define an effective tail 266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 268 * This was flawed considering that the OA unit may also automatically generate 269 * non-periodic reports (such as on context switch) or the OA unit may be 270 * enabled without any periodic sampling. 271 */ 272 #define OA_TAIL_MARGIN_NSEC 100000ULL 273 #define INVALID_TAIL_PTR 0xffffffff 274 275 /* frequency for checking whether the OA unit has written new reports to the 276 * circular OA buffer... 277 */ 278 #define POLL_FREQUENCY 200 279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 280 281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 282 static u32 i915_perf_stream_paranoid = true; 283 284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 285 * of the 64bit timestamp bits to trigger reports from) but there's currently 286 * no known use case for sampling as infrequently as once per 47 thousand years. 287 * 288 * Since the timestamps included in OA reports are only 32bits it seems 289 * reasonable to limit the OA exponent where it's still possible to account for 290 * overflow in OA report timestamps. 291 */ 292 #define OA_EXPONENT_MAX 31 293 294 #define INVALID_CTX_ID 0xffffffff 295 296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 297 #define OAREPORT_REASON_MASK 0x3f 298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 299 #define OAREPORT_REASON_SHIFT 19 300 #define OAREPORT_REASON_TIMER (1<<0) 301 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 302 #define OAREPORT_REASON_CLK_RATIO (1<<5) 303 304 305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 306 * 307 * The highest sampling frequency we can theoretically program the OA unit 308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 309 * 310 * Initialized just before we register the sysctl parameter. 311 */ 312 static int oa_sample_rate_hard_limit; 313 314 /* Theoretically we can program the OA unit to sample every 160ns but don't 315 * allow that by default unless root... 316 * 317 * The default threshold of 100000Hz is based on perf's similar 318 * kernel.perf_event_max_sample_rate sysctl parameter. 319 */ 320 static u32 i915_oa_max_sample_rate = 100000; 321 322 /* XXX: beware if future OA HW adds new report formats that the current 323 * code assumes all reports have a power-of-two size and ~(size - 1) can 324 * be used as a mask to align the OA tail pointer. 325 */ 326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A13] = { 0, 64 }, 328 [I915_OA_FORMAT_A29] = { 1, 128 }, 329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 331 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 338 [I915_OA_FORMAT_A12] = { 0, 64 }, 339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 341 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 342 }; 343 344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 346 }; 347 348 #define SAMPLE_OA_REPORT (1<<0) 349 350 /** 351 * struct perf_open_properties - for validated properties given to open a stream 352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 353 * @single_context: Whether a single or all gpu contexts should be monitored 354 * @hold_preemption: Whether the preemption is disabled for the filtered 355 * context 356 * @ctx_handle: A gem ctx handle for use with @single_context 357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 358 * @oa_format: An OA unit HW report format 359 * @oa_periodic: Whether to enable periodic OA unit sampling 360 * @oa_period_exponent: The OA unit sampling period is derived from this 361 * @engine: The engine (typically rcs0) being monitored by the OA unit 362 * 363 * As read_properties_unlocked() enumerates and validates the properties given 364 * to open a stream of metrics the configuration is built up in the structure 365 * which starts out zero initialized. 366 */ 367 struct perf_open_properties { 368 u32 sample_flags; 369 370 u64 single_context:1; 371 u64 hold_preemption:1; 372 u64 ctx_handle; 373 374 /* OA sampling state */ 375 int metrics_set; 376 int oa_format; 377 bool oa_periodic; 378 int oa_period_exponent; 379 380 struct intel_engine_cs *engine; 381 }; 382 383 struct i915_oa_config_bo { 384 struct llist_node node; 385 386 struct i915_oa_config *oa_config; 387 struct i915_vma *vma; 388 }; 389 390 static struct ctl_table_header *sysctl_header; 391 392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 393 394 void i915_oa_config_release(struct kref *ref) 395 { 396 struct i915_oa_config *oa_config = 397 container_of(ref, typeof(*oa_config), ref); 398 399 kfree(oa_config->flex_regs); 400 kfree(oa_config->b_counter_regs); 401 kfree(oa_config->mux_regs); 402 403 kfree_rcu(oa_config, rcu); 404 } 405 406 struct i915_oa_config * 407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 408 { 409 struct i915_oa_config *oa_config; 410 411 rcu_read_lock(); 412 if (metrics_set == 1) 413 oa_config = &perf->test_config; 414 else 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 435 GEN12_OAG_OATAILPTR_MASK; 436 } 437 438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 439 { 440 struct intel_uncore *uncore = stream->uncore; 441 442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 443 } 444 445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 446 { 447 struct intel_uncore *uncore = stream->uncore; 448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 449 450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 451 } 452 453 /** 454 * oa_buffer_check_unlocked - check for data and update tail ptr state 455 * @stream: i915 stream instance 456 * 457 * This is either called via fops (for blocking reads in user ctx) or the poll 458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 459 * if there is data available for userspace to read. 460 * 461 * This function is central to providing a workaround for the OA unit tail 462 * pointer having a race with respect to what data is visible to the CPU. 463 * It is responsible for reading tail pointers from the hardware and giving 464 * the pointers time to 'age' before they are made available for reading. 465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 466 * 467 * Besides returning true when there is data available to read() this function 468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 469 * and .aged_tail_idx state used for reading. 470 * 471 * Note: It's safe to read OA config state here unlocked, assuming that this is 472 * only called while the stream is enabled, while the global OA configuration 473 * can't be modified. 474 * 475 * Returns: %true if the OA buffer contains data, else %false 476 */ 477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 478 { 479 int report_size = stream->oa_buffer.format_size; 480 unsigned long flags; 481 unsigned int aged_idx; 482 u32 head, hw_tail, aged_tail, aging_tail; 483 u64 now; 484 485 /* We have to consider the (unlikely) possibility that read() errors 486 * could result in an OA buffer reset which might reset the head, 487 * tails[] and aged_tail state. 488 */ 489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 490 491 /* NB: The head we observe here might effectively be a little out of 492 * date (between head and tails[aged_idx].offset if there is currently 493 * a read() in progress. 494 */ 495 head = stream->oa_buffer.head; 496 497 aged_idx = stream->oa_buffer.aged_tail_idx; 498 aged_tail = stream->oa_buffer.tails[aged_idx].offset; 499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset; 500 501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 502 503 /* The tail pointer increases in 64 byte increments, 504 * not in report_size steps... 505 */ 506 hw_tail &= ~(report_size - 1); 507 508 now = ktime_get_mono_fast_ns(); 509 510 /* Update the aged tail 511 * 512 * Flip the tail pointer available for read()s once the aging tail is 513 * old enough to trust that the corresponding data will be visible to 514 * the CPU... 515 * 516 * Do this before updating the aging pointer in case we may be able to 517 * immediately start aging a new pointer too (if new data has become 518 * available) without needing to wait for a later hrtimer callback. 519 */ 520 if (aging_tail != INVALID_TAIL_PTR && 521 ((now - stream->oa_buffer.aging_timestamp) > 522 OA_TAIL_MARGIN_NSEC)) { 523 524 aged_idx ^= 1; 525 stream->oa_buffer.aged_tail_idx = aged_idx; 526 527 aged_tail = aging_tail; 528 529 /* Mark that we need a new pointer to start aging... */ 530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 531 aging_tail = INVALID_TAIL_PTR; 532 } 533 534 /* Update the aging tail 535 * 536 * We throttle aging tail updates until we have a new tail that 537 * represents >= one report more data than is already available for 538 * reading. This ensures there will be enough data for a successful 539 * read once this new pointer has aged and ensures we will give the new 540 * pointer time to age. 541 */ 542 if (aging_tail == INVALID_TAIL_PTR && 543 (aged_tail == INVALID_TAIL_PTR || 544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 545 struct i915_vma *vma = stream->oa_buffer.vma; 546 u32 gtt_offset = i915_ggtt_offset(vma); 547 548 /* Be paranoid and do a bounds check on the pointer read back 549 * from hardware, just in case some spurious hardware condition 550 * could put the tail out of bounds... 551 */ 552 if (hw_tail >= gtt_offset && 553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 554 stream->oa_buffer.tails[!aged_idx].offset = 555 aging_tail = hw_tail; 556 stream->oa_buffer.aging_timestamp = now; 557 } else { 558 drm_err(&stream->perf->i915->drm, 559 "Ignoring spurious out of range OA buffer tail pointer = %x\n", 560 hw_tail); 561 } 562 } 563 564 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 565 566 return aged_tail == INVALID_TAIL_PTR ? 567 false : OA_TAKEN(aged_tail, head) >= report_size; 568 } 569 570 /** 571 * append_oa_status - Appends a status record to a userspace read() buffer. 572 * @stream: An i915-perf stream opened for OA metrics 573 * @buf: destination buffer given by userspace 574 * @count: the number of bytes userspace wants to read 575 * @offset: (inout): the current position for writing into @buf 576 * @type: The kind of status to report to userspace 577 * 578 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 579 * into the userspace read() buffer. 580 * 581 * The @buf @offset will only be updated on success. 582 * 583 * Returns: 0 on success, negative error code on failure. 584 */ 585 static int append_oa_status(struct i915_perf_stream *stream, 586 char __user *buf, 587 size_t count, 588 size_t *offset, 589 enum drm_i915_perf_record_type type) 590 { 591 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 592 593 if ((count - *offset) < header.size) 594 return -ENOSPC; 595 596 if (copy_to_user(buf + *offset, &header, sizeof(header))) 597 return -EFAULT; 598 599 (*offset) += header.size; 600 601 return 0; 602 } 603 604 /** 605 * append_oa_sample - Copies single OA report into userspace read() buffer. 606 * @stream: An i915-perf stream opened for OA metrics 607 * @buf: destination buffer given by userspace 608 * @count: the number of bytes userspace wants to read 609 * @offset: (inout): the current position for writing into @buf 610 * @report: A single OA report to (optionally) include as part of the sample 611 * 612 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 613 * properties when opening a stream, tracked as `stream->sample_flags`. This 614 * function copies the requested components of a single sample to the given 615 * read() @buf. 616 * 617 * The @buf @offset will only be updated on success. 618 * 619 * Returns: 0 on success, negative error code on failure. 620 */ 621 static int append_oa_sample(struct i915_perf_stream *stream, 622 char __user *buf, 623 size_t count, 624 size_t *offset, 625 const u8 *report) 626 { 627 int report_size = stream->oa_buffer.format_size; 628 struct drm_i915_perf_record_header header; 629 u32 sample_flags = stream->sample_flags; 630 631 header.type = DRM_I915_PERF_RECORD_SAMPLE; 632 header.pad = 0; 633 header.size = stream->sample_size; 634 635 if ((count - *offset) < header.size) 636 return -ENOSPC; 637 638 buf += *offset; 639 if (copy_to_user(buf, &header, sizeof(header))) 640 return -EFAULT; 641 buf += sizeof(header); 642 643 if (sample_flags & SAMPLE_OA_REPORT) { 644 if (copy_to_user(buf, report, report_size)) 645 return -EFAULT; 646 } 647 648 (*offset) += header.size; 649 650 return 0; 651 } 652 653 /** 654 * Copies all buffered OA reports into userspace read() buffer. 655 * @stream: An i915-perf stream opened for OA metrics 656 * @buf: destination buffer given by userspace 657 * @count: the number of bytes userspace wants to read 658 * @offset: (inout): the current position for writing into @buf 659 * 660 * Notably any error condition resulting in a short read (-%ENOSPC or 661 * -%EFAULT) will be returned even though one or more records may 662 * have been successfully copied. In this case it's up to the caller 663 * to decide if the error should be squashed before returning to 664 * userspace. 665 * 666 * Note: reports are consumed from the head, and appended to the 667 * tail, so the tail chases the head?... If you think that's mad 668 * and back-to-front you're not alone, but this follows the 669 * Gen PRM naming convention. 670 * 671 * Returns: 0 on success, negative error code on failure. 672 */ 673 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 674 char __user *buf, 675 size_t count, 676 size_t *offset) 677 { 678 struct intel_uncore *uncore = stream->uncore; 679 int report_size = stream->oa_buffer.format_size; 680 u8 *oa_buf_base = stream->oa_buffer.vaddr; 681 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 682 u32 mask = (OA_BUFFER_SIZE - 1); 683 size_t start_offset = *offset; 684 unsigned long flags; 685 unsigned int aged_tail_idx; 686 u32 head, tail; 687 u32 taken; 688 int ret = 0; 689 690 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 691 return -EIO; 692 693 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 694 695 head = stream->oa_buffer.head; 696 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 697 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 698 699 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 700 701 /* 702 * An invalid tail pointer here means we're still waiting for the poll 703 * hrtimer callback to give us a pointer 704 */ 705 if (tail == INVALID_TAIL_PTR) 706 return -EAGAIN; 707 708 /* 709 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 710 * while indexing relative to oa_buf_base. 711 */ 712 head -= gtt_offset; 713 tail -= gtt_offset; 714 715 /* 716 * An out of bounds or misaligned head or tail pointer implies a driver 717 * bug since we validate + align the tail pointers we read from the 718 * hardware and we are in full control of the head pointer which should 719 * only be incremented by multiples of the report size (notably also 720 * all a power of two). 721 */ 722 if (drm_WARN_ONCE(&uncore->i915->drm, 723 head > OA_BUFFER_SIZE || head % report_size || 724 tail > OA_BUFFER_SIZE || tail % report_size, 725 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 726 head, tail)) 727 return -EIO; 728 729 730 for (/* none */; 731 (taken = OA_TAKEN(tail, head)); 732 head = (head + report_size) & mask) { 733 u8 *report = oa_buf_base + head; 734 u32 *report32 = (void *)report; 735 u32 ctx_id; 736 u32 reason; 737 738 /* 739 * All the report sizes factor neatly into the buffer 740 * size so we never expect to see a report split 741 * between the beginning and end of the buffer. 742 * 743 * Given the initial alignment check a misalignment 744 * here would imply a driver bug that would result 745 * in an overrun. 746 */ 747 if (drm_WARN_ON(&uncore->i915->drm, 748 (OA_BUFFER_SIZE - head) < report_size)) { 749 drm_err(&uncore->i915->drm, 750 "Spurious OA head ptr: non-integral report offset\n"); 751 break; 752 } 753 754 /* 755 * The reason field includes flags identifying what 756 * triggered this specific report (mostly timer 757 * triggered or e.g. due to a context switch). 758 * 759 * This field is never expected to be zero so we can 760 * check that the report isn't invalid before copying 761 * it to userspace... 762 */ 763 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 764 (IS_GEN(stream->perf->i915, 12) ? 765 OAREPORT_REASON_MASK_EXTENDED : 766 OAREPORT_REASON_MASK)); 767 if (reason == 0) { 768 if (__ratelimit(&stream->perf->spurious_report_rs)) 769 DRM_NOTE("Skipping spurious, invalid OA report\n"); 770 continue; 771 } 772 773 ctx_id = report32[2] & stream->specific_ctx_id_mask; 774 775 /* 776 * Squash whatever is in the CTX_ID field if it's marked as 777 * invalid to be sure we avoid false-positive, single-context 778 * filtering below... 779 * 780 * Note: that we don't clear the valid_ctx_bit so userspace can 781 * understand that the ID has been squashed by the kernel. 782 */ 783 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 784 INTEL_GEN(stream->perf->i915) <= 11) 785 ctx_id = report32[2] = INVALID_CTX_ID; 786 787 /* 788 * NB: For Gen 8 the OA unit no longer supports clock gating 789 * off for a specific context and the kernel can't securely 790 * stop the counters from updating as system-wide / global 791 * values. 792 * 793 * Automatic reports now include a context ID so reports can be 794 * filtered on the cpu but it's not worth trying to 795 * automatically subtract/hide counter progress for other 796 * contexts while filtering since we can't stop userspace 797 * issuing MI_REPORT_PERF_COUNT commands which would still 798 * provide a side-band view of the real values. 799 * 800 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 801 * to normalize counters for a single filtered context then it 802 * needs be forwarded bookend context-switch reports so that it 803 * can track switches in between MI_REPORT_PERF_COUNT commands 804 * and can itself subtract/ignore the progress of counters 805 * associated with other contexts. Note that the hardware 806 * automatically triggers reports when switching to a new 807 * context which are tagged with the ID of the newly active 808 * context. To avoid the complexity (and likely fragility) of 809 * reading ahead while parsing reports to try and minimize 810 * forwarding redundant context switch reports (i.e. between 811 * other, unrelated contexts) we simply elect to forward them 812 * all. 813 * 814 * We don't rely solely on the reason field to identify context 815 * switches since it's not-uncommon for periodic samples to 816 * identify a switch before any 'context switch' report. 817 */ 818 if (!stream->perf->exclusive_stream->ctx || 819 stream->specific_ctx_id == ctx_id || 820 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 821 reason & OAREPORT_REASON_CTX_SWITCH) { 822 823 /* 824 * While filtering for a single context we avoid 825 * leaking the IDs of other contexts. 826 */ 827 if (stream->perf->exclusive_stream->ctx && 828 stream->specific_ctx_id != ctx_id) { 829 report32[2] = INVALID_CTX_ID; 830 } 831 832 ret = append_oa_sample(stream, buf, count, offset, 833 report); 834 if (ret) 835 break; 836 837 stream->oa_buffer.last_ctx_id = ctx_id; 838 } 839 840 /* 841 * The above reason field sanity check is based on 842 * the assumption that the OA buffer is initially 843 * zeroed and we reset the field after copying so the 844 * check is still meaningful once old reports start 845 * being overwritten. 846 */ 847 report32[0] = 0; 848 } 849 850 if (start_offset != *offset) { 851 i915_reg_t oaheadptr; 852 853 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 854 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 855 856 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 857 858 /* 859 * We removed the gtt_offset for the copy loop above, indexing 860 * relative to oa_buf_base so put back here... 861 */ 862 head += gtt_offset; 863 intel_uncore_write(uncore, oaheadptr, 864 head & GEN12_OAG_OAHEADPTR_MASK); 865 stream->oa_buffer.head = head; 866 867 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 868 } 869 870 return ret; 871 } 872 873 /** 874 * gen8_oa_read - copy status records then buffered OA reports 875 * @stream: An i915-perf stream opened for OA metrics 876 * @buf: destination buffer given by userspace 877 * @count: the number of bytes userspace wants to read 878 * @offset: (inout): the current position for writing into @buf 879 * 880 * Checks OA unit status registers and if necessary appends corresponding 881 * status records for userspace (such as for a buffer full condition) and then 882 * initiate appending any buffered OA reports. 883 * 884 * Updates @offset according to the number of bytes successfully copied into 885 * the userspace buffer. 886 * 887 * NB: some data may be successfully copied to the userspace buffer 888 * even if an error is returned, and this is reflected in the 889 * updated @offset. 890 * 891 * Returns: zero on success or a negative error code 892 */ 893 static int gen8_oa_read(struct i915_perf_stream *stream, 894 char __user *buf, 895 size_t count, 896 size_t *offset) 897 { 898 struct intel_uncore *uncore = stream->uncore; 899 u32 oastatus; 900 i915_reg_t oastatus_reg; 901 int ret; 902 903 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 904 return -EIO; 905 906 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 907 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 908 909 oastatus = intel_uncore_read(uncore, oastatus_reg); 910 911 /* 912 * We treat OABUFFER_OVERFLOW as a significant error: 913 * 914 * Although theoretically we could handle this more gracefully 915 * sometimes, some Gens don't correctly suppress certain 916 * automatically triggered reports in this condition and so we 917 * have to assume that old reports are now being trampled 918 * over. 919 * 920 * Considering how we don't currently give userspace control 921 * over the OA buffer size and always configure a large 16MB 922 * buffer, then a buffer overflow does anyway likely indicate 923 * that something has gone quite badly wrong. 924 */ 925 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 926 ret = append_oa_status(stream, buf, count, offset, 927 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 928 if (ret) 929 return ret; 930 931 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 932 stream->period_exponent); 933 934 stream->perf->ops.oa_disable(stream); 935 stream->perf->ops.oa_enable(stream); 936 937 /* 938 * Note: .oa_enable() is expected to re-init the oabuffer and 939 * reset GEN8_OASTATUS for us 940 */ 941 oastatus = intel_uncore_read(uncore, oastatus_reg); 942 } 943 944 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 945 ret = append_oa_status(stream, buf, count, offset, 946 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 947 if (ret) 948 return ret; 949 intel_uncore_write(uncore, oastatus_reg, 950 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 951 } 952 953 return gen8_append_oa_reports(stream, buf, count, offset); 954 } 955 956 /** 957 * Copies all buffered OA reports into userspace read() buffer. 958 * @stream: An i915-perf stream opened for OA metrics 959 * @buf: destination buffer given by userspace 960 * @count: the number of bytes userspace wants to read 961 * @offset: (inout): the current position for writing into @buf 962 * 963 * Notably any error condition resulting in a short read (-%ENOSPC or 964 * -%EFAULT) will be returned even though one or more records may 965 * have been successfully copied. In this case it's up to the caller 966 * to decide if the error should be squashed before returning to 967 * userspace. 968 * 969 * Note: reports are consumed from the head, and appended to the 970 * tail, so the tail chases the head?... If you think that's mad 971 * and back-to-front you're not alone, but this follows the 972 * Gen PRM naming convention. 973 * 974 * Returns: 0 on success, negative error code on failure. 975 */ 976 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 977 char __user *buf, 978 size_t count, 979 size_t *offset) 980 { 981 struct intel_uncore *uncore = stream->uncore; 982 int report_size = stream->oa_buffer.format_size; 983 u8 *oa_buf_base = stream->oa_buffer.vaddr; 984 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 985 u32 mask = (OA_BUFFER_SIZE - 1); 986 size_t start_offset = *offset; 987 unsigned long flags; 988 unsigned int aged_tail_idx; 989 u32 head, tail; 990 u32 taken; 991 int ret = 0; 992 993 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 994 return -EIO; 995 996 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 997 998 head = stream->oa_buffer.head; 999 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 1000 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 1001 1002 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1003 1004 /* An invalid tail pointer here means we're still waiting for the poll 1005 * hrtimer callback to give us a pointer 1006 */ 1007 if (tail == INVALID_TAIL_PTR) 1008 return -EAGAIN; 1009 1010 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1011 * while indexing relative to oa_buf_base. 1012 */ 1013 head -= gtt_offset; 1014 tail -= gtt_offset; 1015 1016 /* An out of bounds or misaligned head or tail pointer implies a driver 1017 * bug since we validate + align the tail pointers we read from the 1018 * hardware and we are in full control of the head pointer which should 1019 * only be incremented by multiples of the report size (notably also 1020 * all a power of two). 1021 */ 1022 if (drm_WARN_ONCE(&uncore->i915->drm, 1023 head > OA_BUFFER_SIZE || head % report_size || 1024 tail > OA_BUFFER_SIZE || tail % report_size, 1025 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1026 head, tail)) 1027 return -EIO; 1028 1029 1030 for (/* none */; 1031 (taken = OA_TAKEN(tail, head)); 1032 head = (head + report_size) & mask) { 1033 u8 *report = oa_buf_base + head; 1034 u32 *report32 = (void *)report; 1035 1036 /* All the report sizes factor neatly into the buffer 1037 * size so we never expect to see a report split 1038 * between the beginning and end of the buffer. 1039 * 1040 * Given the initial alignment check a misalignment 1041 * here would imply a driver bug that would result 1042 * in an overrun. 1043 */ 1044 if (drm_WARN_ON(&uncore->i915->drm, 1045 (OA_BUFFER_SIZE - head) < report_size)) { 1046 drm_err(&uncore->i915->drm, 1047 "Spurious OA head ptr: non-integral report offset\n"); 1048 break; 1049 } 1050 1051 /* The report-ID field for periodic samples includes 1052 * some undocumented flags related to what triggered 1053 * the report and is never expected to be zero so we 1054 * can check that the report isn't invalid before 1055 * copying it to userspace... 1056 */ 1057 if (report32[0] == 0) { 1058 if (__ratelimit(&stream->perf->spurious_report_rs)) 1059 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1060 continue; 1061 } 1062 1063 ret = append_oa_sample(stream, buf, count, offset, report); 1064 if (ret) 1065 break; 1066 1067 /* The above report-id field sanity check is based on 1068 * the assumption that the OA buffer is initially 1069 * zeroed and we reset the field after copying so the 1070 * check is still meaningful once old reports start 1071 * being overwritten. 1072 */ 1073 report32[0] = 0; 1074 } 1075 1076 if (start_offset != *offset) { 1077 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1078 1079 /* We removed the gtt_offset for the copy loop above, indexing 1080 * relative to oa_buf_base so put back here... 1081 */ 1082 head += gtt_offset; 1083 1084 intel_uncore_write(uncore, GEN7_OASTATUS2, 1085 (head & GEN7_OASTATUS2_HEAD_MASK) | 1086 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1087 stream->oa_buffer.head = head; 1088 1089 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1090 } 1091 1092 return ret; 1093 } 1094 1095 /** 1096 * gen7_oa_read - copy status records then buffered OA reports 1097 * @stream: An i915-perf stream opened for OA metrics 1098 * @buf: destination buffer given by userspace 1099 * @count: the number of bytes userspace wants to read 1100 * @offset: (inout): the current position for writing into @buf 1101 * 1102 * Checks Gen 7 specific OA unit status registers and if necessary appends 1103 * corresponding status records for userspace (such as for a buffer full 1104 * condition) and then initiate appending any buffered OA reports. 1105 * 1106 * Updates @offset according to the number of bytes successfully copied into 1107 * the userspace buffer. 1108 * 1109 * Returns: zero on success or a negative error code 1110 */ 1111 static int gen7_oa_read(struct i915_perf_stream *stream, 1112 char __user *buf, 1113 size_t count, 1114 size_t *offset) 1115 { 1116 struct intel_uncore *uncore = stream->uncore; 1117 u32 oastatus1; 1118 int ret; 1119 1120 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1121 return -EIO; 1122 1123 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1124 1125 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1126 * bits while the OA unit is enabled (while the tail pointer 1127 * may be updated asynchronously) so we ignore status bits 1128 * that have already been reported to userspace. 1129 */ 1130 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1131 1132 /* We treat OABUFFER_OVERFLOW as a significant error: 1133 * 1134 * - The status can be interpreted to mean that the buffer is 1135 * currently full (with a higher precedence than OA_TAKEN() 1136 * which will start to report a near-empty buffer after an 1137 * overflow) but it's awkward that we can't clear the status 1138 * on Haswell, so without a reset we won't be able to catch 1139 * the state again. 1140 * 1141 * - Since it also implies the HW has started overwriting old 1142 * reports it may also affect our sanity checks for invalid 1143 * reports when copying to userspace that assume new reports 1144 * are being written to cleared memory. 1145 * 1146 * - In the future we may want to introduce a flight recorder 1147 * mode where the driver will automatically maintain a safe 1148 * guard band between head/tail, avoiding this overflow 1149 * condition, but we avoid the added driver complexity for 1150 * now. 1151 */ 1152 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1153 ret = append_oa_status(stream, buf, count, offset, 1154 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1155 if (ret) 1156 return ret; 1157 1158 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1159 stream->period_exponent); 1160 1161 stream->perf->ops.oa_disable(stream); 1162 stream->perf->ops.oa_enable(stream); 1163 1164 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1165 } 1166 1167 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1168 ret = append_oa_status(stream, buf, count, offset, 1169 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1170 if (ret) 1171 return ret; 1172 stream->perf->gen7_latched_oastatus1 |= 1173 GEN7_OASTATUS1_REPORT_LOST; 1174 } 1175 1176 return gen7_append_oa_reports(stream, buf, count, offset); 1177 } 1178 1179 /** 1180 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1181 * @stream: An i915-perf stream opened for OA metrics 1182 * 1183 * Called when userspace tries to read() from a blocking stream FD opened 1184 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1185 * OA buffer and wakes us. 1186 * 1187 * Note: it's acceptable to have this return with some false positives 1188 * since any subsequent read handling will return -EAGAIN if there isn't 1189 * really data ready for userspace yet. 1190 * 1191 * Returns: zero on success or a negative error code 1192 */ 1193 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1194 { 1195 /* We would wait indefinitely if periodic sampling is not enabled */ 1196 if (!stream->periodic) 1197 return -EIO; 1198 1199 return wait_event_interruptible(stream->poll_wq, 1200 oa_buffer_check_unlocked(stream)); 1201 } 1202 1203 /** 1204 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1205 * @stream: An i915-perf stream opened for OA metrics 1206 * @file: An i915 perf stream file 1207 * @wait: poll() state table 1208 * 1209 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1210 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1211 * when it sees data ready to read in the circular OA buffer. 1212 */ 1213 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1214 struct file *file, 1215 poll_table *wait) 1216 { 1217 poll_wait(file, &stream->poll_wq, wait); 1218 } 1219 1220 /** 1221 * i915_oa_read - just calls through to &i915_oa_ops->read 1222 * @stream: An i915-perf stream opened for OA metrics 1223 * @buf: destination buffer given by userspace 1224 * @count: the number of bytes userspace wants to read 1225 * @offset: (inout): the current position for writing into @buf 1226 * 1227 * Updates @offset according to the number of bytes successfully copied into 1228 * the userspace buffer. 1229 * 1230 * Returns: zero on success or a negative error code 1231 */ 1232 static int i915_oa_read(struct i915_perf_stream *stream, 1233 char __user *buf, 1234 size_t count, 1235 size_t *offset) 1236 { 1237 return stream->perf->ops.read(stream, buf, count, offset); 1238 } 1239 1240 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1241 { 1242 struct i915_gem_engines_iter it; 1243 struct i915_gem_context *ctx = stream->ctx; 1244 struct intel_context *ce; 1245 int err; 1246 1247 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1248 if (ce->engine != stream->engine) /* first match! */ 1249 continue; 1250 1251 /* 1252 * As the ID is the gtt offset of the context's vma we 1253 * pin the vma to ensure the ID remains fixed. 1254 */ 1255 err = intel_context_pin(ce); 1256 if (err == 0) { 1257 stream->pinned_ctx = ce; 1258 break; 1259 } 1260 } 1261 i915_gem_context_unlock_engines(ctx); 1262 1263 return stream->pinned_ctx; 1264 } 1265 1266 /** 1267 * oa_get_render_ctx_id - determine and hold ctx hw id 1268 * @stream: An i915-perf stream opened for OA metrics 1269 * 1270 * Determine the render context hw id, and ensure it remains fixed for the 1271 * lifetime of the stream. This ensures that we don't have to worry about 1272 * updating the context ID in OACONTROL on the fly. 1273 * 1274 * Returns: zero on success or a negative error code 1275 */ 1276 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1277 { 1278 struct intel_context *ce; 1279 1280 ce = oa_pin_context(stream); 1281 if (IS_ERR(ce)) 1282 return PTR_ERR(ce); 1283 1284 switch (INTEL_GEN(ce->engine->i915)) { 1285 case 7: { 1286 /* 1287 * On Haswell we don't do any post processing of the reports 1288 * and don't need to use the mask. 1289 */ 1290 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1291 stream->specific_ctx_id_mask = 0; 1292 break; 1293 } 1294 1295 case 8: 1296 case 9: 1297 case 10: 1298 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1299 stream->specific_ctx_id_mask = 1300 (1U << GEN8_CTX_ID_WIDTH) - 1; 1301 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1302 } else { 1303 /* 1304 * When using GuC, the context descriptor we write in 1305 * i915 is read by GuC and rewritten before it's 1306 * actually written into the hardware. The LRCA is 1307 * what is put into the context id field of the 1308 * context descriptor by GuC. Because it's aligned to 1309 * a page, the lower 12bits are always at 0 and 1310 * dropped by GuC. They won't be part of the context 1311 * ID in the OA reports, so squash those lower bits. 1312 */ 1313 stream->specific_ctx_id = 1314 lower_32_bits(ce->lrc_desc) >> 12; 1315 1316 /* 1317 * GuC uses the top bit to signal proxy submission, so 1318 * ignore that bit. 1319 */ 1320 stream->specific_ctx_id_mask = 1321 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1322 } 1323 break; 1324 1325 case 11: 1326 case 12: { 1327 stream->specific_ctx_id_mask = 1328 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1329 /* 1330 * Pick an unused context id 1331 * 0 - (NUM_CONTEXT_TAG - 1) are used by other contexts 1332 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1333 */ 1334 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1335 BUILD_BUG_ON((GEN12_MAX_CONTEXT_HW_ID - 1) < NUM_CONTEXT_TAG); 1336 break; 1337 } 1338 1339 default: 1340 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1341 } 1342 1343 ce->tag = stream->specific_ctx_id; 1344 1345 drm_dbg(&stream->perf->i915->drm, 1346 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1347 stream->specific_ctx_id, 1348 stream->specific_ctx_id_mask); 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1355 * @stream: An i915-perf stream opened for OA metrics 1356 * 1357 * In case anything needed doing to ensure the context HW ID would remain valid 1358 * for the lifetime of the stream, then that can be undone here. 1359 */ 1360 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1361 { 1362 struct intel_context *ce; 1363 1364 ce = fetch_and_zero(&stream->pinned_ctx); 1365 if (ce) { 1366 ce->tag = 0; /* recomputed on next submission after parking */ 1367 intel_context_unpin(ce); 1368 } 1369 1370 stream->specific_ctx_id = INVALID_CTX_ID; 1371 stream->specific_ctx_id_mask = 0; 1372 } 1373 1374 static void 1375 free_oa_buffer(struct i915_perf_stream *stream) 1376 { 1377 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1378 I915_VMA_RELEASE_MAP); 1379 1380 stream->oa_buffer.vaddr = NULL; 1381 } 1382 1383 static void 1384 free_oa_configs(struct i915_perf_stream *stream) 1385 { 1386 struct i915_oa_config_bo *oa_bo, *tmp; 1387 1388 i915_oa_config_put(stream->oa_config); 1389 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1390 free_oa_config_bo(oa_bo); 1391 } 1392 1393 static void 1394 free_noa_wait(struct i915_perf_stream *stream) 1395 { 1396 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1397 } 1398 1399 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1400 { 1401 struct i915_perf *perf = stream->perf; 1402 1403 BUG_ON(stream != perf->exclusive_stream); 1404 1405 /* 1406 * Unset exclusive_stream first, it will be checked while disabling 1407 * the metric set on gen8+. 1408 * 1409 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1410 */ 1411 WRITE_ONCE(perf->exclusive_stream, NULL); 1412 perf->ops.disable_metric_set(stream); 1413 1414 free_oa_buffer(stream); 1415 1416 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1417 intel_engine_pm_put(stream->engine); 1418 1419 if (stream->ctx) 1420 oa_put_render_ctx_id(stream); 1421 1422 free_oa_configs(stream); 1423 free_noa_wait(stream); 1424 1425 if (perf->spurious_report_rs.missed) { 1426 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1427 perf->spurious_report_rs.missed); 1428 } 1429 } 1430 1431 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1432 { 1433 struct intel_uncore *uncore = stream->uncore; 1434 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1435 unsigned long flags; 1436 1437 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1438 1439 /* Pre-DevBDW: OABUFFER must be set with counters off, 1440 * before OASTATUS1, but after OASTATUS2 1441 */ 1442 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1443 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1444 stream->oa_buffer.head = gtt_offset; 1445 1446 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1447 1448 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1449 gtt_offset | OABUFFER_SIZE_16M); 1450 1451 /* Mark that we need updated tail pointers to read from... */ 1452 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1453 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1454 1455 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1456 1457 /* On Haswell we have to track which OASTATUS1 flags we've 1458 * already seen since they can't be cleared while periodic 1459 * sampling is enabled. 1460 */ 1461 stream->perf->gen7_latched_oastatus1 = 0; 1462 1463 /* NB: although the OA buffer will initially be allocated 1464 * zeroed via shmfs (and so this memset is redundant when 1465 * first allocating), we may re-init the OA buffer, either 1466 * when re-enabling a stream or in error/reset paths. 1467 * 1468 * The reason we clear the buffer for each re-init is for the 1469 * sanity check in gen7_append_oa_reports() that looks at the 1470 * report-id field to make sure it's non-zero which relies on 1471 * the assumption that new reports are being written to zeroed 1472 * memory... 1473 */ 1474 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1475 1476 stream->pollin = false; 1477 } 1478 1479 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1480 { 1481 struct intel_uncore *uncore = stream->uncore; 1482 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1486 1487 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1488 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1489 stream->oa_buffer.head = gtt_offset; 1490 1491 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1492 1493 /* 1494 * PRM says: 1495 * 1496 * "This MMIO must be set before the OATAILPTR 1497 * register and after the OAHEADPTR register. This is 1498 * to enable proper functionality of the overflow 1499 * bit." 1500 */ 1501 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1502 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1503 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1504 1505 /* Mark that we need updated tail pointers to read from... */ 1506 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1507 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1508 1509 /* 1510 * Reset state used to recognise context switches, affecting which 1511 * reports we will forward to userspace while filtering for a single 1512 * context. 1513 */ 1514 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1515 1516 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1517 1518 /* 1519 * NB: although the OA buffer will initially be allocated 1520 * zeroed via shmfs (and so this memset is redundant when 1521 * first allocating), we may re-init the OA buffer, either 1522 * when re-enabling a stream or in error/reset paths. 1523 * 1524 * The reason we clear the buffer for each re-init is for the 1525 * sanity check in gen8_append_oa_reports() that looks at the 1526 * reason field to make sure it's non-zero which relies on 1527 * the assumption that new reports are being written to zeroed 1528 * memory... 1529 */ 1530 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1531 1532 stream->pollin = false; 1533 } 1534 1535 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1536 { 1537 struct intel_uncore *uncore = stream->uncore; 1538 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1539 unsigned long flags; 1540 1541 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1542 1543 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1544 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1545 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1546 stream->oa_buffer.head = gtt_offset; 1547 1548 /* 1549 * PRM says: 1550 * 1551 * "This MMIO must be set before the OATAILPTR 1552 * register and after the OAHEADPTR register. This is 1553 * to enable proper functionality of the overflow 1554 * bit." 1555 */ 1556 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1557 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1558 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1559 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1560 1561 /* Mark that we need updated tail pointers to read from... */ 1562 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1563 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1564 1565 /* 1566 * Reset state used to recognise context switches, affecting which 1567 * reports we will forward to userspace while filtering for a single 1568 * context. 1569 */ 1570 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1571 1572 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1573 1574 /* 1575 * NB: although the OA buffer will initially be allocated 1576 * zeroed via shmfs (and so this memset is redundant when 1577 * first allocating), we may re-init the OA buffer, either 1578 * when re-enabling a stream or in error/reset paths. 1579 * 1580 * The reason we clear the buffer for each re-init is for the 1581 * sanity check in gen8_append_oa_reports() that looks at the 1582 * reason field to make sure it's non-zero which relies on 1583 * the assumption that new reports are being written to zeroed 1584 * memory... 1585 */ 1586 memset(stream->oa_buffer.vaddr, 0, 1587 stream->oa_buffer.vma->size); 1588 1589 stream->pollin = false; 1590 } 1591 1592 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1593 { 1594 struct drm_i915_private *i915 = stream->perf->i915; 1595 struct drm_i915_gem_object *bo; 1596 struct i915_vma *vma; 1597 int ret; 1598 1599 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1600 return -ENODEV; 1601 1602 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1603 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1604 1605 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1606 if (IS_ERR(bo)) { 1607 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1608 return PTR_ERR(bo); 1609 } 1610 1611 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1612 1613 /* PreHSW required 512K alignment, HSW requires 16M */ 1614 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1615 if (IS_ERR(vma)) { 1616 ret = PTR_ERR(vma); 1617 goto err_unref; 1618 } 1619 stream->oa_buffer.vma = vma; 1620 1621 stream->oa_buffer.vaddr = 1622 i915_gem_object_pin_map(bo, I915_MAP_WB); 1623 if (IS_ERR(stream->oa_buffer.vaddr)) { 1624 ret = PTR_ERR(stream->oa_buffer.vaddr); 1625 goto err_unpin; 1626 } 1627 1628 return 0; 1629 1630 err_unpin: 1631 __i915_vma_unpin(vma); 1632 1633 err_unref: 1634 i915_gem_object_put(bo); 1635 1636 stream->oa_buffer.vaddr = NULL; 1637 stream->oa_buffer.vma = NULL; 1638 1639 return ret; 1640 } 1641 1642 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1643 bool save, i915_reg_t reg, u32 offset, 1644 u32 dword_count) 1645 { 1646 u32 cmd; 1647 u32 d; 1648 1649 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1650 if (INTEL_GEN(stream->perf->i915) >= 8) 1651 cmd++; 1652 1653 for (d = 0; d < dword_count; d++) { 1654 *cs++ = cmd; 1655 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1656 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1657 offset) + 4 * d; 1658 *cs++ = 0; 1659 } 1660 1661 return cs; 1662 } 1663 1664 static int alloc_noa_wait(struct i915_perf_stream *stream) 1665 { 1666 struct drm_i915_private *i915 = stream->perf->i915; 1667 struct drm_i915_gem_object *bo; 1668 struct i915_vma *vma; 1669 const u64 delay_ticks = 0xffffffffffffffff - 1670 DIV64_U64_ROUND_UP( 1671 atomic64_read(&stream->perf->noa_programming_delay) * 1672 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz, 1673 1000000ull); 1674 const u32 base = stream->engine->mmio_base; 1675 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1676 u32 *batch, *ts0, *cs, *jump; 1677 int ret, i; 1678 enum { 1679 START_TS, 1680 NOW_TS, 1681 DELTA_TS, 1682 JUMP_PREDICATE, 1683 DELTA_TARGET, 1684 N_CS_GPR 1685 }; 1686 1687 bo = i915_gem_object_create_internal(i915, 4096); 1688 if (IS_ERR(bo)) { 1689 drm_err(&i915->drm, 1690 "Failed to allocate NOA wait batchbuffer\n"); 1691 return PTR_ERR(bo); 1692 } 1693 1694 /* 1695 * We pin in GGTT because we jump into this buffer now because 1696 * multiple OA config BOs will have a jump to this address and it 1697 * needs to be fixed during the lifetime of the i915/perf stream. 1698 */ 1699 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1700 if (IS_ERR(vma)) { 1701 ret = PTR_ERR(vma); 1702 goto err_unref; 1703 } 1704 1705 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1706 if (IS_ERR(batch)) { 1707 ret = PTR_ERR(batch); 1708 goto err_unpin; 1709 } 1710 1711 /* Save registers. */ 1712 for (i = 0; i < N_CS_GPR; i++) 1713 cs = save_restore_register( 1714 stream, cs, true /* save */, CS_GPR(i), 1715 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1716 cs = save_restore_register( 1717 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1718 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1719 1720 /* First timestamp snapshot location. */ 1721 ts0 = cs; 1722 1723 /* 1724 * Initial snapshot of the timestamp register to implement the wait. 1725 * We work with 32b values, so clear out the top 32b bits of the 1726 * register because the ALU works 64bits. 1727 */ 1728 *cs++ = MI_LOAD_REGISTER_IMM(1); 1729 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1730 *cs++ = 0; 1731 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1732 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1733 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1734 1735 /* 1736 * This is the location we're going to jump back into until the 1737 * required amount of time has passed. 1738 */ 1739 jump = cs; 1740 1741 /* 1742 * Take another snapshot of the timestamp register. Take care to clear 1743 * up the top 32bits of CS_GPR(1) as we're using it for other 1744 * operations below. 1745 */ 1746 *cs++ = MI_LOAD_REGISTER_IMM(1); 1747 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1748 *cs++ = 0; 1749 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1750 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1751 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1752 1753 /* 1754 * Do a diff between the 2 timestamps and store the result back into 1755 * CS_GPR(1). 1756 */ 1757 *cs++ = MI_MATH(5); 1758 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1759 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1760 *cs++ = MI_MATH_SUB; 1761 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1762 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1763 1764 /* 1765 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1766 * timestamp have rolled over the 32bits) into the predicate register 1767 * to be used for the predicated jump. 1768 */ 1769 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1770 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1771 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1772 1773 /* Restart from the beginning if we had timestamps roll over. */ 1774 *cs++ = (INTEL_GEN(i915) < 8 ? 1775 MI_BATCH_BUFFER_START : 1776 MI_BATCH_BUFFER_START_GEN8) | 1777 MI_BATCH_PREDICATE; 1778 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1779 *cs++ = 0; 1780 1781 /* 1782 * Now add the diff between to previous timestamps and add it to : 1783 * (((1 * << 64) - 1) - delay_ns) 1784 * 1785 * When the Carry Flag contains 1 this means the elapsed time is 1786 * longer than the expected delay, and we can exit the wait loop. 1787 */ 1788 *cs++ = MI_LOAD_REGISTER_IMM(2); 1789 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1790 *cs++ = lower_32_bits(delay_ticks); 1791 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1792 *cs++ = upper_32_bits(delay_ticks); 1793 1794 *cs++ = MI_MATH(4); 1795 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1796 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1797 *cs++ = MI_MATH_ADD; 1798 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1799 1800 *cs++ = MI_ARB_CHECK; 1801 1802 /* 1803 * Transfer the result into the predicate register to be used for the 1804 * predicated jump. 1805 */ 1806 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1807 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1808 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1809 1810 /* Predicate the jump. */ 1811 *cs++ = (INTEL_GEN(i915) < 8 ? 1812 MI_BATCH_BUFFER_START : 1813 MI_BATCH_BUFFER_START_GEN8) | 1814 MI_BATCH_PREDICATE; 1815 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1816 *cs++ = 0; 1817 1818 /* Restore registers. */ 1819 for (i = 0; i < N_CS_GPR; i++) 1820 cs = save_restore_register( 1821 stream, cs, false /* restore */, CS_GPR(i), 1822 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1823 cs = save_restore_register( 1824 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1825 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1826 1827 /* And return to the ring. */ 1828 *cs++ = MI_BATCH_BUFFER_END; 1829 1830 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1831 1832 i915_gem_object_flush_map(bo); 1833 i915_gem_object_unpin_map(bo); 1834 1835 stream->noa_wait = vma; 1836 return 0; 1837 1838 err_unpin: 1839 i915_vma_unpin_and_release(&vma, 0); 1840 err_unref: 1841 i915_gem_object_put(bo); 1842 return ret; 1843 } 1844 1845 static u32 *write_cs_mi_lri(u32 *cs, 1846 const struct i915_oa_reg *reg_data, 1847 u32 n_regs) 1848 { 1849 u32 i; 1850 1851 for (i = 0; i < n_regs; i++) { 1852 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1853 u32 n_lri = min_t(u32, 1854 n_regs - i, 1855 MI_LOAD_REGISTER_IMM_MAX_REGS); 1856 1857 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1858 } 1859 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1860 *cs++ = reg_data[i].value; 1861 } 1862 1863 return cs; 1864 } 1865 1866 static int num_lri_dwords(int num_regs) 1867 { 1868 int count = 0; 1869 1870 if (num_regs > 0) { 1871 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1872 count += num_regs * 2; 1873 } 1874 1875 return count; 1876 } 1877 1878 static struct i915_oa_config_bo * 1879 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1880 struct i915_oa_config *oa_config) 1881 { 1882 struct drm_i915_gem_object *obj; 1883 struct i915_oa_config_bo *oa_bo; 1884 size_t config_length = 0; 1885 u32 *cs; 1886 int err; 1887 1888 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1889 if (!oa_bo) 1890 return ERR_PTR(-ENOMEM); 1891 1892 config_length += num_lri_dwords(oa_config->mux_regs_len); 1893 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1894 config_length += num_lri_dwords(oa_config->flex_regs_len); 1895 config_length += 3; /* MI_BATCH_BUFFER_START */ 1896 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1897 1898 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1899 if (IS_ERR(obj)) { 1900 err = PTR_ERR(obj); 1901 goto err_free; 1902 } 1903 1904 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1905 if (IS_ERR(cs)) { 1906 err = PTR_ERR(cs); 1907 goto err_oa_bo; 1908 } 1909 1910 cs = write_cs_mi_lri(cs, 1911 oa_config->mux_regs, 1912 oa_config->mux_regs_len); 1913 cs = write_cs_mi_lri(cs, 1914 oa_config->b_counter_regs, 1915 oa_config->b_counter_regs_len); 1916 cs = write_cs_mi_lri(cs, 1917 oa_config->flex_regs, 1918 oa_config->flex_regs_len); 1919 1920 /* Jump into the active wait. */ 1921 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1922 MI_BATCH_BUFFER_START : 1923 MI_BATCH_BUFFER_START_GEN8); 1924 *cs++ = i915_ggtt_offset(stream->noa_wait); 1925 *cs++ = 0; 1926 1927 i915_gem_object_flush_map(obj); 1928 i915_gem_object_unpin_map(obj); 1929 1930 oa_bo->vma = i915_vma_instance(obj, 1931 &stream->engine->gt->ggtt->vm, 1932 NULL); 1933 if (IS_ERR(oa_bo->vma)) { 1934 err = PTR_ERR(oa_bo->vma); 1935 goto err_oa_bo; 1936 } 1937 1938 oa_bo->oa_config = i915_oa_config_get(oa_config); 1939 llist_add(&oa_bo->node, &stream->oa_config_bos); 1940 1941 return oa_bo; 1942 1943 err_oa_bo: 1944 i915_gem_object_put(obj); 1945 err_free: 1946 kfree(oa_bo); 1947 return ERR_PTR(err); 1948 } 1949 1950 static struct i915_vma * 1951 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1952 { 1953 struct i915_oa_config_bo *oa_bo; 1954 1955 /* 1956 * Look for the buffer in the already allocated BOs attached 1957 * to the stream. 1958 */ 1959 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1960 if (oa_bo->oa_config == oa_config && 1961 memcmp(oa_bo->oa_config->uuid, 1962 oa_config->uuid, 1963 sizeof(oa_config->uuid)) == 0) 1964 goto out; 1965 } 1966 1967 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1968 if (IS_ERR(oa_bo)) 1969 return ERR_CAST(oa_bo); 1970 1971 out: 1972 return i915_vma_get(oa_bo->vma); 1973 } 1974 1975 static struct i915_request * 1976 emit_oa_config(struct i915_perf_stream *stream, 1977 struct i915_oa_config *oa_config, 1978 struct intel_context *ce) 1979 { 1980 struct i915_request *rq; 1981 struct i915_vma *vma; 1982 int err; 1983 1984 vma = get_oa_vma(stream, oa_config); 1985 if (IS_ERR(vma)) 1986 return ERR_CAST(vma); 1987 1988 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1989 if (err) 1990 goto err_vma_put; 1991 1992 intel_engine_pm_get(ce->engine); 1993 rq = i915_request_create(ce); 1994 intel_engine_pm_put(ce->engine); 1995 if (IS_ERR(rq)) { 1996 err = PTR_ERR(rq); 1997 goto err_vma_unpin; 1998 } 1999 2000 i915_vma_lock(vma); 2001 err = i915_request_await_object(rq, vma->obj, 0); 2002 if (!err) 2003 err = i915_vma_move_to_active(vma, rq, 0); 2004 i915_vma_unlock(vma); 2005 if (err) 2006 goto err_add_request; 2007 2008 err = rq->engine->emit_bb_start(rq, 2009 vma->node.start, 0, 2010 I915_DISPATCH_SECURE); 2011 if (err) 2012 goto err_add_request; 2013 2014 i915_request_get(rq); 2015 err_add_request: 2016 i915_request_add(rq); 2017 err_vma_unpin: 2018 i915_vma_unpin(vma); 2019 err_vma_put: 2020 i915_vma_put(vma); 2021 return err ? ERR_PTR(err) : rq; 2022 } 2023 2024 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2025 { 2026 return stream->pinned_ctx ?: stream->engine->kernel_context; 2027 } 2028 2029 static struct i915_request * 2030 hsw_enable_metric_set(struct i915_perf_stream *stream) 2031 { 2032 struct intel_uncore *uncore = stream->uncore; 2033 2034 /* 2035 * PRM: 2036 * 2037 * OA unit is using “crclk” for its functionality. When trunk 2038 * level clock gating takes place, OA clock would be gated, 2039 * unable to count the events from non-render clock domain. 2040 * Render clock gating must be disabled when OA is enabled to 2041 * count the events from non-render domain. Unit level clock 2042 * gating for RCS should also be disabled. 2043 */ 2044 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2045 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2046 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2047 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2048 2049 return emit_oa_config(stream, stream->oa_config, oa_context(stream)); 2050 } 2051 2052 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2053 { 2054 struct intel_uncore *uncore = stream->uncore; 2055 2056 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2057 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2058 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2059 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2060 2061 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2062 } 2063 2064 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2065 i915_reg_t reg) 2066 { 2067 u32 mmio = i915_mmio_reg_offset(reg); 2068 int i; 2069 2070 /* 2071 * This arbitrary default will select the 'EU FPU0 Pipeline 2072 * Active' event. In the future it's anticipated that there 2073 * will be an explicit 'No Event' we can select, but not yet... 2074 */ 2075 if (!oa_config) 2076 return 0; 2077 2078 for (i = 0; i < oa_config->flex_regs_len; i++) { 2079 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2080 return oa_config->flex_regs[i].value; 2081 } 2082 2083 return 0; 2084 } 2085 /* 2086 * NB: It must always remain pointer safe to run this even if the OA unit 2087 * has been disabled. 2088 * 2089 * It's fine to put out-of-date values into these per-context registers 2090 * in the case that the OA unit has been disabled. 2091 */ 2092 static void 2093 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2094 const struct i915_perf_stream *stream) 2095 { 2096 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2097 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2098 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2099 i915_reg_t flex_regs[] = { 2100 EU_PERF_CNTL0, 2101 EU_PERF_CNTL1, 2102 EU_PERF_CNTL2, 2103 EU_PERF_CNTL3, 2104 EU_PERF_CNTL4, 2105 EU_PERF_CNTL5, 2106 EU_PERF_CNTL6, 2107 }; 2108 u32 *reg_state = ce->lrc_reg_state; 2109 int i; 2110 2111 reg_state[ctx_oactxctrl + 1] = 2112 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2113 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2114 GEN8_OA_COUNTER_RESUME; 2115 2116 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2117 reg_state[ctx_flexeu0 + i * 2 + 1] = 2118 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2119 2120 reg_state[CTX_R_PWR_CLK_STATE] = 2121 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu); 2122 } 2123 2124 struct flex { 2125 i915_reg_t reg; 2126 u32 offset; 2127 u32 value; 2128 }; 2129 2130 static int 2131 gen8_store_flex(struct i915_request *rq, 2132 struct intel_context *ce, 2133 const struct flex *flex, unsigned int count) 2134 { 2135 u32 offset; 2136 u32 *cs; 2137 2138 cs = intel_ring_begin(rq, 4 * count); 2139 if (IS_ERR(cs)) 2140 return PTR_ERR(cs); 2141 2142 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 2143 do { 2144 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2145 *cs++ = offset + flex->offset * sizeof(u32); 2146 *cs++ = 0; 2147 *cs++ = flex->value; 2148 } while (flex++, --count); 2149 2150 intel_ring_advance(rq, cs); 2151 2152 return 0; 2153 } 2154 2155 static int 2156 gen8_load_flex(struct i915_request *rq, 2157 struct intel_context *ce, 2158 const struct flex *flex, unsigned int count) 2159 { 2160 u32 *cs; 2161 2162 GEM_BUG_ON(!count || count > 63); 2163 2164 cs = intel_ring_begin(rq, 2 * count + 2); 2165 if (IS_ERR(cs)) 2166 return PTR_ERR(cs); 2167 2168 *cs++ = MI_LOAD_REGISTER_IMM(count); 2169 do { 2170 *cs++ = i915_mmio_reg_offset(flex->reg); 2171 *cs++ = flex->value; 2172 } while (flex++, --count); 2173 *cs++ = MI_NOOP; 2174 2175 intel_ring_advance(rq, cs); 2176 2177 return 0; 2178 } 2179 2180 static int gen8_modify_context(struct intel_context *ce, 2181 const struct flex *flex, unsigned int count) 2182 { 2183 struct i915_request *rq; 2184 int err; 2185 2186 rq = intel_engine_create_kernel_request(ce->engine); 2187 if (IS_ERR(rq)) 2188 return PTR_ERR(rq); 2189 2190 /* Serialise with the remote context */ 2191 err = intel_context_prepare_remote_request(ce, rq); 2192 if (err == 0) 2193 err = gen8_store_flex(rq, ce, flex, count); 2194 2195 i915_request_add(rq); 2196 return err; 2197 } 2198 2199 static int gen8_modify_self(struct intel_context *ce, 2200 const struct flex *flex, unsigned int count) 2201 { 2202 struct i915_request *rq; 2203 int err; 2204 2205 intel_engine_pm_get(ce->engine); 2206 rq = i915_request_create(ce); 2207 intel_engine_pm_put(ce->engine); 2208 if (IS_ERR(rq)) 2209 return PTR_ERR(rq); 2210 2211 err = gen8_load_flex(rq, ce, flex, count); 2212 2213 i915_request_add(rq); 2214 return err; 2215 } 2216 2217 static int gen8_configure_context(struct i915_gem_context *ctx, 2218 struct flex *flex, unsigned int count) 2219 { 2220 struct i915_gem_engines_iter it; 2221 struct intel_context *ce; 2222 int err = 0; 2223 2224 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2225 GEM_BUG_ON(ce == ce->engine->kernel_context); 2226 2227 if (ce->engine->class != RENDER_CLASS) 2228 continue; 2229 2230 /* Otherwise OA settings will be set upon first use */ 2231 if (!intel_context_pin_if_active(ce)) 2232 continue; 2233 2234 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2235 err = gen8_modify_context(ce, flex, count); 2236 2237 intel_context_unpin(ce); 2238 if (err) 2239 break; 2240 } 2241 i915_gem_context_unlock_engines(ctx); 2242 2243 return err; 2244 } 2245 2246 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable) 2247 { 2248 int err; 2249 struct intel_context *ce = stream->pinned_ctx; 2250 u32 format = stream->oa_buffer.format; 2251 struct flex regs_context[] = { 2252 { 2253 GEN8_OACTXCONTROL, 2254 stream->perf->ctx_oactxctrl_offset + 1, 2255 enable ? GEN8_OA_COUNTER_RESUME : 0, 2256 }, 2257 }; 2258 /* Offsets in regs_lri are not used since this configuration is only 2259 * applied using LRI. Initialize the correct offsets for posterity. 2260 */ 2261 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2262 struct flex regs_lri[] = { 2263 { 2264 GEN12_OAR_OACONTROL, 2265 GEN12_OAR_OACONTROL_OFFSET + 1, 2266 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2267 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2268 }, 2269 { 2270 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2271 CTX_CONTEXT_CONTROL, 2272 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2273 enable ? 2274 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2275 0) 2276 }, 2277 }; 2278 2279 /* Modify the context image of pinned context with regs_context*/ 2280 err = intel_context_lock_pinned(ce); 2281 if (err) 2282 return err; 2283 2284 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2285 intel_context_unlock_pinned(ce); 2286 if (err) 2287 return err; 2288 2289 /* Apply regs_lri using LRI with pinned context */ 2290 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri)); 2291 } 2292 2293 /* 2294 * Manages updating the per-context aspects of the OA stream 2295 * configuration across all contexts. 2296 * 2297 * The awkward consideration here is that OACTXCONTROL controls the 2298 * exponent for periodic sampling which is primarily used for system 2299 * wide profiling where we'd like a consistent sampling period even in 2300 * the face of context switches. 2301 * 2302 * Our approach of updating the register state context (as opposed to 2303 * say using a workaround batch buffer) ensures that the hardware 2304 * won't automatically reload an out-of-date timer exponent even 2305 * transiently before a WA BB could be parsed. 2306 * 2307 * This function needs to: 2308 * - Ensure the currently running context's per-context OA state is 2309 * updated 2310 * - Ensure that all existing contexts will have the correct per-context 2311 * OA state if they are scheduled for use. 2312 * - Ensure any new contexts will be initialized with the correct 2313 * per-context OA state. 2314 * 2315 * Note: it's only the RCS/Render context that has any OA state. 2316 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2317 */ 2318 static int oa_configure_all_contexts(struct i915_perf_stream *stream, 2319 struct flex *regs, 2320 size_t num_regs) 2321 { 2322 struct drm_i915_private *i915 = stream->perf->i915; 2323 struct intel_engine_cs *engine; 2324 struct i915_gem_context *ctx, *cn; 2325 int err; 2326 2327 lockdep_assert_held(&stream->perf->lock); 2328 2329 /* 2330 * The OA register config is setup through the context image. This image 2331 * might be written to by the GPU on context switch (in particular on 2332 * lite-restore). This means we can't safely update a context's image, 2333 * if this context is scheduled/submitted to run on the GPU. 2334 * 2335 * We could emit the OA register config through the batch buffer but 2336 * this might leave small interval of time where the OA unit is 2337 * configured at an invalid sampling period. 2338 * 2339 * Note that since we emit all requests from a single ring, there 2340 * is still an implicit global barrier here that may cause a high 2341 * priority context to wait for an otherwise independent low priority 2342 * context. Contexts idle at the time of reconfiguration are not 2343 * trapped behind the barrier. 2344 */ 2345 spin_lock(&i915->gem.contexts.lock); 2346 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2347 if (!kref_get_unless_zero(&ctx->ref)) 2348 continue; 2349 2350 spin_unlock(&i915->gem.contexts.lock); 2351 2352 err = gen8_configure_context(ctx, regs, num_regs); 2353 if (err) { 2354 i915_gem_context_put(ctx); 2355 return err; 2356 } 2357 2358 spin_lock(&i915->gem.contexts.lock); 2359 list_safe_reset_next(ctx, cn, link); 2360 i915_gem_context_put(ctx); 2361 } 2362 spin_unlock(&i915->gem.contexts.lock); 2363 2364 /* 2365 * After updating all other contexts, we need to modify ourselves. 2366 * If we don't modify the kernel_context, we do not get events while 2367 * idle. 2368 */ 2369 for_each_uabi_engine(engine, i915) { 2370 struct intel_context *ce = engine->kernel_context; 2371 2372 if (engine->class != RENDER_CLASS) 2373 continue; 2374 2375 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2376 2377 err = gen8_modify_self(ce, regs, num_regs); 2378 if (err) 2379 return err; 2380 } 2381 2382 return 0; 2383 } 2384 2385 static int gen12_configure_all_contexts(struct i915_perf_stream *stream, 2386 const struct i915_oa_config *oa_config) 2387 { 2388 struct flex regs[] = { 2389 { 2390 GEN8_R_PWR_CLK_STATE, 2391 CTX_R_PWR_CLK_STATE, 2392 }, 2393 }; 2394 2395 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2396 } 2397 2398 static int lrc_configure_all_contexts(struct i915_perf_stream *stream, 2399 const struct i915_oa_config *oa_config) 2400 { 2401 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2402 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2403 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2404 struct flex regs[] = { 2405 { 2406 GEN8_R_PWR_CLK_STATE, 2407 CTX_R_PWR_CLK_STATE, 2408 }, 2409 { 2410 GEN8_OACTXCONTROL, 2411 stream->perf->ctx_oactxctrl_offset + 1, 2412 }, 2413 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2414 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2415 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2416 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2417 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2418 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2419 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2420 }; 2421 #undef ctx_flexeuN 2422 int i; 2423 2424 regs[1].value = 2425 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2426 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2427 GEN8_OA_COUNTER_RESUME; 2428 2429 for (i = 2; i < ARRAY_SIZE(regs); i++) 2430 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2431 2432 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2433 } 2434 2435 static struct i915_request * 2436 gen8_enable_metric_set(struct i915_perf_stream *stream) 2437 { 2438 struct intel_uncore *uncore = stream->uncore; 2439 struct i915_oa_config *oa_config = stream->oa_config; 2440 int ret; 2441 2442 /* 2443 * We disable slice/unslice clock ratio change reports on SKL since 2444 * they are too noisy. The HW generates a lot of redundant reports 2445 * where the ratio hasn't really changed causing a lot of redundant 2446 * work to processes and increasing the chances we'll hit buffer 2447 * overruns. 2448 * 2449 * Although we don't currently use the 'disable overrun' OABUFFER 2450 * feature it's worth noting that clock ratio reports have to be 2451 * disabled before considering to use that feature since the HW doesn't 2452 * correctly block these reports. 2453 * 2454 * Currently none of the high-level metrics we have depend on knowing 2455 * this ratio to normalize. 2456 * 2457 * Note: This register is not power context saved and restored, but 2458 * that's OK considering that we disable RC6 while the OA unit is 2459 * enabled. 2460 * 2461 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2462 * be read back from automatically triggered reports, as part of the 2463 * RPT_ID field. 2464 */ 2465 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2466 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2467 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2468 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2469 } 2470 2471 /* 2472 * Update all contexts prior writing the mux configurations as we need 2473 * to make sure all slices/subslices are ON before writing to NOA 2474 * registers. 2475 */ 2476 ret = lrc_configure_all_contexts(stream, oa_config); 2477 if (ret) 2478 return ERR_PTR(ret); 2479 2480 return emit_oa_config(stream, oa_config, oa_context(stream)); 2481 } 2482 2483 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2484 { 2485 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2486 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2487 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2488 } 2489 2490 static struct i915_request * 2491 gen12_enable_metric_set(struct i915_perf_stream *stream) 2492 { 2493 struct intel_uncore *uncore = stream->uncore; 2494 struct i915_oa_config *oa_config = stream->oa_config; 2495 bool periodic = stream->periodic; 2496 u32 period_exponent = stream->period_exponent; 2497 int ret; 2498 2499 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2500 /* Disable clk ratio reports, like previous Gens. */ 2501 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2502 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2503 /* 2504 * If the user didn't require OA reports, instruct 2505 * the hardware not to emit ctx switch reports. 2506 */ 2507 oag_report_ctx_switches(stream)); 2508 2509 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2510 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2511 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2512 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2513 : 0); 2514 2515 /* 2516 * Update all contexts prior writing the mux configurations as we need 2517 * to make sure all slices/subslices are ON before writing to NOA 2518 * registers. 2519 */ 2520 ret = gen12_configure_all_contexts(stream, oa_config); 2521 if (ret) 2522 return ERR_PTR(ret); 2523 2524 /* 2525 * For Gen12, performance counters are context 2526 * saved/restored. Only enable it for the context that 2527 * requested this. 2528 */ 2529 if (stream->ctx) { 2530 ret = gen12_configure_oar_context(stream, true); 2531 if (ret) 2532 return ERR_PTR(ret); 2533 } 2534 2535 return emit_oa_config(stream, oa_config, oa_context(stream)); 2536 } 2537 2538 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2539 { 2540 struct intel_uncore *uncore = stream->uncore; 2541 2542 /* Reset all contexts' slices/subslices configurations. */ 2543 lrc_configure_all_contexts(stream, NULL); 2544 2545 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2546 } 2547 2548 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2549 { 2550 struct intel_uncore *uncore = stream->uncore; 2551 2552 /* Reset all contexts' slices/subslices configurations. */ 2553 lrc_configure_all_contexts(stream, NULL); 2554 2555 /* Make sure we disable noa to save power. */ 2556 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2557 } 2558 2559 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2560 { 2561 struct intel_uncore *uncore = stream->uncore; 2562 2563 /* Reset all contexts' slices/subslices configurations. */ 2564 gen12_configure_all_contexts(stream, NULL); 2565 2566 /* disable the context save/restore or OAR counters */ 2567 if (stream->ctx) 2568 gen12_configure_oar_context(stream, false); 2569 2570 /* Make sure we disable noa to save power. */ 2571 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2572 } 2573 2574 static void gen7_oa_enable(struct i915_perf_stream *stream) 2575 { 2576 struct intel_uncore *uncore = stream->uncore; 2577 struct i915_gem_context *ctx = stream->ctx; 2578 u32 ctx_id = stream->specific_ctx_id; 2579 bool periodic = stream->periodic; 2580 u32 period_exponent = stream->period_exponent; 2581 u32 report_format = stream->oa_buffer.format; 2582 2583 /* 2584 * Reset buf pointers so we don't forward reports from before now. 2585 * 2586 * Think carefully if considering trying to avoid this, since it 2587 * also ensures status flags and the buffer itself are cleared 2588 * in error paths, and we have checks for invalid reports based 2589 * on the assumption that certain fields are written to zeroed 2590 * memory which this helps maintains. 2591 */ 2592 gen7_init_oa_buffer(stream); 2593 2594 intel_uncore_write(uncore, GEN7_OACONTROL, 2595 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2596 (period_exponent << 2597 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2598 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2599 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2600 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2601 GEN7_OACONTROL_ENABLE); 2602 } 2603 2604 static void gen8_oa_enable(struct i915_perf_stream *stream) 2605 { 2606 struct intel_uncore *uncore = stream->uncore; 2607 u32 report_format = stream->oa_buffer.format; 2608 2609 /* 2610 * Reset buf pointers so we don't forward reports from before now. 2611 * 2612 * Think carefully if considering trying to avoid this, since it 2613 * also ensures status flags and the buffer itself are cleared 2614 * in error paths, and we have checks for invalid reports based 2615 * on the assumption that certain fields are written to zeroed 2616 * memory which this helps maintains. 2617 */ 2618 gen8_init_oa_buffer(stream); 2619 2620 /* 2621 * Note: we don't rely on the hardware to perform single context 2622 * filtering and instead filter on the cpu based on the context-id 2623 * field of reports 2624 */ 2625 intel_uncore_write(uncore, GEN8_OACONTROL, 2626 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2627 GEN8_OA_COUNTER_ENABLE); 2628 } 2629 2630 static void gen12_oa_enable(struct i915_perf_stream *stream) 2631 { 2632 struct intel_uncore *uncore = stream->uncore; 2633 u32 report_format = stream->oa_buffer.format; 2634 2635 /* 2636 * If we don't want OA reports from the OA buffer, then we don't even 2637 * need to program the OAG unit. 2638 */ 2639 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2640 return; 2641 2642 gen12_init_oa_buffer(stream); 2643 2644 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2645 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2646 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2647 } 2648 2649 /** 2650 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2651 * @stream: An i915 perf stream opened for OA metrics 2652 * 2653 * [Re]enables hardware periodic sampling according to the period configured 2654 * when opening the stream. This also starts a hrtimer that will periodically 2655 * check for data in the circular OA buffer for notifying userspace (e.g. 2656 * during a read() or poll()). 2657 */ 2658 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2659 { 2660 stream->perf->ops.oa_enable(stream); 2661 2662 if (stream->periodic) 2663 hrtimer_start(&stream->poll_check_timer, 2664 ns_to_ktime(POLL_PERIOD), 2665 HRTIMER_MODE_REL_PINNED); 2666 } 2667 2668 static void gen7_oa_disable(struct i915_perf_stream *stream) 2669 { 2670 struct intel_uncore *uncore = stream->uncore; 2671 2672 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2673 if (intel_wait_for_register(uncore, 2674 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2675 50)) 2676 drm_err(&stream->perf->i915->drm, 2677 "wait for OA to be disabled timed out\n"); 2678 } 2679 2680 static void gen8_oa_disable(struct i915_perf_stream *stream) 2681 { 2682 struct intel_uncore *uncore = stream->uncore; 2683 2684 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2685 if (intel_wait_for_register(uncore, 2686 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2687 50)) 2688 drm_err(&stream->perf->i915->drm, 2689 "wait for OA to be disabled timed out\n"); 2690 } 2691 2692 static void gen12_oa_disable(struct i915_perf_stream *stream) 2693 { 2694 struct intel_uncore *uncore = stream->uncore; 2695 2696 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2697 if (intel_wait_for_register(uncore, 2698 GEN12_OAG_OACONTROL, 2699 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2700 50)) 2701 drm_err(&stream->perf->i915->drm, 2702 "wait for OA to be disabled timed out\n"); 2703 2704 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2705 if (intel_wait_for_register(uncore, 2706 GEN12_OA_TLB_INV_CR, 2707 1, 0, 2708 50)) 2709 drm_err(&stream->perf->i915->drm, 2710 "wait for OA tlb invalidate timed out\n"); 2711 } 2712 2713 /** 2714 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2715 * @stream: An i915 perf stream opened for OA metrics 2716 * 2717 * Stops the OA unit from periodically writing counter reports into the 2718 * circular OA buffer. This also stops the hrtimer that periodically checks for 2719 * data in the circular OA buffer, for notifying userspace. 2720 */ 2721 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2722 { 2723 stream->perf->ops.oa_disable(stream); 2724 2725 if (stream->periodic) 2726 hrtimer_cancel(&stream->poll_check_timer); 2727 } 2728 2729 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2730 .destroy = i915_oa_stream_destroy, 2731 .enable = i915_oa_stream_enable, 2732 .disable = i915_oa_stream_disable, 2733 .wait_unlocked = i915_oa_wait_unlocked, 2734 .poll_wait = i915_oa_poll_wait, 2735 .read = i915_oa_read, 2736 }; 2737 2738 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2739 { 2740 struct i915_request *rq; 2741 2742 rq = stream->perf->ops.enable_metric_set(stream); 2743 if (IS_ERR(rq)) 2744 return PTR_ERR(rq); 2745 2746 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); 2747 i915_request_put(rq); 2748 2749 return 0; 2750 } 2751 2752 /** 2753 * i915_oa_stream_init - validate combined props for OA stream and init 2754 * @stream: An i915 perf stream 2755 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2756 * @props: The property state that configures stream (individually validated) 2757 * 2758 * While read_properties_unlocked() validates properties in isolation it 2759 * doesn't ensure that the combination necessarily makes sense. 2760 * 2761 * At this point it has been determined that userspace wants a stream of 2762 * OA metrics, but still we need to further validate the combined 2763 * properties are OK. 2764 * 2765 * If the configuration makes sense then we can allocate memory for 2766 * a circular OA buffer and apply the requested metric set configuration. 2767 * 2768 * Returns: zero on success or a negative error code. 2769 */ 2770 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2771 struct drm_i915_perf_open_param *param, 2772 struct perf_open_properties *props) 2773 { 2774 struct drm_i915_private *i915 = stream->perf->i915; 2775 struct i915_perf *perf = stream->perf; 2776 int format_size; 2777 int ret; 2778 2779 if (!props->engine) { 2780 DRM_DEBUG("OA engine not specified\n"); 2781 return -EINVAL; 2782 } 2783 2784 /* 2785 * If the sysfs metrics/ directory wasn't registered for some 2786 * reason then don't let userspace try their luck with config 2787 * IDs 2788 */ 2789 if (!perf->metrics_kobj) { 2790 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2791 return -EINVAL; 2792 } 2793 2794 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2795 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2796 DRM_DEBUG("Only OA report sampling supported\n"); 2797 return -EINVAL; 2798 } 2799 2800 if (!perf->ops.enable_metric_set) { 2801 DRM_DEBUG("OA unit not supported\n"); 2802 return -ENODEV; 2803 } 2804 2805 /* 2806 * To avoid the complexity of having to accurately filter 2807 * counter reports and marshal to the appropriate client 2808 * we currently only allow exclusive access 2809 */ 2810 if (perf->exclusive_stream) { 2811 DRM_DEBUG("OA unit already in use\n"); 2812 return -EBUSY; 2813 } 2814 2815 if (!props->oa_format) { 2816 DRM_DEBUG("OA report format not specified\n"); 2817 return -EINVAL; 2818 } 2819 2820 stream->engine = props->engine; 2821 stream->uncore = stream->engine->gt->uncore; 2822 2823 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2824 2825 format_size = perf->oa_formats[props->oa_format].size; 2826 2827 stream->sample_flags = props->sample_flags; 2828 stream->sample_size += format_size; 2829 2830 stream->oa_buffer.format_size = format_size; 2831 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2832 return -EINVAL; 2833 2834 stream->hold_preemption = props->hold_preemption; 2835 2836 stream->oa_buffer.format = 2837 perf->oa_formats[props->oa_format].format; 2838 2839 stream->periodic = props->oa_periodic; 2840 if (stream->periodic) 2841 stream->period_exponent = props->oa_period_exponent; 2842 2843 if (stream->ctx) { 2844 ret = oa_get_render_ctx_id(stream); 2845 if (ret) { 2846 DRM_DEBUG("Invalid context id to filter with\n"); 2847 return ret; 2848 } 2849 } 2850 2851 ret = alloc_noa_wait(stream); 2852 if (ret) { 2853 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2854 goto err_noa_wait_alloc; 2855 } 2856 2857 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2858 if (!stream->oa_config) { 2859 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2860 ret = -EINVAL; 2861 goto err_config; 2862 } 2863 2864 /* PRM - observability performance counters: 2865 * 2866 * OACONTROL, performance counter enable, note: 2867 * 2868 * "When this bit is set, in order to have coherent counts, 2869 * RC6 power state and trunk clock gating must be disabled. 2870 * This can be achieved by programming MMIO registers as 2871 * 0xA094=0 and 0xA090[31]=1" 2872 * 2873 * In our case we are expecting that taking pm + FORCEWAKE 2874 * references will effectively disable RC6. 2875 */ 2876 intel_engine_pm_get(stream->engine); 2877 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2878 2879 ret = alloc_oa_buffer(stream); 2880 if (ret) 2881 goto err_oa_buf_alloc; 2882 2883 stream->ops = &i915_oa_stream_ops; 2884 WRITE_ONCE(perf->exclusive_stream, stream); 2885 2886 ret = i915_perf_stream_enable_sync(stream); 2887 if (ret) { 2888 DRM_DEBUG("Unable to enable metric set\n"); 2889 goto err_enable; 2890 } 2891 2892 DRM_DEBUG("opening stream oa config uuid=%s\n", 2893 stream->oa_config->uuid); 2894 2895 hrtimer_init(&stream->poll_check_timer, 2896 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2897 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2898 init_waitqueue_head(&stream->poll_wq); 2899 spin_lock_init(&stream->oa_buffer.ptr_lock); 2900 2901 return 0; 2902 2903 err_enable: 2904 WRITE_ONCE(perf->exclusive_stream, NULL); 2905 perf->ops.disable_metric_set(stream); 2906 2907 free_oa_buffer(stream); 2908 2909 err_oa_buf_alloc: 2910 free_oa_configs(stream); 2911 2912 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2913 intel_engine_pm_put(stream->engine); 2914 2915 err_config: 2916 free_noa_wait(stream); 2917 2918 err_noa_wait_alloc: 2919 if (stream->ctx) 2920 oa_put_render_ctx_id(stream); 2921 2922 return ret; 2923 } 2924 2925 void i915_oa_init_reg_state(const struct intel_context *ce, 2926 const struct intel_engine_cs *engine) 2927 { 2928 struct i915_perf_stream *stream; 2929 2930 if (engine->class != RENDER_CLASS) 2931 return; 2932 2933 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2934 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2935 /* 2936 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller 2937 * is already doing that, so nothing to be done for gen12 here. 2938 */ 2939 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2940 gen8_update_reg_state_unlocked(ce, stream); 2941 } 2942 2943 /** 2944 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2945 * @stream: An i915 perf stream 2946 * @file: An i915 perf stream file 2947 * @buf: destination buffer given by userspace 2948 * @count: the number of bytes userspace wants to read 2949 * @ppos: (inout) file seek position (unused) 2950 * 2951 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2952 * ensure that if we've successfully copied any data then reporting that takes 2953 * precedence over any internal error status, so the data isn't lost. 2954 * 2955 * For example ret will be -ENOSPC whenever there is more buffered data than 2956 * can be copied to userspace, but that's only interesting if we weren't able 2957 * to copy some data because it implies the userspace buffer is too small to 2958 * receive a single record (and we never split records). 2959 * 2960 * Another case with ret == -EFAULT is more of a grey area since it would seem 2961 * like bad form for userspace to ask us to overrun its buffer, but the user 2962 * knows best: 2963 * 2964 * http://yarchive.net/comp/linux/partial_reads_writes.html 2965 * 2966 * Returns: The number of bytes copied or a negative error code on failure. 2967 */ 2968 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2969 struct file *file, 2970 char __user *buf, 2971 size_t count, 2972 loff_t *ppos) 2973 { 2974 /* Note we keep the offset (aka bytes read) separate from any 2975 * error status so that the final check for whether we return 2976 * the bytes read with a higher precedence than any error (see 2977 * comment below) doesn't need to be handled/duplicated in 2978 * stream->ops->read() implementations. 2979 */ 2980 size_t offset = 0; 2981 int ret = stream->ops->read(stream, buf, count, &offset); 2982 2983 return offset ?: (ret ?: -EAGAIN); 2984 } 2985 2986 /** 2987 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2988 * @file: An i915 perf stream file 2989 * @buf: destination buffer given by userspace 2990 * @count: the number of bytes userspace wants to read 2991 * @ppos: (inout) file seek position (unused) 2992 * 2993 * The entry point for handling a read() on a stream file descriptor from 2994 * userspace. Most of the work is left to the i915_perf_read_locked() and 2995 * &i915_perf_stream_ops->read but to save having stream implementations (of 2996 * which we might have multiple later) we handle blocking read here. 2997 * 2998 * We can also consistently treat trying to read from a disabled stream 2999 * as an IO error so implementations can assume the stream is enabled 3000 * while reading. 3001 * 3002 * Returns: The number of bytes copied or a negative error code on failure. 3003 */ 3004 static ssize_t i915_perf_read(struct file *file, 3005 char __user *buf, 3006 size_t count, 3007 loff_t *ppos) 3008 { 3009 struct i915_perf_stream *stream = file->private_data; 3010 struct i915_perf *perf = stream->perf; 3011 ssize_t ret; 3012 3013 /* To ensure it's handled consistently we simply treat all reads of a 3014 * disabled stream as an error. In particular it might otherwise lead 3015 * to a deadlock for blocking file descriptors... 3016 */ 3017 if (!stream->enabled) 3018 return -EIO; 3019 3020 if (!(file->f_flags & O_NONBLOCK)) { 3021 /* There's the small chance of false positives from 3022 * stream->ops->wait_unlocked. 3023 * 3024 * E.g. with single context filtering since we only wait until 3025 * oabuffer has >= 1 report we don't immediately know whether 3026 * any reports really belong to the current context 3027 */ 3028 do { 3029 ret = stream->ops->wait_unlocked(stream); 3030 if (ret) 3031 return ret; 3032 3033 mutex_lock(&perf->lock); 3034 ret = i915_perf_read_locked(stream, file, 3035 buf, count, ppos); 3036 mutex_unlock(&perf->lock); 3037 } while (ret == -EAGAIN); 3038 } else { 3039 mutex_lock(&perf->lock); 3040 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 3041 mutex_unlock(&perf->lock); 3042 } 3043 3044 /* We allow the poll checking to sometimes report false positive EPOLLIN 3045 * events where we might actually report EAGAIN on read() if there's 3046 * not really any data available. In this situation though we don't 3047 * want to enter a busy loop between poll() reporting a EPOLLIN event 3048 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3049 * effectively ensures we back off until the next hrtimer callback 3050 * before reporting another EPOLLIN event. 3051 */ 3052 if (ret >= 0 || ret == -EAGAIN) { 3053 /* Maybe make ->pollin per-stream state if we support multiple 3054 * concurrent streams in the future. 3055 */ 3056 stream->pollin = false; 3057 } 3058 3059 return ret; 3060 } 3061 3062 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3063 { 3064 struct i915_perf_stream *stream = 3065 container_of(hrtimer, typeof(*stream), poll_check_timer); 3066 3067 if (oa_buffer_check_unlocked(stream)) { 3068 stream->pollin = true; 3069 wake_up(&stream->poll_wq); 3070 } 3071 3072 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 3073 3074 return HRTIMER_RESTART; 3075 } 3076 3077 /** 3078 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3079 * @stream: An i915 perf stream 3080 * @file: An i915 perf stream file 3081 * @wait: poll() state table 3082 * 3083 * For handling userspace polling on an i915 perf stream, this calls through to 3084 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3085 * will be woken for new stream data. 3086 * 3087 * Note: The &perf->lock mutex has been taken to serialize 3088 * with any non-file-operation driver hooks. 3089 * 3090 * Returns: any poll events that are ready without sleeping 3091 */ 3092 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3093 struct file *file, 3094 poll_table *wait) 3095 { 3096 __poll_t events = 0; 3097 3098 stream->ops->poll_wait(stream, file, wait); 3099 3100 /* Note: we don't explicitly check whether there's something to read 3101 * here since this path may be very hot depending on what else 3102 * userspace is polling, or on the timeout in use. We rely solely on 3103 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3104 * samples to read. 3105 */ 3106 if (stream->pollin) 3107 events |= EPOLLIN; 3108 3109 return events; 3110 } 3111 3112 /** 3113 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3114 * @file: An i915 perf stream file 3115 * @wait: poll() state table 3116 * 3117 * For handling userspace polling on an i915 perf stream, this ensures 3118 * poll_wait() gets called with a wait queue that will be woken for new stream 3119 * data. 3120 * 3121 * Note: Implementation deferred to i915_perf_poll_locked() 3122 * 3123 * Returns: any poll events that are ready without sleeping 3124 */ 3125 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3126 { 3127 struct i915_perf_stream *stream = file->private_data; 3128 struct i915_perf *perf = stream->perf; 3129 __poll_t ret; 3130 3131 mutex_lock(&perf->lock); 3132 ret = i915_perf_poll_locked(stream, file, wait); 3133 mutex_unlock(&perf->lock); 3134 3135 return ret; 3136 } 3137 3138 /** 3139 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3140 * @stream: A disabled i915 perf stream 3141 * 3142 * [Re]enables the associated capture of data for this stream. 3143 * 3144 * If a stream was previously enabled then there's currently no intention 3145 * to provide userspace any guarantee about the preservation of previously 3146 * buffered data. 3147 */ 3148 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3149 { 3150 if (stream->enabled) 3151 return; 3152 3153 /* Allow stream->ops->enable() to refer to this */ 3154 stream->enabled = true; 3155 3156 if (stream->ops->enable) 3157 stream->ops->enable(stream); 3158 3159 if (stream->hold_preemption) 3160 intel_context_set_nopreempt(stream->pinned_ctx); 3161 } 3162 3163 /** 3164 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3165 * @stream: An enabled i915 perf stream 3166 * 3167 * Disables the associated capture of data for this stream. 3168 * 3169 * The intention is that disabling an re-enabling a stream will ideally be 3170 * cheaper than destroying and re-opening a stream with the same configuration, 3171 * though there are no formal guarantees about what state or buffered data 3172 * must be retained between disabling and re-enabling a stream. 3173 * 3174 * Note: while a stream is disabled it's considered an error for userspace 3175 * to attempt to read from the stream (-EIO). 3176 */ 3177 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3178 { 3179 if (!stream->enabled) 3180 return; 3181 3182 /* Allow stream->ops->disable() to refer to this */ 3183 stream->enabled = false; 3184 3185 if (stream->hold_preemption) 3186 intel_context_clear_nopreempt(stream->pinned_ctx); 3187 3188 if (stream->ops->disable) 3189 stream->ops->disable(stream); 3190 } 3191 3192 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3193 unsigned long metrics_set) 3194 { 3195 struct i915_oa_config *config; 3196 long ret = stream->oa_config->id; 3197 3198 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3199 if (!config) 3200 return -EINVAL; 3201 3202 if (config != stream->oa_config) { 3203 struct i915_request *rq; 3204 3205 /* 3206 * If OA is bound to a specific context, emit the 3207 * reconfiguration inline from that context. The update 3208 * will then be ordered with respect to submission on that 3209 * context. 3210 * 3211 * When set globally, we use a low priority kernel context, 3212 * so it will effectively take effect when idle. 3213 */ 3214 rq = emit_oa_config(stream, config, oa_context(stream)); 3215 if (!IS_ERR(rq)) { 3216 config = xchg(&stream->oa_config, config); 3217 i915_request_put(rq); 3218 } else { 3219 ret = PTR_ERR(rq); 3220 } 3221 } 3222 3223 i915_oa_config_put(config); 3224 3225 return ret; 3226 } 3227 3228 /** 3229 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3230 * @stream: An i915 perf stream 3231 * @cmd: the ioctl request 3232 * @arg: the ioctl data 3233 * 3234 * Note: The &perf->lock mutex has been taken to serialize 3235 * with any non-file-operation driver hooks. 3236 * 3237 * Returns: zero on success or a negative error code. Returns -EINVAL for 3238 * an unknown ioctl request. 3239 */ 3240 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3241 unsigned int cmd, 3242 unsigned long arg) 3243 { 3244 switch (cmd) { 3245 case I915_PERF_IOCTL_ENABLE: 3246 i915_perf_enable_locked(stream); 3247 return 0; 3248 case I915_PERF_IOCTL_DISABLE: 3249 i915_perf_disable_locked(stream); 3250 return 0; 3251 case I915_PERF_IOCTL_CONFIG: 3252 return i915_perf_config_locked(stream, arg); 3253 } 3254 3255 return -EINVAL; 3256 } 3257 3258 /** 3259 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3260 * @file: An i915 perf stream file 3261 * @cmd: the ioctl request 3262 * @arg: the ioctl data 3263 * 3264 * Implementation deferred to i915_perf_ioctl_locked(). 3265 * 3266 * Returns: zero on success or a negative error code. Returns -EINVAL for 3267 * an unknown ioctl request. 3268 */ 3269 static long i915_perf_ioctl(struct file *file, 3270 unsigned int cmd, 3271 unsigned long arg) 3272 { 3273 struct i915_perf_stream *stream = file->private_data; 3274 struct i915_perf *perf = stream->perf; 3275 long ret; 3276 3277 mutex_lock(&perf->lock); 3278 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3279 mutex_unlock(&perf->lock); 3280 3281 return ret; 3282 } 3283 3284 /** 3285 * i915_perf_destroy_locked - destroy an i915 perf stream 3286 * @stream: An i915 perf stream 3287 * 3288 * Frees all resources associated with the given i915 perf @stream, disabling 3289 * any associated data capture in the process. 3290 * 3291 * Note: The &perf->lock mutex has been taken to serialize 3292 * with any non-file-operation driver hooks. 3293 */ 3294 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3295 { 3296 if (stream->enabled) 3297 i915_perf_disable_locked(stream); 3298 3299 if (stream->ops->destroy) 3300 stream->ops->destroy(stream); 3301 3302 if (stream->ctx) 3303 i915_gem_context_put(stream->ctx); 3304 3305 kfree(stream); 3306 } 3307 3308 /** 3309 * i915_perf_release - handles userspace close() of a stream file 3310 * @inode: anonymous inode associated with file 3311 * @file: An i915 perf stream file 3312 * 3313 * Cleans up any resources associated with an open i915 perf stream file. 3314 * 3315 * NB: close() can't really fail from the userspace point of view. 3316 * 3317 * Returns: zero on success or a negative error code. 3318 */ 3319 static int i915_perf_release(struct inode *inode, struct file *file) 3320 { 3321 struct i915_perf_stream *stream = file->private_data; 3322 struct i915_perf *perf = stream->perf; 3323 3324 mutex_lock(&perf->lock); 3325 i915_perf_destroy_locked(stream); 3326 mutex_unlock(&perf->lock); 3327 3328 /* Release the reference the perf stream kept on the driver. */ 3329 drm_dev_put(&perf->i915->drm); 3330 3331 return 0; 3332 } 3333 3334 3335 static const struct file_operations fops = { 3336 .owner = THIS_MODULE, 3337 .llseek = no_llseek, 3338 .release = i915_perf_release, 3339 .poll = i915_perf_poll, 3340 .read = i915_perf_read, 3341 .unlocked_ioctl = i915_perf_ioctl, 3342 /* Our ioctl have no arguments, so it's safe to use the same function 3343 * to handle 32bits compatibility. 3344 */ 3345 .compat_ioctl = i915_perf_ioctl, 3346 }; 3347 3348 3349 /** 3350 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3351 * @perf: i915 perf instance 3352 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3353 * @props: individually validated u64 property value pairs 3354 * @file: drm file 3355 * 3356 * See i915_perf_ioctl_open() for interface details. 3357 * 3358 * Implements further stream config validation and stream initialization on 3359 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3360 * taken to serialize with any non-file-operation driver hooks. 3361 * 3362 * Note: at this point the @props have only been validated in isolation and 3363 * it's still necessary to validate that the combination of properties makes 3364 * sense. 3365 * 3366 * In the case where userspace is interested in OA unit metrics then further 3367 * config validation and stream initialization details will be handled by 3368 * i915_oa_stream_init(). The code here should only validate config state that 3369 * will be relevant to all stream types / backends. 3370 * 3371 * Returns: zero on success or a negative error code. 3372 */ 3373 static int 3374 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3375 struct drm_i915_perf_open_param *param, 3376 struct perf_open_properties *props, 3377 struct drm_file *file) 3378 { 3379 struct i915_gem_context *specific_ctx = NULL; 3380 struct i915_perf_stream *stream = NULL; 3381 unsigned long f_flags = 0; 3382 bool privileged_op = true; 3383 int stream_fd; 3384 int ret; 3385 3386 if (props->single_context) { 3387 u32 ctx_handle = props->ctx_handle; 3388 struct drm_i915_file_private *file_priv = file->driver_priv; 3389 3390 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3391 if (!specific_ctx) { 3392 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3393 ctx_handle); 3394 ret = -ENOENT; 3395 goto err; 3396 } 3397 } 3398 3399 /* 3400 * On Haswell the OA unit supports clock gating off for a specific 3401 * context and in this mode there's no visibility of metrics for the 3402 * rest of the system, which we consider acceptable for a 3403 * non-privileged client. 3404 * 3405 * For Gen8->11 the OA unit no longer supports clock gating off for a 3406 * specific context and the kernel can't securely stop the counters 3407 * from updating as system-wide / global values. Even though we can 3408 * filter reports based on the included context ID we can't block 3409 * clients from seeing the raw / global counter values via 3410 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3411 * enable the OA unit by default. 3412 * 3413 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3414 * per context basis. So we can relax requirements there if the user 3415 * doesn't request global stream access (i.e. query based sampling 3416 * using MI_RECORD_PERF_COUNT. 3417 */ 3418 if (IS_HASWELL(perf->i915) && specific_ctx) 3419 privileged_op = false; 3420 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3421 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3422 privileged_op = false; 3423 3424 if (props->hold_preemption) { 3425 if (!props->single_context) { 3426 DRM_DEBUG("preemption disable with no context\n"); 3427 ret = -EINVAL; 3428 goto err; 3429 } 3430 privileged_op = true; 3431 } 3432 3433 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3434 * we check a dev.i915.perf_stream_paranoid sysctl option 3435 * to determine if it's ok to access system wide OA counters 3436 * without CAP_SYS_ADMIN privileges. 3437 */ 3438 if (privileged_op && 3439 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3440 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3441 ret = -EACCES; 3442 goto err_ctx; 3443 } 3444 3445 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3446 if (!stream) { 3447 ret = -ENOMEM; 3448 goto err_ctx; 3449 } 3450 3451 stream->perf = perf; 3452 stream->ctx = specific_ctx; 3453 3454 ret = i915_oa_stream_init(stream, param, props); 3455 if (ret) 3456 goto err_alloc; 3457 3458 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3459 * to have _stream_init check the combination of sample flags more 3460 * thoroughly, but still this is the expected result at this point. 3461 */ 3462 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3463 ret = -ENODEV; 3464 goto err_flags; 3465 } 3466 3467 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3468 f_flags |= O_CLOEXEC; 3469 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3470 f_flags |= O_NONBLOCK; 3471 3472 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3473 if (stream_fd < 0) { 3474 ret = stream_fd; 3475 goto err_flags; 3476 } 3477 3478 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3479 i915_perf_enable_locked(stream); 3480 3481 /* Take a reference on the driver that will be kept with stream_fd 3482 * until its release. 3483 */ 3484 drm_dev_get(&perf->i915->drm); 3485 3486 return stream_fd; 3487 3488 err_flags: 3489 if (stream->ops->destroy) 3490 stream->ops->destroy(stream); 3491 err_alloc: 3492 kfree(stream); 3493 err_ctx: 3494 if (specific_ctx) 3495 i915_gem_context_put(specific_ctx); 3496 err: 3497 return ret; 3498 } 3499 3500 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3501 { 3502 return div64_u64(1000000000ULL * (2ULL << exponent), 3503 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz); 3504 } 3505 3506 /** 3507 * read_properties_unlocked - validate + copy userspace stream open properties 3508 * @perf: i915 perf instance 3509 * @uprops: The array of u64 key value pairs given by userspace 3510 * @n_props: The number of key value pairs expected in @uprops 3511 * @props: The stream configuration built up while validating properties 3512 * 3513 * Note this function only validates properties in isolation it doesn't 3514 * validate that the combination of properties makes sense or that all 3515 * properties necessary for a particular kind of stream have been set. 3516 * 3517 * Note that there currently aren't any ordering requirements for properties so 3518 * we shouldn't validate or assume anything about ordering here. This doesn't 3519 * rule out defining new properties with ordering requirements in the future. 3520 */ 3521 static int read_properties_unlocked(struct i915_perf *perf, 3522 u64 __user *uprops, 3523 u32 n_props, 3524 struct perf_open_properties *props) 3525 { 3526 u64 __user *uprop = uprops; 3527 u32 i; 3528 3529 memset(props, 0, sizeof(struct perf_open_properties)); 3530 3531 if (!n_props) { 3532 DRM_DEBUG("No i915 perf properties given\n"); 3533 return -EINVAL; 3534 } 3535 3536 /* At the moment we only support using i915-perf on the RCS. */ 3537 props->engine = intel_engine_lookup_user(perf->i915, 3538 I915_ENGINE_CLASS_RENDER, 3539 0); 3540 if (!props->engine) { 3541 DRM_DEBUG("No RENDER-capable engines\n"); 3542 return -EINVAL; 3543 } 3544 3545 /* Considering that ID = 0 is reserved and assuming that we don't 3546 * (currently) expect any configurations to ever specify duplicate 3547 * values for a particular property ID then the last _PROP_MAX value is 3548 * one greater than the maximum number of properties we expect to get 3549 * from userspace. 3550 */ 3551 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3552 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3553 return -EINVAL; 3554 } 3555 3556 for (i = 0; i < n_props; i++) { 3557 u64 oa_period, oa_freq_hz; 3558 u64 id, value; 3559 int ret; 3560 3561 ret = get_user(id, uprop); 3562 if (ret) 3563 return ret; 3564 3565 ret = get_user(value, uprop + 1); 3566 if (ret) 3567 return ret; 3568 3569 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3570 DRM_DEBUG("Unknown i915 perf property ID\n"); 3571 return -EINVAL; 3572 } 3573 3574 switch ((enum drm_i915_perf_property_id)id) { 3575 case DRM_I915_PERF_PROP_CTX_HANDLE: 3576 props->single_context = 1; 3577 props->ctx_handle = value; 3578 break; 3579 case DRM_I915_PERF_PROP_SAMPLE_OA: 3580 if (value) 3581 props->sample_flags |= SAMPLE_OA_REPORT; 3582 break; 3583 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3584 if (value == 0) { 3585 DRM_DEBUG("Unknown OA metric set ID\n"); 3586 return -EINVAL; 3587 } 3588 props->metrics_set = value; 3589 break; 3590 case DRM_I915_PERF_PROP_OA_FORMAT: 3591 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3592 DRM_DEBUG("Out-of-range OA report format %llu\n", 3593 value); 3594 return -EINVAL; 3595 } 3596 if (!perf->oa_formats[value].size) { 3597 DRM_DEBUG("Unsupported OA report format %llu\n", 3598 value); 3599 return -EINVAL; 3600 } 3601 props->oa_format = value; 3602 break; 3603 case DRM_I915_PERF_PROP_OA_EXPONENT: 3604 if (value > OA_EXPONENT_MAX) { 3605 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3606 OA_EXPONENT_MAX); 3607 return -EINVAL; 3608 } 3609 3610 /* Theoretically we can program the OA unit to sample 3611 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3612 * for BXT. We don't allow such high sampling 3613 * frequencies by default unless root. 3614 */ 3615 3616 BUILD_BUG_ON(sizeof(oa_period) != 8); 3617 oa_period = oa_exponent_to_ns(perf, value); 3618 3619 /* This check is primarily to ensure that oa_period <= 3620 * UINT32_MAX (before passing to do_div which only 3621 * accepts a u32 denominator), but we can also skip 3622 * checking anything < 1Hz which implicitly can't be 3623 * limited via an integer oa_max_sample_rate. 3624 */ 3625 if (oa_period <= NSEC_PER_SEC) { 3626 u64 tmp = NSEC_PER_SEC; 3627 do_div(tmp, oa_period); 3628 oa_freq_hz = tmp; 3629 } else 3630 oa_freq_hz = 0; 3631 3632 if (oa_freq_hz > i915_oa_max_sample_rate && 3633 !capable(CAP_SYS_ADMIN)) { 3634 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 3635 i915_oa_max_sample_rate); 3636 return -EACCES; 3637 } 3638 3639 props->oa_periodic = true; 3640 props->oa_period_exponent = value; 3641 break; 3642 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3643 props->hold_preemption = !!value; 3644 break; 3645 case DRM_I915_PERF_PROP_MAX: 3646 MISSING_CASE(id); 3647 return -EINVAL; 3648 } 3649 3650 uprop += 2; 3651 } 3652 3653 return 0; 3654 } 3655 3656 /** 3657 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3658 * @dev: drm device 3659 * @data: ioctl data copied from userspace (unvalidated) 3660 * @file: drm file 3661 * 3662 * Validates the stream open parameters given by userspace including flags 3663 * and an array of u64 key, value pair properties. 3664 * 3665 * Very little is assumed up front about the nature of the stream being 3666 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3667 * i915-perf stream is expected to be a suitable interface for other forms of 3668 * buffered data written by the GPU besides periodic OA metrics. 3669 * 3670 * Note we copy the properties from userspace outside of the i915 perf 3671 * mutex to avoid an awkward lockdep with mmap_sem. 3672 * 3673 * Most of the implementation details are handled by 3674 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3675 * mutex for serializing with any non-file-operation driver hooks. 3676 * 3677 * Return: A newly opened i915 Perf stream file descriptor or negative 3678 * error code on failure. 3679 */ 3680 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3681 struct drm_file *file) 3682 { 3683 struct i915_perf *perf = &to_i915(dev)->perf; 3684 struct drm_i915_perf_open_param *param = data; 3685 struct perf_open_properties props; 3686 u32 known_open_flags; 3687 int ret; 3688 3689 if (!perf->i915) { 3690 DRM_DEBUG("i915 perf interface not available for this system\n"); 3691 return -ENOTSUPP; 3692 } 3693 3694 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3695 I915_PERF_FLAG_FD_NONBLOCK | 3696 I915_PERF_FLAG_DISABLED; 3697 if (param->flags & ~known_open_flags) { 3698 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3699 return -EINVAL; 3700 } 3701 3702 ret = read_properties_unlocked(perf, 3703 u64_to_user_ptr(param->properties_ptr), 3704 param->num_properties, 3705 &props); 3706 if (ret) 3707 return ret; 3708 3709 mutex_lock(&perf->lock); 3710 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3711 mutex_unlock(&perf->lock); 3712 3713 return ret; 3714 } 3715 3716 /** 3717 * i915_perf_register - exposes i915-perf to userspace 3718 * @i915: i915 device instance 3719 * 3720 * In particular OA metric sets are advertised under a sysfs metrics/ 3721 * directory allowing userspace to enumerate valid IDs that can be 3722 * used to open an i915-perf stream. 3723 */ 3724 void i915_perf_register(struct drm_i915_private *i915) 3725 { 3726 struct i915_perf *perf = &i915->perf; 3727 int ret; 3728 3729 if (!perf->i915) 3730 return; 3731 3732 /* To be sure we're synchronized with an attempted 3733 * i915_perf_open_ioctl(); considering that we register after 3734 * being exposed to userspace. 3735 */ 3736 mutex_lock(&perf->lock); 3737 3738 perf->metrics_kobj = 3739 kobject_create_and_add("metrics", 3740 &i915->drm.primary->kdev->kobj); 3741 if (!perf->metrics_kobj) 3742 goto exit; 3743 3744 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr); 3745 3746 if (IS_TIGERLAKE(i915)) { 3747 i915_perf_load_test_config_tgl(i915); 3748 } else if (INTEL_GEN(i915) >= 11) { 3749 i915_perf_load_test_config_icl(i915); 3750 } else if (IS_CANNONLAKE(i915)) { 3751 i915_perf_load_test_config_cnl(i915); 3752 } else if (IS_COFFEELAKE(i915)) { 3753 if (IS_CFL_GT2(i915)) 3754 i915_perf_load_test_config_cflgt2(i915); 3755 if (IS_CFL_GT3(i915)) 3756 i915_perf_load_test_config_cflgt3(i915); 3757 } else if (IS_GEMINILAKE(i915)) { 3758 i915_perf_load_test_config_glk(i915); 3759 } else if (IS_KABYLAKE(i915)) { 3760 if (IS_KBL_GT2(i915)) 3761 i915_perf_load_test_config_kblgt2(i915); 3762 else if (IS_KBL_GT3(i915)) 3763 i915_perf_load_test_config_kblgt3(i915); 3764 } else if (IS_BROXTON(i915)) { 3765 i915_perf_load_test_config_bxt(i915); 3766 } else if (IS_SKYLAKE(i915)) { 3767 if (IS_SKL_GT2(i915)) 3768 i915_perf_load_test_config_sklgt2(i915); 3769 else if (IS_SKL_GT3(i915)) 3770 i915_perf_load_test_config_sklgt3(i915); 3771 else if (IS_SKL_GT4(i915)) 3772 i915_perf_load_test_config_sklgt4(i915); 3773 } else if (IS_CHERRYVIEW(i915)) { 3774 i915_perf_load_test_config_chv(i915); 3775 } else if (IS_BROADWELL(i915)) { 3776 i915_perf_load_test_config_bdw(i915); 3777 } else if (IS_HASWELL(i915)) { 3778 i915_perf_load_test_config_hsw(i915); 3779 } 3780 3781 if (perf->test_config.id == 0) 3782 goto sysfs_error; 3783 3784 ret = sysfs_create_group(perf->metrics_kobj, 3785 &perf->test_config.sysfs_metric); 3786 if (ret) 3787 goto sysfs_error; 3788 3789 perf->test_config.perf = perf; 3790 kref_init(&perf->test_config.ref); 3791 3792 goto exit; 3793 3794 sysfs_error: 3795 kobject_put(perf->metrics_kobj); 3796 perf->metrics_kobj = NULL; 3797 3798 exit: 3799 mutex_unlock(&perf->lock); 3800 } 3801 3802 /** 3803 * i915_perf_unregister - hide i915-perf from userspace 3804 * @i915: i915 device instance 3805 * 3806 * i915-perf state cleanup is split up into an 'unregister' and 3807 * 'deinit' phase where the interface is first hidden from 3808 * userspace by i915_perf_unregister() before cleaning up 3809 * remaining state in i915_perf_fini(). 3810 */ 3811 void i915_perf_unregister(struct drm_i915_private *i915) 3812 { 3813 struct i915_perf *perf = &i915->perf; 3814 3815 if (!perf->metrics_kobj) 3816 return; 3817 3818 sysfs_remove_group(perf->metrics_kobj, 3819 &perf->test_config.sysfs_metric); 3820 3821 kobject_put(perf->metrics_kobj); 3822 perf->metrics_kobj = NULL; 3823 } 3824 3825 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3826 { 3827 static const i915_reg_t flex_eu_regs[] = { 3828 EU_PERF_CNTL0, 3829 EU_PERF_CNTL1, 3830 EU_PERF_CNTL2, 3831 EU_PERF_CNTL3, 3832 EU_PERF_CNTL4, 3833 EU_PERF_CNTL5, 3834 EU_PERF_CNTL6, 3835 }; 3836 int i; 3837 3838 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3839 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3840 return true; 3841 } 3842 return false; 3843 } 3844 3845 #define ADDR_IN_RANGE(addr, start, end) \ 3846 ((addr) >= (start) && \ 3847 (addr) <= (end)) 3848 3849 #define REG_IN_RANGE(addr, start, end) \ 3850 ((addr) >= i915_mmio_reg_offset(start) && \ 3851 (addr) <= i915_mmio_reg_offset(end)) 3852 3853 #define REG_EQUAL(addr, mmio) \ 3854 ((addr) == i915_mmio_reg_offset(mmio)) 3855 3856 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3857 { 3858 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3859 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3860 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3861 } 3862 3863 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3864 { 3865 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3866 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3867 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3868 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3869 } 3870 3871 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3872 { 3873 return gen7_is_valid_mux_addr(perf, addr) || 3874 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3875 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3876 } 3877 3878 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3879 { 3880 return gen8_is_valid_mux_addr(perf, addr) || 3881 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3882 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3883 } 3884 3885 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3886 { 3887 return gen7_is_valid_mux_addr(perf, addr) || 3888 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3889 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3890 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3891 } 3892 3893 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3894 { 3895 return gen7_is_valid_mux_addr(perf, addr) || 3896 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3897 } 3898 3899 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3900 { 3901 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3902 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3903 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3904 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3905 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3906 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3907 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3908 } 3909 3910 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3911 { 3912 return REG_EQUAL(addr, NOA_WRITE) || 3913 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3914 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3915 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3916 REG_EQUAL(addr, RPM_CONFIG0) || 3917 REG_EQUAL(addr, RPM_CONFIG1) || 3918 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3919 } 3920 3921 static u32 mask_reg_value(u32 reg, u32 val) 3922 { 3923 /* HALF_SLICE_CHICKEN2 is programmed with a the 3924 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3925 * programmed by userspace doesn't change this. 3926 */ 3927 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3928 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3929 3930 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3931 * indicated by its name and a bunch of selection fields used by OA 3932 * configs. 3933 */ 3934 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3935 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3936 3937 return val; 3938 } 3939 3940 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3941 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3942 u32 __user *regs, 3943 u32 n_regs) 3944 { 3945 struct i915_oa_reg *oa_regs; 3946 int err; 3947 u32 i; 3948 3949 if (!n_regs) 3950 return NULL; 3951 3952 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3953 return ERR_PTR(-EFAULT); 3954 3955 /* No is_valid function means we're not allowing any register to be programmed. */ 3956 GEM_BUG_ON(!is_valid); 3957 if (!is_valid) 3958 return ERR_PTR(-EINVAL); 3959 3960 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3961 if (!oa_regs) 3962 return ERR_PTR(-ENOMEM); 3963 3964 for (i = 0; i < n_regs; i++) { 3965 u32 addr, value; 3966 3967 err = get_user(addr, regs); 3968 if (err) 3969 goto addr_err; 3970 3971 if (!is_valid(perf, addr)) { 3972 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3973 err = -EINVAL; 3974 goto addr_err; 3975 } 3976 3977 err = get_user(value, regs + 1); 3978 if (err) 3979 goto addr_err; 3980 3981 oa_regs[i].addr = _MMIO(addr); 3982 oa_regs[i].value = mask_reg_value(addr, value); 3983 3984 regs += 2; 3985 } 3986 3987 return oa_regs; 3988 3989 addr_err: 3990 kfree(oa_regs); 3991 return ERR_PTR(err); 3992 } 3993 3994 static ssize_t show_dynamic_id(struct device *dev, 3995 struct device_attribute *attr, 3996 char *buf) 3997 { 3998 struct i915_oa_config *oa_config = 3999 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4000 4001 return sprintf(buf, "%d\n", oa_config->id); 4002 } 4003 4004 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4005 struct i915_oa_config *oa_config) 4006 { 4007 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4008 oa_config->sysfs_metric_id.attr.name = "id"; 4009 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4010 oa_config->sysfs_metric_id.show = show_dynamic_id; 4011 oa_config->sysfs_metric_id.store = NULL; 4012 4013 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4014 oa_config->attrs[1] = NULL; 4015 4016 oa_config->sysfs_metric.name = oa_config->uuid; 4017 oa_config->sysfs_metric.attrs = oa_config->attrs; 4018 4019 return sysfs_create_group(perf->metrics_kobj, 4020 &oa_config->sysfs_metric); 4021 } 4022 4023 /** 4024 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4025 * @dev: drm device 4026 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4027 * userspace (unvalidated) 4028 * @file: drm file 4029 * 4030 * Validates the submitted OA register to be saved into a new OA config that 4031 * can then be used for programming the OA unit and its NOA network. 4032 * 4033 * Returns: A new allocated config number to be used with the perf open ioctl 4034 * or a negative error code on failure. 4035 */ 4036 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4037 struct drm_file *file) 4038 { 4039 struct i915_perf *perf = &to_i915(dev)->perf; 4040 struct drm_i915_perf_oa_config *args = data; 4041 struct i915_oa_config *oa_config, *tmp; 4042 struct i915_oa_reg *regs; 4043 int err, id; 4044 4045 if (!perf->i915) { 4046 DRM_DEBUG("i915 perf interface not available for this system\n"); 4047 return -ENOTSUPP; 4048 } 4049 4050 if (!perf->metrics_kobj) { 4051 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4052 return -EINVAL; 4053 } 4054 4055 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4056 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4057 return -EACCES; 4058 } 4059 4060 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4061 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4062 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4063 DRM_DEBUG("No OA registers given\n"); 4064 return -EINVAL; 4065 } 4066 4067 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4068 if (!oa_config) { 4069 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4070 return -ENOMEM; 4071 } 4072 4073 oa_config->perf = perf; 4074 kref_init(&oa_config->ref); 4075 4076 if (!uuid_is_valid(args->uuid)) { 4077 DRM_DEBUG("Invalid uuid format for OA config\n"); 4078 err = -EINVAL; 4079 goto reg_err; 4080 } 4081 4082 /* Last character in oa_config->uuid will be 0 because oa_config is 4083 * kzalloc. 4084 */ 4085 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4086 4087 oa_config->mux_regs_len = args->n_mux_regs; 4088 regs = alloc_oa_regs(perf, 4089 perf->ops.is_valid_mux_reg, 4090 u64_to_user_ptr(args->mux_regs_ptr), 4091 args->n_mux_regs); 4092 4093 if (IS_ERR(regs)) { 4094 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4095 err = PTR_ERR(regs); 4096 goto reg_err; 4097 } 4098 oa_config->mux_regs = regs; 4099 4100 oa_config->b_counter_regs_len = args->n_boolean_regs; 4101 regs = alloc_oa_regs(perf, 4102 perf->ops.is_valid_b_counter_reg, 4103 u64_to_user_ptr(args->boolean_regs_ptr), 4104 args->n_boolean_regs); 4105 4106 if (IS_ERR(regs)) { 4107 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4108 err = PTR_ERR(regs); 4109 goto reg_err; 4110 } 4111 oa_config->b_counter_regs = regs; 4112 4113 if (INTEL_GEN(perf->i915) < 8) { 4114 if (args->n_flex_regs != 0) { 4115 err = -EINVAL; 4116 goto reg_err; 4117 } 4118 } else { 4119 oa_config->flex_regs_len = args->n_flex_regs; 4120 regs = alloc_oa_regs(perf, 4121 perf->ops.is_valid_flex_reg, 4122 u64_to_user_ptr(args->flex_regs_ptr), 4123 args->n_flex_regs); 4124 4125 if (IS_ERR(regs)) { 4126 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4127 err = PTR_ERR(regs); 4128 goto reg_err; 4129 } 4130 oa_config->flex_regs = regs; 4131 } 4132 4133 err = mutex_lock_interruptible(&perf->metrics_lock); 4134 if (err) 4135 goto reg_err; 4136 4137 /* We shouldn't have too many configs, so this iteration shouldn't be 4138 * too costly. 4139 */ 4140 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4141 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4142 DRM_DEBUG("OA config already exists with this uuid\n"); 4143 err = -EADDRINUSE; 4144 goto sysfs_err; 4145 } 4146 } 4147 4148 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4149 if (err) { 4150 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4151 goto sysfs_err; 4152 } 4153 4154 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4155 oa_config->id = idr_alloc(&perf->metrics_idr, 4156 oa_config, 2, 4157 0, GFP_KERNEL); 4158 if (oa_config->id < 0) { 4159 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4160 err = oa_config->id; 4161 goto sysfs_err; 4162 } 4163 4164 mutex_unlock(&perf->metrics_lock); 4165 4166 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4167 4168 return oa_config->id; 4169 4170 sysfs_err: 4171 mutex_unlock(&perf->metrics_lock); 4172 reg_err: 4173 i915_oa_config_put(oa_config); 4174 DRM_DEBUG("Failed to add new OA config\n"); 4175 return err; 4176 } 4177 4178 /** 4179 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4180 * @dev: drm device 4181 * @data: ioctl data (pointer to u64 integer) copied from userspace 4182 * @file: drm file 4183 * 4184 * Configs can be removed while being used, the will stop appearing in sysfs 4185 * and their content will be freed when the stream using the config is closed. 4186 * 4187 * Returns: 0 on success or a negative error code on failure. 4188 */ 4189 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4190 struct drm_file *file) 4191 { 4192 struct i915_perf *perf = &to_i915(dev)->perf; 4193 u64 *arg = data; 4194 struct i915_oa_config *oa_config; 4195 int ret; 4196 4197 if (!perf->i915) { 4198 DRM_DEBUG("i915 perf interface not available for this system\n"); 4199 return -ENOTSUPP; 4200 } 4201 4202 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4203 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4204 return -EACCES; 4205 } 4206 4207 ret = mutex_lock_interruptible(&perf->metrics_lock); 4208 if (ret) 4209 return ret; 4210 4211 oa_config = idr_find(&perf->metrics_idr, *arg); 4212 if (!oa_config) { 4213 DRM_DEBUG("Failed to remove unknown OA config\n"); 4214 ret = -ENOENT; 4215 goto err_unlock; 4216 } 4217 4218 GEM_BUG_ON(*arg != oa_config->id); 4219 4220 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4221 4222 idr_remove(&perf->metrics_idr, *arg); 4223 4224 mutex_unlock(&perf->metrics_lock); 4225 4226 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4227 4228 i915_oa_config_put(oa_config); 4229 4230 return 0; 4231 4232 err_unlock: 4233 mutex_unlock(&perf->metrics_lock); 4234 return ret; 4235 } 4236 4237 static struct ctl_table oa_table[] = { 4238 { 4239 .procname = "perf_stream_paranoid", 4240 .data = &i915_perf_stream_paranoid, 4241 .maxlen = sizeof(i915_perf_stream_paranoid), 4242 .mode = 0644, 4243 .proc_handler = proc_dointvec_minmax, 4244 .extra1 = SYSCTL_ZERO, 4245 .extra2 = SYSCTL_ONE, 4246 }, 4247 { 4248 .procname = "oa_max_sample_rate", 4249 .data = &i915_oa_max_sample_rate, 4250 .maxlen = sizeof(i915_oa_max_sample_rate), 4251 .mode = 0644, 4252 .proc_handler = proc_dointvec_minmax, 4253 .extra1 = SYSCTL_ZERO, 4254 .extra2 = &oa_sample_rate_hard_limit, 4255 }, 4256 {} 4257 }; 4258 4259 static struct ctl_table i915_root[] = { 4260 { 4261 .procname = "i915", 4262 .maxlen = 0, 4263 .mode = 0555, 4264 .child = oa_table, 4265 }, 4266 {} 4267 }; 4268 4269 static struct ctl_table dev_root[] = { 4270 { 4271 .procname = "dev", 4272 .maxlen = 0, 4273 .mode = 0555, 4274 .child = i915_root, 4275 }, 4276 {} 4277 }; 4278 4279 /** 4280 * i915_perf_init - initialize i915-perf state on module bind 4281 * @i915: i915 device instance 4282 * 4283 * Initializes i915-perf state without exposing anything to userspace. 4284 * 4285 * Note: i915-perf initialization is split into an 'init' and 'register' 4286 * phase with the i915_perf_register() exposing state to userspace. 4287 */ 4288 void i915_perf_init(struct drm_i915_private *i915) 4289 { 4290 struct i915_perf *perf = &i915->perf; 4291 4292 /* XXX const struct i915_perf_ops! */ 4293 4294 if (IS_HASWELL(i915)) { 4295 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4296 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4297 perf->ops.is_valid_flex_reg = NULL; 4298 perf->ops.enable_metric_set = hsw_enable_metric_set; 4299 perf->ops.disable_metric_set = hsw_disable_metric_set; 4300 perf->ops.oa_enable = gen7_oa_enable; 4301 perf->ops.oa_disable = gen7_oa_disable; 4302 perf->ops.read = gen7_oa_read; 4303 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4304 4305 perf->oa_formats = hsw_oa_formats; 4306 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4307 /* Note: that although we could theoretically also support the 4308 * legacy ringbuffer mode on BDW (and earlier iterations of 4309 * this driver, before upstreaming did this) it didn't seem 4310 * worth the complexity to maintain now that BDW+ enable 4311 * execlist mode by default. 4312 */ 4313 perf->ops.read = gen8_oa_read; 4314 4315 if (IS_GEN_RANGE(i915, 8, 9)) { 4316 perf->oa_formats = gen8_plus_oa_formats; 4317 4318 perf->ops.is_valid_b_counter_reg = 4319 gen7_is_valid_b_counter_addr; 4320 perf->ops.is_valid_mux_reg = 4321 gen8_is_valid_mux_addr; 4322 perf->ops.is_valid_flex_reg = 4323 gen8_is_valid_flex_addr; 4324 4325 if (IS_CHERRYVIEW(i915)) { 4326 perf->ops.is_valid_mux_reg = 4327 chv_is_valid_mux_addr; 4328 } 4329 4330 perf->ops.oa_enable = gen8_oa_enable; 4331 perf->ops.oa_disable = gen8_oa_disable; 4332 perf->ops.enable_metric_set = gen8_enable_metric_set; 4333 perf->ops.disable_metric_set = gen8_disable_metric_set; 4334 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4335 4336 if (IS_GEN(i915, 8)) { 4337 perf->ctx_oactxctrl_offset = 0x120; 4338 perf->ctx_flexeu0_offset = 0x2ce; 4339 4340 perf->gen8_valid_ctx_bit = BIT(25); 4341 } else { 4342 perf->ctx_oactxctrl_offset = 0x128; 4343 perf->ctx_flexeu0_offset = 0x3de; 4344 4345 perf->gen8_valid_ctx_bit = BIT(16); 4346 } 4347 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4348 perf->oa_formats = gen8_plus_oa_formats; 4349 4350 perf->ops.is_valid_b_counter_reg = 4351 gen7_is_valid_b_counter_addr; 4352 perf->ops.is_valid_mux_reg = 4353 gen10_is_valid_mux_addr; 4354 perf->ops.is_valid_flex_reg = 4355 gen8_is_valid_flex_addr; 4356 4357 perf->ops.oa_enable = gen8_oa_enable; 4358 perf->ops.oa_disable = gen8_oa_disable; 4359 perf->ops.enable_metric_set = gen8_enable_metric_set; 4360 perf->ops.disable_metric_set = gen10_disable_metric_set; 4361 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4362 4363 if (IS_GEN(i915, 10)) { 4364 perf->ctx_oactxctrl_offset = 0x128; 4365 perf->ctx_flexeu0_offset = 0x3de; 4366 } else { 4367 perf->ctx_oactxctrl_offset = 0x124; 4368 perf->ctx_flexeu0_offset = 0x78e; 4369 } 4370 perf->gen8_valid_ctx_bit = BIT(16); 4371 } else if (IS_GEN(i915, 12)) { 4372 perf->oa_formats = gen12_oa_formats; 4373 4374 perf->ops.is_valid_b_counter_reg = 4375 gen12_is_valid_b_counter_addr; 4376 perf->ops.is_valid_mux_reg = 4377 gen12_is_valid_mux_addr; 4378 perf->ops.is_valid_flex_reg = 4379 gen8_is_valid_flex_addr; 4380 4381 perf->ops.oa_enable = gen12_oa_enable; 4382 perf->ops.oa_disable = gen12_oa_disable; 4383 perf->ops.enable_metric_set = gen12_enable_metric_set; 4384 perf->ops.disable_metric_set = gen12_disable_metric_set; 4385 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4386 4387 perf->ctx_flexeu0_offset = 0; 4388 perf->ctx_oactxctrl_offset = 0x144; 4389 } 4390 } 4391 4392 if (perf->ops.enable_metric_set) { 4393 mutex_init(&perf->lock); 4394 4395 oa_sample_rate_hard_limit = 1000 * 4396 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2); 4397 4398 mutex_init(&perf->metrics_lock); 4399 idr_init(&perf->metrics_idr); 4400 4401 /* We set up some ratelimit state to potentially throttle any 4402 * _NOTES about spurious, invalid OA reports which we don't 4403 * forward to userspace. 4404 * 4405 * We print a _NOTE about any throttling when closing the 4406 * stream instead of waiting until driver _fini which no one 4407 * would ever see. 4408 * 4409 * Using the same limiting factors as printk_ratelimit() 4410 */ 4411 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4412 /* Since we use a DRM_NOTE for spurious reports it would be 4413 * inconsistent to let __ratelimit() automatically print a 4414 * warning for throttling. 4415 */ 4416 ratelimit_set_flags(&perf->spurious_report_rs, 4417 RATELIMIT_MSG_ON_RELEASE); 4418 4419 atomic64_set(&perf->noa_programming_delay, 4420 500 * 1000 /* 500us */); 4421 4422 perf->i915 = i915; 4423 } 4424 } 4425 4426 static int destroy_config(int id, void *p, void *data) 4427 { 4428 i915_oa_config_put(p); 4429 return 0; 4430 } 4431 4432 void i915_perf_sysctl_register(void) 4433 { 4434 sysctl_header = register_sysctl_table(dev_root); 4435 } 4436 4437 void i915_perf_sysctl_unregister(void) 4438 { 4439 unregister_sysctl_table(sysctl_header); 4440 } 4441 4442 /** 4443 * i915_perf_fini - Counter part to i915_perf_init() 4444 * @i915: i915 device instance 4445 */ 4446 void i915_perf_fini(struct drm_i915_private *i915) 4447 { 4448 struct i915_perf *perf = &i915->perf; 4449 4450 if (!perf->i915) 4451 return; 4452 4453 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4454 idr_destroy(&perf->metrics_idr); 4455 4456 memset(&perf->ops, 0, sizeof(perf->ops)); 4457 perf->i915 = NULL; 4458 } 4459 4460 /** 4461 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4462 * 4463 * This version number is used by userspace to detect available features. 4464 */ 4465 int i915_perf_ioctl_version(void) 4466 { 4467 /* 4468 * 1: Initial version 4469 * I915_PERF_IOCTL_ENABLE 4470 * I915_PERF_IOCTL_DISABLE 4471 * 4472 * 2: Added runtime modification of OA config. 4473 * I915_PERF_IOCTL_CONFIG 4474 * 4475 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4476 * preemption on a particular context so that performance data is 4477 * accessible from a delta of MI_RPC reports without looking at the 4478 * OA buffer. 4479 */ 4480 return 3; 4481 } 4482 4483 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4484 #include "selftests/i915_perf.c" 4485 #endif 4486