1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 #include "oa/i915_oa_hsw.h" 208 #include "oa/i915_oa_bdw.h" 209 #include "oa/i915_oa_chv.h" 210 #include "oa/i915_oa_sklgt2.h" 211 #include "oa/i915_oa_sklgt3.h" 212 #include "oa/i915_oa_sklgt4.h" 213 #include "oa/i915_oa_bxt.h" 214 #include "oa/i915_oa_kblgt2.h" 215 #include "oa/i915_oa_kblgt3.h" 216 #include "oa/i915_oa_glk.h" 217 #include "oa/i915_oa_cflgt2.h" 218 #include "oa/i915_oa_cflgt3.h" 219 #include "oa/i915_oa_cnl.h" 220 #include "oa/i915_oa_icl.h" 221 #include "oa/i915_oa_tgl.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 242 * read() attempts. 243 * 244 * In effect we define a tail pointer for reading that lags the real tail 245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 246 * time for the corresponding reports to become visible to the CPU. 247 * 248 * To manage this we actually track two tail pointers: 249 * 1) An 'aging' tail with an associated timestamp that is tracked until we 250 * can trust the corresponding data is visible to the CPU; at which point 251 * it is considered 'aged'. 252 * 2) An 'aged' tail that can be used for read()ing. 253 * 254 * The two separate pointers let us decouple read()s from tail pointer aging. 255 * 256 * The tail pointers are checked and updated at a limited rate within a hrtimer 257 * callback (the same callback that is used for delivering EPOLLIN events) 258 * 259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 260 * indicates that an updated tail pointer is needed. 261 * 262 * Most of the implementation details for this workaround are in 263 * oa_buffer_check_unlocked() and _append_oa_reports() 264 * 265 * Note for posterity: previously the driver used to define an effective tail 266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 268 * This was flawed considering that the OA unit may also automatically generate 269 * non-periodic reports (such as on context switch) or the OA unit may be 270 * enabled without any periodic sampling. 271 */ 272 #define OA_TAIL_MARGIN_NSEC 100000ULL 273 #define INVALID_TAIL_PTR 0xffffffff 274 275 /* frequency for checking whether the OA unit has written new reports to the 276 * circular OA buffer... 277 */ 278 #define POLL_FREQUENCY 200 279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 280 281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 282 static u32 i915_perf_stream_paranoid = true; 283 284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 285 * of the 64bit timestamp bits to trigger reports from) but there's currently 286 * no known use case for sampling as infrequently as once per 47 thousand years. 287 * 288 * Since the timestamps included in OA reports are only 32bits it seems 289 * reasonable to limit the OA exponent where it's still possible to account for 290 * overflow in OA report timestamps. 291 */ 292 #define OA_EXPONENT_MAX 31 293 294 #define INVALID_CTX_ID 0xffffffff 295 296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 297 #define OAREPORT_REASON_MASK 0x3f 298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 299 #define OAREPORT_REASON_SHIFT 19 300 #define OAREPORT_REASON_TIMER (1<<0) 301 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 302 #define OAREPORT_REASON_CLK_RATIO (1<<5) 303 304 305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 306 * 307 * The highest sampling frequency we can theoretically program the OA unit 308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 309 * 310 * Initialized just before we register the sysctl parameter. 311 */ 312 static int oa_sample_rate_hard_limit; 313 314 /* Theoretically we can program the OA unit to sample every 160ns but don't 315 * allow that by default unless root... 316 * 317 * The default threshold of 100000Hz is based on perf's similar 318 * kernel.perf_event_max_sample_rate sysctl parameter. 319 */ 320 static u32 i915_oa_max_sample_rate = 100000; 321 322 /* XXX: beware if future OA HW adds new report formats that the current 323 * code assumes all reports have a power-of-two size and ~(size - 1) can 324 * be used as a mask to align the OA tail pointer. 325 */ 326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A13] = { 0, 64 }, 328 [I915_OA_FORMAT_A29] = { 1, 128 }, 329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 331 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 338 [I915_OA_FORMAT_A12] = { 0, 64 }, 339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 341 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 342 }; 343 344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 346 }; 347 348 #define SAMPLE_OA_REPORT (1<<0) 349 350 /** 351 * struct perf_open_properties - for validated properties given to open a stream 352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 353 * @single_context: Whether a single or all gpu contexts should be monitored 354 * @hold_preemption: Whether the preemption is disabled for the filtered 355 * context 356 * @ctx_handle: A gem ctx handle for use with @single_context 357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 358 * @oa_format: An OA unit HW report format 359 * @oa_periodic: Whether to enable periodic OA unit sampling 360 * @oa_period_exponent: The OA unit sampling period is derived from this 361 * @engine: The engine (typically rcs0) being monitored by the OA unit 362 * 363 * As read_properties_unlocked() enumerates and validates the properties given 364 * to open a stream of metrics the configuration is built up in the structure 365 * which starts out zero initialized. 366 */ 367 struct perf_open_properties { 368 u32 sample_flags; 369 370 u64 single_context:1; 371 u64 hold_preemption:1; 372 u64 ctx_handle; 373 374 /* OA sampling state */ 375 int metrics_set; 376 int oa_format; 377 bool oa_periodic; 378 int oa_period_exponent; 379 380 struct intel_engine_cs *engine; 381 }; 382 383 struct i915_oa_config_bo { 384 struct llist_node node; 385 386 struct i915_oa_config *oa_config; 387 struct i915_vma *vma; 388 }; 389 390 static struct ctl_table_header *sysctl_header; 391 392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 393 394 void i915_oa_config_release(struct kref *ref) 395 { 396 struct i915_oa_config *oa_config = 397 container_of(ref, typeof(*oa_config), ref); 398 399 kfree(oa_config->flex_regs); 400 kfree(oa_config->b_counter_regs); 401 kfree(oa_config->mux_regs); 402 403 kfree_rcu(oa_config, rcu); 404 } 405 406 struct i915_oa_config * 407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 408 { 409 struct i915_oa_config *oa_config; 410 411 rcu_read_lock(); 412 if (metrics_set == 1) 413 oa_config = &perf->test_config; 414 else 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 435 GEN12_OAG_OATAILPTR_MASK; 436 } 437 438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 439 { 440 struct intel_uncore *uncore = stream->uncore; 441 442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 443 } 444 445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 446 { 447 struct intel_uncore *uncore = stream->uncore; 448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 449 450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 451 } 452 453 /** 454 * oa_buffer_check_unlocked - check for data and update tail ptr state 455 * @stream: i915 stream instance 456 * 457 * This is either called via fops (for blocking reads in user ctx) or the poll 458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 459 * if there is data available for userspace to read. 460 * 461 * This function is central to providing a workaround for the OA unit tail 462 * pointer having a race with respect to what data is visible to the CPU. 463 * It is responsible for reading tail pointers from the hardware and giving 464 * the pointers time to 'age' before they are made available for reading. 465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 466 * 467 * Besides returning true when there is data available to read() this function 468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 469 * and .aged_tail_idx state used for reading. 470 * 471 * Note: It's safe to read OA config state here unlocked, assuming that this is 472 * only called while the stream is enabled, while the global OA configuration 473 * can't be modified. 474 * 475 * Returns: %true if the OA buffer contains data, else %false 476 */ 477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 478 { 479 int report_size = stream->oa_buffer.format_size; 480 unsigned long flags; 481 unsigned int aged_idx; 482 u32 head, hw_tail, aged_tail, aging_tail; 483 u64 now; 484 485 /* We have to consider the (unlikely) possibility that read() errors 486 * could result in an OA buffer reset which might reset the head, 487 * tails[] and aged_tail state. 488 */ 489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 490 491 /* NB: The head we observe here might effectively be a little out of 492 * date (between head and tails[aged_idx].offset if there is currently 493 * a read() in progress. 494 */ 495 head = stream->oa_buffer.head; 496 497 aged_idx = stream->oa_buffer.aged_tail_idx; 498 aged_tail = stream->oa_buffer.tails[aged_idx].offset; 499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset; 500 501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 502 503 /* The tail pointer increases in 64 byte increments, 504 * not in report_size steps... 505 */ 506 hw_tail &= ~(report_size - 1); 507 508 now = ktime_get_mono_fast_ns(); 509 510 /* Update the aged tail 511 * 512 * Flip the tail pointer available for read()s once the aging tail is 513 * old enough to trust that the corresponding data will be visible to 514 * the CPU... 515 * 516 * Do this before updating the aging pointer in case we may be able to 517 * immediately start aging a new pointer too (if new data has become 518 * available) without needing to wait for a later hrtimer callback. 519 */ 520 if (aging_tail != INVALID_TAIL_PTR && 521 ((now - stream->oa_buffer.aging_timestamp) > 522 OA_TAIL_MARGIN_NSEC)) { 523 524 aged_idx ^= 1; 525 stream->oa_buffer.aged_tail_idx = aged_idx; 526 527 aged_tail = aging_tail; 528 529 /* Mark that we need a new pointer to start aging... */ 530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 531 aging_tail = INVALID_TAIL_PTR; 532 } 533 534 /* Update the aging tail 535 * 536 * We throttle aging tail updates until we have a new tail that 537 * represents >= one report more data than is already available for 538 * reading. This ensures there will be enough data for a successful 539 * read once this new pointer has aged and ensures we will give the new 540 * pointer time to age. 541 */ 542 if (aging_tail == INVALID_TAIL_PTR && 543 (aged_tail == INVALID_TAIL_PTR || 544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 545 struct i915_vma *vma = stream->oa_buffer.vma; 546 u32 gtt_offset = i915_ggtt_offset(vma); 547 548 /* Be paranoid and do a bounds check on the pointer read back 549 * from hardware, just in case some spurious hardware condition 550 * could put the tail out of bounds... 551 */ 552 if (hw_tail >= gtt_offset && 553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 554 stream->oa_buffer.tails[!aged_idx].offset = 555 aging_tail = hw_tail; 556 stream->oa_buffer.aging_timestamp = now; 557 } else { 558 drm_err(&stream->perf->i915->drm, 559 "Ignoring spurious out of range OA buffer tail pointer = %x\n", 560 hw_tail); 561 } 562 } 563 564 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 565 566 return aged_tail == INVALID_TAIL_PTR ? 567 false : OA_TAKEN(aged_tail, head) >= report_size; 568 } 569 570 /** 571 * append_oa_status - Appends a status record to a userspace read() buffer. 572 * @stream: An i915-perf stream opened for OA metrics 573 * @buf: destination buffer given by userspace 574 * @count: the number of bytes userspace wants to read 575 * @offset: (inout): the current position for writing into @buf 576 * @type: The kind of status to report to userspace 577 * 578 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 579 * into the userspace read() buffer. 580 * 581 * The @buf @offset will only be updated on success. 582 * 583 * Returns: 0 on success, negative error code on failure. 584 */ 585 static int append_oa_status(struct i915_perf_stream *stream, 586 char __user *buf, 587 size_t count, 588 size_t *offset, 589 enum drm_i915_perf_record_type type) 590 { 591 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 592 593 if ((count - *offset) < header.size) 594 return -ENOSPC; 595 596 if (copy_to_user(buf + *offset, &header, sizeof(header))) 597 return -EFAULT; 598 599 (*offset) += header.size; 600 601 return 0; 602 } 603 604 /** 605 * append_oa_sample - Copies single OA report into userspace read() buffer. 606 * @stream: An i915-perf stream opened for OA metrics 607 * @buf: destination buffer given by userspace 608 * @count: the number of bytes userspace wants to read 609 * @offset: (inout): the current position for writing into @buf 610 * @report: A single OA report to (optionally) include as part of the sample 611 * 612 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 613 * properties when opening a stream, tracked as `stream->sample_flags`. This 614 * function copies the requested components of a single sample to the given 615 * read() @buf. 616 * 617 * The @buf @offset will only be updated on success. 618 * 619 * Returns: 0 on success, negative error code on failure. 620 */ 621 static int append_oa_sample(struct i915_perf_stream *stream, 622 char __user *buf, 623 size_t count, 624 size_t *offset, 625 const u8 *report) 626 { 627 int report_size = stream->oa_buffer.format_size; 628 struct drm_i915_perf_record_header header; 629 u32 sample_flags = stream->sample_flags; 630 631 header.type = DRM_I915_PERF_RECORD_SAMPLE; 632 header.pad = 0; 633 header.size = stream->sample_size; 634 635 if ((count - *offset) < header.size) 636 return -ENOSPC; 637 638 buf += *offset; 639 if (copy_to_user(buf, &header, sizeof(header))) 640 return -EFAULT; 641 buf += sizeof(header); 642 643 if (sample_flags & SAMPLE_OA_REPORT) { 644 if (copy_to_user(buf, report, report_size)) 645 return -EFAULT; 646 } 647 648 (*offset) += header.size; 649 650 return 0; 651 } 652 653 /** 654 * Copies all buffered OA reports into userspace read() buffer. 655 * @stream: An i915-perf stream opened for OA metrics 656 * @buf: destination buffer given by userspace 657 * @count: the number of bytes userspace wants to read 658 * @offset: (inout): the current position for writing into @buf 659 * 660 * Notably any error condition resulting in a short read (-%ENOSPC or 661 * -%EFAULT) will be returned even though one or more records may 662 * have been successfully copied. In this case it's up to the caller 663 * to decide if the error should be squashed before returning to 664 * userspace. 665 * 666 * Note: reports are consumed from the head, and appended to the 667 * tail, so the tail chases the head?... If you think that's mad 668 * and back-to-front you're not alone, but this follows the 669 * Gen PRM naming convention. 670 * 671 * Returns: 0 on success, negative error code on failure. 672 */ 673 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 674 char __user *buf, 675 size_t count, 676 size_t *offset) 677 { 678 struct intel_uncore *uncore = stream->uncore; 679 int report_size = stream->oa_buffer.format_size; 680 u8 *oa_buf_base = stream->oa_buffer.vaddr; 681 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 682 u32 mask = (OA_BUFFER_SIZE - 1); 683 size_t start_offset = *offset; 684 unsigned long flags; 685 unsigned int aged_tail_idx; 686 u32 head, tail; 687 u32 taken; 688 int ret = 0; 689 690 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 691 return -EIO; 692 693 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 694 695 head = stream->oa_buffer.head; 696 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 697 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 698 699 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 700 701 /* 702 * An invalid tail pointer here means we're still waiting for the poll 703 * hrtimer callback to give us a pointer 704 */ 705 if (tail == INVALID_TAIL_PTR) 706 return -EAGAIN; 707 708 /* 709 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 710 * while indexing relative to oa_buf_base. 711 */ 712 head -= gtt_offset; 713 tail -= gtt_offset; 714 715 /* 716 * An out of bounds or misaligned head or tail pointer implies a driver 717 * bug since we validate + align the tail pointers we read from the 718 * hardware and we are in full control of the head pointer which should 719 * only be incremented by multiples of the report size (notably also 720 * all a power of two). 721 */ 722 if (drm_WARN_ONCE(&uncore->i915->drm, 723 head > OA_BUFFER_SIZE || head % report_size || 724 tail > OA_BUFFER_SIZE || tail % report_size, 725 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 726 head, tail)) 727 return -EIO; 728 729 730 for (/* none */; 731 (taken = OA_TAKEN(tail, head)); 732 head = (head + report_size) & mask) { 733 u8 *report = oa_buf_base + head; 734 u32 *report32 = (void *)report; 735 u32 ctx_id; 736 u32 reason; 737 738 /* 739 * All the report sizes factor neatly into the buffer 740 * size so we never expect to see a report split 741 * between the beginning and end of the buffer. 742 * 743 * Given the initial alignment check a misalignment 744 * here would imply a driver bug that would result 745 * in an overrun. 746 */ 747 if (drm_WARN_ON(&uncore->i915->drm, 748 (OA_BUFFER_SIZE - head) < report_size)) { 749 drm_err(&uncore->i915->drm, 750 "Spurious OA head ptr: non-integral report offset\n"); 751 break; 752 } 753 754 /* 755 * The reason field includes flags identifying what 756 * triggered this specific report (mostly timer 757 * triggered or e.g. due to a context switch). 758 * 759 * This field is never expected to be zero so we can 760 * check that the report isn't invalid before copying 761 * it to userspace... 762 */ 763 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 764 (IS_GEN(stream->perf->i915, 12) ? 765 OAREPORT_REASON_MASK_EXTENDED : 766 OAREPORT_REASON_MASK)); 767 if (reason == 0) { 768 if (__ratelimit(&stream->perf->spurious_report_rs)) 769 DRM_NOTE("Skipping spurious, invalid OA report\n"); 770 continue; 771 } 772 773 ctx_id = report32[2] & stream->specific_ctx_id_mask; 774 775 /* 776 * Squash whatever is in the CTX_ID field if it's marked as 777 * invalid to be sure we avoid false-positive, single-context 778 * filtering below... 779 * 780 * Note: that we don't clear the valid_ctx_bit so userspace can 781 * understand that the ID has been squashed by the kernel. 782 */ 783 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 784 INTEL_GEN(stream->perf->i915) <= 11) 785 ctx_id = report32[2] = INVALID_CTX_ID; 786 787 /* 788 * NB: For Gen 8 the OA unit no longer supports clock gating 789 * off for a specific context and the kernel can't securely 790 * stop the counters from updating as system-wide / global 791 * values. 792 * 793 * Automatic reports now include a context ID so reports can be 794 * filtered on the cpu but it's not worth trying to 795 * automatically subtract/hide counter progress for other 796 * contexts while filtering since we can't stop userspace 797 * issuing MI_REPORT_PERF_COUNT commands which would still 798 * provide a side-band view of the real values. 799 * 800 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 801 * to normalize counters for a single filtered context then it 802 * needs be forwarded bookend context-switch reports so that it 803 * can track switches in between MI_REPORT_PERF_COUNT commands 804 * and can itself subtract/ignore the progress of counters 805 * associated with other contexts. Note that the hardware 806 * automatically triggers reports when switching to a new 807 * context which are tagged with the ID of the newly active 808 * context. To avoid the complexity (and likely fragility) of 809 * reading ahead while parsing reports to try and minimize 810 * forwarding redundant context switch reports (i.e. between 811 * other, unrelated contexts) we simply elect to forward them 812 * all. 813 * 814 * We don't rely solely on the reason field to identify context 815 * switches since it's not-uncommon for periodic samples to 816 * identify a switch before any 'context switch' report. 817 */ 818 if (!stream->perf->exclusive_stream->ctx || 819 stream->specific_ctx_id == ctx_id || 820 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 821 reason & OAREPORT_REASON_CTX_SWITCH) { 822 823 /* 824 * While filtering for a single context we avoid 825 * leaking the IDs of other contexts. 826 */ 827 if (stream->perf->exclusive_stream->ctx && 828 stream->specific_ctx_id != ctx_id) { 829 report32[2] = INVALID_CTX_ID; 830 } 831 832 ret = append_oa_sample(stream, buf, count, offset, 833 report); 834 if (ret) 835 break; 836 837 stream->oa_buffer.last_ctx_id = ctx_id; 838 } 839 840 /* 841 * The above reason field sanity check is based on 842 * the assumption that the OA buffer is initially 843 * zeroed and we reset the field after copying so the 844 * check is still meaningful once old reports start 845 * being overwritten. 846 */ 847 report32[0] = 0; 848 } 849 850 if (start_offset != *offset) { 851 i915_reg_t oaheadptr; 852 853 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 854 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 855 856 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 857 858 /* 859 * We removed the gtt_offset for the copy loop above, indexing 860 * relative to oa_buf_base so put back here... 861 */ 862 head += gtt_offset; 863 intel_uncore_write(uncore, oaheadptr, 864 head & GEN12_OAG_OAHEADPTR_MASK); 865 stream->oa_buffer.head = head; 866 867 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 868 } 869 870 return ret; 871 } 872 873 /** 874 * gen8_oa_read - copy status records then buffered OA reports 875 * @stream: An i915-perf stream opened for OA metrics 876 * @buf: destination buffer given by userspace 877 * @count: the number of bytes userspace wants to read 878 * @offset: (inout): the current position for writing into @buf 879 * 880 * Checks OA unit status registers and if necessary appends corresponding 881 * status records for userspace (such as for a buffer full condition) and then 882 * initiate appending any buffered OA reports. 883 * 884 * Updates @offset according to the number of bytes successfully copied into 885 * the userspace buffer. 886 * 887 * NB: some data may be successfully copied to the userspace buffer 888 * even if an error is returned, and this is reflected in the 889 * updated @offset. 890 * 891 * Returns: zero on success or a negative error code 892 */ 893 static int gen8_oa_read(struct i915_perf_stream *stream, 894 char __user *buf, 895 size_t count, 896 size_t *offset) 897 { 898 struct intel_uncore *uncore = stream->uncore; 899 u32 oastatus; 900 i915_reg_t oastatus_reg; 901 int ret; 902 903 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 904 return -EIO; 905 906 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 907 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 908 909 oastatus = intel_uncore_read(uncore, oastatus_reg); 910 911 /* 912 * We treat OABUFFER_OVERFLOW as a significant error: 913 * 914 * Although theoretically we could handle this more gracefully 915 * sometimes, some Gens don't correctly suppress certain 916 * automatically triggered reports in this condition and so we 917 * have to assume that old reports are now being trampled 918 * over. 919 * 920 * Considering how we don't currently give userspace control 921 * over the OA buffer size and always configure a large 16MB 922 * buffer, then a buffer overflow does anyway likely indicate 923 * that something has gone quite badly wrong. 924 */ 925 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 926 ret = append_oa_status(stream, buf, count, offset, 927 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 928 if (ret) 929 return ret; 930 931 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 932 stream->period_exponent); 933 934 stream->perf->ops.oa_disable(stream); 935 stream->perf->ops.oa_enable(stream); 936 937 /* 938 * Note: .oa_enable() is expected to re-init the oabuffer and 939 * reset GEN8_OASTATUS for us 940 */ 941 oastatus = intel_uncore_read(uncore, oastatus_reg); 942 } 943 944 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 945 ret = append_oa_status(stream, buf, count, offset, 946 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 947 if (ret) 948 return ret; 949 intel_uncore_write(uncore, oastatus_reg, 950 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 951 } 952 953 return gen8_append_oa_reports(stream, buf, count, offset); 954 } 955 956 /** 957 * Copies all buffered OA reports into userspace read() buffer. 958 * @stream: An i915-perf stream opened for OA metrics 959 * @buf: destination buffer given by userspace 960 * @count: the number of bytes userspace wants to read 961 * @offset: (inout): the current position for writing into @buf 962 * 963 * Notably any error condition resulting in a short read (-%ENOSPC or 964 * -%EFAULT) will be returned even though one or more records may 965 * have been successfully copied. In this case it's up to the caller 966 * to decide if the error should be squashed before returning to 967 * userspace. 968 * 969 * Note: reports are consumed from the head, and appended to the 970 * tail, so the tail chases the head?... If you think that's mad 971 * and back-to-front you're not alone, but this follows the 972 * Gen PRM naming convention. 973 * 974 * Returns: 0 on success, negative error code on failure. 975 */ 976 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 977 char __user *buf, 978 size_t count, 979 size_t *offset) 980 { 981 struct intel_uncore *uncore = stream->uncore; 982 int report_size = stream->oa_buffer.format_size; 983 u8 *oa_buf_base = stream->oa_buffer.vaddr; 984 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 985 u32 mask = (OA_BUFFER_SIZE - 1); 986 size_t start_offset = *offset; 987 unsigned long flags; 988 unsigned int aged_tail_idx; 989 u32 head, tail; 990 u32 taken; 991 int ret = 0; 992 993 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 994 return -EIO; 995 996 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 997 998 head = stream->oa_buffer.head; 999 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 1000 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 1001 1002 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1003 1004 /* An invalid tail pointer here means we're still waiting for the poll 1005 * hrtimer callback to give us a pointer 1006 */ 1007 if (tail == INVALID_TAIL_PTR) 1008 return -EAGAIN; 1009 1010 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1011 * while indexing relative to oa_buf_base. 1012 */ 1013 head -= gtt_offset; 1014 tail -= gtt_offset; 1015 1016 /* An out of bounds or misaligned head or tail pointer implies a driver 1017 * bug since we validate + align the tail pointers we read from the 1018 * hardware and we are in full control of the head pointer which should 1019 * only be incremented by multiples of the report size (notably also 1020 * all a power of two). 1021 */ 1022 if (drm_WARN_ONCE(&uncore->i915->drm, 1023 head > OA_BUFFER_SIZE || head % report_size || 1024 tail > OA_BUFFER_SIZE || tail % report_size, 1025 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1026 head, tail)) 1027 return -EIO; 1028 1029 1030 for (/* none */; 1031 (taken = OA_TAKEN(tail, head)); 1032 head = (head + report_size) & mask) { 1033 u8 *report = oa_buf_base + head; 1034 u32 *report32 = (void *)report; 1035 1036 /* All the report sizes factor neatly into the buffer 1037 * size so we never expect to see a report split 1038 * between the beginning and end of the buffer. 1039 * 1040 * Given the initial alignment check a misalignment 1041 * here would imply a driver bug that would result 1042 * in an overrun. 1043 */ 1044 if (drm_WARN_ON(&uncore->i915->drm, 1045 (OA_BUFFER_SIZE - head) < report_size)) { 1046 drm_err(&uncore->i915->drm, 1047 "Spurious OA head ptr: non-integral report offset\n"); 1048 break; 1049 } 1050 1051 /* The report-ID field for periodic samples includes 1052 * some undocumented flags related to what triggered 1053 * the report and is never expected to be zero so we 1054 * can check that the report isn't invalid before 1055 * copying it to userspace... 1056 */ 1057 if (report32[0] == 0) { 1058 if (__ratelimit(&stream->perf->spurious_report_rs)) 1059 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1060 continue; 1061 } 1062 1063 ret = append_oa_sample(stream, buf, count, offset, report); 1064 if (ret) 1065 break; 1066 1067 /* The above report-id field sanity check is based on 1068 * the assumption that the OA buffer is initially 1069 * zeroed and we reset the field after copying so the 1070 * check is still meaningful once old reports start 1071 * being overwritten. 1072 */ 1073 report32[0] = 0; 1074 } 1075 1076 if (start_offset != *offset) { 1077 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1078 1079 /* We removed the gtt_offset for the copy loop above, indexing 1080 * relative to oa_buf_base so put back here... 1081 */ 1082 head += gtt_offset; 1083 1084 intel_uncore_write(uncore, GEN7_OASTATUS2, 1085 (head & GEN7_OASTATUS2_HEAD_MASK) | 1086 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1087 stream->oa_buffer.head = head; 1088 1089 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1090 } 1091 1092 return ret; 1093 } 1094 1095 /** 1096 * gen7_oa_read - copy status records then buffered OA reports 1097 * @stream: An i915-perf stream opened for OA metrics 1098 * @buf: destination buffer given by userspace 1099 * @count: the number of bytes userspace wants to read 1100 * @offset: (inout): the current position for writing into @buf 1101 * 1102 * Checks Gen 7 specific OA unit status registers and if necessary appends 1103 * corresponding status records for userspace (such as for a buffer full 1104 * condition) and then initiate appending any buffered OA reports. 1105 * 1106 * Updates @offset according to the number of bytes successfully copied into 1107 * the userspace buffer. 1108 * 1109 * Returns: zero on success or a negative error code 1110 */ 1111 static int gen7_oa_read(struct i915_perf_stream *stream, 1112 char __user *buf, 1113 size_t count, 1114 size_t *offset) 1115 { 1116 struct intel_uncore *uncore = stream->uncore; 1117 u32 oastatus1; 1118 int ret; 1119 1120 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1121 return -EIO; 1122 1123 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1124 1125 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1126 * bits while the OA unit is enabled (while the tail pointer 1127 * may be updated asynchronously) so we ignore status bits 1128 * that have already been reported to userspace. 1129 */ 1130 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1131 1132 /* We treat OABUFFER_OVERFLOW as a significant error: 1133 * 1134 * - The status can be interpreted to mean that the buffer is 1135 * currently full (with a higher precedence than OA_TAKEN() 1136 * which will start to report a near-empty buffer after an 1137 * overflow) but it's awkward that we can't clear the status 1138 * on Haswell, so without a reset we won't be able to catch 1139 * the state again. 1140 * 1141 * - Since it also implies the HW has started overwriting old 1142 * reports it may also affect our sanity checks for invalid 1143 * reports when copying to userspace that assume new reports 1144 * are being written to cleared memory. 1145 * 1146 * - In the future we may want to introduce a flight recorder 1147 * mode where the driver will automatically maintain a safe 1148 * guard band between head/tail, avoiding this overflow 1149 * condition, but we avoid the added driver complexity for 1150 * now. 1151 */ 1152 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1153 ret = append_oa_status(stream, buf, count, offset, 1154 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1155 if (ret) 1156 return ret; 1157 1158 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1159 stream->period_exponent); 1160 1161 stream->perf->ops.oa_disable(stream); 1162 stream->perf->ops.oa_enable(stream); 1163 1164 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1165 } 1166 1167 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1168 ret = append_oa_status(stream, buf, count, offset, 1169 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1170 if (ret) 1171 return ret; 1172 stream->perf->gen7_latched_oastatus1 |= 1173 GEN7_OASTATUS1_REPORT_LOST; 1174 } 1175 1176 return gen7_append_oa_reports(stream, buf, count, offset); 1177 } 1178 1179 /** 1180 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1181 * @stream: An i915-perf stream opened for OA metrics 1182 * 1183 * Called when userspace tries to read() from a blocking stream FD opened 1184 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1185 * OA buffer and wakes us. 1186 * 1187 * Note: it's acceptable to have this return with some false positives 1188 * since any subsequent read handling will return -EAGAIN if there isn't 1189 * really data ready for userspace yet. 1190 * 1191 * Returns: zero on success or a negative error code 1192 */ 1193 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1194 { 1195 /* We would wait indefinitely if periodic sampling is not enabled */ 1196 if (!stream->periodic) 1197 return -EIO; 1198 1199 return wait_event_interruptible(stream->poll_wq, 1200 oa_buffer_check_unlocked(stream)); 1201 } 1202 1203 /** 1204 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1205 * @stream: An i915-perf stream opened for OA metrics 1206 * @file: An i915 perf stream file 1207 * @wait: poll() state table 1208 * 1209 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1210 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1211 * when it sees data ready to read in the circular OA buffer. 1212 */ 1213 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1214 struct file *file, 1215 poll_table *wait) 1216 { 1217 poll_wait(file, &stream->poll_wq, wait); 1218 } 1219 1220 /** 1221 * i915_oa_read - just calls through to &i915_oa_ops->read 1222 * @stream: An i915-perf stream opened for OA metrics 1223 * @buf: destination buffer given by userspace 1224 * @count: the number of bytes userspace wants to read 1225 * @offset: (inout): the current position for writing into @buf 1226 * 1227 * Updates @offset according to the number of bytes successfully copied into 1228 * the userspace buffer. 1229 * 1230 * Returns: zero on success or a negative error code 1231 */ 1232 static int i915_oa_read(struct i915_perf_stream *stream, 1233 char __user *buf, 1234 size_t count, 1235 size_t *offset) 1236 { 1237 return stream->perf->ops.read(stream, buf, count, offset); 1238 } 1239 1240 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1241 { 1242 struct i915_gem_engines_iter it; 1243 struct i915_gem_context *ctx = stream->ctx; 1244 struct intel_context *ce; 1245 int err; 1246 1247 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1248 if (ce->engine != stream->engine) /* first match! */ 1249 continue; 1250 1251 /* 1252 * As the ID is the gtt offset of the context's vma we 1253 * pin the vma to ensure the ID remains fixed. 1254 */ 1255 err = intel_context_pin(ce); 1256 if (err == 0) { 1257 stream->pinned_ctx = ce; 1258 break; 1259 } 1260 } 1261 i915_gem_context_unlock_engines(ctx); 1262 1263 return stream->pinned_ctx; 1264 } 1265 1266 /** 1267 * oa_get_render_ctx_id - determine and hold ctx hw id 1268 * @stream: An i915-perf stream opened for OA metrics 1269 * 1270 * Determine the render context hw id, and ensure it remains fixed for the 1271 * lifetime of the stream. This ensures that we don't have to worry about 1272 * updating the context ID in OACONTROL on the fly. 1273 * 1274 * Returns: zero on success or a negative error code 1275 */ 1276 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1277 { 1278 struct intel_context *ce; 1279 1280 ce = oa_pin_context(stream); 1281 if (IS_ERR(ce)) 1282 return PTR_ERR(ce); 1283 1284 switch (INTEL_GEN(ce->engine->i915)) { 1285 case 7: { 1286 /* 1287 * On Haswell we don't do any post processing of the reports 1288 * and don't need to use the mask. 1289 */ 1290 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1291 stream->specific_ctx_id_mask = 0; 1292 break; 1293 } 1294 1295 case 8: 1296 case 9: 1297 case 10: 1298 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1299 stream->specific_ctx_id_mask = 1300 (1U << GEN8_CTX_ID_WIDTH) - 1; 1301 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1302 } else { 1303 /* 1304 * When using GuC, the context descriptor we write in 1305 * i915 is read by GuC and rewritten before it's 1306 * actually written into the hardware. The LRCA is 1307 * what is put into the context id field of the 1308 * context descriptor by GuC. Because it's aligned to 1309 * a page, the lower 12bits are always at 0 and 1310 * dropped by GuC. They won't be part of the context 1311 * ID in the OA reports, so squash those lower bits. 1312 */ 1313 stream->specific_ctx_id = 1314 lower_32_bits(ce->lrc_desc) >> 12; 1315 1316 /* 1317 * GuC uses the top bit to signal proxy submission, so 1318 * ignore that bit. 1319 */ 1320 stream->specific_ctx_id_mask = 1321 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1322 } 1323 break; 1324 1325 case 11: 1326 case 12: { 1327 stream->specific_ctx_id_mask = 1328 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1329 /* 1330 * Pick an unused context id 1331 * 0 - (NUM_CONTEXT_TAG - 1) are used by other contexts 1332 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1333 */ 1334 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1335 BUILD_BUG_ON((GEN12_MAX_CONTEXT_HW_ID - 1) < NUM_CONTEXT_TAG); 1336 break; 1337 } 1338 1339 default: 1340 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1341 } 1342 1343 ce->tag = stream->specific_ctx_id; 1344 1345 drm_dbg(&stream->perf->i915->drm, 1346 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1347 stream->specific_ctx_id, 1348 stream->specific_ctx_id_mask); 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1355 * @stream: An i915-perf stream opened for OA metrics 1356 * 1357 * In case anything needed doing to ensure the context HW ID would remain valid 1358 * for the lifetime of the stream, then that can be undone here. 1359 */ 1360 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1361 { 1362 struct intel_context *ce; 1363 1364 ce = fetch_and_zero(&stream->pinned_ctx); 1365 if (ce) { 1366 ce->tag = 0; /* recomputed on next submission after parking */ 1367 intel_context_unpin(ce); 1368 } 1369 1370 stream->specific_ctx_id = INVALID_CTX_ID; 1371 stream->specific_ctx_id_mask = 0; 1372 } 1373 1374 static void 1375 free_oa_buffer(struct i915_perf_stream *stream) 1376 { 1377 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1378 I915_VMA_RELEASE_MAP); 1379 1380 stream->oa_buffer.vaddr = NULL; 1381 } 1382 1383 static void 1384 free_oa_configs(struct i915_perf_stream *stream) 1385 { 1386 struct i915_oa_config_bo *oa_bo, *tmp; 1387 1388 i915_oa_config_put(stream->oa_config); 1389 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1390 free_oa_config_bo(oa_bo); 1391 } 1392 1393 static void 1394 free_noa_wait(struct i915_perf_stream *stream) 1395 { 1396 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1397 } 1398 1399 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1400 { 1401 struct i915_perf *perf = stream->perf; 1402 1403 BUG_ON(stream != perf->exclusive_stream); 1404 1405 /* 1406 * Unset exclusive_stream first, it will be checked while disabling 1407 * the metric set on gen8+. 1408 */ 1409 perf->exclusive_stream = NULL; 1410 perf->ops.disable_metric_set(stream); 1411 1412 free_oa_buffer(stream); 1413 1414 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1415 intel_engine_pm_put(stream->engine); 1416 1417 if (stream->ctx) 1418 oa_put_render_ctx_id(stream); 1419 1420 free_oa_configs(stream); 1421 free_noa_wait(stream); 1422 1423 if (perf->spurious_report_rs.missed) { 1424 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1425 perf->spurious_report_rs.missed); 1426 } 1427 } 1428 1429 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1430 { 1431 struct intel_uncore *uncore = stream->uncore; 1432 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1433 unsigned long flags; 1434 1435 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1436 1437 /* Pre-DevBDW: OABUFFER must be set with counters off, 1438 * before OASTATUS1, but after OASTATUS2 1439 */ 1440 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1441 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1442 stream->oa_buffer.head = gtt_offset; 1443 1444 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1445 1446 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1447 gtt_offset | OABUFFER_SIZE_16M); 1448 1449 /* Mark that we need updated tail pointers to read from... */ 1450 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1451 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1452 1453 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1454 1455 /* On Haswell we have to track which OASTATUS1 flags we've 1456 * already seen since they can't be cleared while periodic 1457 * sampling is enabled. 1458 */ 1459 stream->perf->gen7_latched_oastatus1 = 0; 1460 1461 /* NB: although the OA buffer will initially be allocated 1462 * zeroed via shmfs (and so this memset is redundant when 1463 * first allocating), we may re-init the OA buffer, either 1464 * when re-enabling a stream or in error/reset paths. 1465 * 1466 * The reason we clear the buffer for each re-init is for the 1467 * sanity check in gen7_append_oa_reports() that looks at the 1468 * report-id field to make sure it's non-zero which relies on 1469 * the assumption that new reports are being written to zeroed 1470 * memory... 1471 */ 1472 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1473 1474 stream->pollin = false; 1475 } 1476 1477 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1478 { 1479 struct intel_uncore *uncore = stream->uncore; 1480 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1481 unsigned long flags; 1482 1483 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1484 1485 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1486 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1487 stream->oa_buffer.head = gtt_offset; 1488 1489 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1490 1491 /* 1492 * PRM says: 1493 * 1494 * "This MMIO must be set before the OATAILPTR 1495 * register and after the OAHEADPTR register. This is 1496 * to enable proper functionality of the overflow 1497 * bit." 1498 */ 1499 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1500 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1501 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1502 1503 /* Mark that we need updated tail pointers to read from... */ 1504 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1505 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1506 1507 /* 1508 * Reset state used to recognise context switches, affecting which 1509 * reports we will forward to userspace while filtering for a single 1510 * context. 1511 */ 1512 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1513 1514 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1515 1516 /* 1517 * NB: although the OA buffer will initially be allocated 1518 * zeroed via shmfs (and so this memset is redundant when 1519 * first allocating), we may re-init the OA buffer, either 1520 * when re-enabling a stream or in error/reset paths. 1521 * 1522 * The reason we clear the buffer for each re-init is for the 1523 * sanity check in gen8_append_oa_reports() that looks at the 1524 * reason field to make sure it's non-zero which relies on 1525 * the assumption that new reports are being written to zeroed 1526 * memory... 1527 */ 1528 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1529 1530 stream->pollin = false; 1531 } 1532 1533 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1534 { 1535 struct intel_uncore *uncore = stream->uncore; 1536 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1537 unsigned long flags; 1538 1539 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1540 1541 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1542 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1543 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1544 stream->oa_buffer.head = gtt_offset; 1545 1546 /* 1547 * PRM says: 1548 * 1549 * "This MMIO must be set before the OATAILPTR 1550 * register and after the OAHEADPTR register. This is 1551 * to enable proper functionality of the overflow 1552 * bit." 1553 */ 1554 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1555 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1556 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1557 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1558 1559 /* Mark that we need updated tail pointers to read from... */ 1560 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1561 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1562 1563 /* 1564 * Reset state used to recognise context switches, affecting which 1565 * reports we will forward to userspace while filtering for a single 1566 * context. 1567 */ 1568 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1569 1570 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1571 1572 /* 1573 * NB: although the OA buffer will initially be allocated 1574 * zeroed via shmfs (and so this memset is redundant when 1575 * first allocating), we may re-init the OA buffer, either 1576 * when re-enabling a stream or in error/reset paths. 1577 * 1578 * The reason we clear the buffer for each re-init is for the 1579 * sanity check in gen8_append_oa_reports() that looks at the 1580 * reason field to make sure it's non-zero which relies on 1581 * the assumption that new reports are being written to zeroed 1582 * memory... 1583 */ 1584 memset(stream->oa_buffer.vaddr, 0, 1585 stream->oa_buffer.vma->size); 1586 1587 stream->pollin = false; 1588 } 1589 1590 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1591 { 1592 struct drm_i915_private *i915 = stream->perf->i915; 1593 struct drm_i915_gem_object *bo; 1594 struct i915_vma *vma; 1595 int ret; 1596 1597 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1598 return -ENODEV; 1599 1600 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1601 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1602 1603 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1604 if (IS_ERR(bo)) { 1605 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1606 return PTR_ERR(bo); 1607 } 1608 1609 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1610 1611 /* PreHSW required 512K alignment, HSW requires 16M */ 1612 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1613 if (IS_ERR(vma)) { 1614 ret = PTR_ERR(vma); 1615 goto err_unref; 1616 } 1617 stream->oa_buffer.vma = vma; 1618 1619 stream->oa_buffer.vaddr = 1620 i915_gem_object_pin_map(bo, I915_MAP_WB); 1621 if (IS_ERR(stream->oa_buffer.vaddr)) { 1622 ret = PTR_ERR(stream->oa_buffer.vaddr); 1623 goto err_unpin; 1624 } 1625 1626 return 0; 1627 1628 err_unpin: 1629 __i915_vma_unpin(vma); 1630 1631 err_unref: 1632 i915_gem_object_put(bo); 1633 1634 stream->oa_buffer.vaddr = NULL; 1635 stream->oa_buffer.vma = NULL; 1636 1637 return ret; 1638 } 1639 1640 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1641 bool save, i915_reg_t reg, u32 offset, 1642 u32 dword_count) 1643 { 1644 u32 cmd; 1645 u32 d; 1646 1647 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1648 if (INTEL_GEN(stream->perf->i915) >= 8) 1649 cmd++; 1650 1651 for (d = 0; d < dword_count; d++) { 1652 *cs++ = cmd; 1653 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1654 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1655 offset) + 4 * d; 1656 *cs++ = 0; 1657 } 1658 1659 return cs; 1660 } 1661 1662 static int alloc_noa_wait(struct i915_perf_stream *stream) 1663 { 1664 struct drm_i915_private *i915 = stream->perf->i915; 1665 struct drm_i915_gem_object *bo; 1666 struct i915_vma *vma; 1667 const u64 delay_ticks = 0xffffffffffffffff - 1668 DIV64_U64_ROUND_UP( 1669 atomic64_read(&stream->perf->noa_programming_delay) * 1670 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz, 1671 1000000ull); 1672 const u32 base = stream->engine->mmio_base; 1673 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1674 u32 *batch, *ts0, *cs, *jump; 1675 int ret, i; 1676 enum { 1677 START_TS, 1678 NOW_TS, 1679 DELTA_TS, 1680 JUMP_PREDICATE, 1681 DELTA_TARGET, 1682 N_CS_GPR 1683 }; 1684 1685 bo = i915_gem_object_create_internal(i915, 4096); 1686 if (IS_ERR(bo)) { 1687 drm_err(&i915->drm, 1688 "Failed to allocate NOA wait batchbuffer\n"); 1689 return PTR_ERR(bo); 1690 } 1691 1692 /* 1693 * We pin in GGTT because we jump into this buffer now because 1694 * multiple OA config BOs will have a jump to this address and it 1695 * needs to be fixed during the lifetime of the i915/perf stream. 1696 */ 1697 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1698 if (IS_ERR(vma)) { 1699 ret = PTR_ERR(vma); 1700 goto err_unref; 1701 } 1702 1703 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1704 if (IS_ERR(batch)) { 1705 ret = PTR_ERR(batch); 1706 goto err_unpin; 1707 } 1708 1709 /* Save registers. */ 1710 for (i = 0; i < N_CS_GPR; i++) 1711 cs = save_restore_register( 1712 stream, cs, true /* save */, CS_GPR(i), 1713 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1714 cs = save_restore_register( 1715 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1716 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1717 1718 /* First timestamp snapshot location. */ 1719 ts0 = cs; 1720 1721 /* 1722 * Initial snapshot of the timestamp register to implement the wait. 1723 * We work with 32b values, so clear out the top 32b bits of the 1724 * register because the ALU works 64bits. 1725 */ 1726 *cs++ = MI_LOAD_REGISTER_IMM(1); 1727 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1728 *cs++ = 0; 1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1730 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1731 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1732 1733 /* 1734 * This is the location we're going to jump back into until the 1735 * required amount of time has passed. 1736 */ 1737 jump = cs; 1738 1739 /* 1740 * Take another snapshot of the timestamp register. Take care to clear 1741 * up the top 32bits of CS_GPR(1) as we're using it for other 1742 * operations below. 1743 */ 1744 *cs++ = MI_LOAD_REGISTER_IMM(1); 1745 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1746 *cs++ = 0; 1747 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1748 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1749 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1750 1751 /* 1752 * Do a diff between the 2 timestamps and store the result back into 1753 * CS_GPR(1). 1754 */ 1755 *cs++ = MI_MATH(5); 1756 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1757 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1758 *cs++ = MI_MATH_SUB; 1759 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1760 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1761 1762 /* 1763 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1764 * timestamp have rolled over the 32bits) into the predicate register 1765 * to be used for the predicated jump. 1766 */ 1767 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1768 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1769 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1770 1771 /* Restart from the beginning if we had timestamps roll over. */ 1772 *cs++ = (INTEL_GEN(i915) < 8 ? 1773 MI_BATCH_BUFFER_START : 1774 MI_BATCH_BUFFER_START_GEN8) | 1775 MI_BATCH_PREDICATE; 1776 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1777 *cs++ = 0; 1778 1779 /* 1780 * Now add the diff between to previous timestamps and add it to : 1781 * (((1 * << 64) - 1) - delay_ns) 1782 * 1783 * When the Carry Flag contains 1 this means the elapsed time is 1784 * longer than the expected delay, and we can exit the wait loop. 1785 */ 1786 *cs++ = MI_LOAD_REGISTER_IMM(2); 1787 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1788 *cs++ = lower_32_bits(delay_ticks); 1789 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1790 *cs++ = upper_32_bits(delay_ticks); 1791 1792 *cs++ = MI_MATH(4); 1793 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1794 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1795 *cs++ = MI_MATH_ADD; 1796 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1797 1798 *cs++ = MI_ARB_CHECK; 1799 1800 /* 1801 * Transfer the result into the predicate register to be used for the 1802 * predicated jump. 1803 */ 1804 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1805 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1806 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1807 1808 /* Predicate the jump. */ 1809 *cs++ = (INTEL_GEN(i915) < 8 ? 1810 MI_BATCH_BUFFER_START : 1811 MI_BATCH_BUFFER_START_GEN8) | 1812 MI_BATCH_PREDICATE; 1813 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1814 *cs++ = 0; 1815 1816 /* Restore registers. */ 1817 for (i = 0; i < N_CS_GPR; i++) 1818 cs = save_restore_register( 1819 stream, cs, false /* restore */, CS_GPR(i), 1820 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1821 cs = save_restore_register( 1822 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1823 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1824 1825 /* And return to the ring. */ 1826 *cs++ = MI_BATCH_BUFFER_END; 1827 1828 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1829 1830 i915_gem_object_flush_map(bo); 1831 i915_gem_object_unpin_map(bo); 1832 1833 stream->noa_wait = vma; 1834 return 0; 1835 1836 err_unpin: 1837 i915_vma_unpin_and_release(&vma, 0); 1838 err_unref: 1839 i915_gem_object_put(bo); 1840 return ret; 1841 } 1842 1843 static u32 *write_cs_mi_lri(u32 *cs, 1844 const struct i915_oa_reg *reg_data, 1845 u32 n_regs) 1846 { 1847 u32 i; 1848 1849 for (i = 0; i < n_regs; i++) { 1850 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1851 u32 n_lri = min_t(u32, 1852 n_regs - i, 1853 MI_LOAD_REGISTER_IMM_MAX_REGS); 1854 1855 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1856 } 1857 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1858 *cs++ = reg_data[i].value; 1859 } 1860 1861 return cs; 1862 } 1863 1864 static int num_lri_dwords(int num_regs) 1865 { 1866 int count = 0; 1867 1868 if (num_regs > 0) { 1869 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1870 count += num_regs * 2; 1871 } 1872 1873 return count; 1874 } 1875 1876 static struct i915_oa_config_bo * 1877 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1878 struct i915_oa_config *oa_config) 1879 { 1880 struct drm_i915_gem_object *obj; 1881 struct i915_oa_config_bo *oa_bo; 1882 size_t config_length = 0; 1883 u32 *cs; 1884 int err; 1885 1886 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1887 if (!oa_bo) 1888 return ERR_PTR(-ENOMEM); 1889 1890 config_length += num_lri_dwords(oa_config->mux_regs_len); 1891 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1892 config_length += num_lri_dwords(oa_config->flex_regs_len); 1893 config_length += 3; /* MI_BATCH_BUFFER_START */ 1894 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1895 1896 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1897 if (IS_ERR(obj)) { 1898 err = PTR_ERR(obj); 1899 goto err_free; 1900 } 1901 1902 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1903 if (IS_ERR(cs)) { 1904 err = PTR_ERR(cs); 1905 goto err_oa_bo; 1906 } 1907 1908 cs = write_cs_mi_lri(cs, 1909 oa_config->mux_regs, 1910 oa_config->mux_regs_len); 1911 cs = write_cs_mi_lri(cs, 1912 oa_config->b_counter_regs, 1913 oa_config->b_counter_regs_len); 1914 cs = write_cs_mi_lri(cs, 1915 oa_config->flex_regs, 1916 oa_config->flex_regs_len); 1917 1918 /* Jump into the active wait. */ 1919 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1920 MI_BATCH_BUFFER_START : 1921 MI_BATCH_BUFFER_START_GEN8); 1922 *cs++ = i915_ggtt_offset(stream->noa_wait); 1923 *cs++ = 0; 1924 1925 i915_gem_object_flush_map(obj); 1926 i915_gem_object_unpin_map(obj); 1927 1928 oa_bo->vma = i915_vma_instance(obj, 1929 &stream->engine->gt->ggtt->vm, 1930 NULL); 1931 if (IS_ERR(oa_bo->vma)) { 1932 err = PTR_ERR(oa_bo->vma); 1933 goto err_oa_bo; 1934 } 1935 1936 oa_bo->oa_config = i915_oa_config_get(oa_config); 1937 llist_add(&oa_bo->node, &stream->oa_config_bos); 1938 1939 return oa_bo; 1940 1941 err_oa_bo: 1942 i915_gem_object_put(obj); 1943 err_free: 1944 kfree(oa_bo); 1945 return ERR_PTR(err); 1946 } 1947 1948 static struct i915_vma * 1949 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1950 { 1951 struct i915_oa_config_bo *oa_bo; 1952 1953 /* 1954 * Look for the buffer in the already allocated BOs attached 1955 * to the stream. 1956 */ 1957 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1958 if (oa_bo->oa_config == oa_config && 1959 memcmp(oa_bo->oa_config->uuid, 1960 oa_config->uuid, 1961 sizeof(oa_config->uuid)) == 0) 1962 goto out; 1963 } 1964 1965 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1966 if (IS_ERR(oa_bo)) 1967 return ERR_CAST(oa_bo); 1968 1969 out: 1970 return i915_vma_get(oa_bo->vma); 1971 } 1972 1973 static int emit_oa_config(struct i915_perf_stream *stream, 1974 struct i915_oa_config *oa_config, 1975 struct intel_context *ce) 1976 { 1977 struct i915_request *rq; 1978 struct i915_vma *vma; 1979 int err; 1980 1981 vma = get_oa_vma(stream, oa_config); 1982 if (IS_ERR(vma)) 1983 return PTR_ERR(vma); 1984 1985 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1986 if (err) 1987 goto err_vma_put; 1988 1989 intel_engine_pm_get(ce->engine); 1990 rq = i915_request_create(ce); 1991 intel_engine_pm_put(ce->engine); 1992 if (IS_ERR(rq)) { 1993 err = PTR_ERR(rq); 1994 goto err_vma_unpin; 1995 } 1996 1997 i915_vma_lock(vma); 1998 err = i915_request_await_object(rq, vma->obj, 0); 1999 if (!err) 2000 err = i915_vma_move_to_active(vma, rq, 0); 2001 i915_vma_unlock(vma); 2002 if (err) 2003 goto err_add_request; 2004 2005 err = rq->engine->emit_bb_start(rq, 2006 vma->node.start, 0, 2007 I915_DISPATCH_SECURE); 2008 err_add_request: 2009 i915_request_add(rq); 2010 err_vma_unpin: 2011 i915_vma_unpin(vma); 2012 err_vma_put: 2013 i915_vma_put(vma); 2014 return err; 2015 } 2016 2017 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2018 { 2019 return stream->pinned_ctx ?: stream->engine->kernel_context; 2020 } 2021 2022 static int hsw_enable_metric_set(struct i915_perf_stream *stream) 2023 { 2024 struct intel_uncore *uncore = stream->uncore; 2025 2026 /* 2027 * PRM: 2028 * 2029 * OA unit is using “crclk” for its functionality. When trunk 2030 * level clock gating takes place, OA clock would be gated, 2031 * unable to count the events from non-render clock domain. 2032 * Render clock gating must be disabled when OA is enabled to 2033 * count the events from non-render domain. Unit level clock 2034 * gating for RCS should also be disabled. 2035 */ 2036 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2037 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2038 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2039 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2040 2041 return emit_oa_config(stream, stream->oa_config, oa_context(stream)); 2042 } 2043 2044 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2045 { 2046 struct intel_uncore *uncore = stream->uncore; 2047 2048 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2049 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2050 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2051 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2052 2053 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2054 } 2055 2056 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2057 i915_reg_t reg) 2058 { 2059 u32 mmio = i915_mmio_reg_offset(reg); 2060 int i; 2061 2062 /* 2063 * This arbitrary default will select the 'EU FPU0 Pipeline 2064 * Active' event. In the future it's anticipated that there 2065 * will be an explicit 'No Event' we can select, but not yet... 2066 */ 2067 if (!oa_config) 2068 return 0; 2069 2070 for (i = 0; i < oa_config->flex_regs_len; i++) { 2071 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2072 return oa_config->flex_regs[i].value; 2073 } 2074 2075 return 0; 2076 } 2077 /* 2078 * NB: It must always remain pointer safe to run this even if the OA unit 2079 * has been disabled. 2080 * 2081 * It's fine to put out-of-date values into these per-context registers 2082 * in the case that the OA unit has been disabled. 2083 */ 2084 static void 2085 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2086 const struct i915_perf_stream *stream) 2087 { 2088 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2089 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2090 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2091 i915_reg_t flex_regs[] = { 2092 EU_PERF_CNTL0, 2093 EU_PERF_CNTL1, 2094 EU_PERF_CNTL2, 2095 EU_PERF_CNTL3, 2096 EU_PERF_CNTL4, 2097 EU_PERF_CNTL5, 2098 EU_PERF_CNTL6, 2099 }; 2100 u32 *reg_state = ce->lrc_reg_state; 2101 int i; 2102 2103 reg_state[ctx_oactxctrl + 1] = 2104 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2105 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2106 GEN8_OA_COUNTER_RESUME; 2107 2108 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2109 reg_state[ctx_flexeu0 + i * 2 + 1] = 2110 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2111 2112 reg_state[CTX_R_PWR_CLK_STATE] = 2113 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu); 2114 } 2115 2116 struct flex { 2117 i915_reg_t reg; 2118 u32 offset; 2119 u32 value; 2120 }; 2121 2122 static int 2123 gen8_store_flex(struct i915_request *rq, 2124 struct intel_context *ce, 2125 const struct flex *flex, unsigned int count) 2126 { 2127 u32 offset; 2128 u32 *cs; 2129 2130 cs = intel_ring_begin(rq, 4 * count); 2131 if (IS_ERR(cs)) 2132 return PTR_ERR(cs); 2133 2134 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 2135 do { 2136 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2137 *cs++ = offset + flex->offset * sizeof(u32); 2138 *cs++ = 0; 2139 *cs++ = flex->value; 2140 } while (flex++, --count); 2141 2142 intel_ring_advance(rq, cs); 2143 2144 return 0; 2145 } 2146 2147 static int 2148 gen8_load_flex(struct i915_request *rq, 2149 struct intel_context *ce, 2150 const struct flex *flex, unsigned int count) 2151 { 2152 u32 *cs; 2153 2154 GEM_BUG_ON(!count || count > 63); 2155 2156 cs = intel_ring_begin(rq, 2 * count + 2); 2157 if (IS_ERR(cs)) 2158 return PTR_ERR(cs); 2159 2160 *cs++ = MI_LOAD_REGISTER_IMM(count); 2161 do { 2162 *cs++ = i915_mmio_reg_offset(flex->reg); 2163 *cs++ = flex->value; 2164 } while (flex++, --count); 2165 *cs++ = MI_NOOP; 2166 2167 intel_ring_advance(rq, cs); 2168 2169 return 0; 2170 } 2171 2172 static int gen8_modify_context(struct intel_context *ce, 2173 const struct flex *flex, unsigned int count) 2174 { 2175 struct i915_request *rq; 2176 int err; 2177 2178 rq = intel_engine_create_kernel_request(ce->engine); 2179 if (IS_ERR(rq)) 2180 return PTR_ERR(rq); 2181 2182 /* Serialise with the remote context */ 2183 err = intel_context_prepare_remote_request(ce, rq); 2184 if (err == 0) 2185 err = gen8_store_flex(rq, ce, flex, count); 2186 2187 i915_request_add(rq); 2188 return err; 2189 } 2190 2191 static int gen8_modify_self(struct intel_context *ce, 2192 const struct flex *flex, unsigned int count) 2193 { 2194 struct i915_request *rq; 2195 int err; 2196 2197 rq = i915_request_create(ce); 2198 if (IS_ERR(rq)) 2199 return PTR_ERR(rq); 2200 2201 err = gen8_load_flex(rq, ce, flex, count); 2202 2203 i915_request_add(rq); 2204 return err; 2205 } 2206 2207 static int gen8_configure_context(struct i915_gem_context *ctx, 2208 struct flex *flex, unsigned int count) 2209 { 2210 struct i915_gem_engines_iter it; 2211 struct intel_context *ce; 2212 int err = 0; 2213 2214 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2215 GEM_BUG_ON(ce == ce->engine->kernel_context); 2216 2217 if (ce->engine->class != RENDER_CLASS) 2218 continue; 2219 2220 /* Otherwise OA settings will be set upon first use */ 2221 if (!intel_context_pin_if_active(ce)) 2222 continue; 2223 2224 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2225 err = gen8_modify_context(ce, flex, count); 2226 2227 intel_context_unpin(ce); 2228 if (err) 2229 break; 2230 } 2231 i915_gem_context_unlock_engines(ctx); 2232 2233 return err; 2234 } 2235 2236 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable) 2237 { 2238 int err; 2239 struct intel_context *ce = stream->pinned_ctx; 2240 u32 format = stream->oa_buffer.format; 2241 struct flex regs_context[] = { 2242 { 2243 GEN8_OACTXCONTROL, 2244 stream->perf->ctx_oactxctrl_offset + 1, 2245 enable ? GEN8_OA_COUNTER_RESUME : 0, 2246 }, 2247 }; 2248 /* Offsets in regs_lri are not used since this configuration is only 2249 * applied using LRI. Initialize the correct offsets for posterity. 2250 */ 2251 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2252 struct flex regs_lri[] = { 2253 { 2254 GEN12_OAR_OACONTROL, 2255 GEN12_OAR_OACONTROL_OFFSET + 1, 2256 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2257 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2258 }, 2259 { 2260 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2261 CTX_CONTEXT_CONTROL, 2262 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2263 enable ? 2264 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2265 0) 2266 }, 2267 }; 2268 2269 /* Modify the context image of pinned context with regs_context*/ 2270 err = intel_context_lock_pinned(ce); 2271 if (err) 2272 return err; 2273 2274 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2275 intel_context_unlock_pinned(ce); 2276 if (err) 2277 return err; 2278 2279 /* Apply regs_lri using LRI with pinned context */ 2280 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri)); 2281 } 2282 2283 /* 2284 * Manages updating the per-context aspects of the OA stream 2285 * configuration across all contexts. 2286 * 2287 * The awkward consideration here is that OACTXCONTROL controls the 2288 * exponent for periodic sampling which is primarily used for system 2289 * wide profiling where we'd like a consistent sampling period even in 2290 * the face of context switches. 2291 * 2292 * Our approach of updating the register state context (as opposed to 2293 * say using a workaround batch buffer) ensures that the hardware 2294 * won't automatically reload an out-of-date timer exponent even 2295 * transiently before a WA BB could be parsed. 2296 * 2297 * This function needs to: 2298 * - Ensure the currently running context's per-context OA state is 2299 * updated 2300 * - Ensure that all existing contexts will have the correct per-context 2301 * OA state if they are scheduled for use. 2302 * - Ensure any new contexts will be initialized with the correct 2303 * per-context OA state. 2304 * 2305 * Note: it's only the RCS/Render context that has any OA state. 2306 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2307 */ 2308 static int oa_configure_all_contexts(struct i915_perf_stream *stream, 2309 struct flex *regs, 2310 size_t num_regs) 2311 { 2312 struct drm_i915_private *i915 = stream->perf->i915; 2313 struct intel_engine_cs *engine; 2314 struct i915_gem_context *ctx, *cn; 2315 int err; 2316 2317 lockdep_assert_held(&stream->perf->lock); 2318 2319 /* 2320 * The OA register config is setup through the context image. This image 2321 * might be written to by the GPU on context switch (in particular on 2322 * lite-restore). This means we can't safely update a context's image, 2323 * if this context is scheduled/submitted to run on the GPU. 2324 * 2325 * We could emit the OA register config through the batch buffer but 2326 * this might leave small interval of time where the OA unit is 2327 * configured at an invalid sampling period. 2328 * 2329 * Note that since we emit all requests from a single ring, there 2330 * is still an implicit global barrier here that may cause a high 2331 * priority context to wait for an otherwise independent low priority 2332 * context. Contexts idle at the time of reconfiguration are not 2333 * trapped behind the barrier. 2334 */ 2335 spin_lock(&i915->gem.contexts.lock); 2336 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2337 if (!kref_get_unless_zero(&ctx->ref)) 2338 continue; 2339 2340 spin_unlock(&i915->gem.contexts.lock); 2341 2342 err = gen8_configure_context(ctx, regs, num_regs); 2343 if (err) { 2344 i915_gem_context_put(ctx); 2345 return err; 2346 } 2347 2348 spin_lock(&i915->gem.contexts.lock); 2349 list_safe_reset_next(ctx, cn, link); 2350 i915_gem_context_put(ctx); 2351 } 2352 spin_unlock(&i915->gem.contexts.lock); 2353 2354 /* 2355 * After updating all other contexts, we need to modify ourselves. 2356 * If we don't modify the kernel_context, we do not get events while 2357 * idle. 2358 */ 2359 for_each_uabi_engine(engine, i915) { 2360 struct intel_context *ce = engine->kernel_context; 2361 2362 if (engine->class != RENDER_CLASS) 2363 continue; 2364 2365 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2366 2367 err = gen8_modify_self(ce, regs, num_regs); 2368 if (err) 2369 return err; 2370 } 2371 2372 return 0; 2373 } 2374 2375 static int gen12_configure_all_contexts(struct i915_perf_stream *stream, 2376 const struct i915_oa_config *oa_config) 2377 { 2378 struct flex regs[] = { 2379 { 2380 GEN8_R_PWR_CLK_STATE, 2381 CTX_R_PWR_CLK_STATE, 2382 }, 2383 }; 2384 2385 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2386 } 2387 2388 static int lrc_configure_all_contexts(struct i915_perf_stream *stream, 2389 const struct i915_oa_config *oa_config) 2390 { 2391 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2392 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2393 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2394 struct flex regs[] = { 2395 { 2396 GEN8_R_PWR_CLK_STATE, 2397 CTX_R_PWR_CLK_STATE, 2398 }, 2399 { 2400 GEN8_OACTXCONTROL, 2401 stream->perf->ctx_oactxctrl_offset + 1, 2402 }, 2403 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2404 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2405 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2406 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2407 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2408 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2409 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2410 }; 2411 #undef ctx_flexeuN 2412 int i; 2413 2414 regs[1].value = 2415 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2416 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2417 GEN8_OA_COUNTER_RESUME; 2418 2419 for (i = 2; i < ARRAY_SIZE(regs); i++) 2420 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2421 2422 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2423 } 2424 2425 static int gen8_enable_metric_set(struct i915_perf_stream *stream) 2426 { 2427 struct intel_uncore *uncore = stream->uncore; 2428 struct i915_oa_config *oa_config = stream->oa_config; 2429 int ret; 2430 2431 /* 2432 * We disable slice/unslice clock ratio change reports on SKL since 2433 * they are too noisy. The HW generates a lot of redundant reports 2434 * where the ratio hasn't really changed causing a lot of redundant 2435 * work to processes and increasing the chances we'll hit buffer 2436 * overruns. 2437 * 2438 * Although we don't currently use the 'disable overrun' OABUFFER 2439 * feature it's worth noting that clock ratio reports have to be 2440 * disabled before considering to use that feature since the HW doesn't 2441 * correctly block these reports. 2442 * 2443 * Currently none of the high-level metrics we have depend on knowing 2444 * this ratio to normalize. 2445 * 2446 * Note: This register is not power context saved and restored, but 2447 * that's OK considering that we disable RC6 while the OA unit is 2448 * enabled. 2449 * 2450 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2451 * be read back from automatically triggered reports, as part of the 2452 * RPT_ID field. 2453 */ 2454 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2455 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2456 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2457 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2458 } 2459 2460 /* 2461 * Update all contexts prior writing the mux configurations as we need 2462 * to make sure all slices/subslices are ON before writing to NOA 2463 * registers. 2464 */ 2465 ret = lrc_configure_all_contexts(stream, oa_config); 2466 if (ret) 2467 return ret; 2468 2469 return emit_oa_config(stream, oa_config, oa_context(stream)); 2470 } 2471 2472 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2473 { 2474 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2475 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2476 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2477 } 2478 2479 static int gen12_enable_metric_set(struct i915_perf_stream *stream) 2480 { 2481 struct intel_uncore *uncore = stream->uncore; 2482 struct i915_oa_config *oa_config = stream->oa_config; 2483 bool periodic = stream->periodic; 2484 u32 period_exponent = stream->period_exponent; 2485 int ret; 2486 2487 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2488 /* Disable clk ratio reports, like previous Gens. */ 2489 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2490 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2491 /* 2492 * If the user didn't require OA reports, instruct 2493 * the hardware not to emit ctx switch reports. 2494 */ 2495 oag_report_ctx_switches(stream)); 2496 2497 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2498 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2499 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2500 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2501 : 0); 2502 2503 /* 2504 * Update all contexts prior writing the mux configurations as we need 2505 * to make sure all slices/subslices are ON before writing to NOA 2506 * registers. 2507 */ 2508 ret = gen12_configure_all_contexts(stream, oa_config); 2509 if (ret) 2510 return ret; 2511 2512 /* 2513 * For Gen12, performance counters are context 2514 * saved/restored. Only enable it for the context that 2515 * requested this. 2516 */ 2517 if (stream->ctx) { 2518 ret = gen12_configure_oar_context(stream, true); 2519 if (ret) 2520 return ret; 2521 } 2522 2523 return emit_oa_config(stream, oa_config, oa_context(stream)); 2524 } 2525 2526 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2527 { 2528 struct intel_uncore *uncore = stream->uncore; 2529 2530 /* Reset all contexts' slices/subslices configurations. */ 2531 lrc_configure_all_contexts(stream, NULL); 2532 2533 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2534 } 2535 2536 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2537 { 2538 struct intel_uncore *uncore = stream->uncore; 2539 2540 /* Reset all contexts' slices/subslices configurations. */ 2541 lrc_configure_all_contexts(stream, NULL); 2542 2543 /* Make sure we disable noa to save power. */ 2544 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2545 } 2546 2547 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2548 { 2549 struct intel_uncore *uncore = stream->uncore; 2550 2551 /* Reset all contexts' slices/subslices configurations. */ 2552 gen12_configure_all_contexts(stream, NULL); 2553 2554 /* disable the context save/restore or OAR counters */ 2555 if (stream->ctx) 2556 gen12_configure_oar_context(stream, false); 2557 2558 /* Make sure we disable noa to save power. */ 2559 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2560 } 2561 2562 static void gen7_oa_enable(struct i915_perf_stream *stream) 2563 { 2564 struct intel_uncore *uncore = stream->uncore; 2565 struct i915_gem_context *ctx = stream->ctx; 2566 u32 ctx_id = stream->specific_ctx_id; 2567 bool periodic = stream->periodic; 2568 u32 period_exponent = stream->period_exponent; 2569 u32 report_format = stream->oa_buffer.format; 2570 2571 /* 2572 * Reset buf pointers so we don't forward reports from before now. 2573 * 2574 * Think carefully if considering trying to avoid this, since it 2575 * also ensures status flags and the buffer itself are cleared 2576 * in error paths, and we have checks for invalid reports based 2577 * on the assumption that certain fields are written to zeroed 2578 * memory which this helps maintains. 2579 */ 2580 gen7_init_oa_buffer(stream); 2581 2582 intel_uncore_write(uncore, GEN7_OACONTROL, 2583 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2584 (period_exponent << 2585 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2586 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2587 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2588 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2589 GEN7_OACONTROL_ENABLE); 2590 } 2591 2592 static void gen8_oa_enable(struct i915_perf_stream *stream) 2593 { 2594 struct intel_uncore *uncore = stream->uncore; 2595 u32 report_format = stream->oa_buffer.format; 2596 2597 /* 2598 * Reset buf pointers so we don't forward reports from before now. 2599 * 2600 * Think carefully if considering trying to avoid this, since it 2601 * also ensures status flags and the buffer itself are cleared 2602 * in error paths, and we have checks for invalid reports based 2603 * on the assumption that certain fields are written to zeroed 2604 * memory which this helps maintains. 2605 */ 2606 gen8_init_oa_buffer(stream); 2607 2608 /* 2609 * Note: we don't rely on the hardware to perform single context 2610 * filtering and instead filter on the cpu based on the context-id 2611 * field of reports 2612 */ 2613 intel_uncore_write(uncore, GEN8_OACONTROL, 2614 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2615 GEN8_OA_COUNTER_ENABLE); 2616 } 2617 2618 static void gen12_oa_enable(struct i915_perf_stream *stream) 2619 { 2620 struct intel_uncore *uncore = stream->uncore; 2621 u32 report_format = stream->oa_buffer.format; 2622 2623 /* 2624 * If we don't want OA reports from the OA buffer, then we don't even 2625 * need to program the OAG unit. 2626 */ 2627 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2628 return; 2629 2630 gen12_init_oa_buffer(stream); 2631 2632 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2633 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2634 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2635 } 2636 2637 /** 2638 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2639 * @stream: An i915 perf stream opened for OA metrics 2640 * 2641 * [Re]enables hardware periodic sampling according to the period configured 2642 * when opening the stream. This also starts a hrtimer that will periodically 2643 * check for data in the circular OA buffer for notifying userspace (e.g. 2644 * during a read() or poll()). 2645 */ 2646 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2647 { 2648 stream->perf->ops.oa_enable(stream); 2649 2650 if (stream->periodic) 2651 hrtimer_start(&stream->poll_check_timer, 2652 ns_to_ktime(POLL_PERIOD), 2653 HRTIMER_MODE_REL_PINNED); 2654 } 2655 2656 static void gen7_oa_disable(struct i915_perf_stream *stream) 2657 { 2658 struct intel_uncore *uncore = stream->uncore; 2659 2660 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2661 if (intel_wait_for_register(uncore, 2662 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2663 50)) 2664 drm_err(&stream->perf->i915->drm, 2665 "wait for OA to be disabled timed out\n"); 2666 } 2667 2668 static void gen8_oa_disable(struct i915_perf_stream *stream) 2669 { 2670 struct intel_uncore *uncore = stream->uncore; 2671 2672 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2673 if (intel_wait_for_register(uncore, 2674 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2675 50)) 2676 drm_err(&stream->perf->i915->drm, 2677 "wait for OA to be disabled timed out\n"); 2678 } 2679 2680 static void gen12_oa_disable(struct i915_perf_stream *stream) 2681 { 2682 struct intel_uncore *uncore = stream->uncore; 2683 2684 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2685 if (intel_wait_for_register(uncore, 2686 GEN12_OAG_OACONTROL, 2687 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2688 50)) 2689 drm_err(&stream->perf->i915->drm, 2690 "wait for OA to be disabled timed out\n"); 2691 } 2692 2693 /** 2694 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2695 * @stream: An i915 perf stream opened for OA metrics 2696 * 2697 * Stops the OA unit from periodically writing counter reports into the 2698 * circular OA buffer. This also stops the hrtimer that periodically checks for 2699 * data in the circular OA buffer, for notifying userspace. 2700 */ 2701 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2702 { 2703 stream->perf->ops.oa_disable(stream); 2704 2705 if (stream->periodic) 2706 hrtimer_cancel(&stream->poll_check_timer); 2707 } 2708 2709 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2710 .destroy = i915_oa_stream_destroy, 2711 .enable = i915_oa_stream_enable, 2712 .disable = i915_oa_stream_disable, 2713 .wait_unlocked = i915_oa_wait_unlocked, 2714 .poll_wait = i915_oa_poll_wait, 2715 .read = i915_oa_read, 2716 }; 2717 2718 /** 2719 * i915_oa_stream_init - validate combined props for OA stream and init 2720 * @stream: An i915 perf stream 2721 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2722 * @props: The property state that configures stream (individually validated) 2723 * 2724 * While read_properties_unlocked() validates properties in isolation it 2725 * doesn't ensure that the combination necessarily makes sense. 2726 * 2727 * At this point it has been determined that userspace wants a stream of 2728 * OA metrics, but still we need to further validate the combined 2729 * properties are OK. 2730 * 2731 * If the configuration makes sense then we can allocate memory for 2732 * a circular OA buffer and apply the requested metric set configuration. 2733 * 2734 * Returns: zero on success or a negative error code. 2735 */ 2736 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2737 struct drm_i915_perf_open_param *param, 2738 struct perf_open_properties *props) 2739 { 2740 struct drm_i915_private *i915 = stream->perf->i915; 2741 struct i915_perf *perf = stream->perf; 2742 int format_size; 2743 int ret; 2744 2745 if (!props->engine) { 2746 DRM_DEBUG("OA engine not specified\n"); 2747 return -EINVAL; 2748 } 2749 2750 /* 2751 * If the sysfs metrics/ directory wasn't registered for some 2752 * reason then don't let userspace try their luck with config 2753 * IDs 2754 */ 2755 if (!perf->metrics_kobj) { 2756 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2757 return -EINVAL; 2758 } 2759 2760 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2761 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2762 DRM_DEBUG("Only OA report sampling supported\n"); 2763 return -EINVAL; 2764 } 2765 2766 if (!perf->ops.enable_metric_set) { 2767 DRM_DEBUG("OA unit not supported\n"); 2768 return -ENODEV; 2769 } 2770 2771 /* 2772 * To avoid the complexity of having to accurately filter 2773 * counter reports and marshal to the appropriate client 2774 * we currently only allow exclusive access 2775 */ 2776 if (perf->exclusive_stream) { 2777 DRM_DEBUG("OA unit already in use\n"); 2778 return -EBUSY; 2779 } 2780 2781 if (!props->oa_format) { 2782 DRM_DEBUG("OA report format not specified\n"); 2783 return -EINVAL; 2784 } 2785 2786 stream->engine = props->engine; 2787 stream->uncore = stream->engine->gt->uncore; 2788 2789 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2790 2791 format_size = perf->oa_formats[props->oa_format].size; 2792 2793 stream->sample_flags = props->sample_flags; 2794 stream->sample_size += format_size; 2795 2796 stream->oa_buffer.format_size = format_size; 2797 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2798 return -EINVAL; 2799 2800 stream->hold_preemption = props->hold_preemption; 2801 2802 stream->oa_buffer.format = 2803 perf->oa_formats[props->oa_format].format; 2804 2805 stream->periodic = props->oa_periodic; 2806 if (stream->periodic) 2807 stream->period_exponent = props->oa_period_exponent; 2808 2809 if (stream->ctx) { 2810 ret = oa_get_render_ctx_id(stream); 2811 if (ret) { 2812 DRM_DEBUG("Invalid context id to filter with\n"); 2813 return ret; 2814 } 2815 } 2816 2817 ret = alloc_noa_wait(stream); 2818 if (ret) { 2819 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2820 goto err_noa_wait_alloc; 2821 } 2822 2823 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2824 if (!stream->oa_config) { 2825 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2826 ret = -EINVAL; 2827 goto err_config; 2828 } 2829 2830 /* PRM - observability performance counters: 2831 * 2832 * OACONTROL, performance counter enable, note: 2833 * 2834 * "When this bit is set, in order to have coherent counts, 2835 * RC6 power state and trunk clock gating must be disabled. 2836 * This can be achieved by programming MMIO registers as 2837 * 0xA094=0 and 0xA090[31]=1" 2838 * 2839 * In our case we are expecting that taking pm + FORCEWAKE 2840 * references will effectively disable RC6. 2841 */ 2842 intel_engine_pm_get(stream->engine); 2843 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2844 2845 ret = alloc_oa_buffer(stream); 2846 if (ret) 2847 goto err_oa_buf_alloc; 2848 2849 stream->ops = &i915_oa_stream_ops; 2850 perf->exclusive_stream = stream; 2851 2852 ret = perf->ops.enable_metric_set(stream); 2853 if (ret) { 2854 DRM_DEBUG("Unable to enable metric set\n"); 2855 goto err_enable; 2856 } 2857 2858 DRM_DEBUG("opening stream oa config uuid=%s\n", 2859 stream->oa_config->uuid); 2860 2861 hrtimer_init(&stream->poll_check_timer, 2862 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2863 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2864 init_waitqueue_head(&stream->poll_wq); 2865 spin_lock_init(&stream->oa_buffer.ptr_lock); 2866 2867 return 0; 2868 2869 err_enable: 2870 perf->exclusive_stream = NULL; 2871 perf->ops.disable_metric_set(stream); 2872 2873 free_oa_buffer(stream); 2874 2875 err_oa_buf_alloc: 2876 free_oa_configs(stream); 2877 2878 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2879 intel_engine_pm_put(stream->engine); 2880 2881 err_config: 2882 free_noa_wait(stream); 2883 2884 err_noa_wait_alloc: 2885 if (stream->ctx) 2886 oa_put_render_ctx_id(stream); 2887 2888 return ret; 2889 } 2890 2891 void i915_oa_init_reg_state(const struct intel_context *ce, 2892 const struct intel_engine_cs *engine) 2893 { 2894 struct i915_perf_stream *stream; 2895 2896 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2897 2898 if (engine->class != RENDER_CLASS) 2899 return; 2900 2901 stream = engine->i915->perf.exclusive_stream; 2902 /* 2903 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller 2904 * is already doing that, so nothing to be done for gen12 here. 2905 */ 2906 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2907 gen8_update_reg_state_unlocked(ce, stream); 2908 } 2909 2910 /** 2911 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2912 * @stream: An i915 perf stream 2913 * @file: An i915 perf stream file 2914 * @buf: destination buffer given by userspace 2915 * @count: the number of bytes userspace wants to read 2916 * @ppos: (inout) file seek position (unused) 2917 * 2918 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2919 * ensure that if we've successfully copied any data then reporting that takes 2920 * precedence over any internal error status, so the data isn't lost. 2921 * 2922 * For example ret will be -ENOSPC whenever there is more buffered data than 2923 * can be copied to userspace, but that's only interesting if we weren't able 2924 * to copy some data because it implies the userspace buffer is too small to 2925 * receive a single record (and we never split records). 2926 * 2927 * Another case with ret == -EFAULT is more of a grey area since it would seem 2928 * like bad form for userspace to ask us to overrun its buffer, but the user 2929 * knows best: 2930 * 2931 * http://yarchive.net/comp/linux/partial_reads_writes.html 2932 * 2933 * Returns: The number of bytes copied or a negative error code on failure. 2934 */ 2935 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2936 struct file *file, 2937 char __user *buf, 2938 size_t count, 2939 loff_t *ppos) 2940 { 2941 /* Note we keep the offset (aka bytes read) separate from any 2942 * error status so that the final check for whether we return 2943 * the bytes read with a higher precedence than any error (see 2944 * comment below) doesn't need to be handled/duplicated in 2945 * stream->ops->read() implementations. 2946 */ 2947 size_t offset = 0; 2948 int ret = stream->ops->read(stream, buf, count, &offset); 2949 2950 return offset ?: (ret ?: -EAGAIN); 2951 } 2952 2953 /** 2954 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2955 * @file: An i915 perf stream file 2956 * @buf: destination buffer given by userspace 2957 * @count: the number of bytes userspace wants to read 2958 * @ppos: (inout) file seek position (unused) 2959 * 2960 * The entry point for handling a read() on a stream file descriptor from 2961 * userspace. Most of the work is left to the i915_perf_read_locked() and 2962 * &i915_perf_stream_ops->read but to save having stream implementations (of 2963 * which we might have multiple later) we handle blocking read here. 2964 * 2965 * We can also consistently treat trying to read from a disabled stream 2966 * as an IO error so implementations can assume the stream is enabled 2967 * while reading. 2968 * 2969 * Returns: The number of bytes copied or a negative error code on failure. 2970 */ 2971 static ssize_t i915_perf_read(struct file *file, 2972 char __user *buf, 2973 size_t count, 2974 loff_t *ppos) 2975 { 2976 struct i915_perf_stream *stream = file->private_data; 2977 struct i915_perf *perf = stream->perf; 2978 ssize_t ret; 2979 2980 /* To ensure it's handled consistently we simply treat all reads of a 2981 * disabled stream as an error. In particular it might otherwise lead 2982 * to a deadlock for blocking file descriptors... 2983 */ 2984 if (!stream->enabled) 2985 return -EIO; 2986 2987 if (!(file->f_flags & O_NONBLOCK)) { 2988 /* There's the small chance of false positives from 2989 * stream->ops->wait_unlocked. 2990 * 2991 * E.g. with single context filtering since we only wait until 2992 * oabuffer has >= 1 report we don't immediately know whether 2993 * any reports really belong to the current context 2994 */ 2995 do { 2996 ret = stream->ops->wait_unlocked(stream); 2997 if (ret) 2998 return ret; 2999 3000 mutex_lock(&perf->lock); 3001 ret = i915_perf_read_locked(stream, file, 3002 buf, count, ppos); 3003 mutex_unlock(&perf->lock); 3004 } while (ret == -EAGAIN); 3005 } else { 3006 mutex_lock(&perf->lock); 3007 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 3008 mutex_unlock(&perf->lock); 3009 } 3010 3011 /* We allow the poll checking to sometimes report false positive EPOLLIN 3012 * events where we might actually report EAGAIN on read() if there's 3013 * not really any data available. In this situation though we don't 3014 * want to enter a busy loop between poll() reporting a EPOLLIN event 3015 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3016 * effectively ensures we back off until the next hrtimer callback 3017 * before reporting another EPOLLIN event. 3018 */ 3019 if (ret >= 0 || ret == -EAGAIN) { 3020 /* Maybe make ->pollin per-stream state if we support multiple 3021 * concurrent streams in the future. 3022 */ 3023 stream->pollin = false; 3024 } 3025 3026 return ret; 3027 } 3028 3029 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3030 { 3031 struct i915_perf_stream *stream = 3032 container_of(hrtimer, typeof(*stream), poll_check_timer); 3033 3034 if (oa_buffer_check_unlocked(stream)) { 3035 stream->pollin = true; 3036 wake_up(&stream->poll_wq); 3037 } 3038 3039 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 3040 3041 return HRTIMER_RESTART; 3042 } 3043 3044 /** 3045 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3046 * @stream: An i915 perf stream 3047 * @file: An i915 perf stream file 3048 * @wait: poll() state table 3049 * 3050 * For handling userspace polling on an i915 perf stream, this calls through to 3051 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3052 * will be woken for new stream data. 3053 * 3054 * Note: The &perf->lock mutex has been taken to serialize 3055 * with any non-file-operation driver hooks. 3056 * 3057 * Returns: any poll events that are ready without sleeping 3058 */ 3059 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3060 struct file *file, 3061 poll_table *wait) 3062 { 3063 __poll_t events = 0; 3064 3065 stream->ops->poll_wait(stream, file, wait); 3066 3067 /* Note: we don't explicitly check whether there's something to read 3068 * here since this path may be very hot depending on what else 3069 * userspace is polling, or on the timeout in use. We rely solely on 3070 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3071 * samples to read. 3072 */ 3073 if (stream->pollin) 3074 events |= EPOLLIN; 3075 3076 return events; 3077 } 3078 3079 /** 3080 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3081 * @file: An i915 perf stream file 3082 * @wait: poll() state table 3083 * 3084 * For handling userspace polling on an i915 perf stream, this ensures 3085 * poll_wait() gets called with a wait queue that will be woken for new stream 3086 * data. 3087 * 3088 * Note: Implementation deferred to i915_perf_poll_locked() 3089 * 3090 * Returns: any poll events that are ready without sleeping 3091 */ 3092 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3093 { 3094 struct i915_perf_stream *stream = file->private_data; 3095 struct i915_perf *perf = stream->perf; 3096 __poll_t ret; 3097 3098 mutex_lock(&perf->lock); 3099 ret = i915_perf_poll_locked(stream, file, wait); 3100 mutex_unlock(&perf->lock); 3101 3102 return ret; 3103 } 3104 3105 /** 3106 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3107 * @stream: A disabled i915 perf stream 3108 * 3109 * [Re]enables the associated capture of data for this stream. 3110 * 3111 * If a stream was previously enabled then there's currently no intention 3112 * to provide userspace any guarantee about the preservation of previously 3113 * buffered data. 3114 */ 3115 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3116 { 3117 if (stream->enabled) 3118 return; 3119 3120 /* Allow stream->ops->enable() to refer to this */ 3121 stream->enabled = true; 3122 3123 if (stream->ops->enable) 3124 stream->ops->enable(stream); 3125 3126 if (stream->hold_preemption) 3127 intel_context_set_nopreempt(stream->pinned_ctx); 3128 } 3129 3130 /** 3131 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3132 * @stream: An enabled i915 perf stream 3133 * 3134 * Disables the associated capture of data for this stream. 3135 * 3136 * The intention is that disabling an re-enabling a stream will ideally be 3137 * cheaper than destroying and re-opening a stream with the same configuration, 3138 * though there are no formal guarantees about what state or buffered data 3139 * must be retained between disabling and re-enabling a stream. 3140 * 3141 * Note: while a stream is disabled it's considered an error for userspace 3142 * to attempt to read from the stream (-EIO). 3143 */ 3144 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3145 { 3146 if (!stream->enabled) 3147 return; 3148 3149 /* Allow stream->ops->disable() to refer to this */ 3150 stream->enabled = false; 3151 3152 if (stream->hold_preemption) 3153 intel_context_clear_nopreempt(stream->pinned_ctx); 3154 3155 if (stream->ops->disable) 3156 stream->ops->disable(stream); 3157 } 3158 3159 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3160 unsigned long metrics_set) 3161 { 3162 struct i915_oa_config *config; 3163 long ret = stream->oa_config->id; 3164 3165 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3166 if (!config) 3167 return -EINVAL; 3168 3169 if (config != stream->oa_config) { 3170 int err; 3171 3172 /* 3173 * If OA is bound to a specific context, emit the 3174 * reconfiguration inline from that context. The update 3175 * will then be ordered with respect to submission on that 3176 * context. 3177 * 3178 * When set globally, we use a low priority kernel context, 3179 * so it will effectively take effect when idle. 3180 */ 3181 err = emit_oa_config(stream, config, oa_context(stream)); 3182 if (err == 0) 3183 config = xchg(&stream->oa_config, config); 3184 else 3185 ret = err; 3186 } 3187 3188 i915_oa_config_put(config); 3189 3190 return ret; 3191 } 3192 3193 /** 3194 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3195 * @stream: An i915 perf stream 3196 * @cmd: the ioctl request 3197 * @arg: the ioctl data 3198 * 3199 * Note: The &perf->lock mutex has been taken to serialize 3200 * with any non-file-operation driver hooks. 3201 * 3202 * Returns: zero on success or a negative error code. Returns -EINVAL for 3203 * an unknown ioctl request. 3204 */ 3205 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3206 unsigned int cmd, 3207 unsigned long arg) 3208 { 3209 switch (cmd) { 3210 case I915_PERF_IOCTL_ENABLE: 3211 i915_perf_enable_locked(stream); 3212 return 0; 3213 case I915_PERF_IOCTL_DISABLE: 3214 i915_perf_disable_locked(stream); 3215 return 0; 3216 case I915_PERF_IOCTL_CONFIG: 3217 return i915_perf_config_locked(stream, arg); 3218 } 3219 3220 return -EINVAL; 3221 } 3222 3223 /** 3224 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3225 * @file: An i915 perf stream file 3226 * @cmd: the ioctl request 3227 * @arg: the ioctl data 3228 * 3229 * Implementation deferred to i915_perf_ioctl_locked(). 3230 * 3231 * Returns: zero on success or a negative error code. Returns -EINVAL for 3232 * an unknown ioctl request. 3233 */ 3234 static long i915_perf_ioctl(struct file *file, 3235 unsigned int cmd, 3236 unsigned long arg) 3237 { 3238 struct i915_perf_stream *stream = file->private_data; 3239 struct i915_perf *perf = stream->perf; 3240 long ret; 3241 3242 mutex_lock(&perf->lock); 3243 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3244 mutex_unlock(&perf->lock); 3245 3246 return ret; 3247 } 3248 3249 /** 3250 * i915_perf_destroy_locked - destroy an i915 perf stream 3251 * @stream: An i915 perf stream 3252 * 3253 * Frees all resources associated with the given i915 perf @stream, disabling 3254 * any associated data capture in the process. 3255 * 3256 * Note: The &perf->lock mutex has been taken to serialize 3257 * with any non-file-operation driver hooks. 3258 */ 3259 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3260 { 3261 if (stream->enabled) 3262 i915_perf_disable_locked(stream); 3263 3264 if (stream->ops->destroy) 3265 stream->ops->destroy(stream); 3266 3267 if (stream->ctx) 3268 i915_gem_context_put(stream->ctx); 3269 3270 kfree(stream); 3271 } 3272 3273 /** 3274 * i915_perf_release - handles userspace close() of a stream file 3275 * @inode: anonymous inode associated with file 3276 * @file: An i915 perf stream file 3277 * 3278 * Cleans up any resources associated with an open i915 perf stream file. 3279 * 3280 * NB: close() can't really fail from the userspace point of view. 3281 * 3282 * Returns: zero on success or a negative error code. 3283 */ 3284 static int i915_perf_release(struct inode *inode, struct file *file) 3285 { 3286 struct i915_perf_stream *stream = file->private_data; 3287 struct i915_perf *perf = stream->perf; 3288 3289 mutex_lock(&perf->lock); 3290 i915_perf_destroy_locked(stream); 3291 mutex_unlock(&perf->lock); 3292 3293 /* Release the reference the perf stream kept on the driver. */ 3294 drm_dev_put(&perf->i915->drm); 3295 3296 return 0; 3297 } 3298 3299 3300 static const struct file_operations fops = { 3301 .owner = THIS_MODULE, 3302 .llseek = no_llseek, 3303 .release = i915_perf_release, 3304 .poll = i915_perf_poll, 3305 .read = i915_perf_read, 3306 .unlocked_ioctl = i915_perf_ioctl, 3307 /* Our ioctl have no arguments, so it's safe to use the same function 3308 * to handle 32bits compatibility. 3309 */ 3310 .compat_ioctl = i915_perf_ioctl, 3311 }; 3312 3313 3314 /** 3315 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3316 * @perf: i915 perf instance 3317 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3318 * @props: individually validated u64 property value pairs 3319 * @file: drm file 3320 * 3321 * See i915_perf_ioctl_open() for interface details. 3322 * 3323 * Implements further stream config validation and stream initialization on 3324 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3325 * taken to serialize with any non-file-operation driver hooks. 3326 * 3327 * Note: at this point the @props have only been validated in isolation and 3328 * it's still necessary to validate that the combination of properties makes 3329 * sense. 3330 * 3331 * In the case where userspace is interested in OA unit metrics then further 3332 * config validation and stream initialization details will be handled by 3333 * i915_oa_stream_init(). The code here should only validate config state that 3334 * will be relevant to all stream types / backends. 3335 * 3336 * Returns: zero on success or a negative error code. 3337 */ 3338 static int 3339 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3340 struct drm_i915_perf_open_param *param, 3341 struct perf_open_properties *props, 3342 struct drm_file *file) 3343 { 3344 struct i915_gem_context *specific_ctx = NULL; 3345 struct i915_perf_stream *stream = NULL; 3346 unsigned long f_flags = 0; 3347 bool privileged_op = true; 3348 int stream_fd; 3349 int ret; 3350 3351 if (props->single_context) { 3352 u32 ctx_handle = props->ctx_handle; 3353 struct drm_i915_file_private *file_priv = file->driver_priv; 3354 3355 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3356 if (!specific_ctx) { 3357 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3358 ctx_handle); 3359 ret = -ENOENT; 3360 goto err; 3361 } 3362 } 3363 3364 /* 3365 * On Haswell the OA unit supports clock gating off for a specific 3366 * context and in this mode there's no visibility of metrics for the 3367 * rest of the system, which we consider acceptable for a 3368 * non-privileged client. 3369 * 3370 * For Gen8->11 the OA unit no longer supports clock gating off for a 3371 * specific context and the kernel can't securely stop the counters 3372 * from updating as system-wide / global values. Even though we can 3373 * filter reports based on the included context ID we can't block 3374 * clients from seeing the raw / global counter values via 3375 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3376 * enable the OA unit by default. 3377 * 3378 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3379 * per context basis. So we can relax requirements there if the user 3380 * doesn't request global stream access (i.e. query based sampling 3381 * using MI_RECORD_PERF_COUNT. 3382 */ 3383 if (IS_HASWELL(perf->i915) && specific_ctx) 3384 privileged_op = false; 3385 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3386 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3387 privileged_op = false; 3388 3389 if (props->hold_preemption) { 3390 if (!props->single_context) { 3391 DRM_DEBUG("preemption disable with no context\n"); 3392 ret = -EINVAL; 3393 goto err; 3394 } 3395 privileged_op = true; 3396 } 3397 3398 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3399 * we check a dev.i915.perf_stream_paranoid sysctl option 3400 * to determine if it's ok to access system wide OA counters 3401 * without CAP_SYS_ADMIN privileges. 3402 */ 3403 if (privileged_op && 3404 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3405 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3406 ret = -EACCES; 3407 goto err_ctx; 3408 } 3409 3410 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3411 if (!stream) { 3412 ret = -ENOMEM; 3413 goto err_ctx; 3414 } 3415 3416 stream->perf = perf; 3417 stream->ctx = specific_ctx; 3418 3419 ret = i915_oa_stream_init(stream, param, props); 3420 if (ret) 3421 goto err_alloc; 3422 3423 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3424 * to have _stream_init check the combination of sample flags more 3425 * thoroughly, but still this is the expected result at this point. 3426 */ 3427 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3428 ret = -ENODEV; 3429 goto err_flags; 3430 } 3431 3432 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3433 f_flags |= O_CLOEXEC; 3434 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3435 f_flags |= O_NONBLOCK; 3436 3437 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3438 if (stream_fd < 0) { 3439 ret = stream_fd; 3440 goto err_flags; 3441 } 3442 3443 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3444 i915_perf_enable_locked(stream); 3445 3446 /* Take a reference on the driver that will be kept with stream_fd 3447 * until its release. 3448 */ 3449 drm_dev_get(&perf->i915->drm); 3450 3451 return stream_fd; 3452 3453 err_flags: 3454 if (stream->ops->destroy) 3455 stream->ops->destroy(stream); 3456 err_alloc: 3457 kfree(stream); 3458 err_ctx: 3459 if (specific_ctx) 3460 i915_gem_context_put(specific_ctx); 3461 err: 3462 return ret; 3463 } 3464 3465 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3466 { 3467 return div64_u64(1000000000ULL * (2ULL << exponent), 3468 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz); 3469 } 3470 3471 /** 3472 * read_properties_unlocked - validate + copy userspace stream open properties 3473 * @perf: i915 perf instance 3474 * @uprops: The array of u64 key value pairs given by userspace 3475 * @n_props: The number of key value pairs expected in @uprops 3476 * @props: The stream configuration built up while validating properties 3477 * 3478 * Note this function only validates properties in isolation it doesn't 3479 * validate that the combination of properties makes sense or that all 3480 * properties necessary for a particular kind of stream have been set. 3481 * 3482 * Note that there currently aren't any ordering requirements for properties so 3483 * we shouldn't validate or assume anything about ordering here. This doesn't 3484 * rule out defining new properties with ordering requirements in the future. 3485 */ 3486 static int read_properties_unlocked(struct i915_perf *perf, 3487 u64 __user *uprops, 3488 u32 n_props, 3489 struct perf_open_properties *props) 3490 { 3491 u64 __user *uprop = uprops; 3492 u32 i; 3493 3494 memset(props, 0, sizeof(struct perf_open_properties)); 3495 3496 if (!n_props) { 3497 DRM_DEBUG("No i915 perf properties given\n"); 3498 return -EINVAL; 3499 } 3500 3501 /* At the moment we only support using i915-perf on the RCS. */ 3502 props->engine = intel_engine_lookup_user(perf->i915, 3503 I915_ENGINE_CLASS_RENDER, 3504 0); 3505 if (!props->engine) { 3506 DRM_DEBUG("No RENDER-capable engines\n"); 3507 return -EINVAL; 3508 } 3509 3510 /* Considering that ID = 0 is reserved and assuming that we don't 3511 * (currently) expect any configurations to ever specify duplicate 3512 * values for a particular property ID then the last _PROP_MAX value is 3513 * one greater than the maximum number of properties we expect to get 3514 * from userspace. 3515 */ 3516 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3517 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3518 return -EINVAL; 3519 } 3520 3521 for (i = 0; i < n_props; i++) { 3522 u64 oa_period, oa_freq_hz; 3523 u64 id, value; 3524 int ret; 3525 3526 ret = get_user(id, uprop); 3527 if (ret) 3528 return ret; 3529 3530 ret = get_user(value, uprop + 1); 3531 if (ret) 3532 return ret; 3533 3534 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3535 DRM_DEBUG("Unknown i915 perf property ID\n"); 3536 return -EINVAL; 3537 } 3538 3539 switch ((enum drm_i915_perf_property_id)id) { 3540 case DRM_I915_PERF_PROP_CTX_HANDLE: 3541 props->single_context = 1; 3542 props->ctx_handle = value; 3543 break; 3544 case DRM_I915_PERF_PROP_SAMPLE_OA: 3545 if (value) 3546 props->sample_flags |= SAMPLE_OA_REPORT; 3547 break; 3548 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3549 if (value == 0) { 3550 DRM_DEBUG("Unknown OA metric set ID\n"); 3551 return -EINVAL; 3552 } 3553 props->metrics_set = value; 3554 break; 3555 case DRM_I915_PERF_PROP_OA_FORMAT: 3556 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3557 DRM_DEBUG("Out-of-range OA report format %llu\n", 3558 value); 3559 return -EINVAL; 3560 } 3561 if (!perf->oa_formats[value].size) { 3562 DRM_DEBUG("Unsupported OA report format %llu\n", 3563 value); 3564 return -EINVAL; 3565 } 3566 props->oa_format = value; 3567 break; 3568 case DRM_I915_PERF_PROP_OA_EXPONENT: 3569 if (value > OA_EXPONENT_MAX) { 3570 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3571 OA_EXPONENT_MAX); 3572 return -EINVAL; 3573 } 3574 3575 /* Theoretically we can program the OA unit to sample 3576 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3577 * for BXT. We don't allow such high sampling 3578 * frequencies by default unless root. 3579 */ 3580 3581 BUILD_BUG_ON(sizeof(oa_period) != 8); 3582 oa_period = oa_exponent_to_ns(perf, value); 3583 3584 /* This check is primarily to ensure that oa_period <= 3585 * UINT32_MAX (before passing to do_div which only 3586 * accepts a u32 denominator), but we can also skip 3587 * checking anything < 1Hz which implicitly can't be 3588 * limited via an integer oa_max_sample_rate. 3589 */ 3590 if (oa_period <= NSEC_PER_SEC) { 3591 u64 tmp = NSEC_PER_SEC; 3592 do_div(tmp, oa_period); 3593 oa_freq_hz = tmp; 3594 } else 3595 oa_freq_hz = 0; 3596 3597 if (oa_freq_hz > i915_oa_max_sample_rate && 3598 !capable(CAP_SYS_ADMIN)) { 3599 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 3600 i915_oa_max_sample_rate); 3601 return -EACCES; 3602 } 3603 3604 props->oa_periodic = true; 3605 props->oa_period_exponent = value; 3606 break; 3607 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3608 props->hold_preemption = !!value; 3609 break; 3610 case DRM_I915_PERF_PROP_MAX: 3611 MISSING_CASE(id); 3612 return -EINVAL; 3613 } 3614 3615 uprop += 2; 3616 } 3617 3618 return 0; 3619 } 3620 3621 /** 3622 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3623 * @dev: drm device 3624 * @data: ioctl data copied from userspace (unvalidated) 3625 * @file: drm file 3626 * 3627 * Validates the stream open parameters given by userspace including flags 3628 * and an array of u64 key, value pair properties. 3629 * 3630 * Very little is assumed up front about the nature of the stream being 3631 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3632 * i915-perf stream is expected to be a suitable interface for other forms of 3633 * buffered data written by the GPU besides periodic OA metrics. 3634 * 3635 * Note we copy the properties from userspace outside of the i915 perf 3636 * mutex to avoid an awkward lockdep with mmap_sem. 3637 * 3638 * Most of the implementation details are handled by 3639 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3640 * mutex for serializing with any non-file-operation driver hooks. 3641 * 3642 * Return: A newly opened i915 Perf stream file descriptor or negative 3643 * error code on failure. 3644 */ 3645 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3646 struct drm_file *file) 3647 { 3648 struct i915_perf *perf = &to_i915(dev)->perf; 3649 struct drm_i915_perf_open_param *param = data; 3650 struct perf_open_properties props; 3651 u32 known_open_flags; 3652 int ret; 3653 3654 if (!perf->i915) { 3655 DRM_DEBUG("i915 perf interface not available for this system\n"); 3656 return -ENOTSUPP; 3657 } 3658 3659 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3660 I915_PERF_FLAG_FD_NONBLOCK | 3661 I915_PERF_FLAG_DISABLED; 3662 if (param->flags & ~known_open_flags) { 3663 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3664 return -EINVAL; 3665 } 3666 3667 ret = read_properties_unlocked(perf, 3668 u64_to_user_ptr(param->properties_ptr), 3669 param->num_properties, 3670 &props); 3671 if (ret) 3672 return ret; 3673 3674 mutex_lock(&perf->lock); 3675 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3676 mutex_unlock(&perf->lock); 3677 3678 return ret; 3679 } 3680 3681 /** 3682 * i915_perf_register - exposes i915-perf to userspace 3683 * @i915: i915 device instance 3684 * 3685 * In particular OA metric sets are advertised under a sysfs metrics/ 3686 * directory allowing userspace to enumerate valid IDs that can be 3687 * used to open an i915-perf stream. 3688 */ 3689 void i915_perf_register(struct drm_i915_private *i915) 3690 { 3691 struct i915_perf *perf = &i915->perf; 3692 int ret; 3693 3694 if (!perf->i915) 3695 return; 3696 3697 /* To be sure we're synchronized with an attempted 3698 * i915_perf_open_ioctl(); considering that we register after 3699 * being exposed to userspace. 3700 */ 3701 mutex_lock(&perf->lock); 3702 3703 perf->metrics_kobj = 3704 kobject_create_and_add("metrics", 3705 &i915->drm.primary->kdev->kobj); 3706 if (!perf->metrics_kobj) 3707 goto exit; 3708 3709 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr); 3710 3711 if (IS_TIGERLAKE(i915)) { 3712 i915_perf_load_test_config_tgl(i915); 3713 } else if (INTEL_GEN(i915) >= 11) { 3714 i915_perf_load_test_config_icl(i915); 3715 } else if (IS_CANNONLAKE(i915)) { 3716 i915_perf_load_test_config_cnl(i915); 3717 } else if (IS_COFFEELAKE(i915)) { 3718 if (IS_CFL_GT2(i915)) 3719 i915_perf_load_test_config_cflgt2(i915); 3720 if (IS_CFL_GT3(i915)) 3721 i915_perf_load_test_config_cflgt3(i915); 3722 } else if (IS_GEMINILAKE(i915)) { 3723 i915_perf_load_test_config_glk(i915); 3724 } else if (IS_KABYLAKE(i915)) { 3725 if (IS_KBL_GT2(i915)) 3726 i915_perf_load_test_config_kblgt2(i915); 3727 else if (IS_KBL_GT3(i915)) 3728 i915_perf_load_test_config_kblgt3(i915); 3729 } else if (IS_BROXTON(i915)) { 3730 i915_perf_load_test_config_bxt(i915); 3731 } else if (IS_SKYLAKE(i915)) { 3732 if (IS_SKL_GT2(i915)) 3733 i915_perf_load_test_config_sklgt2(i915); 3734 else if (IS_SKL_GT3(i915)) 3735 i915_perf_load_test_config_sklgt3(i915); 3736 else if (IS_SKL_GT4(i915)) 3737 i915_perf_load_test_config_sklgt4(i915); 3738 } else if (IS_CHERRYVIEW(i915)) { 3739 i915_perf_load_test_config_chv(i915); 3740 } else if (IS_BROADWELL(i915)) { 3741 i915_perf_load_test_config_bdw(i915); 3742 } else if (IS_HASWELL(i915)) { 3743 i915_perf_load_test_config_hsw(i915); 3744 } 3745 3746 if (perf->test_config.id == 0) 3747 goto sysfs_error; 3748 3749 ret = sysfs_create_group(perf->metrics_kobj, 3750 &perf->test_config.sysfs_metric); 3751 if (ret) 3752 goto sysfs_error; 3753 3754 perf->test_config.perf = perf; 3755 kref_init(&perf->test_config.ref); 3756 3757 goto exit; 3758 3759 sysfs_error: 3760 kobject_put(perf->metrics_kobj); 3761 perf->metrics_kobj = NULL; 3762 3763 exit: 3764 mutex_unlock(&perf->lock); 3765 } 3766 3767 /** 3768 * i915_perf_unregister - hide i915-perf from userspace 3769 * @i915: i915 device instance 3770 * 3771 * i915-perf state cleanup is split up into an 'unregister' and 3772 * 'deinit' phase where the interface is first hidden from 3773 * userspace by i915_perf_unregister() before cleaning up 3774 * remaining state in i915_perf_fini(). 3775 */ 3776 void i915_perf_unregister(struct drm_i915_private *i915) 3777 { 3778 struct i915_perf *perf = &i915->perf; 3779 3780 if (!perf->metrics_kobj) 3781 return; 3782 3783 sysfs_remove_group(perf->metrics_kobj, 3784 &perf->test_config.sysfs_metric); 3785 3786 kobject_put(perf->metrics_kobj); 3787 perf->metrics_kobj = NULL; 3788 } 3789 3790 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3791 { 3792 static const i915_reg_t flex_eu_regs[] = { 3793 EU_PERF_CNTL0, 3794 EU_PERF_CNTL1, 3795 EU_PERF_CNTL2, 3796 EU_PERF_CNTL3, 3797 EU_PERF_CNTL4, 3798 EU_PERF_CNTL5, 3799 EU_PERF_CNTL6, 3800 }; 3801 int i; 3802 3803 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3804 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3805 return true; 3806 } 3807 return false; 3808 } 3809 3810 #define ADDR_IN_RANGE(addr, start, end) \ 3811 ((addr) >= (start) && \ 3812 (addr) <= (end)) 3813 3814 #define REG_IN_RANGE(addr, start, end) \ 3815 ((addr) >= i915_mmio_reg_offset(start) && \ 3816 (addr) <= i915_mmio_reg_offset(end)) 3817 3818 #define REG_EQUAL(addr, mmio) \ 3819 ((addr) == i915_mmio_reg_offset(mmio)) 3820 3821 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3822 { 3823 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3824 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3825 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3826 } 3827 3828 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3829 { 3830 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3831 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3832 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3833 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3834 } 3835 3836 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3837 { 3838 return gen7_is_valid_mux_addr(perf, addr) || 3839 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3840 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3841 } 3842 3843 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3844 { 3845 return gen8_is_valid_mux_addr(perf, addr) || 3846 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3847 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3848 } 3849 3850 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3851 { 3852 return gen7_is_valid_mux_addr(perf, addr) || 3853 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3854 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3855 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3856 } 3857 3858 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3859 { 3860 return gen7_is_valid_mux_addr(perf, addr) || 3861 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3862 } 3863 3864 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3865 { 3866 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3867 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3868 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3869 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3870 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3871 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3872 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3873 } 3874 3875 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3876 { 3877 return REG_EQUAL(addr, NOA_WRITE) || 3878 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3879 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3880 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3881 REG_EQUAL(addr, RPM_CONFIG0) || 3882 REG_EQUAL(addr, RPM_CONFIG1) || 3883 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3884 } 3885 3886 static u32 mask_reg_value(u32 reg, u32 val) 3887 { 3888 /* HALF_SLICE_CHICKEN2 is programmed with a the 3889 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3890 * programmed by userspace doesn't change this. 3891 */ 3892 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3893 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3894 3895 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3896 * indicated by its name and a bunch of selection fields used by OA 3897 * configs. 3898 */ 3899 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3900 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3901 3902 return val; 3903 } 3904 3905 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3906 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3907 u32 __user *regs, 3908 u32 n_regs) 3909 { 3910 struct i915_oa_reg *oa_regs; 3911 int err; 3912 u32 i; 3913 3914 if (!n_regs) 3915 return NULL; 3916 3917 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3918 return ERR_PTR(-EFAULT); 3919 3920 /* No is_valid function means we're not allowing any register to be programmed. */ 3921 GEM_BUG_ON(!is_valid); 3922 if (!is_valid) 3923 return ERR_PTR(-EINVAL); 3924 3925 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3926 if (!oa_regs) 3927 return ERR_PTR(-ENOMEM); 3928 3929 for (i = 0; i < n_regs; i++) { 3930 u32 addr, value; 3931 3932 err = get_user(addr, regs); 3933 if (err) 3934 goto addr_err; 3935 3936 if (!is_valid(perf, addr)) { 3937 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3938 err = -EINVAL; 3939 goto addr_err; 3940 } 3941 3942 err = get_user(value, regs + 1); 3943 if (err) 3944 goto addr_err; 3945 3946 oa_regs[i].addr = _MMIO(addr); 3947 oa_regs[i].value = mask_reg_value(addr, value); 3948 3949 regs += 2; 3950 } 3951 3952 return oa_regs; 3953 3954 addr_err: 3955 kfree(oa_regs); 3956 return ERR_PTR(err); 3957 } 3958 3959 static ssize_t show_dynamic_id(struct device *dev, 3960 struct device_attribute *attr, 3961 char *buf) 3962 { 3963 struct i915_oa_config *oa_config = 3964 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3965 3966 return sprintf(buf, "%d\n", oa_config->id); 3967 } 3968 3969 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3970 struct i915_oa_config *oa_config) 3971 { 3972 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3973 oa_config->sysfs_metric_id.attr.name = "id"; 3974 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3975 oa_config->sysfs_metric_id.show = show_dynamic_id; 3976 oa_config->sysfs_metric_id.store = NULL; 3977 3978 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3979 oa_config->attrs[1] = NULL; 3980 3981 oa_config->sysfs_metric.name = oa_config->uuid; 3982 oa_config->sysfs_metric.attrs = oa_config->attrs; 3983 3984 return sysfs_create_group(perf->metrics_kobj, 3985 &oa_config->sysfs_metric); 3986 } 3987 3988 /** 3989 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3990 * @dev: drm device 3991 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3992 * userspace (unvalidated) 3993 * @file: drm file 3994 * 3995 * Validates the submitted OA register to be saved into a new OA config that 3996 * can then be used for programming the OA unit and its NOA network. 3997 * 3998 * Returns: A new allocated config number to be used with the perf open ioctl 3999 * or a negative error code on failure. 4000 */ 4001 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4002 struct drm_file *file) 4003 { 4004 struct i915_perf *perf = &to_i915(dev)->perf; 4005 struct drm_i915_perf_oa_config *args = data; 4006 struct i915_oa_config *oa_config, *tmp; 4007 struct i915_oa_reg *regs; 4008 int err, id; 4009 4010 if (!perf->i915) { 4011 DRM_DEBUG("i915 perf interface not available for this system\n"); 4012 return -ENOTSUPP; 4013 } 4014 4015 if (!perf->metrics_kobj) { 4016 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4017 return -EINVAL; 4018 } 4019 4020 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4021 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4022 return -EACCES; 4023 } 4024 4025 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4026 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4027 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4028 DRM_DEBUG("No OA registers given\n"); 4029 return -EINVAL; 4030 } 4031 4032 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4033 if (!oa_config) { 4034 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4035 return -ENOMEM; 4036 } 4037 4038 oa_config->perf = perf; 4039 kref_init(&oa_config->ref); 4040 4041 if (!uuid_is_valid(args->uuid)) { 4042 DRM_DEBUG("Invalid uuid format for OA config\n"); 4043 err = -EINVAL; 4044 goto reg_err; 4045 } 4046 4047 /* Last character in oa_config->uuid will be 0 because oa_config is 4048 * kzalloc. 4049 */ 4050 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4051 4052 oa_config->mux_regs_len = args->n_mux_regs; 4053 regs = alloc_oa_regs(perf, 4054 perf->ops.is_valid_mux_reg, 4055 u64_to_user_ptr(args->mux_regs_ptr), 4056 args->n_mux_regs); 4057 4058 if (IS_ERR(regs)) { 4059 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4060 err = PTR_ERR(regs); 4061 goto reg_err; 4062 } 4063 oa_config->mux_regs = regs; 4064 4065 oa_config->b_counter_regs_len = args->n_boolean_regs; 4066 regs = alloc_oa_regs(perf, 4067 perf->ops.is_valid_b_counter_reg, 4068 u64_to_user_ptr(args->boolean_regs_ptr), 4069 args->n_boolean_regs); 4070 4071 if (IS_ERR(regs)) { 4072 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4073 err = PTR_ERR(regs); 4074 goto reg_err; 4075 } 4076 oa_config->b_counter_regs = regs; 4077 4078 if (INTEL_GEN(perf->i915) < 8) { 4079 if (args->n_flex_regs != 0) { 4080 err = -EINVAL; 4081 goto reg_err; 4082 } 4083 } else { 4084 oa_config->flex_regs_len = args->n_flex_regs; 4085 regs = alloc_oa_regs(perf, 4086 perf->ops.is_valid_flex_reg, 4087 u64_to_user_ptr(args->flex_regs_ptr), 4088 args->n_flex_regs); 4089 4090 if (IS_ERR(regs)) { 4091 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4092 err = PTR_ERR(regs); 4093 goto reg_err; 4094 } 4095 oa_config->flex_regs = regs; 4096 } 4097 4098 err = mutex_lock_interruptible(&perf->metrics_lock); 4099 if (err) 4100 goto reg_err; 4101 4102 /* We shouldn't have too many configs, so this iteration shouldn't be 4103 * too costly. 4104 */ 4105 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4106 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4107 DRM_DEBUG("OA config already exists with this uuid\n"); 4108 err = -EADDRINUSE; 4109 goto sysfs_err; 4110 } 4111 } 4112 4113 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4114 if (err) { 4115 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4116 goto sysfs_err; 4117 } 4118 4119 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4120 oa_config->id = idr_alloc(&perf->metrics_idr, 4121 oa_config, 2, 4122 0, GFP_KERNEL); 4123 if (oa_config->id < 0) { 4124 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4125 err = oa_config->id; 4126 goto sysfs_err; 4127 } 4128 4129 mutex_unlock(&perf->metrics_lock); 4130 4131 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4132 4133 return oa_config->id; 4134 4135 sysfs_err: 4136 mutex_unlock(&perf->metrics_lock); 4137 reg_err: 4138 i915_oa_config_put(oa_config); 4139 DRM_DEBUG("Failed to add new OA config\n"); 4140 return err; 4141 } 4142 4143 /** 4144 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4145 * @dev: drm device 4146 * @data: ioctl data (pointer to u64 integer) copied from userspace 4147 * @file: drm file 4148 * 4149 * Configs can be removed while being used, the will stop appearing in sysfs 4150 * and their content will be freed when the stream using the config is closed. 4151 * 4152 * Returns: 0 on success or a negative error code on failure. 4153 */ 4154 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4155 struct drm_file *file) 4156 { 4157 struct i915_perf *perf = &to_i915(dev)->perf; 4158 u64 *arg = data; 4159 struct i915_oa_config *oa_config; 4160 int ret; 4161 4162 if (!perf->i915) { 4163 DRM_DEBUG("i915 perf interface not available for this system\n"); 4164 return -ENOTSUPP; 4165 } 4166 4167 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4168 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4169 return -EACCES; 4170 } 4171 4172 ret = mutex_lock_interruptible(&perf->metrics_lock); 4173 if (ret) 4174 return ret; 4175 4176 oa_config = idr_find(&perf->metrics_idr, *arg); 4177 if (!oa_config) { 4178 DRM_DEBUG("Failed to remove unknown OA config\n"); 4179 ret = -ENOENT; 4180 goto err_unlock; 4181 } 4182 4183 GEM_BUG_ON(*arg != oa_config->id); 4184 4185 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4186 4187 idr_remove(&perf->metrics_idr, *arg); 4188 4189 mutex_unlock(&perf->metrics_lock); 4190 4191 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4192 4193 i915_oa_config_put(oa_config); 4194 4195 return 0; 4196 4197 err_unlock: 4198 mutex_unlock(&perf->metrics_lock); 4199 return ret; 4200 } 4201 4202 static struct ctl_table oa_table[] = { 4203 { 4204 .procname = "perf_stream_paranoid", 4205 .data = &i915_perf_stream_paranoid, 4206 .maxlen = sizeof(i915_perf_stream_paranoid), 4207 .mode = 0644, 4208 .proc_handler = proc_dointvec_minmax, 4209 .extra1 = SYSCTL_ZERO, 4210 .extra2 = SYSCTL_ONE, 4211 }, 4212 { 4213 .procname = "oa_max_sample_rate", 4214 .data = &i915_oa_max_sample_rate, 4215 .maxlen = sizeof(i915_oa_max_sample_rate), 4216 .mode = 0644, 4217 .proc_handler = proc_dointvec_minmax, 4218 .extra1 = SYSCTL_ZERO, 4219 .extra2 = &oa_sample_rate_hard_limit, 4220 }, 4221 {} 4222 }; 4223 4224 static struct ctl_table i915_root[] = { 4225 { 4226 .procname = "i915", 4227 .maxlen = 0, 4228 .mode = 0555, 4229 .child = oa_table, 4230 }, 4231 {} 4232 }; 4233 4234 static struct ctl_table dev_root[] = { 4235 { 4236 .procname = "dev", 4237 .maxlen = 0, 4238 .mode = 0555, 4239 .child = i915_root, 4240 }, 4241 {} 4242 }; 4243 4244 /** 4245 * i915_perf_init - initialize i915-perf state on module bind 4246 * @i915: i915 device instance 4247 * 4248 * Initializes i915-perf state without exposing anything to userspace. 4249 * 4250 * Note: i915-perf initialization is split into an 'init' and 'register' 4251 * phase with the i915_perf_register() exposing state to userspace. 4252 */ 4253 void i915_perf_init(struct drm_i915_private *i915) 4254 { 4255 struct i915_perf *perf = &i915->perf; 4256 4257 /* XXX const struct i915_perf_ops! */ 4258 4259 if (IS_HASWELL(i915)) { 4260 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4261 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4262 perf->ops.is_valid_flex_reg = NULL; 4263 perf->ops.enable_metric_set = hsw_enable_metric_set; 4264 perf->ops.disable_metric_set = hsw_disable_metric_set; 4265 perf->ops.oa_enable = gen7_oa_enable; 4266 perf->ops.oa_disable = gen7_oa_disable; 4267 perf->ops.read = gen7_oa_read; 4268 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4269 4270 perf->oa_formats = hsw_oa_formats; 4271 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4272 /* Note: that although we could theoretically also support the 4273 * legacy ringbuffer mode on BDW (and earlier iterations of 4274 * this driver, before upstreaming did this) it didn't seem 4275 * worth the complexity to maintain now that BDW+ enable 4276 * execlist mode by default. 4277 */ 4278 perf->ops.read = gen8_oa_read; 4279 4280 if (IS_GEN_RANGE(i915, 8, 9)) { 4281 perf->oa_formats = gen8_plus_oa_formats; 4282 4283 perf->ops.is_valid_b_counter_reg = 4284 gen7_is_valid_b_counter_addr; 4285 perf->ops.is_valid_mux_reg = 4286 gen8_is_valid_mux_addr; 4287 perf->ops.is_valid_flex_reg = 4288 gen8_is_valid_flex_addr; 4289 4290 if (IS_CHERRYVIEW(i915)) { 4291 perf->ops.is_valid_mux_reg = 4292 chv_is_valid_mux_addr; 4293 } 4294 4295 perf->ops.oa_enable = gen8_oa_enable; 4296 perf->ops.oa_disable = gen8_oa_disable; 4297 perf->ops.enable_metric_set = gen8_enable_metric_set; 4298 perf->ops.disable_metric_set = gen8_disable_metric_set; 4299 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4300 4301 if (IS_GEN(i915, 8)) { 4302 perf->ctx_oactxctrl_offset = 0x120; 4303 perf->ctx_flexeu0_offset = 0x2ce; 4304 4305 perf->gen8_valid_ctx_bit = BIT(25); 4306 } else { 4307 perf->ctx_oactxctrl_offset = 0x128; 4308 perf->ctx_flexeu0_offset = 0x3de; 4309 4310 perf->gen8_valid_ctx_bit = BIT(16); 4311 } 4312 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4313 perf->oa_formats = gen8_plus_oa_formats; 4314 4315 perf->ops.is_valid_b_counter_reg = 4316 gen7_is_valid_b_counter_addr; 4317 perf->ops.is_valid_mux_reg = 4318 gen10_is_valid_mux_addr; 4319 perf->ops.is_valid_flex_reg = 4320 gen8_is_valid_flex_addr; 4321 4322 perf->ops.oa_enable = gen8_oa_enable; 4323 perf->ops.oa_disable = gen8_oa_disable; 4324 perf->ops.enable_metric_set = gen8_enable_metric_set; 4325 perf->ops.disable_metric_set = gen10_disable_metric_set; 4326 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4327 4328 if (IS_GEN(i915, 10)) { 4329 perf->ctx_oactxctrl_offset = 0x128; 4330 perf->ctx_flexeu0_offset = 0x3de; 4331 } else { 4332 perf->ctx_oactxctrl_offset = 0x124; 4333 perf->ctx_flexeu0_offset = 0x78e; 4334 } 4335 perf->gen8_valid_ctx_bit = BIT(16); 4336 } else if (IS_GEN(i915, 12)) { 4337 perf->oa_formats = gen12_oa_formats; 4338 4339 perf->ops.is_valid_b_counter_reg = 4340 gen12_is_valid_b_counter_addr; 4341 perf->ops.is_valid_mux_reg = 4342 gen12_is_valid_mux_addr; 4343 perf->ops.is_valid_flex_reg = 4344 gen8_is_valid_flex_addr; 4345 4346 perf->ops.oa_enable = gen12_oa_enable; 4347 perf->ops.oa_disable = gen12_oa_disable; 4348 perf->ops.enable_metric_set = gen12_enable_metric_set; 4349 perf->ops.disable_metric_set = gen12_disable_metric_set; 4350 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4351 4352 perf->ctx_flexeu0_offset = 0; 4353 perf->ctx_oactxctrl_offset = 0x144; 4354 } 4355 } 4356 4357 if (perf->ops.enable_metric_set) { 4358 mutex_init(&perf->lock); 4359 4360 oa_sample_rate_hard_limit = 1000 * 4361 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2); 4362 4363 mutex_init(&perf->metrics_lock); 4364 idr_init(&perf->metrics_idr); 4365 4366 /* We set up some ratelimit state to potentially throttle any 4367 * _NOTES about spurious, invalid OA reports which we don't 4368 * forward to userspace. 4369 * 4370 * We print a _NOTE about any throttling when closing the 4371 * stream instead of waiting until driver _fini which no one 4372 * would ever see. 4373 * 4374 * Using the same limiting factors as printk_ratelimit() 4375 */ 4376 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4377 /* Since we use a DRM_NOTE for spurious reports it would be 4378 * inconsistent to let __ratelimit() automatically print a 4379 * warning for throttling. 4380 */ 4381 ratelimit_set_flags(&perf->spurious_report_rs, 4382 RATELIMIT_MSG_ON_RELEASE); 4383 4384 atomic64_set(&perf->noa_programming_delay, 4385 500 * 1000 /* 500us */); 4386 4387 perf->i915 = i915; 4388 } 4389 } 4390 4391 static int destroy_config(int id, void *p, void *data) 4392 { 4393 i915_oa_config_put(p); 4394 return 0; 4395 } 4396 4397 void i915_perf_sysctl_register(void) 4398 { 4399 sysctl_header = register_sysctl_table(dev_root); 4400 } 4401 4402 void i915_perf_sysctl_unregister(void) 4403 { 4404 unregister_sysctl_table(sysctl_header); 4405 } 4406 4407 /** 4408 * i915_perf_fini - Counter part to i915_perf_init() 4409 * @i915: i915 device instance 4410 */ 4411 void i915_perf_fini(struct drm_i915_private *i915) 4412 { 4413 struct i915_perf *perf = &i915->perf; 4414 4415 if (!perf->i915) 4416 return; 4417 4418 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4419 idr_destroy(&perf->metrics_idr); 4420 4421 memset(&perf->ops, 0, sizeof(perf->ops)); 4422 perf->i915 = NULL; 4423 } 4424 4425 /** 4426 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4427 * 4428 * This version number is used by userspace to detect available features. 4429 */ 4430 int i915_perf_ioctl_version(void) 4431 { 4432 /* 4433 * 1: Initial version 4434 * I915_PERF_IOCTL_ENABLE 4435 * I915_PERF_IOCTL_DISABLE 4436 * 4437 * 2: Added runtime modification of OA config. 4438 * I915_PERF_IOCTL_CONFIG 4439 * 4440 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4441 * preemption on a particular context so that performance data is 4442 * accessible from a delta of MI_RPC reports without looking at the 4443 * OA buffer. 4444 */ 4445 return 3; 4446 } 4447 4448 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4449 #include "selftests/i915_perf.c" 4450 #endif 4451