1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 208 /* HW requires this to be a power of two, between 128k and 16M, though driver 209 * is currently generally designed assuming the largest 16M size is used such 210 * that the overflow cases are unlikely in normal operation. 211 */ 212 #define OA_BUFFER_SIZE SZ_16M 213 214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 215 216 /** 217 * DOC: OA Tail Pointer Race 218 * 219 * There's a HW race condition between OA unit tail pointer register updates and 220 * writes to memory whereby the tail pointer can sometimes get ahead of what's 221 * been written out to the OA buffer so far (in terms of what's visible to the 222 * CPU). 223 * 224 * Although this can be observed explicitly while copying reports to userspace 225 * by checking for a zeroed report-id field in tail reports, we want to account 226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 227 * redundant read() attempts. 228 * 229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 230 * in the OA buffer, starting from the tail reported by the HW until we find a 231 * report with its first 2 dwords not 0 meaning its previous report is 232 * completely in memory and ready to be read. Those dwords are also set to 0 233 * once read and the whole buffer is cleared upon OA buffer initialization. The 234 * first dword is the reason for this report while the second is the timestamp, 235 * making the chances of having those 2 fields at 0 fairly unlikely. A more 236 * detailed explanation is available in oa_buffer_check_unlocked(). 237 * 238 * Most of the implementation details for this workaround are in 239 * oa_buffer_check_unlocked() and _append_oa_reports() 240 * 241 * Note for posterity: previously the driver used to define an effective tail 242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 244 * This was flawed considering that the OA unit may also automatically generate 245 * non-periodic reports (such as on context switch) or the OA unit may be 246 * enabled without any periodic sampling. 247 */ 248 #define OA_TAIL_MARGIN_NSEC 100000ULL 249 #define INVALID_TAIL_PTR 0xffffffff 250 251 /* The default frequency for checking whether the OA unit has written new 252 * reports to the circular OA buffer... 253 */ 254 #define DEFAULT_POLL_FREQUENCY_HZ 200 255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 256 257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 258 static u32 i915_perf_stream_paranoid = true; 259 260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 261 * of the 64bit timestamp bits to trigger reports from) but there's currently 262 * no known use case for sampling as infrequently as once per 47 thousand years. 263 * 264 * Since the timestamps included in OA reports are only 32bits it seems 265 * reasonable to limit the OA exponent where it's still possible to account for 266 * overflow in OA report timestamps. 267 */ 268 #define OA_EXPONENT_MAX 31 269 270 #define INVALID_CTX_ID 0xffffffff 271 272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 273 #define OAREPORT_REASON_MASK 0x3f 274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 275 #define OAREPORT_REASON_SHIFT 19 276 #define OAREPORT_REASON_TIMER (1<<0) 277 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 278 #define OAREPORT_REASON_CLK_RATIO (1<<5) 279 280 281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 282 * 283 * The highest sampling frequency we can theoretically program the OA unit 284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 285 * 286 * Initialized just before we register the sysctl parameter. 287 */ 288 static int oa_sample_rate_hard_limit; 289 290 /* Theoretically we can program the OA unit to sample every 160ns but don't 291 * allow that by default unless root... 292 * 293 * The default threshold of 100000Hz is based on perf's similar 294 * kernel.perf_event_max_sample_rate sysctl parameter. 295 */ 296 static u32 i915_oa_max_sample_rate = 100000; 297 298 /* XXX: beware if future OA HW adds new report formats that the current 299 * code assumes all reports have a power-of-two size and ~(size - 1) can 300 * be used as a mask to align the OA tail pointer. 301 */ 302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 303 [I915_OA_FORMAT_A13] = { 0, 64 }, 304 [I915_OA_FORMAT_A29] = { 1, 128 }, 305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 307 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 310 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 311 }; 312 313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 318 }; 319 320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 322 }; 323 324 #define SAMPLE_OA_REPORT (1<<0) 325 326 /** 327 * struct perf_open_properties - for validated properties given to open a stream 328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 329 * @single_context: Whether a single or all gpu contexts should be monitored 330 * @hold_preemption: Whether the preemption is disabled for the filtered 331 * context 332 * @ctx_handle: A gem ctx handle for use with @single_context 333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 334 * @oa_format: An OA unit HW report format 335 * @oa_periodic: Whether to enable periodic OA unit sampling 336 * @oa_period_exponent: The OA unit sampling period is derived from this 337 * @engine: The engine (typically rcs0) being monitored by the OA unit 338 * @has_sseu: Whether @sseu was specified by userspace 339 * @sseu: internal SSEU configuration computed either from the userspace 340 * specified configuration in the opening parameters or a default value 341 * (see get_default_sseu_config()) 342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 343 * data availability 344 * 345 * As read_properties_unlocked() enumerates and validates the properties given 346 * to open a stream of metrics the configuration is built up in the structure 347 * which starts out zero initialized. 348 */ 349 struct perf_open_properties { 350 u32 sample_flags; 351 352 u64 single_context:1; 353 u64 hold_preemption:1; 354 u64 ctx_handle; 355 356 /* OA sampling state */ 357 int metrics_set; 358 int oa_format; 359 bool oa_periodic; 360 int oa_period_exponent; 361 362 struct intel_engine_cs *engine; 363 364 bool has_sseu; 365 struct intel_sseu sseu; 366 367 u64 poll_oa_period; 368 }; 369 370 struct i915_oa_config_bo { 371 struct llist_node node; 372 373 struct i915_oa_config *oa_config; 374 struct i915_vma *vma; 375 }; 376 377 static struct ctl_table_header *sysctl_header; 378 379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 380 381 void i915_oa_config_release(struct kref *ref) 382 { 383 struct i915_oa_config *oa_config = 384 container_of(ref, typeof(*oa_config), ref); 385 386 kfree(oa_config->flex_regs); 387 kfree(oa_config->b_counter_regs); 388 kfree(oa_config->mux_regs); 389 390 kfree_rcu(oa_config, rcu); 391 } 392 393 struct i915_oa_config * 394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 395 { 396 struct i915_oa_config *oa_config; 397 398 rcu_read_lock(); 399 oa_config = idr_find(&perf->metrics_idr, metrics_set); 400 if (oa_config) 401 oa_config = i915_oa_config_get(oa_config); 402 rcu_read_unlock(); 403 404 return oa_config; 405 } 406 407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 408 { 409 i915_oa_config_put(oa_bo->oa_config); 410 i915_vma_put(oa_bo->vma); 411 kfree(oa_bo); 412 } 413 414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 415 { 416 struct intel_uncore *uncore = stream->uncore; 417 418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 419 GEN12_OAG_OATAILPTR_MASK; 420 } 421 422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 423 { 424 struct intel_uncore *uncore = stream->uncore; 425 426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 427 } 428 429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 433 434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 435 } 436 437 /** 438 * oa_buffer_check_unlocked - check for data and update tail ptr state 439 * @stream: i915 stream instance 440 * 441 * This is either called via fops (for blocking reads in user ctx) or the poll 442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 443 * if there is data available for userspace to read. 444 * 445 * This function is central to providing a workaround for the OA unit tail 446 * pointer having a race with respect to what data is visible to the CPU. 447 * It is responsible for reading tail pointers from the hardware and giving 448 * the pointers time to 'age' before they are made available for reading. 449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 450 * 451 * Besides returning true when there is data available to read() this function 452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 453 * object. 454 * 455 * Note: It's safe to read OA config state here unlocked, assuming that this is 456 * only called while the stream is enabled, while the global OA configuration 457 * can't be modified. 458 * 459 * Returns: %true if the OA buffer contains data, else %false 460 */ 461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 462 { 463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 464 int report_size = stream->oa_buffer.format_size; 465 unsigned long flags; 466 bool pollin; 467 u32 hw_tail; 468 u64 now; 469 470 /* We have to consider the (unlikely) possibility that read() errors 471 * could result in an OA buffer reset which might reset the head and 472 * tail state. 473 */ 474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 475 476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 477 478 /* The tail pointer increases in 64 byte increments, 479 * not in report_size steps... 480 */ 481 hw_tail &= ~(report_size - 1); 482 483 now = ktime_get_mono_fast_ns(); 484 485 if (hw_tail == stream->oa_buffer.aging_tail && 486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 487 /* If the HW tail hasn't move since the last check and the HW 488 * tail has been aging for long enough, declare it the new 489 * tail. 490 */ 491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 492 } else { 493 u32 head, tail, aged_tail; 494 495 /* NB: The head we observe here might effectively be a little 496 * out of date. If a read() is in progress, the head could be 497 * anywhere between this head and stream->oa_buffer.tail. 498 */ 499 head = stream->oa_buffer.head - gtt_offset; 500 aged_tail = stream->oa_buffer.tail - gtt_offset; 501 502 hw_tail -= gtt_offset; 503 tail = hw_tail; 504 505 /* Walk the stream backward until we find a report with dword 0 506 * & 1 not at 0. Since the circular buffer pointers progress by 507 * increments of 64 bytes and that reports can be up to 256 508 * bytes long, we can't tell whether a report has fully landed 509 * in memory before the first 2 dwords of the following report 510 * have effectively landed. 511 * 512 * This is assuming that the writes of the OA unit land in 513 * memory in the order they were written to. 514 * If not : (╯°□°)╯︵ ┻━┻ 515 */ 516 while (OA_TAKEN(tail, aged_tail) >= report_size) { 517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 518 519 if (report32[0] != 0 || report32[1] != 0) 520 break; 521 522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 523 } 524 525 if (OA_TAKEN(hw_tail, tail) > report_size && 526 __ratelimit(&stream->perf->tail_pointer_race)) 527 DRM_NOTE("unlanded report(s) head=0x%x " 528 "tail=0x%x hw_tail=0x%x\n", 529 head, tail, hw_tail); 530 531 stream->oa_buffer.tail = gtt_offset + tail; 532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 533 stream->oa_buffer.aging_timestamp = now; 534 } 535 536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 537 stream->oa_buffer.head - gtt_offset) >= report_size; 538 539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 540 541 return pollin; 542 } 543 544 /** 545 * append_oa_status - Appends a status record to a userspace read() buffer. 546 * @stream: An i915-perf stream opened for OA metrics 547 * @buf: destination buffer given by userspace 548 * @count: the number of bytes userspace wants to read 549 * @offset: (inout): the current position for writing into @buf 550 * @type: The kind of status to report to userspace 551 * 552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 553 * into the userspace read() buffer. 554 * 555 * The @buf @offset will only be updated on success. 556 * 557 * Returns: 0 on success, negative error code on failure. 558 */ 559 static int append_oa_status(struct i915_perf_stream *stream, 560 char __user *buf, 561 size_t count, 562 size_t *offset, 563 enum drm_i915_perf_record_type type) 564 { 565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 566 567 if ((count - *offset) < header.size) 568 return -ENOSPC; 569 570 if (copy_to_user(buf + *offset, &header, sizeof(header))) 571 return -EFAULT; 572 573 (*offset) += header.size; 574 575 return 0; 576 } 577 578 /** 579 * append_oa_sample - Copies single OA report into userspace read() buffer. 580 * @stream: An i915-perf stream opened for OA metrics 581 * @buf: destination buffer given by userspace 582 * @count: the number of bytes userspace wants to read 583 * @offset: (inout): the current position for writing into @buf 584 * @report: A single OA report to (optionally) include as part of the sample 585 * 586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 587 * properties when opening a stream, tracked as `stream->sample_flags`. This 588 * function copies the requested components of a single sample to the given 589 * read() @buf. 590 * 591 * The @buf @offset will only be updated on success. 592 * 593 * Returns: 0 on success, negative error code on failure. 594 */ 595 static int append_oa_sample(struct i915_perf_stream *stream, 596 char __user *buf, 597 size_t count, 598 size_t *offset, 599 const u8 *report) 600 { 601 int report_size = stream->oa_buffer.format_size; 602 struct drm_i915_perf_record_header header; 603 u32 sample_flags = stream->sample_flags; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (sample_flags & SAMPLE_OA_REPORT) { 618 if (copy_to_user(buf, report, report_size)) 619 return -EFAULT; 620 } 621 622 (*offset) += header.size; 623 624 return 0; 625 } 626 627 /** 628 * Copies all buffered OA reports into userspace read() buffer. 629 * @stream: An i915-perf stream opened for OA metrics 630 * @buf: destination buffer given by userspace 631 * @count: the number of bytes userspace wants to read 632 * @offset: (inout): the current position for writing into @buf 633 * 634 * Notably any error condition resulting in a short read (-%ENOSPC or 635 * -%EFAULT) will be returned even though one or more records may 636 * have been successfully copied. In this case it's up to the caller 637 * to decide if the error should be squashed before returning to 638 * userspace. 639 * 640 * Note: reports are consumed from the head, and appended to the 641 * tail, so the tail chases the head?... If you think that's mad 642 * and back-to-front you're not alone, but this follows the 643 * Gen PRM naming convention. 644 * 645 * Returns: 0 on success, negative error code on failure. 646 */ 647 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 648 char __user *buf, 649 size_t count, 650 size_t *offset) 651 { 652 struct intel_uncore *uncore = stream->uncore; 653 int report_size = stream->oa_buffer.format_size; 654 u8 *oa_buf_base = stream->oa_buffer.vaddr; 655 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 656 u32 mask = (OA_BUFFER_SIZE - 1); 657 size_t start_offset = *offset; 658 unsigned long flags; 659 u32 head, tail; 660 u32 taken; 661 int ret = 0; 662 663 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 664 return -EIO; 665 666 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 667 668 head = stream->oa_buffer.head; 669 tail = stream->oa_buffer.tail; 670 671 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 672 673 /* 674 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 675 * while indexing relative to oa_buf_base. 676 */ 677 head -= gtt_offset; 678 tail -= gtt_offset; 679 680 /* 681 * An out of bounds or misaligned head or tail pointer implies a driver 682 * bug since we validate + align the tail pointers we read from the 683 * hardware and we are in full control of the head pointer which should 684 * only be incremented by multiples of the report size (notably also 685 * all a power of two). 686 */ 687 if (drm_WARN_ONCE(&uncore->i915->drm, 688 head > OA_BUFFER_SIZE || head % report_size || 689 tail > OA_BUFFER_SIZE || tail % report_size, 690 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 691 head, tail)) 692 return -EIO; 693 694 695 for (/* none */; 696 (taken = OA_TAKEN(tail, head)); 697 head = (head + report_size) & mask) { 698 u8 *report = oa_buf_base + head; 699 u32 *report32 = (void *)report; 700 u32 ctx_id; 701 u32 reason; 702 703 /* 704 * All the report sizes factor neatly into the buffer 705 * size so we never expect to see a report split 706 * between the beginning and end of the buffer. 707 * 708 * Given the initial alignment check a misalignment 709 * here would imply a driver bug that would result 710 * in an overrun. 711 */ 712 if (drm_WARN_ON(&uncore->i915->drm, 713 (OA_BUFFER_SIZE - head) < report_size)) { 714 drm_err(&uncore->i915->drm, 715 "Spurious OA head ptr: non-integral report offset\n"); 716 break; 717 } 718 719 /* 720 * The reason field includes flags identifying what 721 * triggered this specific report (mostly timer 722 * triggered or e.g. due to a context switch). 723 * 724 * This field is never expected to be zero so we can 725 * check that the report isn't invalid before copying 726 * it to userspace... 727 */ 728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 729 (IS_GEN(stream->perf->i915, 12) ? 730 OAREPORT_REASON_MASK_EXTENDED : 731 OAREPORT_REASON_MASK)); 732 if (reason == 0) { 733 if (__ratelimit(&stream->perf->spurious_report_rs)) 734 DRM_NOTE("Skipping spurious, invalid OA report\n"); 735 continue; 736 } 737 738 ctx_id = report32[2] & stream->specific_ctx_id_mask; 739 740 /* 741 * Squash whatever is in the CTX_ID field if it's marked as 742 * invalid to be sure we avoid false-positive, single-context 743 * filtering below... 744 * 745 * Note: that we don't clear the valid_ctx_bit so userspace can 746 * understand that the ID has been squashed by the kernel. 747 */ 748 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 749 INTEL_GEN(stream->perf->i915) <= 11) 750 ctx_id = report32[2] = INVALID_CTX_ID; 751 752 /* 753 * NB: For Gen 8 the OA unit no longer supports clock gating 754 * off for a specific context and the kernel can't securely 755 * stop the counters from updating as system-wide / global 756 * values. 757 * 758 * Automatic reports now include a context ID so reports can be 759 * filtered on the cpu but it's not worth trying to 760 * automatically subtract/hide counter progress for other 761 * contexts while filtering since we can't stop userspace 762 * issuing MI_REPORT_PERF_COUNT commands which would still 763 * provide a side-band view of the real values. 764 * 765 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 766 * to normalize counters for a single filtered context then it 767 * needs be forwarded bookend context-switch reports so that it 768 * can track switches in between MI_REPORT_PERF_COUNT commands 769 * and can itself subtract/ignore the progress of counters 770 * associated with other contexts. Note that the hardware 771 * automatically triggers reports when switching to a new 772 * context which are tagged with the ID of the newly active 773 * context. To avoid the complexity (and likely fragility) of 774 * reading ahead while parsing reports to try and minimize 775 * forwarding redundant context switch reports (i.e. between 776 * other, unrelated contexts) we simply elect to forward them 777 * all. 778 * 779 * We don't rely solely on the reason field to identify context 780 * switches since it's not-uncommon for periodic samples to 781 * identify a switch before any 'context switch' report. 782 */ 783 if (!stream->perf->exclusive_stream->ctx || 784 stream->specific_ctx_id == ctx_id || 785 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 786 reason & OAREPORT_REASON_CTX_SWITCH) { 787 788 /* 789 * While filtering for a single context we avoid 790 * leaking the IDs of other contexts. 791 */ 792 if (stream->perf->exclusive_stream->ctx && 793 stream->specific_ctx_id != ctx_id) { 794 report32[2] = INVALID_CTX_ID; 795 } 796 797 ret = append_oa_sample(stream, buf, count, offset, 798 report); 799 if (ret) 800 break; 801 802 stream->oa_buffer.last_ctx_id = ctx_id; 803 } 804 805 /* 806 * Clear out the first 2 dword as a mean to detect unlanded 807 * reports. 808 */ 809 report32[0] = 0; 810 report32[1] = 0; 811 } 812 813 if (start_offset != *offset) { 814 i915_reg_t oaheadptr; 815 816 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 817 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 818 819 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 820 821 /* 822 * We removed the gtt_offset for the copy loop above, indexing 823 * relative to oa_buf_base so put back here... 824 */ 825 head += gtt_offset; 826 intel_uncore_write(uncore, oaheadptr, 827 head & GEN12_OAG_OAHEADPTR_MASK); 828 stream->oa_buffer.head = head; 829 830 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 831 } 832 833 return ret; 834 } 835 836 /** 837 * gen8_oa_read - copy status records then buffered OA reports 838 * @stream: An i915-perf stream opened for OA metrics 839 * @buf: destination buffer given by userspace 840 * @count: the number of bytes userspace wants to read 841 * @offset: (inout): the current position for writing into @buf 842 * 843 * Checks OA unit status registers and if necessary appends corresponding 844 * status records for userspace (such as for a buffer full condition) and then 845 * initiate appending any buffered OA reports. 846 * 847 * Updates @offset according to the number of bytes successfully copied into 848 * the userspace buffer. 849 * 850 * NB: some data may be successfully copied to the userspace buffer 851 * even if an error is returned, and this is reflected in the 852 * updated @offset. 853 * 854 * Returns: zero on success or a negative error code 855 */ 856 static int gen8_oa_read(struct i915_perf_stream *stream, 857 char __user *buf, 858 size_t count, 859 size_t *offset) 860 { 861 struct intel_uncore *uncore = stream->uncore; 862 u32 oastatus; 863 i915_reg_t oastatus_reg; 864 int ret; 865 866 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 867 return -EIO; 868 869 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 870 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 871 872 oastatus = intel_uncore_read(uncore, oastatus_reg); 873 874 /* 875 * We treat OABUFFER_OVERFLOW as a significant error: 876 * 877 * Although theoretically we could handle this more gracefully 878 * sometimes, some Gens don't correctly suppress certain 879 * automatically triggered reports in this condition and so we 880 * have to assume that old reports are now being trampled 881 * over. 882 * 883 * Considering how we don't currently give userspace control 884 * over the OA buffer size and always configure a large 16MB 885 * buffer, then a buffer overflow does anyway likely indicate 886 * that something has gone quite badly wrong. 887 */ 888 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 889 ret = append_oa_status(stream, buf, count, offset, 890 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 891 if (ret) 892 return ret; 893 894 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 895 stream->period_exponent); 896 897 stream->perf->ops.oa_disable(stream); 898 stream->perf->ops.oa_enable(stream); 899 900 /* 901 * Note: .oa_enable() is expected to re-init the oabuffer and 902 * reset GEN8_OASTATUS for us 903 */ 904 oastatus = intel_uncore_read(uncore, oastatus_reg); 905 } 906 907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 908 ret = append_oa_status(stream, buf, count, offset, 909 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 910 if (ret) 911 return ret; 912 intel_uncore_write(uncore, oastatus_reg, 913 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 914 } 915 916 return gen8_append_oa_reports(stream, buf, count, offset); 917 } 918 919 /** 920 * Copies all buffered OA reports into userspace read() buffer. 921 * @stream: An i915-perf stream opened for OA metrics 922 * @buf: destination buffer given by userspace 923 * @count: the number of bytes userspace wants to read 924 * @offset: (inout): the current position for writing into @buf 925 * 926 * Notably any error condition resulting in a short read (-%ENOSPC or 927 * -%EFAULT) will be returned even though one or more records may 928 * have been successfully copied. In this case it's up to the caller 929 * to decide if the error should be squashed before returning to 930 * userspace. 931 * 932 * Note: reports are consumed from the head, and appended to the 933 * tail, so the tail chases the head?... If you think that's mad 934 * and back-to-front you're not alone, but this follows the 935 * Gen PRM naming convention. 936 * 937 * Returns: 0 on success, negative error code on failure. 938 */ 939 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 940 char __user *buf, 941 size_t count, 942 size_t *offset) 943 { 944 struct intel_uncore *uncore = stream->uncore; 945 int report_size = stream->oa_buffer.format_size; 946 u8 *oa_buf_base = stream->oa_buffer.vaddr; 947 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 948 u32 mask = (OA_BUFFER_SIZE - 1); 949 size_t start_offset = *offset; 950 unsigned long flags; 951 u32 head, tail; 952 u32 taken; 953 int ret = 0; 954 955 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 956 return -EIO; 957 958 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 959 960 head = stream->oa_buffer.head; 961 tail = stream->oa_buffer.tail; 962 963 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 964 965 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 966 * while indexing relative to oa_buf_base. 967 */ 968 head -= gtt_offset; 969 tail -= gtt_offset; 970 971 /* An out of bounds or misaligned head or tail pointer implies a driver 972 * bug since we validate + align the tail pointers we read from the 973 * hardware and we are in full control of the head pointer which should 974 * only be incremented by multiples of the report size (notably also 975 * all a power of two). 976 */ 977 if (drm_WARN_ONCE(&uncore->i915->drm, 978 head > OA_BUFFER_SIZE || head % report_size || 979 tail > OA_BUFFER_SIZE || tail % report_size, 980 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 981 head, tail)) 982 return -EIO; 983 984 985 for (/* none */; 986 (taken = OA_TAKEN(tail, head)); 987 head = (head + report_size) & mask) { 988 u8 *report = oa_buf_base + head; 989 u32 *report32 = (void *)report; 990 991 /* All the report sizes factor neatly into the buffer 992 * size so we never expect to see a report split 993 * between the beginning and end of the buffer. 994 * 995 * Given the initial alignment check a misalignment 996 * here would imply a driver bug that would result 997 * in an overrun. 998 */ 999 if (drm_WARN_ON(&uncore->i915->drm, 1000 (OA_BUFFER_SIZE - head) < report_size)) { 1001 drm_err(&uncore->i915->drm, 1002 "Spurious OA head ptr: non-integral report offset\n"); 1003 break; 1004 } 1005 1006 /* The report-ID field for periodic samples includes 1007 * some undocumented flags related to what triggered 1008 * the report and is never expected to be zero so we 1009 * can check that the report isn't invalid before 1010 * copying it to userspace... 1011 */ 1012 if (report32[0] == 0) { 1013 if (__ratelimit(&stream->perf->spurious_report_rs)) 1014 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1015 continue; 1016 } 1017 1018 ret = append_oa_sample(stream, buf, count, offset, report); 1019 if (ret) 1020 break; 1021 1022 /* Clear out the first 2 dwords as a mean to detect unlanded 1023 * reports. 1024 */ 1025 report32[0] = 0; 1026 report32[1] = 0; 1027 } 1028 1029 if (start_offset != *offset) { 1030 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1031 1032 /* We removed the gtt_offset for the copy loop above, indexing 1033 * relative to oa_buf_base so put back here... 1034 */ 1035 head += gtt_offset; 1036 1037 intel_uncore_write(uncore, GEN7_OASTATUS2, 1038 (head & GEN7_OASTATUS2_HEAD_MASK) | 1039 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1040 stream->oa_buffer.head = head; 1041 1042 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1043 } 1044 1045 return ret; 1046 } 1047 1048 /** 1049 * gen7_oa_read - copy status records then buffered OA reports 1050 * @stream: An i915-perf stream opened for OA metrics 1051 * @buf: destination buffer given by userspace 1052 * @count: the number of bytes userspace wants to read 1053 * @offset: (inout): the current position for writing into @buf 1054 * 1055 * Checks Gen 7 specific OA unit status registers and if necessary appends 1056 * corresponding status records for userspace (such as for a buffer full 1057 * condition) and then initiate appending any buffered OA reports. 1058 * 1059 * Updates @offset according to the number of bytes successfully copied into 1060 * the userspace buffer. 1061 * 1062 * Returns: zero on success or a negative error code 1063 */ 1064 static int gen7_oa_read(struct i915_perf_stream *stream, 1065 char __user *buf, 1066 size_t count, 1067 size_t *offset) 1068 { 1069 struct intel_uncore *uncore = stream->uncore; 1070 u32 oastatus1; 1071 int ret; 1072 1073 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1074 return -EIO; 1075 1076 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1077 1078 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1079 * bits while the OA unit is enabled (while the tail pointer 1080 * may be updated asynchronously) so we ignore status bits 1081 * that have already been reported to userspace. 1082 */ 1083 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1084 1085 /* We treat OABUFFER_OVERFLOW as a significant error: 1086 * 1087 * - The status can be interpreted to mean that the buffer is 1088 * currently full (with a higher precedence than OA_TAKEN() 1089 * which will start to report a near-empty buffer after an 1090 * overflow) but it's awkward that we can't clear the status 1091 * on Haswell, so without a reset we won't be able to catch 1092 * the state again. 1093 * 1094 * - Since it also implies the HW has started overwriting old 1095 * reports it may also affect our sanity checks for invalid 1096 * reports when copying to userspace that assume new reports 1097 * are being written to cleared memory. 1098 * 1099 * - In the future we may want to introduce a flight recorder 1100 * mode where the driver will automatically maintain a safe 1101 * guard band between head/tail, avoiding this overflow 1102 * condition, but we avoid the added driver complexity for 1103 * now. 1104 */ 1105 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1106 ret = append_oa_status(stream, buf, count, offset, 1107 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1108 if (ret) 1109 return ret; 1110 1111 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1112 stream->period_exponent); 1113 1114 stream->perf->ops.oa_disable(stream); 1115 stream->perf->ops.oa_enable(stream); 1116 1117 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1118 } 1119 1120 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1121 ret = append_oa_status(stream, buf, count, offset, 1122 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1123 if (ret) 1124 return ret; 1125 stream->perf->gen7_latched_oastatus1 |= 1126 GEN7_OASTATUS1_REPORT_LOST; 1127 } 1128 1129 return gen7_append_oa_reports(stream, buf, count, offset); 1130 } 1131 1132 /** 1133 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1134 * @stream: An i915-perf stream opened for OA metrics 1135 * 1136 * Called when userspace tries to read() from a blocking stream FD opened 1137 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1138 * OA buffer and wakes us. 1139 * 1140 * Note: it's acceptable to have this return with some false positives 1141 * since any subsequent read handling will return -EAGAIN if there isn't 1142 * really data ready for userspace yet. 1143 * 1144 * Returns: zero on success or a negative error code 1145 */ 1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1147 { 1148 /* We would wait indefinitely if periodic sampling is not enabled */ 1149 if (!stream->periodic) 1150 return -EIO; 1151 1152 return wait_event_interruptible(stream->poll_wq, 1153 oa_buffer_check_unlocked(stream)); 1154 } 1155 1156 /** 1157 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1158 * @stream: An i915-perf stream opened for OA metrics 1159 * @file: An i915 perf stream file 1160 * @wait: poll() state table 1161 * 1162 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1163 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1164 * when it sees data ready to read in the circular OA buffer. 1165 */ 1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1167 struct file *file, 1168 poll_table *wait) 1169 { 1170 poll_wait(file, &stream->poll_wq, wait); 1171 } 1172 1173 /** 1174 * i915_oa_read - just calls through to &i915_oa_ops->read 1175 * @stream: An i915-perf stream opened for OA metrics 1176 * @buf: destination buffer given by userspace 1177 * @count: the number of bytes userspace wants to read 1178 * @offset: (inout): the current position for writing into @buf 1179 * 1180 * Updates @offset according to the number of bytes successfully copied into 1181 * the userspace buffer. 1182 * 1183 * Returns: zero on success or a negative error code 1184 */ 1185 static int i915_oa_read(struct i915_perf_stream *stream, 1186 char __user *buf, 1187 size_t count, 1188 size_t *offset) 1189 { 1190 return stream->perf->ops.read(stream, buf, count, offset); 1191 } 1192 1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1194 { 1195 struct i915_gem_engines_iter it; 1196 struct i915_gem_context *ctx = stream->ctx; 1197 struct intel_context *ce; 1198 struct i915_gem_ww_ctx ww; 1199 int err = -ENODEV; 1200 1201 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1202 if (ce->engine != stream->engine) /* first match! */ 1203 continue; 1204 1205 err = 0; 1206 break; 1207 } 1208 i915_gem_context_unlock_engines(ctx); 1209 1210 if (err) 1211 return ERR_PTR(err); 1212 1213 i915_gem_ww_ctx_init(&ww, true); 1214 retry: 1215 /* 1216 * As the ID is the gtt offset of the context's vma we 1217 * pin the vma to ensure the ID remains fixed. 1218 */ 1219 err = intel_context_pin_ww(ce, &ww); 1220 if (err == -EDEADLK) { 1221 err = i915_gem_ww_ctx_backoff(&ww); 1222 if (!err) 1223 goto retry; 1224 } 1225 i915_gem_ww_ctx_fini(&ww); 1226 1227 if (err) 1228 return ERR_PTR(err); 1229 1230 stream->pinned_ctx = ce; 1231 return stream->pinned_ctx; 1232 } 1233 1234 /** 1235 * oa_get_render_ctx_id - determine and hold ctx hw id 1236 * @stream: An i915-perf stream opened for OA metrics 1237 * 1238 * Determine the render context hw id, and ensure it remains fixed for the 1239 * lifetime of the stream. This ensures that we don't have to worry about 1240 * updating the context ID in OACONTROL on the fly. 1241 * 1242 * Returns: zero on success or a negative error code 1243 */ 1244 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1245 { 1246 struct intel_context *ce; 1247 1248 ce = oa_pin_context(stream); 1249 if (IS_ERR(ce)) 1250 return PTR_ERR(ce); 1251 1252 switch (INTEL_GEN(ce->engine->i915)) { 1253 case 7: { 1254 /* 1255 * On Haswell we don't do any post processing of the reports 1256 * and don't need to use the mask. 1257 */ 1258 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1259 stream->specific_ctx_id_mask = 0; 1260 break; 1261 } 1262 1263 case 8: 1264 case 9: 1265 case 10: 1266 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1267 stream->specific_ctx_id_mask = 1268 (1U << GEN8_CTX_ID_WIDTH) - 1; 1269 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1270 } else { 1271 /* 1272 * When using GuC, the context descriptor we write in 1273 * i915 is read by GuC and rewritten before it's 1274 * actually written into the hardware. The LRCA is 1275 * what is put into the context id field of the 1276 * context descriptor by GuC. Because it's aligned to 1277 * a page, the lower 12bits are always at 0 and 1278 * dropped by GuC. They won't be part of the context 1279 * ID in the OA reports, so squash those lower bits. 1280 */ 1281 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1282 1283 /* 1284 * GuC uses the top bit to signal proxy submission, so 1285 * ignore that bit. 1286 */ 1287 stream->specific_ctx_id_mask = 1288 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1289 } 1290 break; 1291 1292 case 11: 1293 case 12: { 1294 stream->specific_ctx_id_mask = 1295 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1296 /* 1297 * Pick an unused context id 1298 * 0 - BITS_PER_LONG are used by other contexts 1299 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1300 */ 1301 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1302 break; 1303 } 1304 1305 default: 1306 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1307 } 1308 1309 ce->tag = stream->specific_ctx_id; 1310 1311 drm_dbg(&stream->perf->i915->drm, 1312 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1313 stream->specific_ctx_id, 1314 stream->specific_ctx_id_mask); 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1321 * @stream: An i915-perf stream opened for OA metrics 1322 * 1323 * In case anything needed doing to ensure the context HW ID would remain valid 1324 * for the lifetime of the stream, then that can be undone here. 1325 */ 1326 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1327 { 1328 struct intel_context *ce; 1329 1330 ce = fetch_and_zero(&stream->pinned_ctx); 1331 if (ce) { 1332 ce->tag = 0; /* recomputed on next submission after parking */ 1333 intel_context_unpin(ce); 1334 } 1335 1336 stream->specific_ctx_id = INVALID_CTX_ID; 1337 stream->specific_ctx_id_mask = 0; 1338 } 1339 1340 static void 1341 free_oa_buffer(struct i915_perf_stream *stream) 1342 { 1343 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1344 I915_VMA_RELEASE_MAP); 1345 1346 stream->oa_buffer.vaddr = NULL; 1347 } 1348 1349 static void 1350 free_oa_configs(struct i915_perf_stream *stream) 1351 { 1352 struct i915_oa_config_bo *oa_bo, *tmp; 1353 1354 i915_oa_config_put(stream->oa_config); 1355 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1356 free_oa_config_bo(oa_bo); 1357 } 1358 1359 static void 1360 free_noa_wait(struct i915_perf_stream *stream) 1361 { 1362 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1363 } 1364 1365 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1366 { 1367 struct i915_perf *perf = stream->perf; 1368 1369 BUG_ON(stream != perf->exclusive_stream); 1370 1371 /* 1372 * Unset exclusive_stream first, it will be checked while disabling 1373 * the metric set on gen8+. 1374 * 1375 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1376 */ 1377 WRITE_ONCE(perf->exclusive_stream, NULL); 1378 perf->ops.disable_metric_set(stream); 1379 1380 free_oa_buffer(stream); 1381 1382 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1383 intel_engine_pm_put(stream->engine); 1384 1385 if (stream->ctx) 1386 oa_put_render_ctx_id(stream); 1387 1388 free_oa_configs(stream); 1389 free_noa_wait(stream); 1390 1391 if (perf->spurious_report_rs.missed) { 1392 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1393 perf->spurious_report_rs.missed); 1394 } 1395 } 1396 1397 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1398 { 1399 struct intel_uncore *uncore = stream->uncore; 1400 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1401 unsigned long flags; 1402 1403 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1404 1405 /* Pre-DevBDW: OABUFFER must be set with counters off, 1406 * before OASTATUS1, but after OASTATUS2 1407 */ 1408 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1409 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1410 stream->oa_buffer.head = gtt_offset; 1411 1412 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1413 1414 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1415 gtt_offset | OABUFFER_SIZE_16M); 1416 1417 /* Mark that we need updated tail pointers to read from... */ 1418 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1419 stream->oa_buffer.tail = gtt_offset; 1420 1421 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1422 1423 /* On Haswell we have to track which OASTATUS1 flags we've 1424 * already seen since they can't be cleared while periodic 1425 * sampling is enabled. 1426 */ 1427 stream->perf->gen7_latched_oastatus1 = 0; 1428 1429 /* NB: although the OA buffer will initially be allocated 1430 * zeroed via shmfs (and so this memset is redundant when 1431 * first allocating), we may re-init the OA buffer, either 1432 * when re-enabling a stream or in error/reset paths. 1433 * 1434 * The reason we clear the buffer for each re-init is for the 1435 * sanity check in gen7_append_oa_reports() that looks at the 1436 * report-id field to make sure it's non-zero which relies on 1437 * the assumption that new reports are being written to zeroed 1438 * memory... 1439 */ 1440 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1441 } 1442 1443 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1444 { 1445 struct intel_uncore *uncore = stream->uncore; 1446 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1447 unsigned long flags; 1448 1449 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1450 1451 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1452 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1453 stream->oa_buffer.head = gtt_offset; 1454 1455 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1456 1457 /* 1458 * PRM says: 1459 * 1460 * "This MMIO must be set before the OATAILPTR 1461 * register and after the OAHEADPTR register. This is 1462 * to enable proper functionality of the overflow 1463 * bit." 1464 */ 1465 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1466 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1467 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1468 1469 /* Mark that we need updated tail pointers to read from... */ 1470 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1471 stream->oa_buffer.tail = gtt_offset; 1472 1473 /* 1474 * Reset state used to recognise context switches, affecting which 1475 * reports we will forward to userspace while filtering for a single 1476 * context. 1477 */ 1478 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1479 1480 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1481 1482 /* 1483 * NB: although the OA buffer will initially be allocated 1484 * zeroed via shmfs (and so this memset is redundant when 1485 * first allocating), we may re-init the OA buffer, either 1486 * when re-enabling a stream or in error/reset paths. 1487 * 1488 * The reason we clear the buffer for each re-init is for the 1489 * sanity check in gen8_append_oa_reports() that looks at the 1490 * reason field to make sure it's non-zero which relies on 1491 * the assumption that new reports are being written to zeroed 1492 * memory... 1493 */ 1494 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1495 } 1496 1497 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1498 { 1499 struct intel_uncore *uncore = stream->uncore; 1500 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1504 1505 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1506 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1507 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1508 stream->oa_buffer.head = gtt_offset; 1509 1510 /* 1511 * PRM says: 1512 * 1513 * "This MMIO must be set before the OATAILPTR 1514 * register and after the OAHEADPTR register. This is 1515 * to enable proper functionality of the overflow 1516 * bit." 1517 */ 1518 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1519 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1520 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1521 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1522 1523 /* Mark that we need updated tail pointers to read from... */ 1524 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1525 stream->oa_buffer.tail = gtt_offset; 1526 1527 /* 1528 * Reset state used to recognise context switches, affecting which 1529 * reports we will forward to userspace while filtering for a single 1530 * context. 1531 */ 1532 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1533 1534 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1535 1536 /* 1537 * NB: although the OA buffer will initially be allocated 1538 * zeroed via shmfs (and so this memset is redundant when 1539 * first allocating), we may re-init the OA buffer, either 1540 * when re-enabling a stream or in error/reset paths. 1541 * 1542 * The reason we clear the buffer for each re-init is for the 1543 * sanity check in gen8_append_oa_reports() that looks at the 1544 * reason field to make sure it's non-zero which relies on 1545 * the assumption that new reports are being written to zeroed 1546 * memory... 1547 */ 1548 memset(stream->oa_buffer.vaddr, 0, 1549 stream->oa_buffer.vma->size); 1550 } 1551 1552 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1553 { 1554 struct drm_i915_private *i915 = stream->perf->i915; 1555 struct drm_i915_gem_object *bo; 1556 struct i915_vma *vma; 1557 int ret; 1558 1559 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1560 return -ENODEV; 1561 1562 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1563 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1564 1565 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1566 if (IS_ERR(bo)) { 1567 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1568 return PTR_ERR(bo); 1569 } 1570 1571 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1572 1573 /* PreHSW required 512K alignment, HSW requires 16M */ 1574 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1575 if (IS_ERR(vma)) { 1576 ret = PTR_ERR(vma); 1577 goto err_unref; 1578 } 1579 stream->oa_buffer.vma = vma; 1580 1581 stream->oa_buffer.vaddr = 1582 i915_gem_object_pin_map(bo, I915_MAP_WB); 1583 if (IS_ERR(stream->oa_buffer.vaddr)) { 1584 ret = PTR_ERR(stream->oa_buffer.vaddr); 1585 goto err_unpin; 1586 } 1587 1588 return 0; 1589 1590 err_unpin: 1591 __i915_vma_unpin(vma); 1592 1593 err_unref: 1594 i915_gem_object_put(bo); 1595 1596 stream->oa_buffer.vaddr = NULL; 1597 stream->oa_buffer.vma = NULL; 1598 1599 return ret; 1600 } 1601 1602 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1603 bool save, i915_reg_t reg, u32 offset, 1604 u32 dword_count) 1605 { 1606 u32 cmd; 1607 u32 d; 1608 1609 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1610 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1611 if (INTEL_GEN(stream->perf->i915) >= 8) 1612 cmd++; 1613 1614 for (d = 0; d < dword_count; d++) { 1615 *cs++ = cmd; 1616 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1617 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1618 offset) + 4 * d; 1619 *cs++ = 0; 1620 } 1621 1622 return cs; 1623 } 1624 1625 static int alloc_noa_wait(struct i915_perf_stream *stream) 1626 { 1627 struct drm_i915_private *i915 = stream->perf->i915; 1628 struct drm_i915_gem_object *bo; 1629 struct i915_vma *vma; 1630 const u64 delay_ticks = 0xffffffffffffffff - 1631 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay)); 1632 const u32 base = stream->engine->mmio_base; 1633 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1634 u32 *batch, *ts0, *cs, *jump; 1635 int ret, i; 1636 enum { 1637 START_TS, 1638 NOW_TS, 1639 DELTA_TS, 1640 JUMP_PREDICATE, 1641 DELTA_TARGET, 1642 N_CS_GPR 1643 }; 1644 1645 bo = i915_gem_object_create_internal(i915, 4096); 1646 if (IS_ERR(bo)) { 1647 drm_err(&i915->drm, 1648 "Failed to allocate NOA wait batchbuffer\n"); 1649 return PTR_ERR(bo); 1650 } 1651 1652 /* 1653 * We pin in GGTT because we jump into this buffer now because 1654 * multiple OA config BOs will have a jump to this address and it 1655 * needs to be fixed during the lifetime of the i915/perf stream. 1656 */ 1657 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1658 if (IS_ERR(vma)) { 1659 ret = PTR_ERR(vma); 1660 goto err_unref; 1661 } 1662 1663 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1664 if (IS_ERR(batch)) { 1665 ret = PTR_ERR(batch); 1666 goto err_unpin; 1667 } 1668 1669 /* Save registers. */ 1670 for (i = 0; i < N_CS_GPR; i++) 1671 cs = save_restore_register( 1672 stream, cs, true /* save */, CS_GPR(i), 1673 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1674 cs = save_restore_register( 1675 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1676 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1677 1678 /* First timestamp snapshot location. */ 1679 ts0 = cs; 1680 1681 /* 1682 * Initial snapshot of the timestamp register to implement the wait. 1683 * We work with 32b values, so clear out the top 32b bits of the 1684 * register because the ALU works 64bits. 1685 */ 1686 *cs++ = MI_LOAD_REGISTER_IMM(1); 1687 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1688 *cs++ = 0; 1689 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1690 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1691 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1692 1693 /* 1694 * This is the location we're going to jump back into until the 1695 * required amount of time has passed. 1696 */ 1697 jump = cs; 1698 1699 /* 1700 * Take another snapshot of the timestamp register. Take care to clear 1701 * up the top 32bits of CS_GPR(1) as we're using it for other 1702 * operations below. 1703 */ 1704 *cs++ = MI_LOAD_REGISTER_IMM(1); 1705 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1706 *cs++ = 0; 1707 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1708 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1709 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1710 1711 /* 1712 * Do a diff between the 2 timestamps and store the result back into 1713 * CS_GPR(1). 1714 */ 1715 *cs++ = MI_MATH(5); 1716 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1717 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1718 *cs++ = MI_MATH_SUB; 1719 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1720 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1721 1722 /* 1723 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1724 * timestamp have rolled over the 32bits) into the predicate register 1725 * to be used for the predicated jump. 1726 */ 1727 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1728 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1729 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1730 1731 /* Restart from the beginning if we had timestamps roll over. */ 1732 *cs++ = (INTEL_GEN(i915) < 8 ? 1733 MI_BATCH_BUFFER_START : 1734 MI_BATCH_BUFFER_START_GEN8) | 1735 MI_BATCH_PREDICATE; 1736 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1737 *cs++ = 0; 1738 1739 /* 1740 * Now add the diff between to previous timestamps and add it to : 1741 * (((1 * << 64) - 1) - delay_ns) 1742 * 1743 * When the Carry Flag contains 1 this means the elapsed time is 1744 * longer than the expected delay, and we can exit the wait loop. 1745 */ 1746 *cs++ = MI_LOAD_REGISTER_IMM(2); 1747 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1748 *cs++ = lower_32_bits(delay_ticks); 1749 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1750 *cs++ = upper_32_bits(delay_ticks); 1751 1752 *cs++ = MI_MATH(4); 1753 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1754 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1755 *cs++ = MI_MATH_ADD; 1756 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1757 1758 *cs++ = MI_ARB_CHECK; 1759 1760 /* 1761 * Transfer the result into the predicate register to be used for the 1762 * predicated jump. 1763 */ 1764 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1765 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1766 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1767 1768 /* Predicate the jump. */ 1769 *cs++ = (INTEL_GEN(i915) < 8 ? 1770 MI_BATCH_BUFFER_START : 1771 MI_BATCH_BUFFER_START_GEN8) | 1772 MI_BATCH_PREDICATE; 1773 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1774 *cs++ = 0; 1775 1776 /* Restore registers. */ 1777 for (i = 0; i < N_CS_GPR; i++) 1778 cs = save_restore_register( 1779 stream, cs, false /* restore */, CS_GPR(i), 1780 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1781 cs = save_restore_register( 1782 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1783 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1784 1785 /* And return to the ring. */ 1786 *cs++ = MI_BATCH_BUFFER_END; 1787 1788 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1789 1790 i915_gem_object_flush_map(bo); 1791 __i915_gem_object_release_map(bo); 1792 1793 stream->noa_wait = vma; 1794 return 0; 1795 1796 err_unpin: 1797 i915_vma_unpin_and_release(&vma, 0); 1798 err_unref: 1799 i915_gem_object_put(bo); 1800 return ret; 1801 } 1802 1803 static u32 *write_cs_mi_lri(u32 *cs, 1804 const struct i915_oa_reg *reg_data, 1805 u32 n_regs) 1806 { 1807 u32 i; 1808 1809 for (i = 0; i < n_regs; i++) { 1810 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1811 u32 n_lri = min_t(u32, 1812 n_regs - i, 1813 MI_LOAD_REGISTER_IMM_MAX_REGS); 1814 1815 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1816 } 1817 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1818 *cs++ = reg_data[i].value; 1819 } 1820 1821 return cs; 1822 } 1823 1824 static int num_lri_dwords(int num_regs) 1825 { 1826 int count = 0; 1827 1828 if (num_regs > 0) { 1829 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1830 count += num_regs * 2; 1831 } 1832 1833 return count; 1834 } 1835 1836 static struct i915_oa_config_bo * 1837 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1838 struct i915_oa_config *oa_config) 1839 { 1840 struct drm_i915_gem_object *obj; 1841 struct i915_oa_config_bo *oa_bo; 1842 size_t config_length = 0; 1843 u32 *cs; 1844 int err; 1845 1846 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1847 if (!oa_bo) 1848 return ERR_PTR(-ENOMEM); 1849 1850 config_length += num_lri_dwords(oa_config->mux_regs_len); 1851 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1852 config_length += num_lri_dwords(oa_config->flex_regs_len); 1853 config_length += 3; /* MI_BATCH_BUFFER_START */ 1854 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1855 1856 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1857 if (IS_ERR(obj)) { 1858 err = PTR_ERR(obj); 1859 goto err_free; 1860 } 1861 1862 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1863 if (IS_ERR(cs)) { 1864 err = PTR_ERR(cs); 1865 goto err_oa_bo; 1866 } 1867 1868 cs = write_cs_mi_lri(cs, 1869 oa_config->mux_regs, 1870 oa_config->mux_regs_len); 1871 cs = write_cs_mi_lri(cs, 1872 oa_config->b_counter_regs, 1873 oa_config->b_counter_regs_len); 1874 cs = write_cs_mi_lri(cs, 1875 oa_config->flex_regs, 1876 oa_config->flex_regs_len); 1877 1878 /* Jump into the active wait. */ 1879 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1880 MI_BATCH_BUFFER_START : 1881 MI_BATCH_BUFFER_START_GEN8); 1882 *cs++ = i915_ggtt_offset(stream->noa_wait); 1883 *cs++ = 0; 1884 1885 i915_gem_object_flush_map(obj); 1886 __i915_gem_object_release_map(obj); 1887 1888 oa_bo->vma = i915_vma_instance(obj, 1889 &stream->engine->gt->ggtt->vm, 1890 NULL); 1891 if (IS_ERR(oa_bo->vma)) { 1892 err = PTR_ERR(oa_bo->vma); 1893 goto err_oa_bo; 1894 } 1895 1896 oa_bo->oa_config = i915_oa_config_get(oa_config); 1897 llist_add(&oa_bo->node, &stream->oa_config_bos); 1898 1899 return oa_bo; 1900 1901 err_oa_bo: 1902 i915_gem_object_put(obj); 1903 err_free: 1904 kfree(oa_bo); 1905 return ERR_PTR(err); 1906 } 1907 1908 static struct i915_vma * 1909 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1910 { 1911 struct i915_oa_config_bo *oa_bo; 1912 1913 /* 1914 * Look for the buffer in the already allocated BOs attached 1915 * to the stream. 1916 */ 1917 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1918 if (oa_bo->oa_config == oa_config && 1919 memcmp(oa_bo->oa_config->uuid, 1920 oa_config->uuid, 1921 sizeof(oa_config->uuid)) == 0) 1922 goto out; 1923 } 1924 1925 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1926 if (IS_ERR(oa_bo)) 1927 return ERR_CAST(oa_bo); 1928 1929 out: 1930 return i915_vma_get(oa_bo->vma); 1931 } 1932 1933 static int 1934 emit_oa_config(struct i915_perf_stream *stream, 1935 struct i915_oa_config *oa_config, 1936 struct intel_context *ce, 1937 struct i915_active *active) 1938 { 1939 struct i915_request *rq; 1940 struct i915_vma *vma; 1941 struct i915_gem_ww_ctx ww; 1942 int err; 1943 1944 vma = get_oa_vma(stream, oa_config); 1945 if (IS_ERR(vma)) 1946 return PTR_ERR(vma); 1947 1948 i915_gem_ww_ctx_init(&ww, true); 1949 retry: 1950 err = i915_gem_object_lock(vma->obj, &ww); 1951 if (err) 1952 goto err; 1953 1954 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1955 if (err) 1956 goto err; 1957 1958 intel_engine_pm_get(ce->engine); 1959 rq = i915_request_create(ce); 1960 intel_engine_pm_put(ce->engine); 1961 if (IS_ERR(rq)) { 1962 err = PTR_ERR(rq); 1963 goto err_vma_unpin; 1964 } 1965 1966 if (!IS_ERR_OR_NULL(active)) { 1967 /* After all individual context modifications */ 1968 err = i915_request_await_active(rq, active, 1969 I915_ACTIVE_AWAIT_ACTIVE); 1970 if (err) 1971 goto err_add_request; 1972 1973 err = i915_active_add_request(active, rq); 1974 if (err) 1975 goto err_add_request; 1976 } 1977 1978 err = i915_request_await_object(rq, vma->obj, 0); 1979 if (!err) 1980 err = i915_vma_move_to_active(vma, rq, 0); 1981 if (err) 1982 goto err_add_request; 1983 1984 err = rq->engine->emit_bb_start(rq, 1985 vma->node.start, 0, 1986 I915_DISPATCH_SECURE); 1987 if (err) 1988 goto err_add_request; 1989 1990 err_add_request: 1991 i915_request_add(rq); 1992 err_vma_unpin: 1993 i915_vma_unpin(vma); 1994 err: 1995 if (err == -EDEADLK) { 1996 err = i915_gem_ww_ctx_backoff(&ww); 1997 if (!err) 1998 goto retry; 1999 } 2000 2001 i915_gem_ww_ctx_fini(&ww); 2002 i915_vma_put(vma); 2003 return err; 2004 } 2005 2006 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2007 { 2008 return stream->pinned_ctx ?: stream->engine->kernel_context; 2009 } 2010 2011 static int 2012 hsw_enable_metric_set(struct i915_perf_stream *stream, 2013 struct i915_active *active) 2014 { 2015 struct intel_uncore *uncore = stream->uncore; 2016 2017 /* 2018 * PRM: 2019 * 2020 * OA unit is using “crclk” for its functionality. When trunk 2021 * level clock gating takes place, OA clock would be gated, 2022 * unable to count the events from non-render clock domain. 2023 * Render clock gating must be disabled when OA is enabled to 2024 * count the events from non-render domain. Unit level clock 2025 * gating for RCS should also be disabled. 2026 */ 2027 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2028 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2029 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2030 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2031 2032 return emit_oa_config(stream, 2033 stream->oa_config, oa_context(stream), 2034 active); 2035 } 2036 2037 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2038 { 2039 struct intel_uncore *uncore = stream->uncore; 2040 2041 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2042 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2043 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2044 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2045 2046 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2047 } 2048 2049 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2050 i915_reg_t reg) 2051 { 2052 u32 mmio = i915_mmio_reg_offset(reg); 2053 int i; 2054 2055 /* 2056 * This arbitrary default will select the 'EU FPU0 Pipeline 2057 * Active' event. In the future it's anticipated that there 2058 * will be an explicit 'No Event' we can select, but not yet... 2059 */ 2060 if (!oa_config) 2061 return 0; 2062 2063 for (i = 0; i < oa_config->flex_regs_len; i++) { 2064 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2065 return oa_config->flex_regs[i].value; 2066 } 2067 2068 return 0; 2069 } 2070 /* 2071 * NB: It must always remain pointer safe to run this even if the OA unit 2072 * has been disabled. 2073 * 2074 * It's fine to put out-of-date values into these per-context registers 2075 * in the case that the OA unit has been disabled. 2076 */ 2077 static void 2078 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2079 const struct i915_perf_stream *stream) 2080 { 2081 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2082 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2083 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2084 i915_reg_t flex_regs[] = { 2085 EU_PERF_CNTL0, 2086 EU_PERF_CNTL1, 2087 EU_PERF_CNTL2, 2088 EU_PERF_CNTL3, 2089 EU_PERF_CNTL4, 2090 EU_PERF_CNTL5, 2091 EU_PERF_CNTL6, 2092 }; 2093 u32 *reg_state = ce->lrc_reg_state; 2094 int i; 2095 2096 reg_state[ctx_oactxctrl + 1] = 2097 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2098 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2099 GEN8_OA_COUNTER_RESUME; 2100 2101 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2102 reg_state[ctx_flexeu0 + i * 2 + 1] = 2103 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2104 } 2105 2106 struct flex { 2107 i915_reg_t reg; 2108 u32 offset; 2109 u32 value; 2110 }; 2111 2112 static int 2113 gen8_store_flex(struct i915_request *rq, 2114 struct intel_context *ce, 2115 const struct flex *flex, unsigned int count) 2116 { 2117 u32 offset; 2118 u32 *cs; 2119 2120 cs = intel_ring_begin(rq, 4 * count); 2121 if (IS_ERR(cs)) 2122 return PTR_ERR(cs); 2123 2124 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2125 do { 2126 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2127 *cs++ = offset + flex->offset * sizeof(u32); 2128 *cs++ = 0; 2129 *cs++ = flex->value; 2130 } while (flex++, --count); 2131 2132 intel_ring_advance(rq, cs); 2133 2134 return 0; 2135 } 2136 2137 static int 2138 gen8_load_flex(struct i915_request *rq, 2139 struct intel_context *ce, 2140 const struct flex *flex, unsigned int count) 2141 { 2142 u32 *cs; 2143 2144 GEM_BUG_ON(!count || count > 63); 2145 2146 cs = intel_ring_begin(rq, 2 * count + 2); 2147 if (IS_ERR(cs)) 2148 return PTR_ERR(cs); 2149 2150 *cs++ = MI_LOAD_REGISTER_IMM(count); 2151 do { 2152 *cs++ = i915_mmio_reg_offset(flex->reg); 2153 *cs++ = flex->value; 2154 } while (flex++, --count); 2155 *cs++ = MI_NOOP; 2156 2157 intel_ring_advance(rq, cs); 2158 2159 return 0; 2160 } 2161 2162 static int gen8_modify_context(struct intel_context *ce, 2163 const struct flex *flex, unsigned int count) 2164 { 2165 struct i915_request *rq; 2166 int err; 2167 2168 rq = intel_engine_create_kernel_request(ce->engine); 2169 if (IS_ERR(rq)) 2170 return PTR_ERR(rq); 2171 2172 /* Serialise with the remote context */ 2173 err = intel_context_prepare_remote_request(ce, rq); 2174 if (err == 0) 2175 err = gen8_store_flex(rq, ce, flex, count); 2176 2177 i915_request_add(rq); 2178 return err; 2179 } 2180 2181 static int 2182 gen8_modify_self(struct intel_context *ce, 2183 const struct flex *flex, unsigned int count, 2184 struct i915_active *active) 2185 { 2186 struct i915_request *rq; 2187 int err; 2188 2189 intel_engine_pm_get(ce->engine); 2190 rq = i915_request_create(ce); 2191 intel_engine_pm_put(ce->engine); 2192 if (IS_ERR(rq)) 2193 return PTR_ERR(rq); 2194 2195 if (!IS_ERR_OR_NULL(active)) { 2196 err = i915_active_add_request(active, rq); 2197 if (err) 2198 goto err_add_request; 2199 } 2200 2201 err = gen8_load_flex(rq, ce, flex, count); 2202 if (err) 2203 goto err_add_request; 2204 2205 err_add_request: 2206 i915_request_add(rq); 2207 return err; 2208 } 2209 2210 static int gen8_configure_context(struct i915_gem_context *ctx, 2211 struct flex *flex, unsigned int count) 2212 { 2213 struct i915_gem_engines_iter it; 2214 struct intel_context *ce; 2215 int err = 0; 2216 2217 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2218 GEM_BUG_ON(ce == ce->engine->kernel_context); 2219 2220 if (ce->engine->class != RENDER_CLASS) 2221 continue; 2222 2223 /* Otherwise OA settings will be set upon first use */ 2224 if (!intel_context_pin_if_active(ce)) 2225 continue; 2226 2227 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2228 err = gen8_modify_context(ce, flex, count); 2229 2230 intel_context_unpin(ce); 2231 if (err) 2232 break; 2233 } 2234 i915_gem_context_unlock_engines(ctx); 2235 2236 return err; 2237 } 2238 2239 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2240 struct i915_active *active) 2241 { 2242 int err; 2243 struct intel_context *ce = stream->pinned_ctx; 2244 u32 format = stream->oa_buffer.format; 2245 struct flex regs_context[] = { 2246 { 2247 GEN8_OACTXCONTROL, 2248 stream->perf->ctx_oactxctrl_offset + 1, 2249 active ? GEN8_OA_COUNTER_RESUME : 0, 2250 }, 2251 }; 2252 /* Offsets in regs_lri are not used since this configuration is only 2253 * applied using LRI. Initialize the correct offsets for posterity. 2254 */ 2255 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2256 struct flex regs_lri[] = { 2257 { 2258 GEN12_OAR_OACONTROL, 2259 GEN12_OAR_OACONTROL_OFFSET + 1, 2260 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2261 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2262 }, 2263 { 2264 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2265 CTX_CONTEXT_CONTROL, 2266 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2267 active ? 2268 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2269 0) 2270 }, 2271 }; 2272 2273 /* Modify the context image of pinned context with regs_context*/ 2274 err = intel_context_lock_pinned(ce); 2275 if (err) 2276 return err; 2277 2278 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2279 intel_context_unlock_pinned(ce); 2280 if (err) 2281 return err; 2282 2283 /* Apply regs_lri using LRI with pinned context */ 2284 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2285 } 2286 2287 /* 2288 * Manages updating the per-context aspects of the OA stream 2289 * configuration across all contexts. 2290 * 2291 * The awkward consideration here is that OACTXCONTROL controls the 2292 * exponent for periodic sampling which is primarily used for system 2293 * wide profiling where we'd like a consistent sampling period even in 2294 * the face of context switches. 2295 * 2296 * Our approach of updating the register state context (as opposed to 2297 * say using a workaround batch buffer) ensures that the hardware 2298 * won't automatically reload an out-of-date timer exponent even 2299 * transiently before a WA BB could be parsed. 2300 * 2301 * This function needs to: 2302 * - Ensure the currently running context's per-context OA state is 2303 * updated 2304 * - Ensure that all existing contexts will have the correct per-context 2305 * OA state if they are scheduled for use. 2306 * - Ensure any new contexts will be initialized with the correct 2307 * per-context OA state. 2308 * 2309 * Note: it's only the RCS/Render context that has any OA state. 2310 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2311 */ 2312 static int 2313 oa_configure_all_contexts(struct i915_perf_stream *stream, 2314 struct flex *regs, 2315 size_t num_regs, 2316 struct i915_active *active) 2317 { 2318 struct drm_i915_private *i915 = stream->perf->i915; 2319 struct intel_engine_cs *engine; 2320 struct i915_gem_context *ctx, *cn; 2321 int err; 2322 2323 lockdep_assert_held(&stream->perf->lock); 2324 2325 /* 2326 * The OA register config is setup through the context image. This image 2327 * might be written to by the GPU on context switch (in particular on 2328 * lite-restore). This means we can't safely update a context's image, 2329 * if this context is scheduled/submitted to run on the GPU. 2330 * 2331 * We could emit the OA register config through the batch buffer but 2332 * this might leave small interval of time where the OA unit is 2333 * configured at an invalid sampling period. 2334 * 2335 * Note that since we emit all requests from a single ring, there 2336 * is still an implicit global barrier here that may cause a high 2337 * priority context to wait for an otherwise independent low priority 2338 * context. Contexts idle at the time of reconfiguration are not 2339 * trapped behind the barrier. 2340 */ 2341 spin_lock(&i915->gem.contexts.lock); 2342 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2343 if (!kref_get_unless_zero(&ctx->ref)) 2344 continue; 2345 2346 spin_unlock(&i915->gem.contexts.lock); 2347 2348 err = gen8_configure_context(ctx, regs, num_regs); 2349 if (err) { 2350 i915_gem_context_put(ctx); 2351 return err; 2352 } 2353 2354 spin_lock(&i915->gem.contexts.lock); 2355 list_safe_reset_next(ctx, cn, link); 2356 i915_gem_context_put(ctx); 2357 } 2358 spin_unlock(&i915->gem.contexts.lock); 2359 2360 /* 2361 * After updating all other contexts, we need to modify ourselves. 2362 * If we don't modify the kernel_context, we do not get events while 2363 * idle. 2364 */ 2365 for_each_uabi_engine(engine, i915) { 2366 struct intel_context *ce = engine->kernel_context; 2367 2368 if (engine->class != RENDER_CLASS) 2369 continue; 2370 2371 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2372 2373 err = gen8_modify_self(ce, regs, num_regs, active); 2374 if (err) 2375 return err; 2376 } 2377 2378 return 0; 2379 } 2380 2381 static int 2382 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2383 const struct i915_oa_config *oa_config, 2384 struct i915_active *active) 2385 { 2386 struct flex regs[] = { 2387 { 2388 GEN8_R_PWR_CLK_STATE, 2389 CTX_R_PWR_CLK_STATE, 2390 }, 2391 }; 2392 2393 return oa_configure_all_contexts(stream, 2394 regs, ARRAY_SIZE(regs), 2395 active); 2396 } 2397 2398 static int 2399 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2400 const struct i915_oa_config *oa_config, 2401 struct i915_active *active) 2402 { 2403 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2404 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2405 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2406 struct flex regs[] = { 2407 { 2408 GEN8_R_PWR_CLK_STATE, 2409 CTX_R_PWR_CLK_STATE, 2410 }, 2411 { 2412 GEN8_OACTXCONTROL, 2413 stream->perf->ctx_oactxctrl_offset + 1, 2414 }, 2415 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2416 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2417 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2418 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2419 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2420 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2421 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2422 }; 2423 #undef ctx_flexeuN 2424 int i; 2425 2426 regs[1].value = 2427 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2428 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2429 GEN8_OA_COUNTER_RESUME; 2430 2431 for (i = 2; i < ARRAY_SIZE(regs); i++) 2432 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2433 2434 return oa_configure_all_contexts(stream, 2435 regs, ARRAY_SIZE(regs), 2436 active); 2437 } 2438 2439 static int 2440 gen8_enable_metric_set(struct i915_perf_stream *stream, 2441 struct i915_active *active) 2442 { 2443 struct intel_uncore *uncore = stream->uncore; 2444 struct i915_oa_config *oa_config = stream->oa_config; 2445 int ret; 2446 2447 /* 2448 * We disable slice/unslice clock ratio change reports on SKL since 2449 * they are too noisy. The HW generates a lot of redundant reports 2450 * where the ratio hasn't really changed causing a lot of redundant 2451 * work to processes and increasing the chances we'll hit buffer 2452 * overruns. 2453 * 2454 * Although we don't currently use the 'disable overrun' OABUFFER 2455 * feature it's worth noting that clock ratio reports have to be 2456 * disabled before considering to use that feature since the HW doesn't 2457 * correctly block these reports. 2458 * 2459 * Currently none of the high-level metrics we have depend on knowing 2460 * this ratio to normalize. 2461 * 2462 * Note: This register is not power context saved and restored, but 2463 * that's OK considering that we disable RC6 while the OA unit is 2464 * enabled. 2465 * 2466 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2467 * be read back from automatically triggered reports, as part of the 2468 * RPT_ID field. 2469 */ 2470 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2471 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2472 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2473 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2474 } 2475 2476 /* 2477 * Update all contexts prior writing the mux configurations as we need 2478 * to make sure all slices/subslices are ON before writing to NOA 2479 * registers. 2480 */ 2481 ret = lrc_configure_all_contexts(stream, oa_config, active); 2482 if (ret) 2483 return ret; 2484 2485 return emit_oa_config(stream, 2486 stream->oa_config, oa_context(stream), 2487 active); 2488 } 2489 2490 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2491 { 2492 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2493 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2494 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2495 } 2496 2497 static int 2498 gen12_enable_metric_set(struct i915_perf_stream *stream, 2499 struct i915_active *active) 2500 { 2501 struct intel_uncore *uncore = stream->uncore; 2502 struct i915_oa_config *oa_config = stream->oa_config; 2503 bool periodic = stream->periodic; 2504 u32 period_exponent = stream->period_exponent; 2505 int ret; 2506 2507 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2508 /* Disable clk ratio reports, like previous Gens. */ 2509 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2510 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2511 /* 2512 * If the user didn't require OA reports, instruct 2513 * the hardware not to emit ctx switch reports. 2514 */ 2515 oag_report_ctx_switches(stream)); 2516 2517 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2518 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2519 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2520 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2521 : 0); 2522 2523 /* 2524 * Update all contexts prior writing the mux configurations as we need 2525 * to make sure all slices/subslices are ON before writing to NOA 2526 * registers. 2527 */ 2528 ret = gen12_configure_all_contexts(stream, oa_config, active); 2529 if (ret) 2530 return ret; 2531 2532 /* 2533 * For Gen12, performance counters are context 2534 * saved/restored. Only enable it for the context that 2535 * requested this. 2536 */ 2537 if (stream->ctx) { 2538 ret = gen12_configure_oar_context(stream, active); 2539 if (ret) 2540 return ret; 2541 } 2542 2543 return emit_oa_config(stream, 2544 stream->oa_config, oa_context(stream), 2545 active); 2546 } 2547 2548 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2549 { 2550 struct intel_uncore *uncore = stream->uncore; 2551 2552 /* Reset all contexts' slices/subslices configurations. */ 2553 lrc_configure_all_contexts(stream, NULL, NULL); 2554 2555 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2556 } 2557 2558 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2559 { 2560 struct intel_uncore *uncore = stream->uncore; 2561 2562 /* Reset all contexts' slices/subslices configurations. */ 2563 lrc_configure_all_contexts(stream, NULL, NULL); 2564 2565 /* Make sure we disable noa to save power. */ 2566 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2567 } 2568 2569 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2570 { 2571 struct intel_uncore *uncore = stream->uncore; 2572 2573 /* Reset all contexts' slices/subslices configurations. */ 2574 gen12_configure_all_contexts(stream, NULL, NULL); 2575 2576 /* disable the context save/restore or OAR counters */ 2577 if (stream->ctx) 2578 gen12_configure_oar_context(stream, NULL); 2579 2580 /* Make sure we disable noa to save power. */ 2581 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2582 } 2583 2584 static void gen7_oa_enable(struct i915_perf_stream *stream) 2585 { 2586 struct intel_uncore *uncore = stream->uncore; 2587 struct i915_gem_context *ctx = stream->ctx; 2588 u32 ctx_id = stream->specific_ctx_id; 2589 bool periodic = stream->periodic; 2590 u32 period_exponent = stream->period_exponent; 2591 u32 report_format = stream->oa_buffer.format; 2592 2593 /* 2594 * Reset buf pointers so we don't forward reports from before now. 2595 * 2596 * Think carefully if considering trying to avoid this, since it 2597 * also ensures status flags and the buffer itself are cleared 2598 * in error paths, and we have checks for invalid reports based 2599 * on the assumption that certain fields are written to zeroed 2600 * memory which this helps maintains. 2601 */ 2602 gen7_init_oa_buffer(stream); 2603 2604 intel_uncore_write(uncore, GEN7_OACONTROL, 2605 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2606 (period_exponent << 2607 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2608 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2609 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2610 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2611 GEN7_OACONTROL_ENABLE); 2612 } 2613 2614 static void gen8_oa_enable(struct i915_perf_stream *stream) 2615 { 2616 struct intel_uncore *uncore = stream->uncore; 2617 u32 report_format = stream->oa_buffer.format; 2618 2619 /* 2620 * Reset buf pointers so we don't forward reports from before now. 2621 * 2622 * Think carefully if considering trying to avoid this, since it 2623 * also ensures status flags and the buffer itself are cleared 2624 * in error paths, and we have checks for invalid reports based 2625 * on the assumption that certain fields are written to zeroed 2626 * memory which this helps maintains. 2627 */ 2628 gen8_init_oa_buffer(stream); 2629 2630 /* 2631 * Note: we don't rely on the hardware to perform single context 2632 * filtering and instead filter on the cpu based on the context-id 2633 * field of reports 2634 */ 2635 intel_uncore_write(uncore, GEN8_OACONTROL, 2636 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2637 GEN8_OA_COUNTER_ENABLE); 2638 } 2639 2640 static void gen12_oa_enable(struct i915_perf_stream *stream) 2641 { 2642 struct intel_uncore *uncore = stream->uncore; 2643 u32 report_format = stream->oa_buffer.format; 2644 2645 /* 2646 * If we don't want OA reports from the OA buffer, then we don't even 2647 * need to program the OAG unit. 2648 */ 2649 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2650 return; 2651 2652 gen12_init_oa_buffer(stream); 2653 2654 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2655 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2656 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2657 } 2658 2659 /** 2660 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2661 * @stream: An i915 perf stream opened for OA metrics 2662 * 2663 * [Re]enables hardware periodic sampling according to the period configured 2664 * when opening the stream. This also starts a hrtimer that will periodically 2665 * check for data in the circular OA buffer for notifying userspace (e.g. 2666 * during a read() or poll()). 2667 */ 2668 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2669 { 2670 stream->pollin = false; 2671 2672 stream->perf->ops.oa_enable(stream); 2673 2674 if (stream->periodic) 2675 hrtimer_start(&stream->poll_check_timer, 2676 ns_to_ktime(stream->poll_oa_period), 2677 HRTIMER_MODE_REL_PINNED); 2678 } 2679 2680 static void gen7_oa_disable(struct i915_perf_stream *stream) 2681 { 2682 struct intel_uncore *uncore = stream->uncore; 2683 2684 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2685 if (intel_wait_for_register(uncore, 2686 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2687 50)) 2688 drm_err(&stream->perf->i915->drm, 2689 "wait for OA to be disabled timed out\n"); 2690 } 2691 2692 static void gen8_oa_disable(struct i915_perf_stream *stream) 2693 { 2694 struct intel_uncore *uncore = stream->uncore; 2695 2696 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2697 if (intel_wait_for_register(uncore, 2698 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2699 50)) 2700 drm_err(&stream->perf->i915->drm, 2701 "wait for OA to be disabled timed out\n"); 2702 } 2703 2704 static void gen12_oa_disable(struct i915_perf_stream *stream) 2705 { 2706 struct intel_uncore *uncore = stream->uncore; 2707 2708 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2709 if (intel_wait_for_register(uncore, 2710 GEN12_OAG_OACONTROL, 2711 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2712 50)) 2713 drm_err(&stream->perf->i915->drm, 2714 "wait for OA to be disabled timed out\n"); 2715 2716 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2717 if (intel_wait_for_register(uncore, 2718 GEN12_OA_TLB_INV_CR, 2719 1, 0, 2720 50)) 2721 drm_err(&stream->perf->i915->drm, 2722 "wait for OA tlb invalidate timed out\n"); 2723 } 2724 2725 /** 2726 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2727 * @stream: An i915 perf stream opened for OA metrics 2728 * 2729 * Stops the OA unit from periodically writing counter reports into the 2730 * circular OA buffer. This also stops the hrtimer that periodically checks for 2731 * data in the circular OA buffer, for notifying userspace. 2732 */ 2733 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2734 { 2735 stream->perf->ops.oa_disable(stream); 2736 2737 if (stream->periodic) 2738 hrtimer_cancel(&stream->poll_check_timer); 2739 } 2740 2741 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2742 .destroy = i915_oa_stream_destroy, 2743 .enable = i915_oa_stream_enable, 2744 .disable = i915_oa_stream_disable, 2745 .wait_unlocked = i915_oa_wait_unlocked, 2746 .poll_wait = i915_oa_poll_wait, 2747 .read = i915_oa_read, 2748 }; 2749 2750 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2751 { 2752 struct i915_active *active; 2753 int err; 2754 2755 active = i915_active_create(); 2756 if (!active) 2757 return -ENOMEM; 2758 2759 err = stream->perf->ops.enable_metric_set(stream, active); 2760 if (err == 0) 2761 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2762 2763 i915_active_put(active); 2764 return err; 2765 } 2766 2767 static void 2768 get_default_sseu_config(struct intel_sseu *out_sseu, 2769 struct intel_engine_cs *engine) 2770 { 2771 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2772 2773 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2774 2775 if (IS_GEN(engine->i915, 11)) { 2776 /* 2777 * We only need subslice count so it doesn't matter which ones 2778 * we select - just turn off low bits in the amount of half of 2779 * all available subslices per slice. 2780 */ 2781 out_sseu->subslice_mask = 2782 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2783 out_sseu->slice_mask = 0x1; 2784 } 2785 } 2786 2787 static int 2788 get_sseu_config(struct intel_sseu *out_sseu, 2789 struct intel_engine_cs *engine, 2790 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2791 { 2792 if (drm_sseu->engine.engine_class != engine->uabi_class || 2793 drm_sseu->engine.engine_instance != engine->uabi_instance) 2794 return -EINVAL; 2795 2796 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2797 } 2798 2799 /** 2800 * i915_oa_stream_init - validate combined props for OA stream and init 2801 * @stream: An i915 perf stream 2802 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2803 * @props: The property state that configures stream (individually validated) 2804 * 2805 * While read_properties_unlocked() validates properties in isolation it 2806 * doesn't ensure that the combination necessarily makes sense. 2807 * 2808 * At this point it has been determined that userspace wants a stream of 2809 * OA metrics, but still we need to further validate the combined 2810 * properties are OK. 2811 * 2812 * If the configuration makes sense then we can allocate memory for 2813 * a circular OA buffer and apply the requested metric set configuration. 2814 * 2815 * Returns: zero on success or a negative error code. 2816 */ 2817 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2818 struct drm_i915_perf_open_param *param, 2819 struct perf_open_properties *props) 2820 { 2821 struct drm_i915_private *i915 = stream->perf->i915; 2822 struct i915_perf *perf = stream->perf; 2823 int format_size; 2824 int ret; 2825 2826 if (!props->engine) { 2827 DRM_DEBUG("OA engine not specified\n"); 2828 return -EINVAL; 2829 } 2830 2831 /* 2832 * If the sysfs metrics/ directory wasn't registered for some 2833 * reason then don't let userspace try their luck with config 2834 * IDs 2835 */ 2836 if (!perf->metrics_kobj) { 2837 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2838 return -EINVAL; 2839 } 2840 2841 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2842 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2843 DRM_DEBUG("Only OA report sampling supported\n"); 2844 return -EINVAL; 2845 } 2846 2847 if (!perf->ops.enable_metric_set) { 2848 DRM_DEBUG("OA unit not supported\n"); 2849 return -ENODEV; 2850 } 2851 2852 /* 2853 * To avoid the complexity of having to accurately filter 2854 * counter reports and marshal to the appropriate client 2855 * we currently only allow exclusive access 2856 */ 2857 if (perf->exclusive_stream) { 2858 DRM_DEBUG("OA unit already in use\n"); 2859 return -EBUSY; 2860 } 2861 2862 if (!props->oa_format) { 2863 DRM_DEBUG("OA report format not specified\n"); 2864 return -EINVAL; 2865 } 2866 2867 stream->engine = props->engine; 2868 stream->uncore = stream->engine->gt->uncore; 2869 2870 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2871 2872 format_size = perf->oa_formats[props->oa_format].size; 2873 2874 stream->sample_flags = props->sample_flags; 2875 stream->sample_size += format_size; 2876 2877 stream->oa_buffer.format_size = format_size; 2878 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2879 return -EINVAL; 2880 2881 stream->hold_preemption = props->hold_preemption; 2882 2883 stream->oa_buffer.format = 2884 perf->oa_formats[props->oa_format].format; 2885 2886 stream->periodic = props->oa_periodic; 2887 if (stream->periodic) 2888 stream->period_exponent = props->oa_period_exponent; 2889 2890 if (stream->ctx) { 2891 ret = oa_get_render_ctx_id(stream); 2892 if (ret) { 2893 DRM_DEBUG("Invalid context id to filter with\n"); 2894 return ret; 2895 } 2896 } 2897 2898 ret = alloc_noa_wait(stream); 2899 if (ret) { 2900 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2901 goto err_noa_wait_alloc; 2902 } 2903 2904 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2905 if (!stream->oa_config) { 2906 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2907 ret = -EINVAL; 2908 goto err_config; 2909 } 2910 2911 /* PRM - observability performance counters: 2912 * 2913 * OACONTROL, performance counter enable, note: 2914 * 2915 * "When this bit is set, in order to have coherent counts, 2916 * RC6 power state and trunk clock gating must be disabled. 2917 * This can be achieved by programming MMIO registers as 2918 * 0xA094=0 and 0xA090[31]=1" 2919 * 2920 * In our case we are expecting that taking pm + FORCEWAKE 2921 * references will effectively disable RC6. 2922 */ 2923 intel_engine_pm_get(stream->engine); 2924 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2925 2926 ret = alloc_oa_buffer(stream); 2927 if (ret) 2928 goto err_oa_buf_alloc; 2929 2930 stream->ops = &i915_oa_stream_ops; 2931 2932 perf->sseu = props->sseu; 2933 WRITE_ONCE(perf->exclusive_stream, stream); 2934 2935 ret = i915_perf_stream_enable_sync(stream); 2936 if (ret) { 2937 DRM_DEBUG("Unable to enable metric set\n"); 2938 goto err_enable; 2939 } 2940 2941 DRM_DEBUG("opening stream oa config uuid=%s\n", 2942 stream->oa_config->uuid); 2943 2944 hrtimer_init(&stream->poll_check_timer, 2945 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2946 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2947 init_waitqueue_head(&stream->poll_wq); 2948 spin_lock_init(&stream->oa_buffer.ptr_lock); 2949 2950 return 0; 2951 2952 err_enable: 2953 WRITE_ONCE(perf->exclusive_stream, NULL); 2954 perf->ops.disable_metric_set(stream); 2955 2956 free_oa_buffer(stream); 2957 2958 err_oa_buf_alloc: 2959 free_oa_configs(stream); 2960 2961 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2962 intel_engine_pm_put(stream->engine); 2963 2964 err_config: 2965 free_noa_wait(stream); 2966 2967 err_noa_wait_alloc: 2968 if (stream->ctx) 2969 oa_put_render_ctx_id(stream); 2970 2971 return ret; 2972 } 2973 2974 void i915_oa_init_reg_state(const struct intel_context *ce, 2975 const struct intel_engine_cs *engine) 2976 { 2977 struct i915_perf_stream *stream; 2978 2979 if (engine->class != RENDER_CLASS) 2980 return; 2981 2982 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2983 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2984 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2985 gen8_update_reg_state_unlocked(ce, stream); 2986 } 2987 2988 /** 2989 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2990 * @file: An i915 perf stream file 2991 * @buf: destination buffer given by userspace 2992 * @count: the number of bytes userspace wants to read 2993 * @ppos: (inout) file seek position (unused) 2994 * 2995 * The entry point for handling a read() on a stream file descriptor from 2996 * userspace. Most of the work is left to the i915_perf_read_locked() and 2997 * &i915_perf_stream_ops->read but to save having stream implementations (of 2998 * which we might have multiple later) we handle blocking read here. 2999 * 3000 * We can also consistently treat trying to read from a disabled stream 3001 * as an IO error so implementations can assume the stream is enabled 3002 * while reading. 3003 * 3004 * Returns: The number of bytes copied or a negative error code on failure. 3005 */ 3006 static ssize_t i915_perf_read(struct file *file, 3007 char __user *buf, 3008 size_t count, 3009 loff_t *ppos) 3010 { 3011 struct i915_perf_stream *stream = file->private_data; 3012 struct i915_perf *perf = stream->perf; 3013 size_t offset = 0; 3014 int ret; 3015 3016 /* To ensure it's handled consistently we simply treat all reads of a 3017 * disabled stream as an error. In particular it might otherwise lead 3018 * to a deadlock for blocking file descriptors... 3019 */ 3020 if (!stream->enabled) 3021 return -EIO; 3022 3023 if (!(file->f_flags & O_NONBLOCK)) { 3024 /* There's the small chance of false positives from 3025 * stream->ops->wait_unlocked. 3026 * 3027 * E.g. with single context filtering since we only wait until 3028 * oabuffer has >= 1 report we don't immediately know whether 3029 * any reports really belong to the current context 3030 */ 3031 do { 3032 ret = stream->ops->wait_unlocked(stream); 3033 if (ret) 3034 return ret; 3035 3036 mutex_lock(&perf->lock); 3037 ret = stream->ops->read(stream, buf, count, &offset); 3038 mutex_unlock(&perf->lock); 3039 } while (!offset && !ret); 3040 } else { 3041 mutex_lock(&perf->lock); 3042 ret = stream->ops->read(stream, buf, count, &offset); 3043 mutex_unlock(&perf->lock); 3044 } 3045 3046 /* We allow the poll checking to sometimes report false positive EPOLLIN 3047 * events where we might actually report EAGAIN on read() if there's 3048 * not really any data available. In this situation though we don't 3049 * want to enter a busy loop between poll() reporting a EPOLLIN event 3050 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3051 * effectively ensures we back off until the next hrtimer callback 3052 * before reporting another EPOLLIN event. 3053 * The exception to this is if ops->read() returned -ENOSPC which means 3054 * that more OA data is available than could fit in the user provided 3055 * buffer. In this case we want the next poll() call to not block. 3056 */ 3057 if (ret != -ENOSPC) 3058 stream->pollin = false; 3059 3060 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3061 return offset ?: (ret ?: -EAGAIN); 3062 } 3063 3064 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3065 { 3066 struct i915_perf_stream *stream = 3067 container_of(hrtimer, typeof(*stream), poll_check_timer); 3068 3069 if (oa_buffer_check_unlocked(stream)) { 3070 stream->pollin = true; 3071 wake_up(&stream->poll_wq); 3072 } 3073 3074 hrtimer_forward_now(hrtimer, 3075 ns_to_ktime(stream->poll_oa_period)); 3076 3077 return HRTIMER_RESTART; 3078 } 3079 3080 /** 3081 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3082 * @stream: An i915 perf stream 3083 * @file: An i915 perf stream file 3084 * @wait: poll() state table 3085 * 3086 * For handling userspace polling on an i915 perf stream, this calls through to 3087 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3088 * will be woken for new stream data. 3089 * 3090 * Note: The &perf->lock mutex has been taken to serialize 3091 * with any non-file-operation driver hooks. 3092 * 3093 * Returns: any poll events that are ready without sleeping 3094 */ 3095 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3096 struct file *file, 3097 poll_table *wait) 3098 { 3099 __poll_t events = 0; 3100 3101 stream->ops->poll_wait(stream, file, wait); 3102 3103 /* Note: we don't explicitly check whether there's something to read 3104 * here since this path may be very hot depending on what else 3105 * userspace is polling, or on the timeout in use. We rely solely on 3106 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3107 * samples to read. 3108 */ 3109 if (stream->pollin) 3110 events |= EPOLLIN; 3111 3112 return events; 3113 } 3114 3115 /** 3116 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3117 * @file: An i915 perf stream file 3118 * @wait: poll() state table 3119 * 3120 * For handling userspace polling on an i915 perf stream, this ensures 3121 * poll_wait() gets called with a wait queue that will be woken for new stream 3122 * data. 3123 * 3124 * Note: Implementation deferred to i915_perf_poll_locked() 3125 * 3126 * Returns: any poll events that are ready without sleeping 3127 */ 3128 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3129 { 3130 struct i915_perf_stream *stream = file->private_data; 3131 struct i915_perf *perf = stream->perf; 3132 __poll_t ret; 3133 3134 mutex_lock(&perf->lock); 3135 ret = i915_perf_poll_locked(stream, file, wait); 3136 mutex_unlock(&perf->lock); 3137 3138 return ret; 3139 } 3140 3141 /** 3142 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3143 * @stream: A disabled i915 perf stream 3144 * 3145 * [Re]enables the associated capture of data for this stream. 3146 * 3147 * If a stream was previously enabled then there's currently no intention 3148 * to provide userspace any guarantee about the preservation of previously 3149 * buffered data. 3150 */ 3151 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3152 { 3153 if (stream->enabled) 3154 return; 3155 3156 /* Allow stream->ops->enable() to refer to this */ 3157 stream->enabled = true; 3158 3159 if (stream->ops->enable) 3160 stream->ops->enable(stream); 3161 3162 if (stream->hold_preemption) 3163 intel_context_set_nopreempt(stream->pinned_ctx); 3164 } 3165 3166 /** 3167 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3168 * @stream: An enabled i915 perf stream 3169 * 3170 * Disables the associated capture of data for this stream. 3171 * 3172 * The intention is that disabling an re-enabling a stream will ideally be 3173 * cheaper than destroying and re-opening a stream with the same configuration, 3174 * though there are no formal guarantees about what state or buffered data 3175 * must be retained between disabling and re-enabling a stream. 3176 * 3177 * Note: while a stream is disabled it's considered an error for userspace 3178 * to attempt to read from the stream (-EIO). 3179 */ 3180 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3181 { 3182 if (!stream->enabled) 3183 return; 3184 3185 /* Allow stream->ops->disable() to refer to this */ 3186 stream->enabled = false; 3187 3188 if (stream->hold_preemption) 3189 intel_context_clear_nopreempt(stream->pinned_ctx); 3190 3191 if (stream->ops->disable) 3192 stream->ops->disable(stream); 3193 } 3194 3195 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3196 unsigned long metrics_set) 3197 { 3198 struct i915_oa_config *config; 3199 long ret = stream->oa_config->id; 3200 3201 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3202 if (!config) 3203 return -EINVAL; 3204 3205 if (config != stream->oa_config) { 3206 int err; 3207 3208 /* 3209 * If OA is bound to a specific context, emit the 3210 * reconfiguration inline from that context. The update 3211 * will then be ordered with respect to submission on that 3212 * context. 3213 * 3214 * When set globally, we use a low priority kernel context, 3215 * so it will effectively take effect when idle. 3216 */ 3217 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3218 if (!err) 3219 config = xchg(&stream->oa_config, config); 3220 else 3221 ret = err; 3222 } 3223 3224 i915_oa_config_put(config); 3225 3226 return ret; 3227 } 3228 3229 /** 3230 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3231 * @stream: An i915 perf stream 3232 * @cmd: the ioctl request 3233 * @arg: the ioctl data 3234 * 3235 * Note: The &perf->lock mutex has been taken to serialize 3236 * with any non-file-operation driver hooks. 3237 * 3238 * Returns: zero on success or a negative error code. Returns -EINVAL for 3239 * an unknown ioctl request. 3240 */ 3241 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3242 unsigned int cmd, 3243 unsigned long arg) 3244 { 3245 switch (cmd) { 3246 case I915_PERF_IOCTL_ENABLE: 3247 i915_perf_enable_locked(stream); 3248 return 0; 3249 case I915_PERF_IOCTL_DISABLE: 3250 i915_perf_disable_locked(stream); 3251 return 0; 3252 case I915_PERF_IOCTL_CONFIG: 3253 return i915_perf_config_locked(stream, arg); 3254 } 3255 3256 return -EINVAL; 3257 } 3258 3259 /** 3260 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3261 * @file: An i915 perf stream file 3262 * @cmd: the ioctl request 3263 * @arg: the ioctl data 3264 * 3265 * Implementation deferred to i915_perf_ioctl_locked(). 3266 * 3267 * Returns: zero on success or a negative error code. Returns -EINVAL for 3268 * an unknown ioctl request. 3269 */ 3270 static long i915_perf_ioctl(struct file *file, 3271 unsigned int cmd, 3272 unsigned long arg) 3273 { 3274 struct i915_perf_stream *stream = file->private_data; 3275 struct i915_perf *perf = stream->perf; 3276 long ret; 3277 3278 mutex_lock(&perf->lock); 3279 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3280 mutex_unlock(&perf->lock); 3281 3282 return ret; 3283 } 3284 3285 /** 3286 * i915_perf_destroy_locked - destroy an i915 perf stream 3287 * @stream: An i915 perf stream 3288 * 3289 * Frees all resources associated with the given i915 perf @stream, disabling 3290 * any associated data capture in the process. 3291 * 3292 * Note: The &perf->lock mutex has been taken to serialize 3293 * with any non-file-operation driver hooks. 3294 */ 3295 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3296 { 3297 if (stream->enabled) 3298 i915_perf_disable_locked(stream); 3299 3300 if (stream->ops->destroy) 3301 stream->ops->destroy(stream); 3302 3303 if (stream->ctx) 3304 i915_gem_context_put(stream->ctx); 3305 3306 kfree(stream); 3307 } 3308 3309 /** 3310 * i915_perf_release - handles userspace close() of a stream file 3311 * @inode: anonymous inode associated with file 3312 * @file: An i915 perf stream file 3313 * 3314 * Cleans up any resources associated with an open i915 perf stream file. 3315 * 3316 * NB: close() can't really fail from the userspace point of view. 3317 * 3318 * Returns: zero on success or a negative error code. 3319 */ 3320 static int i915_perf_release(struct inode *inode, struct file *file) 3321 { 3322 struct i915_perf_stream *stream = file->private_data; 3323 struct i915_perf *perf = stream->perf; 3324 3325 mutex_lock(&perf->lock); 3326 i915_perf_destroy_locked(stream); 3327 mutex_unlock(&perf->lock); 3328 3329 /* Release the reference the perf stream kept on the driver. */ 3330 drm_dev_put(&perf->i915->drm); 3331 3332 return 0; 3333 } 3334 3335 3336 static const struct file_operations fops = { 3337 .owner = THIS_MODULE, 3338 .llseek = no_llseek, 3339 .release = i915_perf_release, 3340 .poll = i915_perf_poll, 3341 .read = i915_perf_read, 3342 .unlocked_ioctl = i915_perf_ioctl, 3343 /* Our ioctl have no arguments, so it's safe to use the same function 3344 * to handle 32bits compatibility. 3345 */ 3346 .compat_ioctl = i915_perf_ioctl, 3347 }; 3348 3349 3350 /** 3351 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3352 * @perf: i915 perf instance 3353 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3354 * @props: individually validated u64 property value pairs 3355 * @file: drm file 3356 * 3357 * See i915_perf_ioctl_open() for interface details. 3358 * 3359 * Implements further stream config validation and stream initialization on 3360 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3361 * taken to serialize with any non-file-operation driver hooks. 3362 * 3363 * Note: at this point the @props have only been validated in isolation and 3364 * it's still necessary to validate that the combination of properties makes 3365 * sense. 3366 * 3367 * In the case where userspace is interested in OA unit metrics then further 3368 * config validation and stream initialization details will be handled by 3369 * i915_oa_stream_init(). The code here should only validate config state that 3370 * will be relevant to all stream types / backends. 3371 * 3372 * Returns: zero on success or a negative error code. 3373 */ 3374 static int 3375 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3376 struct drm_i915_perf_open_param *param, 3377 struct perf_open_properties *props, 3378 struct drm_file *file) 3379 { 3380 struct i915_gem_context *specific_ctx = NULL; 3381 struct i915_perf_stream *stream = NULL; 3382 unsigned long f_flags = 0; 3383 bool privileged_op = true; 3384 int stream_fd; 3385 int ret; 3386 3387 if (props->single_context) { 3388 u32 ctx_handle = props->ctx_handle; 3389 struct drm_i915_file_private *file_priv = file->driver_priv; 3390 3391 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3392 if (!specific_ctx) { 3393 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3394 ctx_handle); 3395 ret = -ENOENT; 3396 goto err; 3397 } 3398 } 3399 3400 /* 3401 * On Haswell the OA unit supports clock gating off for a specific 3402 * context and in this mode there's no visibility of metrics for the 3403 * rest of the system, which we consider acceptable for a 3404 * non-privileged client. 3405 * 3406 * For Gen8->11 the OA unit no longer supports clock gating off for a 3407 * specific context and the kernel can't securely stop the counters 3408 * from updating as system-wide / global values. Even though we can 3409 * filter reports based on the included context ID we can't block 3410 * clients from seeing the raw / global counter values via 3411 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3412 * enable the OA unit by default. 3413 * 3414 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3415 * per context basis. So we can relax requirements there if the user 3416 * doesn't request global stream access (i.e. query based sampling 3417 * using MI_RECORD_PERF_COUNT. 3418 */ 3419 if (IS_HASWELL(perf->i915) && specific_ctx) 3420 privileged_op = false; 3421 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3422 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3423 privileged_op = false; 3424 3425 if (props->hold_preemption) { 3426 if (!props->single_context) { 3427 DRM_DEBUG("preemption disable with no context\n"); 3428 ret = -EINVAL; 3429 goto err; 3430 } 3431 privileged_op = true; 3432 } 3433 3434 /* 3435 * Asking for SSEU configuration is a priviliged operation. 3436 */ 3437 if (props->has_sseu) 3438 privileged_op = true; 3439 else 3440 get_default_sseu_config(&props->sseu, props->engine); 3441 3442 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3443 * we check a dev.i915.perf_stream_paranoid sysctl option 3444 * to determine if it's ok to access system wide OA counters 3445 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3446 */ 3447 if (privileged_op && 3448 i915_perf_stream_paranoid && !perfmon_capable()) { 3449 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3450 ret = -EACCES; 3451 goto err_ctx; 3452 } 3453 3454 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3455 if (!stream) { 3456 ret = -ENOMEM; 3457 goto err_ctx; 3458 } 3459 3460 stream->perf = perf; 3461 stream->ctx = specific_ctx; 3462 stream->poll_oa_period = props->poll_oa_period; 3463 3464 ret = i915_oa_stream_init(stream, param, props); 3465 if (ret) 3466 goto err_alloc; 3467 3468 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3469 * to have _stream_init check the combination of sample flags more 3470 * thoroughly, but still this is the expected result at this point. 3471 */ 3472 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3473 ret = -ENODEV; 3474 goto err_flags; 3475 } 3476 3477 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3478 f_flags |= O_CLOEXEC; 3479 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3480 f_flags |= O_NONBLOCK; 3481 3482 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3483 if (stream_fd < 0) { 3484 ret = stream_fd; 3485 goto err_flags; 3486 } 3487 3488 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3489 i915_perf_enable_locked(stream); 3490 3491 /* Take a reference on the driver that will be kept with stream_fd 3492 * until its release. 3493 */ 3494 drm_dev_get(&perf->i915->drm); 3495 3496 return stream_fd; 3497 3498 err_flags: 3499 if (stream->ops->destroy) 3500 stream->ops->destroy(stream); 3501 err_alloc: 3502 kfree(stream); 3503 err_ctx: 3504 if (specific_ctx) 3505 i915_gem_context_put(specific_ctx); 3506 err: 3507 return ret; 3508 } 3509 3510 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3511 { 3512 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent); 3513 } 3514 3515 /** 3516 * read_properties_unlocked - validate + copy userspace stream open properties 3517 * @perf: i915 perf instance 3518 * @uprops: The array of u64 key value pairs given by userspace 3519 * @n_props: The number of key value pairs expected in @uprops 3520 * @props: The stream configuration built up while validating properties 3521 * 3522 * Note this function only validates properties in isolation it doesn't 3523 * validate that the combination of properties makes sense or that all 3524 * properties necessary for a particular kind of stream have been set. 3525 * 3526 * Note that there currently aren't any ordering requirements for properties so 3527 * we shouldn't validate or assume anything about ordering here. This doesn't 3528 * rule out defining new properties with ordering requirements in the future. 3529 */ 3530 static int read_properties_unlocked(struct i915_perf *perf, 3531 u64 __user *uprops, 3532 u32 n_props, 3533 struct perf_open_properties *props) 3534 { 3535 u64 __user *uprop = uprops; 3536 u32 i; 3537 int ret; 3538 3539 memset(props, 0, sizeof(struct perf_open_properties)); 3540 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3541 3542 if (!n_props) { 3543 DRM_DEBUG("No i915 perf properties given\n"); 3544 return -EINVAL; 3545 } 3546 3547 /* At the moment we only support using i915-perf on the RCS. */ 3548 props->engine = intel_engine_lookup_user(perf->i915, 3549 I915_ENGINE_CLASS_RENDER, 3550 0); 3551 if (!props->engine) { 3552 DRM_DEBUG("No RENDER-capable engines\n"); 3553 return -EINVAL; 3554 } 3555 3556 /* Considering that ID = 0 is reserved and assuming that we don't 3557 * (currently) expect any configurations to ever specify duplicate 3558 * values for a particular property ID then the last _PROP_MAX value is 3559 * one greater than the maximum number of properties we expect to get 3560 * from userspace. 3561 */ 3562 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3563 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3564 return -EINVAL; 3565 } 3566 3567 for (i = 0; i < n_props; i++) { 3568 u64 oa_period, oa_freq_hz; 3569 u64 id, value; 3570 3571 ret = get_user(id, uprop); 3572 if (ret) 3573 return ret; 3574 3575 ret = get_user(value, uprop + 1); 3576 if (ret) 3577 return ret; 3578 3579 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3580 DRM_DEBUG("Unknown i915 perf property ID\n"); 3581 return -EINVAL; 3582 } 3583 3584 switch ((enum drm_i915_perf_property_id)id) { 3585 case DRM_I915_PERF_PROP_CTX_HANDLE: 3586 props->single_context = 1; 3587 props->ctx_handle = value; 3588 break; 3589 case DRM_I915_PERF_PROP_SAMPLE_OA: 3590 if (value) 3591 props->sample_flags |= SAMPLE_OA_REPORT; 3592 break; 3593 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3594 if (value == 0) { 3595 DRM_DEBUG("Unknown OA metric set ID\n"); 3596 return -EINVAL; 3597 } 3598 props->metrics_set = value; 3599 break; 3600 case DRM_I915_PERF_PROP_OA_FORMAT: 3601 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3602 DRM_DEBUG("Out-of-range OA report format %llu\n", 3603 value); 3604 return -EINVAL; 3605 } 3606 if (!perf->oa_formats[value].size) { 3607 DRM_DEBUG("Unsupported OA report format %llu\n", 3608 value); 3609 return -EINVAL; 3610 } 3611 props->oa_format = value; 3612 break; 3613 case DRM_I915_PERF_PROP_OA_EXPONENT: 3614 if (value > OA_EXPONENT_MAX) { 3615 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3616 OA_EXPONENT_MAX); 3617 return -EINVAL; 3618 } 3619 3620 /* Theoretically we can program the OA unit to sample 3621 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3622 * for BXT. We don't allow such high sampling 3623 * frequencies by default unless root. 3624 */ 3625 3626 BUILD_BUG_ON(sizeof(oa_period) != 8); 3627 oa_period = oa_exponent_to_ns(perf, value); 3628 3629 /* This check is primarily to ensure that oa_period <= 3630 * UINT32_MAX (before passing to do_div which only 3631 * accepts a u32 denominator), but we can also skip 3632 * checking anything < 1Hz which implicitly can't be 3633 * limited via an integer oa_max_sample_rate. 3634 */ 3635 if (oa_period <= NSEC_PER_SEC) { 3636 u64 tmp = NSEC_PER_SEC; 3637 do_div(tmp, oa_period); 3638 oa_freq_hz = tmp; 3639 } else 3640 oa_freq_hz = 0; 3641 3642 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3643 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3644 i915_oa_max_sample_rate); 3645 return -EACCES; 3646 } 3647 3648 props->oa_periodic = true; 3649 props->oa_period_exponent = value; 3650 break; 3651 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3652 props->hold_preemption = !!value; 3653 break; 3654 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3655 struct drm_i915_gem_context_param_sseu user_sseu; 3656 3657 if (copy_from_user(&user_sseu, 3658 u64_to_user_ptr(value), 3659 sizeof(user_sseu))) { 3660 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3661 return -EFAULT; 3662 } 3663 3664 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3665 if (ret) { 3666 DRM_DEBUG("Invalid SSEU configuration\n"); 3667 return ret; 3668 } 3669 props->has_sseu = true; 3670 break; 3671 } 3672 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3673 if (value < 100000 /* 100us */) { 3674 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3675 value); 3676 return -EINVAL; 3677 } 3678 props->poll_oa_period = value; 3679 break; 3680 case DRM_I915_PERF_PROP_MAX: 3681 MISSING_CASE(id); 3682 return -EINVAL; 3683 } 3684 3685 uprop += 2; 3686 } 3687 3688 return 0; 3689 } 3690 3691 /** 3692 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3693 * @dev: drm device 3694 * @data: ioctl data copied from userspace (unvalidated) 3695 * @file: drm file 3696 * 3697 * Validates the stream open parameters given by userspace including flags 3698 * and an array of u64 key, value pair properties. 3699 * 3700 * Very little is assumed up front about the nature of the stream being 3701 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3702 * i915-perf stream is expected to be a suitable interface for other forms of 3703 * buffered data written by the GPU besides periodic OA metrics. 3704 * 3705 * Note we copy the properties from userspace outside of the i915 perf 3706 * mutex to avoid an awkward lockdep with mmap_lock. 3707 * 3708 * Most of the implementation details are handled by 3709 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3710 * mutex for serializing with any non-file-operation driver hooks. 3711 * 3712 * Return: A newly opened i915 Perf stream file descriptor or negative 3713 * error code on failure. 3714 */ 3715 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3716 struct drm_file *file) 3717 { 3718 struct i915_perf *perf = &to_i915(dev)->perf; 3719 struct drm_i915_perf_open_param *param = data; 3720 struct perf_open_properties props; 3721 u32 known_open_flags; 3722 int ret; 3723 3724 if (!perf->i915) { 3725 DRM_DEBUG("i915 perf interface not available for this system\n"); 3726 return -ENOTSUPP; 3727 } 3728 3729 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3730 I915_PERF_FLAG_FD_NONBLOCK | 3731 I915_PERF_FLAG_DISABLED; 3732 if (param->flags & ~known_open_flags) { 3733 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3734 return -EINVAL; 3735 } 3736 3737 ret = read_properties_unlocked(perf, 3738 u64_to_user_ptr(param->properties_ptr), 3739 param->num_properties, 3740 &props); 3741 if (ret) 3742 return ret; 3743 3744 mutex_lock(&perf->lock); 3745 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3746 mutex_unlock(&perf->lock); 3747 3748 return ret; 3749 } 3750 3751 /** 3752 * i915_perf_register - exposes i915-perf to userspace 3753 * @i915: i915 device instance 3754 * 3755 * In particular OA metric sets are advertised under a sysfs metrics/ 3756 * directory allowing userspace to enumerate valid IDs that can be 3757 * used to open an i915-perf stream. 3758 */ 3759 void i915_perf_register(struct drm_i915_private *i915) 3760 { 3761 struct i915_perf *perf = &i915->perf; 3762 3763 if (!perf->i915) 3764 return; 3765 3766 /* To be sure we're synchronized with an attempted 3767 * i915_perf_open_ioctl(); considering that we register after 3768 * being exposed to userspace. 3769 */ 3770 mutex_lock(&perf->lock); 3771 3772 perf->metrics_kobj = 3773 kobject_create_and_add("metrics", 3774 &i915->drm.primary->kdev->kobj); 3775 3776 mutex_unlock(&perf->lock); 3777 } 3778 3779 /** 3780 * i915_perf_unregister - hide i915-perf from userspace 3781 * @i915: i915 device instance 3782 * 3783 * i915-perf state cleanup is split up into an 'unregister' and 3784 * 'deinit' phase where the interface is first hidden from 3785 * userspace by i915_perf_unregister() before cleaning up 3786 * remaining state in i915_perf_fini(). 3787 */ 3788 void i915_perf_unregister(struct drm_i915_private *i915) 3789 { 3790 struct i915_perf *perf = &i915->perf; 3791 3792 if (!perf->metrics_kobj) 3793 return; 3794 3795 kobject_put(perf->metrics_kobj); 3796 perf->metrics_kobj = NULL; 3797 } 3798 3799 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3800 { 3801 static const i915_reg_t flex_eu_regs[] = { 3802 EU_PERF_CNTL0, 3803 EU_PERF_CNTL1, 3804 EU_PERF_CNTL2, 3805 EU_PERF_CNTL3, 3806 EU_PERF_CNTL4, 3807 EU_PERF_CNTL5, 3808 EU_PERF_CNTL6, 3809 }; 3810 int i; 3811 3812 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3813 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3814 return true; 3815 } 3816 return false; 3817 } 3818 3819 #define ADDR_IN_RANGE(addr, start, end) \ 3820 ((addr) >= (start) && \ 3821 (addr) <= (end)) 3822 3823 #define REG_IN_RANGE(addr, start, end) \ 3824 ((addr) >= i915_mmio_reg_offset(start) && \ 3825 (addr) <= i915_mmio_reg_offset(end)) 3826 3827 #define REG_EQUAL(addr, mmio) \ 3828 ((addr) == i915_mmio_reg_offset(mmio)) 3829 3830 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3831 { 3832 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3833 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3834 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3835 } 3836 3837 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3838 { 3839 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3840 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3841 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3842 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3843 } 3844 3845 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3846 { 3847 return gen7_is_valid_mux_addr(perf, addr) || 3848 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3849 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3850 } 3851 3852 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3853 { 3854 return gen8_is_valid_mux_addr(perf, addr) || 3855 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3856 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3857 } 3858 3859 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3860 { 3861 return gen7_is_valid_mux_addr(perf, addr) || 3862 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3863 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3864 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3865 } 3866 3867 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3868 { 3869 return gen7_is_valid_mux_addr(perf, addr) || 3870 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3871 } 3872 3873 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3874 { 3875 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3876 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3877 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3878 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3879 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3880 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3881 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3882 } 3883 3884 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3885 { 3886 return REG_EQUAL(addr, NOA_WRITE) || 3887 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3888 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3889 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3890 REG_EQUAL(addr, RPM_CONFIG0) || 3891 REG_EQUAL(addr, RPM_CONFIG1) || 3892 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3893 } 3894 3895 static u32 mask_reg_value(u32 reg, u32 val) 3896 { 3897 /* HALF_SLICE_CHICKEN2 is programmed with a the 3898 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3899 * programmed by userspace doesn't change this. 3900 */ 3901 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3902 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3903 3904 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3905 * indicated by its name and a bunch of selection fields used by OA 3906 * configs. 3907 */ 3908 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3909 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3910 3911 return val; 3912 } 3913 3914 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3915 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3916 u32 __user *regs, 3917 u32 n_regs) 3918 { 3919 struct i915_oa_reg *oa_regs; 3920 int err; 3921 u32 i; 3922 3923 if (!n_regs) 3924 return NULL; 3925 3926 /* No is_valid function means we're not allowing any register to be programmed. */ 3927 GEM_BUG_ON(!is_valid); 3928 if (!is_valid) 3929 return ERR_PTR(-EINVAL); 3930 3931 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3932 if (!oa_regs) 3933 return ERR_PTR(-ENOMEM); 3934 3935 for (i = 0; i < n_regs; i++) { 3936 u32 addr, value; 3937 3938 err = get_user(addr, regs); 3939 if (err) 3940 goto addr_err; 3941 3942 if (!is_valid(perf, addr)) { 3943 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3944 err = -EINVAL; 3945 goto addr_err; 3946 } 3947 3948 err = get_user(value, regs + 1); 3949 if (err) 3950 goto addr_err; 3951 3952 oa_regs[i].addr = _MMIO(addr); 3953 oa_regs[i].value = mask_reg_value(addr, value); 3954 3955 regs += 2; 3956 } 3957 3958 return oa_regs; 3959 3960 addr_err: 3961 kfree(oa_regs); 3962 return ERR_PTR(err); 3963 } 3964 3965 static ssize_t show_dynamic_id(struct device *dev, 3966 struct device_attribute *attr, 3967 char *buf) 3968 { 3969 struct i915_oa_config *oa_config = 3970 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3971 3972 return sprintf(buf, "%d\n", oa_config->id); 3973 } 3974 3975 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3976 struct i915_oa_config *oa_config) 3977 { 3978 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3979 oa_config->sysfs_metric_id.attr.name = "id"; 3980 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3981 oa_config->sysfs_metric_id.show = show_dynamic_id; 3982 oa_config->sysfs_metric_id.store = NULL; 3983 3984 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3985 oa_config->attrs[1] = NULL; 3986 3987 oa_config->sysfs_metric.name = oa_config->uuid; 3988 oa_config->sysfs_metric.attrs = oa_config->attrs; 3989 3990 return sysfs_create_group(perf->metrics_kobj, 3991 &oa_config->sysfs_metric); 3992 } 3993 3994 /** 3995 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3996 * @dev: drm device 3997 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3998 * userspace (unvalidated) 3999 * @file: drm file 4000 * 4001 * Validates the submitted OA register to be saved into a new OA config that 4002 * can then be used for programming the OA unit and its NOA network. 4003 * 4004 * Returns: A new allocated config number to be used with the perf open ioctl 4005 * or a negative error code on failure. 4006 */ 4007 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4008 struct drm_file *file) 4009 { 4010 struct i915_perf *perf = &to_i915(dev)->perf; 4011 struct drm_i915_perf_oa_config *args = data; 4012 struct i915_oa_config *oa_config, *tmp; 4013 struct i915_oa_reg *regs; 4014 int err, id; 4015 4016 if (!perf->i915) { 4017 DRM_DEBUG("i915 perf interface not available for this system\n"); 4018 return -ENOTSUPP; 4019 } 4020 4021 if (!perf->metrics_kobj) { 4022 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4023 return -EINVAL; 4024 } 4025 4026 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4027 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4028 return -EACCES; 4029 } 4030 4031 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4032 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4033 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4034 DRM_DEBUG("No OA registers given\n"); 4035 return -EINVAL; 4036 } 4037 4038 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4039 if (!oa_config) { 4040 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4041 return -ENOMEM; 4042 } 4043 4044 oa_config->perf = perf; 4045 kref_init(&oa_config->ref); 4046 4047 if (!uuid_is_valid(args->uuid)) { 4048 DRM_DEBUG("Invalid uuid format for OA config\n"); 4049 err = -EINVAL; 4050 goto reg_err; 4051 } 4052 4053 /* Last character in oa_config->uuid will be 0 because oa_config is 4054 * kzalloc. 4055 */ 4056 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4057 4058 oa_config->mux_regs_len = args->n_mux_regs; 4059 regs = alloc_oa_regs(perf, 4060 perf->ops.is_valid_mux_reg, 4061 u64_to_user_ptr(args->mux_regs_ptr), 4062 args->n_mux_regs); 4063 4064 if (IS_ERR(regs)) { 4065 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4066 err = PTR_ERR(regs); 4067 goto reg_err; 4068 } 4069 oa_config->mux_regs = regs; 4070 4071 oa_config->b_counter_regs_len = args->n_boolean_regs; 4072 regs = alloc_oa_regs(perf, 4073 perf->ops.is_valid_b_counter_reg, 4074 u64_to_user_ptr(args->boolean_regs_ptr), 4075 args->n_boolean_regs); 4076 4077 if (IS_ERR(regs)) { 4078 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4079 err = PTR_ERR(regs); 4080 goto reg_err; 4081 } 4082 oa_config->b_counter_regs = regs; 4083 4084 if (INTEL_GEN(perf->i915) < 8) { 4085 if (args->n_flex_regs != 0) { 4086 err = -EINVAL; 4087 goto reg_err; 4088 } 4089 } else { 4090 oa_config->flex_regs_len = args->n_flex_regs; 4091 regs = alloc_oa_regs(perf, 4092 perf->ops.is_valid_flex_reg, 4093 u64_to_user_ptr(args->flex_regs_ptr), 4094 args->n_flex_regs); 4095 4096 if (IS_ERR(regs)) { 4097 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4098 err = PTR_ERR(regs); 4099 goto reg_err; 4100 } 4101 oa_config->flex_regs = regs; 4102 } 4103 4104 err = mutex_lock_interruptible(&perf->metrics_lock); 4105 if (err) 4106 goto reg_err; 4107 4108 /* We shouldn't have too many configs, so this iteration shouldn't be 4109 * too costly. 4110 */ 4111 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4112 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4113 DRM_DEBUG("OA config already exists with this uuid\n"); 4114 err = -EADDRINUSE; 4115 goto sysfs_err; 4116 } 4117 } 4118 4119 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4120 if (err) { 4121 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4122 goto sysfs_err; 4123 } 4124 4125 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4126 oa_config->id = idr_alloc(&perf->metrics_idr, 4127 oa_config, 2, 4128 0, GFP_KERNEL); 4129 if (oa_config->id < 0) { 4130 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4131 err = oa_config->id; 4132 goto sysfs_err; 4133 } 4134 4135 mutex_unlock(&perf->metrics_lock); 4136 4137 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4138 4139 return oa_config->id; 4140 4141 sysfs_err: 4142 mutex_unlock(&perf->metrics_lock); 4143 reg_err: 4144 i915_oa_config_put(oa_config); 4145 DRM_DEBUG("Failed to add new OA config\n"); 4146 return err; 4147 } 4148 4149 /** 4150 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4151 * @dev: drm device 4152 * @data: ioctl data (pointer to u64 integer) copied from userspace 4153 * @file: drm file 4154 * 4155 * Configs can be removed while being used, the will stop appearing in sysfs 4156 * and their content will be freed when the stream using the config is closed. 4157 * 4158 * Returns: 0 on success or a negative error code on failure. 4159 */ 4160 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4161 struct drm_file *file) 4162 { 4163 struct i915_perf *perf = &to_i915(dev)->perf; 4164 u64 *arg = data; 4165 struct i915_oa_config *oa_config; 4166 int ret; 4167 4168 if (!perf->i915) { 4169 DRM_DEBUG("i915 perf interface not available for this system\n"); 4170 return -ENOTSUPP; 4171 } 4172 4173 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4174 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4175 return -EACCES; 4176 } 4177 4178 ret = mutex_lock_interruptible(&perf->metrics_lock); 4179 if (ret) 4180 return ret; 4181 4182 oa_config = idr_find(&perf->metrics_idr, *arg); 4183 if (!oa_config) { 4184 DRM_DEBUG("Failed to remove unknown OA config\n"); 4185 ret = -ENOENT; 4186 goto err_unlock; 4187 } 4188 4189 GEM_BUG_ON(*arg != oa_config->id); 4190 4191 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4192 4193 idr_remove(&perf->metrics_idr, *arg); 4194 4195 mutex_unlock(&perf->metrics_lock); 4196 4197 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4198 4199 i915_oa_config_put(oa_config); 4200 4201 return 0; 4202 4203 err_unlock: 4204 mutex_unlock(&perf->metrics_lock); 4205 return ret; 4206 } 4207 4208 static struct ctl_table oa_table[] = { 4209 { 4210 .procname = "perf_stream_paranoid", 4211 .data = &i915_perf_stream_paranoid, 4212 .maxlen = sizeof(i915_perf_stream_paranoid), 4213 .mode = 0644, 4214 .proc_handler = proc_dointvec_minmax, 4215 .extra1 = SYSCTL_ZERO, 4216 .extra2 = SYSCTL_ONE, 4217 }, 4218 { 4219 .procname = "oa_max_sample_rate", 4220 .data = &i915_oa_max_sample_rate, 4221 .maxlen = sizeof(i915_oa_max_sample_rate), 4222 .mode = 0644, 4223 .proc_handler = proc_dointvec_minmax, 4224 .extra1 = SYSCTL_ZERO, 4225 .extra2 = &oa_sample_rate_hard_limit, 4226 }, 4227 {} 4228 }; 4229 4230 static struct ctl_table i915_root[] = { 4231 { 4232 .procname = "i915", 4233 .maxlen = 0, 4234 .mode = 0555, 4235 .child = oa_table, 4236 }, 4237 {} 4238 }; 4239 4240 static struct ctl_table dev_root[] = { 4241 { 4242 .procname = "dev", 4243 .maxlen = 0, 4244 .mode = 0555, 4245 .child = i915_root, 4246 }, 4247 {} 4248 }; 4249 4250 /** 4251 * i915_perf_init - initialize i915-perf state on module bind 4252 * @i915: i915 device instance 4253 * 4254 * Initializes i915-perf state without exposing anything to userspace. 4255 * 4256 * Note: i915-perf initialization is split into an 'init' and 'register' 4257 * phase with the i915_perf_register() exposing state to userspace. 4258 */ 4259 void i915_perf_init(struct drm_i915_private *i915) 4260 { 4261 struct i915_perf *perf = &i915->perf; 4262 4263 /* XXX const struct i915_perf_ops! */ 4264 4265 if (IS_HASWELL(i915)) { 4266 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4267 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4268 perf->ops.is_valid_flex_reg = NULL; 4269 perf->ops.enable_metric_set = hsw_enable_metric_set; 4270 perf->ops.disable_metric_set = hsw_disable_metric_set; 4271 perf->ops.oa_enable = gen7_oa_enable; 4272 perf->ops.oa_disable = gen7_oa_disable; 4273 perf->ops.read = gen7_oa_read; 4274 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4275 4276 perf->oa_formats = hsw_oa_formats; 4277 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4278 /* Note: that although we could theoretically also support the 4279 * legacy ringbuffer mode on BDW (and earlier iterations of 4280 * this driver, before upstreaming did this) it didn't seem 4281 * worth the complexity to maintain now that BDW+ enable 4282 * execlist mode by default. 4283 */ 4284 perf->ops.read = gen8_oa_read; 4285 4286 if (IS_GEN_RANGE(i915, 8, 9)) { 4287 perf->oa_formats = gen8_plus_oa_formats; 4288 4289 perf->ops.is_valid_b_counter_reg = 4290 gen7_is_valid_b_counter_addr; 4291 perf->ops.is_valid_mux_reg = 4292 gen8_is_valid_mux_addr; 4293 perf->ops.is_valid_flex_reg = 4294 gen8_is_valid_flex_addr; 4295 4296 if (IS_CHERRYVIEW(i915)) { 4297 perf->ops.is_valid_mux_reg = 4298 chv_is_valid_mux_addr; 4299 } 4300 4301 perf->ops.oa_enable = gen8_oa_enable; 4302 perf->ops.oa_disable = gen8_oa_disable; 4303 perf->ops.enable_metric_set = gen8_enable_metric_set; 4304 perf->ops.disable_metric_set = gen8_disable_metric_set; 4305 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4306 4307 if (IS_GEN(i915, 8)) { 4308 perf->ctx_oactxctrl_offset = 0x120; 4309 perf->ctx_flexeu0_offset = 0x2ce; 4310 4311 perf->gen8_valid_ctx_bit = BIT(25); 4312 } else { 4313 perf->ctx_oactxctrl_offset = 0x128; 4314 perf->ctx_flexeu0_offset = 0x3de; 4315 4316 perf->gen8_valid_ctx_bit = BIT(16); 4317 } 4318 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4319 perf->oa_formats = gen8_plus_oa_formats; 4320 4321 perf->ops.is_valid_b_counter_reg = 4322 gen7_is_valid_b_counter_addr; 4323 perf->ops.is_valid_mux_reg = 4324 gen10_is_valid_mux_addr; 4325 perf->ops.is_valid_flex_reg = 4326 gen8_is_valid_flex_addr; 4327 4328 perf->ops.oa_enable = gen8_oa_enable; 4329 perf->ops.oa_disable = gen8_oa_disable; 4330 perf->ops.enable_metric_set = gen8_enable_metric_set; 4331 perf->ops.disable_metric_set = gen10_disable_metric_set; 4332 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4333 4334 if (IS_GEN(i915, 10)) { 4335 perf->ctx_oactxctrl_offset = 0x128; 4336 perf->ctx_flexeu0_offset = 0x3de; 4337 } else { 4338 perf->ctx_oactxctrl_offset = 0x124; 4339 perf->ctx_flexeu0_offset = 0x78e; 4340 } 4341 perf->gen8_valid_ctx_bit = BIT(16); 4342 } else if (IS_GEN(i915, 12)) { 4343 perf->oa_formats = gen12_oa_formats; 4344 4345 perf->ops.is_valid_b_counter_reg = 4346 gen12_is_valid_b_counter_addr; 4347 perf->ops.is_valid_mux_reg = 4348 gen12_is_valid_mux_addr; 4349 perf->ops.is_valid_flex_reg = 4350 gen8_is_valid_flex_addr; 4351 4352 perf->ops.oa_enable = gen12_oa_enable; 4353 perf->ops.oa_disable = gen12_oa_disable; 4354 perf->ops.enable_metric_set = gen12_enable_metric_set; 4355 perf->ops.disable_metric_set = gen12_disable_metric_set; 4356 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4357 4358 perf->ctx_flexeu0_offset = 0; 4359 perf->ctx_oactxctrl_offset = 0x144; 4360 } 4361 } 4362 4363 if (perf->ops.enable_metric_set) { 4364 mutex_init(&perf->lock); 4365 4366 oa_sample_rate_hard_limit = 4367 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2; 4368 4369 mutex_init(&perf->metrics_lock); 4370 idr_init(&perf->metrics_idr); 4371 4372 /* We set up some ratelimit state to potentially throttle any 4373 * _NOTES about spurious, invalid OA reports which we don't 4374 * forward to userspace. 4375 * 4376 * We print a _NOTE about any throttling when closing the 4377 * stream instead of waiting until driver _fini which no one 4378 * would ever see. 4379 * 4380 * Using the same limiting factors as printk_ratelimit() 4381 */ 4382 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4383 /* Since we use a DRM_NOTE for spurious reports it would be 4384 * inconsistent to let __ratelimit() automatically print a 4385 * warning for throttling. 4386 */ 4387 ratelimit_set_flags(&perf->spurious_report_rs, 4388 RATELIMIT_MSG_ON_RELEASE); 4389 4390 ratelimit_state_init(&perf->tail_pointer_race, 4391 5 * HZ, 10); 4392 ratelimit_set_flags(&perf->tail_pointer_race, 4393 RATELIMIT_MSG_ON_RELEASE); 4394 4395 atomic64_set(&perf->noa_programming_delay, 4396 500 * 1000 /* 500us */); 4397 4398 perf->i915 = i915; 4399 } 4400 } 4401 4402 static int destroy_config(int id, void *p, void *data) 4403 { 4404 i915_oa_config_put(p); 4405 return 0; 4406 } 4407 4408 void i915_perf_sysctl_register(void) 4409 { 4410 sysctl_header = register_sysctl_table(dev_root); 4411 } 4412 4413 void i915_perf_sysctl_unregister(void) 4414 { 4415 unregister_sysctl_table(sysctl_header); 4416 } 4417 4418 /** 4419 * i915_perf_fini - Counter part to i915_perf_init() 4420 * @i915: i915 device instance 4421 */ 4422 void i915_perf_fini(struct drm_i915_private *i915) 4423 { 4424 struct i915_perf *perf = &i915->perf; 4425 4426 if (!perf->i915) 4427 return; 4428 4429 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4430 idr_destroy(&perf->metrics_idr); 4431 4432 memset(&perf->ops, 0, sizeof(perf->ops)); 4433 perf->i915 = NULL; 4434 } 4435 4436 /** 4437 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4438 * 4439 * This version number is used by userspace to detect available features. 4440 */ 4441 int i915_perf_ioctl_version(void) 4442 { 4443 /* 4444 * 1: Initial version 4445 * I915_PERF_IOCTL_ENABLE 4446 * I915_PERF_IOCTL_DISABLE 4447 * 4448 * 2: Added runtime modification of OA config. 4449 * I915_PERF_IOCTL_CONFIG 4450 * 4451 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4452 * preemption on a particular context so that performance data is 4453 * accessible from a delta of MI_RPC reports without looking at the 4454 * OA buffer. 4455 * 4456 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4457 * be run for the duration of the performance recording based on 4458 * their SSEU configuration. 4459 * 4460 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4461 * interval for the hrtimer used to check for OA data. 4462 */ 4463 return 5; 4464 } 4465 4466 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4467 #include "selftests/i915_perf.c" 4468 #endif 4469