1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 #include "oa/i915_oa_hsw.h" 208 #include "oa/i915_oa_bdw.h" 209 #include "oa/i915_oa_chv.h" 210 #include "oa/i915_oa_sklgt2.h" 211 #include "oa/i915_oa_sklgt3.h" 212 #include "oa/i915_oa_sklgt4.h" 213 #include "oa/i915_oa_bxt.h" 214 #include "oa/i915_oa_kblgt2.h" 215 #include "oa/i915_oa_kblgt3.h" 216 #include "oa/i915_oa_glk.h" 217 #include "oa/i915_oa_cflgt2.h" 218 #include "oa/i915_oa_cflgt3.h" 219 #include "oa/i915_oa_cnl.h" 220 #include "oa/i915_oa_icl.h" 221 #include "oa/i915_oa_tgl.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 242 * read() attempts. 243 * 244 * In effect we define a tail pointer for reading that lags the real tail 245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 246 * time for the corresponding reports to become visible to the CPU. 247 * 248 * To manage this we actually track two tail pointers: 249 * 1) An 'aging' tail with an associated timestamp that is tracked until we 250 * can trust the corresponding data is visible to the CPU; at which point 251 * it is considered 'aged'. 252 * 2) An 'aged' tail that can be used for read()ing. 253 * 254 * The two separate pointers let us decouple read()s from tail pointer aging. 255 * 256 * The tail pointers are checked and updated at a limited rate within a hrtimer 257 * callback (the same callback that is used for delivering EPOLLIN events) 258 * 259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 260 * indicates that an updated tail pointer is needed. 261 * 262 * Most of the implementation details for this workaround are in 263 * oa_buffer_check_unlocked() and _append_oa_reports() 264 * 265 * Note for posterity: previously the driver used to define an effective tail 266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 268 * This was flawed considering that the OA unit may also automatically generate 269 * non-periodic reports (such as on context switch) or the OA unit may be 270 * enabled without any periodic sampling. 271 */ 272 #define OA_TAIL_MARGIN_NSEC 100000ULL 273 #define INVALID_TAIL_PTR 0xffffffff 274 275 /* frequency for checking whether the OA unit has written new reports to the 276 * circular OA buffer... 277 */ 278 #define POLL_FREQUENCY 200 279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 280 281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 282 static u32 i915_perf_stream_paranoid = true; 283 284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 285 * of the 64bit timestamp bits to trigger reports from) but there's currently 286 * no known use case for sampling as infrequently as once per 47 thousand years. 287 * 288 * Since the timestamps included in OA reports are only 32bits it seems 289 * reasonable to limit the OA exponent where it's still possible to account for 290 * overflow in OA report timestamps. 291 */ 292 #define OA_EXPONENT_MAX 31 293 294 #define INVALID_CTX_ID 0xffffffff 295 296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 297 #define OAREPORT_REASON_MASK 0x3f 298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 299 #define OAREPORT_REASON_SHIFT 19 300 #define OAREPORT_REASON_TIMER (1<<0) 301 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 302 #define OAREPORT_REASON_CLK_RATIO (1<<5) 303 304 305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 306 * 307 * The highest sampling frequency we can theoretically program the OA unit 308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 309 * 310 * Initialized just before we register the sysctl parameter. 311 */ 312 static int oa_sample_rate_hard_limit; 313 314 /* Theoretically we can program the OA unit to sample every 160ns but don't 315 * allow that by default unless root... 316 * 317 * The default threshold of 100000Hz is based on perf's similar 318 * kernel.perf_event_max_sample_rate sysctl parameter. 319 */ 320 static u32 i915_oa_max_sample_rate = 100000; 321 322 /* XXX: beware if future OA HW adds new report formats that the current 323 * code assumes all reports have a power-of-two size and ~(size - 1) can 324 * be used as a mask to align the OA tail pointer. 325 */ 326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A13] = { 0, 64 }, 328 [I915_OA_FORMAT_A29] = { 1, 128 }, 329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 331 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 338 [I915_OA_FORMAT_A12] = { 0, 64 }, 339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 341 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 342 }; 343 344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 346 }; 347 348 #define SAMPLE_OA_REPORT (1<<0) 349 350 /** 351 * struct perf_open_properties - for validated properties given to open a stream 352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 353 * @single_context: Whether a single or all gpu contexts should be monitored 354 * @hold_preemption: Whether the preemption is disabled for the filtered 355 * context 356 * @ctx_handle: A gem ctx handle for use with @single_context 357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 358 * @oa_format: An OA unit HW report format 359 * @oa_periodic: Whether to enable periodic OA unit sampling 360 * @oa_period_exponent: The OA unit sampling period is derived from this 361 * @engine: The engine (typically rcs0) being monitored by the OA unit 362 * 363 * As read_properties_unlocked() enumerates and validates the properties given 364 * to open a stream of metrics the configuration is built up in the structure 365 * which starts out zero initialized. 366 */ 367 struct perf_open_properties { 368 u32 sample_flags; 369 370 u64 single_context:1; 371 u64 hold_preemption:1; 372 u64 ctx_handle; 373 374 /* OA sampling state */ 375 int metrics_set; 376 int oa_format; 377 bool oa_periodic; 378 int oa_period_exponent; 379 380 struct intel_engine_cs *engine; 381 }; 382 383 struct i915_oa_config_bo { 384 struct llist_node node; 385 386 struct i915_oa_config *oa_config; 387 struct i915_vma *vma; 388 }; 389 390 static struct ctl_table_header *sysctl_header; 391 392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 393 394 void i915_oa_config_release(struct kref *ref) 395 { 396 struct i915_oa_config *oa_config = 397 container_of(ref, typeof(*oa_config), ref); 398 399 kfree(oa_config->flex_regs); 400 kfree(oa_config->b_counter_regs); 401 kfree(oa_config->mux_regs); 402 403 kfree_rcu(oa_config, rcu); 404 } 405 406 struct i915_oa_config * 407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 408 { 409 struct i915_oa_config *oa_config; 410 411 rcu_read_lock(); 412 if (metrics_set == 1) 413 oa_config = &perf->test_config; 414 else 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 435 GEN12_OAG_OATAILPTR_MASK; 436 } 437 438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 439 { 440 struct intel_uncore *uncore = stream->uncore; 441 442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 443 } 444 445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 446 { 447 struct intel_uncore *uncore = stream->uncore; 448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 449 450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 451 } 452 453 /** 454 * oa_buffer_check_unlocked - check for data and update tail ptr state 455 * @stream: i915 stream instance 456 * 457 * This is either called via fops (for blocking reads in user ctx) or the poll 458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 459 * if there is data available for userspace to read. 460 * 461 * This function is central to providing a workaround for the OA unit tail 462 * pointer having a race with respect to what data is visible to the CPU. 463 * It is responsible for reading tail pointers from the hardware and giving 464 * the pointers time to 'age' before they are made available for reading. 465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 466 * 467 * Besides returning true when there is data available to read() this function 468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 469 * and .aged_tail_idx state used for reading. 470 * 471 * Note: It's safe to read OA config state here unlocked, assuming that this is 472 * only called while the stream is enabled, while the global OA configuration 473 * can't be modified. 474 * 475 * Returns: %true if the OA buffer contains data, else %false 476 */ 477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 478 { 479 int report_size = stream->oa_buffer.format_size; 480 unsigned long flags; 481 unsigned int aged_idx; 482 u32 head, hw_tail, aged_tail, aging_tail; 483 u64 now; 484 485 /* We have to consider the (unlikely) possibility that read() errors 486 * could result in an OA buffer reset which might reset the head, 487 * tails[] and aged_tail state. 488 */ 489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 490 491 /* NB: The head we observe here might effectively be a little out of 492 * date (between head and tails[aged_idx].offset if there is currently 493 * a read() in progress. 494 */ 495 head = stream->oa_buffer.head; 496 497 aged_idx = stream->oa_buffer.aged_tail_idx; 498 aged_tail = stream->oa_buffer.tails[aged_idx].offset; 499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset; 500 501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 502 503 /* The tail pointer increases in 64 byte increments, 504 * not in report_size steps... 505 */ 506 hw_tail &= ~(report_size - 1); 507 508 now = ktime_get_mono_fast_ns(); 509 510 /* Update the aged tail 511 * 512 * Flip the tail pointer available for read()s once the aging tail is 513 * old enough to trust that the corresponding data will be visible to 514 * the CPU... 515 * 516 * Do this before updating the aging pointer in case we may be able to 517 * immediately start aging a new pointer too (if new data has become 518 * available) without needing to wait for a later hrtimer callback. 519 */ 520 if (aging_tail != INVALID_TAIL_PTR && 521 ((now - stream->oa_buffer.aging_timestamp) > 522 OA_TAIL_MARGIN_NSEC)) { 523 524 aged_idx ^= 1; 525 stream->oa_buffer.aged_tail_idx = aged_idx; 526 527 aged_tail = aging_tail; 528 529 /* Mark that we need a new pointer to start aging... */ 530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 531 aging_tail = INVALID_TAIL_PTR; 532 } 533 534 /* Update the aging tail 535 * 536 * We throttle aging tail updates until we have a new tail that 537 * represents >= one report more data than is already available for 538 * reading. This ensures there will be enough data for a successful 539 * read once this new pointer has aged and ensures we will give the new 540 * pointer time to age. 541 */ 542 if (aging_tail == INVALID_TAIL_PTR && 543 (aged_tail == INVALID_TAIL_PTR || 544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 545 struct i915_vma *vma = stream->oa_buffer.vma; 546 u32 gtt_offset = i915_ggtt_offset(vma); 547 548 /* Be paranoid and do a bounds check on the pointer read back 549 * from hardware, just in case some spurious hardware condition 550 * could put the tail out of bounds... 551 */ 552 if (hw_tail >= gtt_offset && 553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 554 stream->oa_buffer.tails[!aged_idx].offset = 555 aging_tail = hw_tail; 556 stream->oa_buffer.aging_timestamp = now; 557 } else { 558 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n", 559 hw_tail); 560 } 561 } 562 563 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 564 565 return aged_tail == INVALID_TAIL_PTR ? 566 false : OA_TAKEN(aged_tail, head) >= report_size; 567 } 568 569 /** 570 * append_oa_status - Appends a status record to a userspace read() buffer. 571 * @stream: An i915-perf stream opened for OA metrics 572 * @buf: destination buffer given by userspace 573 * @count: the number of bytes userspace wants to read 574 * @offset: (inout): the current position for writing into @buf 575 * @type: The kind of status to report to userspace 576 * 577 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 578 * into the userspace read() buffer. 579 * 580 * The @buf @offset will only be updated on success. 581 * 582 * Returns: 0 on success, negative error code on failure. 583 */ 584 static int append_oa_status(struct i915_perf_stream *stream, 585 char __user *buf, 586 size_t count, 587 size_t *offset, 588 enum drm_i915_perf_record_type type) 589 { 590 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 591 592 if ((count - *offset) < header.size) 593 return -ENOSPC; 594 595 if (copy_to_user(buf + *offset, &header, sizeof(header))) 596 return -EFAULT; 597 598 (*offset) += header.size; 599 600 return 0; 601 } 602 603 /** 604 * append_oa_sample - Copies single OA report into userspace read() buffer. 605 * @stream: An i915-perf stream opened for OA metrics 606 * @buf: destination buffer given by userspace 607 * @count: the number of bytes userspace wants to read 608 * @offset: (inout): the current position for writing into @buf 609 * @report: A single OA report to (optionally) include as part of the sample 610 * 611 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 612 * properties when opening a stream, tracked as `stream->sample_flags`. This 613 * function copies the requested components of a single sample to the given 614 * read() @buf. 615 * 616 * The @buf @offset will only be updated on success. 617 * 618 * Returns: 0 on success, negative error code on failure. 619 */ 620 static int append_oa_sample(struct i915_perf_stream *stream, 621 char __user *buf, 622 size_t count, 623 size_t *offset, 624 const u8 *report) 625 { 626 int report_size = stream->oa_buffer.format_size; 627 struct drm_i915_perf_record_header header; 628 u32 sample_flags = stream->sample_flags; 629 630 header.type = DRM_I915_PERF_RECORD_SAMPLE; 631 header.pad = 0; 632 header.size = stream->sample_size; 633 634 if ((count - *offset) < header.size) 635 return -ENOSPC; 636 637 buf += *offset; 638 if (copy_to_user(buf, &header, sizeof(header))) 639 return -EFAULT; 640 buf += sizeof(header); 641 642 if (sample_flags & SAMPLE_OA_REPORT) { 643 if (copy_to_user(buf, report, report_size)) 644 return -EFAULT; 645 } 646 647 (*offset) += header.size; 648 649 return 0; 650 } 651 652 /** 653 * Copies all buffered OA reports into userspace read() buffer. 654 * @stream: An i915-perf stream opened for OA metrics 655 * @buf: destination buffer given by userspace 656 * @count: the number of bytes userspace wants to read 657 * @offset: (inout): the current position for writing into @buf 658 * 659 * Notably any error condition resulting in a short read (-%ENOSPC or 660 * -%EFAULT) will be returned even though one or more records may 661 * have been successfully copied. In this case it's up to the caller 662 * to decide if the error should be squashed before returning to 663 * userspace. 664 * 665 * Note: reports are consumed from the head, and appended to the 666 * tail, so the tail chases the head?... If you think that's mad 667 * and back-to-front you're not alone, but this follows the 668 * Gen PRM naming convention. 669 * 670 * Returns: 0 on success, negative error code on failure. 671 */ 672 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 673 char __user *buf, 674 size_t count, 675 size_t *offset) 676 { 677 struct intel_uncore *uncore = stream->uncore; 678 int report_size = stream->oa_buffer.format_size; 679 u8 *oa_buf_base = stream->oa_buffer.vaddr; 680 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 681 u32 mask = (OA_BUFFER_SIZE - 1); 682 size_t start_offset = *offset; 683 unsigned long flags; 684 unsigned int aged_tail_idx; 685 u32 head, tail; 686 u32 taken; 687 int ret = 0; 688 689 if (WARN_ON(!stream->enabled)) 690 return -EIO; 691 692 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 693 694 head = stream->oa_buffer.head; 695 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 696 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 697 698 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 699 700 /* 701 * An invalid tail pointer here means we're still waiting for the poll 702 * hrtimer callback to give us a pointer 703 */ 704 if (tail == INVALID_TAIL_PTR) 705 return -EAGAIN; 706 707 /* 708 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 709 * while indexing relative to oa_buf_base. 710 */ 711 head -= gtt_offset; 712 tail -= gtt_offset; 713 714 /* 715 * An out of bounds or misaligned head or tail pointer implies a driver 716 * bug since we validate + align the tail pointers we read from the 717 * hardware and we are in full control of the head pointer which should 718 * only be incremented by multiples of the report size (notably also 719 * all a power of two). 720 */ 721 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 722 tail > OA_BUFFER_SIZE || tail % report_size, 723 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 724 head, tail)) 725 return -EIO; 726 727 728 for (/* none */; 729 (taken = OA_TAKEN(tail, head)); 730 head = (head + report_size) & mask) { 731 u8 *report = oa_buf_base + head; 732 u32 *report32 = (void *)report; 733 u32 ctx_id; 734 u32 reason; 735 736 /* 737 * All the report sizes factor neatly into the buffer 738 * size so we never expect to see a report split 739 * between the beginning and end of the buffer. 740 * 741 * Given the initial alignment check a misalignment 742 * here would imply a driver bug that would result 743 * in an overrun. 744 */ 745 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 746 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 747 break; 748 } 749 750 /* 751 * The reason field includes flags identifying what 752 * triggered this specific report (mostly timer 753 * triggered or e.g. due to a context switch). 754 * 755 * This field is never expected to be zero so we can 756 * check that the report isn't invalid before copying 757 * it to userspace... 758 */ 759 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 760 (IS_GEN(stream->perf->i915, 12) ? 761 OAREPORT_REASON_MASK_EXTENDED : 762 OAREPORT_REASON_MASK)); 763 if (reason == 0) { 764 if (__ratelimit(&stream->perf->spurious_report_rs)) 765 DRM_NOTE("Skipping spurious, invalid OA report\n"); 766 continue; 767 } 768 769 ctx_id = report32[2] & stream->specific_ctx_id_mask; 770 771 /* 772 * Squash whatever is in the CTX_ID field if it's marked as 773 * invalid to be sure we avoid false-positive, single-context 774 * filtering below... 775 * 776 * Note: that we don't clear the valid_ctx_bit so userspace can 777 * understand that the ID has been squashed by the kernel. 778 */ 779 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 780 INTEL_GEN(stream->perf->i915) <= 11) 781 ctx_id = report32[2] = INVALID_CTX_ID; 782 783 /* 784 * NB: For Gen 8 the OA unit no longer supports clock gating 785 * off for a specific context and the kernel can't securely 786 * stop the counters from updating as system-wide / global 787 * values. 788 * 789 * Automatic reports now include a context ID so reports can be 790 * filtered on the cpu but it's not worth trying to 791 * automatically subtract/hide counter progress for other 792 * contexts while filtering since we can't stop userspace 793 * issuing MI_REPORT_PERF_COUNT commands which would still 794 * provide a side-band view of the real values. 795 * 796 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 797 * to normalize counters for a single filtered context then it 798 * needs be forwarded bookend context-switch reports so that it 799 * can track switches in between MI_REPORT_PERF_COUNT commands 800 * and can itself subtract/ignore the progress of counters 801 * associated with other contexts. Note that the hardware 802 * automatically triggers reports when switching to a new 803 * context which are tagged with the ID of the newly active 804 * context. To avoid the complexity (and likely fragility) of 805 * reading ahead while parsing reports to try and minimize 806 * forwarding redundant context switch reports (i.e. between 807 * other, unrelated contexts) we simply elect to forward them 808 * all. 809 * 810 * We don't rely solely on the reason field to identify context 811 * switches since it's not-uncommon for periodic samples to 812 * identify a switch before any 'context switch' report. 813 */ 814 if (!stream->perf->exclusive_stream->ctx || 815 stream->specific_ctx_id == ctx_id || 816 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 817 reason & OAREPORT_REASON_CTX_SWITCH) { 818 819 /* 820 * While filtering for a single context we avoid 821 * leaking the IDs of other contexts. 822 */ 823 if (stream->perf->exclusive_stream->ctx && 824 stream->specific_ctx_id != ctx_id) { 825 report32[2] = INVALID_CTX_ID; 826 } 827 828 ret = append_oa_sample(stream, buf, count, offset, 829 report); 830 if (ret) 831 break; 832 833 stream->oa_buffer.last_ctx_id = ctx_id; 834 } 835 836 /* 837 * The above reason field sanity check is based on 838 * the assumption that the OA buffer is initially 839 * zeroed and we reset the field after copying so the 840 * check is still meaningful once old reports start 841 * being overwritten. 842 */ 843 report32[0] = 0; 844 } 845 846 if (start_offset != *offset) { 847 i915_reg_t oaheadptr; 848 849 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 850 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 851 852 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 853 854 /* 855 * We removed the gtt_offset for the copy loop above, indexing 856 * relative to oa_buf_base so put back here... 857 */ 858 head += gtt_offset; 859 intel_uncore_write(uncore, oaheadptr, 860 head & GEN12_OAG_OAHEADPTR_MASK); 861 stream->oa_buffer.head = head; 862 863 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 864 } 865 866 return ret; 867 } 868 869 /** 870 * gen8_oa_read - copy status records then buffered OA reports 871 * @stream: An i915-perf stream opened for OA metrics 872 * @buf: destination buffer given by userspace 873 * @count: the number of bytes userspace wants to read 874 * @offset: (inout): the current position for writing into @buf 875 * 876 * Checks OA unit status registers and if necessary appends corresponding 877 * status records for userspace (such as for a buffer full condition) and then 878 * initiate appending any buffered OA reports. 879 * 880 * Updates @offset according to the number of bytes successfully copied into 881 * the userspace buffer. 882 * 883 * NB: some data may be successfully copied to the userspace buffer 884 * even if an error is returned, and this is reflected in the 885 * updated @offset. 886 * 887 * Returns: zero on success or a negative error code 888 */ 889 static int gen8_oa_read(struct i915_perf_stream *stream, 890 char __user *buf, 891 size_t count, 892 size_t *offset) 893 { 894 struct intel_uncore *uncore = stream->uncore; 895 u32 oastatus; 896 i915_reg_t oastatus_reg; 897 int ret; 898 899 if (WARN_ON(!stream->oa_buffer.vaddr)) 900 return -EIO; 901 902 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 903 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 904 905 oastatus = intel_uncore_read(uncore, oastatus_reg); 906 907 /* 908 * We treat OABUFFER_OVERFLOW as a significant error: 909 * 910 * Although theoretically we could handle this more gracefully 911 * sometimes, some Gens don't correctly suppress certain 912 * automatically triggered reports in this condition and so we 913 * have to assume that old reports are now being trampled 914 * over. 915 * 916 * Considering how we don't currently give userspace control 917 * over the OA buffer size and always configure a large 16MB 918 * buffer, then a buffer overflow does anyway likely indicate 919 * that something has gone quite badly wrong. 920 */ 921 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 922 ret = append_oa_status(stream, buf, count, offset, 923 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 924 if (ret) 925 return ret; 926 927 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 928 stream->period_exponent); 929 930 stream->perf->ops.oa_disable(stream); 931 stream->perf->ops.oa_enable(stream); 932 933 /* 934 * Note: .oa_enable() is expected to re-init the oabuffer and 935 * reset GEN8_OASTATUS for us 936 */ 937 oastatus = intel_uncore_read(uncore, oastatus_reg); 938 } 939 940 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 941 ret = append_oa_status(stream, buf, count, offset, 942 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 943 if (ret) 944 return ret; 945 intel_uncore_write(uncore, oastatus_reg, 946 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 947 } 948 949 return gen8_append_oa_reports(stream, buf, count, offset); 950 } 951 952 /** 953 * Copies all buffered OA reports into userspace read() buffer. 954 * @stream: An i915-perf stream opened for OA metrics 955 * @buf: destination buffer given by userspace 956 * @count: the number of bytes userspace wants to read 957 * @offset: (inout): the current position for writing into @buf 958 * 959 * Notably any error condition resulting in a short read (-%ENOSPC or 960 * -%EFAULT) will be returned even though one or more records may 961 * have been successfully copied. In this case it's up to the caller 962 * to decide if the error should be squashed before returning to 963 * userspace. 964 * 965 * Note: reports are consumed from the head, and appended to the 966 * tail, so the tail chases the head?... If you think that's mad 967 * and back-to-front you're not alone, but this follows the 968 * Gen PRM naming convention. 969 * 970 * Returns: 0 on success, negative error code on failure. 971 */ 972 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 973 char __user *buf, 974 size_t count, 975 size_t *offset) 976 { 977 struct intel_uncore *uncore = stream->uncore; 978 int report_size = stream->oa_buffer.format_size; 979 u8 *oa_buf_base = stream->oa_buffer.vaddr; 980 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 981 u32 mask = (OA_BUFFER_SIZE - 1); 982 size_t start_offset = *offset; 983 unsigned long flags; 984 unsigned int aged_tail_idx; 985 u32 head, tail; 986 u32 taken; 987 int ret = 0; 988 989 if (WARN_ON(!stream->enabled)) 990 return -EIO; 991 992 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 993 994 head = stream->oa_buffer.head; 995 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 996 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 997 998 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 999 1000 /* An invalid tail pointer here means we're still waiting for the poll 1001 * hrtimer callback to give us a pointer 1002 */ 1003 if (tail == INVALID_TAIL_PTR) 1004 return -EAGAIN; 1005 1006 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1007 * while indexing relative to oa_buf_base. 1008 */ 1009 head -= gtt_offset; 1010 tail -= gtt_offset; 1011 1012 /* An out of bounds or misaligned head or tail pointer implies a driver 1013 * bug since we validate + align the tail pointers we read from the 1014 * hardware and we are in full control of the head pointer which should 1015 * only be incremented by multiples of the report size (notably also 1016 * all a power of two). 1017 */ 1018 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 1019 tail > OA_BUFFER_SIZE || tail % report_size, 1020 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1021 head, tail)) 1022 return -EIO; 1023 1024 1025 for (/* none */; 1026 (taken = OA_TAKEN(tail, head)); 1027 head = (head + report_size) & mask) { 1028 u8 *report = oa_buf_base + head; 1029 u32 *report32 = (void *)report; 1030 1031 /* All the report sizes factor neatly into the buffer 1032 * size so we never expect to see a report split 1033 * between the beginning and end of the buffer. 1034 * 1035 * Given the initial alignment check a misalignment 1036 * here would imply a driver bug that would result 1037 * in an overrun. 1038 */ 1039 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1040 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1041 break; 1042 } 1043 1044 /* The report-ID field for periodic samples includes 1045 * some undocumented flags related to what triggered 1046 * the report and is never expected to be zero so we 1047 * can check that the report isn't invalid before 1048 * copying it to userspace... 1049 */ 1050 if (report32[0] == 0) { 1051 if (__ratelimit(&stream->perf->spurious_report_rs)) 1052 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1053 continue; 1054 } 1055 1056 ret = append_oa_sample(stream, buf, count, offset, report); 1057 if (ret) 1058 break; 1059 1060 /* The above report-id field sanity check is based on 1061 * the assumption that the OA buffer is initially 1062 * zeroed and we reset the field after copying so the 1063 * check is still meaningful once old reports start 1064 * being overwritten. 1065 */ 1066 report32[0] = 0; 1067 } 1068 1069 if (start_offset != *offset) { 1070 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1071 1072 /* We removed the gtt_offset for the copy loop above, indexing 1073 * relative to oa_buf_base so put back here... 1074 */ 1075 head += gtt_offset; 1076 1077 intel_uncore_write(uncore, GEN7_OASTATUS2, 1078 (head & GEN7_OASTATUS2_HEAD_MASK) | 1079 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1080 stream->oa_buffer.head = head; 1081 1082 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1083 } 1084 1085 return ret; 1086 } 1087 1088 /** 1089 * gen7_oa_read - copy status records then buffered OA reports 1090 * @stream: An i915-perf stream opened for OA metrics 1091 * @buf: destination buffer given by userspace 1092 * @count: the number of bytes userspace wants to read 1093 * @offset: (inout): the current position for writing into @buf 1094 * 1095 * Checks Gen 7 specific OA unit status registers and if necessary appends 1096 * corresponding status records for userspace (such as for a buffer full 1097 * condition) and then initiate appending any buffered OA reports. 1098 * 1099 * Updates @offset according to the number of bytes successfully copied into 1100 * the userspace buffer. 1101 * 1102 * Returns: zero on success or a negative error code 1103 */ 1104 static int gen7_oa_read(struct i915_perf_stream *stream, 1105 char __user *buf, 1106 size_t count, 1107 size_t *offset) 1108 { 1109 struct intel_uncore *uncore = stream->uncore; 1110 u32 oastatus1; 1111 int ret; 1112 1113 if (WARN_ON(!stream->oa_buffer.vaddr)) 1114 return -EIO; 1115 1116 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1117 1118 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1119 * bits while the OA unit is enabled (while the tail pointer 1120 * may be updated asynchronously) so we ignore status bits 1121 * that have already been reported to userspace. 1122 */ 1123 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1124 1125 /* We treat OABUFFER_OVERFLOW as a significant error: 1126 * 1127 * - The status can be interpreted to mean that the buffer is 1128 * currently full (with a higher precedence than OA_TAKEN() 1129 * which will start to report a near-empty buffer after an 1130 * overflow) but it's awkward that we can't clear the status 1131 * on Haswell, so without a reset we won't be able to catch 1132 * the state again. 1133 * 1134 * - Since it also implies the HW has started overwriting old 1135 * reports it may also affect our sanity checks for invalid 1136 * reports when copying to userspace that assume new reports 1137 * are being written to cleared memory. 1138 * 1139 * - In the future we may want to introduce a flight recorder 1140 * mode where the driver will automatically maintain a safe 1141 * guard band between head/tail, avoiding this overflow 1142 * condition, but we avoid the added driver complexity for 1143 * now. 1144 */ 1145 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1146 ret = append_oa_status(stream, buf, count, offset, 1147 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1148 if (ret) 1149 return ret; 1150 1151 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1152 stream->period_exponent); 1153 1154 stream->perf->ops.oa_disable(stream); 1155 stream->perf->ops.oa_enable(stream); 1156 1157 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1158 } 1159 1160 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1161 ret = append_oa_status(stream, buf, count, offset, 1162 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1163 if (ret) 1164 return ret; 1165 stream->perf->gen7_latched_oastatus1 |= 1166 GEN7_OASTATUS1_REPORT_LOST; 1167 } 1168 1169 return gen7_append_oa_reports(stream, buf, count, offset); 1170 } 1171 1172 /** 1173 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1174 * @stream: An i915-perf stream opened for OA metrics 1175 * 1176 * Called when userspace tries to read() from a blocking stream FD opened 1177 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1178 * OA buffer and wakes us. 1179 * 1180 * Note: it's acceptable to have this return with some false positives 1181 * since any subsequent read handling will return -EAGAIN if there isn't 1182 * really data ready for userspace yet. 1183 * 1184 * Returns: zero on success or a negative error code 1185 */ 1186 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1187 { 1188 /* We would wait indefinitely if periodic sampling is not enabled */ 1189 if (!stream->periodic) 1190 return -EIO; 1191 1192 return wait_event_interruptible(stream->poll_wq, 1193 oa_buffer_check_unlocked(stream)); 1194 } 1195 1196 /** 1197 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1198 * @stream: An i915-perf stream opened for OA metrics 1199 * @file: An i915 perf stream file 1200 * @wait: poll() state table 1201 * 1202 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1203 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1204 * when it sees data ready to read in the circular OA buffer. 1205 */ 1206 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1207 struct file *file, 1208 poll_table *wait) 1209 { 1210 poll_wait(file, &stream->poll_wq, wait); 1211 } 1212 1213 /** 1214 * i915_oa_read - just calls through to &i915_oa_ops->read 1215 * @stream: An i915-perf stream opened for OA metrics 1216 * @buf: destination buffer given by userspace 1217 * @count: the number of bytes userspace wants to read 1218 * @offset: (inout): the current position for writing into @buf 1219 * 1220 * Updates @offset according to the number of bytes successfully copied into 1221 * the userspace buffer. 1222 * 1223 * Returns: zero on success or a negative error code 1224 */ 1225 static int i915_oa_read(struct i915_perf_stream *stream, 1226 char __user *buf, 1227 size_t count, 1228 size_t *offset) 1229 { 1230 return stream->perf->ops.read(stream, buf, count, offset); 1231 } 1232 1233 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1234 { 1235 struct i915_gem_engines_iter it; 1236 struct i915_gem_context *ctx = stream->ctx; 1237 struct intel_context *ce; 1238 int err; 1239 1240 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1241 if (ce->engine != stream->engine) /* first match! */ 1242 continue; 1243 1244 /* 1245 * As the ID is the gtt offset of the context's vma we 1246 * pin the vma to ensure the ID remains fixed. 1247 */ 1248 err = intel_context_pin(ce); 1249 if (err == 0) { 1250 stream->pinned_ctx = ce; 1251 break; 1252 } 1253 } 1254 i915_gem_context_unlock_engines(ctx); 1255 1256 return stream->pinned_ctx; 1257 } 1258 1259 /** 1260 * oa_get_render_ctx_id - determine and hold ctx hw id 1261 * @stream: An i915-perf stream opened for OA metrics 1262 * 1263 * Determine the render context hw id, and ensure it remains fixed for the 1264 * lifetime of the stream. This ensures that we don't have to worry about 1265 * updating the context ID in OACONTROL on the fly. 1266 * 1267 * Returns: zero on success or a negative error code 1268 */ 1269 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1270 { 1271 struct intel_context *ce; 1272 1273 ce = oa_pin_context(stream); 1274 if (IS_ERR(ce)) 1275 return PTR_ERR(ce); 1276 1277 switch (INTEL_GEN(ce->engine->i915)) { 1278 case 7: { 1279 /* 1280 * On Haswell we don't do any post processing of the reports 1281 * and don't need to use the mask. 1282 */ 1283 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1284 stream->specific_ctx_id_mask = 0; 1285 break; 1286 } 1287 1288 case 8: 1289 case 9: 1290 case 10: 1291 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1292 stream->specific_ctx_id_mask = 1293 (1U << GEN8_CTX_ID_WIDTH) - 1; 1294 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1295 } else { 1296 /* 1297 * When using GuC, the context descriptor we write in 1298 * i915 is read by GuC and rewritten before it's 1299 * actually written into the hardware. The LRCA is 1300 * what is put into the context id field of the 1301 * context descriptor by GuC. Because it's aligned to 1302 * a page, the lower 12bits are always at 0 and 1303 * dropped by GuC. They won't be part of the context 1304 * ID in the OA reports, so squash those lower bits. 1305 */ 1306 stream->specific_ctx_id = 1307 lower_32_bits(ce->lrc_desc) >> 12; 1308 1309 /* 1310 * GuC uses the top bit to signal proxy submission, so 1311 * ignore that bit. 1312 */ 1313 stream->specific_ctx_id_mask = 1314 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1315 } 1316 break; 1317 1318 case 11: 1319 case 12: { 1320 stream->specific_ctx_id_mask = 1321 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1322 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1323 break; 1324 } 1325 1326 default: 1327 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1328 } 1329 1330 ce->tag = stream->specific_ctx_id_mask; 1331 1332 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1333 stream->specific_ctx_id, 1334 stream->specific_ctx_id_mask); 1335 1336 return 0; 1337 } 1338 1339 /** 1340 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1341 * @stream: An i915-perf stream opened for OA metrics 1342 * 1343 * In case anything needed doing to ensure the context HW ID would remain valid 1344 * for the lifetime of the stream, then that can be undone here. 1345 */ 1346 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1347 { 1348 struct intel_context *ce; 1349 1350 ce = fetch_and_zero(&stream->pinned_ctx); 1351 if (ce) { 1352 ce->tag = 0; /* recomputed on next submission after parking */ 1353 intel_context_unpin(ce); 1354 } 1355 1356 stream->specific_ctx_id = INVALID_CTX_ID; 1357 stream->specific_ctx_id_mask = 0; 1358 } 1359 1360 static void 1361 free_oa_buffer(struct i915_perf_stream *stream) 1362 { 1363 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1364 I915_VMA_RELEASE_MAP); 1365 1366 stream->oa_buffer.vaddr = NULL; 1367 } 1368 1369 static void 1370 free_oa_configs(struct i915_perf_stream *stream) 1371 { 1372 struct i915_oa_config_bo *oa_bo, *tmp; 1373 1374 i915_oa_config_put(stream->oa_config); 1375 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1376 free_oa_config_bo(oa_bo); 1377 } 1378 1379 static void 1380 free_noa_wait(struct i915_perf_stream *stream) 1381 { 1382 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1383 } 1384 1385 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1386 { 1387 struct i915_perf *perf = stream->perf; 1388 1389 BUG_ON(stream != perf->exclusive_stream); 1390 1391 /* 1392 * Unset exclusive_stream first, it will be checked while disabling 1393 * the metric set on gen8+. 1394 */ 1395 perf->exclusive_stream = NULL; 1396 perf->ops.disable_metric_set(stream); 1397 1398 free_oa_buffer(stream); 1399 1400 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1401 intel_engine_pm_put(stream->engine); 1402 1403 if (stream->ctx) 1404 oa_put_render_ctx_id(stream); 1405 1406 free_oa_configs(stream); 1407 free_noa_wait(stream); 1408 1409 if (perf->spurious_report_rs.missed) { 1410 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1411 perf->spurious_report_rs.missed); 1412 } 1413 } 1414 1415 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1416 { 1417 struct intel_uncore *uncore = stream->uncore; 1418 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1419 unsigned long flags; 1420 1421 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1422 1423 /* Pre-DevBDW: OABUFFER must be set with counters off, 1424 * before OASTATUS1, but after OASTATUS2 1425 */ 1426 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1427 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1428 stream->oa_buffer.head = gtt_offset; 1429 1430 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1431 1432 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1433 gtt_offset | OABUFFER_SIZE_16M); 1434 1435 /* Mark that we need updated tail pointers to read from... */ 1436 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1437 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1438 1439 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1440 1441 /* On Haswell we have to track which OASTATUS1 flags we've 1442 * already seen since they can't be cleared while periodic 1443 * sampling is enabled. 1444 */ 1445 stream->perf->gen7_latched_oastatus1 = 0; 1446 1447 /* NB: although the OA buffer will initially be allocated 1448 * zeroed via shmfs (and so this memset is redundant when 1449 * first allocating), we may re-init the OA buffer, either 1450 * when re-enabling a stream or in error/reset paths. 1451 * 1452 * The reason we clear the buffer for each re-init is for the 1453 * sanity check in gen7_append_oa_reports() that looks at the 1454 * report-id field to make sure it's non-zero which relies on 1455 * the assumption that new reports are being written to zeroed 1456 * memory... 1457 */ 1458 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1459 1460 stream->pollin = false; 1461 } 1462 1463 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1464 { 1465 struct intel_uncore *uncore = stream->uncore; 1466 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1470 1471 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1472 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1473 stream->oa_buffer.head = gtt_offset; 1474 1475 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1476 1477 /* 1478 * PRM says: 1479 * 1480 * "This MMIO must be set before the OATAILPTR 1481 * register and after the OAHEADPTR register. This is 1482 * to enable proper functionality of the overflow 1483 * bit." 1484 */ 1485 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1486 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1487 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1488 1489 /* Mark that we need updated tail pointers to read from... */ 1490 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1491 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1492 1493 /* 1494 * Reset state used to recognise context switches, affecting which 1495 * reports we will forward to userspace while filtering for a single 1496 * context. 1497 */ 1498 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1499 1500 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1501 1502 /* 1503 * NB: although the OA buffer will initially be allocated 1504 * zeroed via shmfs (and so this memset is redundant when 1505 * first allocating), we may re-init the OA buffer, either 1506 * when re-enabling a stream or in error/reset paths. 1507 * 1508 * The reason we clear the buffer for each re-init is for the 1509 * sanity check in gen8_append_oa_reports() that looks at the 1510 * reason field to make sure it's non-zero which relies on 1511 * the assumption that new reports are being written to zeroed 1512 * memory... 1513 */ 1514 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1515 1516 stream->pollin = false; 1517 } 1518 1519 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1520 { 1521 struct intel_uncore *uncore = stream->uncore; 1522 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1523 unsigned long flags; 1524 1525 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1526 1527 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1528 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1529 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1530 stream->oa_buffer.head = gtt_offset; 1531 1532 /* 1533 * PRM says: 1534 * 1535 * "This MMIO must be set before the OATAILPTR 1536 * register and after the OAHEADPTR register. This is 1537 * to enable proper functionality of the overflow 1538 * bit." 1539 */ 1540 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1541 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1542 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1543 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1544 1545 /* Mark that we need updated tail pointers to read from... */ 1546 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1547 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1548 1549 /* 1550 * Reset state used to recognise context switches, affecting which 1551 * reports we will forward to userspace while filtering for a single 1552 * context. 1553 */ 1554 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1555 1556 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1557 1558 /* 1559 * NB: although the OA buffer will initially be allocated 1560 * zeroed via shmfs (and so this memset is redundant when 1561 * first allocating), we may re-init the OA buffer, either 1562 * when re-enabling a stream or in error/reset paths. 1563 * 1564 * The reason we clear the buffer for each re-init is for the 1565 * sanity check in gen8_append_oa_reports() that looks at the 1566 * reason field to make sure it's non-zero which relies on 1567 * the assumption that new reports are being written to zeroed 1568 * memory... 1569 */ 1570 memset(stream->oa_buffer.vaddr, 0, 1571 stream->oa_buffer.vma->size); 1572 1573 stream->pollin = false; 1574 } 1575 1576 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1577 { 1578 struct drm_i915_gem_object *bo; 1579 struct i915_vma *vma; 1580 int ret; 1581 1582 if (WARN_ON(stream->oa_buffer.vma)) 1583 return -ENODEV; 1584 1585 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1586 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1587 1588 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1589 if (IS_ERR(bo)) { 1590 DRM_ERROR("Failed to allocate OA buffer\n"); 1591 return PTR_ERR(bo); 1592 } 1593 1594 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1595 1596 /* PreHSW required 512K alignment, HSW requires 16M */ 1597 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1598 if (IS_ERR(vma)) { 1599 ret = PTR_ERR(vma); 1600 goto err_unref; 1601 } 1602 stream->oa_buffer.vma = vma; 1603 1604 stream->oa_buffer.vaddr = 1605 i915_gem_object_pin_map(bo, I915_MAP_WB); 1606 if (IS_ERR(stream->oa_buffer.vaddr)) { 1607 ret = PTR_ERR(stream->oa_buffer.vaddr); 1608 goto err_unpin; 1609 } 1610 1611 return 0; 1612 1613 err_unpin: 1614 __i915_vma_unpin(vma); 1615 1616 err_unref: 1617 i915_gem_object_put(bo); 1618 1619 stream->oa_buffer.vaddr = NULL; 1620 stream->oa_buffer.vma = NULL; 1621 1622 return ret; 1623 } 1624 1625 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1626 bool save, i915_reg_t reg, u32 offset, 1627 u32 dword_count) 1628 { 1629 u32 cmd; 1630 u32 d; 1631 1632 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1633 if (INTEL_GEN(stream->perf->i915) >= 8) 1634 cmd++; 1635 1636 for (d = 0; d < dword_count; d++) { 1637 *cs++ = cmd; 1638 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1639 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1640 offset) + 4 * d; 1641 *cs++ = 0; 1642 } 1643 1644 return cs; 1645 } 1646 1647 static int alloc_noa_wait(struct i915_perf_stream *stream) 1648 { 1649 struct drm_i915_private *i915 = stream->perf->i915; 1650 struct drm_i915_gem_object *bo; 1651 struct i915_vma *vma; 1652 const u64 delay_ticks = 0xffffffffffffffff - 1653 DIV64_U64_ROUND_UP( 1654 atomic64_read(&stream->perf->noa_programming_delay) * 1655 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz, 1656 1000000ull); 1657 const u32 base = stream->engine->mmio_base; 1658 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1659 u32 *batch, *ts0, *cs, *jump; 1660 int ret, i; 1661 enum { 1662 START_TS, 1663 NOW_TS, 1664 DELTA_TS, 1665 JUMP_PREDICATE, 1666 DELTA_TARGET, 1667 N_CS_GPR 1668 }; 1669 1670 bo = i915_gem_object_create_internal(i915, 4096); 1671 if (IS_ERR(bo)) { 1672 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n"); 1673 return PTR_ERR(bo); 1674 } 1675 1676 /* 1677 * We pin in GGTT because we jump into this buffer now because 1678 * multiple OA config BOs will have a jump to this address and it 1679 * needs to be fixed during the lifetime of the i915/perf stream. 1680 */ 1681 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1682 if (IS_ERR(vma)) { 1683 ret = PTR_ERR(vma); 1684 goto err_unref; 1685 } 1686 1687 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1688 if (IS_ERR(batch)) { 1689 ret = PTR_ERR(batch); 1690 goto err_unpin; 1691 } 1692 1693 /* Save registers. */ 1694 for (i = 0; i < N_CS_GPR; i++) 1695 cs = save_restore_register( 1696 stream, cs, true /* save */, CS_GPR(i), 1697 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1698 cs = save_restore_register( 1699 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1700 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1701 1702 /* First timestamp snapshot location. */ 1703 ts0 = cs; 1704 1705 /* 1706 * Initial snapshot of the timestamp register to implement the wait. 1707 * We work with 32b values, so clear out the top 32b bits of the 1708 * register because the ALU works 64bits. 1709 */ 1710 *cs++ = MI_LOAD_REGISTER_IMM(1); 1711 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1712 *cs++ = 0; 1713 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1714 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1715 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1716 1717 /* 1718 * This is the location we're going to jump back into until the 1719 * required amount of time has passed. 1720 */ 1721 jump = cs; 1722 1723 /* 1724 * Take another snapshot of the timestamp register. Take care to clear 1725 * up the top 32bits of CS_GPR(1) as we're using it for other 1726 * operations below. 1727 */ 1728 *cs++ = MI_LOAD_REGISTER_IMM(1); 1729 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1730 *cs++ = 0; 1731 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1732 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1733 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1734 1735 /* 1736 * Do a diff between the 2 timestamps and store the result back into 1737 * CS_GPR(1). 1738 */ 1739 *cs++ = MI_MATH(5); 1740 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1741 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1742 *cs++ = MI_MATH_SUB; 1743 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1744 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1745 1746 /* 1747 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1748 * timestamp have rolled over the 32bits) into the predicate register 1749 * to be used for the predicated jump. 1750 */ 1751 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1752 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1753 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1754 1755 /* Restart from the beginning if we had timestamps roll over. */ 1756 *cs++ = (INTEL_GEN(i915) < 8 ? 1757 MI_BATCH_BUFFER_START : 1758 MI_BATCH_BUFFER_START_GEN8) | 1759 MI_BATCH_PREDICATE; 1760 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1761 *cs++ = 0; 1762 1763 /* 1764 * Now add the diff between to previous timestamps and add it to : 1765 * (((1 * << 64) - 1) - delay_ns) 1766 * 1767 * When the Carry Flag contains 1 this means the elapsed time is 1768 * longer than the expected delay, and we can exit the wait loop. 1769 */ 1770 *cs++ = MI_LOAD_REGISTER_IMM(2); 1771 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1772 *cs++ = lower_32_bits(delay_ticks); 1773 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1774 *cs++ = upper_32_bits(delay_ticks); 1775 1776 *cs++ = MI_MATH(4); 1777 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1778 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1779 *cs++ = MI_MATH_ADD; 1780 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1781 1782 *cs++ = MI_ARB_CHECK; 1783 1784 /* 1785 * Transfer the result into the predicate register to be used for the 1786 * predicated jump. 1787 */ 1788 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1789 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1790 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1791 1792 /* Predicate the jump. */ 1793 *cs++ = (INTEL_GEN(i915) < 8 ? 1794 MI_BATCH_BUFFER_START : 1795 MI_BATCH_BUFFER_START_GEN8) | 1796 MI_BATCH_PREDICATE; 1797 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1798 *cs++ = 0; 1799 1800 /* Restore registers. */ 1801 for (i = 0; i < N_CS_GPR; i++) 1802 cs = save_restore_register( 1803 stream, cs, false /* restore */, CS_GPR(i), 1804 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1805 cs = save_restore_register( 1806 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1807 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1808 1809 /* And return to the ring. */ 1810 *cs++ = MI_BATCH_BUFFER_END; 1811 1812 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1813 1814 i915_gem_object_flush_map(bo); 1815 i915_gem_object_unpin_map(bo); 1816 1817 stream->noa_wait = vma; 1818 return 0; 1819 1820 err_unpin: 1821 i915_vma_unpin_and_release(&vma, 0); 1822 err_unref: 1823 i915_gem_object_put(bo); 1824 return ret; 1825 } 1826 1827 static u32 *write_cs_mi_lri(u32 *cs, 1828 const struct i915_oa_reg *reg_data, 1829 u32 n_regs) 1830 { 1831 u32 i; 1832 1833 for (i = 0; i < n_regs; i++) { 1834 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1835 u32 n_lri = min_t(u32, 1836 n_regs - i, 1837 MI_LOAD_REGISTER_IMM_MAX_REGS); 1838 1839 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1840 } 1841 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1842 *cs++ = reg_data[i].value; 1843 } 1844 1845 return cs; 1846 } 1847 1848 static int num_lri_dwords(int num_regs) 1849 { 1850 int count = 0; 1851 1852 if (num_regs > 0) { 1853 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1854 count += num_regs * 2; 1855 } 1856 1857 return count; 1858 } 1859 1860 static struct i915_oa_config_bo * 1861 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1862 struct i915_oa_config *oa_config) 1863 { 1864 struct drm_i915_gem_object *obj; 1865 struct i915_oa_config_bo *oa_bo; 1866 size_t config_length = 0; 1867 u32 *cs; 1868 int err; 1869 1870 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1871 if (!oa_bo) 1872 return ERR_PTR(-ENOMEM); 1873 1874 config_length += num_lri_dwords(oa_config->mux_regs_len); 1875 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1876 config_length += num_lri_dwords(oa_config->flex_regs_len); 1877 config_length += 3; /* MI_BATCH_BUFFER_START */ 1878 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1879 1880 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1881 if (IS_ERR(obj)) { 1882 err = PTR_ERR(obj); 1883 goto err_free; 1884 } 1885 1886 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1887 if (IS_ERR(cs)) { 1888 err = PTR_ERR(cs); 1889 goto err_oa_bo; 1890 } 1891 1892 cs = write_cs_mi_lri(cs, 1893 oa_config->mux_regs, 1894 oa_config->mux_regs_len); 1895 cs = write_cs_mi_lri(cs, 1896 oa_config->b_counter_regs, 1897 oa_config->b_counter_regs_len); 1898 cs = write_cs_mi_lri(cs, 1899 oa_config->flex_regs, 1900 oa_config->flex_regs_len); 1901 1902 /* Jump into the active wait. */ 1903 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1904 MI_BATCH_BUFFER_START : 1905 MI_BATCH_BUFFER_START_GEN8); 1906 *cs++ = i915_ggtt_offset(stream->noa_wait); 1907 *cs++ = 0; 1908 1909 i915_gem_object_flush_map(obj); 1910 i915_gem_object_unpin_map(obj); 1911 1912 oa_bo->vma = i915_vma_instance(obj, 1913 &stream->engine->gt->ggtt->vm, 1914 NULL); 1915 if (IS_ERR(oa_bo->vma)) { 1916 err = PTR_ERR(oa_bo->vma); 1917 goto err_oa_bo; 1918 } 1919 1920 oa_bo->oa_config = i915_oa_config_get(oa_config); 1921 llist_add(&oa_bo->node, &stream->oa_config_bos); 1922 1923 return oa_bo; 1924 1925 err_oa_bo: 1926 i915_gem_object_put(obj); 1927 err_free: 1928 kfree(oa_bo); 1929 return ERR_PTR(err); 1930 } 1931 1932 static struct i915_vma * 1933 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1934 { 1935 struct i915_oa_config_bo *oa_bo; 1936 1937 /* 1938 * Look for the buffer in the already allocated BOs attached 1939 * to the stream. 1940 */ 1941 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1942 if (oa_bo->oa_config == oa_config && 1943 memcmp(oa_bo->oa_config->uuid, 1944 oa_config->uuid, 1945 sizeof(oa_config->uuid)) == 0) 1946 goto out; 1947 } 1948 1949 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1950 if (IS_ERR(oa_bo)) 1951 return ERR_CAST(oa_bo); 1952 1953 out: 1954 return i915_vma_get(oa_bo->vma); 1955 } 1956 1957 static int emit_oa_config(struct i915_perf_stream *stream, 1958 struct i915_oa_config *oa_config, 1959 struct intel_context *ce) 1960 { 1961 struct i915_request *rq; 1962 struct i915_vma *vma; 1963 int err; 1964 1965 vma = get_oa_vma(stream, oa_config); 1966 if (IS_ERR(vma)) 1967 return PTR_ERR(vma); 1968 1969 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1970 if (err) 1971 goto err_vma_put; 1972 1973 intel_engine_pm_get(ce->engine); 1974 rq = i915_request_create(ce); 1975 intel_engine_pm_put(ce->engine); 1976 if (IS_ERR(rq)) { 1977 err = PTR_ERR(rq); 1978 goto err_vma_unpin; 1979 } 1980 1981 i915_vma_lock(vma); 1982 err = i915_request_await_object(rq, vma->obj, 0); 1983 if (!err) 1984 err = i915_vma_move_to_active(vma, rq, 0); 1985 i915_vma_unlock(vma); 1986 if (err) 1987 goto err_add_request; 1988 1989 err = rq->engine->emit_bb_start(rq, 1990 vma->node.start, 0, 1991 I915_DISPATCH_SECURE); 1992 err_add_request: 1993 i915_request_add(rq); 1994 err_vma_unpin: 1995 i915_vma_unpin(vma); 1996 err_vma_put: 1997 i915_vma_put(vma); 1998 return err; 1999 } 2000 2001 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2002 { 2003 return stream->pinned_ctx ?: stream->engine->kernel_context; 2004 } 2005 2006 static int hsw_enable_metric_set(struct i915_perf_stream *stream) 2007 { 2008 struct intel_uncore *uncore = stream->uncore; 2009 2010 /* 2011 * PRM: 2012 * 2013 * OA unit is using “crclk” for its functionality. When trunk 2014 * level clock gating takes place, OA clock would be gated, 2015 * unable to count the events from non-render clock domain. 2016 * Render clock gating must be disabled when OA is enabled to 2017 * count the events from non-render domain. Unit level clock 2018 * gating for RCS should also be disabled. 2019 */ 2020 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2021 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2022 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2023 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2024 2025 return emit_oa_config(stream, stream->oa_config, oa_context(stream)); 2026 } 2027 2028 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2029 { 2030 struct intel_uncore *uncore = stream->uncore; 2031 2032 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2033 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2034 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2035 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2036 2037 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2038 } 2039 2040 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2041 i915_reg_t reg) 2042 { 2043 u32 mmio = i915_mmio_reg_offset(reg); 2044 int i; 2045 2046 /* 2047 * This arbitrary default will select the 'EU FPU0 Pipeline 2048 * Active' event. In the future it's anticipated that there 2049 * will be an explicit 'No Event' we can select, but not yet... 2050 */ 2051 if (!oa_config) 2052 return 0; 2053 2054 for (i = 0; i < oa_config->flex_regs_len; i++) { 2055 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2056 return oa_config->flex_regs[i].value; 2057 } 2058 2059 return 0; 2060 } 2061 /* 2062 * NB: It must always remain pointer safe to run this even if the OA unit 2063 * has been disabled. 2064 * 2065 * It's fine to put out-of-date values into these per-context registers 2066 * in the case that the OA unit has been disabled. 2067 */ 2068 static void 2069 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2070 const struct i915_perf_stream *stream) 2071 { 2072 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2073 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2074 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2075 i915_reg_t flex_regs[] = { 2076 EU_PERF_CNTL0, 2077 EU_PERF_CNTL1, 2078 EU_PERF_CNTL2, 2079 EU_PERF_CNTL3, 2080 EU_PERF_CNTL4, 2081 EU_PERF_CNTL5, 2082 EU_PERF_CNTL6, 2083 }; 2084 u32 *reg_state = ce->lrc_reg_state; 2085 int i; 2086 2087 reg_state[ctx_oactxctrl + 1] = 2088 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2089 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2090 GEN8_OA_COUNTER_RESUME; 2091 2092 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2093 reg_state[ctx_flexeu0 + i * 2 + 1] = 2094 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2095 2096 reg_state[CTX_R_PWR_CLK_STATE] = 2097 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu); 2098 } 2099 2100 struct flex { 2101 i915_reg_t reg; 2102 u32 offset; 2103 u32 value; 2104 }; 2105 2106 static int 2107 gen8_store_flex(struct i915_request *rq, 2108 struct intel_context *ce, 2109 const struct flex *flex, unsigned int count) 2110 { 2111 u32 offset; 2112 u32 *cs; 2113 2114 cs = intel_ring_begin(rq, 4 * count); 2115 if (IS_ERR(cs)) 2116 return PTR_ERR(cs); 2117 2118 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 2119 do { 2120 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2121 *cs++ = offset + flex->offset * sizeof(u32); 2122 *cs++ = 0; 2123 *cs++ = flex->value; 2124 } while (flex++, --count); 2125 2126 intel_ring_advance(rq, cs); 2127 2128 return 0; 2129 } 2130 2131 static int 2132 gen8_load_flex(struct i915_request *rq, 2133 struct intel_context *ce, 2134 const struct flex *flex, unsigned int count) 2135 { 2136 u32 *cs; 2137 2138 GEM_BUG_ON(!count || count > 63); 2139 2140 cs = intel_ring_begin(rq, 2 * count + 2); 2141 if (IS_ERR(cs)) 2142 return PTR_ERR(cs); 2143 2144 *cs++ = MI_LOAD_REGISTER_IMM(count); 2145 do { 2146 *cs++ = i915_mmio_reg_offset(flex->reg); 2147 *cs++ = flex->value; 2148 } while (flex++, --count); 2149 *cs++ = MI_NOOP; 2150 2151 intel_ring_advance(rq, cs); 2152 2153 return 0; 2154 } 2155 2156 static int gen8_modify_context(struct intel_context *ce, 2157 const struct flex *flex, unsigned int count) 2158 { 2159 struct i915_request *rq; 2160 int err; 2161 2162 rq = intel_engine_create_kernel_request(ce->engine); 2163 if (IS_ERR(rq)) 2164 return PTR_ERR(rq); 2165 2166 /* Serialise with the remote context */ 2167 err = intel_context_prepare_remote_request(ce, rq); 2168 if (err == 0) 2169 err = gen8_store_flex(rq, ce, flex, count); 2170 2171 i915_request_add(rq); 2172 return err; 2173 } 2174 2175 static int gen8_modify_self(struct intel_context *ce, 2176 const struct flex *flex, unsigned int count) 2177 { 2178 struct i915_request *rq; 2179 int err; 2180 2181 rq = i915_request_create(ce); 2182 if (IS_ERR(rq)) 2183 return PTR_ERR(rq); 2184 2185 err = gen8_load_flex(rq, ce, flex, count); 2186 2187 i915_request_add(rq); 2188 return err; 2189 } 2190 2191 static int gen8_configure_context(struct i915_gem_context *ctx, 2192 struct flex *flex, unsigned int count) 2193 { 2194 struct i915_gem_engines_iter it; 2195 struct intel_context *ce; 2196 int err = 0; 2197 2198 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2199 GEM_BUG_ON(ce == ce->engine->kernel_context); 2200 2201 if (ce->engine->class != RENDER_CLASS) 2202 continue; 2203 2204 /* Otherwise OA settings will be set upon first use */ 2205 if (!intel_context_pin_if_active(ce)) 2206 continue; 2207 2208 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2209 err = gen8_modify_context(ce, flex, count); 2210 2211 intel_context_unpin(ce); 2212 if (err) 2213 break; 2214 } 2215 i915_gem_context_unlock_engines(ctx); 2216 2217 return err; 2218 } 2219 2220 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable) 2221 { 2222 int err; 2223 struct intel_context *ce = stream->pinned_ctx; 2224 u32 format = stream->oa_buffer.format; 2225 struct flex regs_context[] = { 2226 { 2227 GEN8_OACTXCONTROL, 2228 stream->perf->ctx_oactxctrl_offset + 1, 2229 enable ? GEN8_OA_COUNTER_RESUME : 0, 2230 }, 2231 }; 2232 /* Offsets in regs_lri are not used since this configuration is only 2233 * applied using LRI. Initialize the correct offsets for posterity. 2234 */ 2235 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2236 struct flex regs_lri[] = { 2237 { 2238 GEN12_OAR_OACONTROL, 2239 GEN12_OAR_OACONTROL_OFFSET + 1, 2240 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2241 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2242 }, 2243 { 2244 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2245 CTX_CONTEXT_CONTROL, 2246 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2247 enable ? 2248 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2249 0) 2250 }, 2251 }; 2252 2253 /* Modify the context image of pinned context with regs_context*/ 2254 err = intel_context_lock_pinned(ce); 2255 if (err) 2256 return err; 2257 2258 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2259 intel_context_unlock_pinned(ce); 2260 if (err) 2261 return err; 2262 2263 /* Apply regs_lri using LRI with pinned context */ 2264 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri)); 2265 } 2266 2267 /* 2268 * Manages updating the per-context aspects of the OA stream 2269 * configuration across all contexts. 2270 * 2271 * The awkward consideration here is that OACTXCONTROL controls the 2272 * exponent for periodic sampling which is primarily used for system 2273 * wide profiling where we'd like a consistent sampling period even in 2274 * the face of context switches. 2275 * 2276 * Our approach of updating the register state context (as opposed to 2277 * say using a workaround batch buffer) ensures that the hardware 2278 * won't automatically reload an out-of-date timer exponent even 2279 * transiently before a WA BB could be parsed. 2280 * 2281 * This function needs to: 2282 * - Ensure the currently running context's per-context OA state is 2283 * updated 2284 * - Ensure that all existing contexts will have the correct per-context 2285 * OA state if they are scheduled for use. 2286 * - Ensure any new contexts will be initialized with the correct 2287 * per-context OA state. 2288 * 2289 * Note: it's only the RCS/Render context that has any OA state. 2290 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2291 */ 2292 static int oa_configure_all_contexts(struct i915_perf_stream *stream, 2293 struct flex *regs, 2294 size_t num_regs) 2295 { 2296 struct drm_i915_private *i915 = stream->perf->i915; 2297 struct intel_engine_cs *engine; 2298 struct i915_gem_context *ctx, *cn; 2299 int err; 2300 2301 lockdep_assert_held(&stream->perf->lock); 2302 2303 /* 2304 * The OA register config is setup through the context image. This image 2305 * might be written to by the GPU on context switch (in particular on 2306 * lite-restore). This means we can't safely update a context's image, 2307 * if this context is scheduled/submitted to run on the GPU. 2308 * 2309 * We could emit the OA register config through the batch buffer but 2310 * this might leave small interval of time where the OA unit is 2311 * configured at an invalid sampling period. 2312 * 2313 * Note that since we emit all requests from a single ring, there 2314 * is still an implicit global barrier here that may cause a high 2315 * priority context to wait for an otherwise independent low priority 2316 * context. Contexts idle at the time of reconfiguration are not 2317 * trapped behind the barrier. 2318 */ 2319 spin_lock(&i915->gem.contexts.lock); 2320 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2321 if (!kref_get_unless_zero(&ctx->ref)) 2322 continue; 2323 2324 spin_unlock(&i915->gem.contexts.lock); 2325 2326 err = gen8_configure_context(ctx, regs, num_regs); 2327 if (err) { 2328 i915_gem_context_put(ctx); 2329 return err; 2330 } 2331 2332 spin_lock(&i915->gem.contexts.lock); 2333 list_safe_reset_next(ctx, cn, link); 2334 i915_gem_context_put(ctx); 2335 } 2336 spin_unlock(&i915->gem.contexts.lock); 2337 2338 /* 2339 * After updating all other contexts, we need to modify ourselves. 2340 * If we don't modify the kernel_context, we do not get events while 2341 * idle. 2342 */ 2343 for_each_uabi_engine(engine, i915) { 2344 struct intel_context *ce = engine->kernel_context; 2345 2346 if (engine->class != RENDER_CLASS) 2347 continue; 2348 2349 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2350 2351 err = gen8_modify_self(ce, regs, num_regs); 2352 if (err) 2353 return err; 2354 } 2355 2356 return 0; 2357 } 2358 2359 static int gen12_configure_all_contexts(struct i915_perf_stream *stream, 2360 const struct i915_oa_config *oa_config) 2361 { 2362 struct flex regs[] = { 2363 { 2364 GEN8_R_PWR_CLK_STATE, 2365 CTX_R_PWR_CLK_STATE, 2366 }, 2367 }; 2368 2369 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2370 } 2371 2372 static int lrc_configure_all_contexts(struct i915_perf_stream *stream, 2373 const struct i915_oa_config *oa_config) 2374 { 2375 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2376 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2377 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2378 struct flex regs[] = { 2379 { 2380 GEN8_R_PWR_CLK_STATE, 2381 CTX_R_PWR_CLK_STATE, 2382 }, 2383 { 2384 GEN8_OACTXCONTROL, 2385 stream->perf->ctx_oactxctrl_offset + 1, 2386 }, 2387 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2388 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2389 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2390 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2391 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2392 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2393 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2394 }; 2395 #undef ctx_flexeuN 2396 int i; 2397 2398 regs[1].value = 2399 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2400 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2401 GEN8_OA_COUNTER_RESUME; 2402 2403 for (i = 2; i < ARRAY_SIZE(regs); i++) 2404 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2405 2406 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2407 } 2408 2409 static int gen8_enable_metric_set(struct i915_perf_stream *stream) 2410 { 2411 struct intel_uncore *uncore = stream->uncore; 2412 struct i915_oa_config *oa_config = stream->oa_config; 2413 int ret; 2414 2415 /* 2416 * We disable slice/unslice clock ratio change reports on SKL since 2417 * they are too noisy. The HW generates a lot of redundant reports 2418 * where the ratio hasn't really changed causing a lot of redundant 2419 * work to processes and increasing the chances we'll hit buffer 2420 * overruns. 2421 * 2422 * Although we don't currently use the 'disable overrun' OABUFFER 2423 * feature it's worth noting that clock ratio reports have to be 2424 * disabled before considering to use that feature since the HW doesn't 2425 * correctly block these reports. 2426 * 2427 * Currently none of the high-level metrics we have depend on knowing 2428 * this ratio to normalize. 2429 * 2430 * Note: This register is not power context saved and restored, but 2431 * that's OK considering that we disable RC6 while the OA unit is 2432 * enabled. 2433 * 2434 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2435 * be read back from automatically triggered reports, as part of the 2436 * RPT_ID field. 2437 */ 2438 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2439 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2440 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2441 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2442 } 2443 2444 /* 2445 * Update all contexts prior writing the mux configurations as we need 2446 * to make sure all slices/subslices are ON before writing to NOA 2447 * registers. 2448 */ 2449 ret = lrc_configure_all_contexts(stream, oa_config); 2450 if (ret) 2451 return ret; 2452 2453 return emit_oa_config(stream, oa_config, oa_context(stream)); 2454 } 2455 2456 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2457 { 2458 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2459 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2460 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2461 } 2462 2463 static int gen12_enable_metric_set(struct i915_perf_stream *stream) 2464 { 2465 struct intel_uncore *uncore = stream->uncore; 2466 struct i915_oa_config *oa_config = stream->oa_config; 2467 bool periodic = stream->periodic; 2468 u32 period_exponent = stream->period_exponent; 2469 int ret; 2470 2471 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2472 /* Disable clk ratio reports, like previous Gens. */ 2473 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2474 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2475 /* 2476 * If the user didn't require OA reports, instruct 2477 * the hardware not to emit ctx switch reports. 2478 */ 2479 oag_report_ctx_switches(stream)); 2480 2481 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2482 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2483 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2484 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2485 : 0); 2486 2487 /* 2488 * Update all contexts prior writing the mux configurations as we need 2489 * to make sure all slices/subslices are ON before writing to NOA 2490 * registers. 2491 */ 2492 ret = gen12_configure_all_contexts(stream, oa_config); 2493 if (ret) 2494 return ret; 2495 2496 /* 2497 * For Gen12, performance counters are context 2498 * saved/restored. Only enable it for the context that 2499 * requested this. 2500 */ 2501 if (stream->ctx) { 2502 ret = gen12_configure_oar_context(stream, true); 2503 if (ret) 2504 return ret; 2505 } 2506 2507 return emit_oa_config(stream, oa_config, oa_context(stream)); 2508 } 2509 2510 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2511 { 2512 struct intel_uncore *uncore = stream->uncore; 2513 2514 /* Reset all contexts' slices/subslices configurations. */ 2515 lrc_configure_all_contexts(stream, NULL); 2516 2517 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2518 } 2519 2520 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2521 { 2522 struct intel_uncore *uncore = stream->uncore; 2523 2524 /* Reset all contexts' slices/subslices configurations. */ 2525 lrc_configure_all_contexts(stream, NULL); 2526 2527 /* Make sure we disable noa to save power. */ 2528 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2529 } 2530 2531 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2532 { 2533 struct intel_uncore *uncore = stream->uncore; 2534 2535 /* Reset all contexts' slices/subslices configurations. */ 2536 gen12_configure_all_contexts(stream, NULL); 2537 2538 /* disable the context save/restore or OAR counters */ 2539 if (stream->ctx) 2540 gen12_configure_oar_context(stream, false); 2541 2542 /* Make sure we disable noa to save power. */ 2543 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2544 } 2545 2546 static void gen7_oa_enable(struct i915_perf_stream *stream) 2547 { 2548 struct intel_uncore *uncore = stream->uncore; 2549 struct i915_gem_context *ctx = stream->ctx; 2550 u32 ctx_id = stream->specific_ctx_id; 2551 bool periodic = stream->periodic; 2552 u32 period_exponent = stream->period_exponent; 2553 u32 report_format = stream->oa_buffer.format; 2554 2555 /* 2556 * Reset buf pointers so we don't forward reports from before now. 2557 * 2558 * Think carefully if considering trying to avoid this, since it 2559 * also ensures status flags and the buffer itself are cleared 2560 * in error paths, and we have checks for invalid reports based 2561 * on the assumption that certain fields are written to zeroed 2562 * memory which this helps maintains. 2563 */ 2564 gen7_init_oa_buffer(stream); 2565 2566 intel_uncore_write(uncore, GEN7_OACONTROL, 2567 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2568 (period_exponent << 2569 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2570 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2571 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2572 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2573 GEN7_OACONTROL_ENABLE); 2574 } 2575 2576 static void gen8_oa_enable(struct i915_perf_stream *stream) 2577 { 2578 struct intel_uncore *uncore = stream->uncore; 2579 u32 report_format = stream->oa_buffer.format; 2580 2581 /* 2582 * Reset buf pointers so we don't forward reports from before now. 2583 * 2584 * Think carefully if considering trying to avoid this, since it 2585 * also ensures status flags and the buffer itself are cleared 2586 * in error paths, and we have checks for invalid reports based 2587 * on the assumption that certain fields are written to zeroed 2588 * memory which this helps maintains. 2589 */ 2590 gen8_init_oa_buffer(stream); 2591 2592 /* 2593 * Note: we don't rely on the hardware to perform single context 2594 * filtering and instead filter on the cpu based on the context-id 2595 * field of reports 2596 */ 2597 intel_uncore_write(uncore, GEN8_OACONTROL, 2598 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2599 GEN8_OA_COUNTER_ENABLE); 2600 } 2601 2602 static void gen12_oa_enable(struct i915_perf_stream *stream) 2603 { 2604 struct intel_uncore *uncore = stream->uncore; 2605 u32 report_format = stream->oa_buffer.format; 2606 2607 /* 2608 * If we don't want OA reports from the OA buffer, then we don't even 2609 * need to program the OAG unit. 2610 */ 2611 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2612 return; 2613 2614 gen12_init_oa_buffer(stream); 2615 2616 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2617 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2618 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2619 } 2620 2621 /** 2622 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2623 * @stream: An i915 perf stream opened for OA metrics 2624 * 2625 * [Re]enables hardware periodic sampling according to the period configured 2626 * when opening the stream. This also starts a hrtimer that will periodically 2627 * check for data in the circular OA buffer for notifying userspace (e.g. 2628 * during a read() or poll()). 2629 */ 2630 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2631 { 2632 stream->perf->ops.oa_enable(stream); 2633 2634 if (stream->periodic) 2635 hrtimer_start(&stream->poll_check_timer, 2636 ns_to_ktime(POLL_PERIOD), 2637 HRTIMER_MODE_REL_PINNED); 2638 } 2639 2640 static void gen7_oa_disable(struct i915_perf_stream *stream) 2641 { 2642 struct intel_uncore *uncore = stream->uncore; 2643 2644 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2645 if (intel_wait_for_register(uncore, 2646 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2647 50)) 2648 DRM_ERROR("wait for OA to be disabled timed out\n"); 2649 } 2650 2651 static void gen8_oa_disable(struct i915_perf_stream *stream) 2652 { 2653 struct intel_uncore *uncore = stream->uncore; 2654 2655 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2656 if (intel_wait_for_register(uncore, 2657 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2658 50)) 2659 DRM_ERROR("wait for OA to be disabled timed out\n"); 2660 } 2661 2662 static void gen12_oa_disable(struct i915_perf_stream *stream) 2663 { 2664 struct intel_uncore *uncore = stream->uncore; 2665 2666 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2667 if (intel_wait_for_register(uncore, 2668 GEN12_OAG_OACONTROL, 2669 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2670 50)) 2671 DRM_ERROR("wait for OA to be disabled timed out\n"); 2672 } 2673 2674 /** 2675 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2676 * @stream: An i915 perf stream opened for OA metrics 2677 * 2678 * Stops the OA unit from periodically writing counter reports into the 2679 * circular OA buffer. This also stops the hrtimer that periodically checks for 2680 * data in the circular OA buffer, for notifying userspace. 2681 */ 2682 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2683 { 2684 stream->perf->ops.oa_disable(stream); 2685 2686 if (stream->periodic) 2687 hrtimer_cancel(&stream->poll_check_timer); 2688 } 2689 2690 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2691 .destroy = i915_oa_stream_destroy, 2692 .enable = i915_oa_stream_enable, 2693 .disable = i915_oa_stream_disable, 2694 .wait_unlocked = i915_oa_wait_unlocked, 2695 .poll_wait = i915_oa_poll_wait, 2696 .read = i915_oa_read, 2697 }; 2698 2699 /** 2700 * i915_oa_stream_init - validate combined props for OA stream and init 2701 * @stream: An i915 perf stream 2702 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2703 * @props: The property state that configures stream (individually validated) 2704 * 2705 * While read_properties_unlocked() validates properties in isolation it 2706 * doesn't ensure that the combination necessarily makes sense. 2707 * 2708 * At this point it has been determined that userspace wants a stream of 2709 * OA metrics, but still we need to further validate the combined 2710 * properties are OK. 2711 * 2712 * If the configuration makes sense then we can allocate memory for 2713 * a circular OA buffer and apply the requested metric set configuration. 2714 * 2715 * Returns: zero on success or a negative error code. 2716 */ 2717 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2718 struct drm_i915_perf_open_param *param, 2719 struct perf_open_properties *props) 2720 { 2721 struct i915_perf *perf = stream->perf; 2722 int format_size; 2723 int ret; 2724 2725 if (!props->engine) { 2726 DRM_DEBUG("OA engine not specified\n"); 2727 return -EINVAL; 2728 } 2729 2730 /* 2731 * If the sysfs metrics/ directory wasn't registered for some 2732 * reason then don't let userspace try their luck with config 2733 * IDs 2734 */ 2735 if (!perf->metrics_kobj) { 2736 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2737 return -EINVAL; 2738 } 2739 2740 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2741 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2742 DRM_DEBUG("Only OA report sampling supported\n"); 2743 return -EINVAL; 2744 } 2745 2746 if (!perf->ops.enable_metric_set) { 2747 DRM_DEBUG("OA unit not supported\n"); 2748 return -ENODEV; 2749 } 2750 2751 /* 2752 * To avoid the complexity of having to accurately filter 2753 * counter reports and marshal to the appropriate client 2754 * we currently only allow exclusive access 2755 */ 2756 if (perf->exclusive_stream) { 2757 DRM_DEBUG("OA unit already in use\n"); 2758 return -EBUSY; 2759 } 2760 2761 if (!props->oa_format) { 2762 DRM_DEBUG("OA report format not specified\n"); 2763 return -EINVAL; 2764 } 2765 2766 stream->engine = props->engine; 2767 stream->uncore = stream->engine->gt->uncore; 2768 2769 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2770 2771 format_size = perf->oa_formats[props->oa_format].size; 2772 2773 stream->sample_flags = props->sample_flags; 2774 stream->sample_size += format_size; 2775 2776 stream->oa_buffer.format_size = format_size; 2777 if (WARN_ON(stream->oa_buffer.format_size == 0)) 2778 return -EINVAL; 2779 2780 stream->hold_preemption = props->hold_preemption; 2781 2782 stream->oa_buffer.format = 2783 perf->oa_formats[props->oa_format].format; 2784 2785 stream->periodic = props->oa_periodic; 2786 if (stream->periodic) 2787 stream->period_exponent = props->oa_period_exponent; 2788 2789 if (stream->ctx) { 2790 ret = oa_get_render_ctx_id(stream); 2791 if (ret) { 2792 DRM_DEBUG("Invalid context id to filter with\n"); 2793 return ret; 2794 } 2795 } 2796 2797 ret = alloc_noa_wait(stream); 2798 if (ret) { 2799 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2800 goto err_noa_wait_alloc; 2801 } 2802 2803 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2804 if (!stream->oa_config) { 2805 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2806 ret = -EINVAL; 2807 goto err_config; 2808 } 2809 2810 /* PRM - observability performance counters: 2811 * 2812 * OACONTROL, performance counter enable, note: 2813 * 2814 * "When this bit is set, in order to have coherent counts, 2815 * RC6 power state and trunk clock gating must be disabled. 2816 * This can be achieved by programming MMIO registers as 2817 * 0xA094=0 and 0xA090[31]=1" 2818 * 2819 * In our case we are expecting that taking pm + FORCEWAKE 2820 * references will effectively disable RC6. 2821 */ 2822 intel_engine_pm_get(stream->engine); 2823 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2824 2825 ret = alloc_oa_buffer(stream); 2826 if (ret) 2827 goto err_oa_buf_alloc; 2828 2829 stream->ops = &i915_oa_stream_ops; 2830 perf->exclusive_stream = stream; 2831 2832 ret = perf->ops.enable_metric_set(stream); 2833 if (ret) { 2834 DRM_DEBUG("Unable to enable metric set\n"); 2835 goto err_enable; 2836 } 2837 2838 DRM_DEBUG("opening stream oa config uuid=%s\n", 2839 stream->oa_config->uuid); 2840 2841 hrtimer_init(&stream->poll_check_timer, 2842 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2843 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2844 init_waitqueue_head(&stream->poll_wq); 2845 spin_lock_init(&stream->oa_buffer.ptr_lock); 2846 2847 return 0; 2848 2849 err_enable: 2850 perf->exclusive_stream = NULL; 2851 perf->ops.disable_metric_set(stream); 2852 2853 free_oa_buffer(stream); 2854 2855 err_oa_buf_alloc: 2856 free_oa_configs(stream); 2857 2858 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2859 intel_engine_pm_put(stream->engine); 2860 2861 err_config: 2862 free_noa_wait(stream); 2863 2864 err_noa_wait_alloc: 2865 if (stream->ctx) 2866 oa_put_render_ctx_id(stream); 2867 2868 return ret; 2869 } 2870 2871 void i915_oa_init_reg_state(const struct intel_context *ce, 2872 const struct intel_engine_cs *engine) 2873 { 2874 struct i915_perf_stream *stream; 2875 2876 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2877 2878 if (engine->class != RENDER_CLASS) 2879 return; 2880 2881 stream = engine->i915->perf.exclusive_stream; 2882 /* 2883 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller 2884 * is already doing that, so nothing to be done for gen12 here. 2885 */ 2886 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2887 gen8_update_reg_state_unlocked(ce, stream); 2888 } 2889 2890 /** 2891 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2892 * @stream: An i915 perf stream 2893 * @file: An i915 perf stream file 2894 * @buf: destination buffer given by userspace 2895 * @count: the number of bytes userspace wants to read 2896 * @ppos: (inout) file seek position (unused) 2897 * 2898 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2899 * ensure that if we've successfully copied any data then reporting that takes 2900 * precedence over any internal error status, so the data isn't lost. 2901 * 2902 * For example ret will be -ENOSPC whenever there is more buffered data than 2903 * can be copied to userspace, but that's only interesting if we weren't able 2904 * to copy some data because it implies the userspace buffer is too small to 2905 * receive a single record (and we never split records). 2906 * 2907 * Another case with ret == -EFAULT is more of a grey area since it would seem 2908 * like bad form for userspace to ask us to overrun its buffer, but the user 2909 * knows best: 2910 * 2911 * http://yarchive.net/comp/linux/partial_reads_writes.html 2912 * 2913 * Returns: The number of bytes copied or a negative error code on failure. 2914 */ 2915 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2916 struct file *file, 2917 char __user *buf, 2918 size_t count, 2919 loff_t *ppos) 2920 { 2921 /* Note we keep the offset (aka bytes read) separate from any 2922 * error status so that the final check for whether we return 2923 * the bytes read with a higher precedence than any error (see 2924 * comment below) doesn't need to be handled/duplicated in 2925 * stream->ops->read() implementations. 2926 */ 2927 size_t offset = 0; 2928 int ret = stream->ops->read(stream, buf, count, &offset); 2929 2930 return offset ?: (ret ?: -EAGAIN); 2931 } 2932 2933 /** 2934 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2935 * @file: An i915 perf stream file 2936 * @buf: destination buffer given by userspace 2937 * @count: the number of bytes userspace wants to read 2938 * @ppos: (inout) file seek position (unused) 2939 * 2940 * The entry point for handling a read() on a stream file descriptor from 2941 * userspace. Most of the work is left to the i915_perf_read_locked() and 2942 * &i915_perf_stream_ops->read but to save having stream implementations (of 2943 * which we might have multiple later) we handle blocking read here. 2944 * 2945 * We can also consistently treat trying to read from a disabled stream 2946 * as an IO error so implementations can assume the stream is enabled 2947 * while reading. 2948 * 2949 * Returns: The number of bytes copied or a negative error code on failure. 2950 */ 2951 static ssize_t i915_perf_read(struct file *file, 2952 char __user *buf, 2953 size_t count, 2954 loff_t *ppos) 2955 { 2956 struct i915_perf_stream *stream = file->private_data; 2957 struct i915_perf *perf = stream->perf; 2958 ssize_t ret; 2959 2960 /* To ensure it's handled consistently we simply treat all reads of a 2961 * disabled stream as an error. In particular it might otherwise lead 2962 * to a deadlock for blocking file descriptors... 2963 */ 2964 if (!stream->enabled) 2965 return -EIO; 2966 2967 if (!(file->f_flags & O_NONBLOCK)) { 2968 /* There's the small chance of false positives from 2969 * stream->ops->wait_unlocked. 2970 * 2971 * E.g. with single context filtering since we only wait until 2972 * oabuffer has >= 1 report we don't immediately know whether 2973 * any reports really belong to the current context 2974 */ 2975 do { 2976 ret = stream->ops->wait_unlocked(stream); 2977 if (ret) 2978 return ret; 2979 2980 mutex_lock(&perf->lock); 2981 ret = i915_perf_read_locked(stream, file, 2982 buf, count, ppos); 2983 mutex_unlock(&perf->lock); 2984 } while (ret == -EAGAIN); 2985 } else { 2986 mutex_lock(&perf->lock); 2987 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2988 mutex_unlock(&perf->lock); 2989 } 2990 2991 /* We allow the poll checking to sometimes report false positive EPOLLIN 2992 * events where we might actually report EAGAIN on read() if there's 2993 * not really any data available. In this situation though we don't 2994 * want to enter a busy loop between poll() reporting a EPOLLIN event 2995 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2996 * effectively ensures we back off until the next hrtimer callback 2997 * before reporting another EPOLLIN event. 2998 */ 2999 if (ret >= 0 || ret == -EAGAIN) { 3000 /* Maybe make ->pollin per-stream state if we support multiple 3001 * concurrent streams in the future. 3002 */ 3003 stream->pollin = false; 3004 } 3005 3006 return ret; 3007 } 3008 3009 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3010 { 3011 struct i915_perf_stream *stream = 3012 container_of(hrtimer, typeof(*stream), poll_check_timer); 3013 3014 if (oa_buffer_check_unlocked(stream)) { 3015 stream->pollin = true; 3016 wake_up(&stream->poll_wq); 3017 } 3018 3019 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 3020 3021 return HRTIMER_RESTART; 3022 } 3023 3024 /** 3025 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3026 * @stream: An i915 perf stream 3027 * @file: An i915 perf stream file 3028 * @wait: poll() state table 3029 * 3030 * For handling userspace polling on an i915 perf stream, this calls through to 3031 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3032 * will be woken for new stream data. 3033 * 3034 * Note: The &perf->lock mutex has been taken to serialize 3035 * with any non-file-operation driver hooks. 3036 * 3037 * Returns: any poll events that are ready without sleeping 3038 */ 3039 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3040 struct file *file, 3041 poll_table *wait) 3042 { 3043 __poll_t events = 0; 3044 3045 stream->ops->poll_wait(stream, file, wait); 3046 3047 /* Note: we don't explicitly check whether there's something to read 3048 * here since this path may be very hot depending on what else 3049 * userspace is polling, or on the timeout in use. We rely solely on 3050 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3051 * samples to read. 3052 */ 3053 if (stream->pollin) 3054 events |= EPOLLIN; 3055 3056 return events; 3057 } 3058 3059 /** 3060 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3061 * @file: An i915 perf stream file 3062 * @wait: poll() state table 3063 * 3064 * For handling userspace polling on an i915 perf stream, this ensures 3065 * poll_wait() gets called with a wait queue that will be woken for new stream 3066 * data. 3067 * 3068 * Note: Implementation deferred to i915_perf_poll_locked() 3069 * 3070 * Returns: any poll events that are ready without sleeping 3071 */ 3072 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3073 { 3074 struct i915_perf_stream *stream = file->private_data; 3075 struct i915_perf *perf = stream->perf; 3076 __poll_t ret; 3077 3078 mutex_lock(&perf->lock); 3079 ret = i915_perf_poll_locked(stream, file, wait); 3080 mutex_unlock(&perf->lock); 3081 3082 return ret; 3083 } 3084 3085 /** 3086 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3087 * @stream: A disabled i915 perf stream 3088 * 3089 * [Re]enables the associated capture of data for this stream. 3090 * 3091 * If a stream was previously enabled then there's currently no intention 3092 * to provide userspace any guarantee about the preservation of previously 3093 * buffered data. 3094 */ 3095 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3096 { 3097 if (stream->enabled) 3098 return; 3099 3100 /* Allow stream->ops->enable() to refer to this */ 3101 stream->enabled = true; 3102 3103 if (stream->ops->enable) 3104 stream->ops->enable(stream); 3105 3106 if (stream->hold_preemption) 3107 intel_context_set_nopreempt(stream->pinned_ctx); 3108 } 3109 3110 /** 3111 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3112 * @stream: An enabled i915 perf stream 3113 * 3114 * Disables the associated capture of data for this stream. 3115 * 3116 * The intention is that disabling an re-enabling a stream will ideally be 3117 * cheaper than destroying and re-opening a stream with the same configuration, 3118 * though there are no formal guarantees about what state or buffered data 3119 * must be retained between disabling and re-enabling a stream. 3120 * 3121 * Note: while a stream is disabled it's considered an error for userspace 3122 * to attempt to read from the stream (-EIO). 3123 */ 3124 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3125 { 3126 if (!stream->enabled) 3127 return; 3128 3129 /* Allow stream->ops->disable() to refer to this */ 3130 stream->enabled = false; 3131 3132 if (stream->hold_preemption) 3133 intel_context_clear_nopreempt(stream->pinned_ctx); 3134 3135 if (stream->ops->disable) 3136 stream->ops->disable(stream); 3137 } 3138 3139 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3140 unsigned long metrics_set) 3141 { 3142 struct i915_oa_config *config; 3143 long ret = stream->oa_config->id; 3144 3145 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3146 if (!config) 3147 return -EINVAL; 3148 3149 if (config != stream->oa_config) { 3150 int err; 3151 3152 /* 3153 * If OA is bound to a specific context, emit the 3154 * reconfiguration inline from that context. The update 3155 * will then be ordered with respect to submission on that 3156 * context. 3157 * 3158 * When set globally, we use a low priority kernel context, 3159 * so it will effectively take effect when idle. 3160 */ 3161 err = emit_oa_config(stream, config, oa_context(stream)); 3162 if (err == 0) 3163 config = xchg(&stream->oa_config, config); 3164 else 3165 ret = err; 3166 } 3167 3168 i915_oa_config_put(config); 3169 3170 return ret; 3171 } 3172 3173 /** 3174 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3175 * @stream: An i915 perf stream 3176 * @cmd: the ioctl request 3177 * @arg: the ioctl data 3178 * 3179 * Note: The &perf->lock mutex has been taken to serialize 3180 * with any non-file-operation driver hooks. 3181 * 3182 * Returns: zero on success or a negative error code. Returns -EINVAL for 3183 * an unknown ioctl request. 3184 */ 3185 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3186 unsigned int cmd, 3187 unsigned long arg) 3188 { 3189 switch (cmd) { 3190 case I915_PERF_IOCTL_ENABLE: 3191 i915_perf_enable_locked(stream); 3192 return 0; 3193 case I915_PERF_IOCTL_DISABLE: 3194 i915_perf_disable_locked(stream); 3195 return 0; 3196 case I915_PERF_IOCTL_CONFIG: 3197 return i915_perf_config_locked(stream, arg); 3198 } 3199 3200 return -EINVAL; 3201 } 3202 3203 /** 3204 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3205 * @file: An i915 perf stream file 3206 * @cmd: the ioctl request 3207 * @arg: the ioctl data 3208 * 3209 * Implementation deferred to i915_perf_ioctl_locked(). 3210 * 3211 * Returns: zero on success or a negative error code. Returns -EINVAL for 3212 * an unknown ioctl request. 3213 */ 3214 static long i915_perf_ioctl(struct file *file, 3215 unsigned int cmd, 3216 unsigned long arg) 3217 { 3218 struct i915_perf_stream *stream = file->private_data; 3219 struct i915_perf *perf = stream->perf; 3220 long ret; 3221 3222 mutex_lock(&perf->lock); 3223 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3224 mutex_unlock(&perf->lock); 3225 3226 return ret; 3227 } 3228 3229 /** 3230 * i915_perf_destroy_locked - destroy an i915 perf stream 3231 * @stream: An i915 perf stream 3232 * 3233 * Frees all resources associated with the given i915 perf @stream, disabling 3234 * any associated data capture in the process. 3235 * 3236 * Note: The &perf->lock mutex has been taken to serialize 3237 * with any non-file-operation driver hooks. 3238 */ 3239 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3240 { 3241 if (stream->enabled) 3242 i915_perf_disable_locked(stream); 3243 3244 if (stream->ops->destroy) 3245 stream->ops->destroy(stream); 3246 3247 if (stream->ctx) 3248 i915_gem_context_put(stream->ctx); 3249 3250 kfree(stream); 3251 } 3252 3253 /** 3254 * i915_perf_release - handles userspace close() of a stream file 3255 * @inode: anonymous inode associated with file 3256 * @file: An i915 perf stream file 3257 * 3258 * Cleans up any resources associated with an open i915 perf stream file. 3259 * 3260 * NB: close() can't really fail from the userspace point of view. 3261 * 3262 * Returns: zero on success or a negative error code. 3263 */ 3264 static int i915_perf_release(struct inode *inode, struct file *file) 3265 { 3266 struct i915_perf_stream *stream = file->private_data; 3267 struct i915_perf *perf = stream->perf; 3268 3269 mutex_lock(&perf->lock); 3270 i915_perf_destroy_locked(stream); 3271 mutex_unlock(&perf->lock); 3272 3273 /* Release the reference the perf stream kept on the driver. */ 3274 drm_dev_put(&perf->i915->drm); 3275 3276 return 0; 3277 } 3278 3279 3280 static const struct file_operations fops = { 3281 .owner = THIS_MODULE, 3282 .llseek = no_llseek, 3283 .release = i915_perf_release, 3284 .poll = i915_perf_poll, 3285 .read = i915_perf_read, 3286 .unlocked_ioctl = i915_perf_ioctl, 3287 /* Our ioctl have no arguments, so it's safe to use the same function 3288 * to handle 32bits compatibility. 3289 */ 3290 .compat_ioctl = i915_perf_ioctl, 3291 }; 3292 3293 3294 /** 3295 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3296 * @perf: i915 perf instance 3297 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3298 * @props: individually validated u64 property value pairs 3299 * @file: drm file 3300 * 3301 * See i915_perf_ioctl_open() for interface details. 3302 * 3303 * Implements further stream config validation and stream initialization on 3304 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3305 * taken to serialize with any non-file-operation driver hooks. 3306 * 3307 * Note: at this point the @props have only been validated in isolation and 3308 * it's still necessary to validate that the combination of properties makes 3309 * sense. 3310 * 3311 * In the case where userspace is interested in OA unit metrics then further 3312 * config validation and stream initialization details will be handled by 3313 * i915_oa_stream_init(). The code here should only validate config state that 3314 * will be relevant to all stream types / backends. 3315 * 3316 * Returns: zero on success or a negative error code. 3317 */ 3318 static int 3319 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3320 struct drm_i915_perf_open_param *param, 3321 struct perf_open_properties *props, 3322 struct drm_file *file) 3323 { 3324 struct i915_gem_context *specific_ctx = NULL; 3325 struct i915_perf_stream *stream = NULL; 3326 unsigned long f_flags = 0; 3327 bool privileged_op = true; 3328 int stream_fd; 3329 int ret; 3330 3331 if (props->single_context) { 3332 u32 ctx_handle = props->ctx_handle; 3333 struct drm_i915_file_private *file_priv = file->driver_priv; 3334 3335 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3336 if (!specific_ctx) { 3337 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3338 ctx_handle); 3339 ret = -ENOENT; 3340 goto err; 3341 } 3342 } 3343 3344 /* 3345 * On Haswell the OA unit supports clock gating off for a specific 3346 * context and in this mode there's no visibility of metrics for the 3347 * rest of the system, which we consider acceptable for a 3348 * non-privileged client. 3349 * 3350 * For Gen8->11 the OA unit no longer supports clock gating off for a 3351 * specific context and the kernel can't securely stop the counters 3352 * from updating as system-wide / global values. Even though we can 3353 * filter reports based on the included context ID we can't block 3354 * clients from seeing the raw / global counter values via 3355 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3356 * enable the OA unit by default. 3357 * 3358 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3359 * per context basis. So we can relax requirements there if the user 3360 * doesn't request global stream access (i.e. query based sampling 3361 * using MI_RECORD_PERF_COUNT. 3362 */ 3363 if (IS_HASWELL(perf->i915) && specific_ctx) 3364 privileged_op = false; 3365 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3366 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3367 privileged_op = false; 3368 3369 if (props->hold_preemption) { 3370 if (!props->single_context) { 3371 DRM_DEBUG("preemption disable with no context\n"); 3372 ret = -EINVAL; 3373 goto err; 3374 } 3375 privileged_op = true; 3376 } 3377 3378 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3379 * we check a dev.i915.perf_stream_paranoid sysctl option 3380 * to determine if it's ok to access system wide OA counters 3381 * without CAP_SYS_ADMIN privileges. 3382 */ 3383 if (privileged_op && 3384 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3385 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3386 ret = -EACCES; 3387 goto err_ctx; 3388 } 3389 3390 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3391 if (!stream) { 3392 ret = -ENOMEM; 3393 goto err_ctx; 3394 } 3395 3396 stream->perf = perf; 3397 stream->ctx = specific_ctx; 3398 3399 ret = i915_oa_stream_init(stream, param, props); 3400 if (ret) 3401 goto err_alloc; 3402 3403 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3404 * to have _stream_init check the combination of sample flags more 3405 * thoroughly, but still this is the expected result at this point. 3406 */ 3407 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3408 ret = -ENODEV; 3409 goto err_flags; 3410 } 3411 3412 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3413 f_flags |= O_CLOEXEC; 3414 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3415 f_flags |= O_NONBLOCK; 3416 3417 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3418 if (stream_fd < 0) { 3419 ret = stream_fd; 3420 goto err_flags; 3421 } 3422 3423 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3424 i915_perf_enable_locked(stream); 3425 3426 /* Take a reference on the driver that will be kept with stream_fd 3427 * until its release. 3428 */ 3429 drm_dev_get(&perf->i915->drm); 3430 3431 return stream_fd; 3432 3433 err_flags: 3434 if (stream->ops->destroy) 3435 stream->ops->destroy(stream); 3436 err_alloc: 3437 kfree(stream); 3438 err_ctx: 3439 if (specific_ctx) 3440 i915_gem_context_put(specific_ctx); 3441 err: 3442 return ret; 3443 } 3444 3445 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3446 { 3447 return div64_u64(1000000000ULL * (2ULL << exponent), 3448 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz); 3449 } 3450 3451 /** 3452 * read_properties_unlocked - validate + copy userspace stream open properties 3453 * @perf: i915 perf instance 3454 * @uprops: The array of u64 key value pairs given by userspace 3455 * @n_props: The number of key value pairs expected in @uprops 3456 * @props: The stream configuration built up while validating properties 3457 * 3458 * Note this function only validates properties in isolation it doesn't 3459 * validate that the combination of properties makes sense or that all 3460 * properties necessary for a particular kind of stream have been set. 3461 * 3462 * Note that there currently aren't any ordering requirements for properties so 3463 * we shouldn't validate or assume anything about ordering here. This doesn't 3464 * rule out defining new properties with ordering requirements in the future. 3465 */ 3466 static int read_properties_unlocked(struct i915_perf *perf, 3467 u64 __user *uprops, 3468 u32 n_props, 3469 struct perf_open_properties *props) 3470 { 3471 u64 __user *uprop = uprops; 3472 u32 i; 3473 3474 memset(props, 0, sizeof(struct perf_open_properties)); 3475 3476 if (!n_props) { 3477 DRM_DEBUG("No i915 perf properties given\n"); 3478 return -EINVAL; 3479 } 3480 3481 /* At the moment we only support using i915-perf on the RCS. */ 3482 props->engine = intel_engine_lookup_user(perf->i915, 3483 I915_ENGINE_CLASS_RENDER, 3484 0); 3485 if (!props->engine) { 3486 DRM_DEBUG("No RENDER-capable engines\n"); 3487 return -EINVAL; 3488 } 3489 3490 /* Considering that ID = 0 is reserved and assuming that we don't 3491 * (currently) expect any configurations to ever specify duplicate 3492 * values for a particular property ID then the last _PROP_MAX value is 3493 * one greater than the maximum number of properties we expect to get 3494 * from userspace. 3495 */ 3496 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3497 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3498 return -EINVAL; 3499 } 3500 3501 for (i = 0; i < n_props; i++) { 3502 u64 oa_period, oa_freq_hz; 3503 u64 id, value; 3504 int ret; 3505 3506 ret = get_user(id, uprop); 3507 if (ret) 3508 return ret; 3509 3510 ret = get_user(value, uprop + 1); 3511 if (ret) 3512 return ret; 3513 3514 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3515 DRM_DEBUG("Unknown i915 perf property ID\n"); 3516 return -EINVAL; 3517 } 3518 3519 switch ((enum drm_i915_perf_property_id)id) { 3520 case DRM_I915_PERF_PROP_CTX_HANDLE: 3521 props->single_context = 1; 3522 props->ctx_handle = value; 3523 break; 3524 case DRM_I915_PERF_PROP_SAMPLE_OA: 3525 if (value) 3526 props->sample_flags |= SAMPLE_OA_REPORT; 3527 break; 3528 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3529 if (value == 0) { 3530 DRM_DEBUG("Unknown OA metric set ID\n"); 3531 return -EINVAL; 3532 } 3533 props->metrics_set = value; 3534 break; 3535 case DRM_I915_PERF_PROP_OA_FORMAT: 3536 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3537 DRM_DEBUG("Out-of-range OA report format %llu\n", 3538 value); 3539 return -EINVAL; 3540 } 3541 if (!perf->oa_formats[value].size) { 3542 DRM_DEBUG("Unsupported OA report format %llu\n", 3543 value); 3544 return -EINVAL; 3545 } 3546 props->oa_format = value; 3547 break; 3548 case DRM_I915_PERF_PROP_OA_EXPONENT: 3549 if (value > OA_EXPONENT_MAX) { 3550 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3551 OA_EXPONENT_MAX); 3552 return -EINVAL; 3553 } 3554 3555 /* Theoretically we can program the OA unit to sample 3556 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3557 * for BXT. We don't allow such high sampling 3558 * frequencies by default unless root. 3559 */ 3560 3561 BUILD_BUG_ON(sizeof(oa_period) != 8); 3562 oa_period = oa_exponent_to_ns(perf, value); 3563 3564 /* This check is primarily to ensure that oa_period <= 3565 * UINT32_MAX (before passing to do_div which only 3566 * accepts a u32 denominator), but we can also skip 3567 * checking anything < 1Hz which implicitly can't be 3568 * limited via an integer oa_max_sample_rate. 3569 */ 3570 if (oa_period <= NSEC_PER_SEC) { 3571 u64 tmp = NSEC_PER_SEC; 3572 do_div(tmp, oa_period); 3573 oa_freq_hz = tmp; 3574 } else 3575 oa_freq_hz = 0; 3576 3577 if (oa_freq_hz > i915_oa_max_sample_rate && 3578 !capable(CAP_SYS_ADMIN)) { 3579 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 3580 i915_oa_max_sample_rate); 3581 return -EACCES; 3582 } 3583 3584 props->oa_periodic = true; 3585 props->oa_period_exponent = value; 3586 break; 3587 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3588 props->hold_preemption = !!value; 3589 break; 3590 case DRM_I915_PERF_PROP_MAX: 3591 MISSING_CASE(id); 3592 return -EINVAL; 3593 } 3594 3595 uprop += 2; 3596 } 3597 3598 return 0; 3599 } 3600 3601 /** 3602 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3603 * @dev: drm device 3604 * @data: ioctl data copied from userspace (unvalidated) 3605 * @file: drm file 3606 * 3607 * Validates the stream open parameters given by userspace including flags 3608 * and an array of u64 key, value pair properties. 3609 * 3610 * Very little is assumed up front about the nature of the stream being 3611 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3612 * i915-perf stream is expected to be a suitable interface for other forms of 3613 * buffered data written by the GPU besides periodic OA metrics. 3614 * 3615 * Note we copy the properties from userspace outside of the i915 perf 3616 * mutex to avoid an awkward lockdep with mmap_sem. 3617 * 3618 * Most of the implementation details are handled by 3619 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3620 * mutex for serializing with any non-file-operation driver hooks. 3621 * 3622 * Return: A newly opened i915 Perf stream file descriptor or negative 3623 * error code on failure. 3624 */ 3625 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3626 struct drm_file *file) 3627 { 3628 struct i915_perf *perf = &to_i915(dev)->perf; 3629 struct drm_i915_perf_open_param *param = data; 3630 struct perf_open_properties props; 3631 u32 known_open_flags; 3632 int ret; 3633 3634 if (!perf->i915) { 3635 DRM_DEBUG("i915 perf interface not available for this system\n"); 3636 return -ENOTSUPP; 3637 } 3638 3639 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3640 I915_PERF_FLAG_FD_NONBLOCK | 3641 I915_PERF_FLAG_DISABLED; 3642 if (param->flags & ~known_open_flags) { 3643 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3644 return -EINVAL; 3645 } 3646 3647 ret = read_properties_unlocked(perf, 3648 u64_to_user_ptr(param->properties_ptr), 3649 param->num_properties, 3650 &props); 3651 if (ret) 3652 return ret; 3653 3654 mutex_lock(&perf->lock); 3655 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3656 mutex_unlock(&perf->lock); 3657 3658 return ret; 3659 } 3660 3661 /** 3662 * i915_perf_register - exposes i915-perf to userspace 3663 * @i915: i915 device instance 3664 * 3665 * In particular OA metric sets are advertised under a sysfs metrics/ 3666 * directory allowing userspace to enumerate valid IDs that can be 3667 * used to open an i915-perf stream. 3668 */ 3669 void i915_perf_register(struct drm_i915_private *i915) 3670 { 3671 struct i915_perf *perf = &i915->perf; 3672 int ret; 3673 3674 if (!perf->i915) 3675 return; 3676 3677 /* To be sure we're synchronized with an attempted 3678 * i915_perf_open_ioctl(); considering that we register after 3679 * being exposed to userspace. 3680 */ 3681 mutex_lock(&perf->lock); 3682 3683 perf->metrics_kobj = 3684 kobject_create_and_add("metrics", 3685 &i915->drm.primary->kdev->kobj); 3686 if (!perf->metrics_kobj) 3687 goto exit; 3688 3689 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr); 3690 3691 if (IS_TIGERLAKE(i915)) { 3692 i915_perf_load_test_config_tgl(i915); 3693 } else if (INTEL_GEN(i915) >= 11) { 3694 i915_perf_load_test_config_icl(i915); 3695 } else if (IS_CANNONLAKE(i915)) { 3696 i915_perf_load_test_config_cnl(i915); 3697 } else if (IS_COFFEELAKE(i915)) { 3698 if (IS_CFL_GT2(i915)) 3699 i915_perf_load_test_config_cflgt2(i915); 3700 if (IS_CFL_GT3(i915)) 3701 i915_perf_load_test_config_cflgt3(i915); 3702 } else if (IS_GEMINILAKE(i915)) { 3703 i915_perf_load_test_config_glk(i915); 3704 } else if (IS_KABYLAKE(i915)) { 3705 if (IS_KBL_GT2(i915)) 3706 i915_perf_load_test_config_kblgt2(i915); 3707 else if (IS_KBL_GT3(i915)) 3708 i915_perf_load_test_config_kblgt3(i915); 3709 } else if (IS_BROXTON(i915)) { 3710 i915_perf_load_test_config_bxt(i915); 3711 } else if (IS_SKYLAKE(i915)) { 3712 if (IS_SKL_GT2(i915)) 3713 i915_perf_load_test_config_sklgt2(i915); 3714 else if (IS_SKL_GT3(i915)) 3715 i915_perf_load_test_config_sklgt3(i915); 3716 else if (IS_SKL_GT4(i915)) 3717 i915_perf_load_test_config_sklgt4(i915); 3718 } else if (IS_CHERRYVIEW(i915)) { 3719 i915_perf_load_test_config_chv(i915); 3720 } else if (IS_BROADWELL(i915)) { 3721 i915_perf_load_test_config_bdw(i915); 3722 } else if (IS_HASWELL(i915)) { 3723 i915_perf_load_test_config_hsw(i915); 3724 } 3725 3726 if (perf->test_config.id == 0) 3727 goto sysfs_error; 3728 3729 ret = sysfs_create_group(perf->metrics_kobj, 3730 &perf->test_config.sysfs_metric); 3731 if (ret) 3732 goto sysfs_error; 3733 3734 perf->test_config.perf = perf; 3735 kref_init(&perf->test_config.ref); 3736 3737 goto exit; 3738 3739 sysfs_error: 3740 kobject_put(perf->metrics_kobj); 3741 perf->metrics_kobj = NULL; 3742 3743 exit: 3744 mutex_unlock(&perf->lock); 3745 } 3746 3747 /** 3748 * i915_perf_unregister - hide i915-perf from userspace 3749 * @i915: i915 device instance 3750 * 3751 * i915-perf state cleanup is split up into an 'unregister' and 3752 * 'deinit' phase where the interface is first hidden from 3753 * userspace by i915_perf_unregister() before cleaning up 3754 * remaining state in i915_perf_fini(). 3755 */ 3756 void i915_perf_unregister(struct drm_i915_private *i915) 3757 { 3758 struct i915_perf *perf = &i915->perf; 3759 3760 if (!perf->metrics_kobj) 3761 return; 3762 3763 sysfs_remove_group(perf->metrics_kobj, 3764 &perf->test_config.sysfs_metric); 3765 3766 kobject_put(perf->metrics_kobj); 3767 perf->metrics_kobj = NULL; 3768 } 3769 3770 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3771 { 3772 static const i915_reg_t flex_eu_regs[] = { 3773 EU_PERF_CNTL0, 3774 EU_PERF_CNTL1, 3775 EU_PERF_CNTL2, 3776 EU_PERF_CNTL3, 3777 EU_PERF_CNTL4, 3778 EU_PERF_CNTL5, 3779 EU_PERF_CNTL6, 3780 }; 3781 int i; 3782 3783 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3784 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3785 return true; 3786 } 3787 return false; 3788 } 3789 3790 #define ADDR_IN_RANGE(addr, start, end) \ 3791 ((addr) >= (start) && \ 3792 (addr) <= (end)) 3793 3794 #define REG_IN_RANGE(addr, start, end) \ 3795 ((addr) >= i915_mmio_reg_offset(start) && \ 3796 (addr) <= i915_mmio_reg_offset(end)) 3797 3798 #define REG_EQUAL(addr, mmio) \ 3799 ((addr) == i915_mmio_reg_offset(mmio)) 3800 3801 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3802 { 3803 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3804 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3805 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3806 } 3807 3808 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3809 { 3810 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3811 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3812 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3813 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3814 } 3815 3816 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3817 { 3818 return gen7_is_valid_mux_addr(perf, addr) || 3819 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3820 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3821 } 3822 3823 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3824 { 3825 return gen8_is_valid_mux_addr(perf, addr) || 3826 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3827 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3828 } 3829 3830 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3831 { 3832 return gen7_is_valid_mux_addr(perf, addr) || 3833 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3834 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3835 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3836 } 3837 3838 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3839 { 3840 return gen7_is_valid_mux_addr(perf, addr) || 3841 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3842 } 3843 3844 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3845 { 3846 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3847 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3848 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3849 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3850 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3851 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3852 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3853 } 3854 3855 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3856 { 3857 return REG_EQUAL(addr, NOA_WRITE) || 3858 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3859 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3860 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3861 REG_EQUAL(addr, RPM_CONFIG0) || 3862 REG_EQUAL(addr, RPM_CONFIG1) || 3863 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3864 } 3865 3866 static u32 mask_reg_value(u32 reg, u32 val) 3867 { 3868 /* HALF_SLICE_CHICKEN2 is programmed with a the 3869 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3870 * programmed by userspace doesn't change this. 3871 */ 3872 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3873 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3874 3875 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3876 * indicated by its name and a bunch of selection fields used by OA 3877 * configs. 3878 */ 3879 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3880 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3881 3882 return val; 3883 } 3884 3885 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3886 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3887 u32 __user *regs, 3888 u32 n_regs) 3889 { 3890 struct i915_oa_reg *oa_regs; 3891 int err; 3892 u32 i; 3893 3894 if (!n_regs) 3895 return NULL; 3896 3897 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3898 return ERR_PTR(-EFAULT); 3899 3900 /* No is_valid function means we're not allowing any register to be programmed. */ 3901 GEM_BUG_ON(!is_valid); 3902 if (!is_valid) 3903 return ERR_PTR(-EINVAL); 3904 3905 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3906 if (!oa_regs) 3907 return ERR_PTR(-ENOMEM); 3908 3909 for (i = 0; i < n_regs; i++) { 3910 u32 addr, value; 3911 3912 err = get_user(addr, regs); 3913 if (err) 3914 goto addr_err; 3915 3916 if (!is_valid(perf, addr)) { 3917 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3918 err = -EINVAL; 3919 goto addr_err; 3920 } 3921 3922 err = get_user(value, regs + 1); 3923 if (err) 3924 goto addr_err; 3925 3926 oa_regs[i].addr = _MMIO(addr); 3927 oa_regs[i].value = mask_reg_value(addr, value); 3928 3929 regs += 2; 3930 } 3931 3932 return oa_regs; 3933 3934 addr_err: 3935 kfree(oa_regs); 3936 return ERR_PTR(err); 3937 } 3938 3939 static ssize_t show_dynamic_id(struct device *dev, 3940 struct device_attribute *attr, 3941 char *buf) 3942 { 3943 struct i915_oa_config *oa_config = 3944 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3945 3946 return sprintf(buf, "%d\n", oa_config->id); 3947 } 3948 3949 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3950 struct i915_oa_config *oa_config) 3951 { 3952 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3953 oa_config->sysfs_metric_id.attr.name = "id"; 3954 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3955 oa_config->sysfs_metric_id.show = show_dynamic_id; 3956 oa_config->sysfs_metric_id.store = NULL; 3957 3958 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3959 oa_config->attrs[1] = NULL; 3960 3961 oa_config->sysfs_metric.name = oa_config->uuid; 3962 oa_config->sysfs_metric.attrs = oa_config->attrs; 3963 3964 return sysfs_create_group(perf->metrics_kobj, 3965 &oa_config->sysfs_metric); 3966 } 3967 3968 /** 3969 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3970 * @dev: drm device 3971 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3972 * userspace (unvalidated) 3973 * @file: drm file 3974 * 3975 * Validates the submitted OA register to be saved into a new OA config that 3976 * can then be used for programming the OA unit and its NOA network. 3977 * 3978 * Returns: A new allocated config number to be used with the perf open ioctl 3979 * or a negative error code on failure. 3980 */ 3981 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3982 struct drm_file *file) 3983 { 3984 struct i915_perf *perf = &to_i915(dev)->perf; 3985 struct drm_i915_perf_oa_config *args = data; 3986 struct i915_oa_config *oa_config, *tmp; 3987 struct i915_oa_reg *regs; 3988 int err, id; 3989 3990 if (!perf->i915) { 3991 DRM_DEBUG("i915 perf interface not available for this system\n"); 3992 return -ENOTSUPP; 3993 } 3994 3995 if (!perf->metrics_kobj) { 3996 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3997 return -EINVAL; 3998 } 3999 4000 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4001 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4002 return -EACCES; 4003 } 4004 4005 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4006 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4007 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4008 DRM_DEBUG("No OA registers given\n"); 4009 return -EINVAL; 4010 } 4011 4012 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4013 if (!oa_config) { 4014 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4015 return -ENOMEM; 4016 } 4017 4018 oa_config->perf = perf; 4019 kref_init(&oa_config->ref); 4020 4021 if (!uuid_is_valid(args->uuid)) { 4022 DRM_DEBUG("Invalid uuid format for OA config\n"); 4023 err = -EINVAL; 4024 goto reg_err; 4025 } 4026 4027 /* Last character in oa_config->uuid will be 0 because oa_config is 4028 * kzalloc. 4029 */ 4030 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4031 4032 oa_config->mux_regs_len = args->n_mux_regs; 4033 regs = alloc_oa_regs(perf, 4034 perf->ops.is_valid_mux_reg, 4035 u64_to_user_ptr(args->mux_regs_ptr), 4036 args->n_mux_regs); 4037 4038 if (IS_ERR(regs)) { 4039 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4040 err = PTR_ERR(regs); 4041 goto reg_err; 4042 } 4043 oa_config->mux_regs = regs; 4044 4045 oa_config->b_counter_regs_len = args->n_boolean_regs; 4046 regs = alloc_oa_regs(perf, 4047 perf->ops.is_valid_b_counter_reg, 4048 u64_to_user_ptr(args->boolean_regs_ptr), 4049 args->n_boolean_regs); 4050 4051 if (IS_ERR(regs)) { 4052 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4053 err = PTR_ERR(regs); 4054 goto reg_err; 4055 } 4056 oa_config->b_counter_regs = regs; 4057 4058 if (INTEL_GEN(perf->i915) < 8) { 4059 if (args->n_flex_regs != 0) { 4060 err = -EINVAL; 4061 goto reg_err; 4062 } 4063 } else { 4064 oa_config->flex_regs_len = args->n_flex_regs; 4065 regs = alloc_oa_regs(perf, 4066 perf->ops.is_valid_flex_reg, 4067 u64_to_user_ptr(args->flex_regs_ptr), 4068 args->n_flex_regs); 4069 4070 if (IS_ERR(regs)) { 4071 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4072 err = PTR_ERR(regs); 4073 goto reg_err; 4074 } 4075 oa_config->flex_regs = regs; 4076 } 4077 4078 err = mutex_lock_interruptible(&perf->metrics_lock); 4079 if (err) 4080 goto reg_err; 4081 4082 /* We shouldn't have too many configs, so this iteration shouldn't be 4083 * too costly. 4084 */ 4085 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4086 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4087 DRM_DEBUG("OA config already exists with this uuid\n"); 4088 err = -EADDRINUSE; 4089 goto sysfs_err; 4090 } 4091 } 4092 4093 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4094 if (err) { 4095 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4096 goto sysfs_err; 4097 } 4098 4099 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4100 oa_config->id = idr_alloc(&perf->metrics_idr, 4101 oa_config, 2, 4102 0, GFP_KERNEL); 4103 if (oa_config->id < 0) { 4104 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4105 err = oa_config->id; 4106 goto sysfs_err; 4107 } 4108 4109 mutex_unlock(&perf->metrics_lock); 4110 4111 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4112 4113 return oa_config->id; 4114 4115 sysfs_err: 4116 mutex_unlock(&perf->metrics_lock); 4117 reg_err: 4118 i915_oa_config_put(oa_config); 4119 DRM_DEBUG("Failed to add new OA config\n"); 4120 return err; 4121 } 4122 4123 /** 4124 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4125 * @dev: drm device 4126 * @data: ioctl data (pointer to u64 integer) copied from userspace 4127 * @file: drm file 4128 * 4129 * Configs can be removed while being used, the will stop appearing in sysfs 4130 * and their content will be freed when the stream using the config is closed. 4131 * 4132 * Returns: 0 on success or a negative error code on failure. 4133 */ 4134 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4135 struct drm_file *file) 4136 { 4137 struct i915_perf *perf = &to_i915(dev)->perf; 4138 u64 *arg = data; 4139 struct i915_oa_config *oa_config; 4140 int ret; 4141 4142 if (!perf->i915) { 4143 DRM_DEBUG("i915 perf interface not available for this system\n"); 4144 return -ENOTSUPP; 4145 } 4146 4147 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4148 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4149 return -EACCES; 4150 } 4151 4152 ret = mutex_lock_interruptible(&perf->metrics_lock); 4153 if (ret) 4154 return ret; 4155 4156 oa_config = idr_find(&perf->metrics_idr, *arg); 4157 if (!oa_config) { 4158 DRM_DEBUG("Failed to remove unknown OA config\n"); 4159 ret = -ENOENT; 4160 goto err_unlock; 4161 } 4162 4163 GEM_BUG_ON(*arg != oa_config->id); 4164 4165 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4166 4167 idr_remove(&perf->metrics_idr, *arg); 4168 4169 mutex_unlock(&perf->metrics_lock); 4170 4171 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4172 4173 i915_oa_config_put(oa_config); 4174 4175 return 0; 4176 4177 err_unlock: 4178 mutex_unlock(&perf->metrics_lock); 4179 return ret; 4180 } 4181 4182 static struct ctl_table oa_table[] = { 4183 { 4184 .procname = "perf_stream_paranoid", 4185 .data = &i915_perf_stream_paranoid, 4186 .maxlen = sizeof(i915_perf_stream_paranoid), 4187 .mode = 0644, 4188 .proc_handler = proc_dointvec_minmax, 4189 .extra1 = SYSCTL_ZERO, 4190 .extra2 = SYSCTL_ONE, 4191 }, 4192 { 4193 .procname = "oa_max_sample_rate", 4194 .data = &i915_oa_max_sample_rate, 4195 .maxlen = sizeof(i915_oa_max_sample_rate), 4196 .mode = 0644, 4197 .proc_handler = proc_dointvec_minmax, 4198 .extra1 = SYSCTL_ZERO, 4199 .extra2 = &oa_sample_rate_hard_limit, 4200 }, 4201 {} 4202 }; 4203 4204 static struct ctl_table i915_root[] = { 4205 { 4206 .procname = "i915", 4207 .maxlen = 0, 4208 .mode = 0555, 4209 .child = oa_table, 4210 }, 4211 {} 4212 }; 4213 4214 static struct ctl_table dev_root[] = { 4215 { 4216 .procname = "dev", 4217 .maxlen = 0, 4218 .mode = 0555, 4219 .child = i915_root, 4220 }, 4221 {} 4222 }; 4223 4224 /** 4225 * i915_perf_init - initialize i915-perf state on module bind 4226 * @i915: i915 device instance 4227 * 4228 * Initializes i915-perf state without exposing anything to userspace. 4229 * 4230 * Note: i915-perf initialization is split into an 'init' and 'register' 4231 * phase with the i915_perf_register() exposing state to userspace. 4232 */ 4233 void i915_perf_init(struct drm_i915_private *i915) 4234 { 4235 struct i915_perf *perf = &i915->perf; 4236 4237 /* XXX const struct i915_perf_ops! */ 4238 4239 if (IS_HASWELL(i915)) { 4240 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4241 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4242 perf->ops.is_valid_flex_reg = NULL; 4243 perf->ops.enable_metric_set = hsw_enable_metric_set; 4244 perf->ops.disable_metric_set = hsw_disable_metric_set; 4245 perf->ops.oa_enable = gen7_oa_enable; 4246 perf->ops.oa_disable = gen7_oa_disable; 4247 perf->ops.read = gen7_oa_read; 4248 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4249 4250 perf->oa_formats = hsw_oa_formats; 4251 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4252 /* Note: that although we could theoretically also support the 4253 * legacy ringbuffer mode on BDW (and earlier iterations of 4254 * this driver, before upstreaming did this) it didn't seem 4255 * worth the complexity to maintain now that BDW+ enable 4256 * execlist mode by default. 4257 */ 4258 perf->ops.read = gen8_oa_read; 4259 4260 if (IS_GEN_RANGE(i915, 8, 9)) { 4261 perf->oa_formats = gen8_plus_oa_formats; 4262 4263 perf->ops.is_valid_b_counter_reg = 4264 gen7_is_valid_b_counter_addr; 4265 perf->ops.is_valid_mux_reg = 4266 gen8_is_valid_mux_addr; 4267 perf->ops.is_valid_flex_reg = 4268 gen8_is_valid_flex_addr; 4269 4270 if (IS_CHERRYVIEW(i915)) { 4271 perf->ops.is_valid_mux_reg = 4272 chv_is_valid_mux_addr; 4273 } 4274 4275 perf->ops.oa_enable = gen8_oa_enable; 4276 perf->ops.oa_disable = gen8_oa_disable; 4277 perf->ops.enable_metric_set = gen8_enable_metric_set; 4278 perf->ops.disable_metric_set = gen8_disable_metric_set; 4279 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4280 4281 if (IS_GEN(i915, 8)) { 4282 perf->ctx_oactxctrl_offset = 0x120; 4283 perf->ctx_flexeu0_offset = 0x2ce; 4284 4285 perf->gen8_valid_ctx_bit = BIT(25); 4286 } else { 4287 perf->ctx_oactxctrl_offset = 0x128; 4288 perf->ctx_flexeu0_offset = 0x3de; 4289 4290 perf->gen8_valid_ctx_bit = BIT(16); 4291 } 4292 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4293 perf->oa_formats = gen8_plus_oa_formats; 4294 4295 perf->ops.is_valid_b_counter_reg = 4296 gen7_is_valid_b_counter_addr; 4297 perf->ops.is_valid_mux_reg = 4298 gen10_is_valid_mux_addr; 4299 perf->ops.is_valid_flex_reg = 4300 gen8_is_valid_flex_addr; 4301 4302 perf->ops.oa_enable = gen8_oa_enable; 4303 perf->ops.oa_disable = gen8_oa_disable; 4304 perf->ops.enable_metric_set = gen8_enable_metric_set; 4305 perf->ops.disable_metric_set = gen10_disable_metric_set; 4306 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4307 4308 if (IS_GEN(i915, 10)) { 4309 perf->ctx_oactxctrl_offset = 0x128; 4310 perf->ctx_flexeu0_offset = 0x3de; 4311 } else { 4312 perf->ctx_oactxctrl_offset = 0x124; 4313 perf->ctx_flexeu0_offset = 0x78e; 4314 } 4315 perf->gen8_valid_ctx_bit = BIT(16); 4316 } else if (IS_GEN(i915, 12)) { 4317 perf->oa_formats = gen12_oa_formats; 4318 4319 perf->ops.is_valid_b_counter_reg = 4320 gen12_is_valid_b_counter_addr; 4321 perf->ops.is_valid_mux_reg = 4322 gen12_is_valid_mux_addr; 4323 perf->ops.is_valid_flex_reg = 4324 gen8_is_valid_flex_addr; 4325 4326 perf->ops.oa_enable = gen12_oa_enable; 4327 perf->ops.oa_disable = gen12_oa_disable; 4328 perf->ops.enable_metric_set = gen12_enable_metric_set; 4329 perf->ops.disable_metric_set = gen12_disable_metric_set; 4330 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4331 4332 perf->ctx_flexeu0_offset = 0; 4333 perf->ctx_oactxctrl_offset = 0x144; 4334 } 4335 } 4336 4337 if (perf->ops.enable_metric_set) { 4338 mutex_init(&perf->lock); 4339 4340 oa_sample_rate_hard_limit = 1000 * 4341 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2); 4342 4343 mutex_init(&perf->metrics_lock); 4344 idr_init(&perf->metrics_idr); 4345 4346 /* We set up some ratelimit state to potentially throttle any 4347 * _NOTES about spurious, invalid OA reports which we don't 4348 * forward to userspace. 4349 * 4350 * We print a _NOTE about any throttling when closing the 4351 * stream instead of waiting until driver _fini which no one 4352 * would ever see. 4353 * 4354 * Using the same limiting factors as printk_ratelimit() 4355 */ 4356 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4357 /* Since we use a DRM_NOTE for spurious reports it would be 4358 * inconsistent to let __ratelimit() automatically print a 4359 * warning for throttling. 4360 */ 4361 ratelimit_set_flags(&perf->spurious_report_rs, 4362 RATELIMIT_MSG_ON_RELEASE); 4363 4364 atomic64_set(&perf->noa_programming_delay, 4365 500 * 1000 /* 500us */); 4366 4367 perf->i915 = i915; 4368 } 4369 } 4370 4371 static int destroy_config(int id, void *p, void *data) 4372 { 4373 i915_oa_config_put(p); 4374 return 0; 4375 } 4376 4377 void i915_perf_sysctl_register(void) 4378 { 4379 sysctl_header = register_sysctl_table(dev_root); 4380 } 4381 4382 void i915_perf_sysctl_unregister(void) 4383 { 4384 unregister_sysctl_table(sysctl_header); 4385 } 4386 4387 /** 4388 * i915_perf_fini - Counter part to i915_perf_init() 4389 * @i915: i915 device instance 4390 */ 4391 void i915_perf_fini(struct drm_i915_private *i915) 4392 { 4393 struct i915_perf *perf = &i915->perf; 4394 4395 if (!perf->i915) 4396 return; 4397 4398 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4399 idr_destroy(&perf->metrics_idr); 4400 4401 memset(&perf->ops, 0, sizeof(perf->ops)); 4402 perf->i915 = NULL; 4403 } 4404 4405 /** 4406 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4407 * 4408 * This version number is used by userspace to detect available features. 4409 */ 4410 int i915_perf_ioctl_version(void) 4411 { 4412 /* 4413 * 1: Initial version 4414 * I915_PERF_IOCTL_ENABLE 4415 * I915_PERF_IOCTL_DISABLE 4416 * 4417 * 2: Added runtime modification of OA config. 4418 * I915_PERF_IOCTL_CONFIG 4419 * 4420 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4421 * preemption on a particular context so that performance data is 4422 * accessible from a delta of MI_RPC reports without looking at the 4423 * OA buffer. 4424 */ 4425 return 3; 4426 } 4427 4428 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4429 #include "selftests/i915_perf.c" 4430 #endif 4431