xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
212 #include "i915_oa_icl.h"
213 #include "intel_lrc_reg.h"
214 
215 /* HW requires this to be a power of two, between 128k and 16M, though driver
216  * is currently generally designed assuming the largest 16M size is used such
217  * that the overflow cases are unlikely in normal operation.
218  */
219 #define OA_BUFFER_SIZE		SZ_16M
220 
221 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
222 
223 /**
224  * DOC: OA Tail Pointer Race
225  *
226  * There's a HW race condition between OA unit tail pointer register updates and
227  * writes to memory whereby the tail pointer can sometimes get ahead of what's
228  * been written out to the OA buffer so far (in terms of what's visible to the
229  * CPU).
230  *
231  * Although this can be observed explicitly while copying reports to userspace
232  * by checking for a zeroed report-id field in tail reports, we want to account
233  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
234  * read() attempts.
235  *
236  * In effect we define a tail pointer for reading that lags the real tail
237  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
238  * time for the corresponding reports to become visible to the CPU.
239  *
240  * To manage this we actually track two tail pointers:
241  *  1) An 'aging' tail with an associated timestamp that is tracked until we
242  *     can trust the corresponding data is visible to the CPU; at which point
243  *     it is considered 'aged'.
244  *  2) An 'aged' tail that can be used for read()ing.
245  *
246  * The two separate pointers let us decouple read()s from tail pointer aging.
247  *
248  * The tail pointers are checked and updated at a limited rate within a hrtimer
249  * callback (the same callback that is used for delivering EPOLLIN events)
250  *
251  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
252  * indicates that an updated tail pointer is needed.
253  *
254  * Most of the implementation details for this workaround are in
255  * oa_buffer_check_unlocked() and _append_oa_reports()
256  *
257  * Note for posterity: previously the driver used to define an effective tail
258  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
259  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
260  * This was flawed considering that the OA unit may also automatically generate
261  * non-periodic reports (such as on context switch) or the OA unit may be
262  * enabled without any periodic sampling.
263  */
264 #define OA_TAIL_MARGIN_NSEC	100000ULL
265 #define INVALID_TAIL_PTR	0xffffffff
266 
267 /* frequency for checking whether the OA unit has written new reports to the
268  * circular OA buffer...
269  */
270 #define POLL_FREQUENCY 200
271 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
272 
273 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
274 static int zero;
275 static int one = 1;
276 static u32 i915_perf_stream_paranoid = true;
277 
278 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
279  * of the 64bit timestamp bits to trigger reports from) but there's currently
280  * no known use case for sampling as infrequently as once per 47 thousand years.
281  *
282  * Since the timestamps included in OA reports are only 32bits it seems
283  * reasonable to limit the OA exponent where it's still possible to account for
284  * overflow in OA report timestamps.
285  */
286 #define OA_EXPONENT_MAX 31
287 
288 #define INVALID_CTX_ID 0xffffffff
289 
290 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
291 #define OAREPORT_REASON_MASK           0x3f
292 #define OAREPORT_REASON_SHIFT          19
293 #define OAREPORT_REASON_TIMER          (1<<0)
294 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
295 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
296 
297 
298 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
299  *
300  * The highest sampling frequency we can theoretically program the OA unit
301  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
302  *
303  * Initialized just before we register the sysctl parameter.
304  */
305 static int oa_sample_rate_hard_limit;
306 
307 /* Theoretically we can program the OA unit to sample every 160ns but don't
308  * allow that by default unless root...
309  *
310  * The default threshold of 100000Hz is based on perf's similar
311  * kernel.perf_event_max_sample_rate sysctl parameter.
312  */
313 static u32 i915_oa_max_sample_rate = 100000;
314 
315 /* XXX: beware if future OA HW adds new report formats that the current
316  * code assumes all reports have a power-of-two size and ~(size - 1) can
317  * be used as a mask to align the OA tail pointer.
318  */
319 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
320 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
321 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
322 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
323 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
324 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
325 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
326 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
327 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
328 };
329 
330 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
331 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
332 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
333 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
334 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
335 };
336 
337 #define SAMPLE_OA_REPORT      (1<<0)
338 
339 /**
340  * struct perf_open_properties - for validated properties given to open a stream
341  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
342  * @single_context: Whether a single or all gpu contexts should be monitored
343  * @ctx_handle: A gem ctx handle for use with @single_context
344  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
345  * @oa_format: An OA unit HW report format
346  * @oa_periodic: Whether to enable periodic OA unit sampling
347  * @oa_period_exponent: The OA unit sampling period is derived from this
348  *
349  * As read_properties_unlocked() enumerates and validates the properties given
350  * to open a stream of metrics the configuration is built up in the structure
351  * which starts out zero initialized.
352  */
353 struct perf_open_properties {
354 	u32 sample_flags;
355 
356 	u64 single_context:1;
357 	u64 ctx_handle;
358 
359 	/* OA sampling state */
360 	int metrics_set;
361 	int oa_format;
362 	bool oa_periodic;
363 	int oa_period_exponent;
364 };
365 
366 static void free_oa_config(struct drm_i915_private *dev_priv,
367 			   struct i915_oa_config *oa_config)
368 {
369 	if (!PTR_ERR(oa_config->flex_regs))
370 		kfree(oa_config->flex_regs);
371 	if (!PTR_ERR(oa_config->b_counter_regs))
372 		kfree(oa_config->b_counter_regs);
373 	if (!PTR_ERR(oa_config->mux_regs))
374 		kfree(oa_config->mux_regs);
375 	kfree(oa_config);
376 }
377 
378 static void put_oa_config(struct drm_i915_private *dev_priv,
379 			  struct i915_oa_config *oa_config)
380 {
381 	if (!atomic_dec_and_test(&oa_config->ref_count))
382 		return;
383 
384 	free_oa_config(dev_priv, oa_config);
385 }
386 
387 static int get_oa_config(struct drm_i915_private *dev_priv,
388 			 int metrics_set,
389 			 struct i915_oa_config **out_config)
390 {
391 	int ret;
392 
393 	if (metrics_set == 1) {
394 		*out_config = &dev_priv->perf.oa.test_config;
395 		atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
396 		return 0;
397 	}
398 
399 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
400 	if (ret)
401 		return ret;
402 
403 	*out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
404 	if (!*out_config)
405 		ret = -EINVAL;
406 	else
407 		atomic_inc(&(*out_config)->ref_count);
408 
409 	mutex_unlock(&dev_priv->perf.metrics_lock);
410 
411 	return ret;
412 }
413 
414 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
415 {
416 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
417 }
418 
419 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
420 {
421 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
422 
423 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
424 }
425 
426 /**
427  * oa_buffer_check_unlocked - check for data and update tail ptr state
428  * @dev_priv: i915 device instance
429  *
430  * This is either called via fops (for blocking reads in user ctx) or the poll
431  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
432  * if there is data available for userspace to read.
433  *
434  * This function is central to providing a workaround for the OA unit tail
435  * pointer having a race with respect to what data is visible to the CPU.
436  * It is responsible for reading tail pointers from the hardware and giving
437  * the pointers time to 'age' before they are made available for reading.
438  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
439  *
440  * Besides returning true when there is data available to read() this function
441  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
442  * and .aged_tail_idx state used for reading.
443  *
444  * Note: It's safe to read OA config state here unlocked, assuming that this is
445  * only called while the stream is enabled, while the global OA configuration
446  * can't be modified.
447  *
448  * Returns: %true if the OA buffer contains data, else %false
449  */
450 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
451 {
452 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
453 	unsigned long flags;
454 	unsigned int aged_idx;
455 	u32 head, hw_tail, aged_tail, aging_tail;
456 	u64 now;
457 
458 	/* We have to consider the (unlikely) possibility that read() errors
459 	 * could result in an OA buffer reset which might reset the head,
460 	 * tails[] and aged_tail state.
461 	 */
462 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
463 
464 	/* NB: The head we observe here might effectively be a little out of
465 	 * date (between head and tails[aged_idx].offset if there is currently
466 	 * a read() in progress.
467 	 */
468 	head = dev_priv->perf.oa.oa_buffer.head;
469 
470 	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
471 	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
472 	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
473 
474 	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
475 
476 	/* The tail pointer increases in 64 byte increments,
477 	 * not in report_size steps...
478 	 */
479 	hw_tail &= ~(report_size - 1);
480 
481 	now = ktime_get_mono_fast_ns();
482 
483 	/* Update the aged tail
484 	 *
485 	 * Flip the tail pointer available for read()s once the aging tail is
486 	 * old enough to trust that the corresponding data will be visible to
487 	 * the CPU...
488 	 *
489 	 * Do this before updating the aging pointer in case we may be able to
490 	 * immediately start aging a new pointer too (if new data has become
491 	 * available) without needing to wait for a later hrtimer callback.
492 	 */
493 	if (aging_tail != INVALID_TAIL_PTR &&
494 	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
495 	     OA_TAIL_MARGIN_NSEC)) {
496 
497 		aged_idx ^= 1;
498 		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
499 
500 		aged_tail = aging_tail;
501 
502 		/* Mark that we need a new pointer to start aging... */
503 		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
504 		aging_tail = INVALID_TAIL_PTR;
505 	}
506 
507 	/* Update the aging tail
508 	 *
509 	 * We throttle aging tail updates until we have a new tail that
510 	 * represents >= one report more data than is already available for
511 	 * reading. This ensures there will be enough data for a successful
512 	 * read once this new pointer has aged and ensures we will give the new
513 	 * pointer time to age.
514 	 */
515 	if (aging_tail == INVALID_TAIL_PTR &&
516 	    (aged_tail == INVALID_TAIL_PTR ||
517 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
518 		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
519 		u32 gtt_offset = i915_ggtt_offset(vma);
520 
521 		/* Be paranoid and do a bounds check on the pointer read back
522 		 * from hardware, just in case some spurious hardware condition
523 		 * could put the tail out of bounds...
524 		 */
525 		if (hw_tail >= gtt_offset &&
526 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
527 			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
528 				aging_tail = hw_tail;
529 			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
530 		} else {
531 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
532 				  hw_tail);
533 		}
534 	}
535 
536 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
537 
538 	return aged_tail == INVALID_TAIL_PTR ?
539 		false : OA_TAKEN(aged_tail, head) >= report_size;
540 }
541 
542 /**
543  * append_oa_status - Appends a status record to a userspace read() buffer.
544  * @stream: An i915-perf stream opened for OA metrics
545  * @buf: destination buffer given by userspace
546  * @count: the number of bytes userspace wants to read
547  * @offset: (inout): the current position for writing into @buf
548  * @type: The kind of status to report to userspace
549  *
550  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
551  * into the userspace read() buffer.
552  *
553  * The @buf @offset will only be updated on success.
554  *
555  * Returns: 0 on success, negative error code on failure.
556  */
557 static int append_oa_status(struct i915_perf_stream *stream,
558 			    char __user *buf,
559 			    size_t count,
560 			    size_t *offset,
561 			    enum drm_i915_perf_record_type type)
562 {
563 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
564 
565 	if ((count - *offset) < header.size)
566 		return -ENOSPC;
567 
568 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
569 		return -EFAULT;
570 
571 	(*offset) += header.size;
572 
573 	return 0;
574 }
575 
576 /**
577  * append_oa_sample - Copies single OA report into userspace read() buffer.
578  * @stream: An i915-perf stream opened for OA metrics
579  * @buf: destination buffer given by userspace
580  * @count: the number of bytes userspace wants to read
581  * @offset: (inout): the current position for writing into @buf
582  * @report: A single OA report to (optionally) include as part of the sample
583  *
584  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
585  * properties when opening a stream, tracked as `stream->sample_flags`. This
586  * function copies the requested components of a single sample to the given
587  * read() @buf.
588  *
589  * The @buf @offset will only be updated on success.
590  *
591  * Returns: 0 on success, negative error code on failure.
592  */
593 static int append_oa_sample(struct i915_perf_stream *stream,
594 			    char __user *buf,
595 			    size_t count,
596 			    size_t *offset,
597 			    const u8 *report)
598 {
599 	struct drm_i915_private *dev_priv = stream->dev_priv;
600 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
601 	struct drm_i915_perf_record_header header;
602 	u32 sample_flags = stream->sample_flags;
603 
604 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
605 	header.pad = 0;
606 	header.size = stream->sample_size;
607 
608 	if ((count - *offset) < header.size)
609 		return -ENOSPC;
610 
611 	buf += *offset;
612 	if (copy_to_user(buf, &header, sizeof(header)))
613 		return -EFAULT;
614 	buf += sizeof(header);
615 
616 	if (sample_flags & SAMPLE_OA_REPORT) {
617 		if (copy_to_user(buf, report, report_size))
618 			return -EFAULT;
619 	}
620 
621 	(*offset) += header.size;
622 
623 	return 0;
624 }
625 
626 /**
627  * Copies all buffered OA reports into userspace read() buffer.
628  * @stream: An i915-perf stream opened for OA metrics
629  * @buf: destination buffer given by userspace
630  * @count: the number of bytes userspace wants to read
631  * @offset: (inout): the current position for writing into @buf
632  *
633  * Notably any error condition resulting in a short read (-%ENOSPC or
634  * -%EFAULT) will be returned even though one or more records may
635  * have been successfully copied. In this case it's up to the caller
636  * to decide if the error should be squashed before returning to
637  * userspace.
638  *
639  * Note: reports are consumed from the head, and appended to the
640  * tail, so the tail chases the head?... If you think that's mad
641  * and back-to-front you're not alone, but this follows the
642  * Gen PRM naming convention.
643  *
644  * Returns: 0 on success, negative error code on failure.
645  */
646 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
647 				  char __user *buf,
648 				  size_t count,
649 				  size_t *offset)
650 {
651 	struct drm_i915_private *dev_priv = stream->dev_priv;
652 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
653 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
654 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
655 	u32 mask = (OA_BUFFER_SIZE - 1);
656 	size_t start_offset = *offset;
657 	unsigned long flags;
658 	unsigned int aged_tail_idx;
659 	u32 head, tail;
660 	u32 taken;
661 	int ret = 0;
662 
663 	if (WARN_ON(!stream->enabled))
664 		return -EIO;
665 
666 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
667 
668 	head = dev_priv->perf.oa.oa_buffer.head;
669 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
670 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
671 
672 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
673 
674 	/*
675 	 * An invalid tail pointer here means we're still waiting for the poll
676 	 * hrtimer callback to give us a pointer
677 	 */
678 	if (tail == INVALID_TAIL_PTR)
679 		return -EAGAIN;
680 
681 	/*
682 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
683 	 * while indexing relative to oa_buf_base.
684 	 */
685 	head -= gtt_offset;
686 	tail -= gtt_offset;
687 
688 	/*
689 	 * An out of bounds or misaligned head or tail pointer implies a driver
690 	 * bug since we validate + align the tail pointers we read from the
691 	 * hardware and we are in full control of the head pointer which should
692 	 * only be incremented by multiples of the report size (notably also
693 	 * all a power of two).
694 	 */
695 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
696 		      tail > OA_BUFFER_SIZE || tail % report_size,
697 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
698 		      head, tail))
699 		return -EIO;
700 
701 
702 	for (/* none */;
703 	     (taken = OA_TAKEN(tail, head));
704 	     head = (head + report_size) & mask) {
705 		u8 *report = oa_buf_base + head;
706 		u32 *report32 = (void *)report;
707 		u32 ctx_id;
708 		u32 reason;
709 
710 		/*
711 		 * All the report sizes factor neatly into the buffer
712 		 * size so we never expect to see a report split
713 		 * between the beginning and end of the buffer.
714 		 *
715 		 * Given the initial alignment check a misalignment
716 		 * here would imply a driver bug that would result
717 		 * in an overrun.
718 		 */
719 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
720 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
721 			break;
722 		}
723 
724 		/*
725 		 * The reason field includes flags identifying what
726 		 * triggered this specific report (mostly timer
727 		 * triggered or e.g. due to a context switch).
728 		 *
729 		 * This field is never expected to be zero so we can
730 		 * check that the report isn't invalid before copying
731 		 * it to userspace...
732 		 */
733 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
734 			  OAREPORT_REASON_MASK);
735 		if (reason == 0) {
736 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
737 				DRM_NOTE("Skipping spurious, invalid OA report\n");
738 			continue;
739 		}
740 
741 		ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
742 
743 		/*
744 		 * Squash whatever is in the CTX_ID field if it's marked as
745 		 * invalid to be sure we avoid false-positive, single-context
746 		 * filtering below...
747 		 *
748 		 * Note: that we don't clear the valid_ctx_bit so userspace can
749 		 * understand that the ID has been squashed by the kernel.
750 		 */
751 		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
752 			ctx_id = report32[2] = INVALID_CTX_ID;
753 
754 		/*
755 		 * NB: For Gen 8 the OA unit no longer supports clock gating
756 		 * off for a specific context and the kernel can't securely
757 		 * stop the counters from updating as system-wide / global
758 		 * values.
759 		 *
760 		 * Automatic reports now include a context ID so reports can be
761 		 * filtered on the cpu but it's not worth trying to
762 		 * automatically subtract/hide counter progress for other
763 		 * contexts while filtering since we can't stop userspace
764 		 * issuing MI_REPORT_PERF_COUNT commands which would still
765 		 * provide a side-band view of the real values.
766 		 *
767 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
768 		 * to normalize counters for a single filtered context then it
769 		 * needs be forwarded bookend context-switch reports so that it
770 		 * can track switches in between MI_REPORT_PERF_COUNT commands
771 		 * and can itself subtract/ignore the progress of counters
772 		 * associated with other contexts. Note that the hardware
773 		 * automatically triggers reports when switching to a new
774 		 * context which are tagged with the ID of the newly active
775 		 * context. To avoid the complexity (and likely fragility) of
776 		 * reading ahead while parsing reports to try and minimize
777 		 * forwarding redundant context switch reports (i.e. between
778 		 * other, unrelated contexts) we simply elect to forward them
779 		 * all.
780 		 *
781 		 * We don't rely solely on the reason field to identify context
782 		 * switches since it's not-uncommon for periodic samples to
783 		 * identify a switch before any 'context switch' report.
784 		 */
785 		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
786 		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
787 		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
788 		     dev_priv->perf.oa.specific_ctx_id) ||
789 		    reason & OAREPORT_REASON_CTX_SWITCH) {
790 
791 			/*
792 			 * While filtering for a single context we avoid
793 			 * leaking the IDs of other contexts.
794 			 */
795 			if (dev_priv->perf.oa.exclusive_stream->ctx &&
796 			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
797 				report32[2] = INVALID_CTX_ID;
798 			}
799 
800 			ret = append_oa_sample(stream, buf, count, offset,
801 					       report);
802 			if (ret)
803 				break;
804 
805 			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
806 		}
807 
808 		/*
809 		 * The above reason field sanity check is based on
810 		 * the assumption that the OA buffer is initially
811 		 * zeroed and we reset the field after copying so the
812 		 * check is still meaningful once old reports start
813 		 * being overwritten.
814 		 */
815 		report32[0] = 0;
816 	}
817 
818 	if (start_offset != *offset) {
819 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
820 
821 		/*
822 		 * We removed the gtt_offset for the copy loop above, indexing
823 		 * relative to oa_buf_base so put back here...
824 		 */
825 		head += gtt_offset;
826 
827 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
828 		dev_priv->perf.oa.oa_buffer.head = head;
829 
830 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
831 	}
832 
833 	return ret;
834 }
835 
836 /**
837  * gen8_oa_read - copy status records then buffered OA reports
838  * @stream: An i915-perf stream opened for OA metrics
839  * @buf: destination buffer given by userspace
840  * @count: the number of bytes userspace wants to read
841  * @offset: (inout): the current position for writing into @buf
842  *
843  * Checks OA unit status registers and if necessary appends corresponding
844  * status records for userspace (such as for a buffer full condition) and then
845  * initiate appending any buffered OA reports.
846  *
847  * Updates @offset according to the number of bytes successfully copied into
848  * the userspace buffer.
849  *
850  * NB: some data may be successfully copied to the userspace buffer
851  * even if an error is returned, and this is reflected in the
852  * updated @offset.
853  *
854  * Returns: zero on success or a negative error code
855  */
856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 			char __user *buf,
858 			size_t count,
859 			size_t *offset)
860 {
861 	struct drm_i915_private *dev_priv = stream->dev_priv;
862 	u32 oastatus;
863 	int ret;
864 
865 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
866 		return -EIO;
867 
868 	oastatus = I915_READ(GEN8_OASTATUS);
869 
870 	/*
871 	 * We treat OABUFFER_OVERFLOW as a significant error:
872 	 *
873 	 * Although theoretically we could handle this more gracefully
874 	 * sometimes, some Gens don't correctly suppress certain
875 	 * automatically triggered reports in this condition and so we
876 	 * have to assume that old reports are now being trampled
877 	 * over.
878 	 *
879 	 * Considering how we don't currently give userspace control
880 	 * over the OA buffer size and always configure a large 16MB
881 	 * buffer, then a buffer overflow does anyway likely indicate
882 	 * that something has gone quite badly wrong.
883 	 */
884 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
885 		ret = append_oa_status(stream, buf, count, offset,
886 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
887 		if (ret)
888 			return ret;
889 
890 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
891 			  dev_priv->perf.oa.period_exponent);
892 
893 		dev_priv->perf.oa.ops.oa_disable(stream);
894 		dev_priv->perf.oa.ops.oa_enable(stream);
895 
896 		/*
897 		 * Note: .oa_enable() is expected to re-init the oabuffer and
898 		 * reset GEN8_OASTATUS for us
899 		 */
900 		oastatus = I915_READ(GEN8_OASTATUS);
901 	}
902 
903 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
904 		ret = append_oa_status(stream, buf, count, offset,
905 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
906 		if (ret)
907 			return ret;
908 		I915_WRITE(GEN8_OASTATUS,
909 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
910 	}
911 
912 	return gen8_append_oa_reports(stream, buf, count, offset);
913 }
914 
915 /**
916  * Copies all buffered OA reports into userspace read() buffer.
917  * @stream: An i915-perf stream opened for OA metrics
918  * @buf: destination buffer given by userspace
919  * @count: the number of bytes userspace wants to read
920  * @offset: (inout): the current position for writing into @buf
921  *
922  * Notably any error condition resulting in a short read (-%ENOSPC or
923  * -%EFAULT) will be returned even though one or more records may
924  * have been successfully copied. In this case it's up to the caller
925  * to decide if the error should be squashed before returning to
926  * userspace.
927  *
928  * Note: reports are consumed from the head, and appended to the
929  * tail, so the tail chases the head?... If you think that's mad
930  * and back-to-front you're not alone, but this follows the
931  * Gen PRM naming convention.
932  *
933  * Returns: 0 on success, negative error code on failure.
934  */
935 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
936 				  char __user *buf,
937 				  size_t count,
938 				  size_t *offset)
939 {
940 	struct drm_i915_private *dev_priv = stream->dev_priv;
941 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
942 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
943 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
944 	u32 mask = (OA_BUFFER_SIZE - 1);
945 	size_t start_offset = *offset;
946 	unsigned long flags;
947 	unsigned int aged_tail_idx;
948 	u32 head, tail;
949 	u32 taken;
950 	int ret = 0;
951 
952 	if (WARN_ON(!stream->enabled))
953 		return -EIO;
954 
955 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
956 
957 	head = dev_priv->perf.oa.oa_buffer.head;
958 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
959 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
960 
961 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
962 
963 	/* An invalid tail pointer here means we're still waiting for the poll
964 	 * hrtimer callback to give us a pointer
965 	 */
966 	if (tail == INVALID_TAIL_PTR)
967 		return -EAGAIN;
968 
969 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
970 	 * while indexing relative to oa_buf_base.
971 	 */
972 	head -= gtt_offset;
973 	tail -= gtt_offset;
974 
975 	/* An out of bounds or misaligned head or tail pointer implies a driver
976 	 * bug since we validate + align the tail pointers we read from the
977 	 * hardware and we are in full control of the head pointer which should
978 	 * only be incremented by multiples of the report size (notably also
979 	 * all a power of two).
980 	 */
981 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
982 		      tail > OA_BUFFER_SIZE || tail % report_size,
983 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
984 		      head, tail))
985 		return -EIO;
986 
987 
988 	for (/* none */;
989 	     (taken = OA_TAKEN(tail, head));
990 	     head = (head + report_size) & mask) {
991 		u8 *report = oa_buf_base + head;
992 		u32 *report32 = (void *)report;
993 
994 		/* All the report sizes factor neatly into the buffer
995 		 * size so we never expect to see a report split
996 		 * between the beginning and end of the buffer.
997 		 *
998 		 * Given the initial alignment check a misalignment
999 		 * here would imply a driver bug that would result
1000 		 * in an overrun.
1001 		 */
1002 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1003 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1004 			break;
1005 		}
1006 
1007 		/* The report-ID field for periodic samples includes
1008 		 * some undocumented flags related to what triggered
1009 		 * the report and is never expected to be zero so we
1010 		 * can check that the report isn't invalid before
1011 		 * copying it to userspace...
1012 		 */
1013 		if (report32[0] == 0) {
1014 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1015 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1016 			continue;
1017 		}
1018 
1019 		ret = append_oa_sample(stream, buf, count, offset, report);
1020 		if (ret)
1021 			break;
1022 
1023 		/* The above report-id field sanity check is based on
1024 		 * the assumption that the OA buffer is initially
1025 		 * zeroed and we reset the field after copying so the
1026 		 * check is still meaningful once old reports start
1027 		 * being overwritten.
1028 		 */
1029 		report32[0] = 0;
1030 	}
1031 
1032 	if (start_offset != *offset) {
1033 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1034 
1035 		/* We removed the gtt_offset for the copy loop above, indexing
1036 		 * relative to oa_buf_base so put back here...
1037 		 */
1038 		head += gtt_offset;
1039 
1040 		I915_WRITE(GEN7_OASTATUS2,
1041 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
1042 			    GEN7_OASTATUS2_MEM_SELECT_GGTT));
1043 		dev_priv->perf.oa.oa_buffer.head = head;
1044 
1045 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 /**
1052  * gen7_oa_read - copy status records then buffered OA reports
1053  * @stream: An i915-perf stream opened for OA metrics
1054  * @buf: destination buffer given by userspace
1055  * @count: the number of bytes userspace wants to read
1056  * @offset: (inout): the current position for writing into @buf
1057  *
1058  * Checks Gen 7 specific OA unit status registers and if necessary appends
1059  * corresponding status records for userspace (such as for a buffer full
1060  * condition) and then initiate appending any buffered OA reports.
1061  *
1062  * Updates @offset according to the number of bytes successfully copied into
1063  * the userspace buffer.
1064  *
1065  * Returns: zero on success or a negative error code
1066  */
1067 static int gen7_oa_read(struct i915_perf_stream *stream,
1068 			char __user *buf,
1069 			size_t count,
1070 			size_t *offset)
1071 {
1072 	struct drm_i915_private *dev_priv = stream->dev_priv;
1073 	u32 oastatus1;
1074 	int ret;
1075 
1076 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1077 		return -EIO;
1078 
1079 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1080 
1081 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1082 	 * bits while the OA unit is enabled (while the tail pointer
1083 	 * may be updated asynchronously) so we ignore status bits
1084 	 * that have already been reported to userspace.
1085 	 */
1086 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1087 
1088 	/* We treat OABUFFER_OVERFLOW as a significant error:
1089 	 *
1090 	 * - The status can be interpreted to mean that the buffer is
1091 	 *   currently full (with a higher precedence than OA_TAKEN()
1092 	 *   which will start to report a near-empty buffer after an
1093 	 *   overflow) but it's awkward that we can't clear the status
1094 	 *   on Haswell, so without a reset we won't be able to catch
1095 	 *   the state again.
1096 	 *
1097 	 * - Since it also implies the HW has started overwriting old
1098 	 *   reports it may also affect our sanity checks for invalid
1099 	 *   reports when copying to userspace that assume new reports
1100 	 *   are being written to cleared memory.
1101 	 *
1102 	 * - In the future we may want to introduce a flight recorder
1103 	 *   mode where the driver will automatically maintain a safe
1104 	 *   guard band between head/tail, avoiding this overflow
1105 	 *   condition, but we avoid the added driver complexity for
1106 	 *   now.
1107 	 */
1108 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1109 		ret = append_oa_status(stream, buf, count, offset,
1110 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1111 		if (ret)
1112 			return ret;
1113 
1114 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1115 			  dev_priv->perf.oa.period_exponent);
1116 
1117 		dev_priv->perf.oa.ops.oa_disable(stream);
1118 		dev_priv->perf.oa.ops.oa_enable(stream);
1119 
1120 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1121 	}
1122 
1123 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1124 		ret = append_oa_status(stream, buf, count, offset,
1125 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1126 		if (ret)
1127 			return ret;
1128 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
1129 			GEN7_OASTATUS1_REPORT_LOST;
1130 	}
1131 
1132 	return gen7_append_oa_reports(stream, buf, count, offset);
1133 }
1134 
1135 /**
1136  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1137  * @stream: An i915-perf stream opened for OA metrics
1138  *
1139  * Called when userspace tries to read() from a blocking stream FD opened
1140  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1141  * OA buffer and wakes us.
1142  *
1143  * Note: it's acceptable to have this return with some false positives
1144  * since any subsequent read handling will return -EAGAIN if there isn't
1145  * really data ready for userspace yet.
1146  *
1147  * Returns: zero on success or a negative error code
1148  */
1149 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1150 {
1151 	struct drm_i915_private *dev_priv = stream->dev_priv;
1152 
1153 	/* We would wait indefinitely if periodic sampling is not enabled */
1154 	if (!dev_priv->perf.oa.periodic)
1155 		return -EIO;
1156 
1157 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1158 					oa_buffer_check_unlocked(dev_priv));
1159 }
1160 
1161 /**
1162  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1163  * @stream: An i915-perf stream opened for OA metrics
1164  * @file: An i915 perf stream file
1165  * @wait: poll() state table
1166  *
1167  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1168  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1169  * when it sees data ready to read in the circular OA buffer.
1170  */
1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1172 			      struct file *file,
1173 			      poll_table *wait)
1174 {
1175 	struct drm_i915_private *dev_priv = stream->dev_priv;
1176 
1177 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1178 }
1179 
1180 /**
1181  * i915_oa_read - just calls through to &i915_oa_ops->read
1182  * @stream: An i915-perf stream opened for OA metrics
1183  * @buf: destination buffer given by userspace
1184  * @count: the number of bytes userspace wants to read
1185  * @offset: (inout): the current position for writing into @buf
1186  *
1187  * Updates @offset according to the number of bytes successfully copied into
1188  * the userspace buffer.
1189  *
1190  * Returns: zero on success or a negative error code
1191  */
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 			char __user *buf,
1194 			size_t count,
1195 			size_t *offset)
1196 {
1197 	struct drm_i915_private *dev_priv = stream->dev_priv;
1198 
1199 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1200 }
1201 
1202 static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1203 					    struct i915_gem_context *ctx)
1204 {
1205 	struct intel_engine_cs *engine = i915->engine[RCS];
1206 	struct intel_context *ce;
1207 	int ret;
1208 
1209 	ret = i915_mutex_lock_interruptible(&i915->drm);
1210 	if (ret)
1211 		return ERR_PTR(ret);
1212 
1213 	/*
1214 	 * As the ID is the gtt offset of the context's vma we
1215 	 * pin the vma to ensure the ID remains fixed.
1216 	 *
1217 	 * NB: implied RCS engine...
1218 	 */
1219 	ce = intel_context_pin(ctx, engine);
1220 	mutex_unlock(&i915->drm.struct_mutex);
1221 	if (IS_ERR(ce))
1222 		return ce;
1223 
1224 	i915->perf.oa.pinned_ctx = ce;
1225 
1226 	return ce;
1227 }
1228 
1229 /**
1230  * oa_get_render_ctx_id - determine and hold ctx hw id
1231  * @stream: An i915-perf stream opened for OA metrics
1232  *
1233  * Determine the render context hw id, and ensure it remains fixed for the
1234  * lifetime of the stream. This ensures that we don't have to worry about
1235  * updating the context ID in OACONTROL on the fly.
1236  *
1237  * Returns: zero on success or a negative error code
1238  */
1239 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1240 {
1241 	struct drm_i915_private *i915 = stream->dev_priv;
1242 	struct intel_context *ce;
1243 
1244 	ce = oa_pin_context(i915, stream->ctx);
1245 	if (IS_ERR(ce))
1246 		return PTR_ERR(ce);
1247 
1248 	switch (INTEL_GEN(i915)) {
1249 	case 7: {
1250 		/*
1251 		 * On Haswell we don't do any post processing of the reports
1252 		 * and don't need to use the mask.
1253 		 */
1254 		i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1255 		i915->perf.oa.specific_ctx_id_mask = 0;
1256 		break;
1257 	}
1258 
1259 	case 8:
1260 	case 9:
1261 	case 10:
1262 		if (USES_GUC_SUBMISSION(i915)) {
1263 			/*
1264 			 * When using GuC, the context descriptor we write in
1265 			 * i915 is read by GuC and rewritten before it's
1266 			 * actually written into the hardware. The LRCA is
1267 			 * what is put into the context id field of the
1268 			 * context descriptor by GuC. Because it's aligned to
1269 			 * a page, the lower 12bits are always at 0 and
1270 			 * dropped by GuC. They won't be part of the context
1271 			 * ID in the OA reports, so squash those lower bits.
1272 			 */
1273 			i915->perf.oa.specific_ctx_id =
1274 				lower_32_bits(ce->lrc_desc) >> 12;
1275 
1276 			/*
1277 			 * GuC uses the top bit to signal proxy submission, so
1278 			 * ignore that bit.
1279 			 */
1280 			i915->perf.oa.specific_ctx_id_mask =
1281 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1282 		} else {
1283 			i915->perf.oa.specific_ctx_id_mask =
1284 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1285 			i915->perf.oa.specific_ctx_id =
1286 				upper_32_bits(ce->lrc_desc);
1287 			i915->perf.oa.specific_ctx_id &=
1288 				i915->perf.oa.specific_ctx_id_mask;
1289 		}
1290 		break;
1291 
1292 	case 11: {
1293 		i915->perf.oa.specific_ctx_id_mask =
1294 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1295 			((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1296 			((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1297 		i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1298 		i915->perf.oa.specific_ctx_id &=
1299 			i915->perf.oa.specific_ctx_id_mask;
1300 		break;
1301 	}
1302 
1303 	default:
1304 		MISSING_CASE(INTEL_GEN(i915));
1305 	}
1306 
1307 	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1308 			 i915->perf.oa.specific_ctx_id,
1309 			 i915->perf.oa.specific_ctx_id_mask);
1310 
1311 	return 0;
1312 }
1313 
1314 /**
1315  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1316  * @stream: An i915-perf stream opened for OA metrics
1317  *
1318  * In case anything needed doing to ensure the context HW ID would remain valid
1319  * for the lifetime of the stream, then that can be undone here.
1320  */
1321 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1322 {
1323 	struct drm_i915_private *dev_priv = stream->dev_priv;
1324 	struct intel_context *ce;
1325 
1326 	dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1327 	dev_priv->perf.oa.specific_ctx_id_mask = 0;
1328 
1329 	ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1330 	if (ce) {
1331 		mutex_lock(&dev_priv->drm.struct_mutex);
1332 		intel_context_unpin(ce);
1333 		mutex_unlock(&dev_priv->drm.struct_mutex);
1334 	}
1335 }
1336 
1337 static void
1338 free_oa_buffer(struct drm_i915_private *i915)
1339 {
1340 	mutex_lock(&i915->drm.struct_mutex);
1341 
1342 	i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma,
1343 				   I915_VMA_RELEASE_MAP);
1344 
1345 	mutex_unlock(&i915->drm.struct_mutex);
1346 
1347 	i915->perf.oa.oa_buffer.vaddr = NULL;
1348 }
1349 
1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1351 {
1352 	struct drm_i915_private *dev_priv = stream->dev_priv;
1353 
1354 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1355 
1356 	/*
1357 	 * Unset exclusive_stream first, it will be checked while disabling
1358 	 * the metric set on gen8+.
1359 	 */
1360 	mutex_lock(&dev_priv->drm.struct_mutex);
1361 	dev_priv->perf.oa.exclusive_stream = NULL;
1362 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1363 	mutex_unlock(&dev_priv->drm.struct_mutex);
1364 
1365 	free_oa_buffer(dev_priv);
1366 
1367 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1368 	intel_runtime_pm_put(dev_priv, stream->wakeref);
1369 
1370 	if (stream->ctx)
1371 		oa_put_render_ctx_id(stream);
1372 
1373 	put_oa_config(dev_priv, stream->oa_config);
1374 
1375 	if (dev_priv->perf.oa.spurious_report_rs.missed) {
1376 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1377 			 dev_priv->perf.oa.spurious_report_rs.missed);
1378 	}
1379 }
1380 
1381 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1382 {
1383 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1384 	unsigned long flags;
1385 
1386 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1387 
1388 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1389 	 * before OASTATUS1, but after OASTATUS2
1390 	 */
1391 	I915_WRITE(GEN7_OASTATUS2,
1392 		   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1393 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1394 
1395 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1396 
1397 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1398 
1399 	/* Mark that we need updated tail pointers to read from... */
1400 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1401 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1402 
1403 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1404 
1405 	/* On Haswell we have to track which OASTATUS1 flags we've
1406 	 * already seen since they can't be cleared while periodic
1407 	 * sampling is enabled.
1408 	 */
1409 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1410 
1411 	/* NB: although the OA buffer will initially be allocated
1412 	 * zeroed via shmfs (and so this memset is redundant when
1413 	 * first allocating), we may re-init the OA buffer, either
1414 	 * when re-enabling a stream or in error/reset paths.
1415 	 *
1416 	 * The reason we clear the buffer for each re-init is for the
1417 	 * sanity check in gen7_append_oa_reports() that looks at the
1418 	 * report-id field to make sure it's non-zero which relies on
1419 	 * the assumption that new reports are being written to zeroed
1420 	 * memory...
1421 	 */
1422 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1423 
1424 	/* Maybe make ->pollin per-stream state if we support multiple
1425 	 * concurrent streams in the future.
1426 	 */
1427 	dev_priv->perf.oa.pollin = false;
1428 }
1429 
1430 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1431 {
1432 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1433 	unsigned long flags;
1434 
1435 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1436 
1437 	I915_WRITE(GEN8_OASTATUS, 0);
1438 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1439 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1440 
1441 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1442 
1443 	/*
1444 	 * PRM says:
1445 	 *
1446 	 *  "This MMIO must be set before the OATAILPTR
1447 	 *  register and after the OAHEADPTR register. This is
1448 	 *  to enable proper functionality of the overflow
1449 	 *  bit."
1450 	 */
1451 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1452 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1453 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1454 
1455 	/* Mark that we need updated tail pointers to read from... */
1456 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1457 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1458 
1459 	/*
1460 	 * Reset state used to recognise context switches, affecting which
1461 	 * reports we will forward to userspace while filtering for a single
1462 	 * context.
1463 	 */
1464 	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1465 
1466 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1467 
1468 	/*
1469 	 * NB: although the OA buffer will initially be allocated
1470 	 * zeroed via shmfs (and so this memset is redundant when
1471 	 * first allocating), we may re-init the OA buffer, either
1472 	 * when re-enabling a stream or in error/reset paths.
1473 	 *
1474 	 * The reason we clear the buffer for each re-init is for the
1475 	 * sanity check in gen8_append_oa_reports() that looks at the
1476 	 * reason field to make sure it's non-zero which relies on
1477 	 * the assumption that new reports are being written to zeroed
1478 	 * memory...
1479 	 */
1480 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1481 
1482 	/*
1483 	 * Maybe make ->pollin per-stream state if we support multiple
1484 	 * concurrent streams in the future.
1485 	 */
1486 	dev_priv->perf.oa.pollin = false;
1487 }
1488 
1489 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1490 {
1491 	struct drm_i915_gem_object *bo;
1492 	struct i915_vma *vma;
1493 	int ret;
1494 
1495 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1496 		return -ENODEV;
1497 
1498 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1499 	if (ret)
1500 		return ret;
1501 
1502 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1503 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1504 
1505 	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1506 	if (IS_ERR(bo)) {
1507 		DRM_ERROR("Failed to allocate OA buffer\n");
1508 		ret = PTR_ERR(bo);
1509 		goto unlock;
1510 	}
1511 
1512 	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1513 	if (ret)
1514 		goto err_unref;
1515 
1516 	/* PreHSW required 512K alignment, HSW requires 16M */
1517 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1518 	if (IS_ERR(vma)) {
1519 		ret = PTR_ERR(vma);
1520 		goto err_unref;
1521 	}
1522 	dev_priv->perf.oa.oa_buffer.vma = vma;
1523 
1524 	dev_priv->perf.oa.oa_buffer.vaddr =
1525 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1526 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1527 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1528 		goto err_unpin;
1529 	}
1530 
1531 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1532 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1533 			 dev_priv->perf.oa.oa_buffer.vaddr);
1534 
1535 	goto unlock;
1536 
1537 err_unpin:
1538 	__i915_vma_unpin(vma);
1539 
1540 err_unref:
1541 	i915_gem_object_put(bo);
1542 
1543 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1544 	dev_priv->perf.oa.oa_buffer.vma = NULL;
1545 
1546 unlock:
1547 	mutex_unlock(&dev_priv->drm.struct_mutex);
1548 	return ret;
1549 }
1550 
1551 static void config_oa_regs(struct drm_i915_private *dev_priv,
1552 			   const struct i915_oa_reg *regs,
1553 			   u32 n_regs)
1554 {
1555 	u32 i;
1556 
1557 	for (i = 0; i < n_regs; i++) {
1558 		const struct i915_oa_reg *reg = regs + i;
1559 
1560 		I915_WRITE(reg->addr, reg->value);
1561 	}
1562 }
1563 
1564 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1565 {
1566 	struct drm_i915_private *dev_priv = stream->dev_priv;
1567 	const struct i915_oa_config *oa_config = stream->oa_config;
1568 
1569 	/* PRM:
1570 	 *
1571 	 * OA unit is using “crclk” for its functionality. When trunk
1572 	 * level clock gating takes place, OA clock would be gated,
1573 	 * unable to count the events from non-render clock domain.
1574 	 * Render clock gating must be disabled when OA is enabled to
1575 	 * count the events from non-render domain. Unit level clock
1576 	 * gating for RCS should also be disabled.
1577 	 */
1578 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1579 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1580 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1581 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1582 
1583 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1584 
1585 	/* It apparently takes a fairly long time for a new MUX
1586 	 * configuration to be be applied after these register writes.
1587 	 * This delay duration was derived empirically based on the
1588 	 * render_basic config but hopefully it covers the maximum
1589 	 * configuration latency.
1590 	 *
1591 	 * As a fallback, the checks in _append_oa_reports() to skip
1592 	 * invalid OA reports do also seem to work to discard reports
1593 	 * generated before this config has completed - albeit not
1594 	 * silently.
1595 	 *
1596 	 * Unfortunately this is essentially a magic number, since we
1597 	 * don't currently know of a reliable mechanism for predicting
1598 	 * how long the MUX config will take to apply and besides
1599 	 * seeing invalid reports we don't know of a reliable way to
1600 	 * explicitly check that the MUX config has landed.
1601 	 *
1602 	 * It's even possible we've miss characterized the underlying
1603 	 * problem - it just seems like the simplest explanation why
1604 	 * a delay at this location would mitigate any invalid reports.
1605 	 */
1606 	usleep_range(15000, 20000);
1607 
1608 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1609 		       oa_config->b_counter_regs_len);
1610 
1611 	return 0;
1612 }
1613 
1614 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1615 {
1616 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1617 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1618 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1619 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1620 
1621 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1622 				      ~GT_NOA_ENABLE));
1623 }
1624 
1625 /*
1626  * NB: It must always remain pointer safe to run this even if the OA unit
1627  * has been disabled.
1628  *
1629  * It's fine to put out-of-date values into these per-context registers
1630  * in the case that the OA unit has been disabled.
1631  */
1632 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1633 					   u32 *reg_state,
1634 					   const struct i915_oa_config *oa_config)
1635 {
1636 	struct drm_i915_private *dev_priv = ctx->i915;
1637 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1638 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1639 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1640 	i915_reg_t flex_regs[] = {
1641 		EU_PERF_CNTL0,
1642 		EU_PERF_CNTL1,
1643 		EU_PERF_CNTL2,
1644 		EU_PERF_CNTL3,
1645 		EU_PERF_CNTL4,
1646 		EU_PERF_CNTL5,
1647 		EU_PERF_CNTL6,
1648 	};
1649 	int i;
1650 
1651 	CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1652 		(dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1653 		(dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1654 		GEN8_OA_COUNTER_RESUME);
1655 
1656 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1657 		u32 state_offset = ctx_flexeu0 + i * 2;
1658 		u32 mmio = i915_mmio_reg_offset(flex_regs[i]);
1659 
1660 		/*
1661 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1662 		 * Active' event. In the future it's anticipated that there
1663 		 * will be an explicit 'No Event' we can select, but not yet...
1664 		 */
1665 		u32 value = 0;
1666 
1667 		if (oa_config) {
1668 			u32 j;
1669 
1670 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1671 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1672 					value = oa_config->flex_regs[j].value;
1673 					break;
1674 				}
1675 			}
1676 		}
1677 
1678 		CTX_REG(reg_state, state_offset, flex_regs[i], value);
1679 	}
1680 
1681 	CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1682 		gen8_make_rpcs(dev_priv,
1683 			       &to_intel_context(ctx,
1684 						 dev_priv->engine[RCS])->sseu));
1685 }
1686 
1687 /*
1688  * Manages updating the per-context aspects of the OA stream
1689  * configuration across all contexts.
1690  *
1691  * The awkward consideration here is that OACTXCONTROL controls the
1692  * exponent for periodic sampling which is primarily used for system
1693  * wide profiling where we'd like a consistent sampling period even in
1694  * the face of context switches.
1695  *
1696  * Our approach of updating the register state context (as opposed to
1697  * say using a workaround batch buffer) ensures that the hardware
1698  * won't automatically reload an out-of-date timer exponent even
1699  * transiently before a WA BB could be parsed.
1700  *
1701  * This function needs to:
1702  * - Ensure the currently running context's per-context OA state is
1703  *   updated
1704  * - Ensure that all existing contexts will have the correct per-context
1705  *   OA state if they are scheduled for use.
1706  * - Ensure any new contexts will be initialized with the correct
1707  *   per-context OA state.
1708  *
1709  * Note: it's only the RCS/Render context that has any OA state.
1710  */
1711 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1712 				       const struct i915_oa_config *oa_config)
1713 {
1714 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
1715 	unsigned int map_type = i915_coherent_map_type(dev_priv);
1716 	struct i915_gem_context *ctx;
1717 	struct i915_request *rq;
1718 	int ret;
1719 
1720 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1721 
1722 	/*
1723 	 * The OA register config is setup through the context image. This image
1724 	 * might be written to by the GPU on context switch (in particular on
1725 	 * lite-restore). This means we can't safely update a context's image,
1726 	 * if this context is scheduled/submitted to run on the GPU.
1727 	 *
1728 	 * We could emit the OA register config through the batch buffer but
1729 	 * this might leave small interval of time where the OA unit is
1730 	 * configured at an invalid sampling period.
1731 	 *
1732 	 * So far the best way to work around this issue seems to be draining
1733 	 * the GPU from any submitted work.
1734 	 */
1735 	ret = i915_gem_wait_for_idle(dev_priv,
1736 				     I915_WAIT_LOCKED,
1737 				     MAX_SCHEDULE_TIMEOUT);
1738 	if (ret)
1739 		return ret;
1740 
1741 	/* Update all contexts now that we've stalled the submission. */
1742 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1743 		struct intel_context *ce = to_intel_context(ctx, engine);
1744 		u32 *regs;
1745 
1746 		/* OA settings will be set upon first use */
1747 		if (!ce->state)
1748 			continue;
1749 
1750 		regs = i915_gem_object_pin_map(ce->state->obj, map_type);
1751 		if (IS_ERR(regs))
1752 			return PTR_ERR(regs);
1753 
1754 		ce->state->obj->mm.dirty = true;
1755 		regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1756 
1757 		gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1758 
1759 		i915_gem_object_unpin_map(ce->state->obj);
1760 	}
1761 
1762 	/*
1763 	 * Apply the configuration by doing one context restore of the edited
1764 	 * context image.
1765 	 */
1766 	rq = i915_request_alloc(engine, dev_priv->kernel_context);
1767 	if (IS_ERR(rq))
1768 		return PTR_ERR(rq);
1769 
1770 	i915_request_add(rq);
1771 
1772 	return 0;
1773 }
1774 
1775 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1776 {
1777 	struct drm_i915_private *dev_priv = stream->dev_priv;
1778 	const struct i915_oa_config *oa_config = stream->oa_config;
1779 	int ret;
1780 
1781 	/*
1782 	 * We disable slice/unslice clock ratio change reports on SKL since
1783 	 * they are too noisy. The HW generates a lot of redundant reports
1784 	 * where the ratio hasn't really changed causing a lot of redundant
1785 	 * work to processes and increasing the chances we'll hit buffer
1786 	 * overruns.
1787 	 *
1788 	 * Although we don't currently use the 'disable overrun' OABUFFER
1789 	 * feature it's worth noting that clock ratio reports have to be
1790 	 * disabled before considering to use that feature since the HW doesn't
1791 	 * correctly block these reports.
1792 	 *
1793 	 * Currently none of the high-level metrics we have depend on knowing
1794 	 * this ratio to normalize.
1795 	 *
1796 	 * Note: This register is not power context saved and restored, but
1797 	 * that's OK considering that we disable RC6 while the OA unit is
1798 	 * enabled.
1799 	 *
1800 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1801 	 * be read back from automatically triggered reports, as part of the
1802 	 * RPT_ID field.
1803 	 */
1804 	if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1805 		I915_WRITE(GEN8_OA_DEBUG,
1806 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1807 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1808 	}
1809 
1810 	/*
1811 	 * Update all contexts prior writing the mux configurations as we need
1812 	 * to make sure all slices/subslices are ON before writing to NOA
1813 	 * registers.
1814 	 */
1815 	ret = gen8_configure_all_contexts(dev_priv, oa_config);
1816 	if (ret)
1817 		return ret;
1818 
1819 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1820 
1821 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1822 		       oa_config->b_counter_regs_len);
1823 
1824 	return 0;
1825 }
1826 
1827 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1828 {
1829 	/* Reset all contexts' slices/subslices configurations. */
1830 	gen8_configure_all_contexts(dev_priv, NULL);
1831 
1832 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1833 				      ~GT_NOA_ENABLE));
1834 }
1835 
1836 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1837 {
1838 	/* Reset all contexts' slices/subslices configurations. */
1839 	gen8_configure_all_contexts(dev_priv, NULL);
1840 
1841 	/* Make sure we disable noa to save power. */
1842 	I915_WRITE(RPM_CONFIG1,
1843 		   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1844 }
1845 
1846 static void gen7_oa_enable(struct i915_perf_stream *stream)
1847 {
1848 	struct drm_i915_private *dev_priv = stream->dev_priv;
1849 	struct i915_gem_context *ctx = stream->ctx;
1850 	u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1851 	bool periodic = dev_priv->perf.oa.periodic;
1852 	u32 period_exponent = dev_priv->perf.oa.period_exponent;
1853 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1854 
1855 	/*
1856 	 * Reset buf pointers so we don't forward reports from before now.
1857 	 *
1858 	 * Think carefully if considering trying to avoid this, since it
1859 	 * also ensures status flags and the buffer itself are cleared
1860 	 * in error paths, and we have checks for invalid reports based
1861 	 * on the assumption that certain fields are written to zeroed
1862 	 * memory which this helps maintains.
1863 	 */
1864 	gen7_init_oa_buffer(dev_priv);
1865 
1866 	I915_WRITE(GEN7_OACONTROL,
1867 		   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1868 		   (period_exponent <<
1869 		    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1870 		   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1871 		   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1872 		   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1873 		   GEN7_OACONTROL_ENABLE);
1874 }
1875 
1876 static void gen8_oa_enable(struct i915_perf_stream *stream)
1877 {
1878 	struct drm_i915_private *dev_priv = stream->dev_priv;
1879 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1880 
1881 	/*
1882 	 * Reset buf pointers so we don't forward reports from before now.
1883 	 *
1884 	 * Think carefully if considering trying to avoid this, since it
1885 	 * also ensures status flags and the buffer itself are cleared
1886 	 * in error paths, and we have checks for invalid reports based
1887 	 * on the assumption that certain fields are written to zeroed
1888 	 * memory which this helps maintains.
1889 	 */
1890 	gen8_init_oa_buffer(dev_priv);
1891 
1892 	/*
1893 	 * Note: we don't rely on the hardware to perform single context
1894 	 * filtering and instead filter on the cpu based on the context-id
1895 	 * field of reports
1896 	 */
1897 	I915_WRITE(GEN8_OACONTROL, (report_format <<
1898 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
1899 				   GEN8_OA_COUNTER_ENABLE);
1900 }
1901 
1902 /**
1903  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1904  * @stream: An i915 perf stream opened for OA metrics
1905  *
1906  * [Re]enables hardware periodic sampling according to the period configured
1907  * when opening the stream. This also starts a hrtimer that will periodically
1908  * check for data in the circular OA buffer for notifying userspace (e.g.
1909  * during a read() or poll()).
1910  */
1911 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1912 {
1913 	struct drm_i915_private *dev_priv = stream->dev_priv;
1914 
1915 	dev_priv->perf.oa.ops.oa_enable(stream);
1916 
1917 	if (dev_priv->perf.oa.periodic)
1918 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1919 			      ns_to_ktime(POLL_PERIOD),
1920 			      HRTIMER_MODE_REL_PINNED);
1921 }
1922 
1923 static void gen7_oa_disable(struct i915_perf_stream *stream)
1924 {
1925 	struct drm_i915_private *dev_priv = stream->dev_priv;
1926 
1927 	I915_WRITE(GEN7_OACONTROL, 0);
1928 	if (intel_wait_for_register(dev_priv,
1929 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1930 				    50))
1931 		DRM_ERROR("wait for OA to be disabled timed out\n");
1932 }
1933 
1934 static void gen8_oa_disable(struct i915_perf_stream *stream)
1935 {
1936 	struct drm_i915_private *dev_priv = stream->dev_priv;
1937 
1938 	I915_WRITE(GEN8_OACONTROL, 0);
1939 	if (intel_wait_for_register(dev_priv,
1940 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1941 				    50))
1942 		DRM_ERROR("wait for OA to be disabled timed out\n");
1943 }
1944 
1945 /**
1946  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1947  * @stream: An i915 perf stream opened for OA metrics
1948  *
1949  * Stops the OA unit from periodically writing counter reports into the
1950  * circular OA buffer. This also stops the hrtimer that periodically checks for
1951  * data in the circular OA buffer, for notifying userspace.
1952  */
1953 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1954 {
1955 	struct drm_i915_private *dev_priv = stream->dev_priv;
1956 
1957 	dev_priv->perf.oa.ops.oa_disable(stream);
1958 
1959 	if (dev_priv->perf.oa.periodic)
1960 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1961 }
1962 
1963 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1964 	.destroy = i915_oa_stream_destroy,
1965 	.enable = i915_oa_stream_enable,
1966 	.disable = i915_oa_stream_disable,
1967 	.wait_unlocked = i915_oa_wait_unlocked,
1968 	.poll_wait = i915_oa_poll_wait,
1969 	.read = i915_oa_read,
1970 };
1971 
1972 /**
1973  * i915_oa_stream_init - validate combined props for OA stream and init
1974  * @stream: An i915 perf stream
1975  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1976  * @props: The property state that configures stream (individually validated)
1977  *
1978  * While read_properties_unlocked() validates properties in isolation it
1979  * doesn't ensure that the combination necessarily makes sense.
1980  *
1981  * At this point it has been determined that userspace wants a stream of
1982  * OA metrics, but still we need to further validate the combined
1983  * properties are OK.
1984  *
1985  * If the configuration makes sense then we can allocate memory for
1986  * a circular OA buffer and apply the requested metric set configuration.
1987  *
1988  * Returns: zero on success or a negative error code.
1989  */
1990 static int i915_oa_stream_init(struct i915_perf_stream *stream,
1991 			       struct drm_i915_perf_open_param *param,
1992 			       struct perf_open_properties *props)
1993 {
1994 	struct drm_i915_private *dev_priv = stream->dev_priv;
1995 	int format_size;
1996 	int ret;
1997 
1998 	/* If the sysfs metrics/ directory wasn't registered for some
1999 	 * reason then don't let userspace try their luck with config
2000 	 * IDs
2001 	 */
2002 	if (!dev_priv->perf.metrics_kobj) {
2003 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2004 		return -EINVAL;
2005 	}
2006 
2007 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2008 		DRM_DEBUG("Only OA report sampling supported\n");
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (!dev_priv->perf.oa.ops.enable_metric_set) {
2013 		DRM_DEBUG("OA unit not supported\n");
2014 		return -ENODEV;
2015 	}
2016 
2017 	/* To avoid the complexity of having to accurately filter
2018 	 * counter reports and marshal to the appropriate client
2019 	 * we currently only allow exclusive access
2020 	 */
2021 	if (dev_priv->perf.oa.exclusive_stream) {
2022 		DRM_DEBUG("OA unit already in use\n");
2023 		return -EBUSY;
2024 	}
2025 
2026 	if (!props->oa_format) {
2027 		DRM_DEBUG("OA report format not specified\n");
2028 		return -EINVAL;
2029 	}
2030 
2031 	/* We set up some ratelimit state to potentially throttle any _NOTES
2032 	 * about spurious, invalid OA reports which we don't forward to
2033 	 * userspace.
2034 	 *
2035 	 * The initialization is associated with opening the stream (not driver
2036 	 * init) considering we print a _NOTE about any throttling when closing
2037 	 * the stream instead of waiting until driver _fini which no one would
2038 	 * ever see.
2039 	 *
2040 	 * Using the same limiting factors as printk_ratelimit()
2041 	 */
2042 	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2043 			     5 * HZ, 10);
2044 	/* Since we use a DRM_NOTE for spurious reports it would be
2045 	 * inconsistent to let __ratelimit() automatically print a warning for
2046 	 * throttling.
2047 	 */
2048 	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2049 			    RATELIMIT_MSG_ON_RELEASE);
2050 
2051 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2052 
2053 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2054 
2055 	stream->sample_flags |= SAMPLE_OA_REPORT;
2056 	stream->sample_size += format_size;
2057 
2058 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
2059 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2060 		return -EINVAL;
2061 
2062 	dev_priv->perf.oa.oa_buffer.format =
2063 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
2064 
2065 	dev_priv->perf.oa.periodic = props->oa_periodic;
2066 	if (dev_priv->perf.oa.periodic)
2067 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2068 
2069 	if (stream->ctx) {
2070 		ret = oa_get_render_ctx_id(stream);
2071 		if (ret) {
2072 			DRM_DEBUG("Invalid context id to filter with\n");
2073 			return ret;
2074 		}
2075 	}
2076 
2077 	ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2078 	if (ret) {
2079 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2080 		goto err_config;
2081 	}
2082 
2083 	/* PRM - observability performance counters:
2084 	 *
2085 	 *   OACONTROL, performance counter enable, note:
2086 	 *
2087 	 *   "When this bit is set, in order to have coherent counts,
2088 	 *   RC6 power state and trunk clock gating must be disabled.
2089 	 *   This can be achieved by programming MMIO registers as
2090 	 *   0xA094=0 and 0xA090[31]=1"
2091 	 *
2092 	 *   In our case we are expecting that taking pm + FORCEWAKE
2093 	 *   references will effectively disable RC6.
2094 	 */
2095 	stream->wakeref = intel_runtime_pm_get(dev_priv);
2096 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2097 
2098 	ret = alloc_oa_buffer(dev_priv);
2099 	if (ret)
2100 		goto err_oa_buf_alloc;
2101 
2102 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2103 	if (ret)
2104 		goto err_lock;
2105 
2106 	stream->ops = &i915_oa_stream_ops;
2107 	dev_priv->perf.oa.exclusive_stream = stream;
2108 
2109 	ret = dev_priv->perf.oa.ops.enable_metric_set(stream);
2110 	if (ret) {
2111 		DRM_DEBUG("Unable to enable metric set\n");
2112 		goto err_enable;
2113 	}
2114 
2115 	mutex_unlock(&dev_priv->drm.struct_mutex);
2116 
2117 	return 0;
2118 
2119 err_enable:
2120 	dev_priv->perf.oa.exclusive_stream = NULL;
2121 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2122 	mutex_unlock(&dev_priv->drm.struct_mutex);
2123 
2124 err_lock:
2125 	free_oa_buffer(dev_priv);
2126 
2127 err_oa_buf_alloc:
2128 	put_oa_config(dev_priv, stream->oa_config);
2129 
2130 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2131 	intel_runtime_pm_put(dev_priv, stream->wakeref);
2132 
2133 err_config:
2134 	if (stream->ctx)
2135 		oa_put_render_ctx_id(stream);
2136 
2137 	return ret;
2138 }
2139 
2140 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2141 			    struct i915_gem_context *ctx,
2142 			    u32 *reg_state)
2143 {
2144 	struct i915_perf_stream *stream;
2145 
2146 	if (engine->id != RCS)
2147 		return;
2148 
2149 	stream = engine->i915->perf.oa.exclusive_stream;
2150 	if (stream)
2151 		gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2152 }
2153 
2154 /**
2155  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2156  * @stream: An i915 perf stream
2157  * @file: An i915 perf stream file
2158  * @buf: destination buffer given by userspace
2159  * @count: the number of bytes userspace wants to read
2160  * @ppos: (inout) file seek position (unused)
2161  *
2162  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2163  * ensure that if we've successfully copied any data then reporting that takes
2164  * precedence over any internal error status, so the data isn't lost.
2165  *
2166  * For example ret will be -ENOSPC whenever there is more buffered data than
2167  * can be copied to userspace, but that's only interesting if we weren't able
2168  * to copy some data because it implies the userspace buffer is too small to
2169  * receive a single record (and we never split records).
2170  *
2171  * Another case with ret == -EFAULT is more of a grey area since it would seem
2172  * like bad form for userspace to ask us to overrun its buffer, but the user
2173  * knows best:
2174  *
2175  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2176  *
2177  * Returns: The number of bytes copied or a negative error code on failure.
2178  */
2179 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2180 				     struct file *file,
2181 				     char __user *buf,
2182 				     size_t count,
2183 				     loff_t *ppos)
2184 {
2185 	/* Note we keep the offset (aka bytes read) separate from any
2186 	 * error status so that the final check for whether we return
2187 	 * the bytes read with a higher precedence than any error (see
2188 	 * comment below) doesn't need to be handled/duplicated in
2189 	 * stream->ops->read() implementations.
2190 	 */
2191 	size_t offset = 0;
2192 	int ret = stream->ops->read(stream, buf, count, &offset);
2193 
2194 	return offset ?: (ret ?: -EAGAIN);
2195 }
2196 
2197 /**
2198  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2199  * @file: An i915 perf stream file
2200  * @buf: destination buffer given by userspace
2201  * @count: the number of bytes userspace wants to read
2202  * @ppos: (inout) file seek position (unused)
2203  *
2204  * The entry point for handling a read() on a stream file descriptor from
2205  * userspace. Most of the work is left to the i915_perf_read_locked() and
2206  * &i915_perf_stream_ops->read but to save having stream implementations (of
2207  * which we might have multiple later) we handle blocking read here.
2208  *
2209  * We can also consistently treat trying to read from a disabled stream
2210  * as an IO error so implementations can assume the stream is enabled
2211  * while reading.
2212  *
2213  * Returns: The number of bytes copied or a negative error code on failure.
2214  */
2215 static ssize_t i915_perf_read(struct file *file,
2216 			      char __user *buf,
2217 			      size_t count,
2218 			      loff_t *ppos)
2219 {
2220 	struct i915_perf_stream *stream = file->private_data;
2221 	struct drm_i915_private *dev_priv = stream->dev_priv;
2222 	ssize_t ret;
2223 
2224 	/* To ensure it's handled consistently we simply treat all reads of a
2225 	 * disabled stream as an error. In particular it might otherwise lead
2226 	 * to a deadlock for blocking file descriptors...
2227 	 */
2228 	if (!stream->enabled)
2229 		return -EIO;
2230 
2231 	if (!(file->f_flags & O_NONBLOCK)) {
2232 		/* There's the small chance of false positives from
2233 		 * stream->ops->wait_unlocked.
2234 		 *
2235 		 * E.g. with single context filtering since we only wait until
2236 		 * oabuffer has >= 1 report we don't immediately know whether
2237 		 * any reports really belong to the current context
2238 		 */
2239 		do {
2240 			ret = stream->ops->wait_unlocked(stream);
2241 			if (ret)
2242 				return ret;
2243 
2244 			mutex_lock(&dev_priv->perf.lock);
2245 			ret = i915_perf_read_locked(stream, file,
2246 						    buf, count, ppos);
2247 			mutex_unlock(&dev_priv->perf.lock);
2248 		} while (ret == -EAGAIN);
2249 	} else {
2250 		mutex_lock(&dev_priv->perf.lock);
2251 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2252 		mutex_unlock(&dev_priv->perf.lock);
2253 	}
2254 
2255 	/* We allow the poll checking to sometimes report false positive EPOLLIN
2256 	 * events where we might actually report EAGAIN on read() if there's
2257 	 * not really any data available. In this situation though we don't
2258 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2259 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2260 	 * effectively ensures we back off until the next hrtimer callback
2261 	 * before reporting another EPOLLIN event.
2262 	 */
2263 	if (ret >= 0 || ret == -EAGAIN) {
2264 		/* Maybe make ->pollin per-stream state if we support multiple
2265 		 * concurrent streams in the future.
2266 		 */
2267 		dev_priv->perf.oa.pollin = false;
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2274 {
2275 	struct drm_i915_private *dev_priv =
2276 		container_of(hrtimer, typeof(*dev_priv),
2277 			     perf.oa.poll_check_timer);
2278 
2279 	if (oa_buffer_check_unlocked(dev_priv)) {
2280 		dev_priv->perf.oa.pollin = true;
2281 		wake_up(&dev_priv->perf.oa.poll_wq);
2282 	}
2283 
2284 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2285 
2286 	return HRTIMER_RESTART;
2287 }
2288 
2289 /**
2290  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2291  * @dev_priv: i915 device instance
2292  * @stream: An i915 perf stream
2293  * @file: An i915 perf stream file
2294  * @wait: poll() state table
2295  *
2296  * For handling userspace polling on an i915 perf stream, this calls through to
2297  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2298  * will be woken for new stream data.
2299  *
2300  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2301  * with any non-file-operation driver hooks.
2302  *
2303  * Returns: any poll events that are ready without sleeping
2304  */
2305 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2306 					  struct i915_perf_stream *stream,
2307 					  struct file *file,
2308 					  poll_table *wait)
2309 {
2310 	__poll_t events = 0;
2311 
2312 	stream->ops->poll_wait(stream, file, wait);
2313 
2314 	/* Note: we don't explicitly check whether there's something to read
2315 	 * here since this path may be very hot depending on what else
2316 	 * userspace is polling, or on the timeout in use. We rely solely on
2317 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2318 	 * samples to read.
2319 	 */
2320 	if (dev_priv->perf.oa.pollin)
2321 		events |= EPOLLIN;
2322 
2323 	return events;
2324 }
2325 
2326 /**
2327  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2328  * @file: An i915 perf stream file
2329  * @wait: poll() state table
2330  *
2331  * For handling userspace polling on an i915 perf stream, this ensures
2332  * poll_wait() gets called with a wait queue that will be woken for new stream
2333  * data.
2334  *
2335  * Note: Implementation deferred to i915_perf_poll_locked()
2336  *
2337  * Returns: any poll events that are ready without sleeping
2338  */
2339 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2340 {
2341 	struct i915_perf_stream *stream = file->private_data;
2342 	struct drm_i915_private *dev_priv = stream->dev_priv;
2343 	__poll_t ret;
2344 
2345 	mutex_lock(&dev_priv->perf.lock);
2346 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2347 	mutex_unlock(&dev_priv->perf.lock);
2348 
2349 	return ret;
2350 }
2351 
2352 /**
2353  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2354  * @stream: A disabled i915 perf stream
2355  *
2356  * [Re]enables the associated capture of data for this stream.
2357  *
2358  * If a stream was previously enabled then there's currently no intention
2359  * to provide userspace any guarantee about the preservation of previously
2360  * buffered data.
2361  */
2362 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2363 {
2364 	if (stream->enabled)
2365 		return;
2366 
2367 	/* Allow stream->ops->enable() to refer to this */
2368 	stream->enabled = true;
2369 
2370 	if (stream->ops->enable)
2371 		stream->ops->enable(stream);
2372 }
2373 
2374 /**
2375  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2376  * @stream: An enabled i915 perf stream
2377  *
2378  * Disables the associated capture of data for this stream.
2379  *
2380  * The intention is that disabling an re-enabling a stream will ideally be
2381  * cheaper than destroying and re-opening a stream with the same configuration,
2382  * though there are no formal guarantees about what state or buffered data
2383  * must be retained between disabling and re-enabling a stream.
2384  *
2385  * Note: while a stream is disabled it's considered an error for userspace
2386  * to attempt to read from the stream (-EIO).
2387  */
2388 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2389 {
2390 	if (!stream->enabled)
2391 		return;
2392 
2393 	/* Allow stream->ops->disable() to refer to this */
2394 	stream->enabled = false;
2395 
2396 	if (stream->ops->disable)
2397 		stream->ops->disable(stream);
2398 }
2399 
2400 /**
2401  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2402  * @stream: An i915 perf stream
2403  * @cmd: the ioctl request
2404  * @arg: the ioctl data
2405  *
2406  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2407  * with any non-file-operation driver hooks.
2408  *
2409  * Returns: zero on success or a negative error code. Returns -EINVAL for
2410  * an unknown ioctl request.
2411  */
2412 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2413 				   unsigned int cmd,
2414 				   unsigned long arg)
2415 {
2416 	switch (cmd) {
2417 	case I915_PERF_IOCTL_ENABLE:
2418 		i915_perf_enable_locked(stream);
2419 		return 0;
2420 	case I915_PERF_IOCTL_DISABLE:
2421 		i915_perf_disable_locked(stream);
2422 		return 0;
2423 	}
2424 
2425 	return -EINVAL;
2426 }
2427 
2428 /**
2429  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2430  * @file: An i915 perf stream file
2431  * @cmd: the ioctl request
2432  * @arg: the ioctl data
2433  *
2434  * Implementation deferred to i915_perf_ioctl_locked().
2435  *
2436  * Returns: zero on success or a negative error code. Returns -EINVAL for
2437  * an unknown ioctl request.
2438  */
2439 static long i915_perf_ioctl(struct file *file,
2440 			    unsigned int cmd,
2441 			    unsigned long arg)
2442 {
2443 	struct i915_perf_stream *stream = file->private_data;
2444 	struct drm_i915_private *dev_priv = stream->dev_priv;
2445 	long ret;
2446 
2447 	mutex_lock(&dev_priv->perf.lock);
2448 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2449 	mutex_unlock(&dev_priv->perf.lock);
2450 
2451 	return ret;
2452 }
2453 
2454 /**
2455  * i915_perf_destroy_locked - destroy an i915 perf stream
2456  * @stream: An i915 perf stream
2457  *
2458  * Frees all resources associated with the given i915 perf @stream, disabling
2459  * any associated data capture in the process.
2460  *
2461  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2462  * with any non-file-operation driver hooks.
2463  */
2464 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2465 {
2466 	if (stream->enabled)
2467 		i915_perf_disable_locked(stream);
2468 
2469 	if (stream->ops->destroy)
2470 		stream->ops->destroy(stream);
2471 
2472 	list_del(&stream->link);
2473 
2474 	if (stream->ctx)
2475 		i915_gem_context_put(stream->ctx);
2476 
2477 	kfree(stream);
2478 }
2479 
2480 /**
2481  * i915_perf_release - handles userspace close() of a stream file
2482  * @inode: anonymous inode associated with file
2483  * @file: An i915 perf stream file
2484  *
2485  * Cleans up any resources associated with an open i915 perf stream file.
2486  *
2487  * NB: close() can't really fail from the userspace point of view.
2488  *
2489  * Returns: zero on success or a negative error code.
2490  */
2491 static int i915_perf_release(struct inode *inode, struct file *file)
2492 {
2493 	struct i915_perf_stream *stream = file->private_data;
2494 	struct drm_i915_private *dev_priv = stream->dev_priv;
2495 
2496 	mutex_lock(&dev_priv->perf.lock);
2497 	i915_perf_destroy_locked(stream);
2498 	mutex_unlock(&dev_priv->perf.lock);
2499 
2500 	return 0;
2501 }
2502 
2503 
2504 static const struct file_operations fops = {
2505 	.owner		= THIS_MODULE,
2506 	.llseek		= no_llseek,
2507 	.release	= i915_perf_release,
2508 	.poll		= i915_perf_poll,
2509 	.read		= i915_perf_read,
2510 	.unlocked_ioctl	= i915_perf_ioctl,
2511 	/* Our ioctl have no arguments, so it's safe to use the same function
2512 	 * to handle 32bits compatibility.
2513 	 */
2514 	.compat_ioctl   = i915_perf_ioctl,
2515 };
2516 
2517 
2518 /**
2519  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2520  * @dev_priv: i915 device instance
2521  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2522  * @props: individually validated u64 property value pairs
2523  * @file: drm file
2524  *
2525  * See i915_perf_ioctl_open() for interface details.
2526  *
2527  * Implements further stream config validation and stream initialization on
2528  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2529  * taken to serialize with any non-file-operation driver hooks.
2530  *
2531  * Note: at this point the @props have only been validated in isolation and
2532  * it's still necessary to validate that the combination of properties makes
2533  * sense.
2534  *
2535  * In the case where userspace is interested in OA unit metrics then further
2536  * config validation and stream initialization details will be handled by
2537  * i915_oa_stream_init(). The code here should only validate config state that
2538  * will be relevant to all stream types / backends.
2539  *
2540  * Returns: zero on success or a negative error code.
2541  */
2542 static int
2543 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2544 			    struct drm_i915_perf_open_param *param,
2545 			    struct perf_open_properties *props,
2546 			    struct drm_file *file)
2547 {
2548 	struct i915_gem_context *specific_ctx = NULL;
2549 	struct i915_perf_stream *stream = NULL;
2550 	unsigned long f_flags = 0;
2551 	bool privileged_op = true;
2552 	int stream_fd;
2553 	int ret;
2554 
2555 	if (props->single_context) {
2556 		u32 ctx_handle = props->ctx_handle;
2557 		struct drm_i915_file_private *file_priv = file->driver_priv;
2558 
2559 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2560 		if (!specific_ctx) {
2561 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2562 				  ctx_handle);
2563 			ret = -ENOENT;
2564 			goto err;
2565 		}
2566 	}
2567 
2568 	/*
2569 	 * On Haswell the OA unit supports clock gating off for a specific
2570 	 * context and in this mode there's no visibility of metrics for the
2571 	 * rest of the system, which we consider acceptable for a
2572 	 * non-privileged client.
2573 	 *
2574 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2575 	 * specific context and the kernel can't securely stop the counters
2576 	 * from updating as system-wide / global values. Even though we can
2577 	 * filter reports based on the included context ID we can't block
2578 	 * clients from seeing the raw / global counter values via
2579 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2580 	 * enable the OA unit by default.
2581 	 */
2582 	if (IS_HASWELL(dev_priv) && specific_ctx)
2583 		privileged_op = false;
2584 
2585 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2586 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2587 	 * to determine if it's ok to access system wide OA counters
2588 	 * without CAP_SYS_ADMIN privileges.
2589 	 */
2590 	if (privileged_op &&
2591 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2592 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2593 		ret = -EACCES;
2594 		goto err_ctx;
2595 	}
2596 
2597 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2598 	if (!stream) {
2599 		ret = -ENOMEM;
2600 		goto err_ctx;
2601 	}
2602 
2603 	stream->dev_priv = dev_priv;
2604 	stream->ctx = specific_ctx;
2605 
2606 	ret = i915_oa_stream_init(stream, param, props);
2607 	if (ret)
2608 		goto err_alloc;
2609 
2610 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2611 	 * to have _stream_init check the combination of sample flags more
2612 	 * thoroughly, but still this is the expected result at this point.
2613 	 */
2614 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2615 		ret = -ENODEV;
2616 		goto err_flags;
2617 	}
2618 
2619 	list_add(&stream->link, &dev_priv->perf.streams);
2620 
2621 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2622 		f_flags |= O_CLOEXEC;
2623 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2624 		f_flags |= O_NONBLOCK;
2625 
2626 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2627 	if (stream_fd < 0) {
2628 		ret = stream_fd;
2629 		goto err_open;
2630 	}
2631 
2632 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2633 		i915_perf_enable_locked(stream);
2634 
2635 	return stream_fd;
2636 
2637 err_open:
2638 	list_del(&stream->link);
2639 err_flags:
2640 	if (stream->ops->destroy)
2641 		stream->ops->destroy(stream);
2642 err_alloc:
2643 	kfree(stream);
2644 err_ctx:
2645 	if (specific_ctx)
2646 		i915_gem_context_put(specific_ctx);
2647 err:
2648 	return ret;
2649 }
2650 
2651 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2652 {
2653 	return div64_u64(1000000000ULL * (2ULL << exponent),
2654 			 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2655 }
2656 
2657 /**
2658  * read_properties_unlocked - validate + copy userspace stream open properties
2659  * @dev_priv: i915 device instance
2660  * @uprops: The array of u64 key value pairs given by userspace
2661  * @n_props: The number of key value pairs expected in @uprops
2662  * @props: The stream configuration built up while validating properties
2663  *
2664  * Note this function only validates properties in isolation it doesn't
2665  * validate that the combination of properties makes sense or that all
2666  * properties necessary for a particular kind of stream have been set.
2667  *
2668  * Note that there currently aren't any ordering requirements for properties so
2669  * we shouldn't validate or assume anything about ordering here. This doesn't
2670  * rule out defining new properties with ordering requirements in the future.
2671  */
2672 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2673 				    u64 __user *uprops,
2674 				    u32 n_props,
2675 				    struct perf_open_properties *props)
2676 {
2677 	u64 __user *uprop = uprops;
2678 	u32 i;
2679 
2680 	memset(props, 0, sizeof(struct perf_open_properties));
2681 
2682 	if (!n_props) {
2683 		DRM_DEBUG("No i915 perf properties given\n");
2684 		return -EINVAL;
2685 	}
2686 
2687 	/* Considering that ID = 0 is reserved and assuming that we don't
2688 	 * (currently) expect any configurations to ever specify duplicate
2689 	 * values for a particular property ID then the last _PROP_MAX value is
2690 	 * one greater than the maximum number of properties we expect to get
2691 	 * from userspace.
2692 	 */
2693 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2694 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2695 		return -EINVAL;
2696 	}
2697 
2698 	for (i = 0; i < n_props; i++) {
2699 		u64 oa_period, oa_freq_hz;
2700 		u64 id, value;
2701 		int ret;
2702 
2703 		ret = get_user(id, uprop);
2704 		if (ret)
2705 			return ret;
2706 
2707 		ret = get_user(value, uprop + 1);
2708 		if (ret)
2709 			return ret;
2710 
2711 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2712 			DRM_DEBUG("Unknown i915 perf property ID\n");
2713 			return -EINVAL;
2714 		}
2715 
2716 		switch ((enum drm_i915_perf_property_id)id) {
2717 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2718 			props->single_context = 1;
2719 			props->ctx_handle = value;
2720 			break;
2721 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2722 			if (value)
2723 				props->sample_flags |= SAMPLE_OA_REPORT;
2724 			break;
2725 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2726 			if (value == 0) {
2727 				DRM_DEBUG("Unknown OA metric set ID\n");
2728 				return -EINVAL;
2729 			}
2730 			props->metrics_set = value;
2731 			break;
2732 		case DRM_I915_PERF_PROP_OA_FORMAT:
2733 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2734 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2735 					  value);
2736 				return -EINVAL;
2737 			}
2738 			if (!dev_priv->perf.oa.oa_formats[value].size) {
2739 				DRM_DEBUG("Unsupported OA report format %llu\n",
2740 					  value);
2741 				return -EINVAL;
2742 			}
2743 			props->oa_format = value;
2744 			break;
2745 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2746 			if (value > OA_EXPONENT_MAX) {
2747 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2748 					 OA_EXPONENT_MAX);
2749 				return -EINVAL;
2750 			}
2751 
2752 			/* Theoretically we can program the OA unit to sample
2753 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2754 			 * for BXT. We don't allow such high sampling
2755 			 * frequencies by default unless root.
2756 			 */
2757 
2758 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2759 			oa_period = oa_exponent_to_ns(dev_priv, value);
2760 
2761 			/* This check is primarily to ensure that oa_period <=
2762 			 * UINT32_MAX (before passing to do_div which only
2763 			 * accepts a u32 denominator), but we can also skip
2764 			 * checking anything < 1Hz which implicitly can't be
2765 			 * limited via an integer oa_max_sample_rate.
2766 			 */
2767 			if (oa_period <= NSEC_PER_SEC) {
2768 				u64 tmp = NSEC_PER_SEC;
2769 				do_div(tmp, oa_period);
2770 				oa_freq_hz = tmp;
2771 			} else
2772 				oa_freq_hz = 0;
2773 
2774 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2775 			    !capable(CAP_SYS_ADMIN)) {
2776 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2777 					  i915_oa_max_sample_rate);
2778 				return -EACCES;
2779 			}
2780 
2781 			props->oa_periodic = true;
2782 			props->oa_period_exponent = value;
2783 			break;
2784 		case DRM_I915_PERF_PROP_MAX:
2785 			MISSING_CASE(id);
2786 			return -EINVAL;
2787 		}
2788 
2789 		uprop += 2;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 /**
2796  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2797  * @dev: drm device
2798  * @data: ioctl data copied from userspace (unvalidated)
2799  * @file: drm file
2800  *
2801  * Validates the stream open parameters given by userspace including flags
2802  * and an array of u64 key, value pair properties.
2803  *
2804  * Very little is assumed up front about the nature of the stream being
2805  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2806  * i915-perf stream is expected to be a suitable interface for other forms of
2807  * buffered data written by the GPU besides periodic OA metrics.
2808  *
2809  * Note we copy the properties from userspace outside of the i915 perf
2810  * mutex to avoid an awkward lockdep with mmap_sem.
2811  *
2812  * Most of the implementation details are handled by
2813  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2814  * mutex for serializing with any non-file-operation driver hooks.
2815  *
2816  * Return: A newly opened i915 Perf stream file descriptor or negative
2817  * error code on failure.
2818  */
2819 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2820 			 struct drm_file *file)
2821 {
2822 	struct drm_i915_private *dev_priv = dev->dev_private;
2823 	struct drm_i915_perf_open_param *param = data;
2824 	struct perf_open_properties props;
2825 	u32 known_open_flags;
2826 	int ret;
2827 
2828 	if (!dev_priv->perf.initialized) {
2829 		DRM_DEBUG("i915 perf interface not available for this system\n");
2830 		return -ENOTSUPP;
2831 	}
2832 
2833 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2834 			   I915_PERF_FLAG_FD_NONBLOCK |
2835 			   I915_PERF_FLAG_DISABLED;
2836 	if (param->flags & ~known_open_flags) {
2837 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2838 		return -EINVAL;
2839 	}
2840 
2841 	ret = read_properties_unlocked(dev_priv,
2842 				       u64_to_user_ptr(param->properties_ptr),
2843 				       param->num_properties,
2844 				       &props);
2845 	if (ret)
2846 		return ret;
2847 
2848 	mutex_lock(&dev_priv->perf.lock);
2849 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2850 	mutex_unlock(&dev_priv->perf.lock);
2851 
2852 	return ret;
2853 }
2854 
2855 /**
2856  * i915_perf_register - exposes i915-perf to userspace
2857  * @dev_priv: i915 device instance
2858  *
2859  * In particular OA metric sets are advertised under a sysfs metrics/
2860  * directory allowing userspace to enumerate valid IDs that can be
2861  * used to open an i915-perf stream.
2862  */
2863 void i915_perf_register(struct drm_i915_private *dev_priv)
2864 {
2865 	int ret;
2866 
2867 	if (!dev_priv->perf.initialized)
2868 		return;
2869 
2870 	/* To be sure we're synchronized with an attempted
2871 	 * i915_perf_open_ioctl(); considering that we register after
2872 	 * being exposed to userspace.
2873 	 */
2874 	mutex_lock(&dev_priv->perf.lock);
2875 
2876 	dev_priv->perf.metrics_kobj =
2877 		kobject_create_and_add("metrics",
2878 				       &dev_priv->drm.primary->kdev->kobj);
2879 	if (!dev_priv->perf.metrics_kobj)
2880 		goto exit;
2881 
2882 	sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2883 
2884 	if (IS_HASWELL(dev_priv)) {
2885 		i915_perf_load_test_config_hsw(dev_priv);
2886 	} else if (IS_BROADWELL(dev_priv)) {
2887 		i915_perf_load_test_config_bdw(dev_priv);
2888 	} else if (IS_CHERRYVIEW(dev_priv)) {
2889 		i915_perf_load_test_config_chv(dev_priv);
2890 	} else if (IS_SKYLAKE(dev_priv)) {
2891 		if (IS_SKL_GT2(dev_priv))
2892 			i915_perf_load_test_config_sklgt2(dev_priv);
2893 		else if (IS_SKL_GT3(dev_priv))
2894 			i915_perf_load_test_config_sklgt3(dev_priv);
2895 		else if (IS_SKL_GT4(dev_priv))
2896 			i915_perf_load_test_config_sklgt4(dev_priv);
2897 	} else if (IS_BROXTON(dev_priv)) {
2898 		i915_perf_load_test_config_bxt(dev_priv);
2899 	} else if (IS_KABYLAKE(dev_priv)) {
2900 		if (IS_KBL_GT2(dev_priv))
2901 			i915_perf_load_test_config_kblgt2(dev_priv);
2902 		else if (IS_KBL_GT3(dev_priv))
2903 			i915_perf_load_test_config_kblgt3(dev_priv);
2904 	} else if (IS_GEMINILAKE(dev_priv)) {
2905 		i915_perf_load_test_config_glk(dev_priv);
2906 	} else if (IS_COFFEELAKE(dev_priv)) {
2907 		if (IS_CFL_GT2(dev_priv))
2908 			i915_perf_load_test_config_cflgt2(dev_priv);
2909 		if (IS_CFL_GT3(dev_priv))
2910 			i915_perf_load_test_config_cflgt3(dev_priv);
2911 	} else if (IS_CANNONLAKE(dev_priv)) {
2912 		i915_perf_load_test_config_cnl(dev_priv);
2913 	} else if (IS_ICELAKE(dev_priv)) {
2914 		i915_perf_load_test_config_icl(dev_priv);
2915 	}
2916 
2917 	if (dev_priv->perf.oa.test_config.id == 0)
2918 		goto sysfs_error;
2919 
2920 	ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2921 				 &dev_priv->perf.oa.test_config.sysfs_metric);
2922 	if (ret)
2923 		goto sysfs_error;
2924 
2925 	atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2926 
2927 	goto exit;
2928 
2929 sysfs_error:
2930 	kobject_put(dev_priv->perf.metrics_kobj);
2931 	dev_priv->perf.metrics_kobj = NULL;
2932 
2933 exit:
2934 	mutex_unlock(&dev_priv->perf.lock);
2935 }
2936 
2937 /**
2938  * i915_perf_unregister - hide i915-perf from userspace
2939  * @dev_priv: i915 device instance
2940  *
2941  * i915-perf state cleanup is split up into an 'unregister' and
2942  * 'deinit' phase where the interface is first hidden from
2943  * userspace by i915_perf_unregister() before cleaning up
2944  * remaining state in i915_perf_fini().
2945  */
2946 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2947 {
2948 	if (!dev_priv->perf.metrics_kobj)
2949 		return;
2950 
2951 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
2952 			   &dev_priv->perf.oa.test_config.sysfs_metric);
2953 
2954 	kobject_put(dev_priv->perf.metrics_kobj);
2955 	dev_priv->perf.metrics_kobj = NULL;
2956 }
2957 
2958 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2959 {
2960 	static const i915_reg_t flex_eu_regs[] = {
2961 		EU_PERF_CNTL0,
2962 		EU_PERF_CNTL1,
2963 		EU_PERF_CNTL2,
2964 		EU_PERF_CNTL3,
2965 		EU_PERF_CNTL4,
2966 		EU_PERF_CNTL5,
2967 		EU_PERF_CNTL6,
2968 	};
2969 	int i;
2970 
2971 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2972 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
2973 			return true;
2974 	}
2975 	return false;
2976 }
2977 
2978 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
2979 {
2980 	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
2981 		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
2982 		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
2983 		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
2984 		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
2985 		 addr <= i915_mmio_reg_offset(OACEC7_1));
2986 }
2987 
2988 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
2989 {
2990 	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
2991 		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
2992 		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
2993 		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
2994 		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
2995 		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
2996 		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
2997 }
2998 
2999 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3000 {
3001 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3002 		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3003 		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3004 		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3005 }
3006 
3007 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3008 {
3009 	return gen8_is_valid_mux_addr(dev_priv, addr) ||
3010 		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3011 		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3012 }
3013 
3014 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3015 {
3016 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3017 		(addr >= 0x25100 && addr <= 0x2FF90) ||
3018 		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3019 		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3020 		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3021 }
3022 
3023 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3024 {
3025 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3026 		(addr >= 0x182300 && addr <= 0x1823A4);
3027 }
3028 
3029 static u32 mask_reg_value(u32 reg, u32 val)
3030 {
3031 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3032 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3033 	 * programmed by userspace doesn't change this.
3034 	 */
3035 	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3036 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3037 
3038 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3039 	 * indicated by its name and a bunch of selection fields used by OA
3040 	 * configs.
3041 	 */
3042 	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3043 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3044 
3045 	return val;
3046 }
3047 
3048 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3049 					 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3050 					 u32 __user *regs,
3051 					 u32 n_regs)
3052 {
3053 	struct i915_oa_reg *oa_regs;
3054 	int err;
3055 	u32 i;
3056 
3057 	if (!n_regs)
3058 		return NULL;
3059 
3060 	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3061 		return ERR_PTR(-EFAULT);
3062 
3063 	/* No is_valid function means we're not allowing any register to be programmed. */
3064 	GEM_BUG_ON(!is_valid);
3065 	if (!is_valid)
3066 		return ERR_PTR(-EINVAL);
3067 
3068 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3069 	if (!oa_regs)
3070 		return ERR_PTR(-ENOMEM);
3071 
3072 	for (i = 0; i < n_regs; i++) {
3073 		u32 addr, value;
3074 
3075 		err = get_user(addr, regs);
3076 		if (err)
3077 			goto addr_err;
3078 
3079 		if (!is_valid(dev_priv, addr)) {
3080 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3081 			err = -EINVAL;
3082 			goto addr_err;
3083 		}
3084 
3085 		err = get_user(value, regs + 1);
3086 		if (err)
3087 			goto addr_err;
3088 
3089 		oa_regs[i].addr = _MMIO(addr);
3090 		oa_regs[i].value = mask_reg_value(addr, value);
3091 
3092 		regs += 2;
3093 	}
3094 
3095 	return oa_regs;
3096 
3097 addr_err:
3098 	kfree(oa_regs);
3099 	return ERR_PTR(err);
3100 }
3101 
3102 static ssize_t show_dynamic_id(struct device *dev,
3103 			       struct device_attribute *attr,
3104 			       char *buf)
3105 {
3106 	struct i915_oa_config *oa_config =
3107 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3108 
3109 	return sprintf(buf, "%d\n", oa_config->id);
3110 }
3111 
3112 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3113 					 struct i915_oa_config *oa_config)
3114 {
3115 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3116 	oa_config->sysfs_metric_id.attr.name = "id";
3117 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3118 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3119 	oa_config->sysfs_metric_id.store = NULL;
3120 
3121 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3122 	oa_config->attrs[1] = NULL;
3123 
3124 	oa_config->sysfs_metric.name = oa_config->uuid;
3125 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3126 
3127 	return sysfs_create_group(dev_priv->perf.metrics_kobj,
3128 				  &oa_config->sysfs_metric);
3129 }
3130 
3131 /**
3132  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3133  * @dev: drm device
3134  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3135  *        userspace (unvalidated)
3136  * @file: drm file
3137  *
3138  * Validates the submitted OA register to be saved into a new OA config that
3139  * can then be used for programming the OA unit and its NOA network.
3140  *
3141  * Returns: A new allocated config number to be used with the perf open ioctl
3142  * or a negative error code on failure.
3143  */
3144 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3145 			       struct drm_file *file)
3146 {
3147 	struct drm_i915_private *dev_priv = dev->dev_private;
3148 	struct drm_i915_perf_oa_config *args = data;
3149 	struct i915_oa_config *oa_config, *tmp;
3150 	int err, id;
3151 
3152 	if (!dev_priv->perf.initialized) {
3153 		DRM_DEBUG("i915 perf interface not available for this system\n");
3154 		return -ENOTSUPP;
3155 	}
3156 
3157 	if (!dev_priv->perf.metrics_kobj) {
3158 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3159 		return -EINVAL;
3160 	}
3161 
3162 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3163 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3164 		return -EACCES;
3165 	}
3166 
3167 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3168 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3169 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
3170 		DRM_DEBUG("No OA registers given\n");
3171 		return -EINVAL;
3172 	}
3173 
3174 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3175 	if (!oa_config) {
3176 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
3177 		return -ENOMEM;
3178 	}
3179 
3180 	atomic_set(&oa_config->ref_count, 1);
3181 
3182 	if (!uuid_is_valid(args->uuid)) {
3183 		DRM_DEBUG("Invalid uuid format for OA config\n");
3184 		err = -EINVAL;
3185 		goto reg_err;
3186 	}
3187 
3188 	/* Last character in oa_config->uuid will be 0 because oa_config is
3189 	 * kzalloc.
3190 	 */
3191 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3192 
3193 	oa_config->mux_regs_len = args->n_mux_regs;
3194 	oa_config->mux_regs =
3195 		alloc_oa_regs(dev_priv,
3196 			      dev_priv->perf.oa.ops.is_valid_mux_reg,
3197 			      u64_to_user_ptr(args->mux_regs_ptr),
3198 			      args->n_mux_regs);
3199 
3200 	if (IS_ERR(oa_config->mux_regs)) {
3201 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3202 		err = PTR_ERR(oa_config->mux_regs);
3203 		goto reg_err;
3204 	}
3205 
3206 	oa_config->b_counter_regs_len = args->n_boolean_regs;
3207 	oa_config->b_counter_regs =
3208 		alloc_oa_regs(dev_priv,
3209 			      dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3210 			      u64_to_user_ptr(args->boolean_regs_ptr),
3211 			      args->n_boolean_regs);
3212 
3213 	if (IS_ERR(oa_config->b_counter_regs)) {
3214 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3215 		err = PTR_ERR(oa_config->b_counter_regs);
3216 		goto reg_err;
3217 	}
3218 
3219 	if (INTEL_GEN(dev_priv) < 8) {
3220 		if (args->n_flex_regs != 0) {
3221 			err = -EINVAL;
3222 			goto reg_err;
3223 		}
3224 	} else {
3225 		oa_config->flex_regs_len = args->n_flex_regs;
3226 		oa_config->flex_regs =
3227 			alloc_oa_regs(dev_priv,
3228 				      dev_priv->perf.oa.ops.is_valid_flex_reg,
3229 				      u64_to_user_ptr(args->flex_regs_ptr),
3230 				      args->n_flex_regs);
3231 
3232 		if (IS_ERR(oa_config->flex_regs)) {
3233 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3234 			err = PTR_ERR(oa_config->flex_regs);
3235 			goto reg_err;
3236 		}
3237 	}
3238 
3239 	err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3240 	if (err)
3241 		goto reg_err;
3242 
3243 	/* We shouldn't have too many configs, so this iteration shouldn't be
3244 	 * too costly.
3245 	 */
3246 	idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3247 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
3248 			DRM_DEBUG("OA config already exists with this uuid\n");
3249 			err = -EADDRINUSE;
3250 			goto sysfs_err;
3251 		}
3252 	}
3253 
3254 	err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3255 	if (err) {
3256 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3257 		goto sysfs_err;
3258 	}
3259 
3260 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3261 	oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3262 				  oa_config, 2,
3263 				  0, GFP_KERNEL);
3264 	if (oa_config->id < 0) {
3265 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3266 		err = oa_config->id;
3267 		goto sysfs_err;
3268 	}
3269 
3270 	mutex_unlock(&dev_priv->perf.metrics_lock);
3271 
3272 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3273 
3274 	return oa_config->id;
3275 
3276 sysfs_err:
3277 	mutex_unlock(&dev_priv->perf.metrics_lock);
3278 reg_err:
3279 	put_oa_config(dev_priv, oa_config);
3280 	DRM_DEBUG("Failed to add new OA config\n");
3281 	return err;
3282 }
3283 
3284 /**
3285  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3286  * @dev: drm device
3287  * @data: ioctl data (pointer to u64 integer) copied from userspace
3288  * @file: drm file
3289  *
3290  * Configs can be removed while being used, the will stop appearing in sysfs
3291  * and their content will be freed when the stream using the config is closed.
3292  *
3293  * Returns: 0 on success or a negative error code on failure.
3294  */
3295 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3296 				  struct drm_file *file)
3297 {
3298 	struct drm_i915_private *dev_priv = dev->dev_private;
3299 	u64 *arg = data;
3300 	struct i915_oa_config *oa_config;
3301 	int ret;
3302 
3303 	if (!dev_priv->perf.initialized) {
3304 		DRM_DEBUG("i915 perf interface not available for this system\n");
3305 		return -ENOTSUPP;
3306 	}
3307 
3308 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3309 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3310 		return -EACCES;
3311 	}
3312 
3313 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3314 	if (ret)
3315 		goto lock_err;
3316 
3317 	oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3318 	if (!oa_config) {
3319 		DRM_DEBUG("Failed to remove unknown OA config\n");
3320 		ret = -ENOENT;
3321 		goto config_err;
3322 	}
3323 
3324 	GEM_BUG_ON(*arg != oa_config->id);
3325 
3326 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3327 			   &oa_config->sysfs_metric);
3328 
3329 	idr_remove(&dev_priv->perf.metrics_idr, *arg);
3330 
3331 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3332 
3333 	put_oa_config(dev_priv, oa_config);
3334 
3335 config_err:
3336 	mutex_unlock(&dev_priv->perf.metrics_lock);
3337 lock_err:
3338 	return ret;
3339 }
3340 
3341 static struct ctl_table oa_table[] = {
3342 	{
3343 	 .procname = "perf_stream_paranoid",
3344 	 .data = &i915_perf_stream_paranoid,
3345 	 .maxlen = sizeof(i915_perf_stream_paranoid),
3346 	 .mode = 0644,
3347 	 .proc_handler = proc_dointvec_minmax,
3348 	 .extra1 = &zero,
3349 	 .extra2 = &one,
3350 	 },
3351 	{
3352 	 .procname = "oa_max_sample_rate",
3353 	 .data = &i915_oa_max_sample_rate,
3354 	 .maxlen = sizeof(i915_oa_max_sample_rate),
3355 	 .mode = 0644,
3356 	 .proc_handler = proc_dointvec_minmax,
3357 	 .extra1 = &zero,
3358 	 .extra2 = &oa_sample_rate_hard_limit,
3359 	 },
3360 	{}
3361 };
3362 
3363 static struct ctl_table i915_root[] = {
3364 	{
3365 	 .procname = "i915",
3366 	 .maxlen = 0,
3367 	 .mode = 0555,
3368 	 .child = oa_table,
3369 	 },
3370 	{}
3371 };
3372 
3373 static struct ctl_table dev_root[] = {
3374 	{
3375 	 .procname = "dev",
3376 	 .maxlen = 0,
3377 	 .mode = 0555,
3378 	 .child = i915_root,
3379 	 },
3380 	{}
3381 };
3382 
3383 /**
3384  * i915_perf_init - initialize i915-perf state on module load
3385  * @dev_priv: i915 device instance
3386  *
3387  * Initializes i915-perf state without exposing anything to userspace.
3388  *
3389  * Note: i915-perf initialization is split into an 'init' and 'register'
3390  * phase with the i915_perf_register() exposing state to userspace.
3391  */
3392 void i915_perf_init(struct drm_i915_private *dev_priv)
3393 {
3394 	if (IS_HASWELL(dev_priv)) {
3395 		dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3396 			gen7_is_valid_b_counter_addr;
3397 		dev_priv->perf.oa.ops.is_valid_mux_reg =
3398 			hsw_is_valid_mux_addr;
3399 		dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3400 		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3401 		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3402 		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3403 		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3404 		dev_priv->perf.oa.ops.read = gen7_oa_read;
3405 		dev_priv->perf.oa.ops.oa_hw_tail_read =
3406 			gen7_oa_hw_tail_read;
3407 
3408 		dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3409 	} else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3410 		/* Note: that although we could theoretically also support the
3411 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3412 		 * this driver, before upstreaming did this) it didn't seem
3413 		 * worth the complexity to maintain now that BDW+ enable
3414 		 * execlist mode by default.
3415 		 */
3416 		dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3417 
3418 		dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3419 		dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3420 		dev_priv->perf.oa.ops.read = gen8_oa_read;
3421 		dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3422 
3423 		if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3424 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3425 				gen7_is_valid_b_counter_addr;
3426 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3427 				gen8_is_valid_mux_addr;
3428 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3429 				gen8_is_valid_flex_addr;
3430 
3431 			if (IS_CHERRYVIEW(dev_priv)) {
3432 				dev_priv->perf.oa.ops.is_valid_mux_reg =
3433 					chv_is_valid_mux_addr;
3434 			}
3435 
3436 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3437 			dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3438 
3439 			if (IS_GEN(dev_priv, 8)) {
3440 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3441 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3442 
3443 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3444 			} else {
3445 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3446 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3447 
3448 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3449 			}
3450 		} else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3451 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3452 				gen7_is_valid_b_counter_addr;
3453 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3454 				gen10_is_valid_mux_addr;
3455 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3456 				gen8_is_valid_flex_addr;
3457 
3458 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3459 			dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3460 
3461 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3462 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3463 
3464 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3465 		}
3466 	}
3467 
3468 	if (dev_priv->perf.oa.ops.enable_metric_set) {
3469 		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3470 				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3471 		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3472 		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3473 
3474 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3475 		mutex_init(&dev_priv->perf.lock);
3476 		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3477 
3478 		oa_sample_rate_hard_limit = 1000 *
3479 			(RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3480 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3481 
3482 		mutex_init(&dev_priv->perf.metrics_lock);
3483 		idr_init(&dev_priv->perf.metrics_idr);
3484 
3485 		dev_priv->perf.initialized = true;
3486 	}
3487 }
3488 
3489 static int destroy_config(int id, void *p, void *data)
3490 {
3491 	struct drm_i915_private *dev_priv = data;
3492 	struct i915_oa_config *oa_config = p;
3493 
3494 	put_oa_config(dev_priv, oa_config);
3495 
3496 	return 0;
3497 }
3498 
3499 /**
3500  * i915_perf_fini - Counter part to i915_perf_init()
3501  * @dev_priv: i915 device instance
3502  */
3503 void i915_perf_fini(struct drm_i915_private *dev_priv)
3504 {
3505 	if (!dev_priv->perf.initialized)
3506 		return;
3507 
3508 	idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3509 	idr_destroy(&dev_priv->perf.metrics_idr);
3510 
3511 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3512 
3513 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3514 
3515 	dev_priv->perf.initialized = false;
3516 }
3517