1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/sysrq.h> 32 #include <linux/slab.h> 33 #include <linux/circ_buf.h> 34 #include <drm/drmP.h> 35 #include <drm/i915_drm.h> 36 #include "i915_drv.h" 37 #include "i915_trace.h" 38 #include "intel_drv.h" 39 40 /** 41 * DOC: interrupt handling 42 * 43 * These functions provide the basic support for enabling and disabling the 44 * interrupt handling support. There's a lot more functionality in i915_irq.c 45 * and related files, but that will be described in separate chapters. 46 */ 47 48 static const u32 hpd_ilk[HPD_NUM_PINS] = { 49 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 50 }; 51 52 static const u32 hpd_ivb[HPD_NUM_PINS] = { 53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 54 }; 55 56 static const u32 hpd_bdw[HPD_NUM_PINS] = { 57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 58 }; 59 60 static const u32 hpd_ibx[HPD_NUM_PINS] = { 61 [HPD_CRT] = SDE_CRT_HOTPLUG, 62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 66 }; 67 68 static const u32 hpd_cpt[HPD_NUM_PINS] = { 69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 74 }; 75 76 static const u32 hpd_spt[HPD_NUM_PINS] = { 77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT 82 }; 83 84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 85 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 91 }; 92 93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 100 }; 101 102 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 109 }; 110 111 /* BXT hpd list */ 112 static const u32 hpd_bxt[HPD_NUM_PINS] = { 113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC 116 }; 117 118 /* IIR can theoretically queue up two events. Be paranoid. */ 119 #define GEN8_IRQ_RESET_NDX(type, which) do { \ 120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ 121 POSTING_READ(GEN8_##type##_IMR(which)); \ 122 I915_WRITE(GEN8_##type##_IER(which), 0); \ 123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 124 POSTING_READ(GEN8_##type##_IIR(which)); \ 125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 126 POSTING_READ(GEN8_##type##_IIR(which)); \ 127 } while (0) 128 129 #define GEN5_IRQ_RESET(type) do { \ 130 I915_WRITE(type##IMR, 0xffffffff); \ 131 POSTING_READ(type##IMR); \ 132 I915_WRITE(type##IER, 0); \ 133 I915_WRITE(type##IIR, 0xffffffff); \ 134 POSTING_READ(type##IIR); \ 135 I915_WRITE(type##IIR, 0xffffffff); \ 136 POSTING_READ(type##IIR); \ 137 } while (0) 138 139 /* 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 141 */ 142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, 143 i915_reg_t reg) 144 { 145 u32 val = I915_READ(reg); 146 147 if (val == 0) 148 return; 149 150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 151 i915_mmio_reg_offset(reg), val); 152 I915_WRITE(reg, 0xffffffff); 153 POSTING_READ(reg); 154 I915_WRITE(reg, 0xffffffff); 155 POSTING_READ(reg); 156 } 157 158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ 159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \ 160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ 161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ 162 POSTING_READ(GEN8_##type##_IMR(which)); \ 163 } while (0) 164 165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \ 166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \ 167 I915_WRITE(type##IER, (ier_val)); \ 168 I915_WRITE(type##IMR, (imr_val)); \ 169 POSTING_READ(type##IMR); \ 170 } while (0) 171 172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 174 175 /* For display hotplug interrupt */ 176 static inline void 177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 178 uint32_t mask, 179 uint32_t bits) 180 { 181 uint32_t val; 182 183 assert_spin_locked(&dev_priv->irq_lock); 184 WARN_ON(bits & ~mask); 185 186 val = I915_READ(PORT_HOTPLUG_EN); 187 val &= ~mask; 188 val |= bits; 189 I915_WRITE(PORT_HOTPLUG_EN, val); 190 } 191 192 /** 193 * i915_hotplug_interrupt_update - update hotplug interrupt enable 194 * @dev_priv: driver private 195 * @mask: bits to update 196 * @bits: bits to enable 197 * NOTE: the HPD enable bits are modified both inside and outside 198 * of an interrupt context. To avoid that read-modify-write cycles 199 * interfer, these bits are protected by a spinlock. Since this 200 * function is usually not called from a context where the lock is 201 * held already, this function acquires the lock itself. A non-locking 202 * version is also available. 203 */ 204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 205 uint32_t mask, 206 uint32_t bits) 207 { 208 spin_lock_irq(&dev_priv->irq_lock); 209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 210 spin_unlock_irq(&dev_priv->irq_lock); 211 } 212 213 /** 214 * ilk_update_display_irq - update DEIMR 215 * @dev_priv: driver private 216 * @interrupt_mask: mask of interrupt bits to update 217 * @enabled_irq_mask: mask of interrupt bits to enable 218 */ 219 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 220 uint32_t interrupt_mask, 221 uint32_t enabled_irq_mask) 222 { 223 uint32_t new_val; 224 225 assert_spin_locked(&dev_priv->irq_lock); 226 227 WARN_ON(enabled_irq_mask & ~interrupt_mask); 228 229 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 230 return; 231 232 new_val = dev_priv->irq_mask; 233 new_val &= ~interrupt_mask; 234 new_val |= (~enabled_irq_mask & interrupt_mask); 235 236 if (new_val != dev_priv->irq_mask) { 237 dev_priv->irq_mask = new_val; 238 I915_WRITE(DEIMR, dev_priv->irq_mask); 239 POSTING_READ(DEIMR); 240 } 241 } 242 243 /** 244 * ilk_update_gt_irq - update GTIMR 245 * @dev_priv: driver private 246 * @interrupt_mask: mask of interrupt bits to update 247 * @enabled_irq_mask: mask of interrupt bits to enable 248 */ 249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 250 uint32_t interrupt_mask, 251 uint32_t enabled_irq_mask) 252 { 253 assert_spin_locked(&dev_priv->irq_lock); 254 255 WARN_ON(enabled_irq_mask & ~interrupt_mask); 256 257 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 258 return; 259 260 dev_priv->gt_irq_mask &= ~interrupt_mask; 261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 263 } 264 265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 266 { 267 ilk_update_gt_irq(dev_priv, mask, mask); 268 POSTING_READ_FW(GTIMR); 269 } 270 271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 272 { 273 ilk_update_gt_irq(dev_priv, mask, 0); 274 } 275 276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) 277 { 278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; 279 } 280 281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv) 282 { 283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR; 284 } 285 286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv) 287 { 288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER; 289 } 290 291 /** 292 * snb_update_pm_irq - update GEN6_PMIMR 293 * @dev_priv: driver private 294 * @interrupt_mask: mask of interrupt bits to update 295 * @enabled_irq_mask: mask of interrupt bits to enable 296 */ 297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 298 uint32_t interrupt_mask, 299 uint32_t enabled_irq_mask) 300 { 301 uint32_t new_val; 302 303 WARN_ON(enabled_irq_mask & ~interrupt_mask); 304 305 assert_spin_locked(&dev_priv->irq_lock); 306 307 new_val = dev_priv->pm_imr; 308 new_val &= ~interrupt_mask; 309 new_val |= (~enabled_irq_mask & interrupt_mask); 310 311 if (new_val != dev_priv->pm_imr) { 312 dev_priv->pm_imr = new_val; 313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr); 314 POSTING_READ(gen6_pm_imr(dev_priv)); 315 } 316 } 317 318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 319 { 320 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 321 return; 322 323 snb_update_pm_irq(dev_priv, mask, mask); 324 } 325 326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 327 { 328 snb_update_pm_irq(dev_priv, mask, 0); 329 } 330 331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 332 { 333 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 334 return; 335 336 __gen6_mask_pm_irq(dev_priv, mask); 337 } 338 339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) 340 { 341 i915_reg_t reg = gen6_pm_iir(dev_priv); 342 343 assert_spin_locked(&dev_priv->irq_lock); 344 345 I915_WRITE(reg, reset_mask); 346 I915_WRITE(reg, reset_mask); 347 POSTING_READ(reg); 348 } 349 350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) 351 { 352 assert_spin_locked(&dev_priv->irq_lock); 353 354 dev_priv->pm_ier |= enable_mask; 355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 356 gen6_unmask_pm_irq(dev_priv, enable_mask); 357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ 358 } 359 360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) 361 { 362 assert_spin_locked(&dev_priv->irq_lock); 363 364 dev_priv->pm_ier &= ~disable_mask; 365 __gen6_mask_pm_irq(dev_priv, disable_mask); 366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 367 /* though a barrier is missing here, but don't really need a one */ 368 } 369 370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) 371 { 372 spin_lock_irq(&dev_priv->irq_lock); 373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events); 374 dev_priv->rps.pm_iir = 0; 375 spin_unlock_irq(&dev_priv->irq_lock); 376 } 377 378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) 379 { 380 if (READ_ONCE(dev_priv->rps.interrupts_enabled)) 381 return; 382 383 spin_lock_irq(&dev_priv->irq_lock); 384 WARN_ON_ONCE(dev_priv->rps.pm_iir); 385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); 386 dev_priv->rps.interrupts_enabled = true; 387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 388 389 spin_unlock_irq(&dev_priv->irq_lock); 390 } 391 392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask) 393 { 394 return (mask & ~dev_priv->rps.pm_intr_keep); 395 } 396 397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) 398 { 399 if (!READ_ONCE(dev_priv->rps.interrupts_enabled)) 400 return; 401 402 spin_lock_irq(&dev_priv->irq_lock); 403 dev_priv->rps.interrupts_enabled = false; 404 405 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); 406 407 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events); 408 409 spin_unlock_irq(&dev_priv->irq_lock); 410 synchronize_irq(dev_priv->drm.irq); 411 412 /* Now that we will not be generating any more work, flush any 413 * outsanding tasks. As we are called on the RPS idle path, 414 * we will reset the GPU to minimum frequencies, so the current 415 * state of the worker can be discarded. 416 */ 417 cancel_work_sync(&dev_priv->rps.work); 418 gen6_reset_rps_interrupts(dev_priv); 419 } 420 421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) 422 { 423 spin_lock_irq(&dev_priv->irq_lock); 424 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); 425 spin_unlock_irq(&dev_priv->irq_lock); 426 } 427 428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) 429 { 430 spin_lock_irq(&dev_priv->irq_lock); 431 if (!dev_priv->guc.interrupts_enabled) { 432 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & 433 dev_priv->pm_guc_events); 434 dev_priv->guc.interrupts_enabled = true; 435 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); 436 } 437 spin_unlock_irq(&dev_priv->irq_lock); 438 } 439 440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) 441 { 442 spin_lock_irq(&dev_priv->irq_lock); 443 dev_priv->guc.interrupts_enabled = false; 444 445 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); 446 447 spin_unlock_irq(&dev_priv->irq_lock); 448 synchronize_irq(dev_priv->drm.irq); 449 450 gen9_reset_guc_interrupts(dev_priv); 451 } 452 453 /** 454 * bdw_update_port_irq - update DE port interrupt 455 * @dev_priv: driver private 456 * @interrupt_mask: mask of interrupt bits to update 457 * @enabled_irq_mask: mask of interrupt bits to enable 458 */ 459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 460 uint32_t interrupt_mask, 461 uint32_t enabled_irq_mask) 462 { 463 uint32_t new_val; 464 uint32_t old_val; 465 466 assert_spin_locked(&dev_priv->irq_lock); 467 468 WARN_ON(enabled_irq_mask & ~interrupt_mask); 469 470 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 471 return; 472 473 old_val = I915_READ(GEN8_DE_PORT_IMR); 474 475 new_val = old_val; 476 new_val &= ~interrupt_mask; 477 new_val |= (~enabled_irq_mask & interrupt_mask); 478 479 if (new_val != old_val) { 480 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 481 POSTING_READ(GEN8_DE_PORT_IMR); 482 } 483 } 484 485 /** 486 * bdw_update_pipe_irq - update DE pipe interrupt 487 * @dev_priv: driver private 488 * @pipe: pipe whose interrupt to update 489 * @interrupt_mask: mask of interrupt bits to update 490 * @enabled_irq_mask: mask of interrupt bits to enable 491 */ 492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 493 enum pipe pipe, 494 uint32_t interrupt_mask, 495 uint32_t enabled_irq_mask) 496 { 497 uint32_t new_val; 498 499 assert_spin_locked(&dev_priv->irq_lock); 500 501 WARN_ON(enabled_irq_mask & ~interrupt_mask); 502 503 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 504 return; 505 506 new_val = dev_priv->de_irq_mask[pipe]; 507 new_val &= ~interrupt_mask; 508 new_val |= (~enabled_irq_mask & interrupt_mask); 509 510 if (new_val != dev_priv->de_irq_mask[pipe]) { 511 dev_priv->de_irq_mask[pipe] = new_val; 512 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 513 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 514 } 515 } 516 517 /** 518 * ibx_display_interrupt_update - update SDEIMR 519 * @dev_priv: driver private 520 * @interrupt_mask: mask of interrupt bits to update 521 * @enabled_irq_mask: mask of interrupt bits to enable 522 */ 523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 524 uint32_t interrupt_mask, 525 uint32_t enabled_irq_mask) 526 { 527 uint32_t sdeimr = I915_READ(SDEIMR); 528 sdeimr &= ~interrupt_mask; 529 sdeimr |= (~enabled_irq_mask & interrupt_mask); 530 531 WARN_ON(enabled_irq_mask & ~interrupt_mask); 532 533 assert_spin_locked(&dev_priv->irq_lock); 534 535 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 536 return; 537 538 I915_WRITE(SDEIMR, sdeimr); 539 POSTING_READ(SDEIMR); 540 } 541 542 static void 543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 544 u32 enable_mask, u32 status_mask) 545 { 546 i915_reg_t reg = PIPESTAT(pipe); 547 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; 548 549 assert_spin_locked(&dev_priv->irq_lock); 550 WARN_ON(!intel_irqs_enabled(dev_priv)); 551 552 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 553 status_mask & ~PIPESTAT_INT_STATUS_MASK, 554 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 555 pipe_name(pipe), enable_mask, status_mask)) 556 return; 557 558 if ((pipestat & enable_mask) == enable_mask) 559 return; 560 561 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 562 563 /* Enable the interrupt, clear any pending status */ 564 pipestat |= enable_mask | status_mask; 565 I915_WRITE(reg, pipestat); 566 POSTING_READ(reg); 567 } 568 569 static void 570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 571 u32 enable_mask, u32 status_mask) 572 { 573 i915_reg_t reg = PIPESTAT(pipe); 574 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; 575 576 assert_spin_locked(&dev_priv->irq_lock); 577 WARN_ON(!intel_irqs_enabled(dev_priv)); 578 579 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 580 status_mask & ~PIPESTAT_INT_STATUS_MASK, 581 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 582 pipe_name(pipe), enable_mask, status_mask)) 583 return; 584 585 if ((pipestat & enable_mask) == 0) 586 return; 587 588 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 589 590 pipestat &= ~enable_mask; 591 I915_WRITE(reg, pipestat); 592 POSTING_READ(reg); 593 } 594 595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask) 596 { 597 u32 enable_mask = status_mask << 16; 598 599 /* 600 * On pipe A we don't support the PSR interrupt yet, 601 * on pipe B and C the same bit MBZ. 602 */ 603 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 604 return 0; 605 /* 606 * On pipe B and C we don't support the PSR interrupt yet, on pipe 607 * A the same bit is for perf counters which we don't use either. 608 */ 609 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 610 return 0; 611 612 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 613 SPRITE0_FLIP_DONE_INT_EN_VLV | 614 SPRITE1_FLIP_DONE_INT_EN_VLV); 615 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 616 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 617 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 618 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 619 620 return enable_mask; 621 } 622 623 void 624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 625 u32 status_mask) 626 { 627 u32 enable_mask; 628 629 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 630 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm, 631 status_mask); 632 else 633 enable_mask = status_mask << 16; 634 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask); 635 } 636 637 void 638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 639 u32 status_mask) 640 { 641 u32 enable_mask; 642 643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 644 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm, 645 status_mask); 646 else 647 enable_mask = status_mask << 16; 648 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask); 649 } 650 651 /** 652 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 653 * @dev_priv: i915 device private 654 */ 655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 656 { 657 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv)) 658 return; 659 660 spin_lock_irq(&dev_priv->irq_lock); 661 662 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 663 if (INTEL_GEN(dev_priv) >= 4) 664 i915_enable_pipestat(dev_priv, PIPE_A, 665 PIPE_LEGACY_BLC_EVENT_STATUS); 666 667 spin_unlock_irq(&dev_priv->irq_lock); 668 } 669 670 /* 671 * This timing diagram depicts the video signal in and 672 * around the vertical blanking period. 673 * 674 * Assumptions about the fictitious mode used in this example: 675 * vblank_start >= 3 676 * vsync_start = vblank_start + 1 677 * vsync_end = vblank_start + 2 678 * vtotal = vblank_start + 3 679 * 680 * start of vblank: 681 * latch double buffered registers 682 * increment frame counter (ctg+) 683 * generate start of vblank interrupt (gen4+) 684 * | 685 * | frame start: 686 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 687 * | may be shifted forward 1-3 extra lines via PIPECONF 688 * | | 689 * | | start of vsync: 690 * | | generate vsync interrupt 691 * | | | 692 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 693 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 694 * ----va---> <-----------------vb--------------------> <--------va------------- 695 * | | <----vs-----> | 696 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 697 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 698 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 699 * | | | 700 * last visible pixel first visible pixel 701 * | increment frame counter (gen3/4) 702 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 703 * 704 * x = horizontal active 705 * _ = horizontal blanking 706 * hs = horizontal sync 707 * va = vertical active 708 * vb = vertical blanking 709 * vs = vertical sync 710 * vbs = vblank_start (number) 711 * 712 * Summary: 713 * - most events happen at the start of horizontal sync 714 * - frame start happens at the start of horizontal blank, 1-4 lines 715 * (depending on PIPECONF settings) after the start of vblank 716 * - gen3/4 pixel and frame counter are synchronized with the start 717 * of horizontal active on the first line of vertical active 718 */ 719 720 /* Called from drm generic code, passed a 'crtc', which 721 * we use as a pipe index 722 */ 723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 724 { 725 struct drm_i915_private *dev_priv = to_i915(dev); 726 i915_reg_t high_frame, low_frame; 727 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 728 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 729 pipe); 730 const struct drm_display_mode *mode = &intel_crtc->base.hwmode; 731 732 htotal = mode->crtc_htotal; 733 hsync_start = mode->crtc_hsync_start; 734 vbl_start = mode->crtc_vblank_start; 735 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 736 vbl_start = DIV_ROUND_UP(vbl_start, 2); 737 738 /* Convert to pixel count */ 739 vbl_start *= htotal; 740 741 /* Start of vblank event occurs at start of hsync */ 742 vbl_start -= htotal - hsync_start; 743 744 high_frame = PIPEFRAME(pipe); 745 low_frame = PIPEFRAMEPIXEL(pipe); 746 747 /* 748 * High & low register fields aren't synchronized, so make sure 749 * we get a low value that's stable across two reads of the high 750 * register. 751 */ 752 do { 753 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; 754 low = I915_READ(low_frame); 755 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; 756 } while (high1 != high2); 757 758 high1 >>= PIPE_FRAME_HIGH_SHIFT; 759 pixel = low & PIPE_PIXEL_MASK; 760 low >>= PIPE_FRAME_LOW_SHIFT; 761 762 /* 763 * The frame counter increments at beginning of active. 764 * Cook up a vblank counter by also checking the pixel 765 * counter against vblank start. 766 */ 767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 768 } 769 770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 771 { 772 struct drm_i915_private *dev_priv = to_i915(dev); 773 774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 775 } 776 777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ 778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 779 { 780 struct drm_device *dev = crtc->base.dev; 781 struct drm_i915_private *dev_priv = to_i915(dev); 782 const struct drm_display_mode *mode = &crtc->base.hwmode; 783 enum pipe pipe = crtc->pipe; 784 int position, vtotal; 785 786 vtotal = mode->crtc_vtotal; 787 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 788 vtotal /= 2; 789 790 if (IS_GEN2(dev_priv)) 791 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 792 else 793 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 794 795 /* 796 * On HSW, the DSL reg (0x70000) appears to return 0 if we 797 * read it just before the start of vblank. So try it again 798 * so we don't accidentally end up spanning a vblank frame 799 * increment, causing the pipe_update_end() code to squak at us. 800 * 801 * The nature of this problem means we can't simply check the ISR 802 * bit and return the vblank start value; nor can we use the scanline 803 * debug register in the transcoder as it appears to have the same 804 * problem. We may need to extend this to include other platforms, 805 * but so far testing only shows the problem on HSW. 806 */ 807 if (HAS_DDI(dev_priv) && !position) { 808 int i, temp; 809 810 for (i = 0; i < 100; i++) { 811 udelay(1); 812 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & 813 DSL_LINEMASK_GEN3; 814 if (temp != position) { 815 position = temp; 816 break; 817 } 818 } 819 } 820 821 /* 822 * See update_scanline_offset() for the details on the 823 * scanline_offset adjustment. 824 */ 825 return (position + crtc->scanline_offset) % vtotal; 826 } 827 828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, 829 unsigned int flags, int *vpos, int *hpos, 830 ktime_t *stime, ktime_t *etime, 831 const struct drm_display_mode *mode) 832 { 833 struct drm_i915_private *dev_priv = to_i915(dev); 834 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 835 pipe); 836 int position; 837 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 838 bool in_vbl = true; 839 int ret = 0; 840 unsigned long irqflags; 841 842 if (WARN_ON(!mode->crtc_clock)) { 843 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 844 "pipe %c\n", pipe_name(pipe)); 845 return 0; 846 } 847 848 htotal = mode->crtc_htotal; 849 hsync_start = mode->crtc_hsync_start; 850 vtotal = mode->crtc_vtotal; 851 vbl_start = mode->crtc_vblank_start; 852 vbl_end = mode->crtc_vblank_end; 853 854 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 855 vbl_start = DIV_ROUND_UP(vbl_start, 2); 856 vbl_end /= 2; 857 vtotal /= 2; 858 } 859 860 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; 861 862 /* 863 * Lock uncore.lock, as we will do multiple timing critical raw 864 * register reads, potentially with preemption disabled, so the 865 * following code must not block on uncore.lock. 866 */ 867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 868 869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 870 871 /* Get optional system timestamp before query. */ 872 if (stime) 873 *stime = ktime_get(); 874 875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 876 /* No obvious pixelcount register. Only query vertical 877 * scanout position from Display scan line register. 878 */ 879 position = __intel_get_crtc_scanline(intel_crtc); 880 } else { 881 /* Have access to pixelcount since start of frame. 882 * We can split this into vertical and horizontal 883 * scanout position. 884 */ 885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 886 887 /* convert to pixel counts */ 888 vbl_start *= htotal; 889 vbl_end *= htotal; 890 vtotal *= htotal; 891 892 /* 893 * In interlaced modes, the pixel counter counts all pixels, 894 * so one field will have htotal more pixels. In order to avoid 895 * the reported position from jumping backwards when the pixel 896 * counter is beyond the length of the shorter field, just 897 * clamp the position the length of the shorter field. This 898 * matches how the scanline counter based position works since 899 * the scanline counter doesn't count the two half lines. 900 */ 901 if (position >= vtotal) 902 position = vtotal - 1; 903 904 /* 905 * Start of vblank interrupt is triggered at start of hsync, 906 * just prior to the first active line of vblank. However we 907 * consider lines to start at the leading edge of horizontal 908 * active. So, should we get here before we've crossed into 909 * the horizontal active of the first line in vblank, we would 910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 911 * always add htotal-hsync_start to the current pixel position. 912 */ 913 position = (position + htotal - hsync_start) % vtotal; 914 } 915 916 /* Get optional system timestamp after query. */ 917 if (etime) 918 *etime = ktime_get(); 919 920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 921 922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 923 924 in_vbl = position >= vbl_start && position < vbl_end; 925 926 /* 927 * While in vblank, position will be negative 928 * counting up towards 0 at vbl_end. And outside 929 * vblank, position will be positive counting 930 * up since vbl_end. 931 */ 932 if (position >= vbl_start) 933 position -= vbl_end; 934 else 935 position += vtotal - vbl_end; 936 937 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 938 *vpos = position; 939 *hpos = 0; 940 } else { 941 *vpos = position / htotal; 942 *hpos = position - (*vpos * htotal); 943 } 944 945 /* In vblank? */ 946 if (in_vbl) 947 ret |= DRM_SCANOUTPOS_IN_VBLANK; 948 949 return ret; 950 } 951 952 int intel_get_crtc_scanline(struct intel_crtc *crtc) 953 { 954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 955 unsigned long irqflags; 956 int position; 957 958 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 959 position = __intel_get_crtc_scanline(crtc); 960 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 961 962 return position; 963 } 964 965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe, 966 int *max_error, 967 struct timeval *vblank_time, 968 unsigned flags) 969 { 970 struct drm_i915_private *dev_priv = to_i915(dev); 971 struct intel_crtc *crtc; 972 973 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) { 974 DRM_ERROR("Invalid crtc %u\n", pipe); 975 return -EINVAL; 976 } 977 978 /* Get drm_crtc to timestamp: */ 979 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 980 if (crtc == NULL) { 981 DRM_ERROR("Invalid crtc %u\n", pipe); 982 return -EINVAL; 983 } 984 985 if (!crtc->base.hwmode.crtc_clock) { 986 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe); 987 return -EBUSY; 988 } 989 990 /* Helper routine in DRM core does all the work: */ 991 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, 992 vblank_time, flags, 993 &crtc->base.hwmode); 994 } 995 996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) 997 { 998 u32 busy_up, busy_down, max_avg, min_avg; 999 u8 new_delay; 1000 1001 spin_lock(&mchdev_lock); 1002 1003 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); 1004 1005 new_delay = dev_priv->ips.cur_delay; 1006 1007 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); 1008 busy_up = I915_READ(RCPREVBSYTUPAVG); 1009 busy_down = I915_READ(RCPREVBSYTDNAVG); 1010 max_avg = I915_READ(RCBMAXAVG); 1011 min_avg = I915_READ(RCBMINAVG); 1012 1013 /* Handle RCS change request from hw */ 1014 if (busy_up > max_avg) { 1015 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1016 new_delay = dev_priv->ips.cur_delay - 1; 1017 if (new_delay < dev_priv->ips.max_delay) 1018 new_delay = dev_priv->ips.max_delay; 1019 } else if (busy_down < min_avg) { 1020 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1021 new_delay = dev_priv->ips.cur_delay + 1; 1022 if (new_delay > dev_priv->ips.min_delay) 1023 new_delay = dev_priv->ips.min_delay; 1024 } 1025 1026 if (ironlake_set_drps(dev_priv, new_delay)) 1027 dev_priv->ips.cur_delay = new_delay; 1028 1029 spin_unlock(&mchdev_lock); 1030 1031 return; 1032 } 1033 1034 static void notify_ring(struct intel_engine_cs *engine) 1035 { 1036 smp_store_mb(engine->breadcrumbs.irq_posted, true); 1037 if (intel_engine_wakeup(engine)) 1038 trace_i915_gem_request_notify(engine); 1039 } 1040 1041 static void vlv_c0_read(struct drm_i915_private *dev_priv, 1042 struct intel_rps_ei *ei) 1043 { 1044 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP); 1045 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); 1046 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); 1047 } 1048 1049 static bool vlv_c0_above(struct drm_i915_private *dev_priv, 1050 const struct intel_rps_ei *old, 1051 const struct intel_rps_ei *now, 1052 int threshold) 1053 { 1054 u64 time, c0; 1055 unsigned int mul = 100; 1056 1057 if (old->cz_clock == 0) 1058 return false; 1059 1060 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) 1061 mul <<= 8; 1062 1063 time = now->cz_clock - old->cz_clock; 1064 time *= threshold * dev_priv->czclk_freq; 1065 1066 /* Workload can be split between render + media, e.g. SwapBuffers 1067 * being blitted in X after being rendered in mesa. To account for 1068 * this we need to combine both engines into our activity counter. 1069 */ 1070 c0 = now->render_c0 - old->render_c0; 1071 c0 += now->media_c0 - old->media_c0; 1072 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC; 1073 1074 return c0 >= time; 1075 } 1076 1077 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) 1078 { 1079 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei); 1080 dev_priv->rps.up_ei = dev_priv->rps.down_ei; 1081 } 1082 1083 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) 1084 { 1085 struct intel_rps_ei now; 1086 u32 events = 0; 1087 1088 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0) 1089 return 0; 1090 1091 vlv_c0_read(dev_priv, &now); 1092 if (now.cz_clock == 0) 1093 return 0; 1094 1095 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) { 1096 if (!vlv_c0_above(dev_priv, 1097 &dev_priv->rps.down_ei, &now, 1098 dev_priv->rps.down_threshold)) 1099 events |= GEN6_PM_RP_DOWN_THRESHOLD; 1100 dev_priv->rps.down_ei = now; 1101 } 1102 1103 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) { 1104 if (vlv_c0_above(dev_priv, 1105 &dev_priv->rps.up_ei, &now, 1106 dev_priv->rps.up_threshold)) 1107 events |= GEN6_PM_RP_UP_THRESHOLD; 1108 dev_priv->rps.up_ei = now; 1109 } 1110 1111 return events; 1112 } 1113 1114 static bool any_waiters(struct drm_i915_private *dev_priv) 1115 { 1116 struct intel_engine_cs *engine; 1117 enum intel_engine_id id; 1118 1119 for_each_engine(engine, dev_priv, id) 1120 if (intel_engine_has_waiter(engine)) 1121 return true; 1122 1123 return false; 1124 } 1125 1126 static void gen6_pm_rps_work(struct work_struct *work) 1127 { 1128 struct drm_i915_private *dev_priv = 1129 container_of(work, struct drm_i915_private, rps.work); 1130 bool client_boost; 1131 int new_delay, adj, min, max; 1132 u32 pm_iir; 1133 1134 spin_lock_irq(&dev_priv->irq_lock); 1135 /* Speed up work cancelation during disabling rps interrupts. */ 1136 if (!dev_priv->rps.interrupts_enabled) { 1137 spin_unlock_irq(&dev_priv->irq_lock); 1138 return; 1139 } 1140 1141 pm_iir = dev_priv->rps.pm_iir; 1142 dev_priv->rps.pm_iir = 0; 1143 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ 1144 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); 1145 client_boost = dev_priv->rps.client_boost; 1146 dev_priv->rps.client_boost = false; 1147 spin_unlock_irq(&dev_priv->irq_lock); 1148 1149 /* Make sure we didn't queue anything we're not going to process. */ 1150 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1151 1152 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) 1153 return; 1154 1155 mutex_lock(&dev_priv->rps.hw_lock); 1156 1157 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); 1158 1159 adj = dev_priv->rps.last_adj; 1160 new_delay = dev_priv->rps.cur_freq; 1161 min = dev_priv->rps.min_freq_softlimit; 1162 max = dev_priv->rps.max_freq_softlimit; 1163 if (client_boost || any_waiters(dev_priv)) 1164 max = dev_priv->rps.max_freq; 1165 if (client_boost && new_delay < dev_priv->rps.boost_freq) { 1166 new_delay = dev_priv->rps.boost_freq; 1167 adj = 0; 1168 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1169 if (adj > 0) 1170 adj *= 2; 1171 else /* CHV needs even encode values */ 1172 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; 1173 /* 1174 * For better performance, jump directly 1175 * to RPe if we're below it. 1176 */ 1177 if (new_delay < dev_priv->rps.efficient_freq - adj) { 1178 new_delay = dev_priv->rps.efficient_freq; 1179 adj = 0; 1180 } 1181 } else if (client_boost || any_waiters(dev_priv)) { 1182 adj = 0; 1183 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1184 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq) 1185 new_delay = dev_priv->rps.efficient_freq; 1186 else 1187 new_delay = dev_priv->rps.min_freq_softlimit; 1188 adj = 0; 1189 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1190 if (adj < 0) 1191 adj *= 2; 1192 else /* CHV needs even encode values */ 1193 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; 1194 } else { /* unknown event */ 1195 adj = 0; 1196 } 1197 1198 dev_priv->rps.last_adj = adj; 1199 1200 /* sysfs frequency interfaces may have snuck in while servicing the 1201 * interrupt 1202 */ 1203 new_delay += adj; 1204 new_delay = clamp_t(int, new_delay, min, max); 1205 1206 intel_set_rps(dev_priv, new_delay); 1207 1208 mutex_unlock(&dev_priv->rps.hw_lock); 1209 } 1210 1211 1212 /** 1213 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1214 * occurred. 1215 * @work: workqueue struct 1216 * 1217 * Doesn't actually do anything except notify userspace. As a consequence of 1218 * this event, userspace should try to remap the bad rows since statistically 1219 * it is likely the same row is more likely to go bad again. 1220 */ 1221 static void ivybridge_parity_work(struct work_struct *work) 1222 { 1223 struct drm_i915_private *dev_priv = 1224 container_of(work, struct drm_i915_private, l3_parity.error_work); 1225 u32 error_status, row, bank, subbank; 1226 char *parity_event[6]; 1227 uint32_t misccpctl; 1228 uint8_t slice = 0; 1229 1230 /* We must turn off DOP level clock gating to access the L3 registers. 1231 * In order to prevent a get/put style interface, acquire struct mutex 1232 * any time we access those registers. 1233 */ 1234 mutex_lock(&dev_priv->drm.struct_mutex); 1235 1236 /* If we've screwed up tracking, just let the interrupt fire again */ 1237 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1238 goto out; 1239 1240 misccpctl = I915_READ(GEN7_MISCCPCTL); 1241 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1242 POSTING_READ(GEN7_MISCCPCTL); 1243 1244 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1245 i915_reg_t reg; 1246 1247 slice--; 1248 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) 1249 break; 1250 1251 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1252 1253 reg = GEN7_L3CDERRST1(slice); 1254 1255 error_status = I915_READ(reg); 1256 row = GEN7_PARITY_ERROR_ROW(error_status); 1257 bank = GEN7_PARITY_ERROR_BANK(error_status); 1258 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1259 1260 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1261 POSTING_READ(reg); 1262 1263 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1264 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1265 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1266 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1267 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1268 parity_event[5] = NULL; 1269 1270 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1271 KOBJ_CHANGE, parity_event); 1272 1273 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1274 slice, row, bank, subbank); 1275 1276 kfree(parity_event[4]); 1277 kfree(parity_event[3]); 1278 kfree(parity_event[2]); 1279 kfree(parity_event[1]); 1280 } 1281 1282 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1283 1284 out: 1285 WARN_ON(dev_priv->l3_parity.which_slice); 1286 spin_lock_irq(&dev_priv->irq_lock); 1287 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1288 spin_unlock_irq(&dev_priv->irq_lock); 1289 1290 mutex_unlock(&dev_priv->drm.struct_mutex); 1291 } 1292 1293 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, 1294 u32 iir) 1295 { 1296 if (!HAS_L3_DPF(dev_priv)) 1297 return; 1298 1299 spin_lock(&dev_priv->irq_lock); 1300 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1301 spin_unlock(&dev_priv->irq_lock); 1302 1303 iir &= GT_PARITY_ERROR(dev_priv); 1304 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1305 dev_priv->l3_parity.which_slice |= 1 << 1; 1306 1307 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1308 dev_priv->l3_parity.which_slice |= 1 << 0; 1309 1310 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1311 } 1312 1313 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, 1314 u32 gt_iir) 1315 { 1316 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1317 notify_ring(dev_priv->engine[RCS]); 1318 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1319 notify_ring(dev_priv->engine[VCS]); 1320 } 1321 1322 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, 1323 u32 gt_iir) 1324 { 1325 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1326 notify_ring(dev_priv->engine[RCS]); 1327 if (gt_iir & GT_BSD_USER_INTERRUPT) 1328 notify_ring(dev_priv->engine[VCS]); 1329 if (gt_iir & GT_BLT_USER_INTERRUPT) 1330 notify_ring(dev_priv->engine[BCS]); 1331 1332 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1333 GT_BSD_CS_ERROR_INTERRUPT | 1334 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) 1335 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); 1336 1337 if (gt_iir & GT_PARITY_ERROR(dev_priv)) 1338 ivybridge_parity_error_irq_handler(dev_priv, gt_iir); 1339 } 1340 1341 static __always_inline void 1342 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift) 1343 { 1344 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) 1345 notify_ring(engine); 1346 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) 1347 tasklet_schedule(&engine->irq_tasklet); 1348 } 1349 1350 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv, 1351 u32 master_ctl, 1352 u32 gt_iir[4]) 1353 { 1354 irqreturn_t ret = IRQ_NONE; 1355 1356 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1357 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0)); 1358 if (gt_iir[0]) { 1359 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]); 1360 ret = IRQ_HANDLED; 1361 } else 1362 DRM_ERROR("The master control interrupt lied (GT0)!\n"); 1363 } 1364 1365 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1366 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1)); 1367 if (gt_iir[1]) { 1368 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]); 1369 ret = IRQ_HANDLED; 1370 } else 1371 DRM_ERROR("The master control interrupt lied (GT1)!\n"); 1372 } 1373 1374 if (master_ctl & GEN8_GT_VECS_IRQ) { 1375 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3)); 1376 if (gt_iir[3]) { 1377 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]); 1378 ret = IRQ_HANDLED; 1379 } else 1380 DRM_ERROR("The master control interrupt lied (GT3)!\n"); 1381 } 1382 1383 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1384 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2)); 1385 if (gt_iir[2] & (dev_priv->pm_rps_events | 1386 dev_priv->pm_guc_events)) { 1387 I915_WRITE_FW(GEN8_GT_IIR(2), 1388 gt_iir[2] & (dev_priv->pm_rps_events | 1389 dev_priv->pm_guc_events)); 1390 ret = IRQ_HANDLED; 1391 } else 1392 DRM_ERROR("The master control interrupt lied (PM)!\n"); 1393 } 1394 1395 return ret; 1396 } 1397 1398 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv, 1399 u32 gt_iir[4]) 1400 { 1401 if (gt_iir[0]) { 1402 gen8_cs_irq_handler(dev_priv->engine[RCS], 1403 gt_iir[0], GEN8_RCS_IRQ_SHIFT); 1404 gen8_cs_irq_handler(dev_priv->engine[BCS], 1405 gt_iir[0], GEN8_BCS_IRQ_SHIFT); 1406 } 1407 1408 if (gt_iir[1]) { 1409 gen8_cs_irq_handler(dev_priv->engine[VCS], 1410 gt_iir[1], GEN8_VCS1_IRQ_SHIFT); 1411 gen8_cs_irq_handler(dev_priv->engine[VCS2], 1412 gt_iir[1], GEN8_VCS2_IRQ_SHIFT); 1413 } 1414 1415 if (gt_iir[3]) 1416 gen8_cs_irq_handler(dev_priv->engine[VECS], 1417 gt_iir[3], GEN8_VECS_IRQ_SHIFT); 1418 1419 if (gt_iir[2] & dev_priv->pm_rps_events) 1420 gen6_rps_irq_handler(dev_priv, gt_iir[2]); 1421 1422 if (gt_iir[2] & dev_priv->pm_guc_events) 1423 gen9_guc_irq_handler(dev_priv, gt_iir[2]); 1424 } 1425 1426 static bool bxt_port_hotplug_long_detect(enum port port, u32 val) 1427 { 1428 switch (port) { 1429 case PORT_A: 1430 return val & PORTA_HOTPLUG_LONG_DETECT; 1431 case PORT_B: 1432 return val & PORTB_HOTPLUG_LONG_DETECT; 1433 case PORT_C: 1434 return val & PORTC_HOTPLUG_LONG_DETECT; 1435 default: 1436 return false; 1437 } 1438 } 1439 1440 static bool spt_port_hotplug2_long_detect(enum port port, u32 val) 1441 { 1442 switch (port) { 1443 case PORT_E: 1444 return val & PORTE_HOTPLUG_LONG_DETECT; 1445 default: 1446 return false; 1447 } 1448 } 1449 1450 static bool spt_port_hotplug_long_detect(enum port port, u32 val) 1451 { 1452 switch (port) { 1453 case PORT_A: 1454 return val & PORTA_HOTPLUG_LONG_DETECT; 1455 case PORT_B: 1456 return val & PORTB_HOTPLUG_LONG_DETECT; 1457 case PORT_C: 1458 return val & PORTC_HOTPLUG_LONG_DETECT; 1459 case PORT_D: 1460 return val & PORTD_HOTPLUG_LONG_DETECT; 1461 default: 1462 return false; 1463 } 1464 } 1465 1466 static bool ilk_port_hotplug_long_detect(enum port port, u32 val) 1467 { 1468 switch (port) { 1469 case PORT_A: 1470 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1471 default: 1472 return false; 1473 } 1474 } 1475 1476 static bool pch_port_hotplug_long_detect(enum port port, u32 val) 1477 { 1478 switch (port) { 1479 case PORT_B: 1480 return val & PORTB_HOTPLUG_LONG_DETECT; 1481 case PORT_C: 1482 return val & PORTC_HOTPLUG_LONG_DETECT; 1483 case PORT_D: 1484 return val & PORTD_HOTPLUG_LONG_DETECT; 1485 default: 1486 return false; 1487 } 1488 } 1489 1490 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val) 1491 { 1492 switch (port) { 1493 case PORT_B: 1494 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1495 case PORT_C: 1496 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1497 case PORT_D: 1498 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1499 default: 1500 return false; 1501 } 1502 } 1503 1504 /* 1505 * Get a bit mask of pins that have triggered, and which ones may be long. 1506 * This can be called multiple times with the same masks to accumulate 1507 * hotplug detection results from several registers. 1508 * 1509 * Note that the caller is expected to zero out the masks initially. 1510 */ 1511 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask, 1512 u32 hotplug_trigger, u32 dig_hotplug_reg, 1513 const u32 hpd[HPD_NUM_PINS], 1514 bool long_pulse_detect(enum port port, u32 val)) 1515 { 1516 enum port port; 1517 int i; 1518 1519 for_each_hpd_pin(i) { 1520 if ((hpd[i] & hotplug_trigger) == 0) 1521 continue; 1522 1523 *pin_mask |= BIT(i); 1524 1525 if (!intel_hpd_pin_to_port(i, &port)) 1526 continue; 1527 1528 if (long_pulse_detect(port, dig_hotplug_reg)) 1529 *long_mask |= BIT(i); 1530 } 1531 1532 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n", 1533 hotplug_trigger, dig_hotplug_reg, *pin_mask); 1534 1535 } 1536 1537 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1538 { 1539 wake_up_all(&dev_priv->gmbus_wait_queue); 1540 } 1541 1542 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1543 { 1544 wake_up_all(&dev_priv->gmbus_wait_queue); 1545 } 1546 1547 #if defined(CONFIG_DEBUG_FS) 1548 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1549 enum pipe pipe, 1550 uint32_t crc0, uint32_t crc1, 1551 uint32_t crc2, uint32_t crc3, 1552 uint32_t crc4) 1553 { 1554 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1555 struct intel_pipe_crc_entry *entry; 1556 int head, tail; 1557 1558 spin_lock(&pipe_crc->lock); 1559 1560 if (!pipe_crc->entries) { 1561 spin_unlock(&pipe_crc->lock); 1562 DRM_DEBUG_KMS("spurious interrupt\n"); 1563 return; 1564 } 1565 1566 head = pipe_crc->head; 1567 tail = pipe_crc->tail; 1568 1569 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { 1570 spin_unlock(&pipe_crc->lock); 1571 DRM_ERROR("CRC buffer overflowing\n"); 1572 return; 1573 } 1574 1575 entry = &pipe_crc->entries[head]; 1576 1577 entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm, 1578 pipe); 1579 entry->crc[0] = crc0; 1580 entry->crc[1] = crc1; 1581 entry->crc[2] = crc2; 1582 entry->crc[3] = crc3; 1583 entry->crc[4] = crc4; 1584 1585 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 1586 pipe_crc->head = head; 1587 1588 spin_unlock(&pipe_crc->lock); 1589 1590 wake_up_interruptible(&pipe_crc->wq); 1591 } 1592 #else 1593 static inline void 1594 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1595 enum pipe pipe, 1596 uint32_t crc0, uint32_t crc1, 1597 uint32_t crc2, uint32_t crc3, 1598 uint32_t crc4) {} 1599 #endif 1600 1601 1602 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1603 enum pipe pipe) 1604 { 1605 display_pipe_crc_irq_handler(dev_priv, pipe, 1606 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1607 0, 0, 0, 0); 1608 } 1609 1610 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1611 enum pipe pipe) 1612 { 1613 display_pipe_crc_irq_handler(dev_priv, pipe, 1614 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1615 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1616 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1617 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1618 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1619 } 1620 1621 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1622 enum pipe pipe) 1623 { 1624 uint32_t res1, res2; 1625 1626 if (INTEL_GEN(dev_priv) >= 3) 1627 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1628 else 1629 res1 = 0; 1630 1631 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1632 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1633 else 1634 res2 = 0; 1635 1636 display_pipe_crc_irq_handler(dev_priv, pipe, 1637 I915_READ(PIPE_CRC_RES_RED(pipe)), 1638 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1639 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1640 res1, res2); 1641 } 1642 1643 /* The RPS events need forcewake, so we add them to a work queue and mask their 1644 * IMR bits until the work is done. Other interrupts can be processed without 1645 * the work queue. */ 1646 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1647 { 1648 if (pm_iir & dev_priv->pm_rps_events) { 1649 spin_lock(&dev_priv->irq_lock); 1650 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1651 if (dev_priv->rps.interrupts_enabled) { 1652 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events; 1653 schedule_work(&dev_priv->rps.work); 1654 } 1655 spin_unlock(&dev_priv->irq_lock); 1656 } 1657 1658 if (INTEL_INFO(dev_priv)->gen >= 8) 1659 return; 1660 1661 if (HAS_VEBOX(dev_priv)) { 1662 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1663 notify_ring(dev_priv->engine[VECS]); 1664 1665 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1666 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1667 } 1668 } 1669 1670 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) 1671 { 1672 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) { 1673 /* Sample the log buffer flush related bits & clear them out now 1674 * itself from the message identity register to minimize the 1675 * probability of losing a flush interrupt, when there are back 1676 * to back flush interrupts. 1677 * There can be a new flush interrupt, for different log buffer 1678 * type (like for ISR), whilst Host is handling one (for DPC). 1679 * Since same bit is used in message register for ISR & DPC, it 1680 * could happen that GuC sets the bit for 2nd interrupt but Host 1681 * clears out the bit on handling the 1st interrupt. 1682 */ 1683 u32 msg, flush; 1684 1685 msg = I915_READ(SOFT_SCRATCH(15)); 1686 flush = msg & (GUC2HOST_MSG_CRASH_DUMP_POSTED | 1687 GUC2HOST_MSG_FLUSH_LOG_BUFFER); 1688 if (flush) { 1689 /* Clear the message bits that are handled */ 1690 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush); 1691 1692 /* Handle flush interrupt in bottom half */ 1693 queue_work(dev_priv->guc.log.flush_wq, 1694 &dev_priv->guc.log.flush_work); 1695 1696 dev_priv->guc.log.flush_interrupt_count++; 1697 } else { 1698 /* Not clearing of unhandled event bits won't result in 1699 * re-triggering of the interrupt. 1700 */ 1701 } 1702 } 1703 } 1704 1705 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv, 1706 enum pipe pipe) 1707 { 1708 bool ret; 1709 1710 ret = drm_handle_vblank(&dev_priv->drm, pipe); 1711 if (ret) 1712 intel_finish_page_flip_mmio(dev_priv, pipe); 1713 1714 return ret; 1715 } 1716 1717 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1718 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1719 { 1720 int pipe; 1721 1722 spin_lock(&dev_priv->irq_lock); 1723 1724 if (!dev_priv->display_irqs_enabled) { 1725 spin_unlock(&dev_priv->irq_lock); 1726 return; 1727 } 1728 1729 for_each_pipe(dev_priv, pipe) { 1730 i915_reg_t reg; 1731 u32 mask, iir_bit = 0; 1732 1733 /* 1734 * PIPESTAT bits get signalled even when the interrupt is 1735 * disabled with the mask bits, and some of the status bits do 1736 * not generate interrupts at all (like the underrun bit). Hence 1737 * we need to be careful that we only handle what we want to 1738 * handle. 1739 */ 1740 1741 /* fifo underruns are filterered in the underrun handler. */ 1742 mask = PIPE_FIFO_UNDERRUN_STATUS; 1743 1744 switch (pipe) { 1745 case PIPE_A: 1746 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1747 break; 1748 case PIPE_B: 1749 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1750 break; 1751 case PIPE_C: 1752 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1753 break; 1754 } 1755 if (iir & iir_bit) 1756 mask |= dev_priv->pipestat_irq_mask[pipe]; 1757 1758 if (!mask) 1759 continue; 1760 1761 reg = PIPESTAT(pipe); 1762 mask |= PIPESTAT_INT_ENABLE_MASK; 1763 pipe_stats[pipe] = I915_READ(reg) & mask; 1764 1765 /* 1766 * Clear the PIPE*STAT regs before the IIR 1767 */ 1768 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS | 1769 PIPESTAT_INT_STATUS_MASK)) 1770 I915_WRITE(reg, pipe_stats[pipe]); 1771 } 1772 spin_unlock(&dev_priv->irq_lock); 1773 } 1774 1775 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1776 u32 pipe_stats[I915_MAX_PIPES]) 1777 { 1778 enum pipe pipe; 1779 1780 for_each_pipe(dev_priv, pipe) { 1781 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && 1782 intel_pipe_handle_vblank(dev_priv, pipe)) 1783 intel_check_page_flip(dev_priv, pipe); 1784 1785 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) 1786 intel_finish_page_flip_cs(dev_priv, pipe); 1787 1788 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1789 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1790 1791 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1792 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1793 } 1794 1795 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1796 gmbus_irq_handler(dev_priv); 1797 } 1798 1799 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1800 { 1801 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); 1802 1803 if (hotplug_status) 1804 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 1805 1806 return hotplug_status; 1807 } 1808 1809 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1810 u32 hotplug_status) 1811 { 1812 u32 pin_mask = 0, long_mask = 0; 1813 1814 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 1815 IS_CHERRYVIEW(dev_priv)) { 1816 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1817 1818 if (hotplug_trigger) { 1819 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 1820 hotplug_trigger, hpd_status_g4x, 1821 i9xx_port_hotplug_long_detect); 1822 1823 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1824 } 1825 1826 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1827 dp_aux_irq_handler(dev_priv); 1828 } else { 1829 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1830 1831 if (hotplug_trigger) { 1832 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 1833 hotplug_trigger, hpd_status_i915, 1834 i9xx_port_hotplug_long_detect); 1835 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1836 } 1837 } 1838 } 1839 1840 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1841 { 1842 struct drm_device *dev = arg; 1843 struct drm_i915_private *dev_priv = to_i915(dev); 1844 irqreturn_t ret = IRQ_NONE; 1845 1846 if (!intel_irqs_enabled(dev_priv)) 1847 return IRQ_NONE; 1848 1849 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1850 disable_rpm_wakeref_asserts(dev_priv); 1851 1852 do { 1853 u32 iir, gt_iir, pm_iir; 1854 u32 pipe_stats[I915_MAX_PIPES] = {}; 1855 u32 hotplug_status = 0; 1856 u32 ier = 0; 1857 1858 gt_iir = I915_READ(GTIIR); 1859 pm_iir = I915_READ(GEN6_PMIIR); 1860 iir = I915_READ(VLV_IIR); 1861 1862 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1863 break; 1864 1865 ret = IRQ_HANDLED; 1866 1867 /* 1868 * Theory on interrupt generation, based on empirical evidence: 1869 * 1870 * x = ((VLV_IIR & VLV_IER) || 1871 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1872 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1873 * 1874 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1875 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1876 * guarantee the CPU interrupt will be raised again even if we 1877 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1878 * bits this time around. 1879 */ 1880 I915_WRITE(VLV_MASTER_IER, 0); 1881 ier = I915_READ(VLV_IER); 1882 I915_WRITE(VLV_IER, 0); 1883 1884 if (gt_iir) 1885 I915_WRITE(GTIIR, gt_iir); 1886 if (pm_iir) 1887 I915_WRITE(GEN6_PMIIR, pm_iir); 1888 1889 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1890 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1891 1892 /* Call regardless, as some status bits might not be 1893 * signalled in iir */ 1894 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1895 1896 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1897 I915_LPE_PIPE_B_INTERRUPT)) 1898 intel_lpe_audio_irq_handler(dev_priv); 1899 1900 /* 1901 * VLV_IIR is single buffered, and reflects the level 1902 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1903 */ 1904 if (iir) 1905 I915_WRITE(VLV_IIR, iir); 1906 1907 I915_WRITE(VLV_IER, ier); 1908 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1909 POSTING_READ(VLV_MASTER_IER); 1910 1911 if (gt_iir) 1912 snb_gt_irq_handler(dev_priv, gt_iir); 1913 if (pm_iir) 1914 gen6_rps_irq_handler(dev_priv, pm_iir); 1915 1916 if (hotplug_status) 1917 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1918 1919 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1920 } while (0); 1921 1922 enable_rpm_wakeref_asserts(dev_priv); 1923 1924 return ret; 1925 } 1926 1927 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1928 { 1929 struct drm_device *dev = arg; 1930 struct drm_i915_private *dev_priv = to_i915(dev); 1931 irqreturn_t ret = IRQ_NONE; 1932 1933 if (!intel_irqs_enabled(dev_priv)) 1934 return IRQ_NONE; 1935 1936 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1937 disable_rpm_wakeref_asserts(dev_priv); 1938 1939 do { 1940 u32 master_ctl, iir; 1941 u32 gt_iir[4] = {}; 1942 u32 pipe_stats[I915_MAX_PIPES] = {}; 1943 u32 hotplug_status = 0; 1944 u32 ier = 0; 1945 1946 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1947 iir = I915_READ(VLV_IIR); 1948 1949 if (master_ctl == 0 && iir == 0) 1950 break; 1951 1952 ret = IRQ_HANDLED; 1953 1954 /* 1955 * Theory on interrupt generation, based on empirical evidence: 1956 * 1957 * x = ((VLV_IIR & VLV_IER) || 1958 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1959 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1960 * 1961 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1962 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1963 * guarantee the CPU interrupt will be raised again even if we 1964 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1965 * bits this time around. 1966 */ 1967 I915_WRITE(GEN8_MASTER_IRQ, 0); 1968 ier = I915_READ(VLV_IER); 1969 I915_WRITE(VLV_IER, 0); 1970 1971 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 1972 1973 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1974 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1975 1976 /* Call regardless, as some status bits might not be 1977 * signalled in iir */ 1978 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1979 1980 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1981 I915_LPE_PIPE_B_INTERRUPT | 1982 I915_LPE_PIPE_C_INTERRUPT)) 1983 intel_lpe_audio_irq_handler(dev_priv); 1984 1985 /* 1986 * VLV_IIR is single buffered, and reflects the level 1987 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1988 */ 1989 if (iir) 1990 I915_WRITE(VLV_IIR, iir); 1991 1992 I915_WRITE(VLV_IER, ier); 1993 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1994 POSTING_READ(GEN8_MASTER_IRQ); 1995 1996 gen8_gt_irq_handler(dev_priv, gt_iir); 1997 1998 if (hotplug_status) 1999 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2000 2001 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2002 } while (0); 2003 2004 enable_rpm_wakeref_asserts(dev_priv); 2005 2006 return ret; 2007 } 2008 2009 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2010 u32 hotplug_trigger, 2011 const u32 hpd[HPD_NUM_PINS]) 2012 { 2013 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2014 2015 /* 2016 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 2017 * unless we touch the hotplug register, even if hotplug_trigger is 2018 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 2019 * errors. 2020 */ 2021 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2022 if (!hotplug_trigger) { 2023 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 2024 PORTD_HOTPLUG_STATUS_MASK | 2025 PORTC_HOTPLUG_STATUS_MASK | 2026 PORTB_HOTPLUG_STATUS_MASK; 2027 dig_hotplug_reg &= ~mask; 2028 } 2029 2030 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2031 if (!hotplug_trigger) 2032 return; 2033 2034 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2035 dig_hotplug_reg, hpd, 2036 pch_port_hotplug_long_detect); 2037 2038 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2039 } 2040 2041 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2042 { 2043 int pipe; 2044 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2045 2046 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 2047 2048 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2049 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2050 SDE_AUDIO_POWER_SHIFT); 2051 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2052 port_name(port)); 2053 } 2054 2055 if (pch_iir & SDE_AUX_MASK) 2056 dp_aux_irq_handler(dev_priv); 2057 2058 if (pch_iir & SDE_GMBUS) 2059 gmbus_irq_handler(dev_priv); 2060 2061 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2062 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2063 2064 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2065 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2066 2067 if (pch_iir & SDE_POISON) 2068 DRM_ERROR("PCH poison interrupt\n"); 2069 2070 if (pch_iir & SDE_FDI_MASK) 2071 for_each_pipe(dev_priv, pipe) 2072 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2073 pipe_name(pipe), 2074 I915_READ(FDI_RX_IIR(pipe))); 2075 2076 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2077 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2078 2079 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2080 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2081 2082 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2083 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); 2084 2085 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2086 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); 2087 } 2088 2089 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 2090 { 2091 u32 err_int = I915_READ(GEN7_ERR_INT); 2092 enum pipe pipe; 2093 2094 if (err_int & ERR_INT_POISON) 2095 DRM_ERROR("Poison interrupt\n"); 2096 2097 for_each_pipe(dev_priv, pipe) { 2098 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 2099 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2100 2101 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2102 if (IS_IVYBRIDGE(dev_priv)) 2103 ivb_pipe_crc_irq_handler(dev_priv, pipe); 2104 else 2105 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2106 } 2107 } 2108 2109 I915_WRITE(GEN7_ERR_INT, err_int); 2110 } 2111 2112 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 2113 { 2114 u32 serr_int = I915_READ(SERR_INT); 2115 2116 if (serr_int & SERR_INT_POISON) 2117 DRM_ERROR("PCH poison interrupt\n"); 2118 2119 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) 2120 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); 2121 2122 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) 2123 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); 2124 2125 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) 2126 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C); 2127 2128 I915_WRITE(SERR_INT, serr_int); 2129 } 2130 2131 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2132 { 2133 int pipe; 2134 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2135 2136 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 2137 2138 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2139 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2140 SDE_AUDIO_POWER_SHIFT_CPT); 2141 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2142 port_name(port)); 2143 } 2144 2145 if (pch_iir & SDE_AUX_MASK_CPT) 2146 dp_aux_irq_handler(dev_priv); 2147 2148 if (pch_iir & SDE_GMBUS_CPT) 2149 gmbus_irq_handler(dev_priv); 2150 2151 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2152 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2153 2154 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2155 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2156 2157 if (pch_iir & SDE_FDI_MASK_CPT) 2158 for_each_pipe(dev_priv, pipe) 2159 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2160 pipe_name(pipe), 2161 I915_READ(FDI_RX_IIR(pipe))); 2162 2163 if (pch_iir & SDE_ERROR_CPT) 2164 cpt_serr_int_handler(dev_priv); 2165 } 2166 2167 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2168 { 2169 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2170 ~SDE_PORTE_HOTPLUG_SPT; 2171 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2172 u32 pin_mask = 0, long_mask = 0; 2173 2174 if (hotplug_trigger) { 2175 u32 dig_hotplug_reg; 2176 2177 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2178 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2179 2180 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2181 dig_hotplug_reg, hpd_spt, 2182 spt_port_hotplug_long_detect); 2183 } 2184 2185 if (hotplug2_trigger) { 2186 u32 dig_hotplug_reg; 2187 2188 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 2189 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2190 2191 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger, 2192 dig_hotplug_reg, hpd_spt, 2193 spt_port_hotplug2_long_detect); 2194 } 2195 2196 if (pin_mask) 2197 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2198 2199 if (pch_iir & SDE_GMBUS_CPT) 2200 gmbus_irq_handler(dev_priv); 2201 } 2202 2203 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2204 u32 hotplug_trigger, 2205 const u32 hpd[HPD_NUM_PINS]) 2206 { 2207 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2208 2209 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2210 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2211 2212 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2213 dig_hotplug_reg, hpd, 2214 ilk_port_hotplug_long_detect); 2215 2216 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2217 } 2218 2219 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2220 u32 de_iir) 2221 { 2222 enum pipe pipe; 2223 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2224 2225 if (hotplug_trigger) 2226 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 2227 2228 if (de_iir & DE_AUX_CHANNEL_A) 2229 dp_aux_irq_handler(dev_priv); 2230 2231 if (de_iir & DE_GSE) 2232 intel_opregion_asle_intr(dev_priv); 2233 2234 if (de_iir & DE_POISON) 2235 DRM_ERROR("Poison interrupt\n"); 2236 2237 for_each_pipe(dev_priv, pipe) { 2238 if (de_iir & DE_PIPE_VBLANK(pipe) && 2239 intel_pipe_handle_vblank(dev_priv, pipe)) 2240 intel_check_page_flip(dev_priv, pipe); 2241 2242 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2243 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2244 2245 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2246 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2247 2248 /* plane/pipes map 1:1 on ilk+ */ 2249 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) 2250 intel_finish_page_flip_cs(dev_priv, pipe); 2251 } 2252 2253 /* check event from PCH */ 2254 if (de_iir & DE_PCH_EVENT) { 2255 u32 pch_iir = I915_READ(SDEIIR); 2256 2257 if (HAS_PCH_CPT(dev_priv)) 2258 cpt_irq_handler(dev_priv, pch_iir); 2259 else 2260 ibx_irq_handler(dev_priv, pch_iir); 2261 2262 /* should clear PCH hotplug event before clear CPU irq */ 2263 I915_WRITE(SDEIIR, pch_iir); 2264 } 2265 2266 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT) 2267 ironlake_rps_change_irq_handler(dev_priv); 2268 } 2269 2270 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2271 u32 de_iir) 2272 { 2273 enum pipe pipe; 2274 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2275 2276 if (hotplug_trigger) 2277 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2278 2279 if (de_iir & DE_ERR_INT_IVB) 2280 ivb_err_int_handler(dev_priv); 2281 2282 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2283 dp_aux_irq_handler(dev_priv); 2284 2285 if (de_iir & DE_GSE_IVB) 2286 intel_opregion_asle_intr(dev_priv); 2287 2288 for_each_pipe(dev_priv, pipe) { 2289 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) && 2290 intel_pipe_handle_vblank(dev_priv, pipe)) 2291 intel_check_page_flip(dev_priv, pipe); 2292 2293 /* plane/pipes map 1:1 on ilk+ */ 2294 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) 2295 intel_finish_page_flip_cs(dev_priv, pipe); 2296 } 2297 2298 /* check event from PCH */ 2299 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2300 u32 pch_iir = I915_READ(SDEIIR); 2301 2302 cpt_irq_handler(dev_priv, pch_iir); 2303 2304 /* clear PCH hotplug event before clear CPU irq */ 2305 I915_WRITE(SDEIIR, pch_iir); 2306 } 2307 } 2308 2309 /* 2310 * To handle irqs with the minimum potential races with fresh interrupts, we: 2311 * 1 - Disable Master Interrupt Control. 2312 * 2 - Find the source(s) of the interrupt. 2313 * 3 - Clear the Interrupt Identity bits (IIR). 2314 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2315 * 5 - Re-enable Master Interrupt Control. 2316 */ 2317 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2318 { 2319 struct drm_device *dev = arg; 2320 struct drm_i915_private *dev_priv = to_i915(dev); 2321 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2322 irqreturn_t ret = IRQ_NONE; 2323 2324 if (!intel_irqs_enabled(dev_priv)) 2325 return IRQ_NONE; 2326 2327 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2328 disable_rpm_wakeref_asserts(dev_priv); 2329 2330 /* disable master interrupt before clearing iir */ 2331 de_ier = I915_READ(DEIER); 2332 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2333 POSTING_READ(DEIER); 2334 2335 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2336 * interrupts will will be stored on its back queue, and then we'll be 2337 * able to process them after we restore SDEIER (as soon as we restore 2338 * it, we'll get an interrupt if SDEIIR still has something to process 2339 * due to its back queue). */ 2340 if (!HAS_PCH_NOP(dev_priv)) { 2341 sde_ier = I915_READ(SDEIER); 2342 I915_WRITE(SDEIER, 0); 2343 POSTING_READ(SDEIER); 2344 } 2345 2346 /* Find, clear, then process each source of interrupt */ 2347 2348 gt_iir = I915_READ(GTIIR); 2349 if (gt_iir) { 2350 I915_WRITE(GTIIR, gt_iir); 2351 ret = IRQ_HANDLED; 2352 if (INTEL_GEN(dev_priv) >= 6) 2353 snb_gt_irq_handler(dev_priv, gt_iir); 2354 else 2355 ilk_gt_irq_handler(dev_priv, gt_iir); 2356 } 2357 2358 de_iir = I915_READ(DEIIR); 2359 if (de_iir) { 2360 I915_WRITE(DEIIR, de_iir); 2361 ret = IRQ_HANDLED; 2362 if (INTEL_GEN(dev_priv) >= 7) 2363 ivb_display_irq_handler(dev_priv, de_iir); 2364 else 2365 ilk_display_irq_handler(dev_priv, de_iir); 2366 } 2367 2368 if (INTEL_GEN(dev_priv) >= 6) { 2369 u32 pm_iir = I915_READ(GEN6_PMIIR); 2370 if (pm_iir) { 2371 I915_WRITE(GEN6_PMIIR, pm_iir); 2372 ret = IRQ_HANDLED; 2373 gen6_rps_irq_handler(dev_priv, pm_iir); 2374 } 2375 } 2376 2377 I915_WRITE(DEIER, de_ier); 2378 POSTING_READ(DEIER); 2379 if (!HAS_PCH_NOP(dev_priv)) { 2380 I915_WRITE(SDEIER, sde_ier); 2381 POSTING_READ(SDEIER); 2382 } 2383 2384 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2385 enable_rpm_wakeref_asserts(dev_priv); 2386 2387 return ret; 2388 } 2389 2390 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2391 u32 hotplug_trigger, 2392 const u32 hpd[HPD_NUM_PINS]) 2393 { 2394 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2395 2396 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2397 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2398 2399 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2400 dig_hotplug_reg, hpd, 2401 bxt_port_hotplug_long_detect); 2402 2403 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2404 } 2405 2406 static irqreturn_t 2407 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2408 { 2409 irqreturn_t ret = IRQ_NONE; 2410 u32 iir; 2411 enum pipe pipe; 2412 2413 if (master_ctl & GEN8_DE_MISC_IRQ) { 2414 iir = I915_READ(GEN8_DE_MISC_IIR); 2415 if (iir) { 2416 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2417 ret = IRQ_HANDLED; 2418 if (iir & GEN8_DE_MISC_GSE) 2419 intel_opregion_asle_intr(dev_priv); 2420 else 2421 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2422 } 2423 else 2424 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2425 } 2426 2427 if (master_ctl & GEN8_DE_PORT_IRQ) { 2428 iir = I915_READ(GEN8_DE_PORT_IIR); 2429 if (iir) { 2430 u32 tmp_mask; 2431 bool found = false; 2432 2433 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2434 ret = IRQ_HANDLED; 2435 2436 tmp_mask = GEN8_AUX_CHANNEL_A; 2437 if (INTEL_INFO(dev_priv)->gen >= 9) 2438 tmp_mask |= GEN9_AUX_CHANNEL_B | 2439 GEN9_AUX_CHANNEL_C | 2440 GEN9_AUX_CHANNEL_D; 2441 2442 if (iir & tmp_mask) { 2443 dp_aux_irq_handler(dev_priv); 2444 found = true; 2445 } 2446 2447 if (IS_BROXTON(dev_priv)) { 2448 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2449 if (tmp_mask) { 2450 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2451 hpd_bxt); 2452 found = true; 2453 } 2454 } else if (IS_BROADWELL(dev_priv)) { 2455 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2456 if (tmp_mask) { 2457 ilk_hpd_irq_handler(dev_priv, 2458 tmp_mask, hpd_bdw); 2459 found = true; 2460 } 2461 } 2462 2463 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2464 gmbus_irq_handler(dev_priv); 2465 found = true; 2466 } 2467 2468 if (!found) 2469 DRM_ERROR("Unexpected DE Port interrupt\n"); 2470 } 2471 else 2472 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2473 } 2474 2475 for_each_pipe(dev_priv, pipe) { 2476 u32 flip_done, fault_errors; 2477 2478 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2479 continue; 2480 2481 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2482 if (!iir) { 2483 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2484 continue; 2485 } 2486 2487 ret = IRQ_HANDLED; 2488 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2489 2490 if (iir & GEN8_PIPE_VBLANK && 2491 intel_pipe_handle_vblank(dev_priv, pipe)) 2492 intel_check_page_flip(dev_priv, pipe); 2493 2494 flip_done = iir; 2495 if (INTEL_INFO(dev_priv)->gen >= 9) 2496 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE; 2497 else 2498 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE; 2499 2500 if (flip_done) 2501 intel_finish_page_flip_cs(dev_priv, pipe); 2502 2503 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2504 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2505 2506 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2507 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2508 2509 fault_errors = iir; 2510 if (INTEL_INFO(dev_priv)->gen >= 9) 2511 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2512 else 2513 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2514 2515 if (fault_errors) 2516 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", 2517 pipe_name(pipe), 2518 fault_errors); 2519 } 2520 2521 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2522 master_ctl & GEN8_DE_PCH_IRQ) { 2523 /* 2524 * FIXME(BDW): Assume for now that the new interrupt handling 2525 * scheme also closed the SDE interrupt handling race we've seen 2526 * on older pch-split platforms. But this needs testing. 2527 */ 2528 iir = I915_READ(SDEIIR); 2529 if (iir) { 2530 I915_WRITE(SDEIIR, iir); 2531 ret = IRQ_HANDLED; 2532 2533 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv)) 2534 spt_irq_handler(dev_priv, iir); 2535 else 2536 cpt_irq_handler(dev_priv, iir); 2537 } else { 2538 /* 2539 * Like on previous PCH there seems to be something 2540 * fishy going on with forwarding PCH interrupts. 2541 */ 2542 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); 2543 } 2544 } 2545 2546 return ret; 2547 } 2548 2549 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2550 { 2551 struct drm_device *dev = arg; 2552 struct drm_i915_private *dev_priv = to_i915(dev); 2553 u32 master_ctl; 2554 u32 gt_iir[4] = {}; 2555 irqreturn_t ret; 2556 2557 if (!intel_irqs_enabled(dev_priv)) 2558 return IRQ_NONE; 2559 2560 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ); 2561 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; 2562 if (!master_ctl) 2563 return IRQ_NONE; 2564 2565 I915_WRITE_FW(GEN8_MASTER_IRQ, 0); 2566 2567 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2568 disable_rpm_wakeref_asserts(dev_priv); 2569 2570 /* Find, clear, then process each source of interrupt */ 2571 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2572 gen8_gt_irq_handler(dev_priv, gt_iir); 2573 ret |= gen8_de_irq_handler(dev_priv, master_ctl); 2574 2575 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2576 POSTING_READ_FW(GEN8_MASTER_IRQ); 2577 2578 enable_rpm_wakeref_asserts(dev_priv); 2579 2580 return ret; 2581 } 2582 2583 static void i915_error_wake_up(struct drm_i915_private *dev_priv) 2584 { 2585 /* 2586 * Notify all waiters for GPU completion events that reset state has 2587 * been changed, and that they need to restart their wait after 2588 * checking for potential errors (and bail out to drop locks if there is 2589 * a gpu reset pending so that i915_error_work_func can acquire them). 2590 */ 2591 2592 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */ 2593 wake_up_all(&dev_priv->gpu_error.wait_queue); 2594 2595 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */ 2596 wake_up_all(&dev_priv->pending_flip_queue); 2597 } 2598 2599 /** 2600 * i915_reset_and_wakeup - do process context error handling work 2601 * @dev_priv: i915 device private 2602 * 2603 * Fire an error uevent so userspace can see that a hang or error 2604 * was detected. 2605 */ 2606 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv) 2607 { 2608 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj; 2609 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 2610 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 2611 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 2612 2613 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 2614 2615 DRM_DEBUG_DRIVER("resetting chip\n"); 2616 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 2617 2618 /* 2619 * In most cases it's guaranteed that we get here with an RPM 2620 * reference held, for example because there is a pending GPU 2621 * request that won't finish until the reset is done. This 2622 * isn't the case at least when we get here by doing a 2623 * simulated reset via debugs, so get an RPM reference. 2624 */ 2625 intel_runtime_pm_get(dev_priv); 2626 intel_prepare_reset(dev_priv); 2627 2628 do { 2629 /* 2630 * All state reset _must_ be completed before we update the 2631 * reset counter, for otherwise waiters might miss the reset 2632 * pending state and not properly drop locks, resulting in 2633 * deadlocks with the reset work. 2634 */ 2635 if (mutex_trylock(&dev_priv->drm.struct_mutex)) { 2636 i915_reset(dev_priv); 2637 mutex_unlock(&dev_priv->drm.struct_mutex); 2638 } 2639 2640 /* We need to wait for anyone holding the lock to wakeup */ 2641 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags, 2642 I915_RESET_IN_PROGRESS, 2643 TASK_UNINTERRUPTIBLE, 2644 HZ)); 2645 2646 intel_finish_reset(dev_priv); 2647 intel_runtime_pm_put(dev_priv); 2648 2649 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags)) 2650 kobject_uevent_env(kobj, 2651 KOBJ_CHANGE, reset_done_event); 2652 2653 /* 2654 * Note: The wake_up also serves as a memory barrier so that 2655 * waiters see the updated value of the dev_priv->gpu_error. 2656 */ 2657 wake_up_all(&dev_priv->gpu_error.reset_queue); 2658 } 2659 2660 static inline void 2661 i915_err_print_instdone(struct drm_i915_private *dev_priv, 2662 struct intel_instdone *instdone) 2663 { 2664 int slice; 2665 int subslice; 2666 2667 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone); 2668 2669 if (INTEL_GEN(dev_priv) <= 3) 2670 return; 2671 2672 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common); 2673 2674 if (INTEL_GEN(dev_priv) <= 6) 2675 return; 2676 2677 for_each_instdone_slice_subslice(dev_priv, slice, subslice) 2678 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n", 2679 slice, subslice, instdone->sampler[slice][subslice]); 2680 2681 for_each_instdone_slice_subslice(dev_priv, slice, subslice) 2682 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n", 2683 slice, subslice, instdone->row[slice][subslice]); 2684 } 2685 2686 static void i915_clear_error_registers(struct drm_i915_private *dev_priv) 2687 { 2688 u32 eir; 2689 2690 if (!IS_GEN2(dev_priv)) 2691 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER)); 2692 2693 if (INTEL_GEN(dev_priv) < 4) 2694 I915_WRITE(IPEIR, I915_READ(IPEIR)); 2695 else 2696 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965)); 2697 2698 I915_WRITE(EIR, I915_READ(EIR)); 2699 eir = I915_READ(EIR); 2700 if (eir) { 2701 /* 2702 * some errors might have become stuck, 2703 * mask them. 2704 */ 2705 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 2706 I915_WRITE(EMR, I915_READ(EMR) | eir); 2707 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 2708 } 2709 } 2710 2711 /** 2712 * i915_handle_error - handle a gpu error 2713 * @dev_priv: i915 device private 2714 * @engine_mask: mask representing engines that are hung 2715 * Do some basic checking of register state at error time and 2716 * dump it to the syslog. Also call i915_capture_error_state() to make 2717 * sure we get a record and make it available in debugfs. Fire a uevent 2718 * so userspace knows something bad happened (should trigger collection 2719 * of a ring dump etc.). 2720 * @fmt: Error message format string 2721 */ 2722 void i915_handle_error(struct drm_i915_private *dev_priv, 2723 u32 engine_mask, 2724 const char *fmt, ...) 2725 { 2726 va_list args; 2727 char error_msg[80]; 2728 2729 va_start(args, fmt); 2730 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 2731 va_end(args); 2732 2733 i915_capture_error_state(dev_priv, engine_mask, error_msg); 2734 i915_clear_error_registers(dev_priv); 2735 2736 if (!engine_mask) 2737 return; 2738 2739 if (test_and_set_bit(I915_RESET_IN_PROGRESS, 2740 &dev_priv->gpu_error.flags)) 2741 return; 2742 2743 /* 2744 * Wakeup waiting processes so that the reset function 2745 * i915_reset_and_wakeup doesn't deadlock trying to grab 2746 * various locks. By bumping the reset counter first, the woken 2747 * processes will see a reset in progress and back off, 2748 * releasing their locks and then wait for the reset completion. 2749 * We must do this for _all_ gpu waiters that might hold locks 2750 * that the reset work needs to acquire. 2751 * 2752 * Note: The wake_up also provides a memory barrier to ensure that the 2753 * waiters see the updated value of the reset flags. 2754 */ 2755 i915_error_wake_up(dev_priv); 2756 2757 i915_reset_and_wakeup(dev_priv); 2758 } 2759 2760 /* Called from drm generic code, passed 'crtc' which 2761 * we use as a pipe index 2762 */ 2763 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) 2764 { 2765 struct drm_i915_private *dev_priv = to_i915(dev); 2766 unsigned long irqflags; 2767 2768 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2769 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2770 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2771 2772 return 0; 2773 } 2774 2775 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) 2776 { 2777 struct drm_i915_private *dev_priv = to_i915(dev); 2778 unsigned long irqflags; 2779 2780 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2781 i915_enable_pipestat(dev_priv, pipe, 2782 PIPE_START_VBLANK_INTERRUPT_STATUS); 2783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2784 2785 return 0; 2786 } 2787 2788 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) 2789 { 2790 struct drm_i915_private *dev_priv = to_i915(dev); 2791 unsigned long irqflags; 2792 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 2793 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2794 2795 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2796 ilk_enable_display_irq(dev_priv, bit); 2797 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2798 2799 return 0; 2800 } 2801 2802 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) 2803 { 2804 struct drm_i915_private *dev_priv = to_i915(dev); 2805 unsigned long irqflags; 2806 2807 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2808 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2809 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2810 2811 return 0; 2812 } 2813 2814 /* Called from drm generic code, passed 'crtc' which 2815 * we use as a pipe index 2816 */ 2817 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) 2818 { 2819 struct drm_i915_private *dev_priv = to_i915(dev); 2820 unsigned long irqflags; 2821 2822 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2823 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2824 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2825 } 2826 2827 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) 2828 { 2829 struct drm_i915_private *dev_priv = to_i915(dev); 2830 unsigned long irqflags; 2831 2832 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2833 i915_disable_pipestat(dev_priv, pipe, 2834 PIPE_START_VBLANK_INTERRUPT_STATUS); 2835 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2836 } 2837 2838 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) 2839 { 2840 struct drm_i915_private *dev_priv = to_i915(dev); 2841 unsigned long irqflags; 2842 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 2843 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2844 2845 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2846 ilk_disable_display_irq(dev_priv, bit); 2847 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2848 } 2849 2850 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) 2851 { 2852 struct drm_i915_private *dev_priv = to_i915(dev); 2853 unsigned long irqflags; 2854 2855 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2856 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2857 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2858 } 2859 2860 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 2861 { 2862 if (HAS_PCH_NOP(dev_priv)) 2863 return; 2864 2865 GEN5_IRQ_RESET(SDE); 2866 2867 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 2868 I915_WRITE(SERR_INT, 0xffffffff); 2869 } 2870 2871 /* 2872 * SDEIER is also touched by the interrupt handler to work around missed PCH 2873 * interrupts. Hence we can't update it after the interrupt handler is enabled - 2874 * instead we unconditionally enable all PCH interrupt sources here, but then 2875 * only unmask them as needed with SDEIMR. 2876 * 2877 * This function needs to be called before interrupts are enabled. 2878 */ 2879 static void ibx_irq_pre_postinstall(struct drm_device *dev) 2880 { 2881 struct drm_i915_private *dev_priv = to_i915(dev); 2882 2883 if (HAS_PCH_NOP(dev_priv)) 2884 return; 2885 2886 WARN_ON(I915_READ(SDEIER) != 0); 2887 I915_WRITE(SDEIER, 0xffffffff); 2888 POSTING_READ(SDEIER); 2889 } 2890 2891 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) 2892 { 2893 GEN5_IRQ_RESET(GT); 2894 if (INTEL_GEN(dev_priv) >= 6) 2895 GEN5_IRQ_RESET(GEN6_PM); 2896 } 2897 2898 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 2899 { 2900 enum pipe pipe; 2901 2902 if (IS_CHERRYVIEW(dev_priv)) 2903 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 2904 else 2905 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 2906 2907 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 2908 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 2909 2910 for_each_pipe(dev_priv, pipe) { 2911 I915_WRITE(PIPESTAT(pipe), 2912 PIPE_FIFO_UNDERRUN_STATUS | 2913 PIPESTAT_INT_STATUS_MASK); 2914 dev_priv->pipestat_irq_mask[pipe] = 0; 2915 } 2916 2917 GEN5_IRQ_RESET(VLV_); 2918 dev_priv->irq_mask = ~0; 2919 } 2920 2921 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 2922 { 2923 u32 pipestat_mask; 2924 u32 enable_mask; 2925 enum pipe pipe; 2926 u32 val; 2927 2928 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | 2929 PIPE_CRC_DONE_INTERRUPT_STATUS; 2930 2931 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 2932 for_each_pipe(dev_priv, pipe) 2933 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 2934 2935 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 2936 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 2937 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 2938 if (IS_CHERRYVIEW(dev_priv)) 2939 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 2940 2941 WARN_ON(dev_priv->irq_mask != ~0); 2942 2943 val = (I915_LPE_PIPE_A_INTERRUPT | 2944 I915_LPE_PIPE_B_INTERRUPT | 2945 I915_LPE_PIPE_C_INTERRUPT); 2946 2947 enable_mask |= val; 2948 2949 dev_priv->irq_mask = ~enable_mask; 2950 2951 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask); 2952 } 2953 2954 /* drm_dma.h hooks 2955 */ 2956 static void ironlake_irq_reset(struct drm_device *dev) 2957 { 2958 struct drm_i915_private *dev_priv = to_i915(dev); 2959 2960 I915_WRITE(HWSTAM, 0xffffffff); 2961 2962 GEN5_IRQ_RESET(DE); 2963 if (IS_GEN7(dev_priv)) 2964 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 2965 2966 gen5_gt_irq_reset(dev_priv); 2967 2968 ibx_irq_reset(dev_priv); 2969 } 2970 2971 static void valleyview_irq_preinstall(struct drm_device *dev) 2972 { 2973 struct drm_i915_private *dev_priv = to_i915(dev); 2974 2975 I915_WRITE(VLV_MASTER_IER, 0); 2976 POSTING_READ(VLV_MASTER_IER); 2977 2978 gen5_gt_irq_reset(dev_priv); 2979 2980 spin_lock_irq(&dev_priv->irq_lock); 2981 if (dev_priv->display_irqs_enabled) 2982 vlv_display_irq_reset(dev_priv); 2983 spin_unlock_irq(&dev_priv->irq_lock); 2984 } 2985 2986 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 2987 { 2988 GEN8_IRQ_RESET_NDX(GT, 0); 2989 GEN8_IRQ_RESET_NDX(GT, 1); 2990 GEN8_IRQ_RESET_NDX(GT, 2); 2991 GEN8_IRQ_RESET_NDX(GT, 3); 2992 } 2993 2994 static void gen8_irq_reset(struct drm_device *dev) 2995 { 2996 struct drm_i915_private *dev_priv = to_i915(dev); 2997 int pipe; 2998 2999 I915_WRITE(GEN8_MASTER_IRQ, 0); 3000 POSTING_READ(GEN8_MASTER_IRQ); 3001 3002 gen8_gt_irq_reset(dev_priv); 3003 3004 for_each_pipe(dev_priv, pipe) 3005 if (intel_display_power_is_enabled(dev_priv, 3006 POWER_DOMAIN_PIPE(pipe))) 3007 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3008 3009 GEN5_IRQ_RESET(GEN8_DE_PORT_); 3010 GEN5_IRQ_RESET(GEN8_DE_MISC_); 3011 GEN5_IRQ_RESET(GEN8_PCU_); 3012 3013 if (HAS_PCH_SPLIT(dev_priv)) 3014 ibx_irq_reset(dev_priv); 3015 } 3016 3017 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3018 unsigned int pipe_mask) 3019 { 3020 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3021 enum pipe pipe; 3022 3023 spin_lock_irq(&dev_priv->irq_lock); 3024 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3025 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3026 dev_priv->de_irq_mask[pipe], 3027 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3028 spin_unlock_irq(&dev_priv->irq_lock); 3029 } 3030 3031 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3032 unsigned int pipe_mask) 3033 { 3034 enum pipe pipe; 3035 3036 spin_lock_irq(&dev_priv->irq_lock); 3037 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3038 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3039 spin_unlock_irq(&dev_priv->irq_lock); 3040 3041 /* make sure we're done processing display irqs */ 3042 synchronize_irq(dev_priv->drm.irq); 3043 } 3044 3045 static void cherryview_irq_preinstall(struct drm_device *dev) 3046 { 3047 struct drm_i915_private *dev_priv = to_i915(dev); 3048 3049 I915_WRITE(GEN8_MASTER_IRQ, 0); 3050 POSTING_READ(GEN8_MASTER_IRQ); 3051 3052 gen8_gt_irq_reset(dev_priv); 3053 3054 GEN5_IRQ_RESET(GEN8_PCU_); 3055 3056 spin_lock_irq(&dev_priv->irq_lock); 3057 if (dev_priv->display_irqs_enabled) 3058 vlv_display_irq_reset(dev_priv); 3059 spin_unlock_irq(&dev_priv->irq_lock); 3060 } 3061 3062 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 3063 const u32 hpd[HPD_NUM_PINS]) 3064 { 3065 struct intel_encoder *encoder; 3066 u32 enabled_irqs = 0; 3067 3068 for_each_intel_encoder(&dev_priv->drm, encoder) 3069 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 3070 enabled_irqs |= hpd[encoder->hpd_pin]; 3071 3072 return enabled_irqs; 3073 } 3074 3075 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3076 { 3077 u32 hotplug_irqs, hotplug, enabled_irqs; 3078 3079 if (HAS_PCH_IBX(dev_priv)) { 3080 hotplug_irqs = SDE_HOTPLUG_MASK; 3081 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 3082 } else { 3083 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3084 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 3085 } 3086 3087 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3088 3089 /* 3090 * Enable digital hotplug on the PCH, and configure the DP short pulse 3091 * duration to 2ms (which is the minimum in the Display Port spec). 3092 * The pulse duration bits are reserved on LPT+. 3093 */ 3094 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3095 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); 3096 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3097 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3098 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3099 /* 3100 * When CPU and PCH are on the same package, port A 3101 * HPD must be enabled in both north and south. 3102 */ 3103 if (HAS_PCH_LPT_LP(dev_priv)) 3104 hotplug |= PORTA_HOTPLUG_ENABLE; 3105 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3106 } 3107 3108 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3109 { 3110 u32 hotplug_irqs, hotplug, enabled_irqs; 3111 3112 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3113 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3114 3115 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3116 3117 /* Enable digital hotplug on the PCH */ 3118 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3119 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE | 3120 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE; 3121 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3122 3123 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3124 hotplug |= PORTE_HOTPLUG_ENABLE; 3125 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3126 } 3127 3128 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3129 { 3130 u32 hotplug_irqs, hotplug, enabled_irqs; 3131 3132 if (INTEL_GEN(dev_priv) >= 8) { 3133 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3134 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3135 3136 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3137 } else if (INTEL_GEN(dev_priv) >= 7) { 3138 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3139 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3140 3141 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3142 } else { 3143 hotplug_irqs = DE_DP_A_HOTPLUG; 3144 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3145 3146 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3147 } 3148 3149 /* 3150 * Enable digital hotplug on the CPU, and configure the DP short pulse 3151 * duration to 2ms (which is the minimum in the Display Port spec) 3152 * The pulse duration bits are reserved on HSW+. 3153 */ 3154 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3155 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3156 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms; 3157 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3158 3159 ibx_hpd_irq_setup(dev_priv); 3160 } 3161 3162 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3163 { 3164 u32 hotplug_irqs, hotplug, enabled_irqs; 3165 3166 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3167 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3168 3169 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3170 3171 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3172 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE | 3173 PORTA_HOTPLUG_ENABLE; 3174 3175 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", 3176 hotplug, enabled_irqs); 3177 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3178 3179 /* 3180 * For BXT invert bit has to be set based on AOB design 3181 * for HPD detection logic, update it based on VBT fields. 3182 */ 3183 3184 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3185 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3186 hotplug |= BXT_DDIA_HPD_INVERT; 3187 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3188 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3189 hotplug |= BXT_DDIB_HPD_INVERT; 3190 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3191 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3192 hotplug |= BXT_DDIC_HPD_INVERT; 3193 3194 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3195 } 3196 3197 static void ibx_irq_postinstall(struct drm_device *dev) 3198 { 3199 struct drm_i915_private *dev_priv = to_i915(dev); 3200 u32 mask; 3201 3202 if (HAS_PCH_NOP(dev_priv)) 3203 return; 3204 3205 if (HAS_PCH_IBX(dev_priv)) 3206 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3207 else 3208 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3209 3210 gen5_assert_iir_is_zero(dev_priv, SDEIIR); 3211 I915_WRITE(SDEIMR, ~mask); 3212 } 3213 3214 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3215 { 3216 struct drm_i915_private *dev_priv = to_i915(dev); 3217 u32 pm_irqs, gt_irqs; 3218 3219 pm_irqs = gt_irqs = 0; 3220 3221 dev_priv->gt_irq_mask = ~0; 3222 if (HAS_L3_DPF(dev_priv)) { 3223 /* L3 parity interrupt is always unmasked. */ 3224 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); 3225 gt_irqs |= GT_PARITY_ERROR(dev_priv); 3226 } 3227 3228 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3229 if (IS_GEN5(dev_priv)) { 3230 gt_irqs |= ILK_BSD_USER_INTERRUPT; 3231 } else { 3232 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3233 } 3234 3235 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); 3236 3237 if (INTEL_GEN(dev_priv) >= 6) { 3238 /* 3239 * RPS interrupts will get enabled/disabled on demand when RPS 3240 * itself is enabled/disabled. 3241 */ 3242 if (HAS_VEBOX(dev_priv)) { 3243 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 3244 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; 3245 } 3246 3247 dev_priv->pm_imr = 0xffffffff; 3248 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs); 3249 } 3250 } 3251 3252 static int ironlake_irq_postinstall(struct drm_device *dev) 3253 { 3254 struct drm_i915_private *dev_priv = to_i915(dev); 3255 u32 display_mask, extra_mask; 3256 3257 if (INTEL_GEN(dev_priv) >= 7) { 3258 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3259 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | 3260 DE_PLANEB_FLIP_DONE_IVB | 3261 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB); 3262 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3263 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3264 DE_DP_A_HOTPLUG_IVB); 3265 } else { 3266 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3267 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | 3268 DE_AUX_CHANNEL_A | 3269 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | 3270 DE_POISON); 3271 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3272 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3273 DE_DP_A_HOTPLUG); 3274 } 3275 3276 dev_priv->irq_mask = ~display_mask; 3277 3278 I915_WRITE(HWSTAM, 0xeffe); 3279 3280 ibx_irq_pre_postinstall(dev); 3281 3282 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); 3283 3284 gen5_gt_irq_postinstall(dev); 3285 3286 ibx_irq_postinstall(dev); 3287 3288 if (IS_IRONLAKE_M(dev_priv)) { 3289 /* Enable PCU event interrupts 3290 * 3291 * spinlocking not required here for correctness since interrupt 3292 * setup is guaranteed to run in single-threaded context. But we 3293 * need it to make the assert_spin_locked happy. */ 3294 spin_lock_irq(&dev_priv->irq_lock); 3295 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 3296 spin_unlock_irq(&dev_priv->irq_lock); 3297 } 3298 3299 return 0; 3300 } 3301 3302 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3303 { 3304 assert_spin_locked(&dev_priv->irq_lock); 3305 3306 if (dev_priv->display_irqs_enabled) 3307 return; 3308 3309 dev_priv->display_irqs_enabled = true; 3310 3311 if (intel_irqs_enabled(dev_priv)) { 3312 vlv_display_irq_reset(dev_priv); 3313 vlv_display_irq_postinstall(dev_priv); 3314 } 3315 } 3316 3317 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3318 { 3319 assert_spin_locked(&dev_priv->irq_lock); 3320 3321 if (!dev_priv->display_irqs_enabled) 3322 return; 3323 3324 dev_priv->display_irqs_enabled = false; 3325 3326 if (intel_irqs_enabled(dev_priv)) 3327 vlv_display_irq_reset(dev_priv); 3328 } 3329 3330 3331 static int valleyview_irq_postinstall(struct drm_device *dev) 3332 { 3333 struct drm_i915_private *dev_priv = to_i915(dev); 3334 3335 gen5_gt_irq_postinstall(dev); 3336 3337 spin_lock_irq(&dev_priv->irq_lock); 3338 if (dev_priv->display_irqs_enabled) 3339 vlv_display_irq_postinstall(dev_priv); 3340 spin_unlock_irq(&dev_priv->irq_lock); 3341 3342 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3343 POSTING_READ(VLV_MASTER_IER); 3344 3345 return 0; 3346 } 3347 3348 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3349 { 3350 /* These are interrupts we'll toggle with the ring mask register */ 3351 uint32_t gt_interrupts[] = { 3352 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3353 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3354 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 3355 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, 3356 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3357 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3358 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | 3359 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 3360 0, 3361 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 3362 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT 3363 }; 3364 3365 if (HAS_L3_DPF(dev_priv)) 3366 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; 3367 3368 dev_priv->pm_ier = 0x0; 3369 dev_priv->pm_imr = ~dev_priv->pm_ier; 3370 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 3371 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 3372 /* 3373 * RPS interrupts will get enabled/disabled on demand when RPS itself 3374 * is enabled/disabled. Same wil be the case for GuC interrupts. 3375 */ 3376 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); 3377 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 3378 } 3379 3380 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3381 { 3382 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; 3383 uint32_t de_pipe_enables; 3384 u32 de_port_masked = GEN8_AUX_CHANNEL_A; 3385 u32 de_port_enables; 3386 u32 de_misc_masked = GEN8_DE_MISC_GSE; 3387 enum pipe pipe; 3388 3389 if (INTEL_INFO(dev_priv)->gen >= 9) { 3390 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE | 3391 GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 3392 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | 3393 GEN9_AUX_CHANNEL_D; 3394 if (IS_BROXTON(dev_priv)) 3395 de_port_masked |= BXT_DE_PORT_GMBUS; 3396 } else { 3397 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE | 3398 GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 3399 } 3400 3401 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3402 GEN8_PIPE_FIFO_UNDERRUN; 3403 3404 de_port_enables = de_port_masked; 3405 if (IS_BROXTON(dev_priv)) 3406 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3407 else if (IS_BROADWELL(dev_priv)) 3408 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 3409 3410 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked; 3411 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked; 3412 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked; 3413 3414 for_each_pipe(dev_priv, pipe) 3415 if (intel_display_power_is_enabled(dev_priv, 3416 POWER_DOMAIN_PIPE(pipe))) 3417 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3418 dev_priv->de_irq_mask[pipe], 3419 de_pipe_enables); 3420 3421 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3422 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3423 } 3424 3425 static int gen8_irq_postinstall(struct drm_device *dev) 3426 { 3427 struct drm_i915_private *dev_priv = to_i915(dev); 3428 3429 if (HAS_PCH_SPLIT(dev_priv)) 3430 ibx_irq_pre_postinstall(dev); 3431 3432 gen8_gt_irq_postinstall(dev_priv); 3433 gen8_de_irq_postinstall(dev_priv); 3434 3435 if (HAS_PCH_SPLIT(dev_priv)) 3436 ibx_irq_postinstall(dev); 3437 3438 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3439 POSTING_READ(GEN8_MASTER_IRQ); 3440 3441 return 0; 3442 } 3443 3444 static int cherryview_irq_postinstall(struct drm_device *dev) 3445 { 3446 struct drm_i915_private *dev_priv = to_i915(dev); 3447 3448 gen8_gt_irq_postinstall(dev_priv); 3449 3450 spin_lock_irq(&dev_priv->irq_lock); 3451 if (dev_priv->display_irqs_enabled) 3452 vlv_display_irq_postinstall(dev_priv); 3453 spin_unlock_irq(&dev_priv->irq_lock); 3454 3455 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3456 POSTING_READ(GEN8_MASTER_IRQ); 3457 3458 return 0; 3459 } 3460 3461 static void gen8_irq_uninstall(struct drm_device *dev) 3462 { 3463 struct drm_i915_private *dev_priv = to_i915(dev); 3464 3465 if (!dev_priv) 3466 return; 3467 3468 gen8_irq_reset(dev); 3469 } 3470 3471 static void valleyview_irq_uninstall(struct drm_device *dev) 3472 { 3473 struct drm_i915_private *dev_priv = to_i915(dev); 3474 3475 if (!dev_priv) 3476 return; 3477 3478 I915_WRITE(VLV_MASTER_IER, 0); 3479 POSTING_READ(VLV_MASTER_IER); 3480 3481 gen5_gt_irq_reset(dev_priv); 3482 3483 I915_WRITE(HWSTAM, 0xffffffff); 3484 3485 spin_lock_irq(&dev_priv->irq_lock); 3486 if (dev_priv->display_irqs_enabled) 3487 vlv_display_irq_reset(dev_priv); 3488 spin_unlock_irq(&dev_priv->irq_lock); 3489 } 3490 3491 static void cherryview_irq_uninstall(struct drm_device *dev) 3492 { 3493 struct drm_i915_private *dev_priv = to_i915(dev); 3494 3495 if (!dev_priv) 3496 return; 3497 3498 I915_WRITE(GEN8_MASTER_IRQ, 0); 3499 POSTING_READ(GEN8_MASTER_IRQ); 3500 3501 gen8_gt_irq_reset(dev_priv); 3502 3503 GEN5_IRQ_RESET(GEN8_PCU_); 3504 3505 spin_lock_irq(&dev_priv->irq_lock); 3506 if (dev_priv->display_irqs_enabled) 3507 vlv_display_irq_reset(dev_priv); 3508 spin_unlock_irq(&dev_priv->irq_lock); 3509 } 3510 3511 static void ironlake_irq_uninstall(struct drm_device *dev) 3512 { 3513 struct drm_i915_private *dev_priv = to_i915(dev); 3514 3515 if (!dev_priv) 3516 return; 3517 3518 ironlake_irq_reset(dev); 3519 } 3520 3521 static void i8xx_irq_preinstall(struct drm_device * dev) 3522 { 3523 struct drm_i915_private *dev_priv = to_i915(dev); 3524 int pipe; 3525 3526 for_each_pipe(dev_priv, pipe) 3527 I915_WRITE(PIPESTAT(pipe), 0); 3528 I915_WRITE16(IMR, 0xffff); 3529 I915_WRITE16(IER, 0x0); 3530 POSTING_READ16(IER); 3531 } 3532 3533 static int i8xx_irq_postinstall(struct drm_device *dev) 3534 { 3535 struct drm_i915_private *dev_priv = to_i915(dev); 3536 3537 I915_WRITE16(EMR, 3538 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); 3539 3540 /* Unmask the interrupts that we always want on. */ 3541 dev_priv->irq_mask = 3542 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3543 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3544 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3545 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 3546 I915_WRITE16(IMR, dev_priv->irq_mask); 3547 3548 I915_WRITE16(IER, 3549 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3550 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3551 I915_USER_INTERRUPT); 3552 POSTING_READ16(IER); 3553 3554 /* Interrupt setup is already guaranteed to be single-threaded, this is 3555 * just to make the assert_spin_locked check happy. */ 3556 spin_lock_irq(&dev_priv->irq_lock); 3557 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3558 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3559 spin_unlock_irq(&dev_priv->irq_lock); 3560 3561 return 0; 3562 } 3563 3564 /* 3565 * Returns true when a page flip has completed. 3566 */ 3567 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv, 3568 int plane, int pipe, u32 iir) 3569 { 3570 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); 3571 3572 if (!intel_pipe_handle_vblank(dev_priv, pipe)) 3573 return false; 3574 3575 if ((iir & flip_pending) == 0) 3576 goto check_page_flip; 3577 3578 /* We detect FlipDone by looking for the change in PendingFlip from '1' 3579 * to '0' on the following vblank, i.e. IIR has the Pendingflip 3580 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence 3581 * the flip is completed (no longer pending). Since this doesn't raise 3582 * an interrupt per se, we watch for the change at vblank. 3583 */ 3584 if (I915_READ16(ISR) & flip_pending) 3585 goto check_page_flip; 3586 3587 intel_finish_page_flip_cs(dev_priv, pipe); 3588 return true; 3589 3590 check_page_flip: 3591 intel_check_page_flip(dev_priv, pipe); 3592 return false; 3593 } 3594 3595 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 3596 { 3597 struct drm_device *dev = arg; 3598 struct drm_i915_private *dev_priv = to_i915(dev); 3599 u16 iir, new_iir; 3600 u32 pipe_stats[2]; 3601 int pipe; 3602 u16 flip_mask = 3603 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3604 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 3605 irqreturn_t ret; 3606 3607 if (!intel_irqs_enabled(dev_priv)) 3608 return IRQ_NONE; 3609 3610 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3611 disable_rpm_wakeref_asserts(dev_priv); 3612 3613 ret = IRQ_NONE; 3614 iir = I915_READ16(IIR); 3615 if (iir == 0) 3616 goto out; 3617 3618 while (iir & ~flip_mask) { 3619 /* Can't rely on pipestat interrupt bit in iir as it might 3620 * have been cleared after the pipestat interrupt was received. 3621 * It doesn't set the bit in iir again, but it still produces 3622 * interrupts (for non-MSI). 3623 */ 3624 spin_lock(&dev_priv->irq_lock); 3625 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 3626 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 3627 3628 for_each_pipe(dev_priv, pipe) { 3629 i915_reg_t reg = PIPESTAT(pipe); 3630 pipe_stats[pipe] = I915_READ(reg); 3631 3632 /* 3633 * Clear the PIPE*STAT regs before the IIR 3634 */ 3635 if (pipe_stats[pipe] & 0x8000ffff) 3636 I915_WRITE(reg, pipe_stats[pipe]); 3637 } 3638 spin_unlock(&dev_priv->irq_lock); 3639 3640 I915_WRITE16(IIR, iir & ~flip_mask); 3641 new_iir = I915_READ16(IIR); /* Flush posted writes */ 3642 3643 if (iir & I915_USER_INTERRUPT) 3644 notify_ring(dev_priv->engine[RCS]); 3645 3646 for_each_pipe(dev_priv, pipe) { 3647 int plane = pipe; 3648 if (HAS_FBC(dev_priv)) 3649 plane = !plane; 3650 3651 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && 3652 i8xx_handle_vblank(dev_priv, plane, pipe, iir)) 3653 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); 3654 3655 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 3656 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 3657 3658 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 3659 intel_cpu_fifo_underrun_irq_handler(dev_priv, 3660 pipe); 3661 } 3662 3663 iir = new_iir; 3664 } 3665 ret = IRQ_HANDLED; 3666 3667 out: 3668 enable_rpm_wakeref_asserts(dev_priv); 3669 3670 return ret; 3671 } 3672 3673 static void i8xx_irq_uninstall(struct drm_device * dev) 3674 { 3675 struct drm_i915_private *dev_priv = to_i915(dev); 3676 int pipe; 3677 3678 for_each_pipe(dev_priv, pipe) { 3679 /* Clear enable bits; then clear status bits */ 3680 I915_WRITE(PIPESTAT(pipe), 0); 3681 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); 3682 } 3683 I915_WRITE16(IMR, 0xffff); 3684 I915_WRITE16(IER, 0x0); 3685 I915_WRITE16(IIR, I915_READ16(IIR)); 3686 } 3687 3688 static void i915_irq_preinstall(struct drm_device * dev) 3689 { 3690 struct drm_i915_private *dev_priv = to_i915(dev); 3691 int pipe; 3692 3693 if (I915_HAS_HOTPLUG(dev_priv)) { 3694 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3695 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3696 } 3697 3698 I915_WRITE16(HWSTAM, 0xeffe); 3699 for_each_pipe(dev_priv, pipe) 3700 I915_WRITE(PIPESTAT(pipe), 0); 3701 I915_WRITE(IMR, 0xffffffff); 3702 I915_WRITE(IER, 0x0); 3703 POSTING_READ(IER); 3704 } 3705 3706 static int i915_irq_postinstall(struct drm_device *dev) 3707 { 3708 struct drm_i915_private *dev_priv = to_i915(dev); 3709 u32 enable_mask; 3710 3711 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); 3712 3713 /* Unmask the interrupts that we always want on. */ 3714 dev_priv->irq_mask = 3715 ~(I915_ASLE_INTERRUPT | 3716 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3717 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3718 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3719 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 3720 3721 enable_mask = 3722 I915_ASLE_INTERRUPT | 3723 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3724 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3725 I915_USER_INTERRUPT; 3726 3727 if (I915_HAS_HOTPLUG(dev_priv)) { 3728 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3729 POSTING_READ(PORT_HOTPLUG_EN); 3730 3731 /* Enable in IER... */ 3732 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 3733 /* and unmask in IMR */ 3734 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 3735 } 3736 3737 I915_WRITE(IMR, dev_priv->irq_mask); 3738 I915_WRITE(IER, enable_mask); 3739 POSTING_READ(IER); 3740 3741 i915_enable_asle_pipestat(dev_priv); 3742 3743 /* Interrupt setup is already guaranteed to be single-threaded, this is 3744 * just to make the assert_spin_locked check happy. */ 3745 spin_lock_irq(&dev_priv->irq_lock); 3746 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3747 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3748 spin_unlock_irq(&dev_priv->irq_lock); 3749 3750 return 0; 3751 } 3752 3753 /* 3754 * Returns true when a page flip has completed. 3755 */ 3756 static bool i915_handle_vblank(struct drm_i915_private *dev_priv, 3757 int plane, int pipe, u32 iir) 3758 { 3759 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); 3760 3761 if (!intel_pipe_handle_vblank(dev_priv, pipe)) 3762 return false; 3763 3764 if ((iir & flip_pending) == 0) 3765 goto check_page_flip; 3766 3767 /* We detect FlipDone by looking for the change in PendingFlip from '1' 3768 * to '0' on the following vblank, i.e. IIR has the Pendingflip 3769 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence 3770 * the flip is completed (no longer pending). Since this doesn't raise 3771 * an interrupt per se, we watch for the change at vblank. 3772 */ 3773 if (I915_READ(ISR) & flip_pending) 3774 goto check_page_flip; 3775 3776 intel_finish_page_flip_cs(dev_priv, pipe); 3777 return true; 3778 3779 check_page_flip: 3780 intel_check_page_flip(dev_priv, pipe); 3781 return false; 3782 } 3783 3784 static irqreturn_t i915_irq_handler(int irq, void *arg) 3785 { 3786 struct drm_device *dev = arg; 3787 struct drm_i915_private *dev_priv = to_i915(dev); 3788 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; 3789 u32 flip_mask = 3790 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3791 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 3792 int pipe, ret = IRQ_NONE; 3793 3794 if (!intel_irqs_enabled(dev_priv)) 3795 return IRQ_NONE; 3796 3797 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3798 disable_rpm_wakeref_asserts(dev_priv); 3799 3800 iir = I915_READ(IIR); 3801 do { 3802 bool irq_received = (iir & ~flip_mask) != 0; 3803 bool blc_event = false; 3804 3805 /* Can't rely on pipestat interrupt bit in iir as it might 3806 * have been cleared after the pipestat interrupt was received. 3807 * It doesn't set the bit in iir again, but it still produces 3808 * interrupts (for non-MSI). 3809 */ 3810 spin_lock(&dev_priv->irq_lock); 3811 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 3812 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 3813 3814 for_each_pipe(dev_priv, pipe) { 3815 i915_reg_t reg = PIPESTAT(pipe); 3816 pipe_stats[pipe] = I915_READ(reg); 3817 3818 /* Clear the PIPE*STAT regs before the IIR */ 3819 if (pipe_stats[pipe] & 0x8000ffff) { 3820 I915_WRITE(reg, pipe_stats[pipe]); 3821 irq_received = true; 3822 } 3823 } 3824 spin_unlock(&dev_priv->irq_lock); 3825 3826 if (!irq_received) 3827 break; 3828 3829 /* Consume port. Then clear IIR or we'll miss events */ 3830 if (I915_HAS_HOTPLUG(dev_priv) && 3831 iir & I915_DISPLAY_PORT_INTERRUPT) { 3832 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 3833 if (hotplug_status) 3834 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 3835 } 3836 3837 I915_WRITE(IIR, iir & ~flip_mask); 3838 new_iir = I915_READ(IIR); /* Flush posted writes */ 3839 3840 if (iir & I915_USER_INTERRUPT) 3841 notify_ring(dev_priv->engine[RCS]); 3842 3843 for_each_pipe(dev_priv, pipe) { 3844 int plane = pipe; 3845 if (HAS_FBC(dev_priv)) 3846 plane = !plane; 3847 3848 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && 3849 i915_handle_vblank(dev_priv, plane, pipe, iir)) 3850 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); 3851 3852 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 3853 blc_event = true; 3854 3855 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 3856 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 3857 3858 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 3859 intel_cpu_fifo_underrun_irq_handler(dev_priv, 3860 pipe); 3861 } 3862 3863 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 3864 intel_opregion_asle_intr(dev_priv); 3865 3866 /* With MSI, interrupts are only generated when iir 3867 * transitions from zero to nonzero. If another bit got 3868 * set while we were handling the existing iir bits, then 3869 * we would never get another interrupt. 3870 * 3871 * This is fine on non-MSI as well, as if we hit this path 3872 * we avoid exiting the interrupt handler only to generate 3873 * another one. 3874 * 3875 * Note that for MSI this could cause a stray interrupt report 3876 * if an interrupt landed in the time between writing IIR and 3877 * the posting read. This should be rare enough to never 3878 * trigger the 99% of 100,000 interrupts test for disabling 3879 * stray interrupts. 3880 */ 3881 ret = IRQ_HANDLED; 3882 iir = new_iir; 3883 } while (iir & ~flip_mask); 3884 3885 enable_rpm_wakeref_asserts(dev_priv); 3886 3887 return ret; 3888 } 3889 3890 static void i915_irq_uninstall(struct drm_device * dev) 3891 { 3892 struct drm_i915_private *dev_priv = to_i915(dev); 3893 int pipe; 3894 3895 if (I915_HAS_HOTPLUG(dev_priv)) { 3896 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3897 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3898 } 3899 3900 I915_WRITE16(HWSTAM, 0xffff); 3901 for_each_pipe(dev_priv, pipe) { 3902 /* Clear enable bits; then clear status bits */ 3903 I915_WRITE(PIPESTAT(pipe), 0); 3904 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); 3905 } 3906 I915_WRITE(IMR, 0xffffffff); 3907 I915_WRITE(IER, 0x0); 3908 3909 I915_WRITE(IIR, I915_READ(IIR)); 3910 } 3911 3912 static void i965_irq_preinstall(struct drm_device * dev) 3913 { 3914 struct drm_i915_private *dev_priv = to_i915(dev); 3915 int pipe; 3916 3917 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3918 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3919 3920 I915_WRITE(HWSTAM, 0xeffe); 3921 for_each_pipe(dev_priv, pipe) 3922 I915_WRITE(PIPESTAT(pipe), 0); 3923 I915_WRITE(IMR, 0xffffffff); 3924 I915_WRITE(IER, 0x0); 3925 POSTING_READ(IER); 3926 } 3927 3928 static int i965_irq_postinstall(struct drm_device *dev) 3929 { 3930 struct drm_i915_private *dev_priv = to_i915(dev); 3931 u32 enable_mask; 3932 u32 error_mask; 3933 3934 /* Unmask the interrupts that we always want on. */ 3935 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | 3936 I915_DISPLAY_PORT_INTERRUPT | 3937 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3938 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3939 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3940 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | 3941 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 3942 3943 enable_mask = ~dev_priv->irq_mask; 3944 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3945 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 3946 enable_mask |= I915_USER_INTERRUPT; 3947 3948 if (IS_G4X(dev_priv)) 3949 enable_mask |= I915_BSD_USER_INTERRUPT; 3950 3951 /* Interrupt setup is already guaranteed to be single-threaded, this is 3952 * just to make the assert_spin_locked check happy. */ 3953 spin_lock_irq(&dev_priv->irq_lock); 3954 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3955 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3956 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3957 spin_unlock_irq(&dev_priv->irq_lock); 3958 3959 /* 3960 * Enable some error detection, note the instruction error mask 3961 * bit is reserved, so we leave it masked. 3962 */ 3963 if (IS_G4X(dev_priv)) { 3964 error_mask = ~(GM45_ERROR_PAGE_TABLE | 3965 GM45_ERROR_MEM_PRIV | 3966 GM45_ERROR_CP_PRIV | 3967 I915_ERROR_MEMORY_REFRESH); 3968 } else { 3969 error_mask = ~(I915_ERROR_PAGE_TABLE | 3970 I915_ERROR_MEMORY_REFRESH); 3971 } 3972 I915_WRITE(EMR, error_mask); 3973 3974 I915_WRITE(IMR, dev_priv->irq_mask); 3975 I915_WRITE(IER, enable_mask); 3976 POSTING_READ(IER); 3977 3978 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3979 POSTING_READ(PORT_HOTPLUG_EN); 3980 3981 i915_enable_asle_pipestat(dev_priv); 3982 3983 return 0; 3984 } 3985 3986 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 3987 { 3988 u32 hotplug_en; 3989 3990 assert_spin_locked(&dev_priv->irq_lock); 3991 3992 /* Note HDMI and DP share hotplug bits */ 3993 /* enable bits are the same for all generations */ 3994 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 3995 /* Programming the CRT detection parameters tends 3996 to generate a spurious hotplug event about three 3997 seconds later. So just do it once. 3998 */ 3999 if (IS_G4X(dev_priv)) 4000 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4001 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4002 4003 /* Ignore TV since it's buggy */ 4004 i915_hotplug_interrupt_update_locked(dev_priv, 4005 HOTPLUG_INT_EN_MASK | 4006 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4007 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4008 hotplug_en); 4009 } 4010 4011 static irqreturn_t i965_irq_handler(int irq, void *arg) 4012 { 4013 struct drm_device *dev = arg; 4014 struct drm_i915_private *dev_priv = to_i915(dev); 4015 u32 iir, new_iir; 4016 u32 pipe_stats[I915_MAX_PIPES]; 4017 int ret = IRQ_NONE, pipe; 4018 u32 flip_mask = 4019 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4020 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 4021 4022 if (!intel_irqs_enabled(dev_priv)) 4023 return IRQ_NONE; 4024 4025 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4026 disable_rpm_wakeref_asserts(dev_priv); 4027 4028 iir = I915_READ(IIR); 4029 4030 for (;;) { 4031 bool irq_received = (iir & ~flip_mask) != 0; 4032 bool blc_event = false; 4033 4034 /* Can't rely on pipestat interrupt bit in iir as it might 4035 * have been cleared after the pipestat interrupt was received. 4036 * It doesn't set the bit in iir again, but it still produces 4037 * interrupts (for non-MSI). 4038 */ 4039 spin_lock(&dev_priv->irq_lock); 4040 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4041 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4042 4043 for_each_pipe(dev_priv, pipe) { 4044 i915_reg_t reg = PIPESTAT(pipe); 4045 pipe_stats[pipe] = I915_READ(reg); 4046 4047 /* 4048 * Clear the PIPE*STAT regs before the IIR 4049 */ 4050 if (pipe_stats[pipe] & 0x8000ffff) { 4051 I915_WRITE(reg, pipe_stats[pipe]); 4052 irq_received = true; 4053 } 4054 } 4055 spin_unlock(&dev_priv->irq_lock); 4056 4057 if (!irq_received) 4058 break; 4059 4060 ret = IRQ_HANDLED; 4061 4062 /* Consume port. Then clear IIR or we'll miss events */ 4063 if (iir & I915_DISPLAY_PORT_INTERRUPT) { 4064 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4065 if (hotplug_status) 4066 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4067 } 4068 4069 I915_WRITE(IIR, iir & ~flip_mask); 4070 new_iir = I915_READ(IIR); /* Flush posted writes */ 4071 4072 if (iir & I915_USER_INTERRUPT) 4073 notify_ring(dev_priv->engine[RCS]); 4074 if (iir & I915_BSD_USER_INTERRUPT) 4075 notify_ring(dev_priv->engine[VCS]); 4076 4077 for_each_pipe(dev_priv, pipe) { 4078 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && 4079 i915_handle_vblank(dev_priv, pipe, pipe, iir)) 4080 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); 4081 4082 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 4083 blc_event = true; 4084 4085 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 4086 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 4087 4088 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 4089 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 4090 } 4091 4092 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 4093 intel_opregion_asle_intr(dev_priv); 4094 4095 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 4096 gmbus_irq_handler(dev_priv); 4097 4098 /* With MSI, interrupts are only generated when iir 4099 * transitions from zero to nonzero. If another bit got 4100 * set while we were handling the existing iir bits, then 4101 * we would never get another interrupt. 4102 * 4103 * This is fine on non-MSI as well, as if we hit this path 4104 * we avoid exiting the interrupt handler only to generate 4105 * another one. 4106 * 4107 * Note that for MSI this could cause a stray interrupt report 4108 * if an interrupt landed in the time between writing IIR and 4109 * the posting read. This should be rare enough to never 4110 * trigger the 99% of 100,000 interrupts test for disabling 4111 * stray interrupts. 4112 */ 4113 iir = new_iir; 4114 } 4115 4116 enable_rpm_wakeref_asserts(dev_priv); 4117 4118 return ret; 4119 } 4120 4121 static void i965_irq_uninstall(struct drm_device * dev) 4122 { 4123 struct drm_i915_private *dev_priv = to_i915(dev); 4124 int pipe; 4125 4126 if (!dev_priv) 4127 return; 4128 4129 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4130 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4131 4132 I915_WRITE(HWSTAM, 0xffffffff); 4133 for_each_pipe(dev_priv, pipe) 4134 I915_WRITE(PIPESTAT(pipe), 0); 4135 I915_WRITE(IMR, 0xffffffff); 4136 I915_WRITE(IER, 0x0); 4137 4138 for_each_pipe(dev_priv, pipe) 4139 I915_WRITE(PIPESTAT(pipe), 4140 I915_READ(PIPESTAT(pipe)) & 0x8000ffff); 4141 I915_WRITE(IIR, I915_READ(IIR)); 4142 } 4143 4144 /** 4145 * intel_irq_init - initializes irq support 4146 * @dev_priv: i915 device instance 4147 * 4148 * This function initializes all the irq support including work items, timers 4149 * and all the vtables. It does not setup the interrupt itself though. 4150 */ 4151 void intel_irq_init(struct drm_i915_private *dev_priv) 4152 { 4153 struct drm_device *dev = &dev_priv->drm; 4154 4155 intel_hpd_init_work(dev_priv); 4156 4157 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); 4158 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4159 4160 if (HAS_GUC_SCHED(dev_priv)) 4161 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; 4162 4163 /* Let's track the enabled rps events */ 4164 if (IS_VALLEYVIEW(dev_priv)) 4165 /* WaGsvRC0ResidencyMethod:vlv */ 4166 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED; 4167 else 4168 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; 4169 4170 dev_priv->rps.pm_intr_keep = 0; 4171 4172 /* 4173 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer 4174 * if GEN6_PM_UP_EI_EXPIRED is masked. 4175 * 4176 * TODO: verify if this can be reproduced on VLV,CHV. 4177 */ 4178 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv)) 4179 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED; 4180 4181 if (INTEL_INFO(dev_priv)->gen >= 8) 4182 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC; 4183 4184 if (IS_GEN2(dev_priv)) { 4185 /* Gen2 doesn't have a hardware frame counter */ 4186 dev->max_vblank_count = 0; 4187 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter; 4188 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) { 4189 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ 4190 dev->driver->get_vblank_counter = g4x_get_vblank_counter; 4191 } else { 4192 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4193 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ 4194 } 4195 4196 /* 4197 * Opt out of the vblank disable timer on everything except gen2. 4198 * Gen2 doesn't have a hardware frame counter and so depends on 4199 * vblank interrupts to produce sane vblank seuquence numbers. 4200 */ 4201 if (!IS_GEN2(dev_priv)) 4202 dev->vblank_disable_immediate = true; 4203 4204 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; 4205 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4206 4207 if (IS_CHERRYVIEW(dev_priv)) { 4208 dev->driver->irq_handler = cherryview_irq_handler; 4209 dev->driver->irq_preinstall = cherryview_irq_preinstall; 4210 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4211 dev->driver->irq_uninstall = cherryview_irq_uninstall; 4212 dev->driver->enable_vblank = i965_enable_vblank; 4213 dev->driver->disable_vblank = i965_disable_vblank; 4214 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4215 } else if (IS_VALLEYVIEW(dev_priv)) { 4216 dev->driver->irq_handler = valleyview_irq_handler; 4217 dev->driver->irq_preinstall = valleyview_irq_preinstall; 4218 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4219 dev->driver->irq_uninstall = valleyview_irq_uninstall; 4220 dev->driver->enable_vblank = i965_enable_vblank; 4221 dev->driver->disable_vblank = i965_disable_vblank; 4222 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4223 } else if (INTEL_INFO(dev_priv)->gen >= 8) { 4224 dev->driver->irq_handler = gen8_irq_handler; 4225 dev->driver->irq_preinstall = gen8_irq_reset; 4226 dev->driver->irq_postinstall = gen8_irq_postinstall; 4227 dev->driver->irq_uninstall = gen8_irq_uninstall; 4228 dev->driver->enable_vblank = gen8_enable_vblank; 4229 dev->driver->disable_vblank = gen8_disable_vblank; 4230 if (IS_BROXTON(dev_priv)) 4231 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4232 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv)) 4233 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4234 else 4235 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4236 } else if (HAS_PCH_SPLIT(dev_priv)) { 4237 dev->driver->irq_handler = ironlake_irq_handler; 4238 dev->driver->irq_preinstall = ironlake_irq_reset; 4239 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4240 dev->driver->irq_uninstall = ironlake_irq_uninstall; 4241 dev->driver->enable_vblank = ironlake_enable_vblank; 4242 dev->driver->disable_vblank = ironlake_disable_vblank; 4243 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4244 } else { 4245 if (IS_GEN2(dev_priv)) { 4246 dev->driver->irq_preinstall = i8xx_irq_preinstall; 4247 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4248 dev->driver->irq_handler = i8xx_irq_handler; 4249 dev->driver->irq_uninstall = i8xx_irq_uninstall; 4250 dev->driver->enable_vblank = i8xx_enable_vblank; 4251 dev->driver->disable_vblank = i8xx_disable_vblank; 4252 } else if (IS_GEN3(dev_priv)) { 4253 dev->driver->irq_preinstall = i915_irq_preinstall; 4254 dev->driver->irq_postinstall = i915_irq_postinstall; 4255 dev->driver->irq_uninstall = i915_irq_uninstall; 4256 dev->driver->irq_handler = i915_irq_handler; 4257 dev->driver->enable_vblank = i8xx_enable_vblank; 4258 dev->driver->disable_vblank = i8xx_disable_vblank; 4259 } else { 4260 dev->driver->irq_preinstall = i965_irq_preinstall; 4261 dev->driver->irq_postinstall = i965_irq_postinstall; 4262 dev->driver->irq_uninstall = i965_irq_uninstall; 4263 dev->driver->irq_handler = i965_irq_handler; 4264 dev->driver->enable_vblank = i965_enable_vblank; 4265 dev->driver->disable_vblank = i965_disable_vblank; 4266 } 4267 if (I915_HAS_HOTPLUG(dev_priv)) 4268 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4269 } 4270 } 4271 4272 /** 4273 * intel_irq_install - enables the hardware interrupt 4274 * @dev_priv: i915 device instance 4275 * 4276 * This function enables the hardware interrupt handling, but leaves the hotplug 4277 * handling still disabled. It is called after intel_irq_init(). 4278 * 4279 * In the driver load and resume code we need working interrupts in a few places 4280 * but don't want to deal with the hassle of concurrent probe and hotplug 4281 * workers. Hence the split into this two-stage approach. 4282 */ 4283 int intel_irq_install(struct drm_i915_private *dev_priv) 4284 { 4285 /* 4286 * We enable some interrupt sources in our postinstall hooks, so mark 4287 * interrupts as enabled _before_ actually enabling them to avoid 4288 * special cases in our ordering checks. 4289 */ 4290 dev_priv->pm.irqs_enabled = true; 4291 4292 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); 4293 } 4294 4295 /** 4296 * intel_irq_uninstall - finilizes all irq handling 4297 * @dev_priv: i915 device instance 4298 * 4299 * This stops interrupt and hotplug handling and unregisters and frees all 4300 * resources acquired in the init functions. 4301 */ 4302 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4303 { 4304 drm_irq_uninstall(&dev_priv->drm); 4305 intel_hpd_cancel_work(dev_priv); 4306 dev_priv->pm.irqs_enabled = false; 4307 } 4308 4309 /** 4310 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4311 * @dev_priv: i915 device instance 4312 * 4313 * This function is used to disable interrupts at runtime, both in the runtime 4314 * pm and the system suspend/resume code. 4315 */ 4316 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4317 { 4318 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); 4319 dev_priv->pm.irqs_enabled = false; 4320 synchronize_irq(dev_priv->drm.irq); 4321 } 4322 4323 /** 4324 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4325 * @dev_priv: i915 device instance 4326 * 4327 * This function is used to enable interrupts at runtime, both in the runtime 4328 * pm and the system suspend/resume code. 4329 */ 4330 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4331 { 4332 dev_priv->pm.irqs_enabled = true; 4333 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); 4334 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); 4335 } 4336