1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/sysrq.h> 32 #include <linux/slab.h> 33 #include <linux/circ_buf.h> 34 #include <drm/drmP.h> 35 #include <drm/i915_drm.h> 36 #include "i915_drv.h" 37 #include "i915_trace.h" 38 #include "intel_drv.h" 39 40 /** 41 * DOC: interrupt handling 42 * 43 * These functions provide the basic support for enabling and disabling the 44 * interrupt handling support. There's a lot more functionality in i915_irq.c 45 * and related files, but that will be described in separate chapters. 46 */ 47 48 static const u32 hpd_ilk[HPD_NUM_PINS] = { 49 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 50 }; 51 52 static const u32 hpd_ivb[HPD_NUM_PINS] = { 53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 54 }; 55 56 static const u32 hpd_bdw[HPD_NUM_PINS] = { 57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 58 }; 59 60 static const u32 hpd_ibx[HPD_NUM_PINS] = { 61 [HPD_CRT] = SDE_CRT_HOTPLUG, 62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 66 }; 67 68 static const u32 hpd_cpt[HPD_NUM_PINS] = { 69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 74 }; 75 76 static const u32 hpd_spt[HPD_NUM_PINS] = { 77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT 82 }; 83 84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 85 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 91 }; 92 93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 100 }; 101 102 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 109 }; 110 111 /* BXT hpd list */ 112 static const u32 hpd_bxt[HPD_NUM_PINS] = { 113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC 116 }; 117 118 /* IIR can theoretically queue up two events. Be paranoid. */ 119 #define GEN8_IRQ_RESET_NDX(type, which) do { \ 120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ 121 POSTING_READ(GEN8_##type##_IMR(which)); \ 122 I915_WRITE(GEN8_##type##_IER(which), 0); \ 123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 124 POSTING_READ(GEN8_##type##_IIR(which)); \ 125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 126 POSTING_READ(GEN8_##type##_IIR(which)); \ 127 } while (0) 128 129 #define GEN3_IRQ_RESET(type) do { \ 130 I915_WRITE(type##IMR, 0xffffffff); \ 131 POSTING_READ(type##IMR); \ 132 I915_WRITE(type##IER, 0); \ 133 I915_WRITE(type##IIR, 0xffffffff); \ 134 POSTING_READ(type##IIR); \ 135 I915_WRITE(type##IIR, 0xffffffff); \ 136 POSTING_READ(type##IIR); \ 137 } while (0) 138 139 #define GEN2_IRQ_RESET(type) do { \ 140 I915_WRITE16(type##IMR, 0xffff); \ 141 POSTING_READ16(type##IMR); \ 142 I915_WRITE16(type##IER, 0); \ 143 I915_WRITE16(type##IIR, 0xffff); \ 144 POSTING_READ16(type##IIR); \ 145 I915_WRITE16(type##IIR, 0xffff); \ 146 POSTING_READ16(type##IIR); \ 147 } while (0) 148 149 /* 150 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 151 */ 152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv, 153 i915_reg_t reg) 154 { 155 u32 val = I915_READ(reg); 156 157 if (val == 0) 158 return; 159 160 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 161 i915_mmio_reg_offset(reg), val); 162 I915_WRITE(reg, 0xffffffff); 163 POSTING_READ(reg); 164 I915_WRITE(reg, 0xffffffff); 165 POSTING_READ(reg); 166 } 167 168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv, 169 i915_reg_t reg) 170 { 171 u16 val = I915_READ16(reg); 172 173 if (val == 0) 174 return; 175 176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 177 i915_mmio_reg_offset(reg), val); 178 I915_WRITE16(reg, 0xffff); 179 POSTING_READ16(reg); 180 I915_WRITE16(reg, 0xffff); 181 POSTING_READ16(reg); 182 } 183 184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ 185 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \ 186 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ 187 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ 188 POSTING_READ(GEN8_##type##_IMR(which)); \ 189 } while (0) 190 191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \ 192 gen3_assert_iir_is_zero(dev_priv, type##IIR); \ 193 I915_WRITE(type##IER, (ier_val)); \ 194 I915_WRITE(type##IMR, (imr_val)); \ 195 POSTING_READ(type##IMR); \ 196 } while (0) 197 198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \ 199 gen2_assert_iir_is_zero(dev_priv, type##IIR); \ 200 I915_WRITE16(type##IER, (ier_val)); \ 201 I915_WRITE16(type##IMR, (imr_val)); \ 202 POSTING_READ16(type##IMR); \ 203 } while (0) 204 205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 207 208 /* For display hotplug interrupt */ 209 static inline void 210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 211 uint32_t mask, 212 uint32_t bits) 213 { 214 uint32_t val; 215 216 lockdep_assert_held(&dev_priv->irq_lock); 217 WARN_ON(bits & ~mask); 218 219 val = I915_READ(PORT_HOTPLUG_EN); 220 val &= ~mask; 221 val |= bits; 222 I915_WRITE(PORT_HOTPLUG_EN, val); 223 } 224 225 /** 226 * i915_hotplug_interrupt_update - update hotplug interrupt enable 227 * @dev_priv: driver private 228 * @mask: bits to update 229 * @bits: bits to enable 230 * NOTE: the HPD enable bits are modified both inside and outside 231 * of an interrupt context. To avoid that read-modify-write cycles 232 * interfer, these bits are protected by a spinlock. Since this 233 * function is usually not called from a context where the lock is 234 * held already, this function acquires the lock itself. A non-locking 235 * version is also available. 236 */ 237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 238 uint32_t mask, 239 uint32_t bits) 240 { 241 spin_lock_irq(&dev_priv->irq_lock); 242 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 243 spin_unlock_irq(&dev_priv->irq_lock); 244 } 245 246 static u32 247 gen11_gt_engine_identity(struct drm_i915_private * const i915, 248 const unsigned int bank, const unsigned int bit); 249 250 bool gen11_reset_one_iir(struct drm_i915_private * const i915, 251 const unsigned int bank, 252 const unsigned int bit) 253 { 254 void __iomem * const regs = i915->regs; 255 u32 dw; 256 257 lockdep_assert_held(&i915->irq_lock); 258 259 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 260 if (dw & BIT(bit)) { 261 /* 262 * According to the BSpec, DW_IIR bits cannot be cleared without 263 * first servicing the Selector & Shared IIR registers. 264 */ 265 gen11_gt_engine_identity(i915, bank, bit); 266 267 /* 268 * We locked GT INT DW by reading it. If we want to (try 269 * to) recover from this succesfully, we need to clear 270 * our bit, otherwise we are locking the register for 271 * everybody. 272 */ 273 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); 274 275 return true; 276 } 277 278 return false; 279 } 280 281 /** 282 * ilk_update_display_irq - update DEIMR 283 * @dev_priv: driver private 284 * @interrupt_mask: mask of interrupt bits to update 285 * @enabled_irq_mask: mask of interrupt bits to enable 286 */ 287 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 288 uint32_t interrupt_mask, 289 uint32_t enabled_irq_mask) 290 { 291 uint32_t new_val; 292 293 lockdep_assert_held(&dev_priv->irq_lock); 294 295 WARN_ON(enabled_irq_mask & ~interrupt_mask); 296 297 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 298 return; 299 300 new_val = dev_priv->irq_mask; 301 new_val &= ~interrupt_mask; 302 new_val |= (~enabled_irq_mask & interrupt_mask); 303 304 if (new_val != dev_priv->irq_mask) { 305 dev_priv->irq_mask = new_val; 306 I915_WRITE(DEIMR, dev_priv->irq_mask); 307 POSTING_READ(DEIMR); 308 } 309 } 310 311 /** 312 * ilk_update_gt_irq - update GTIMR 313 * @dev_priv: driver private 314 * @interrupt_mask: mask of interrupt bits to update 315 * @enabled_irq_mask: mask of interrupt bits to enable 316 */ 317 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 318 uint32_t interrupt_mask, 319 uint32_t enabled_irq_mask) 320 { 321 lockdep_assert_held(&dev_priv->irq_lock); 322 323 WARN_ON(enabled_irq_mask & ~interrupt_mask); 324 325 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 326 return; 327 328 dev_priv->gt_irq_mask &= ~interrupt_mask; 329 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 330 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 331 } 332 333 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 334 { 335 ilk_update_gt_irq(dev_priv, mask, mask); 336 POSTING_READ_FW(GTIMR); 337 } 338 339 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 340 { 341 ilk_update_gt_irq(dev_priv, mask, 0); 342 } 343 344 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) 345 { 346 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11); 347 348 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; 349 } 350 351 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv) 352 { 353 if (INTEL_GEN(dev_priv) >= 11) 354 return GEN11_GPM_WGBOXPERF_INTR_MASK; 355 else if (INTEL_GEN(dev_priv) >= 8) 356 return GEN8_GT_IMR(2); 357 else 358 return GEN6_PMIMR; 359 } 360 361 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv) 362 { 363 if (INTEL_GEN(dev_priv) >= 11) 364 return GEN11_GPM_WGBOXPERF_INTR_ENABLE; 365 else if (INTEL_GEN(dev_priv) >= 8) 366 return GEN8_GT_IER(2); 367 else 368 return GEN6_PMIER; 369 } 370 371 /** 372 * snb_update_pm_irq - update GEN6_PMIMR 373 * @dev_priv: driver private 374 * @interrupt_mask: mask of interrupt bits to update 375 * @enabled_irq_mask: mask of interrupt bits to enable 376 */ 377 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 378 uint32_t interrupt_mask, 379 uint32_t enabled_irq_mask) 380 { 381 uint32_t new_val; 382 383 WARN_ON(enabled_irq_mask & ~interrupt_mask); 384 385 lockdep_assert_held(&dev_priv->irq_lock); 386 387 new_val = dev_priv->pm_imr; 388 new_val &= ~interrupt_mask; 389 new_val |= (~enabled_irq_mask & interrupt_mask); 390 391 if (new_val != dev_priv->pm_imr) { 392 dev_priv->pm_imr = new_val; 393 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr); 394 POSTING_READ(gen6_pm_imr(dev_priv)); 395 } 396 } 397 398 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 399 { 400 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 401 return; 402 403 snb_update_pm_irq(dev_priv, mask, mask); 404 } 405 406 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 407 { 408 snb_update_pm_irq(dev_priv, mask, 0); 409 } 410 411 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 412 { 413 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 414 return; 415 416 __gen6_mask_pm_irq(dev_priv, mask); 417 } 418 419 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) 420 { 421 i915_reg_t reg = gen6_pm_iir(dev_priv); 422 423 lockdep_assert_held(&dev_priv->irq_lock); 424 425 I915_WRITE(reg, reset_mask); 426 I915_WRITE(reg, reset_mask); 427 POSTING_READ(reg); 428 } 429 430 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) 431 { 432 lockdep_assert_held(&dev_priv->irq_lock); 433 434 dev_priv->pm_ier |= enable_mask; 435 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 436 gen6_unmask_pm_irq(dev_priv, enable_mask); 437 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ 438 } 439 440 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) 441 { 442 lockdep_assert_held(&dev_priv->irq_lock); 443 444 dev_priv->pm_ier &= ~disable_mask; 445 __gen6_mask_pm_irq(dev_priv, disable_mask); 446 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 447 /* though a barrier is missing here, but don't really need a one */ 448 } 449 450 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv) 451 { 452 spin_lock_irq(&dev_priv->irq_lock); 453 454 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)) 455 ; 456 457 dev_priv->gt_pm.rps.pm_iir = 0; 458 459 spin_unlock_irq(&dev_priv->irq_lock); 460 } 461 462 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) 463 { 464 spin_lock_irq(&dev_priv->irq_lock); 465 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events); 466 dev_priv->gt_pm.rps.pm_iir = 0; 467 spin_unlock_irq(&dev_priv->irq_lock); 468 } 469 470 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) 471 { 472 struct intel_rps *rps = &dev_priv->gt_pm.rps; 473 474 if (READ_ONCE(rps->interrupts_enabled)) 475 return; 476 477 spin_lock_irq(&dev_priv->irq_lock); 478 WARN_ON_ONCE(rps->pm_iir); 479 480 if (INTEL_GEN(dev_priv) >= 11) 481 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)); 482 else 483 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); 484 485 rps->interrupts_enabled = true; 486 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 487 488 spin_unlock_irq(&dev_priv->irq_lock); 489 } 490 491 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) 492 { 493 struct intel_rps *rps = &dev_priv->gt_pm.rps; 494 495 if (!READ_ONCE(rps->interrupts_enabled)) 496 return; 497 498 spin_lock_irq(&dev_priv->irq_lock); 499 rps->interrupts_enabled = false; 500 501 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); 502 503 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events); 504 505 spin_unlock_irq(&dev_priv->irq_lock); 506 synchronize_irq(dev_priv->drm.irq); 507 508 /* Now that we will not be generating any more work, flush any 509 * outstanding tasks. As we are called on the RPS idle path, 510 * we will reset the GPU to minimum frequencies, so the current 511 * state of the worker can be discarded. 512 */ 513 cancel_work_sync(&rps->work); 514 if (INTEL_GEN(dev_priv) >= 11) 515 gen11_reset_rps_interrupts(dev_priv); 516 else 517 gen6_reset_rps_interrupts(dev_priv); 518 } 519 520 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) 521 { 522 assert_rpm_wakelock_held(dev_priv); 523 524 spin_lock_irq(&dev_priv->irq_lock); 525 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); 526 spin_unlock_irq(&dev_priv->irq_lock); 527 } 528 529 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) 530 { 531 assert_rpm_wakelock_held(dev_priv); 532 533 spin_lock_irq(&dev_priv->irq_lock); 534 if (!dev_priv->guc.interrupts_enabled) { 535 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & 536 dev_priv->pm_guc_events); 537 dev_priv->guc.interrupts_enabled = true; 538 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); 539 } 540 spin_unlock_irq(&dev_priv->irq_lock); 541 } 542 543 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) 544 { 545 assert_rpm_wakelock_held(dev_priv); 546 547 spin_lock_irq(&dev_priv->irq_lock); 548 dev_priv->guc.interrupts_enabled = false; 549 550 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); 551 552 spin_unlock_irq(&dev_priv->irq_lock); 553 synchronize_irq(dev_priv->drm.irq); 554 555 gen9_reset_guc_interrupts(dev_priv); 556 } 557 558 /** 559 * bdw_update_port_irq - update DE port interrupt 560 * @dev_priv: driver private 561 * @interrupt_mask: mask of interrupt bits to update 562 * @enabled_irq_mask: mask of interrupt bits to enable 563 */ 564 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 565 uint32_t interrupt_mask, 566 uint32_t enabled_irq_mask) 567 { 568 uint32_t new_val; 569 uint32_t old_val; 570 571 lockdep_assert_held(&dev_priv->irq_lock); 572 573 WARN_ON(enabled_irq_mask & ~interrupt_mask); 574 575 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 576 return; 577 578 old_val = I915_READ(GEN8_DE_PORT_IMR); 579 580 new_val = old_val; 581 new_val &= ~interrupt_mask; 582 new_val |= (~enabled_irq_mask & interrupt_mask); 583 584 if (new_val != old_val) { 585 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 586 POSTING_READ(GEN8_DE_PORT_IMR); 587 } 588 } 589 590 /** 591 * bdw_update_pipe_irq - update DE pipe interrupt 592 * @dev_priv: driver private 593 * @pipe: pipe whose interrupt to update 594 * @interrupt_mask: mask of interrupt bits to update 595 * @enabled_irq_mask: mask of interrupt bits to enable 596 */ 597 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 598 enum pipe pipe, 599 uint32_t interrupt_mask, 600 uint32_t enabled_irq_mask) 601 { 602 uint32_t new_val; 603 604 lockdep_assert_held(&dev_priv->irq_lock); 605 606 WARN_ON(enabled_irq_mask & ~interrupt_mask); 607 608 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 609 return; 610 611 new_val = dev_priv->de_irq_mask[pipe]; 612 new_val &= ~interrupt_mask; 613 new_val |= (~enabled_irq_mask & interrupt_mask); 614 615 if (new_val != dev_priv->de_irq_mask[pipe]) { 616 dev_priv->de_irq_mask[pipe] = new_val; 617 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 618 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 619 } 620 } 621 622 /** 623 * ibx_display_interrupt_update - update SDEIMR 624 * @dev_priv: driver private 625 * @interrupt_mask: mask of interrupt bits to update 626 * @enabled_irq_mask: mask of interrupt bits to enable 627 */ 628 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 629 uint32_t interrupt_mask, 630 uint32_t enabled_irq_mask) 631 { 632 uint32_t sdeimr = I915_READ(SDEIMR); 633 sdeimr &= ~interrupt_mask; 634 sdeimr |= (~enabled_irq_mask & interrupt_mask); 635 636 WARN_ON(enabled_irq_mask & ~interrupt_mask); 637 638 lockdep_assert_held(&dev_priv->irq_lock); 639 640 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 641 return; 642 643 I915_WRITE(SDEIMR, sdeimr); 644 POSTING_READ(SDEIMR); 645 } 646 647 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 648 enum pipe pipe) 649 { 650 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 651 u32 enable_mask = status_mask << 16; 652 653 lockdep_assert_held(&dev_priv->irq_lock); 654 655 if (INTEL_GEN(dev_priv) < 5) 656 goto out; 657 658 /* 659 * On pipe A we don't support the PSR interrupt yet, 660 * on pipe B and C the same bit MBZ. 661 */ 662 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 663 return 0; 664 /* 665 * On pipe B and C we don't support the PSR interrupt yet, on pipe 666 * A the same bit is for perf counters which we don't use either. 667 */ 668 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 669 return 0; 670 671 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 672 SPRITE0_FLIP_DONE_INT_EN_VLV | 673 SPRITE1_FLIP_DONE_INT_EN_VLV); 674 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 675 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 676 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 677 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 678 679 out: 680 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 681 status_mask & ~PIPESTAT_INT_STATUS_MASK, 682 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 683 pipe_name(pipe), enable_mask, status_mask); 684 685 return enable_mask; 686 } 687 688 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 689 enum pipe pipe, u32 status_mask) 690 { 691 i915_reg_t reg = PIPESTAT(pipe); 692 u32 enable_mask; 693 694 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 695 "pipe %c: status_mask=0x%x\n", 696 pipe_name(pipe), status_mask); 697 698 lockdep_assert_held(&dev_priv->irq_lock); 699 WARN_ON(!intel_irqs_enabled(dev_priv)); 700 701 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 702 return; 703 704 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 705 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 706 707 I915_WRITE(reg, enable_mask | status_mask); 708 POSTING_READ(reg); 709 } 710 711 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 712 enum pipe pipe, u32 status_mask) 713 { 714 i915_reg_t reg = PIPESTAT(pipe); 715 u32 enable_mask; 716 717 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 718 "pipe %c: status_mask=0x%x\n", 719 pipe_name(pipe), status_mask); 720 721 lockdep_assert_held(&dev_priv->irq_lock); 722 WARN_ON(!intel_irqs_enabled(dev_priv)); 723 724 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 725 return; 726 727 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 728 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 729 730 I915_WRITE(reg, enable_mask | status_mask); 731 POSTING_READ(reg); 732 } 733 734 /** 735 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 736 * @dev_priv: i915 device private 737 */ 738 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 739 { 740 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv)) 741 return; 742 743 spin_lock_irq(&dev_priv->irq_lock); 744 745 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 746 if (INTEL_GEN(dev_priv) >= 4) 747 i915_enable_pipestat(dev_priv, PIPE_A, 748 PIPE_LEGACY_BLC_EVENT_STATUS); 749 750 spin_unlock_irq(&dev_priv->irq_lock); 751 } 752 753 /* 754 * This timing diagram depicts the video signal in and 755 * around the vertical blanking period. 756 * 757 * Assumptions about the fictitious mode used in this example: 758 * vblank_start >= 3 759 * vsync_start = vblank_start + 1 760 * vsync_end = vblank_start + 2 761 * vtotal = vblank_start + 3 762 * 763 * start of vblank: 764 * latch double buffered registers 765 * increment frame counter (ctg+) 766 * generate start of vblank interrupt (gen4+) 767 * | 768 * | frame start: 769 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 770 * | may be shifted forward 1-3 extra lines via PIPECONF 771 * | | 772 * | | start of vsync: 773 * | | generate vsync interrupt 774 * | | | 775 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 776 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 777 * ----va---> <-----------------vb--------------------> <--------va------------- 778 * | | <----vs-----> | 779 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 780 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 781 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 782 * | | | 783 * last visible pixel first visible pixel 784 * | increment frame counter (gen3/4) 785 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 786 * 787 * x = horizontal active 788 * _ = horizontal blanking 789 * hs = horizontal sync 790 * va = vertical active 791 * vb = vertical blanking 792 * vs = vertical sync 793 * vbs = vblank_start (number) 794 * 795 * Summary: 796 * - most events happen at the start of horizontal sync 797 * - frame start happens at the start of horizontal blank, 1-4 lines 798 * (depending on PIPECONF settings) after the start of vblank 799 * - gen3/4 pixel and frame counter are synchronized with the start 800 * of horizontal active on the first line of vertical active 801 */ 802 803 /* Called from drm generic code, passed a 'crtc', which 804 * we use as a pipe index 805 */ 806 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 807 { 808 struct drm_i915_private *dev_priv = to_i915(dev); 809 i915_reg_t high_frame, low_frame; 810 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 811 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode; 812 unsigned long irqflags; 813 814 htotal = mode->crtc_htotal; 815 hsync_start = mode->crtc_hsync_start; 816 vbl_start = mode->crtc_vblank_start; 817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 818 vbl_start = DIV_ROUND_UP(vbl_start, 2); 819 820 /* Convert to pixel count */ 821 vbl_start *= htotal; 822 823 /* Start of vblank event occurs at start of hsync */ 824 vbl_start -= htotal - hsync_start; 825 826 high_frame = PIPEFRAME(pipe); 827 low_frame = PIPEFRAMEPIXEL(pipe); 828 829 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 830 831 /* 832 * High & low register fields aren't synchronized, so make sure 833 * we get a low value that's stable across two reads of the high 834 * register. 835 */ 836 do { 837 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 838 low = I915_READ_FW(low_frame); 839 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 840 } while (high1 != high2); 841 842 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 843 844 high1 >>= PIPE_FRAME_HIGH_SHIFT; 845 pixel = low & PIPE_PIXEL_MASK; 846 low >>= PIPE_FRAME_LOW_SHIFT; 847 848 /* 849 * The frame counter increments at beginning of active. 850 * Cook up a vblank counter by also checking the pixel 851 * counter against vblank start. 852 */ 853 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 854 } 855 856 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 857 { 858 struct drm_i915_private *dev_priv = to_i915(dev); 859 860 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 861 } 862 863 /* 864 * On certain encoders on certain platforms, pipe 865 * scanline register will not work to get the scanline, 866 * since the timings are driven from the PORT or issues 867 * with scanline register updates. 868 * This function will use Framestamp and current 869 * timestamp registers to calculate the scanline. 870 */ 871 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 872 { 873 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 874 struct drm_vblank_crtc *vblank = 875 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 876 const struct drm_display_mode *mode = &vblank->hwmode; 877 u32 vblank_start = mode->crtc_vblank_start; 878 u32 vtotal = mode->crtc_vtotal; 879 u32 htotal = mode->crtc_htotal; 880 u32 clock = mode->crtc_clock; 881 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 882 883 /* 884 * To avoid the race condition where we might cross into the 885 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 886 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 887 * during the same frame. 888 */ 889 do { 890 /* 891 * This field provides read back of the display 892 * pipe frame time stamp. The time stamp value 893 * is sampled at every start of vertical blank. 894 */ 895 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 896 897 /* 898 * The TIMESTAMP_CTR register has the current 899 * time stamp value. 900 */ 901 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR); 902 903 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 904 } while (scan_post_time != scan_prev_time); 905 906 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 907 clock), 1000 * htotal); 908 scanline = min(scanline, vtotal - 1); 909 scanline = (scanline + vblank_start) % vtotal; 910 911 return scanline; 912 } 913 914 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ 915 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 916 { 917 struct drm_device *dev = crtc->base.dev; 918 struct drm_i915_private *dev_priv = to_i915(dev); 919 const struct drm_display_mode *mode; 920 struct drm_vblank_crtc *vblank; 921 enum pipe pipe = crtc->pipe; 922 int position, vtotal; 923 924 if (!crtc->active) 925 return -1; 926 927 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 928 mode = &vblank->hwmode; 929 930 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 931 return __intel_get_crtc_scanline_from_timestamp(crtc); 932 933 vtotal = mode->crtc_vtotal; 934 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 935 vtotal /= 2; 936 937 if (IS_GEN2(dev_priv)) 938 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 939 else 940 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 941 942 /* 943 * On HSW, the DSL reg (0x70000) appears to return 0 if we 944 * read it just before the start of vblank. So try it again 945 * so we don't accidentally end up spanning a vblank frame 946 * increment, causing the pipe_update_end() code to squak at us. 947 * 948 * The nature of this problem means we can't simply check the ISR 949 * bit and return the vblank start value; nor can we use the scanline 950 * debug register in the transcoder as it appears to have the same 951 * problem. We may need to extend this to include other platforms, 952 * but so far testing only shows the problem on HSW. 953 */ 954 if (HAS_DDI(dev_priv) && !position) { 955 int i, temp; 956 957 for (i = 0; i < 100; i++) { 958 udelay(1); 959 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 960 if (temp != position) { 961 position = temp; 962 break; 963 } 964 } 965 } 966 967 /* 968 * See update_scanline_offset() for the details on the 969 * scanline_offset adjustment. 970 */ 971 return (position + crtc->scanline_offset) % vtotal; 972 } 973 974 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, 975 bool in_vblank_irq, int *vpos, int *hpos, 976 ktime_t *stime, ktime_t *etime, 977 const struct drm_display_mode *mode) 978 { 979 struct drm_i915_private *dev_priv = to_i915(dev); 980 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 981 pipe); 982 int position; 983 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 984 unsigned long irqflags; 985 986 if (WARN_ON(!mode->crtc_clock)) { 987 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 988 "pipe %c\n", pipe_name(pipe)); 989 return false; 990 } 991 992 htotal = mode->crtc_htotal; 993 hsync_start = mode->crtc_hsync_start; 994 vtotal = mode->crtc_vtotal; 995 vbl_start = mode->crtc_vblank_start; 996 vbl_end = mode->crtc_vblank_end; 997 998 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 999 vbl_start = DIV_ROUND_UP(vbl_start, 2); 1000 vbl_end /= 2; 1001 vtotal /= 2; 1002 } 1003 1004 /* 1005 * Lock uncore.lock, as we will do multiple timing critical raw 1006 * register reads, potentially with preemption disabled, so the 1007 * following code must not block on uncore.lock. 1008 */ 1009 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1010 1011 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 1012 1013 /* Get optional system timestamp before query. */ 1014 if (stime) 1015 *stime = ktime_get(); 1016 1017 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 1018 /* No obvious pixelcount register. Only query vertical 1019 * scanout position from Display scan line register. 1020 */ 1021 position = __intel_get_crtc_scanline(intel_crtc); 1022 } else { 1023 /* Have access to pixelcount since start of frame. 1024 * We can split this into vertical and horizontal 1025 * scanout position. 1026 */ 1027 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 1028 1029 /* convert to pixel counts */ 1030 vbl_start *= htotal; 1031 vbl_end *= htotal; 1032 vtotal *= htotal; 1033 1034 /* 1035 * In interlaced modes, the pixel counter counts all pixels, 1036 * so one field will have htotal more pixels. In order to avoid 1037 * the reported position from jumping backwards when the pixel 1038 * counter is beyond the length of the shorter field, just 1039 * clamp the position the length of the shorter field. This 1040 * matches how the scanline counter based position works since 1041 * the scanline counter doesn't count the two half lines. 1042 */ 1043 if (position >= vtotal) 1044 position = vtotal - 1; 1045 1046 /* 1047 * Start of vblank interrupt is triggered at start of hsync, 1048 * just prior to the first active line of vblank. However we 1049 * consider lines to start at the leading edge of horizontal 1050 * active. So, should we get here before we've crossed into 1051 * the horizontal active of the first line in vblank, we would 1052 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 1053 * always add htotal-hsync_start to the current pixel position. 1054 */ 1055 position = (position + htotal - hsync_start) % vtotal; 1056 } 1057 1058 /* Get optional system timestamp after query. */ 1059 if (etime) 1060 *etime = ktime_get(); 1061 1062 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 1063 1064 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1065 1066 /* 1067 * While in vblank, position will be negative 1068 * counting up towards 0 at vbl_end. And outside 1069 * vblank, position will be positive counting 1070 * up since vbl_end. 1071 */ 1072 if (position >= vbl_start) 1073 position -= vbl_end; 1074 else 1075 position += vtotal - vbl_end; 1076 1077 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 1078 *vpos = position; 1079 *hpos = 0; 1080 } else { 1081 *vpos = position / htotal; 1082 *hpos = position - (*vpos * htotal); 1083 } 1084 1085 return true; 1086 } 1087 1088 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1089 { 1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1091 unsigned long irqflags; 1092 int position; 1093 1094 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1095 position = __intel_get_crtc_scanline(crtc); 1096 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1097 1098 return position; 1099 } 1100 1101 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) 1102 { 1103 u32 busy_up, busy_down, max_avg, min_avg; 1104 u8 new_delay; 1105 1106 spin_lock(&mchdev_lock); 1107 1108 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); 1109 1110 new_delay = dev_priv->ips.cur_delay; 1111 1112 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); 1113 busy_up = I915_READ(RCPREVBSYTUPAVG); 1114 busy_down = I915_READ(RCPREVBSYTDNAVG); 1115 max_avg = I915_READ(RCBMAXAVG); 1116 min_avg = I915_READ(RCBMINAVG); 1117 1118 /* Handle RCS change request from hw */ 1119 if (busy_up > max_avg) { 1120 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1121 new_delay = dev_priv->ips.cur_delay - 1; 1122 if (new_delay < dev_priv->ips.max_delay) 1123 new_delay = dev_priv->ips.max_delay; 1124 } else if (busy_down < min_avg) { 1125 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1126 new_delay = dev_priv->ips.cur_delay + 1; 1127 if (new_delay > dev_priv->ips.min_delay) 1128 new_delay = dev_priv->ips.min_delay; 1129 } 1130 1131 if (ironlake_set_drps(dev_priv, new_delay)) 1132 dev_priv->ips.cur_delay = new_delay; 1133 1134 spin_unlock(&mchdev_lock); 1135 1136 return; 1137 } 1138 1139 static void notify_ring(struct intel_engine_cs *engine) 1140 { 1141 struct i915_request *rq = NULL; 1142 struct intel_wait *wait; 1143 1144 if (!engine->breadcrumbs.irq_armed) 1145 return; 1146 1147 atomic_inc(&engine->irq_count); 1148 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted); 1149 1150 spin_lock(&engine->breadcrumbs.irq_lock); 1151 wait = engine->breadcrumbs.irq_wait; 1152 if (wait) { 1153 bool wakeup = engine->irq_seqno_barrier; 1154 1155 /* We use a callback from the dma-fence to submit 1156 * requests after waiting on our own requests. To 1157 * ensure minimum delay in queuing the next request to 1158 * hardware, signal the fence now rather than wait for 1159 * the signaler to be woken up. We still wake up the 1160 * waiter in order to handle the irq-seqno coherency 1161 * issues (we may receive the interrupt before the 1162 * seqno is written, see __i915_request_irq_complete()) 1163 * and to handle coalescing of multiple seqno updates 1164 * and many waiters. 1165 */ 1166 if (i915_seqno_passed(intel_engine_get_seqno(engine), 1167 wait->seqno)) { 1168 struct i915_request *waiter = wait->request; 1169 1170 wakeup = true; 1171 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1172 &waiter->fence.flags) && 1173 intel_wait_check_request(wait, waiter)) 1174 rq = i915_request_get(waiter); 1175 } 1176 1177 if (wakeup) 1178 wake_up_process(wait->tsk); 1179 } else { 1180 if (engine->breadcrumbs.irq_armed) 1181 __intel_engine_disarm_breadcrumbs(engine); 1182 } 1183 spin_unlock(&engine->breadcrumbs.irq_lock); 1184 1185 if (rq) { 1186 dma_fence_signal(&rq->fence); 1187 GEM_BUG_ON(!i915_request_completed(rq)); 1188 i915_request_put(rq); 1189 } 1190 1191 trace_intel_engine_notify(engine, wait); 1192 } 1193 1194 static void vlv_c0_read(struct drm_i915_private *dev_priv, 1195 struct intel_rps_ei *ei) 1196 { 1197 ei->ktime = ktime_get_raw(); 1198 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); 1199 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); 1200 } 1201 1202 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) 1203 { 1204 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei)); 1205 } 1206 1207 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) 1208 { 1209 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1210 const struct intel_rps_ei *prev = &rps->ei; 1211 struct intel_rps_ei now; 1212 u32 events = 0; 1213 1214 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) 1215 return 0; 1216 1217 vlv_c0_read(dev_priv, &now); 1218 1219 if (prev->ktime) { 1220 u64 time, c0; 1221 u32 render, media; 1222 1223 time = ktime_us_delta(now.ktime, prev->ktime); 1224 1225 time *= dev_priv->czclk_freq; 1226 1227 /* Workload can be split between render + media, 1228 * e.g. SwapBuffers being blitted in X after being rendered in 1229 * mesa. To account for this we need to combine both engines 1230 * into our activity counter. 1231 */ 1232 render = now.render_c0 - prev->render_c0; 1233 media = now.media_c0 - prev->media_c0; 1234 c0 = max(render, media); 1235 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ 1236 1237 if (c0 > time * rps->up_threshold) 1238 events = GEN6_PM_RP_UP_THRESHOLD; 1239 else if (c0 < time * rps->down_threshold) 1240 events = GEN6_PM_RP_DOWN_THRESHOLD; 1241 } 1242 1243 rps->ei = now; 1244 return events; 1245 } 1246 1247 static void gen6_pm_rps_work(struct work_struct *work) 1248 { 1249 struct drm_i915_private *dev_priv = 1250 container_of(work, struct drm_i915_private, gt_pm.rps.work); 1251 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1252 bool client_boost = false; 1253 int new_delay, adj, min, max; 1254 u32 pm_iir = 0; 1255 1256 spin_lock_irq(&dev_priv->irq_lock); 1257 if (rps->interrupts_enabled) { 1258 pm_iir = fetch_and_zero(&rps->pm_iir); 1259 client_boost = atomic_read(&rps->num_waiters); 1260 } 1261 spin_unlock_irq(&dev_priv->irq_lock); 1262 1263 /* Make sure we didn't queue anything we're not going to process. */ 1264 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1265 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) 1266 goto out; 1267 1268 mutex_lock(&dev_priv->pcu_lock); 1269 1270 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); 1271 1272 adj = rps->last_adj; 1273 new_delay = rps->cur_freq; 1274 min = rps->min_freq_softlimit; 1275 max = rps->max_freq_softlimit; 1276 if (client_boost) 1277 max = rps->max_freq; 1278 if (client_boost && new_delay < rps->boost_freq) { 1279 new_delay = rps->boost_freq; 1280 adj = 0; 1281 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1282 if (adj > 0) 1283 adj *= 2; 1284 else /* CHV needs even encode values */ 1285 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; 1286 1287 if (new_delay >= rps->max_freq_softlimit) 1288 adj = 0; 1289 } else if (client_boost) { 1290 adj = 0; 1291 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1292 if (rps->cur_freq > rps->efficient_freq) 1293 new_delay = rps->efficient_freq; 1294 else if (rps->cur_freq > rps->min_freq_softlimit) 1295 new_delay = rps->min_freq_softlimit; 1296 adj = 0; 1297 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1298 if (adj < 0) 1299 adj *= 2; 1300 else /* CHV needs even encode values */ 1301 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; 1302 1303 if (new_delay <= rps->min_freq_softlimit) 1304 adj = 0; 1305 } else { /* unknown event */ 1306 adj = 0; 1307 } 1308 1309 rps->last_adj = adj; 1310 1311 /* sysfs frequency interfaces may have snuck in while servicing the 1312 * interrupt 1313 */ 1314 new_delay += adj; 1315 new_delay = clamp_t(int, new_delay, min, max); 1316 1317 if (intel_set_rps(dev_priv, new_delay)) { 1318 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); 1319 rps->last_adj = 0; 1320 } 1321 1322 mutex_unlock(&dev_priv->pcu_lock); 1323 1324 out: 1325 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ 1326 spin_lock_irq(&dev_priv->irq_lock); 1327 if (rps->interrupts_enabled) 1328 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); 1329 spin_unlock_irq(&dev_priv->irq_lock); 1330 } 1331 1332 1333 /** 1334 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1335 * occurred. 1336 * @work: workqueue struct 1337 * 1338 * Doesn't actually do anything except notify userspace. As a consequence of 1339 * this event, userspace should try to remap the bad rows since statistically 1340 * it is likely the same row is more likely to go bad again. 1341 */ 1342 static void ivybridge_parity_work(struct work_struct *work) 1343 { 1344 struct drm_i915_private *dev_priv = 1345 container_of(work, typeof(*dev_priv), l3_parity.error_work); 1346 u32 error_status, row, bank, subbank; 1347 char *parity_event[6]; 1348 uint32_t misccpctl; 1349 uint8_t slice = 0; 1350 1351 /* We must turn off DOP level clock gating to access the L3 registers. 1352 * In order to prevent a get/put style interface, acquire struct mutex 1353 * any time we access those registers. 1354 */ 1355 mutex_lock(&dev_priv->drm.struct_mutex); 1356 1357 /* If we've screwed up tracking, just let the interrupt fire again */ 1358 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1359 goto out; 1360 1361 misccpctl = I915_READ(GEN7_MISCCPCTL); 1362 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1363 POSTING_READ(GEN7_MISCCPCTL); 1364 1365 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1366 i915_reg_t reg; 1367 1368 slice--; 1369 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) 1370 break; 1371 1372 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1373 1374 reg = GEN7_L3CDERRST1(slice); 1375 1376 error_status = I915_READ(reg); 1377 row = GEN7_PARITY_ERROR_ROW(error_status); 1378 bank = GEN7_PARITY_ERROR_BANK(error_status); 1379 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1380 1381 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1382 POSTING_READ(reg); 1383 1384 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1385 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1386 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1387 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1388 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1389 parity_event[5] = NULL; 1390 1391 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1392 KOBJ_CHANGE, parity_event); 1393 1394 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1395 slice, row, bank, subbank); 1396 1397 kfree(parity_event[4]); 1398 kfree(parity_event[3]); 1399 kfree(parity_event[2]); 1400 kfree(parity_event[1]); 1401 } 1402 1403 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1404 1405 out: 1406 WARN_ON(dev_priv->l3_parity.which_slice); 1407 spin_lock_irq(&dev_priv->irq_lock); 1408 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1409 spin_unlock_irq(&dev_priv->irq_lock); 1410 1411 mutex_unlock(&dev_priv->drm.struct_mutex); 1412 } 1413 1414 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, 1415 u32 iir) 1416 { 1417 if (!HAS_L3_DPF(dev_priv)) 1418 return; 1419 1420 spin_lock(&dev_priv->irq_lock); 1421 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1422 spin_unlock(&dev_priv->irq_lock); 1423 1424 iir &= GT_PARITY_ERROR(dev_priv); 1425 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1426 dev_priv->l3_parity.which_slice |= 1 << 1; 1427 1428 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1429 dev_priv->l3_parity.which_slice |= 1 << 0; 1430 1431 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1432 } 1433 1434 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, 1435 u32 gt_iir) 1436 { 1437 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1438 notify_ring(dev_priv->engine[RCS]); 1439 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1440 notify_ring(dev_priv->engine[VCS]); 1441 } 1442 1443 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, 1444 u32 gt_iir) 1445 { 1446 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1447 notify_ring(dev_priv->engine[RCS]); 1448 if (gt_iir & GT_BSD_USER_INTERRUPT) 1449 notify_ring(dev_priv->engine[VCS]); 1450 if (gt_iir & GT_BLT_USER_INTERRUPT) 1451 notify_ring(dev_priv->engine[BCS]); 1452 1453 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1454 GT_BSD_CS_ERROR_INTERRUPT | 1455 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) 1456 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); 1457 1458 if (gt_iir & GT_PARITY_ERROR(dev_priv)) 1459 ivybridge_parity_error_irq_handler(dev_priv, gt_iir); 1460 } 1461 1462 static void 1463 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir) 1464 { 1465 struct intel_engine_execlists * const execlists = &engine->execlists; 1466 bool tasklet = false; 1467 1468 if (iir & GT_CONTEXT_SWITCH_INTERRUPT) { 1469 if (READ_ONCE(engine->execlists.active)) 1470 tasklet = !test_and_set_bit(ENGINE_IRQ_EXECLIST, 1471 &engine->irq_posted); 1472 } 1473 1474 if (iir & GT_RENDER_USER_INTERRUPT) { 1475 notify_ring(engine); 1476 tasklet |= USES_GUC_SUBMISSION(engine->i915); 1477 } 1478 1479 if (tasklet) 1480 tasklet_hi_schedule(&execlists->tasklet); 1481 } 1482 1483 static void gen8_gt_irq_ack(struct drm_i915_private *i915, 1484 u32 master_ctl, u32 gt_iir[4]) 1485 { 1486 void __iomem * const regs = i915->regs; 1487 1488 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \ 1489 GEN8_GT_BCS_IRQ | \ 1490 GEN8_GT_VCS1_IRQ | \ 1491 GEN8_GT_VCS2_IRQ | \ 1492 GEN8_GT_VECS_IRQ | \ 1493 GEN8_GT_PM_IRQ | \ 1494 GEN8_GT_GUC_IRQ) 1495 1496 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1497 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0)); 1498 if (likely(gt_iir[0])) 1499 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]); 1500 } 1501 1502 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1503 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1)); 1504 if (likely(gt_iir[1])) 1505 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]); 1506 } 1507 1508 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1509 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2)); 1510 if (likely(gt_iir[2] & (i915->pm_rps_events | 1511 i915->pm_guc_events))) 1512 raw_reg_write(regs, GEN8_GT_IIR(2), 1513 gt_iir[2] & (i915->pm_rps_events | 1514 i915->pm_guc_events)); 1515 } 1516 1517 if (master_ctl & GEN8_GT_VECS_IRQ) { 1518 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3)); 1519 if (likely(gt_iir[3])) 1520 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]); 1521 } 1522 } 1523 1524 static void gen8_gt_irq_handler(struct drm_i915_private *i915, 1525 u32 master_ctl, u32 gt_iir[4]) 1526 { 1527 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1528 gen8_cs_irq_handler(i915->engine[RCS], 1529 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT); 1530 gen8_cs_irq_handler(i915->engine[BCS], 1531 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT); 1532 } 1533 1534 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1535 gen8_cs_irq_handler(i915->engine[VCS], 1536 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT); 1537 gen8_cs_irq_handler(i915->engine[VCS2], 1538 gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT); 1539 } 1540 1541 if (master_ctl & GEN8_GT_VECS_IRQ) { 1542 gen8_cs_irq_handler(i915->engine[VECS], 1543 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT); 1544 } 1545 1546 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1547 gen6_rps_irq_handler(i915, gt_iir[2]); 1548 gen9_guc_irq_handler(i915, gt_iir[2]); 1549 } 1550 } 1551 1552 static bool bxt_port_hotplug_long_detect(enum port port, u32 val) 1553 { 1554 switch (port) { 1555 case PORT_A: 1556 return val & PORTA_HOTPLUG_LONG_DETECT; 1557 case PORT_B: 1558 return val & PORTB_HOTPLUG_LONG_DETECT; 1559 case PORT_C: 1560 return val & PORTC_HOTPLUG_LONG_DETECT; 1561 default: 1562 return false; 1563 } 1564 } 1565 1566 static bool spt_port_hotplug2_long_detect(enum port port, u32 val) 1567 { 1568 switch (port) { 1569 case PORT_E: 1570 return val & PORTE_HOTPLUG_LONG_DETECT; 1571 default: 1572 return false; 1573 } 1574 } 1575 1576 static bool spt_port_hotplug_long_detect(enum port port, u32 val) 1577 { 1578 switch (port) { 1579 case PORT_A: 1580 return val & PORTA_HOTPLUG_LONG_DETECT; 1581 case PORT_B: 1582 return val & PORTB_HOTPLUG_LONG_DETECT; 1583 case PORT_C: 1584 return val & PORTC_HOTPLUG_LONG_DETECT; 1585 case PORT_D: 1586 return val & PORTD_HOTPLUG_LONG_DETECT; 1587 default: 1588 return false; 1589 } 1590 } 1591 1592 static bool ilk_port_hotplug_long_detect(enum port port, u32 val) 1593 { 1594 switch (port) { 1595 case PORT_A: 1596 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1597 default: 1598 return false; 1599 } 1600 } 1601 1602 static bool pch_port_hotplug_long_detect(enum port port, u32 val) 1603 { 1604 switch (port) { 1605 case PORT_B: 1606 return val & PORTB_HOTPLUG_LONG_DETECT; 1607 case PORT_C: 1608 return val & PORTC_HOTPLUG_LONG_DETECT; 1609 case PORT_D: 1610 return val & PORTD_HOTPLUG_LONG_DETECT; 1611 default: 1612 return false; 1613 } 1614 } 1615 1616 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val) 1617 { 1618 switch (port) { 1619 case PORT_B: 1620 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1621 case PORT_C: 1622 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1623 case PORT_D: 1624 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1625 default: 1626 return false; 1627 } 1628 } 1629 1630 /* 1631 * Get a bit mask of pins that have triggered, and which ones may be long. 1632 * This can be called multiple times with the same masks to accumulate 1633 * hotplug detection results from several registers. 1634 * 1635 * Note that the caller is expected to zero out the masks initially. 1636 */ 1637 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1638 u32 *pin_mask, u32 *long_mask, 1639 u32 hotplug_trigger, u32 dig_hotplug_reg, 1640 const u32 hpd[HPD_NUM_PINS], 1641 bool long_pulse_detect(enum port port, u32 val)) 1642 { 1643 enum port port; 1644 int i; 1645 1646 for_each_hpd_pin(i) { 1647 if ((hpd[i] & hotplug_trigger) == 0) 1648 continue; 1649 1650 *pin_mask |= BIT(i); 1651 1652 port = intel_hpd_pin_to_port(dev_priv, i); 1653 if (port == PORT_NONE) 1654 continue; 1655 1656 if (long_pulse_detect(port, dig_hotplug_reg)) 1657 *long_mask |= BIT(i); 1658 } 1659 1660 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n", 1661 hotplug_trigger, dig_hotplug_reg, *pin_mask); 1662 1663 } 1664 1665 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1666 { 1667 wake_up_all(&dev_priv->gmbus_wait_queue); 1668 } 1669 1670 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1671 { 1672 wake_up_all(&dev_priv->gmbus_wait_queue); 1673 } 1674 1675 #if defined(CONFIG_DEBUG_FS) 1676 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1677 enum pipe pipe, 1678 uint32_t crc0, uint32_t crc1, 1679 uint32_t crc2, uint32_t crc3, 1680 uint32_t crc4) 1681 { 1682 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1683 struct intel_pipe_crc_entry *entry; 1684 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1685 struct drm_driver *driver = dev_priv->drm.driver; 1686 uint32_t crcs[5]; 1687 int head, tail; 1688 1689 spin_lock(&pipe_crc->lock); 1690 if (pipe_crc->source && !crtc->base.crc.opened) { 1691 if (!pipe_crc->entries) { 1692 spin_unlock(&pipe_crc->lock); 1693 DRM_DEBUG_KMS("spurious interrupt\n"); 1694 return; 1695 } 1696 1697 head = pipe_crc->head; 1698 tail = pipe_crc->tail; 1699 1700 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { 1701 spin_unlock(&pipe_crc->lock); 1702 DRM_ERROR("CRC buffer overflowing\n"); 1703 return; 1704 } 1705 1706 entry = &pipe_crc->entries[head]; 1707 1708 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe); 1709 entry->crc[0] = crc0; 1710 entry->crc[1] = crc1; 1711 entry->crc[2] = crc2; 1712 entry->crc[3] = crc3; 1713 entry->crc[4] = crc4; 1714 1715 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 1716 pipe_crc->head = head; 1717 1718 spin_unlock(&pipe_crc->lock); 1719 1720 wake_up_interruptible(&pipe_crc->wq); 1721 } else { 1722 /* 1723 * For some not yet identified reason, the first CRC is 1724 * bonkers. So let's just wait for the next vblank and read 1725 * out the buggy result. 1726 * 1727 * On GEN8+ sometimes the second CRC is bonkers as well, so 1728 * don't trust that one either. 1729 */ 1730 if (pipe_crc->skipped <= 0 || 1731 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1732 pipe_crc->skipped++; 1733 spin_unlock(&pipe_crc->lock); 1734 return; 1735 } 1736 spin_unlock(&pipe_crc->lock); 1737 crcs[0] = crc0; 1738 crcs[1] = crc1; 1739 crcs[2] = crc2; 1740 crcs[3] = crc3; 1741 crcs[4] = crc4; 1742 drm_crtc_add_crc_entry(&crtc->base, true, 1743 drm_crtc_accurate_vblank_count(&crtc->base), 1744 crcs); 1745 } 1746 } 1747 #else 1748 static inline void 1749 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1750 enum pipe pipe, 1751 uint32_t crc0, uint32_t crc1, 1752 uint32_t crc2, uint32_t crc3, 1753 uint32_t crc4) {} 1754 #endif 1755 1756 1757 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1758 enum pipe pipe) 1759 { 1760 display_pipe_crc_irq_handler(dev_priv, pipe, 1761 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1762 0, 0, 0, 0); 1763 } 1764 1765 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1766 enum pipe pipe) 1767 { 1768 display_pipe_crc_irq_handler(dev_priv, pipe, 1769 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1770 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1771 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1772 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1773 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1774 } 1775 1776 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1777 enum pipe pipe) 1778 { 1779 uint32_t res1, res2; 1780 1781 if (INTEL_GEN(dev_priv) >= 3) 1782 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1783 else 1784 res1 = 0; 1785 1786 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1787 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1788 else 1789 res2 = 0; 1790 1791 display_pipe_crc_irq_handler(dev_priv, pipe, 1792 I915_READ(PIPE_CRC_RES_RED(pipe)), 1793 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1794 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1795 res1, res2); 1796 } 1797 1798 /* The RPS events need forcewake, so we add them to a work queue and mask their 1799 * IMR bits until the work is done. Other interrupts can be processed without 1800 * the work queue. */ 1801 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1802 { 1803 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1804 1805 if (pm_iir & dev_priv->pm_rps_events) { 1806 spin_lock(&dev_priv->irq_lock); 1807 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1808 if (rps->interrupts_enabled) { 1809 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events; 1810 schedule_work(&rps->work); 1811 } 1812 spin_unlock(&dev_priv->irq_lock); 1813 } 1814 1815 if (INTEL_GEN(dev_priv) >= 8) 1816 return; 1817 1818 if (HAS_VEBOX(dev_priv)) { 1819 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1820 notify_ring(dev_priv->engine[VECS]); 1821 1822 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1823 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1824 } 1825 } 1826 1827 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) 1828 { 1829 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) 1830 intel_guc_to_host_event_handler(&dev_priv->guc); 1831 } 1832 1833 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1834 { 1835 enum pipe pipe; 1836 1837 for_each_pipe(dev_priv, pipe) { 1838 I915_WRITE(PIPESTAT(pipe), 1839 PIPESTAT_INT_STATUS_MASK | 1840 PIPE_FIFO_UNDERRUN_STATUS); 1841 1842 dev_priv->pipestat_irq_mask[pipe] = 0; 1843 } 1844 } 1845 1846 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1847 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1848 { 1849 int pipe; 1850 1851 spin_lock(&dev_priv->irq_lock); 1852 1853 if (!dev_priv->display_irqs_enabled) { 1854 spin_unlock(&dev_priv->irq_lock); 1855 return; 1856 } 1857 1858 for_each_pipe(dev_priv, pipe) { 1859 i915_reg_t reg; 1860 u32 status_mask, enable_mask, iir_bit = 0; 1861 1862 /* 1863 * PIPESTAT bits get signalled even when the interrupt is 1864 * disabled with the mask bits, and some of the status bits do 1865 * not generate interrupts at all (like the underrun bit). Hence 1866 * we need to be careful that we only handle what we want to 1867 * handle. 1868 */ 1869 1870 /* fifo underruns are filterered in the underrun handler. */ 1871 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1872 1873 switch (pipe) { 1874 case PIPE_A: 1875 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1876 break; 1877 case PIPE_B: 1878 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1879 break; 1880 case PIPE_C: 1881 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1882 break; 1883 } 1884 if (iir & iir_bit) 1885 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1886 1887 if (!status_mask) 1888 continue; 1889 1890 reg = PIPESTAT(pipe); 1891 pipe_stats[pipe] = I915_READ(reg) & status_mask; 1892 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1893 1894 /* 1895 * Clear the PIPE*STAT regs before the IIR 1896 */ 1897 if (pipe_stats[pipe]) 1898 I915_WRITE(reg, enable_mask | pipe_stats[pipe]); 1899 } 1900 spin_unlock(&dev_priv->irq_lock); 1901 } 1902 1903 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1904 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1905 { 1906 enum pipe pipe; 1907 1908 for_each_pipe(dev_priv, pipe) { 1909 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1910 drm_handle_vblank(&dev_priv->drm, pipe); 1911 1912 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1913 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1914 1915 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1916 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1917 } 1918 } 1919 1920 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1921 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1922 { 1923 bool blc_event = false; 1924 enum pipe pipe; 1925 1926 for_each_pipe(dev_priv, pipe) { 1927 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1928 drm_handle_vblank(&dev_priv->drm, pipe); 1929 1930 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1931 blc_event = true; 1932 1933 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1934 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1935 1936 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1937 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1938 } 1939 1940 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1941 intel_opregion_asle_intr(dev_priv); 1942 } 1943 1944 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1945 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1946 { 1947 bool blc_event = false; 1948 enum pipe pipe; 1949 1950 for_each_pipe(dev_priv, pipe) { 1951 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1952 drm_handle_vblank(&dev_priv->drm, pipe); 1953 1954 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1955 blc_event = true; 1956 1957 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1958 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1959 1960 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1961 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1962 } 1963 1964 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1965 intel_opregion_asle_intr(dev_priv); 1966 1967 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1968 gmbus_irq_handler(dev_priv); 1969 } 1970 1971 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1972 u32 pipe_stats[I915_MAX_PIPES]) 1973 { 1974 enum pipe pipe; 1975 1976 for_each_pipe(dev_priv, pipe) { 1977 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1978 drm_handle_vblank(&dev_priv->drm, pipe); 1979 1980 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1981 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1982 1983 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1984 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1985 } 1986 1987 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1988 gmbus_irq_handler(dev_priv); 1989 } 1990 1991 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1992 { 1993 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); 1994 1995 if (hotplug_status) 1996 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 1997 1998 return hotplug_status; 1999 } 2000 2001 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2002 u32 hotplug_status) 2003 { 2004 u32 pin_mask = 0, long_mask = 0; 2005 2006 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 2007 IS_CHERRYVIEW(dev_priv)) { 2008 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 2009 2010 if (hotplug_trigger) { 2011 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2012 hotplug_trigger, hotplug_trigger, 2013 hpd_status_g4x, 2014 i9xx_port_hotplug_long_detect); 2015 2016 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2017 } 2018 2019 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 2020 dp_aux_irq_handler(dev_priv); 2021 } else { 2022 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 2023 2024 if (hotplug_trigger) { 2025 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2026 hotplug_trigger, hotplug_trigger, 2027 hpd_status_i915, 2028 i9xx_port_hotplug_long_detect); 2029 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2030 } 2031 } 2032 } 2033 2034 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 2035 { 2036 struct drm_device *dev = arg; 2037 struct drm_i915_private *dev_priv = to_i915(dev); 2038 irqreturn_t ret = IRQ_NONE; 2039 2040 if (!intel_irqs_enabled(dev_priv)) 2041 return IRQ_NONE; 2042 2043 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2044 disable_rpm_wakeref_asserts(dev_priv); 2045 2046 do { 2047 u32 iir, gt_iir, pm_iir; 2048 u32 pipe_stats[I915_MAX_PIPES] = {}; 2049 u32 hotplug_status = 0; 2050 u32 ier = 0; 2051 2052 gt_iir = I915_READ(GTIIR); 2053 pm_iir = I915_READ(GEN6_PMIIR); 2054 iir = I915_READ(VLV_IIR); 2055 2056 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 2057 break; 2058 2059 ret = IRQ_HANDLED; 2060 2061 /* 2062 * Theory on interrupt generation, based on empirical evidence: 2063 * 2064 * x = ((VLV_IIR & VLV_IER) || 2065 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 2066 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 2067 * 2068 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2069 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 2070 * guarantee the CPU interrupt will be raised again even if we 2071 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 2072 * bits this time around. 2073 */ 2074 I915_WRITE(VLV_MASTER_IER, 0); 2075 ier = I915_READ(VLV_IER); 2076 I915_WRITE(VLV_IER, 0); 2077 2078 if (gt_iir) 2079 I915_WRITE(GTIIR, gt_iir); 2080 if (pm_iir) 2081 I915_WRITE(GEN6_PMIIR, pm_iir); 2082 2083 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2084 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2085 2086 /* Call regardless, as some status bits might not be 2087 * signalled in iir */ 2088 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2089 2090 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2091 I915_LPE_PIPE_B_INTERRUPT)) 2092 intel_lpe_audio_irq_handler(dev_priv); 2093 2094 /* 2095 * VLV_IIR is single buffered, and reflects the level 2096 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2097 */ 2098 if (iir) 2099 I915_WRITE(VLV_IIR, iir); 2100 2101 I915_WRITE(VLV_IER, ier); 2102 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 2103 POSTING_READ(VLV_MASTER_IER); 2104 2105 if (gt_iir) 2106 snb_gt_irq_handler(dev_priv, gt_iir); 2107 if (pm_iir) 2108 gen6_rps_irq_handler(dev_priv, pm_iir); 2109 2110 if (hotplug_status) 2111 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2112 2113 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2114 } while (0); 2115 2116 enable_rpm_wakeref_asserts(dev_priv); 2117 2118 return ret; 2119 } 2120 2121 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 2122 { 2123 struct drm_device *dev = arg; 2124 struct drm_i915_private *dev_priv = to_i915(dev); 2125 irqreturn_t ret = IRQ_NONE; 2126 2127 if (!intel_irqs_enabled(dev_priv)) 2128 return IRQ_NONE; 2129 2130 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2131 disable_rpm_wakeref_asserts(dev_priv); 2132 2133 do { 2134 u32 master_ctl, iir; 2135 u32 pipe_stats[I915_MAX_PIPES] = {}; 2136 u32 hotplug_status = 0; 2137 u32 gt_iir[4]; 2138 u32 ier = 0; 2139 2140 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 2141 iir = I915_READ(VLV_IIR); 2142 2143 if (master_ctl == 0 && iir == 0) 2144 break; 2145 2146 ret = IRQ_HANDLED; 2147 2148 /* 2149 * Theory on interrupt generation, based on empirical evidence: 2150 * 2151 * x = ((VLV_IIR & VLV_IER) || 2152 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 2153 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 2154 * 2155 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2156 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 2157 * guarantee the CPU interrupt will be raised again even if we 2158 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 2159 * bits this time around. 2160 */ 2161 I915_WRITE(GEN8_MASTER_IRQ, 0); 2162 ier = I915_READ(VLV_IER); 2163 I915_WRITE(VLV_IER, 0); 2164 2165 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2166 2167 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2168 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2169 2170 /* Call regardless, as some status bits might not be 2171 * signalled in iir */ 2172 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2173 2174 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2175 I915_LPE_PIPE_B_INTERRUPT | 2176 I915_LPE_PIPE_C_INTERRUPT)) 2177 intel_lpe_audio_irq_handler(dev_priv); 2178 2179 /* 2180 * VLV_IIR is single buffered, and reflects the level 2181 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2182 */ 2183 if (iir) 2184 I915_WRITE(VLV_IIR, iir); 2185 2186 I915_WRITE(VLV_IER, ier); 2187 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2188 POSTING_READ(GEN8_MASTER_IRQ); 2189 2190 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2191 2192 if (hotplug_status) 2193 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2194 2195 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2196 } while (0); 2197 2198 enable_rpm_wakeref_asserts(dev_priv); 2199 2200 return ret; 2201 } 2202 2203 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2204 u32 hotplug_trigger, 2205 const u32 hpd[HPD_NUM_PINS]) 2206 { 2207 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2208 2209 /* 2210 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 2211 * unless we touch the hotplug register, even if hotplug_trigger is 2212 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 2213 * errors. 2214 */ 2215 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2216 if (!hotplug_trigger) { 2217 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 2218 PORTD_HOTPLUG_STATUS_MASK | 2219 PORTC_HOTPLUG_STATUS_MASK | 2220 PORTB_HOTPLUG_STATUS_MASK; 2221 dig_hotplug_reg &= ~mask; 2222 } 2223 2224 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2225 if (!hotplug_trigger) 2226 return; 2227 2228 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2229 dig_hotplug_reg, hpd, 2230 pch_port_hotplug_long_detect); 2231 2232 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2233 } 2234 2235 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2236 { 2237 int pipe; 2238 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2239 2240 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 2241 2242 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2243 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2244 SDE_AUDIO_POWER_SHIFT); 2245 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2246 port_name(port)); 2247 } 2248 2249 if (pch_iir & SDE_AUX_MASK) 2250 dp_aux_irq_handler(dev_priv); 2251 2252 if (pch_iir & SDE_GMBUS) 2253 gmbus_irq_handler(dev_priv); 2254 2255 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2256 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2257 2258 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2259 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2260 2261 if (pch_iir & SDE_POISON) 2262 DRM_ERROR("PCH poison interrupt\n"); 2263 2264 if (pch_iir & SDE_FDI_MASK) 2265 for_each_pipe(dev_priv, pipe) 2266 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2267 pipe_name(pipe), 2268 I915_READ(FDI_RX_IIR(pipe))); 2269 2270 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2271 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2272 2273 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2274 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2275 2276 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2277 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 2278 2279 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2280 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 2281 } 2282 2283 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 2284 { 2285 u32 err_int = I915_READ(GEN7_ERR_INT); 2286 enum pipe pipe; 2287 2288 if (err_int & ERR_INT_POISON) 2289 DRM_ERROR("Poison interrupt\n"); 2290 2291 for_each_pipe(dev_priv, pipe) { 2292 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 2293 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2294 2295 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2296 if (IS_IVYBRIDGE(dev_priv)) 2297 ivb_pipe_crc_irq_handler(dev_priv, pipe); 2298 else 2299 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2300 } 2301 } 2302 2303 I915_WRITE(GEN7_ERR_INT, err_int); 2304 } 2305 2306 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 2307 { 2308 u32 serr_int = I915_READ(SERR_INT); 2309 enum pipe pipe; 2310 2311 if (serr_int & SERR_INT_POISON) 2312 DRM_ERROR("PCH poison interrupt\n"); 2313 2314 for_each_pipe(dev_priv, pipe) 2315 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 2316 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 2317 2318 I915_WRITE(SERR_INT, serr_int); 2319 } 2320 2321 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2322 { 2323 int pipe; 2324 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2325 2326 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 2327 2328 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2329 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2330 SDE_AUDIO_POWER_SHIFT_CPT); 2331 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2332 port_name(port)); 2333 } 2334 2335 if (pch_iir & SDE_AUX_MASK_CPT) 2336 dp_aux_irq_handler(dev_priv); 2337 2338 if (pch_iir & SDE_GMBUS_CPT) 2339 gmbus_irq_handler(dev_priv); 2340 2341 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2342 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2343 2344 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2345 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2346 2347 if (pch_iir & SDE_FDI_MASK_CPT) 2348 for_each_pipe(dev_priv, pipe) 2349 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2350 pipe_name(pipe), 2351 I915_READ(FDI_RX_IIR(pipe))); 2352 2353 if (pch_iir & SDE_ERROR_CPT) 2354 cpt_serr_int_handler(dev_priv); 2355 } 2356 2357 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2358 { 2359 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2360 ~SDE_PORTE_HOTPLUG_SPT; 2361 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2362 u32 pin_mask = 0, long_mask = 0; 2363 2364 if (hotplug_trigger) { 2365 u32 dig_hotplug_reg; 2366 2367 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2368 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2369 2370 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2371 hotplug_trigger, dig_hotplug_reg, hpd_spt, 2372 spt_port_hotplug_long_detect); 2373 } 2374 2375 if (hotplug2_trigger) { 2376 u32 dig_hotplug_reg; 2377 2378 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 2379 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2380 2381 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2382 hotplug2_trigger, dig_hotplug_reg, hpd_spt, 2383 spt_port_hotplug2_long_detect); 2384 } 2385 2386 if (pin_mask) 2387 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2388 2389 if (pch_iir & SDE_GMBUS_CPT) 2390 gmbus_irq_handler(dev_priv); 2391 } 2392 2393 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2394 u32 hotplug_trigger, 2395 const u32 hpd[HPD_NUM_PINS]) 2396 { 2397 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2398 2399 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2400 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2401 2402 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2403 dig_hotplug_reg, hpd, 2404 ilk_port_hotplug_long_detect); 2405 2406 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2407 } 2408 2409 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2410 u32 de_iir) 2411 { 2412 enum pipe pipe; 2413 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2414 2415 if (hotplug_trigger) 2416 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 2417 2418 if (de_iir & DE_AUX_CHANNEL_A) 2419 dp_aux_irq_handler(dev_priv); 2420 2421 if (de_iir & DE_GSE) 2422 intel_opregion_asle_intr(dev_priv); 2423 2424 if (de_iir & DE_POISON) 2425 DRM_ERROR("Poison interrupt\n"); 2426 2427 for_each_pipe(dev_priv, pipe) { 2428 if (de_iir & DE_PIPE_VBLANK(pipe)) 2429 drm_handle_vblank(&dev_priv->drm, pipe); 2430 2431 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2432 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2433 2434 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2435 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2436 } 2437 2438 /* check event from PCH */ 2439 if (de_iir & DE_PCH_EVENT) { 2440 u32 pch_iir = I915_READ(SDEIIR); 2441 2442 if (HAS_PCH_CPT(dev_priv)) 2443 cpt_irq_handler(dev_priv, pch_iir); 2444 else 2445 ibx_irq_handler(dev_priv, pch_iir); 2446 2447 /* should clear PCH hotplug event before clear CPU irq */ 2448 I915_WRITE(SDEIIR, pch_iir); 2449 } 2450 2451 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT) 2452 ironlake_rps_change_irq_handler(dev_priv); 2453 } 2454 2455 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2456 u32 de_iir) 2457 { 2458 enum pipe pipe; 2459 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2460 2461 if (hotplug_trigger) 2462 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2463 2464 if (de_iir & DE_ERR_INT_IVB) 2465 ivb_err_int_handler(dev_priv); 2466 2467 if (de_iir & DE_EDP_PSR_INT_HSW) { 2468 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2469 2470 intel_psr_irq_handler(dev_priv, psr_iir); 2471 I915_WRITE(EDP_PSR_IIR, psr_iir); 2472 } 2473 2474 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2475 dp_aux_irq_handler(dev_priv); 2476 2477 if (de_iir & DE_GSE_IVB) 2478 intel_opregion_asle_intr(dev_priv); 2479 2480 for_each_pipe(dev_priv, pipe) { 2481 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2482 drm_handle_vblank(&dev_priv->drm, pipe); 2483 } 2484 2485 /* check event from PCH */ 2486 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2487 u32 pch_iir = I915_READ(SDEIIR); 2488 2489 cpt_irq_handler(dev_priv, pch_iir); 2490 2491 /* clear PCH hotplug event before clear CPU irq */ 2492 I915_WRITE(SDEIIR, pch_iir); 2493 } 2494 } 2495 2496 /* 2497 * To handle irqs with the minimum potential races with fresh interrupts, we: 2498 * 1 - Disable Master Interrupt Control. 2499 * 2 - Find the source(s) of the interrupt. 2500 * 3 - Clear the Interrupt Identity bits (IIR). 2501 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2502 * 5 - Re-enable Master Interrupt Control. 2503 */ 2504 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2505 { 2506 struct drm_device *dev = arg; 2507 struct drm_i915_private *dev_priv = to_i915(dev); 2508 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2509 irqreturn_t ret = IRQ_NONE; 2510 2511 if (!intel_irqs_enabled(dev_priv)) 2512 return IRQ_NONE; 2513 2514 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2515 disable_rpm_wakeref_asserts(dev_priv); 2516 2517 /* disable master interrupt before clearing iir */ 2518 de_ier = I915_READ(DEIER); 2519 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2520 POSTING_READ(DEIER); 2521 2522 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2523 * interrupts will will be stored on its back queue, and then we'll be 2524 * able to process them after we restore SDEIER (as soon as we restore 2525 * it, we'll get an interrupt if SDEIIR still has something to process 2526 * due to its back queue). */ 2527 if (!HAS_PCH_NOP(dev_priv)) { 2528 sde_ier = I915_READ(SDEIER); 2529 I915_WRITE(SDEIER, 0); 2530 POSTING_READ(SDEIER); 2531 } 2532 2533 /* Find, clear, then process each source of interrupt */ 2534 2535 gt_iir = I915_READ(GTIIR); 2536 if (gt_iir) { 2537 I915_WRITE(GTIIR, gt_iir); 2538 ret = IRQ_HANDLED; 2539 if (INTEL_GEN(dev_priv) >= 6) 2540 snb_gt_irq_handler(dev_priv, gt_iir); 2541 else 2542 ilk_gt_irq_handler(dev_priv, gt_iir); 2543 } 2544 2545 de_iir = I915_READ(DEIIR); 2546 if (de_iir) { 2547 I915_WRITE(DEIIR, de_iir); 2548 ret = IRQ_HANDLED; 2549 if (INTEL_GEN(dev_priv) >= 7) 2550 ivb_display_irq_handler(dev_priv, de_iir); 2551 else 2552 ilk_display_irq_handler(dev_priv, de_iir); 2553 } 2554 2555 if (INTEL_GEN(dev_priv) >= 6) { 2556 u32 pm_iir = I915_READ(GEN6_PMIIR); 2557 if (pm_iir) { 2558 I915_WRITE(GEN6_PMIIR, pm_iir); 2559 ret = IRQ_HANDLED; 2560 gen6_rps_irq_handler(dev_priv, pm_iir); 2561 } 2562 } 2563 2564 I915_WRITE(DEIER, de_ier); 2565 POSTING_READ(DEIER); 2566 if (!HAS_PCH_NOP(dev_priv)) { 2567 I915_WRITE(SDEIER, sde_ier); 2568 POSTING_READ(SDEIER); 2569 } 2570 2571 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2572 enable_rpm_wakeref_asserts(dev_priv); 2573 2574 return ret; 2575 } 2576 2577 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2578 u32 hotplug_trigger, 2579 const u32 hpd[HPD_NUM_PINS]) 2580 { 2581 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2582 2583 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2584 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2585 2586 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2587 dig_hotplug_reg, hpd, 2588 bxt_port_hotplug_long_detect); 2589 2590 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2591 } 2592 2593 static irqreturn_t 2594 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2595 { 2596 irqreturn_t ret = IRQ_NONE; 2597 u32 iir; 2598 enum pipe pipe; 2599 2600 if (master_ctl & GEN8_DE_MISC_IRQ) { 2601 iir = I915_READ(GEN8_DE_MISC_IIR); 2602 if (iir) { 2603 bool found = false; 2604 2605 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2606 ret = IRQ_HANDLED; 2607 2608 if (iir & GEN8_DE_MISC_GSE) { 2609 intel_opregion_asle_intr(dev_priv); 2610 found = true; 2611 } 2612 2613 if (iir & GEN8_DE_EDP_PSR) { 2614 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2615 2616 intel_psr_irq_handler(dev_priv, psr_iir); 2617 I915_WRITE(EDP_PSR_IIR, psr_iir); 2618 found = true; 2619 } 2620 2621 if (!found) 2622 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2623 } 2624 else 2625 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2626 } 2627 2628 if (master_ctl & GEN8_DE_PORT_IRQ) { 2629 iir = I915_READ(GEN8_DE_PORT_IIR); 2630 if (iir) { 2631 u32 tmp_mask; 2632 bool found = false; 2633 2634 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2635 ret = IRQ_HANDLED; 2636 2637 tmp_mask = GEN8_AUX_CHANNEL_A; 2638 if (INTEL_GEN(dev_priv) >= 9) 2639 tmp_mask |= GEN9_AUX_CHANNEL_B | 2640 GEN9_AUX_CHANNEL_C | 2641 GEN9_AUX_CHANNEL_D; 2642 2643 if (IS_CNL_WITH_PORT_F(dev_priv)) 2644 tmp_mask |= CNL_AUX_CHANNEL_F; 2645 2646 if (iir & tmp_mask) { 2647 dp_aux_irq_handler(dev_priv); 2648 found = true; 2649 } 2650 2651 if (IS_GEN9_LP(dev_priv)) { 2652 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2653 if (tmp_mask) { 2654 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2655 hpd_bxt); 2656 found = true; 2657 } 2658 } else if (IS_BROADWELL(dev_priv)) { 2659 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2660 if (tmp_mask) { 2661 ilk_hpd_irq_handler(dev_priv, 2662 tmp_mask, hpd_bdw); 2663 found = true; 2664 } 2665 } 2666 2667 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2668 gmbus_irq_handler(dev_priv); 2669 found = true; 2670 } 2671 2672 if (!found) 2673 DRM_ERROR("Unexpected DE Port interrupt\n"); 2674 } 2675 else 2676 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2677 } 2678 2679 for_each_pipe(dev_priv, pipe) { 2680 u32 fault_errors; 2681 2682 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2683 continue; 2684 2685 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2686 if (!iir) { 2687 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2688 continue; 2689 } 2690 2691 ret = IRQ_HANDLED; 2692 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2693 2694 if (iir & GEN8_PIPE_VBLANK) 2695 drm_handle_vblank(&dev_priv->drm, pipe); 2696 2697 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2698 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2699 2700 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2701 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2702 2703 fault_errors = iir; 2704 if (INTEL_GEN(dev_priv) >= 9) 2705 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2706 else 2707 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2708 2709 if (fault_errors) 2710 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", 2711 pipe_name(pipe), 2712 fault_errors); 2713 } 2714 2715 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2716 master_ctl & GEN8_DE_PCH_IRQ) { 2717 /* 2718 * FIXME(BDW): Assume for now that the new interrupt handling 2719 * scheme also closed the SDE interrupt handling race we've seen 2720 * on older pch-split platforms. But this needs testing. 2721 */ 2722 iir = I915_READ(SDEIIR); 2723 if (iir) { 2724 I915_WRITE(SDEIIR, iir); 2725 ret = IRQ_HANDLED; 2726 2727 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) || 2728 HAS_PCH_CNP(dev_priv)) 2729 spt_irq_handler(dev_priv, iir); 2730 else 2731 cpt_irq_handler(dev_priv, iir); 2732 } else { 2733 /* 2734 * Like on previous PCH there seems to be something 2735 * fishy going on with forwarding PCH interrupts. 2736 */ 2737 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); 2738 } 2739 } 2740 2741 return ret; 2742 } 2743 2744 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2745 { 2746 struct drm_i915_private *dev_priv = to_i915(arg); 2747 u32 master_ctl; 2748 u32 gt_iir[4]; 2749 2750 if (!intel_irqs_enabled(dev_priv)) 2751 return IRQ_NONE; 2752 2753 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ); 2754 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; 2755 if (!master_ctl) 2756 return IRQ_NONE; 2757 2758 I915_WRITE_FW(GEN8_MASTER_IRQ, 0); 2759 2760 /* Find, clear, then process each source of interrupt */ 2761 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2762 2763 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2764 if (master_ctl & ~GEN8_GT_IRQS) { 2765 disable_rpm_wakeref_asserts(dev_priv); 2766 gen8_de_irq_handler(dev_priv, master_ctl); 2767 enable_rpm_wakeref_asserts(dev_priv); 2768 } 2769 2770 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2771 2772 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2773 2774 return IRQ_HANDLED; 2775 } 2776 2777 struct wedge_me { 2778 struct delayed_work work; 2779 struct drm_i915_private *i915; 2780 const char *name; 2781 }; 2782 2783 static void wedge_me(struct work_struct *work) 2784 { 2785 struct wedge_me *w = container_of(work, typeof(*w), work.work); 2786 2787 dev_err(w->i915->drm.dev, 2788 "%s timed out, cancelling all in-flight rendering.\n", 2789 w->name); 2790 i915_gem_set_wedged(w->i915); 2791 } 2792 2793 static void __init_wedge(struct wedge_me *w, 2794 struct drm_i915_private *i915, 2795 long timeout, 2796 const char *name) 2797 { 2798 w->i915 = i915; 2799 w->name = name; 2800 2801 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me); 2802 schedule_delayed_work(&w->work, timeout); 2803 } 2804 2805 static void __fini_wedge(struct wedge_me *w) 2806 { 2807 cancel_delayed_work_sync(&w->work); 2808 destroy_delayed_work_on_stack(&w->work); 2809 w->i915 = NULL; 2810 } 2811 2812 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \ 2813 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \ 2814 (W)->i915; \ 2815 __fini_wedge((W))) 2816 2817 static u32 2818 gen11_gt_engine_identity(struct drm_i915_private * const i915, 2819 const unsigned int bank, const unsigned int bit) 2820 { 2821 void __iomem * const regs = i915->regs; 2822 u32 timeout_ts; 2823 u32 ident; 2824 2825 lockdep_assert_held(&i915->irq_lock); 2826 2827 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); 2828 2829 /* 2830 * NB: Specs do not specify how long to spin wait, 2831 * so we do ~100us as an educated guess. 2832 */ 2833 timeout_ts = (local_clock() >> 10) + 100; 2834 do { 2835 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); 2836 } while (!(ident & GEN11_INTR_DATA_VALID) && 2837 !time_after32(local_clock() >> 10, timeout_ts)); 2838 2839 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { 2840 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", 2841 bank, bit, ident); 2842 return 0; 2843 } 2844 2845 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), 2846 GEN11_INTR_DATA_VALID); 2847 2848 return ident; 2849 } 2850 2851 static void 2852 gen11_other_irq_handler(struct drm_i915_private * const i915, 2853 const u8 instance, const u16 iir) 2854 { 2855 if (instance == OTHER_GTPM_INSTANCE) 2856 return gen6_rps_irq_handler(i915, iir); 2857 2858 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", 2859 instance, iir); 2860 } 2861 2862 static void 2863 gen11_engine_irq_handler(struct drm_i915_private * const i915, 2864 const u8 class, const u8 instance, const u16 iir) 2865 { 2866 struct intel_engine_cs *engine; 2867 2868 if (instance <= MAX_ENGINE_INSTANCE) 2869 engine = i915->engine_class[class][instance]; 2870 else 2871 engine = NULL; 2872 2873 if (likely(engine)) 2874 return gen8_cs_irq_handler(engine, iir); 2875 2876 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n", 2877 class, instance); 2878 } 2879 2880 static void 2881 gen11_gt_identity_handler(struct drm_i915_private * const i915, 2882 const u32 identity) 2883 { 2884 const u8 class = GEN11_INTR_ENGINE_CLASS(identity); 2885 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); 2886 const u16 intr = GEN11_INTR_ENGINE_INTR(identity); 2887 2888 if (unlikely(!intr)) 2889 return; 2890 2891 if (class <= COPY_ENGINE_CLASS) 2892 return gen11_engine_irq_handler(i915, class, instance, intr); 2893 2894 if (class == OTHER_CLASS) 2895 return gen11_other_irq_handler(i915, instance, intr); 2896 2897 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", 2898 class, instance, intr); 2899 } 2900 2901 static void 2902 gen11_gt_bank_handler(struct drm_i915_private * const i915, 2903 const unsigned int bank) 2904 { 2905 void __iomem * const regs = i915->regs; 2906 unsigned long intr_dw; 2907 unsigned int bit; 2908 2909 lockdep_assert_held(&i915->irq_lock); 2910 2911 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 2912 2913 if (unlikely(!intr_dw)) { 2914 DRM_ERROR("GT_INTR_DW%u blank!\n", bank); 2915 return; 2916 } 2917 2918 for_each_set_bit(bit, &intr_dw, 32) { 2919 const u32 ident = gen11_gt_engine_identity(i915, 2920 bank, bit); 2921 2922 gen11_gt_identity_handler(i915, ident); 2923 } 2924 2925 /* Clear must be after shared has been served for engine */ 2926 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); 2927 } 2928 2929 static void 2930 gen11_gt_irq_handler(struct drm_i915_private * const i915, 2931 const u32 master_ctl) 2932 { 2933 unsigned int bank; 2934 2935 spin_lock(&i915->irq_lock); 2936 2937 for (bank = 0; bank < 2; bank++) { 2938 if (master_ctl & GEN11_GT_DW_IRQ(bank)) 2939 gen11_gt_bank_handler(i915, bank); 2940 } 2941 2942 spin_unlock(&i915->irq_lock); 2943 } 2944 2945 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2946 { 2947 struct drm_i915_private * const i915 = to_i915(arg); 2948 void __iomem * const regs = i915->regs; 2949 u32 master_ctl; 2950 2951 if (!intel_irqs_enabled(i915)) 2952 return IRQ_NONE; 2953 2954 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2955 master_ctl &= ~GEN11_MASTER_IRQ; 2956 if (!master_ctl) 2957 return IRQ_NONE; 2958 2959 /* Disable interrupts. */ 2960 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2961 2962 /* Find, clear, then process each source of interrupt. */ 2963 gen11_gt_irq_handler(i915, master_ctl); 2964 2965 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2966 if (master_ctl & GEN11_DISPLAY_IRQ) { 2967 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2968 2969 disable_rpm_wakeref_asserts(i915); 2970 /* 2971 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2972 * for the display related bits. 2973 */ 2974 gen8_de_irq_handler(i915, disp_ctl); 2975 enable_rpm_wakeref_asserts(i915); 2976 } 2977 2978 /* Acknowledge and enable interrupts. */ 2979 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl); 2980 2981 return IRQ_HANDLED; 2982 } 2983 2984 static void i915_reset_device(struct drm_i915_private *dev_priv, 2985 u32 engine_mask, 2986 const char *reason) 2987 { 2988 struct i915_gpu_error *error = &dev_priv->gpu_error; 2989 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj; 2990 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 2991 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 2992 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 2993 struct wedge_me w; 2994 2995 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 2996 2997 DRM_DEBUG_DRIVER("resetting chip\n"); 2998 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 2999 3000 /* Use a watchdog to ensure that our reset completes */ 3001 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) { 3002 intel_prepare_reset(dev_priv); 3003 3004 error->reason = reason; 3005 error->stalled_mask = engine_mask; 3006 3007 /* Signal that locked waiters should reset the GPU */ 3008 smp_mb__before_atomic(); 3009 set_bit(I915_RESET_HANDOFF, &error->flags); 3010 wake_up_all(&error->wait_queue); 3011 3012 /* Wait for anyone holding the lock to wakeup, without 3013 * blocking indefinitely on struct_mutex. 3014 */ 3015 do { 3016 if (mutex_trylock(&dev_priv->drm.struct_mutex)) { 3017 i915_reset(dev_priv, engine_mask, reason); 3018 mutex_unlock(&dev_priv->drm.struct_mutex); 3019 } 3020 } while (wait_on_bit_timeout(&error->flags, 3021 I915_RESET_HANDOFF, 3022 TASK_UNINTERRUPTIBLE, 3023 1)); 3024 3025 error->stalled_mask = 0; 3026 error->reason = NULL; 3027 3028 intel_finish_reset(dev_priv); 3029 } 3030 3031 if (!test_bit(I915_WEDGED, &error->flags)) 3032 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 3033 } 3034 3035 static void i915_clear_error_registers(struct drm_i915_private *dev_priv) 3036 { 3037 u32 eir; 3038 3039 if (!IS_GEN2(dev_priv)) 3040 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER)); 3041 3042 if (INTEL_GEN(dev_priv) < 4) 3043 I915_WRITE(IPEIR, I915_READ(IPEIR)); 3044 else 3045 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965)); 3046 3047 I915_WRITE(EIR, I915_READ(EIR)); 3048 eir = I915_READ(EIR); 3049 if (eir) { 3050 /* 3051 * some errors might have become stuck, 3052 * mask them. 3053 */ 3054 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 3055 I915_WRITE(EMR, I915_READ(EMR) | eir); 3056 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 3057 } 3058 } 3059 3060 /** 3061 * i915_handle_error - handle a gpu error 3062 * @dev_priv: i915 device private 3063 * @engine_mask: mask representing engines that are hung 3064 * @flags: control flags 3065 * @fmt: Error message format string 3066 * 3067 * Do some basic checking of register state at error time and 3068 * dump it to the syslog. Also call i915_capture_error_state() to make 3069 * sure we get a record and make it available in debugfs. Fire a uevent 3070 * so userspace knows something bad happened (should trigger collection 3071 * of a ring dump etc.). 3072 */ 3073 void i915_handle_error(struct drm_i915_private *dev_priv, 3074 u32 engine_mask, 3075 unsigned long flags, 3076 const char *fmt, ...) 3077 { 3078 struct intel_engine_cs *engine; 3079 unsigned int tmp; 3080 char error_msg[80]; 3081 char *msg = NULL; 3082 3083 if (fmt) { 3084 va_list args; 3085 3086 va_start(args, fmt); 3087 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 3088 va_end(args); 3089 3090 msg = error_msg; 3091 } 3092 3093 /* 3094 * In most cases it's guaranteed that we get here with an RPM 3095 * reference held, for example because there is a pending GPU 3096 * request that won't finish until the reset is done. This 3097 * isn't the case at least when we get here by doing a 3098 * simulated reset via debugfs, so get an RPM reference. 3099 */ 3100 intel_runtime_pm_get(dev_priv); 3101 3102 engine_mask &= INTEL_INFO(dev_priv)->ring_mask; 3103 3104 if (flags & I915_ERROR_CAPTURE) { 3105 i915_capture_error_state(dev_priv, engine_mask, msg); 3106 i915_clear_error_registers(dev_priv); 3107 } 3108 3109 /* 3110 * Try engine reset when available. We fall back to full reset if 3111 * single reset fails. 3112 */ 3113 if (intel_has_reset_engine(dev_priv)) { 3114 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 3115 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 3116 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 3117 &dev_priv->gpu_error.flags)) 3118 continue; 3119 3120 if (i915_reset_engine(engine, msg) == 0) 3121 engine_mask &= ~intel_engine_flag(engine); 3122 3123 clear_bit(I915_RESET_ENGINE + engine->id, 3124 &dev_priv->gpu_error.flags); 3125 wake_up_bit(&dev_priv->gpu_error.flags, 3126 I915_RESET_ENGINE + engine->id); 3127 } 3128 } 3129 3130 if (!engine_mask) 3131 goto out; 3132 3133 /* Full reset needs the mutex, stop any other user trying to do so. */ 3134 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) { 3135 wait_event(dev_priv->gpu_error.reset_queue, 3136 !test_bit(I915_RESET_BACKOFF, 3137 &dev_priv->gpu_error.flags)); 3138 goto out; 3139 } 3140 3141 /* Prevent any other reset-engine attempt. */ 3142 for_each_engine(engine, dev_priv, tmp) { 3143 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 3144 &dev_priv->gpu_error.flags)) 3145 wait_on_bit(&dev_priv->gpu_error.flags, 3146 I915_RESET_ENGINE + engine->id, 3147 TASK_UNINTERRUPTIBLE); 3148 } 3149 3150 i915_reset_device(dev_priv, engine_mask, msg); 3151 3152 for_each_engine(engine, dev_priv, tmp) { 3153 clear_bit(I915_RESET_ENGINE + engine->id, 3154 &dev_priv->gpu_error.flags); 3155 } 3156 3157 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags); 3158 wake_up_all(&dev_priv->gpu_error.reset_queue); 3159 3160 out: 3161 intel_runtime_pm_put(dev_priv); 3162 } 3163 3164 /* Called from drm generic code, passed 'crtc' which 3165 * we use as a pipe index 3166 */ 3167 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) 3168 { 3169 struct drm_i915_private *dev_priv = to_i915(dev); 3170 unsigned long irqflags; 3171 3172 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3173 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3174 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3175 3176 return 0; 3177 } 3178 3179 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) 3180 { 3181 struct drm_i915_private *dev_priv = to_i915(dev); 3182 unsigned long irqflags; 3183 3184 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3185 i915_enable_pipestat(dev_priv, pipe, 3186 PIPE_START_VBLANK_INTERRUPT_STATUS); 3187 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3188 3189 return 0; 3190 } 3191 3192 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) 3193 { 3194 struct drm_i915_private *dev_priv = to_i915(dev); 3195 unsigned long irqflags; 3196 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 3197 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3198 3199 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3200 ilk_enable_display_irq(dev_priv, bit); 3201 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3202 3203 /* Even though there is no DMC, frame counter can get stuck when 3204 * PSR is active as no frames are generated. 3205 */ 3206 if (HAS_PSR(dev_priv)) 3207 drm_vblank_restore(dev, pipe); 3208 3209 return 0; 3210 } 3211 3212 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) 3213 { 3214 struct drm_i915_private *dev_priv = to_i915(dev); 3215 unsigned long irqflags; 3216 3217 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3218 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3219 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3220 3221 /* Even if there is no DMC, frame counter can get stuck when 3222 * PSR is active as no frames are generated, so check only for PSR. 3223 */ 3224 if (HAS_PSR(dev_priv)) 3225 drm_vblank_restore(dev, pipe); 3226 3227 return 0; 3228 } 3229 3230 /* Called from drm generic code, passed 'crtc' which 3231 * we use as a pipe index 3232 */ 3233 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) 3234 { 3235 struct drm_i915_private *dev_priv = to_i915(dev); 3236 unsigned long irqflags; 3237 3238 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3239 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3240 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3241 } 3242 3243 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) 3244 { 3245 struct drm_i915_private *dev_priv = to_i915(dev); 3246 unsigned long irqflags; 3247 3248 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3249 i915_disable_pipestat(dev_priv, pipe, 3250 PIPE_START_VBLANK_INTERRUPT_STATUS); 3251 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3252 } 3253 3254 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) 3255 { 3256 struct drm_i915_private *dev_priv = to_i915(dev); 3257 unsigned long irqflags; 3258 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 3259 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3260 3261 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3262 ilk_disable_display_irq(dev_priv, bit); 3263 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3264 } 3265 3266 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) 3267 { 3268 struct drm_i915_private *dev_priv = to_i915(dev); 3269 unsigned long irqflags; 3270 3271 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3272 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3273 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3274 } 3275 3276 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 3277 { 3278 if (HAS_PCH_NOP(dev_priv)) 3279 return; 3280 3281 GEN3_IRQ_RESET(SDE); 3282 3283 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3284 I915_WRITE(SERR_INT, 0xffffffff); 3285 } 3286 3287 /* 3288 * SDEIER is also touched by the interrupt handler to work around missed PCH 3289 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3290 * instead we unconditionally enable all PCH interrupt sources here, but then 3291 * only unmask them as needed with SDEIMR. 3292 * 3293 * This function needs to be called before interrupts are enabled. 3294 */ 3295 static void ibx_irq_pre_postinstall(struct drm_device *dev) 3296 { 3297 struct drm_i915_private *dev_priv = to_i915(dev); 3298 3299 if (HAS_PCH_NOP(dev_priv)) 3300 return; 3301 3302 WARN_ON(I915_READ(SDEIER) != 0); 3303 I915_WRITE(SDEIER, 0xffffffff); 3304 POSTING_READ(SDEIER); 3305 } 3306 3307 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) 3308 { 3309 GEN3_IRQ_RESET(GT); 3310 if (INTEL_GEN(dev_priv) >= 6) 3311 GEN3_IRQ_RESET(GEN6_PM); 3312 } 3313 3314 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 3315 { 3316 if (IS_CHERRYVIEW(dev_priv)) 3317 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 3318 else 3319 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 3320 3321 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 3322 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3323 3324 i9xx_pipestat_irq_reset(dev_priv); 3325 3326 GEN3_IRQ_RESET(VLV_); 3327 dev_priv->irq_mask = ~0u; 3328 } 3329 3330 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 3331 { 3332 u32 pipestat_mask; 3333 u32 enable_mask; 3334 enum pipe pipe; 3335 3336 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 3337 3338 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3339 for_each_pipe(dev_priv, pipe) 3340 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 3341 3342 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3343 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3344 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3345 I915_LPE_PIPE_A_INTERRUPT | 3346 I915_LPE_PIPE_B_INTERRUPT; 3347 3348 if (IS_CHERRYVIEW(dev_priv)) 3349 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 3350 I915_LPE_PIPE_C_INTERRUPT; 3351 3352 WARN_ON(dev_priv->irq_mask != ~0u); 3353 3354 dev_priv->irq_mask = ~enable_mask; 3355 3356 GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask); 3357 } 3358 3359 /* drm_dma.h hooks 3360 */ 3361 static void ironlake_irq_reset(struct drm_device *dev) 3362 { 3363 struct drm_i915_private *dev_priv = to_i915(dev); 3364 3365 if (IS_GEN5(dev_priv)) 3366 I915_WRITE(HWSTAM, 0xffffffff); 3367 3368 GEN3_IRQ_RESET(DE); 3369 if (IS_GEN7(dev_priv)) 3370 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 3371 3372 if (IS_HASWELL(dev_priv)) { 3373 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3374 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3375 } 3376 3377 gen5_gt_irq_reset(dev_priv); 3378 3379 ibx_irq_reset(dev_priv); 3380 } 3381 3382 static void valleyview_irq_reset(struct drm_device *dev) 3383 { 3384 struct drm_i915_private *dev_priv = to_i915(dev); 3385 3386 I915_WRITE(VLV_MASTER_IER, 0); 3387 POSTING_READ(VLV_MASTER_IER); 3388 3389 gen5_gt_irq_reset(dev_priv); 3390 3391 spin_lock_irq(&dev_priv->irq_lock); 3392 if (dev_priv->display_irqs_enabled) 3393 vlv_display_irq_reset(dev_priv); 3394 spin_unlock_irq(&dev_priv->irq_lock); 3395 } 3396 3397 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 3398 { 3399 GEN8_IRQ_RESET_NDX(GT, 0); 3400 GEN8_IRQ_RESET_NDX(GT, 1); 3401 GEN8_IRQ_RESET_NDX(GT, 2); 3402 GEN8_IRQ_RESET_NDX(GT, 3); 3403 } 3404 3405 static void gen8_irq_reset(struct drm_device *dev) 3406 { 3407 struct drm_i915_private *dev_priv = to_i915(dev); 3408 int pipe; 3409 3410 I915_WRITE(GEN8_MASTER_IRQ, 0); 3411 POSTING_READ(GEN8_MASTER_IRQ); 3412 3413 gen8_gt_irq_reset(dev_priv); 3414 3415 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3416 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3417 3418 for_each_pipe(dev_priv, pipe) 3419 if (intel_display_power_is_enabled(dev_priv, 3420 POWER_DOMAIN_PIPE(pipe))) 3421 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3422 3423 GEN3_IRQ_RESET(GEN8_DE_PORT_); 3424 GEN3_IRQ_RESET(GEN8_DE_MISC_); 3425 GEN3_IRQ_RESET(GEN8_PCU_); 3426 3427 if (HAS_PCH_SPLIT(dev_priv)) 3428 ibx_irq_reset(dev_priv); 3429 } 3430 3431 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv) 3432 { 3433 /* Disable RCS, BCS, VCS and VECS class engines. */ 3434 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0); 3435 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0); 3436 3437 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ 3438 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0); 3439 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0); 3440 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0); 3441 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0); 3442 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0); 3443 3444 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 3445 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 3446 } 3447 3448 static void gen11_irq_reset(struct drm_device *dev) 3449 { 3450 struct drm_i915_private *dev_priv = dev->dev_private; 3451 int pipe; 3452 3453 I915_WRITE(GEN11_GFX_MSTR_IRQ, 0); 3454 POSTING_READ(GEN11_GFX_MSTR_IRQ); 3455 3456 gen11_gt_irq_reset(dev_priv); 3457 3458 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0); 3459 3460 for_each_pipe(dev_priv, pipe) 3461 if (intel_display_power_is_enabled(dev_priv, 3462 POWER_DOMAIN_PIPE(pipe))) 3463 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3464 3465 GEN3_IRQ_RESET(GEN8_DE_PORT_); 3466 GEN3_IRQ_RESET(GEN8_DE_MISC_); 3467 GEN3_IRQ_RESET(GEN8_PCU_); 3468 } 3469 3470 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3471 u8 pipe_mask) 3472 { 3473 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3474 enum pipe pipe; 3475 3476 spin_lock_irq(&dev_priv->irq_lock); 3477 3478 if (!intel_irqs_enabled(dev_priv)) { 3479 spin_unlock_irq(&dev_priv->irq_lock); 3480 return; 3481 } 3482 3483 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3484 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3485 dev_priv->de_irq_mask[pipe], 3486 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3487 3488 spin_unlock_irq(&dev_priv->irq_lock); 3489 } 3490 3491 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3492 u8 pipe_mask) 3493 { 3494 enum pipe pipe; 3495 3496 spin_lock_irq(&dev_priv->irq_lock); 3497 3498 if (!intel_irqs_enabled(dev_priv)) { 3499 spin_unlock_irq(&dev_priv->irq_lock); 3500 return; 3501 } 3502 3503 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3504 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3505 3506 spin_unlock_irq(&dev_priv->irq_lock); 3507 3508 /* make sure we're done processing display irqs */ 3509 synchronize_irq(dev_priv->drm.irq); 3510 } 3511 3512 static void cherryview_irq_reset(struct drm_device *dev) 3513 { 3514 struct drm_i915_private *dev_priv = to_i915(dev); 3515 3516 I915_WRITE(GEN8_MASTER_IRQ, 0); 3517 POSTING_READ(GEN8_MASTER_IRQ); 3518 3519 gen8_gt_irq_reset(dev_priv); 3520 3521 GEN3_IRQ_RESET(GEN8_PCU_); 3522 3523 spin_lock_irq(&dev_priv->irq_lock); 3524 if (dev_priv->display_irqs_enabled) 3525 vlv_display_irq_reset(dev_priv); 3526 spin_unlock_irq(&dev_priv->irq_lock); 3527 } 3528 3529 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 3530 const u32 hpd[HPD_NUM_PINS]) 3531 { 3532 struct intel_encoder *encoder; 3533 u32 enabled_irqs = 0; 3534 3535 for_each_intel_encoder(&dev_priv->drm, encoder) 3536 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 3537 enabled_irqs |= hpd[encoder->hpd_pin]; 3538 3539 return enabled_irqs; 3540 } 3541 3542 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3543 { 3544 u32 hotplug; 3545 3546 /* 3547 * Enable digital hotplug on the PCH, and configure the DP short pulse 3548 * duration to 2ms (which is the minimum in the Display Port spec). 3549 * The pulse duration bits are reserved on LPT+. 3550 */ 3551 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3552 hotplug &= ~(PORTB_PULSE_DURATION_MASK | 3553 PORTC_PULSE_DURATION_MASK | 3554 PORTD_PULSE_DURATION_MASK); 3555 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3556 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3557 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3558 /* 3559 * When CPU and PCH are on the same package, port A 3560 * HPD must be enabled in both north and south. 3561 */ 3562 if (HAS_PCH_LPT_LP(dev_priv)) 3563 hotplug |= PORTA_HOTPLUG_ENABLE; 3564 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3565 } 3566 3567 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3568 { 3569 u32 hotplug_irqs, enabled_irqs; 3570 3571 if (HAS_PCH_IBX(dev_priv)) { 3572 hotplug_irqs = SDE_HOTPLUG_MASK; 3573 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 3574 } else { 3575 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3576 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 3577 } 3578 3579 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3580 3581 ibx_hpd_detection_setup(dev_priv); 3582 } 3583 3584 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3585 { 3586 u32 val, hotplug; 3587 3588 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3589 if (HAS_PCH_CNP(dev_priv)) { 3590 val = I915_READ(SOUTH_CHICKEN1); 3591 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3592 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3593 I915_WRITE(SOUTH_CHICKEN1, val); 3594 } 3595 3596 /* Enable digital hotplug on the PCH */ 3597 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3598 hotplug |= PORTA_HOTPLUG_ENABLE | 3599 PORTB_HOTPLUG_ENABLE | 3600 PORTC_HOTPLUG_ENABLE | 3601 PORTD_HOTPLUG_ENABLE; 3602 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3603 3604 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3605 hotplug |= PORTE_HOTPLUG_ENABLE; 3606 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3607 } 3608 3609 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3610 { 3611 u32 hotplug_irqs, enabled_irqs; 3612 3613 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3614 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3615 3616 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3617 3618 spt_hpd_detection_setup(dev_priv); 3619 } 3620 3621 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3622 { 3623 u32 hotplug; 3624 3625 /* 3626 * Enable digital hotplug on the CPU, and configure the DP short pulse 3627 * duration to 2ms (which is the minimum in the Display Port spec) 3628 * The pulse duration bits are reserved on HSW+. 3629 */ 3630 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3631 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3632 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | 3633 DIGITAL_PORTA_PULSE_DURATION_2ms; 3634 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3635 } 3636 3637 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3638 { 3639 u32 hotplug_irqs, enabled_irqs; 3640 3641 if (INTEL_GEN(dev_priv) >= 8) { 3642 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3643 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3644 3645 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3646 } else if (INTEL_GEN(dev_priv) >= 7) { 3647 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3648 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3649 3650 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3651 } else { 3652 hotplug_irqs = DE_DP_A_HOTPLUG; 3653 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3654 3655 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3656 } 3657 3658 ilk_hpd_detection_setup(dev_priv); 3659 3660 ibx_hpd_irq_setup(dev_priv); 3661 } 3662 3663 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, 3664 u32 enabled_irqs) 3665 { 3666 u32 hotplug; 3667 3668 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3669 hotplug |= PORTA_HOTPLUG_ENABLE | 3670 PORTB_HOTPLUG_ENABLE | 3671 PORTC_HOTPLUG_ENABLE; 3672 3673 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", 3674 hotplug, enabled_irqs); 3675 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3676 3677 /* 3678 * For BXT invert bit has to be set based on AOB design 3679 * for HPD detection logic, update it based on VBT fields. 3680 */ 3681 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3682 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3683 hotplug |= BXT_DDIA_HPD_INVERT; 3684 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3685 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3686 hotplug |= BXT_DDIB_HPD_INVERT; 3687 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3688 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3689 hotplug |= BXT_DDIC_HPD_INVERT; 3690 3691 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3692 } 3693 3694 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3695 { 3696 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); 3697 } 3698 3699 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3700 { 3701 u32 hotplug_irqs, enabled_irqs; 3702 3703 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3704 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3705 3706 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3707 3708 __bxt_hpd_detection_setup(dev_priv, enabled_irqs); 3709 } 3710 3711 static void ibx_irq_postinstall(struct drm_device *dev) 3712 { 3713 struct drm_i915_private *dev_priv = to_i915(dev); 3714 u32 mask; 3715 3716 if (HAS_PCH_NOP(dev_priv)) 3717 return; 3718 3719 if (HAS_PCH_IBX(dev_priv)) 3720 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3721 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3722 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3723 else 3724 mask = SDE_GMBUS_CPT; 3725 3726 gen3_assert_iir_is_zero(dev_priv, SDEIIR); 3727 I915_WRITE(SDEIMR, ~mask); 3728 3729 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 3730 HAS_PCH_LPT(dev_priv)) 3731 ibx_hpd_detection_setup(dev_priv); 3732 else 3733 spt_hpd_detection_setup(dev_priv); 3734 } 3735 3736 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3737 { 3738 struct drm_i915_private *dev_priv = to_i915(dev); 3739 u32 pm_irqs, gt_irqs; 3740 3741 pm_irqs = gt_irqs = 0; 3742 3743 dev_priv->gt_irq_mask = ~0; 3744 if (HAS_L3_DPF(dev_priv)) { 3745 /* L3 parity interrupt is always unmasked. */ 3746 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); 3747 gt_irqs |= GT_PARITY_ERROR(dev_priv); 3748 } 3749 3750 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3751 if (IS_GEN5(dev_priv)) { 3752 gt_irqs |= ILK_BSD_USER_INTERRUPT; 3753 } else { 3754 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3755 } 3756 3757 GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); 3758 3759 if (INTEL_GEN(dev_priv) >= 6) { 3760 /* 3761 * RPS interrupts will get enabled/disabled on demand when RPS 3762 * itself is enabled/disabled. 3763 */ 3764 if (HAS_VEBOX(dev_priv)) { 3765 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 3766 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; 3767 } 3768 3769 dev_priv->pm_imr = 0xffffffff; 3770 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs); 3771 } 3772 } 3773 3774 static int ironlake_irq_postinstall(struct drm_device *dev) 3775 { 3776 struct drm_i915_private *dev_priv = to_i915(dev); 3777 u32 display_mask, extra_mask; 3778 3779 if (INTEL_GEN(dev_priv) >= 7) { 3780 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3781 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3782 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3783 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3784 DE_DP_A_HOTPLUG_IVB); 3785 } else { 3786 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3787 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3788 DE_PIPEA_CRC_DONE | DE_POISON); 3789 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3790 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3791 DE_DP_A_HOTPLUG); 3792 } 3793 3794 if (IS_HASWELL(dev_priv)) { 3795 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR); 3796 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 3797 display_mask |= DE_EDP_PSR_INT_HSW; 3798 } 3799 3800 dev_priv->irq_mask = ~display_mask; 3801 3802 ibx_irq_pre_postinstall(dev); 3803 3804 GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); 3805 3806 gen5_gt_irq_postinstall(dev); 3807 3808 ilk_hpd_detection_setup(dev_priv); 3809 3810 ibx_irq_postinstall(dev); 3811 3812 if (IS_IRONLAKE_M(dev_priv)) { 3813 /* Enable PCU event interrupts 3814 * 3815 * spinlocking not required here for correctness since interrupt 3816 * setup is guaranteed to run in single-threaded context. But we 3817 * need it to make the assert_spin_locked happy. */ 3818 spin_lock_irq(&dev_priv->irq_lock); 3819 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 3820 spin_unlock_irq(&dev_priv->irq_lock); 3821 } 3822 3823 return 0; 3824 } 3825 3826 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3827 { 3828 lockdep_assert_held(&dev_priv->irq_lock); 3829 3830 if (dev_priv->display_irqs_enabled) 3831 return; 3832 3833 dev_priv->display_irqs_enabled = true; 3834 3835 if (intel_irqs_enabled(dev_priv)) { 3836 vlv_display_irq_reset(dev_priv); 3837 vlv_display_irq_postinstall(dev_priv); 3838 } 3839 } 3840 3841 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3842 { 3843 lockdep_assert_held(&dev_priv->irq_lock); 3844 3845 if (!dev_priv->display_irqs_enabled) 3846 return; 3847 3848 dev_priv->display_irqs_enabled = false; 3849 3850 if (intel_irqs_enabled(dev_priv)) 3851 vlv_display_irq_reset(dev_priv); 3852 } 3853 3854 3855 static int valleyview_irq_postinstall(struct drm_device *dev) 3856 { 3857 struct drm_i915_private *dev_priv = to_i915(dev); 3858 3859 gen5_gt_irq_postinstall(dev); 3860 3861 spin_lock_irq(&dev_priv->irq_lock); 3862 if (dev_priv->display_irqs_enabled) 3863 vlv_display_irq_postinstall(dev_priv); 3864 spin_unlock_irq(&dev_priv->irq_lock); 3865 3866 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3867 POSTING_READ(VLV_MASTER_IER); 3868 3869 return 0; 3870 } 3871 3872 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3873 { 3874 /* These are interrupts we'll toggle with the ring mask register */ 3875 uint32_t gt_interrupts[] = { 3876 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3877 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3878 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 3879 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, 3880 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3881 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3882 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | 3883 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 3884 0, 3885 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 3886 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT 3887 }; 3888 3889 if (HAS_L3_DPF(dev_priv)) 3890 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; 3891 3892 dev_priv->pm_ier = 0x0; 3893 dev_priv->pm_imr = ~dev_priv->pm_ier; 3894 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 3895 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 3896 /* 3897 * RPS interrupts will get enabled/disabled on demand when RPS itself 3898 * is enabled/disabled. Same wil be the case for GuC interrupts. 3899 */ 3900 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); 3901 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 3902 } 3903 3904 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3905 { 3906 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; 3907 uint32_t de_pipe_enables; 3908 u32 de_port_masked = GEN8_AUX_CHANNEL_A; 3909 u32 de_port_enables; 3910 u32 de_misc_masked = GEN8_DE_MISC_GSE | GEN8_DE_EDP_PSR; 3911 enum pipe pipe; 3912 3913 if (INTEL_GEN(dev_priv) >= 9) { 3914 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 3915 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | 3916 GEN9_AUX_CHANNEL_D; 3917 if (IS_GEN9_LP(dev_priv)) 3918 de_port_masked |= BXT_DE_PORT_GMBUS; 3919 } else { 3920 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 3921 } 3922 3923 if (IS_CNL_WITH_PORT_F(dev_priv)) 3924 de_port_masked |= CNL_AUX_CHANNEL_F; 3925 3926 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3927 GEN8_PIPE_FIFO_UNDERRUN; 3928 3929 de_port_enables = de_port_masked; 3930 if (IS_GEN9_LP(dev_priv)) 3931 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3932 else if (IS_BROADWELL(dev_priv)) 3933 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 3934 3935 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR); 3936 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 3937 3938 for_each_pipe(dev_priv, pipe) { 3939 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3940 3941 if (intel_display_power_is_enabled(dev_priv, 3942 POWER_DOMAIN_PIPE(pipe))) 3943 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3944 dev_priv->de_irq_mask[pipe], 3945 de_pipe_enables); 3946 } 3947 3948 GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3949 GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3950 3951 if (IS_GEN9_LP(dev_priv)) 3952 bxt_hpd_detection_setup(dev_priv); 3953 else if (IS_BROADWELL(dev_priv)) 3954 ilk_hpd_detection_setup(dev_priv); 3955 } 3956 3957 static int gen8_irq_postinstall(struct drm_device *dev) 3958 { 3959 struct drm_i915_private *dev_priv = to_i915(dev); 3960 3961 if (HAS_PCH_SPLIT(dev_priv)) 3962 ibx_irq_pre_postinstall(dev); 3963 3964 gen8_gt_irq_postinstall(dev_priv); 3965 gen8_de_irq_postinstall(dev_priv); 3966 3967 if (HAS_PCH_SPLIT(dev_priv)) 3968 ibx_irq_postinstall(dev); 3969 3970 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3971 POSTING_READ(GEN8_MASTER_IRQ); 3972 3973 return 0; 3974 } 3975 3976 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3977 { 3978 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT; 3979 3980 BUILD_BUG_ON(irqs & 0xffff0000); 3981 3982 /* Enable RCS, BCS, VCS and VECS class interrupts. */ 3983 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs); 3984 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs); 3985 3986 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ 3987 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16)); 3988 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16)); 3989 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16)); 3990 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16)); 3991 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16)); 3992 3993 /* 3994 * RPS interrupts will get enabled/disabled on demand when RPS itself 3995 * is enabled/disabled. 3996 */ 3997 dev_priv->pm_ier = 0x0; 3998 dev_priv->pm_imr = ~dev_priv->pm_ier; 3999 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 4000 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 4001 } 4002 4003 static int gen11_irq_postinstall(struct drm_device *dev) 4004 { 4005 struct drm_i915_private *dev_priv = dev->dev_private; 4006 4007 gen11_gt_irq_postinstall(dev_priv); 4008 gen8_de_irq_postinstall(dev_priv); 4009 4010 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 4011 4012 I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 4013 POSTING_READ(GEN11_GFX_MSTR_IRQ); 4014 4015 return 0; 4016 } 4017 4018 static int cherryview_irq_postinstall(struct drm_device *dev) 4019 { 4020 struct drm_i915_private *dev_priv = to_i915(dev); 4021 4022 gen8_gt_irq_postinstall(dev_priv); 4023 4024 spin_lock_irq(&dev_priv->irq_lock); 4025 if (dev_priv->display_irqs_enabled) 4026 vlv_display_irq_postinstall(dev_priv); 4027 spin_unlock_irq(&dev_priv->irq_lock); 4028 4029 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 4030 POSTING_READ(GEN8_MASTER_IRQ); 4031 4032 return 0; 4033 } 4034 4035 static void i8xx_irq_reset(struct drm_device *dev) 4036 { 4037 struct drm_i915_private *dev_priv = to_i915(dev); 4038 4039 i9xx_pipestat_irq_reset(dev_priv); 4040 4041 I915_WRITE16(HWSTAM, 0xffff); 4042 4043 GEN2_IRQ_RESET(); 4044 } 4045 4046 static int i8xx_irq_postinstall(struct drm_device *dev) 4047 { 4048 struct drm_i915_private *dev_priv = to_i915(dev); 4049 u16 enable_mask; 4050 4051 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | 4052 I915_ERROR_MEMORY_REFRESH)); 4053 4054 /* Unmask the interrupts that we always want on. */ 4055 dev_priv->irq_mask = 4056 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4057 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT); 4058 4059 enable_mask = 4060 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4061 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4062 I915_USER_INTERRUPT; 4063 4064 GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask); 4065 4066 /* Interrupt setup is already guaranteed to be single-threaded, this is 4067 * just to make the assert_spin_locked check happy. */ 4068 spin_lock_irq(&dev_priv->irq_lock); 4069 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4070 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4071 spin_unlock_irq(&dev_priv->irq_lock); 4072 4073 return 0; 4074 } 4075 4076 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 4077 { 4078 struct drm_device *dev = arg; 4079 struct drm_i915_private *dev_priv = to_i915(dev); 4080 irqreturn_t ret = IRQ_NONE; 4081 4082 if (!intel_irqs_enabled(dev_priv)) 4083 return IRQ_NONE; 4084 4085 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4086 disable_rpm_wakeref_asserts(dev_priv); 4087 4088 do { 4089 u32 pipe_stats[I915_MAX_PIPES] = {}; 4090 u16 iir; 4091 4092 iir = I915_READ16(IIR); 4093 if (iir == 0) 4094 break; 4095 4096 ret = IRQ_HANDLED; 4097 4098 /* Call regardless, as some status bits might not be 4099 * signalled in iir */ 4100 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4101 4102 I915_WRITE16(IIR, iir); 4103 4104 if (iir & I915_USER_INTERRUPT) 4105 notify_ring(dev_priv->engine[RCS]); 4106 4107 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4108 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4109 4110 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4111 } while (0); 4112 4113 enable_rpm_wakeref_asserts(dev_priv); 4114 4115 return ret; 4116 } 4117 4118 static void i915_irq_reset(struct drm_device *dev) 4119 { 4120 struct drm_i915_private *dev_priv = to_i915(dev); 4121 4122 if (I915_HAS_HOTPLUG(dev_priv)) { 4123 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4124 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4125 } 4126 4127 i9xx_pipestat_irq_reset(dev_priv); 4128 4129 I915_WRITE(HWSTAM, 0xffffffff); 4130 4131 GEN3_IRQ_RESET(); 4132 } 4133 4134 static int i915_irq_postinstall(struct drm_device *dev) 4135 { 4136 struct drm_i915_private *dev_priv = to_i915(dev); 4137 u32 enable_mask; 4138 4139 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 4140 I915_ERROR_MEMORY_REFRESH)); 4141 4142 /* Unmask the interrupts that we always want on. */ 4143 dev_priv->irq_mask = 4144 ~(I915_ASLE_INTERRUPT | 4145 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4146 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT); 4147 4148 enable_mask = 4149 I915_ASLE_INTERRUPT | 4150 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4151 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4152 I915_USER_INTERRUPT; 4153 4154 if (I915_HAS_HOTPLUG(dev_priv)) { 4155 /* Enable in IER... */ 4156 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4157 /* and unmask in IMR */ 4158 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4159 } 4160 4161 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask); 4162 4163 /* Interrupt setup is already guaranteed to be single-threaded, this is 4164 * just to make the assert_spin_locked check happy. */ 4165 spin_lock_irq(&dev_priv->irq_lock); 4166 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4167 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4168 spin_unlock_irq(&dev_priv->irq_lock); 4169 4170 i915_enable_asle_pipestat(dev_priv); 4171 4172 return 0; 4173 } 4174 4175 static irqreturn_t i915_irq_handler(int irq, void *arg) 4176 { 4177 struct drm_device *dev = arg; 4178 struct drm_i915_private *dev_priv = to_i915(dev); 4179 irqreturn_t ret = IRQ_NONE; 4180 4181 if (!intel_irqs_enabled(dev_priv)) 4182 return IRQ_NONE; 4183 4184 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4185 disable_rpm_wakeref_asserts(dev_priv); 4186 4187 do { 4188 u32 pipe_stats[I915_MAX_PIPES] = {}; 4189 u32 hotplug_status = 0; 4190 u32 iir; 4191 4192 iir = I915_READ(IIR); 4193 if (iir == 0) 4194 break; 4195 4196 ret = IRQ_HANDLED; 4197 4198 if (I915_HAS_HOTPLUG(dev_priv) && 4199 iir & I915_DISPLAY_PORT_INTERRUPT) 4200 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4201 4202 /* Call regardless, as some status bits might not be 4203 * signalled in iir */ 4204 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4205 4206 I915_WRITE(IIR, iir); 4207 4208 if (iir & I915_USER_INTERRUPT) 4209 notify_ring(dev_priv->engine[RCS]); 4210 4211 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4212 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4213 4214 if (hotplug_status) 4215 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4216 4217 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4218 } while (0); 4219 4220 enable_rpm_wakeref_asserts(dev_priv); 4221 4222 return ret; 4223 } 4224 4225 static void i965_irq_reset(struct drm_device *dev) 4226 { 4227 struct drm_i915_private *dev_priv = to_i915(dev); 4228 4229 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4230 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4231 4232 i9xx_pipestat_irq_reset(dev_priv); 4233 4234 I915_WRITE(HWSTAM, 0xffffffff); 4235 4236 GEN3_IRQ_RESET(); 4237 } 4238 4239 static int i965_irq_postinstall(struct drm_device *dev) 4240 { 4241 struct drm_i915_private *dev_priv = to_i915(dev); 4242 u32 enable_mask; 4243 u32 error_mask; 4244 4245 /* 4246 * Enable some error detection, note the instruction error mask 4247 * bit is reserved, so we leave it masked. 4248 */ 4249 if (IS_G4X(dev_priv)) { 4250 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4251 GM45_ERROR_MEM_PRIV | 4252 GM45_ERROR_CP_PRIV | 4253 I915_ERROR_MEMORY_REFRESH); 4254 } else { 4255 error_mask = ~(I915_ERROR_PAGE_TABLE | 4256 I915_ERROR_MEMORY_REFRESH); 4257 } 4258 I915_WRITE(EMR, error_mask); 4259 4260 /* Unmask the interrupts that we always want on. */ 4261 dev_priv->irq_mask = 4262 ~(I915_ASLE_INTERRUPT | 4263 I915_DISPLAY_PORT_INTERRUPT | 4264 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4265 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4266 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 4267 4268 enable_mask = 4269 I915_ASLE_INTERRUPT | 4270 I915_DISPLAY_PORT_INTERRUPT | 4271 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4272 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4273 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | 4274 I915_USER_INTERRUPT; 4275 4276 if (IS_G4X(dev_priv)) 4277 enable_mask |= I915_BSD_USER_INTERRUPT; 4278 4279 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask); 4280 4281 /* Interrupt setup is already guaranteed to be single-threaded, this is 4282 * just to make the assert_spin_locked check happy. */ 4283 spin_lock_irq(&dev_priv->irq_lock); 4284 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4285 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4286 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4287 spin_unlock_irq(&dev_priv->irq_lock); 4288 4289 i915_enable_asle_pipestat(dev_priv); 4290 4291 return 0; 4292 } 4293 4294 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4295 { 4296 u32 hotplug_en; 4297 4298 lockdep_assert_held(&dev_priv->irq_lock); 4299 4300 /* Note HDMI and DP share hotplug bits */ 4301 /* enable bits are the same for all generations */ 4302 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4303 /* Programming the CRT detection parameters tends 4304 to generate a spurious hotplug event about three 4305 seconds later. So just do it once. 4306 */ 4307 if (IS_G4X(dev_priv)) 4308 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4309 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4310 4311 /* Ignore TV since it's buggy */ 4312 i915_hotplug_interrupt_update_locked(dev_priv, 4313 HOTPLUG_INT_EN_MASK | 4314 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4315 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4316 hotplug_en); 4317 } 4318 4319 static irqreturn_t i965_irq_handler(int irq, void *arg) 4320 { 4321 struct drm_device *dev = arg; 4322 struct drm_i915_private *dev_priv = to_i915(dev); 4323 irqreturn_t ret = IRQ_NONE; 4324 4325 if (!intel_irqs_enabled(dev_priv)) 4326 return IRQ_NONE; 4327 4328 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4329 disable_rpm_wakeref_asserts(dev_priv); 4330 4331 do { 4332 u32 pipe_stats[I915_MAX_PIPES] = {}; 4333 u32 hotplug_status = 0; 4334 u32 iir; 4335 4336 iir = I915_READ(IIR); 4337 if (iir == 0) 4338 break; 4339 4340 ret = IRQ_HANDLED; 4341 4342 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4343 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4344 4345 /* Call regardless, as some status bits might not be 4346 * signalled in iir */ 4347 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4348 4349 I915_WRITE(IIR, iir); 4350 4351 if (iir & I915_USER_INTERRUPT) 4352 notify_ring(dev_priv->engine[RCS]); 4353 4354 if (iir & I915_BSD_USER_INTERRUPT) 4355 notify_ring(dev_priv->engine[VCS]); 4356 4357 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4358 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4359 4360 if (hotplug_status) 4361 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4362 4363 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4364 } while (0); 4365 4366 enable_rpm_wakeref_asserts(dev_priv); 4367 4368 return ret; 4369 } 4370 4371 /** 4372 * intel_irq_init - initializes irq support 4373 * @dev_priv: i915 device instance 4374 * 4375 * This function initializes all the irq support including work items, timers 4376 * and all the vtables. It does not setup the interrupt itself though. 4377 */ 4378 void intel_irq_init(struct drm_i915_private *dev_priv) 4379 { 4380 struct drm_device *dev = &dev_priv->drm; 4381 struct intel_rps *rps = &dev_priv->gt_pm.rps; 4382 int i; 4383 4384 intel_hpd_init_work(dev_priv); 4385 4386 INIT_WORK(&rps->work, gen6_pm_rps_work); 4387 4388 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4389 for (i = 0; i < MAX_L3_SLICES; ++i) 4390 dev_priv->l3_parity.remap_info[i] = NULL; 4391 4392 if (HAS_GUC_SCHED(dev_priv)) 4393 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; 4394 4395 /* Let's track the enabled rps events */ 4396 if (IS_VALLEYVIEW(dev_priv)) 4397 /* WaGsvRC0ResidencyMethod:vlv */ 4398 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; 4399 else 4400 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; 4401 4402 rps->pm_intrmsk_mbz = 0; 4403 4404 /* 4405 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer 4406 * if GEN6_PM_UP_EI_EXPIRED is masked. 4407 * 4408 * TODO: verify if this can be reproduced on VLV,CHV. 4409 */ 4410 if (INTEL_GEN(dev_priv) <= 7) 4411 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; 4412 4413 if (INTEL_GEN(dev_priv) >= 8) 4414 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 4415 4416 if (IS_GEN2(dev_priv)) { 4417 /* Gen2 doesn't have a hardware frame counter */ 4418 dev->max_vblank_count = 0; 4419 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 4420 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ 4421 dev->driver->get_vblank_counter = g4x_get_vblank_counter; 4422 } else { 4423 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4424 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ 4425 } 4426 4427 /* 4428 * Opt out of the vblank disable timer on everything except gen2. 4429 * Gen2 doesn't have a hardware frame counter and so depends on 4430 * vblank interrupts to produce sane vblank seuquence numbers. 4431 */ 4432 if (!IS_GEN2(dev_priv)) 4433 dev->vblank_disable_immediate = true; 4434 4435 /* Most platforms treat the display irq block as an always-on 4436 * power domain. vlv/chv can disable it at runtime and need 4437 * special care to avoid writing any of the display block registers 4438 * outside of the power domain. We defer setting up the display irqs 4439 * in this case to the runtime pm. 4440 */ 4441 dev_priv->display_irqs_enabled = true; 4442 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4443 dev_priv->display_irqs_enabled = false; 4444 4445 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 4446 4447 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos; 4448 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4449 4450 if (IS_CHERRYVIEW(dev_priv)) { 4451 dev->driver->irq_handler = cherryview_irq_handler; 4452 dev->driver->irq_preinstall = cherryview_irq_reset; 4453 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4454 dev->driver->irq_uninstall = cherryview_irq_reset; 4455 dev->driver->enable_vblank = i965_enable_vblank; 4456 dev->driver->disable_vblank = i965_disable_vblank; 4457 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4458 } else if (IS_VALLEYVIEW(dev_priv)) { 4459 dev->driver->irq_handler = valleyview_irq_handler; 4460 dev->driver->irq_preinstall = valleyview_irq_reset; 4461 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4462 dev->driver->irq_uninstall = valleyview_irq_reset; 4463 dev->driver->enable_vblank = i965_enable_vblank; 4464 dev->driver->disable_vblank = i965_disable_vblank; 4465 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4466 } else if (INTEL_GEN(dev_priv) >= 11) { 4467 dev->driver->irq_handler = gen11_irq_handler; 4468 dev->driver->irq_preinstall = gen11_irq_reset; 4469 dev->driver->irq_postinstall = gen11_irq_postinstall; 4470 dev->driver->irq_uninstall = gen11_irq_reset; 4471 dev->driver->enable_vblank = gen8_enable_vblank; 4472 dev->driver->disable_vblank = gen8_disable_vblank; 4473 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4474 } else if (INTEL_GEN(dev_priv) >= 8) { 4475 dev->driver->irq_handler = gen8_irq_handler; 4476 dev->driver->irq_preinstall = gen8_irq_reset; 4477 dev->driver->irq_postinstall = gen8_irq_postinstall; 4478 dev->driver->irq_uninstall = gen8_irq_reset; 4479 dev->driver->enable_vblank = gen8_enable_vblank; 4480 dev->driver->disable_vblank = gen8_disable_vblank; 4481 if (IS_GEN9_LP(dev_priv)) 4482 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4483 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) || 4484 HAS_PCH_CNP(dev_priv)) 4485 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4486 else 4487 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4488 } else if (HAS_PCH_SPLIT(dev_priv)) { 4489 dev->driver->irq_handler = ironlake_irq_handler; 4490 dev->driver->irq_preinstall = ironlake_irq_reset; 4491 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4492 dev->driver->irq_uninstall = ironlake_irq_reset; 4493 dev->driver->enable_vblank = ironlake_enable_vblank; 4494 dev->driver->disable_vblank = ironlake_disable_vblank; 4495 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4496 } else { 4497 if (IS_GEN2(dev_priv)) { 4498 dev->driver->irq_preinstall = i8xx_irq_reset; 4499 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4500 dev->driver->irq_handler = i8xx_irq_handler; 4501 dev->driver->irq_uninstall = i8xx_irq_reset; 4502 dev->driver->enable_vblank = i8xx_enable_vblank; 4503 dev->driver->disable_vblank = i8xx_disable_vblank; 4504 } else if (IS_GEN3(dev_priv)) { 4505 dev->driver->irq_preinstall = i915_irq_reset; 4506 dev->driver->irq_postinstall = i915_irq_postinstall; 4507 dev->driver->irq_uninstall = i915_irq_reset; 4508 dev->driver->irq_handler = i915_irq_handler; 4509 dev->driver->enable_vblank = i8xx_enable_vblank; 4510 dev->driver->disable_vblank = i8xx_disable_vblank; 4511 } else { 4512 dev->driver->irq_preinstall = i965_irq_reset; 4513 dev->driver->irq_postinstall = i965_irq_postinstall; 4514 dev->driver->irq_uninstall = i965_irq_reset; 4515 dev->driver->irq_handler = i965_irq_handler; 4516 dev->driver->enable_vblank = i965_enable_vblank; 4517 dev->driver->disable_vblank = i965_disable_vblank; 4518 } 4519 if (I915_HAS_HOTPLUG(dev_priv)) 4520 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4521 } 4522 } 4523 4524 /** 4525 * intel_irq_fini - deinitializes IRQ support 4526 * @i915: i915 device instance 4527 * 4528 * This function deinitializes all the IRQ support. 4529 */ 4530 void intel_irq_fini(struct drm_i915_private *i915) 4531 { 4532 int i; 4533 4534 for (i = 0; i < MAX_L3_SLICES; ++i) 4535 kfree(i915->l3_parity.remap_info[i]); 4536 } 4537 4538 /** 4539 * intel_irq_install - enables the hardware interrupt 4540 * @dev_priv: i915 device instance 4541 * 4542 * This function enables the hardware interrupt handling, but leaves the hotplug 4543 * handling still disabled. It is called after intel_irq_init(). 4544 * 4545 * In the driver load and resume code we need working interrupts in a few places 4546 * but don't want to deal with the hassle of concurrent probe and hotplug 4547 * workers. Hence the split into this two-stage approach. 4548 */ 4549 int intel_irq_install(struct drm_i915_private *dev_priv) 4550 { 4551 /* 4552 * We enable some interrupt sources in our postinstall hooks, so mark 4553 * interrupts as enabled _before_ actually enabling them to avoid 4554 * special cases in our ordering checks. 4555 */ 4556 dev_priv->runtime_pm.irqs_enabled = true; 4557 4558 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); 4559 } 4560 4561 /** 4562 * intel_irq_uninstall - finilizes all irq handling 4563 * @dev_priv: i915 device instance 4564 * 4565 * This stops interrupt and hotplug handling and unregisters and frees all 4566 * resources acquired in the init functions. 4567 */ 4568 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4569 { 4570 drm_irq_uninstall(&dev_priv->drm); 4571 intel_hpd_cancel_work(dev_priv); 4572 dev_priv->runtime_pm.irqs_enabled = false; 4573 } 4574 4575 /** 4576 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4577 * @dev_priv: i915 device instance 4578 * 4579 * This function is used to disable interrupts at runtime, both in the runtime 4580 * pm and the system suspend/resume code. 4581 */ 4582 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4583 { 4584 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); 4585 dev_priv->runtime_pm.irqs_enabled = false; 4586 synchronize_irq(dev_priv->drm.irq); 4587 } 4588 4589 /** 4590 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4591 * @dev_priv: i915 device instance 4592 * 4593 * This function is used to enable interrupts at runtime, both in the runtime 4594 * pm and the system suspend/resume code. 4595 */ 4596 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4597 { 4598 dev_priv->runtime_pm.irqs_enabled = true; 4599 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); 4600 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); 4601 } 4602