xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision f97769fd)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_gt.h"
45 #include "gt/intel_gt_irq.h"
46 #include "gt/intel_gt_pm_irq.h"
47 #include "gt/intel_rps.h"
48 
49 #include "i915_drv.h"
50 #include "i915_irq.h"
51 #include "i915_trace.h"
52 #include "intel_pm.h"
53 
54 /**
55  * DOC: interrupt handling
56  *
57  * These functions provide the basic support for enabling and disabling the
58  * interrupt handling support. There's a lot more functionality in i915_irq.c
59  * and related files, but that will be described in separate chapters.
60  */
61 
62 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
63 
64 static const u32 hpd_ilk[HPD_NUM_PINS] = {
65 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
66 };
67 
68 static const u32 hpd_ivb[HPD_NUM_PINS] = {
69 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
70 };
71 
72 static const u32 hpd_bdw[HPD_NUM_PINS] = {
73 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
74 };
75 
76 static const u32 hpd_ibx[HPD_NUM_PINS] = {
77 	[HPD_CRT] = SDE_CRT_HOTPLUG,
78 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
79 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
80 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
81 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
82 };
83 
84 static const u32 hpd_cpt[HPD_NUM_PINS] = {
85 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
86 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
87 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90 };
91 
92 static const u32 hpd_spt[HPD_NUM_PINS] = {
93 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
94 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
95 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
96 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
97 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
98 };
99 
100 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
101 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
102 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
103 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
104 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
105 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
106 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
107 };
108 
109 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
110 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
111 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
112 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
113 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
114 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
115 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
116 };
117 
118 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
119 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
120 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
121 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
122 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
123 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
124 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
125 };
126 
127 static const u32 hpd_bxt[HPD_NUM_PINS] = {
128 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
129 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
130 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
131 };
132 
133 static const u32 hpd_gen11[HPD_NUM_PINS] = {
134 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
135 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
136 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
137 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
138 };
139 
140 static const u32 hpd_gen12[HPD_NUM_PINS] = {
141 	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
142 	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
143 	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
144 	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
145 	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
146 	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
147 };
148 
149 static const u32 hpd_icp[HPD_NUM_PINS] = {
150 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
151 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
152 	[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
153 	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
154 	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
155 	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
156 };
157 
158 static const u32 hpd_tgp[HPD_NUM_PINS] = {
159 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
160 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
161 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
162 	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
163 	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
164 	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
165 	[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
166 	[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
167 	[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
168 };
169 
170 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
171 {
172 	struct i915_hotplug *hpd = &dev_priv->hotplug;
173 
174 	if (HAS_GMCH(dev_priv)) {
175 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
176 		    IS_CHERRYVIEW(dev_priv))
177 			hpd->hpd = hpd_status_g4x;
178 		else
179 			hpd->hpd = hpd_status_i915;
180 		return;
181 	}
182 
183 	if (INTEL_GEN(dev_priv) >= 12)
184 		hpd->hpd = hpd_gen12;
185 	else if (INTEL_GEN(dev_priv) >= 11)
186 		hpd->hpd = hpd_gen11;
187 	else if (IS_GEN9_LP(dev_priv))
188 		hpd->hpd = hpd_bxt;
189 	else if (INTEL_GEN(dev_priv) >= 8)
190 		hpd->hpd = hpd_bdw;
191 	else if (INTEL_GEN(dev_priv) >= 7)
192 		hpd->hpd = hpd_ivb;
193 	else
194 		hpd->hpd = hpd_ilk;
195 
196 	if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
197 		return;
198 
199 	if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv))
200 		hpd->pch_hpd = hpd_tgp;
201 	else if (HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
202 		hpd->pch_hpd = hpd_icp;
203 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
204 		hpd->pch_hpd = hpd_spt;
205 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
206 		hpd->pch_hpd = hpd_cpt;
207 	else if (HAS_PCH_IBX(dev_priv))
208 		hpd->pch_hpd = hpd_ibx;
209 	else
210 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
211 }
212 
213 static void
214 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
215 {
216 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
217 
218 	drm_crtc_handle_vblank(&crtc->base);
219 }
220 
221 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
222 		    i915_reg_t iir, i915_reg_t ier)
223 {
224 	intel_uncore_write(uncore, imr, 0xffffffff);
225 	intel_uncore_posting_read(uncore, imr);
226 
227 	intel_uncore_write(uncore, ier, 0);
228 
229 	/* IIR can theoretically queue up two events. Be paranoid. */
230 	intel_uncore_write(uncore, iir, 0xffffffff);
231 	intel_uncore_posting_read(uncore, iir);
232 	intel_uncore_write(uncore, iir, 0xffffffff);
233 	intel_uncore_posting_read(uncore, iir);
234 }
235 
236 void gen2_irq_reset(struct intel_uncore *uncore)
237 {
238 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
239 	intel_uncore_posting_read16(uncore, GEN2_IMR);
240 
241 	intel_uncore_write16(uncore, GEN2_IER, 0);
242 
243 	/* IIR can theoretically queue up two events. Be paranoid. */
244 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
245 	intel_uncore_posting_read16(uncore, GEN2_IIR);
246 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
247 	intel_uncore_posting_read16(uncore, GEN2_IIR);
248 }
249 
250 /*
251  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
252  */
253 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
254 {
255 	u32 val = intel_uncore_read(uncore, reg);
256 
257 	if (val == 0)
258 		return;
259 
260 	drm_WARN(&uncore->i915->drm, 1,
261 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
262 		 i915_mmio_reg_offset(reg), val);
263 	intel_uncore_write(uncore, reg, 0xffffffff);
264 	intel_uncore_posting_read(uncore, reg);
265 	intel_uncore_write(uncore, reg, 0xffffffff);
266 	intel_uncore_posting_read(uncore, reg);
267 }
268 
269 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
270 {
271 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
272 
273 	if (val == 0)
274 		return;
275 
276 	drm_WARN(&uncore->i915->drm, 1,
277 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
278 		 i915_mmio_reg_offset(GEN2_IIR), val);
279 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
280 	intel_uncore_posting_read16(uncore, GEN2_IIR);
281 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
282 	intel_uncore_posting_read16(uncore, GEN2_IIR);
283 }
284 
285 void gen3_irq_init(struct intel_uncore *uncore,
286 		   i915_reg_t imr, u32 imr_val,
287 		   i915_reg_t ier, u32 ier_val,
288 		   i915_reg_t iir)
289 {
290 	gen3_assert_iir_is_zero(uncore, iir);
291 
292 	intel_uncore_write(uncore, ier, ier_val);
293 	intel_uncore_write(uncore, imr, imr_val);
294 	intel_uncore_posting_read(uncore, imr);
295 }
296 
297 void gen2_irq_init(struct intel_uncore *uncore,
298 		   u32 imr_val, u32 ier_val)
299 {
300 	gen2_assert_iir_is_zero(uncore);
301 
302 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
303 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
304 	intel_uncore_posting_read16(uncore, GEN2_IMR);
305 }
306 
307 /* For display hotplug interrupt */
308 static inline void
309 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
310 				     u32 mask,
311 				     u32 bits)
312 {
313 	u32 val;
314 
315 	lockdep_assert_held(&dev_priv->irq_lock);
316 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
317 
318 	val = I915_READ(PORT_HOTPLUG_EN);
319 	val &= ~mask;
320 	val |= bits;
321 	I915_WRITE(PORT_HOTPLUG_EN, val);
322 }
323 
324 /**
325  * i915_hotplug_interrupt_update - update hotplug interrupt enable
326  * @dev_priv: driver private
327  * @mask: bits to update
328  * @bits: bits to enable
329  * NOTE: the HPD enable bits are modified both inside and outside
330  * of an interrupt context. To avoid that read-modify-write cycles
331  * interfer, these bits are protected by a spinlock. Since this
332  * function is usually not called from a context where the lock is
333  * held already, this function acquires the lock itself. A non-locking
334  * version is also available.
335  */
336 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
337 				   u32 mask,
338 				   u32 bits)
339 {
340 	spin_lock_irq(&dev_priv->irq_lock);
341 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
342 	spin_unlock_irq(&dev_priv->irq_lock);
343 }
344 
345 /**
346  * ilk_update_display_irq - update DEIMR
347  * @dev_priv: driver private
348  * @interrupt_mask: mask of interrupt bits to update
349  * @enabled_irq_mask: mask of interrupt bits to enable
350  */
351 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
352 			    u32 interrupt_mask,
353 			    u32 enabled_irq_mask)
354 {
355 	u32 new_val;
356 
357 	lockdep_assert_held(&dev_priv->irq_lock);
358 
359 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
360 
361 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
362 		return;
363 
364 	new_val = dev_priv->irq_mask;
365 	new_val &= ~interrupt_mask;
366 	new_val |= (~enabled_irq_mask & interrupt_mask);
367 
368 	if (new_val != dev_priv->irq_mask) {
369 		dev_priv->irq_mask = new_val;
370 		I915_WRITE(DEIMR, dev_priv->irq_mask);
371 		POSTING_READ(DEIMR);
372 	}
373 }
374 
375 /**
376  * bdw_update_port_irq - update DE port interrupt
377  * @dev_priv: driver private
378  * @interrupt_mask: mask of interrupt bits to update
379  * @enabled_irq_mask: mask of interrupt bits to enable
380  */
381 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
382 				u32 interrupt_mask,
383 				u32 enabled_irq_mask)
384 {
385 	u32 new_val;
386 	u32 old_val;
387 
388 	lockdep_assert_held(&dev_priv->irq_lock);
389 
390 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
391 
392 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
393 		return;
394 
395 	old_val = I915_READ(GEN8_DE_PORT_IMR);
396 
397 	new_val = old_val;
398 	new_val &= ~interrupt_mask;
399 	new_val |= (~enabled_irq_mask & interrupt_mask);
400 
401 	if (new_val != old_val) {
402 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
403 		POSTING_READ(GEN8_DE_PORT_IMR);
404 	}
405 }
406 
407 /**
408  * bdw_update_pipe_irq - update DE pipe interrupt
409  * @dev_priv: driver private
410  * @pipe: pipe whose interrupt to update
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
415 			 enum pipe pipe,
416 			 u32 interrupt_mask,
417 			 u32 enabled_irq_mask)
418 {
419 	u32 new_val;
420 
421 	lockdep_assert_held(&dev_priv->irq_lock);
422 
423 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
424 
425 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
426 		return;
427 
428 	new_val = dev_priv->de_irq_mask[pipe];
429 	new_val &= ~interrupt_mask;
430 	new_val |= (~enabled_irq_mask & interrupt_mask);
431 
432 	if (new_val != dev_priv->de_irq_mask[pipe]) {
433 		dev_priv->de_irq_mask[pipe] = new_val;
434 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
435 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
436 	}
437 }
438 
439 /**
440  * ibx_display_interrupt_update - update SDEIMR
441  * @dev_priv: driver private
442  * @interrupt_mask: mask of interrupt bits to update
443  * @enabled_irq_mask: mask of interrupt bits to enable
444  */
445 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
446 				  u32 interrupt_mask,
447 				  u32 enabled_irq_mask)
448 {
449 	u32 sdeimr = I915_READ(SDEIMR);
450 	sdeimr &= ~interrupt_mask;
451 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
452 
453 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
454 
455 	lockdep_assert_held(&dev_priv->irq_lock);
456 
457 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
458 		return;
459 
460 	I915_WRITE(SDEIMR, sdeimr);
461 	POSTING_READ(SDEIMR);
462 }
463 
464 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
465 			      enum pipe pipe)
466 {
467 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
468 	u32 enable_mask = status_mask << 16;
469 
470 	lockdep_assert_held(&dev_priv->irq_lock);
471 
472 	if (INTEL_GEN(dev_priv) < 5)
473 		goto out;
474 
475 	/*
476 	 * On pipe A we don't support the PSR interrupt yet,
477 	 * on pipe B and C the same bit MBZ.
478 	 */
479 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
480 			     status_mask & PIPE_A_PSR_STATUS_VLV))
481 		return 0;
482 	/*
483 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
484 	 * A the same bit is for perf counters which we don't use either.
485 	 */
486 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
487 			     status_mask & PIPE_B_PSR_STATUS_VLV))
488 		return 0;
489 
490 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
491 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
492 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
493 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
494 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
495 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
496 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
497 
498 out:
499 	drm_WARN_ONCE(&dev_priv->drm,
500 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
501 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
502 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
503 		      pipe_name(pipe), enable_mask, status_mask);
504 
505 	return enable_mask;
506 }
507 
508 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
509 			  enum pipe pipe, u32 status_mask)
510 {
511 	i915_reg_t reg = PIPESTAT(pipe);
512 	u32 enable_mask;
513 
514 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
515 		      "pipe %c: status_mask=0x%x\n",
516 		      pipe_name(pipe), status_mask);
517 
518 	lockdep_assert_held(&dev_priv->irq_lock);
519 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
520 
521 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
522 		return;
523 
524 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
525 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
526 
527 	I915_WRITE(reg, enable_mask | status_mask);
528 	POSTING_READ(reg);
529 }
530 
531 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
532 			   enum pipe pipe, u32 status_mask)
533 {
534 	i915_reg_t reg = PIPESTAT(pipe);
535 	u32 enable_mask;
536 
537 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
538 		      "pipe %c: status_mask=0x%x\n",
539 		      pipe_name(pipe), status_mask);
540 
541 	lockdep_assert_held(&dev_priv->irq_lock);
542 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
543 
544 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
545 		return;
546 
547 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
548 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
549 
550 	I915_WRITE(reg, enable_mask | status_mask);
551 	POSTING_READ(reg);
552 }
553 
554 static bool i915_has_asle(struct drm_i915_private *dev_priv)
555 {
556 	if (!dev_priv->opregion.asle)
557 		return false;
558 
559 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
560 }
561 
562 /**
563  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
564  * @dev_priv: i915 device private
565  */
566 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
567 {
568 	if (!i915_has_asle(dev_priv))
569 		return;
570 
571 	spin_lock_irq(&dev_priv->irq_lock);
572 
573 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
574 	if (INTEL_GEN(dev_priv) >= 4)
575 		i915_enable_pipestat(dev_priv, PIPE_A,
576 				     PIPE_LEGACY_BLC_EVENT_STATUS);
577 
578 	spin_unlock_irq(&dev_priv->irq_lock);
579 }
580 
581 /*
582  * This timing diagram depicts the video signal in and
583  * around the vertical blanking period.
584  *
585  * Assumptions about the fictitious mode used in this example:
586  *  vblank_start >= 3
587  *  vsync_start = vblank_start + 1
588  *  vsync_end = vblank_start + 2
589  *  vtotal = vblank_start + 3
590  *
591  *           start of vblank:
592  *           latch double buffered registers
593  *           increment frame counter (ctg+)
594  *           generate start of vblank interrupt (gen4+)
595  *           |
596  *           |          frame start:
597  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
598  *           |          may be shifted forward 1-3 extra lines via PIPECONF
599  *           |          |
600  *           |          |  start of vsync:
601  *           |          |  generate vsync interrupt
602  *           |          |  |
603  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
604  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
605  * ----va---> <-----------------vb--------------------> <--------va-------------
606  *       |          |       <----vs----->                     |
607  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
608  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
609  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
610  *       |          |                                         |
611  *       last visible pixel                                   first visible pixel
612  *                  |                                         increment frame counter (gen3/4)
613  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
614  *
615  * x  = horizontal active
616  * _  = horizontal blanking
617  * hs = horizontal sync
618  * va = vertical active
619  * vb = vertical blanking
620  * vs = vertical sync
621  * vbs = vblank_start (number)
622  *
623  * Summary:
624  * - most events happen at the start of horizontal sync
625  * - frame start happens at the start of horizontal blank, 1-4 lines
626  *   (depending on PIPECONF settings) after the start of vblank
627  * - gen3/4 pixel and frame counter are synchronized with the start
628  *   of horizontal active on the first line of vertical active
629  */
630 
631 /* Called from drm generic code, passed a 'crtc', which
632  * we use as a pipe index
633  */
634 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
635 {
636 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
637 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
638 	const struct drm_display_mode *mode = &vblank->hwmode;
639 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
640 	i915_reg_t high_frame, low_frame;
641 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
642 	unsigned long irqflags;
643 
644 	/*
645 	 * On i965gm TV output the frame counter only works up to
646 	 * the point when we enable the TV encoder. After that the
647 	 * frame counter ceases to work and reads zero. We need a
648 	 * vblank wait before enabling the TV encoder and so we
649 	 * have to enable vblank interrupts while the frame counter
650 	 * is still in a working state. However the core vblank code
651 	 * does not like us returning non-zero frame counter values
652 	 * when we've told it that we don't have a working frame
653 	 * counter. Thus we must stop non-zero values leaking out.
654 	 */
655 	if (!vblank->max_vblank_count)
656 		return 0;
657 
658 	htotal = mode->crtc_htotal;
659 	hsync_start = mode->crtc_hsync_start;
660 	vbl_start = mode->crtc_vblank_start;
661 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
662 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
663 
664 	/* Convert to pixel count */
665 	vbl_start *= htotal;
666 
667 	/* Start of vblank event occurs at start of hsync */
668 	vbl_start -= htotal - hsync_start;
669 
670 	high_frame = PIPEFRAME(pipe);
671 	low_frame = PIPEFRAMEPIXEL(pipe);
672 
673 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
674 
675 	/*
676 	 * High & low register fields aren't synchronized, so make sure
677 	 * we get a low value that's stable across two reads of the high
678 	 * register.
679 	 */
680 	do {
681 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
682 		low   = intel_de_read_fw(dev_priv, low_frame);
683 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
684 	} while (high1 != high2);
685 
686 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
687 
688 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
689 	pixel = low & PIPE_PIXEL_MASK;
690 	low >>= PIPE_FRAME_LOW_SHIFT;
691 
692 	/*
693 	 * The frame counter increments at beginning of active.
694 	 * Cook up a vblank counter by also checking the pixel
695 	 * counter against vblank start.
696 	 */
697 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
698 }
699 
700 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
701 {
702 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
703 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
704 
705 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
706 }
707 
708 /*
709  * On certain encoders on certain platforms, pipe
710  * scanline register will not work to get the scanline,
711  * since the timings are driven from the PORT or issues
712  * with scanline register updates.
713  * This function will use Framestamp and current
714  * timestamp registers to calculate the scanline.
715  */
716 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
717 {
718 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
719 	struct drm_vblank_crtc *vblank =
720 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
721 	const struct drm_display_mode *mode = &vblank->hwmode;
722 	u32 vblank_start = mode->crtc_vblank_start;
723 	u32 vtotal = mode->crtc_vtotal;
724 	u32 htotal = mode->crtc_htotal;
725 	u32 clock = mode->crtc_clock;
726 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
727 
728 	/*
729 	 * To avoid the race condition where we might cross into the
730 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
731 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
732 	 * during the same frame.
733 	 */
734 	do {
735 		/*
736 		 * This field provides read back of the display
737 		 * pipe frame time stamp. The time stamp value
738 		 * is sampled at every start of vertical blank.
739 		 */
740 		scan_prev_time = intel_de_read_fw(dev_priv,
741 						  PIPE_FRMTMSTMP(crtc->pipe));
742 
743 		/*
744 		 * The TIMESTAMP_CTR register has the current
745 		 * time stamp value.
746 		 */
747 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
748 
749 		scan_post_time = intel_de_read_fw(dev_priv,
750 						  PIPE_FRMTMSTMP(crtc->pipe));
751 	} while (scan_post_time != scan_prev_time);
752 
753 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
754 					clock), 1000 * htotal);
755 	scanline = min(scanline, vtotal - 1);
756 	scanline = (scanline + vblank_start) % vtotal;
757 
758 	return scanline;
759 }
760 
761 /*
762  * intel_de_read_fw(), only for fast reads of display block, no need for
763  * forcewake etc.
764  */
765 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
766 {
767 	struct drm_device *dev = crtc->base.dev;
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	const struct drm_display_mode *mode;
770 	struct drm_vblank_crtc *vblank;
771 	enum pipe pipe = crtc->pipe;
772 	int position, vtotal;
773 
774 	if (!crtc->active)
775 		return -1;
776 
777 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
778 	mode = &vblank->hwmode;
779 
780 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
781 		return __intel_get_crtc_scanline_from_timestamp(crtc);
782 
783 	vtotal = mode->crtc_vtotal;
784 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
785 		vtotal /= 2;
786 
787 	if (IS_GEN(dev_priv, 2))
788 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
789 	else
790 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
791 
792 	/*
793 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
794 	 * read it just before the start of vblank.  So try it again
795 	 * so we don't accidentally end up spanning a vblank frame
796 	 * increment, causing the pipe_update_end() code to squak at us.
797 	 *
798 	 * The nature of this problem means we can't simply check the ISR
799 	 * bit and return the vblank start value; nor can we use the scanline
800 	 * debug register in the transcoder as it appears to have the same
801 	 * problem.  We may need to extend this to include other platforms,
802 	 * but so far testing only shows the problem on HSW.
803 	 */
804 	if (HAS_DDI(dev_priv) && !position) {
805 		int i, temp;
806 
807 		for (i = 0; i < 100; i++) {
808 			udelay(1);
809 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
810 			if (temp != position) {
811 				position = temp;
812 				break;
813 			}
814 		}
815 	}
816 
817 	/*
818 	 * See update_scanline_offset() for the details on the
819 	 * scanline_offset adjustment.
820 	 */
821 	return (position + crtc->scanline_offset) % vtotal;
822 }
823 
824 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
825 				     bool in_vblank_irq,
826 				     int *vpos, int *hpos,
827 				     ktime_t *stime, ktime_t *etime,
828 				     const struct drm_display_mode *mode)
829 {
830 	struct drm_device *dev = _crtc->dev;
831 	struct drm_i915_private *dev_priv = to_i915(dev);
832 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
833 	enum pipe pipe = crtc->pipe;
834 	int position;
835 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
836 	unsigned long irqflags;
837 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
838 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
839 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
840 
841 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
842 		drm_dbg(&dev_priv->drm,
843 			"trying to get scanoutpos for disabled "
844 			"pipe %c\n", pipe_name(pipe));
845 		return false;
846 	}
847 
848 	htotal = mode->crtc_htotal;
849 	hsync_start = mode->crtc_hsync_start;
850 	vtotal = mode->crtc_vtotal;
851 	vbl_start = mode->crtc_vblank_start;
852 	vbl_end = mode->crtc_vblank_end;
853 
854 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 		vbl_end /= 2;
857 		vtotal /= 2;
858 	}
859 
860 	/*
861 	 * Lock uncore.lock, as we will do multiple timing critical raw
862 	 * register reads, potentially with preemption disabled, so the
863 	 * following code must not block on uncore.lock.
864 	 */
865 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
866 
867 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
868 
869 	/* Get optional system timestamp before query. */
870 	if (stime)
871 		*stime = ktime_get();
872 
873 	if (use_scanline_counter) {
874 		/* No obvious pixelcount register. Only query vertical
875 		 * scanout position from Display scan line register.
876 		 */
877 		position = __intel_get_crtc_scanline(crtc);
878 	} else {
879 		/* Have access to pixelcount since start of frame.
880 		 * We can split this into vertical and horizontal
881 		 * scanout position.
882 		 */
883 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
884 
885 		/* convert to pixel counts */
886 		vbl_start *= htotal;
887 		vbl_end *= htotal;
888 		vtotal *= htotal;
889 
890 		/*
891 		 * In interlaced modes, the pixel counter counts all pixels,
892 		 * so one field will have htotal more pixels. In order to avoid
893 		 * the reported position from jumping backwards when the pixel
894 		 * counter is beyond the length of the shorter field, just
895 		 * clamp the position the length of the shorter field. This
896 		 * matches how the scanline counter based position works since
897 		 * the scanline counter doesn't count the two half lines.
898 		 */
899 		if (position >= vtotal)
900 			position = vtotal - 1;
901 
902 		/*
903 		 * Start of vblank interrupt is triggered at start of hsync,
904 		 * just prior to the first active line of vblank. However we
905 		 * consider lines to start at the leading edge of horizontal
906 		 * active. So, should we get here before we've crossed into
907 		 * the horizontal active of the first line in vblank, we would
908 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
909 		 * always add htotal-hsync_start to the current pixel position.
910 		 */
911 		position = (position + htotal - hsync_start) % vtotal;
912 	}
913 
914 	/* Get optional system timestamp after query. */
915 	if (etime)
916 		*etime = ktime_get();
917 
918 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
919 
920 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
921 
922 	/*
923 	 * While in vblank, position will be negative
924 	 * counting up towards 0 at vbl_end. And outside
925 	 * vblank, position will be positive counting
926 	 * up since vbl_end.
927 	 */
928 	if (position >= vbl_start)
929 		position -= vbl_end;
930 	else
931 		position += vtotal - vbl_end;
932 
933 	if (use_scanline_counter) {
934 		*vpos = position;
935 		*hpos = 0;
936 	} else {
937 		*vpos = position / htotal;
938 		*hpos = position - (*vpos * htotal);
939 	}
940 
941 	return true;
942 }
943 
944 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
945 				     ktime_t *vblank_time, bool in_vblank_irq)
946 {
947 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
948 		crtc, max_error, vblank_time, in_vblank_irq,
949 		i915_get_crtc_scanoutpos);
950 }
951 
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 	unsigned long irqflags;
956 	int position;
957 
958 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 	position = __intel_get_crtc_scanline(crtc);
960 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961 
962 	return position;
963 }
964 
965 /**
966  * ivb_parity_work - Workqueue called when a parity error interrupt
967  * occurred.
968  * @work: workqueue struct
969  *
970  * Doesn't actually do anything except notify userspace. As a consequence of
971  * this event, userspace should try to remap the bad rows since statistically
972  * it is likely the same row is more likely to go bad again.
973  */
974 static void ivb_parity_work(struct work_struct *work)
975 {
976 	struct drm_i915_private *dev_priv =
977 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
978 	struct intel_gt *gt = &dev_priv->gt;
979 	u32 error_status, row, bank, subbank;
980 	char *parity_event[6];
981 	u32 misccpctl;
982 	u8 slice = 0;
983 
984 	/* We must turn off DOP level clock gating to access the L3 registers.
985 	 * In order to prevent a get/put style interface, acquire struct mutex
986 	 * any time we access those registers.
987 	 */
988 	mutex_lock(&dev_priv->drm.struct_mutex);
989 
990 	/* If we've screwed up tracking, just let the interrupt fire again */
991 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
992 		goto out;
993 
994 	misccpctl = I915_READ(GEN7_MISCCPCTL);
995 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
996 	POSTING_READ(GEN7_MISCCPCTL);
997 
998 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
999 		i915_reg_t reg;
1000 
1001 		slice--;
1002 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1003 				     slice >= NUM_L3_SLICES(dev_priv)))
1004 			break;
1005 
1006 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1007 
1008 		reg = GEN7_L3CDERRST1(slice);
1009 
1010 		error_status = I915_READ(reg);
1011 		row = GEN7_PARITY_ERROR_ROW(error_status);
1012 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1013 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1014 
1015 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1016 		POSTING_READ(reg);
1017 
1018 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1019 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1020 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1021 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1022 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1023 		parity_event[5] = NULL;
1024 
1025 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1026 				   KOBJ_CHANGE, parity_event);
1027 
1028 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1029 			  slice, row, bank, subbank);
1030 
1031 		kfree(parity_event[4]);
1032 		kfree(parity_event[3]);
1033 		kfree(parity_event[2]);
1034 		kfree(parity_event[1]);
1035 	}
1036 
1037 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1038 
1039 out:
1040 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1041 	spin_lock_irq(&gt->irq_lock);
1042 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1043 	spin_unlock_irq(&gt->irq_lock);
1044 
1045 	mutex_unlock(&dev_priv->drm.struct_mutex);
1046 }
1047 
1048 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1049 {
1050 	switch (pin) {
1051 	case HPD_PORT_C:
1052 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1053 	case HPD_PORT_D:
1054 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1055 	case HPD_PORT_E:
1056 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1057 	case HPD_PORT_F:
1058 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1059 	default:
1060 		return false;
1061 	}
1062 }
1063 
1064 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065 {
1066 	switch (pin) {
1067 	case HPD_PORT_D:
1068 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1069 	case HPD_PORT_E:
1070 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1071 	case HPD_PORT_F:
1072 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1073 	case HPD_PORT_G:
1074 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1075 	case HPD_PORT_H:
1076 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1077 	case HPD_PORT_I:
1078 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1079 	default:
1080 		return false;
1081 	}
1082 }
1083 
1084 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086 	switch (pin) {
1087 	case HPD_PORT_A:
1088 		return val & PORTA_HOTPLUG_LONG_DETECT;
1089 	case HPD_PORT_B:
1090 		return val & PORTB_HOTPLUG_LONG_DETECT;
1091 	case HPD_PORT_C:
1092 		return val & PORTC_HOTPLUG_LONG_DETECT;
1093 	default:
1094 		return false;
1095 	}
1096 }
1097 
1098 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100 	switch (pin) {
1101 	case HPD_PORT_A:
1102 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1103 	case HPD_PORT_B:
1104 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1105 	case HPD_PORT_C:
1106 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1107 	default:
1108 		return false;
1109 	}
1110 }
1111 
1112 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113 {
1114 	switch (pin) {
1115 	case HPD_PORT_C:
1116 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1117 	case HPD_PORT_D:
1118 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1119 	case HPD_PORT_E:
1120 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1121 	case HPD_PORT_F:
1122 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1123 	default:
1124 		return false;
1125 	}
1126 }
1127 
1128 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129 {
1130 	switch (pin) {
1131 	case HPD_PORT_D:
1132 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1133 	case HPD_PORT_E:
1134 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1135 	case HPD_PORT_F:
1136 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1137 	case HPD_PORT_G:
1138 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1139 	case HPD_PORT_H:
1140 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1141 	case HPD_PORT_I:
1142 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1143 	default:
1144 		return false;
1145 	}
1146 }
1147 
1148 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1149 {
1150 	switch (pin) {
1151 	case HPD_PORT_E:
1152 		return val & PORTE_HOTPLUG_LONG_DETECT;
1153 	default:
1154 		return false;
1155 	}
1156 }
1157 
1158 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1159 {
1160 	switch (pin) {
1161 	case HPD_PORT_A:
1162 		return val & PORTA_HOTPLUG_LONG_DETECT;
1163 	case HPD_PORT_B:
1164 		return val & PORTB_HOTPLUG_LONG_DETECT;
1165 	case HPD_PORT_C:
1166 		return val & PORTC_HOTPLUG_LONG_DETECT;
1167 	case HPD_PORT_D:
1168 		return val & PORTD_HOTPLUG_LONG_DETECT;
1169 	default:
1170 		return false;
1171 	}
1172 }
1173 
1174 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1175 {
1176 	switch (pin) {
1177 	case HPD_PORT_A:
1178 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1179 	default:
1180 		return false;
1181 	}
1182 }
1183 
1184 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1185 {
1186 	switch (pin) {
1187 	case HPD_PORT_B:
1188 		return val & PORTB_HOTPLUG_LONG_DETECT;
1189 	case HPD_PORT_C:
1190 		return val & PORTC_HOTPLUG_LONG_DETECT;
1191 	case HPD_PORT_D:
1192 		return val & PORTD_HOTPLUG_LONG_DETECT;
1193 	default:
1194 		return false;
1195 	}
1196 }
1197 
1198 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1199 {
1200 	switch (pin) {
1201 	case HPD_PORT_B:
1202 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1203 	case HPD_PORT_C:
1204 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1205 	case HPD_PORT_D:
1206 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1207 	default:
1208 		return false;
1209 	}
1210 }
1211 
1212 /*
1213  * Get a bit mask of pins that have triggered, and which ones may be long.
1214  * This can be called multiple times with the same masks to accumulate
1215  * hotplug detection results from several registers.
1216  *
1217  * Note that the caller is expected to zero out the masks initially.
1218  */
1219 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1220 			       u32 *pin_mask, u32 *long_mask,
1221 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1222 			       const u32 hpd[HPD_NUM_PINS],
1223 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1224 {
1225 	enum hpd_pin pin;
1226 
1227 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1228 
1229 	for_each_hpd_pin(pin) {
1230 		if ((hpd[pin] & hotplug_trigger) == 0)
1231 			continue;
1232 
1233 		*pin_mask |= BIT(pin);
1234 
1235 		if (long_pulse_detect(pin, dig_hotplug_reg))
1236 			*long_mask |= BIT(pin);
1237 	}
1238 
1239 	drm_dbg(&dev_priv->drm,
1240 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1241 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1242 
1243 }
1244 
1245 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1246 {
1247 	wake_up_all(&dev_priv->gmbus_wait_queue);
1248 }
1249 
1250 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1251 {
1252 	wake_up_all(&dev_priv->gmbus_wait_queue);
1253 }
1254 
1255 #if defined(CONFIG_DEBUG_FS)
1256 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1257 					 enum pipe pipe,
1258 					 u32 crc0, u32 crc1,
1259 					 u32 crc2, u32 crc3,
1260 					 u32 crc4)
1261 {
1262 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1263 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1264 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1265 
1266 	trace_intel_pipe_crc(crtc, crcs);
1267 
1268 	spin_lock(&pipe_crc->lock);
1269 	/*
1270 	 * For some not yet identified reason, the first CRC is
1271 	 * bonkers. So let's just wait for the next vblank and read
1272 	 * out the buggy result.
1273 	 *
1274 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1275 	 * don't trust that one either.
1276 	 */
1277 	if (pipe_crc->skipped <= 0 ||
1278 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1279 		pipe_crc->skipped++;
1280 		spin_unlock(&pipe_crc->lock);
1281 		return;
1282 	}
1283 	spin_unlock(&pipe_crc->lock);
1284 
1285 	drm_crtc_add_crc_entry(&crtc->base, true,
1286 				drm_crtc_accurate_vblank_count(&crtc->base),
1287 				crcs);
1288 }
1289 #else
1290 static inline void
1291 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1292 			     enum pipe pipe,
1293 			     u32 crc0, u32 crc1,
1294 			     u32 crc2, u32 crc3,
1295 			     u32 crc4) {}
1296 #endif
1297 
1298 
1299 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1300 				     enum pipe pipe)
1301 {
1302 	display_pipe_crc_irq_handler(dev_priv, pipe,
1303 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1304 				     0, 0, 0, 0);
1305 }
1306 
1307 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1308 				     enum pipe pipe)
1309 {
1310 	display_pipe_crc_irq_handler(dev_priv, pipe,
1311 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1312 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1313 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1314 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1315 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1316 }
1317 
1318 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319 				      enum pipe pipe)
1320 {
1321 	u32 res1, res2;
1322 
1323 	if (INTEL_GEN(dev_priv) >= 3)
1324 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1325 	else
1326 		res1 = 0;
1327 
1328 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1329 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1330 	else
1331 		res2 = 0;
1332 
1333 	display_pipe_crc_irq_handler(dev_priv, pipe,
1334 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1335 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1336 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1337 				     res1, res2);
1338 }
1339 
1340 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1341 {
1342 	enum pipe pipe;
1343 
1344 	for_each_pipe(dev_priv, pipe) {
1345 		I915_WRITE(PIPESTAT(pipe),
1346 			   PIPESTAT_INT_STATUS_MASK |
1347 			   PIPE_FIFO_UNDERRUN_STATUS);
1348 
1349 		dev_priv->pipestat_irq_mask[pipe] = 0;
1350 	}
1351 }
1352 
1353 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1354 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1355 {
1356 	enum pipe pipe;
1357 
1358 	spin_lock(&dev_priv->irq_lock);
1359 
1360 	if (!dev_priv->display_irqs_enabled) {
1361 		spin_unlock(&dev_priv->irq_lock);
1362 		return;
1363 	}
1364 
1365 	for_each_pipe(dev_priv, pipe) {
1366 		i915_reg_t reg;
1367 		u32 status_mask, enable_mask, iir_bit = 0;
1368 
1369 		/*
1370 		 * PIPESTAT bits get signalled even when the interrupt is
1371 		 * disabled with the mask bits, and some of the status bits do
1372 		 * not generate interrupts at all (like the underrun bit). Hence
1373 		 * we need to be careful that we only handle what we want to
1374 		 * handle.
1375 		 */
1376 
1377 		/* fifo underruns are filterered in the underrun handler. */
1378 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1379 
1380 		switch (pipe) {
1381 		default:
1382 		case PIPE_A:
1383 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1384 			break;
1385 		case PIPE_B:
1386 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1387 			break;
1388 		case PIPE_C:
1389 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1390 			break;
1391 		}
1392 		if (iir & iir_bit)
1393 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1394 
1395 		if (!status_mask)
1396 			continue;
1397 
1398 		reg = PIPESTAT(pipe);
1399 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1400 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1401 
1402 		/*
1403 		 * Clear the PIPE*STAT regs before the IIR
1404 		 *
1405 		 * Toggle the enable bits to make sure we get an
1406 		 * edge in the ISR pipe event bit if we don't clear
1407 		 * all the enabled status bits. Otherwise the edge
1408 		 * triggered IIR on i965/g4x wouldn't notice that
1409 		 * an interrupt is still pending.
1410 		 */
1411 		if (pipe_stats[pipe]) {
1412 			I915_WRITE(reg, pipe_stats[pipe]);
1413 			I915_WRITE(reg, enable_mask);
1414 		}
1415 	}
1416 	spin_unlock(&dev_priv->irq_lock);
1417 }
1418 
1419 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1420 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1421 {
1422 	enum pipe pipe;
1423 
1424 	for_each_pipe(dev_priv, pipe) {
1425 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1426 			intel_handle_vblank(dev_priv, pipe);
1427 
1428 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1429 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1430 
1431 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1432 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1433 	}
1434 }
1435 
1436 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1437 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1438 {
1439 	bool blc_event = false;
1440 	enum pipe pipe;
1441 
1442 	for_each_pipe(dev_priv, pipe) {
1443 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1444 			intel_handle_vblank(dev_priv, pipe);
1445 
1446 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1447 			blc_event = true;
1448 
1449 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1450 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1451 
1452 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1454 	}
1455 
1456 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1457 		intel_opregion_asle_intr(dev_priv);
1458 }
1459 
1460 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1461 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1462 {
1463 	bool blc_event = false;
1464 	enum pipe pipe;
1465 
1466 	for_each_pipe(dev_priv, pipe) {
1467 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1468 			intel_handle_vblank(dev_priv, pipe);
1469 
1470 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1471 			blc_event = true;
1472 
1473 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1474 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1475 
1476 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1477 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1478 	}
1479 
1480 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1481 		intel_opregion_asle_intr(dev_priv);
1482 
1483 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484 		gmbus_irq_handler(dev_priv);
1485 }
1486 
1487 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1488 					    u32 pipe_stats[I915_MAX_PIPES])
1489 {
1490 	enum pipe pipe;
1491 
1492 	for_each_pipe(dev_priv, pipe) {
1493 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1494 			intel_handle_vblank(dev_priv, pipe);
1495 
1496 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498 
1499 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501 	}
1502 
1503 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1504 		gmbus_irq_handler(dev_priv);
1505 }
1506 
1507 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1508 {
1509 	u32 hotplug_status = 0, hotplug_status_mask;
1510 	int i;
1511 
1512 	if (IS_G4X(dev_priv) ||
1513 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1514 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1515 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1516 	else
1517 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1518 
1519 	/*
1520 	 * We absolutely have to clear all the pending interrupt
1521 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1522 	 * interrupt bit won't have an edge, and the i965/g4x
1523 	 * edge triggered IIR will not notice that an interrupt
1524 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1525 	 * guarantee the edge as the act of toggling the enable
1526 	 * bits can itself generate a new hotplug interrupt :(
1527 	 */
1528 	for (i = 0; i < 10; i++) {
1529 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1530 
1531 		if (tmp == 0)
1532 			return hotplug_status;
1533 
1534 		hotplug_status |= tmp;
1535 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1536 	}
1537 
1538 	drm_WARN_ONCE(&dev_priv->drm, 1,
1539 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1540 		      I915_READ(PORT_HOTPLUG_STAT));
1541 
1542 	return hotplug_status;
1543 }
1544 
1545 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1546 				 u32 hotplug_status)
1547 {
1548 	u32 pin_mask = 0, long_mask = 0;
1549 	u32 hotplug_trigger;
1550 
1551 	if (IS_G4X(dev_priv) ||
1552 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1553 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1554 	else
1555 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1556 
1557 	if (hotplug_trigger) {
1558 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1559 				   hotplug_trigger, hotplug_trigger,
1560 				   dev_priv->hotplug.hpd,
1561 				   i9xx_port_hotplug_long_detect);
1562 
1563 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1564 	}
1565 
1566 	if ((IS_G4X(dev_priv) ||
1567 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1568 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1569 		dp_aux_irq_handler(dev_priv);
1570 }
1571 
1572 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1573 {
1574 	struct drm_i915_private *dev_priv = arg;
1575 	irqreturn_t ret = IRQ_NONE;
1576 
1577 	if (!intel_irqs_enabled(dev_priv))
1578 		return IRQ_NONE;
1579 
1580 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1581 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1582 
1583 	do {
1584 		u32 iir, gt_iir, pm_iir;
1585 		u32 pipe_stats[I915_MAX_PIPES] = {};
1586 		u32 hotplug_status = 0;
1587 		u32 ier = 0;
1588 
1589 		gt_iir = I915_READ(GTIIR);
1590 		pm_iir = I915_READ(GEN6_PMIIR);
1591 		iir = I915_READ(VLV_IIR);
1592 
1593 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1594 			break;
1595 
1596 		ret = IRQ_HANDLED;
1597 
1598 		/*
1599 		 * Theory on interrupt generation, based on empirical evidence:
1600 		 *
1601 		 * x = ((VLV_IIR & VLV_IER) ||
1602 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1603 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1604 		 *
1605 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1606 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1607 		 * guarantee the CPU interrupt will be raised again even if we
1608 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1609 		 * bits this time around.
1610 		 */
1611 		I915_WRITE(VLV_MASTER_IER, 0);
1612 		ier = I915_READ(VLV_IER);
1613 		I915_WRITE(VLV_IER, 0);
1614 
1615 		if (gt_iir)
1616 			I915_WRITE(GTIIR, gt_iir);
1617 		if (pm_iir)
1618 			I915_WRITE(GEN6_PMIIR, pm_iir);
1619 
1620 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1621 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1622 
1623 		/* Call regardless, as some status bits might not be
1624 		 * signalled in iir */
1625 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1626 
1627 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1628 			   I915_LPE_PIPE_B_INTERRUPT))
1629 			intel_lpe_audio_irq_handler(dev_priv);
1630 
1631 		/*
1632 		 * VLV_IIR is single buffered, and reflects the level
1633 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1634 		 */
1635 		if (iir)
1636 			I915_WRITE(VLV_IIR, iir);
1637 
1638 		I915_WRITE(VLV_IER, ier);
1639 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1640 
1641 		if (gt_iir)
1642 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1643 		if (pm_iir)
1644 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1645 
1646 		if (hotplug_status)
1647 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1648 
1649 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1650 	} while (0);
1651 
1652 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1653 
1654 	return ret;
1655 }
1656 
1657 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1658 {
1659 	struct drm_i915_private *dev_priv = arg;
1660 	irqreturn_t ret = IRQ_NONE;
1661 
1662 	if (!intel_irqs_enabled(dev_priv))
1663 		return IRQ_NONE;
1664 
1665 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1666 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667 
1668 	do {
1669 		u32 master_ctl, iir;
1670 		u32 pipe_stats[I915_MAX_PIPES] = {};
1671 		u32 hotplug_status = 0;
1672 		u32 ier = 0;
1673 
1674 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1675 		iir = I915_READ(VLV_IIR);
1676 
1677 		if (master_ctl == 0 && iir == 0)
1678 			break;
1679 
1680 		ret = IRQ_HANDLED;
1681 
1682 		/*
1683 		 * Theory on interrupt generation, based on empirical evidence:
1684 		 *
1685 		 * x = ((VLV_IIR & VLV_IER) ||
1686 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1687 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1688 		 *
1689 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1690 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1691 		 * guarantee the CPU interrupt will be raised again even if we
1692 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1693 		 * bits this time around.
1694 		 */
1695 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1696 		ier = I915_READ(VLV_IER);
1697 		I915_WRITE(VLV_IER, 0);
1698 
1699 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1700 
1701 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1702 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1703 
1704 		/* Call regardless, as some status bits might not be
1705 		 * signalled in iir */
1706 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1707 
1708 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1709 			   I915_LPE_PIPE_B_INTERRUPT |
1710 			   I915_LPE_PIPE_C_INTERRUPT))
1711 			intel_lpe_audio_irq_handler(dev_priv);
1712 
1713 		/*
1714 		 * VLV_IIR is single buffered, and reflects the level
1715 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1716 		 */
1717 		if (iir)
1718 			I915_WRITE(VLV_IIR, iir);
1719 
1720 		I915_WRITE(VLV_IER, ier);
1721 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1722 
1723 		if (hotplug_status)
1724 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1725 
1726 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1727 	} while (0);
1728 
1729 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1730 
1731 	return ret;
1732 }
1733 
1734 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735 				u32 hotplug_trigger)
1736 {
1737 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1738 
1739 	/*
1740 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1741 	 * unless we touch the hotplug register, even if hotplug_trigger is
1742 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1743 	 * errors.
1744 	 */
1745 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1746 	if (!hotplug_trigger) {
1747 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1748 			PORTD_HOTPLUG_STATUS_MASK |
1749 			PORTC_HOTPLUG_STATUS_MASK |
1750 			PORTB_HOTPLUG_STATUS_MASK;
1751 		dig_hotplug_reg &= ~mask;
1752 	}
1753 
1754 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1755 	if (!hotplug_trigger)
1756 		return;
1757 
1758 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1759 			   hotplug_trigger, dig_hotplug_reg,
1760 			   dev_priv->hotplug.pch_hpd,
1761 			   pch_port_hotplug_long_detect);
1762 
1763 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1764 }
1765 
1766 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1767 {
1768 	enum pipe pipe;
1769 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1770 
1771 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1772 
1773 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1774 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1775 			       SDE_AUDIO_POWER_SHIFT);
1776 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1777 			port_name(port));
1778 	}
1779 
1780 	if (pch_iir & SDE_AUX_MASK)
1781 		dp_aux_irq_handler(dev_priv);
1782 
1783 	if (pch_iir & SDE_GMBUS)
1784 		gmbus_irq_handler(dev_priv);
1785 
1786 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1787 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1788 
1789 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1790 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1791 
1792 	if (pch_iir & SDE_POISON)
1793 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1794 
1795 	if (pch_iir & SDE_FDI_MASK) {
1796 		for_each_pipe(dev_priv, pipe)
1797 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1798 				pipe_name(pipe),
1799 				I915_READ(FDI_RX_IIR(pipe)));
1800 	}
1801 
1802 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1803 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1804 
1805 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1806 		drm_dbg(&dev_priv->drm,
1807 			"PCH transcoder CRC error interrupt\n");
1808 
1809 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1810 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1811 
1812 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1813 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1814 }
1815 
1816 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1817 {
1818 	u32 err_int = I915_READ(GEN7_ERR_INT);
1819 	enum pipe pipe;
1820 
1821 	if (err_int & ERR_INT_POISON)
1822 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1823 
1824 	for_each_pipe(dev_priv, pipe) {
1825 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1826 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1827 
1828 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1829 			if (IS_IVYBRIDGE(dev_priv))
1830 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1831 			else
1832 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1833 		}
1834 	}
1835 
1836 	I915_WRITE(GEN7_ERR_INT, err_int);
1837 }
1838 
1839 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1840 {
1841 	u32 serr_int = I915_READ(SERR_INT);
1842 	enum pipe pipe;
1843 
1844 	if (serr_int & SERR_INT_POISON)
1845 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1846 
1847 	for_each_pipe(dev_priv, pipe)
1848 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1849 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1850 
1851 	I915_WRITE(SERR_INT, serr_int);
1852 }
1853 
1854 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1855 {
1856 	enum pipe pipe;
1857 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1858 
1859 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1860 
1861 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1862 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1863 			       SDE_AUDIO_POWER_SHIFT_CPT);
1864 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1865 			port_name(port));
1866 	}
1867 
1868 	if (pch_iir & SDE_AUX_MASK_CPT)
1869 		dp_aux_irq_handler(dev_priv);
1870 
1871 	if (pch_iir & SDE_GMBUS_CPT)
1872 		gmbus_irq_handler(dev_priv);
1873 
1874 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1875 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1876 
1877 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1878 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1879 
1880 	if (pch_iir & SDE_FDI_MASK_CPT) {
1881 		for_each_pipe(dev_priv, pipe)
1882 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1883 				pipe_name(pipe),
1884 				I915_READ(FDI_RX_IIR(pipe)));
1885 	}
1886 
1887 	if (pch_iir & SDE_ERROR_CPT)
1888 		cpt_serr_int_handler(dev_priv);
1889 }
1890 
1891 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1892 {
1893 	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1894 	u32 pin_mask = 0, long_mask = 0;
1895 	bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1896 
1897 	if (HAS_PCH_TGP(dev_priv)) {
1898 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1899 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1900 		tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1901 	} else if (HAS_PCH_JSP(dev_priv)) {
1902 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1903 		tc_hotplug_trigger = 0;
1904 	} else if (HAS_PCH_MCC(dev_priv)) {
1905 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1906 		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1907 		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1908 	} else {
1909 		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1910 			 "Unrecognized PCH type 0x%x\n",
1911 			 INTEL_PCH_TYPE(dev_priv));
1912 
1913 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1914 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1915 		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1916 	}
1917 
1918 	if (ddi_hotplug_trigger) {
1919 		u32 dig_hotplug_reg;
1920 
1921 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1922 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1923 
1924 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1925 				   ddi_hotplug_trigger, dig_hotplug_reg,
1926 				   dev_priv->hotplug.pch_hpd,
1927 				   icp_ddi_port_hotplug_long_detect);
1928 	}
1929 
1930 	if (tc_hotplug_trigger) {
1931 		u32 dig_hotplug_reg;
1932 
1933 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1934 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1935 
1936 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1937 				   tc_hotplug_trigger, dig_hotplug_reg,
1938 				   dev_priv->hotplug.pch_hpd,
1939 				   tc_port_hotplug_long_detect);
1940 	}
1941 
1942 	if (pin_mask)
1943 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1944 
1945 	if (pch_iir & SDE_GMBUS_ICP)
1946 		gmbus_irq_handler(dev_priv);
1947 }
1948 
1949 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950 {
1951 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1952 		~SDE_PORTE_HOTPLUG_SPT;
1953 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1954 	u32 pin_mask = 0, long_mask = 0;
1955 
1956 	if (hotplug_trigger) {
1957 		u32 dig_hotplug_reg;
1958 
1959 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1960 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1961 
1962 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1963 				   hotplug_trigger, dig_hotplug_reg,
1964 				   dev_priv->hotplug.pch_hpd,
1965 				   spt_port_hotplug_long_detect);
1966 	}
1967 
1968 	if (hotplug2_trigger) {
1969 		u32 dig_hotplug_reg;
1970 
1971 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1972 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1973 
1974 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1975 				   hotplug2_trigger, dig_hotplug_reg,
1976 				   dev_priv->hotplug.pch_hpd,
1977 				   spt_port_hotplug2_long_detect);
1978 	}
1979 
1980 	if (pin_mask)
1981 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1982 
1983 	if (pch_iir & SDE_GMBUS_CPT)
1984 		gmbus_irq_handler(dev_priv);
1985 }
1986 
1987 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1988 				u32 hotplug_trigger)
1989 {
1990 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1991 
1992 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1993 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1994 
1995 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996 			   hotplug_trigger, dig_hotplug_reg,
1997 			   dev_priv->hotplug.hpd,
1998 			   ilk_port_hotplug_long_detect);
1999 
2000 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001 }
2002 
2003 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2004 				    u32 de_iir)
2005 {
2006 	enum pipe pipe;
2007 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2008 
2009 	if (hotplug_trigger)
2010 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2011 
2012 	if (de_iir & DE_AUX_CHANNEL_A)
2013 		dp_aux_irq_handler(dev_priv);
2014 
2015 	if (de_iir & DE_GSE)
2016 		intel_opregion_asle_intr(dev_priv);
2017 
2018 	if (de_iir & DE_POISON)
2019 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2020 
2021 	for_each_pipe(dev_priv, pipe) {
2022 		if (de_iir & DE_PIPE_VBLANK(pipe))
2023 			intel_handle_vblank(dev_priv, pipe);
2024 
2025 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2026 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2027 
2028 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2029 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2030 	}
2031 
2032 	/* check event from PCH */
2033 	if (de_iir & DE_PCH_EVENT) {
2034 		u32 pch_iir = I915_READ(SDEIIR);
2035 
2036 		if (HAS_PCH_CPT(dev_priv))
2037 			cpt_irq_handler(dev_priv, pch_iir);
2038 		else
2039 			ibx_irq_handler(dev_priv, pch_iir);
2040 
2041 		/* should clear PCH hotplug event before clear CPU irq */
2042 		I915_WRITE(SDEIIR, pch_iir);
2043 	}
2044 
2045 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2046 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2047 }
2048 
2049 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2050 				    u32 de_iir)
2051 {
2052 	enum pipe pipe;
2053 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2054 
2055 	if (hotplug_trigger)
2056 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2057 
2058 	if (de_iir & DE_ERR_INT_IVB)
2059 		ivb_err_int_handler(dev_priv);
2060 
2061 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2062 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2063 
2064 		intel_psr_irq_handler(dev_priv, psr_iir);
2065 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2066 	}
2067 
2068 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069 		dp_aux_irq_handler(dev_priv);
2070 
2071 	if (de_iir & DE_GSE_IVB)
2072 		intel_opregion_asle_intr(dev_priv);
2073 
2074 	for_each_pipe(dev_priv, pipe) {
2075 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2076 			intel_handle_vblank(dev_priv, pipe);
2077 	}
2078 
2079 	/* check event from PCH */
2080 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2081 		u32 pch_iir = I915_READ(SDEIIR);
2082 
2083 		cpt_irq_handler(dev_priv, pch_iir);
2084 
2085 		/* clear PCH hotplug event before clear CPU irq */
2086 		I915_WRITE(SDEIIR, pch_iir);
2087 	}
2088 }
2089 
2090 /*
2091  * To handle irqs with the minimum potential races with fresh interrupts, we:
2092  * 1 - Disable Master Interrupt Control.
2093  * 2 - Find the source(s) of the interrupt.
2094  * 3 - Clear the Interrupt Identity bits (IIR).
2095  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2096  * 5 - Re-enable Master Interrupt Control.
2097  */
2098 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2099 {
2100 	struct drm_i915_private *i915 = arg;
2101 	void __iomem * const regs = i915->uncore.regs;
2102 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2103 	irqreturn_t ret = IRQ_NONE;
2104 
2105 	if (unlikely(!intel_irqs_enabled(i915)))
2106 		return IRQ_NONE;
2107 
2108 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2109 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2110 
2111 	/* disable master interrupt before clearing iir  */
2112 	de_ier = raw_reg_read(regs, DEIER);
2113 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2114 
2115 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2116 	 * interrupts will will be stored on its back queue, and then we'll be
2117 	 * able to process them after we restore SDEIER (as soon as we restore
2118 	 * it, we'll get an interrupt if SDEIIR still has something to process
2119 	 * due to its back queue). */
2120 	if (!HAS_PCH_NOP(i915)) {
2121 		sde_ier = raw_reg_read(regs, SDEIER);
2122 		raw_reg_write(regs, SDEIER, 0);
2123 	}
2124 
2125 	/* Find, clear, then process each source of interrupt */
2126 
2127 	gt_iir = raw_reg_read(regs, GTIIR);
2128 	if (gt_iir) {
2129 		raw_reg_write(regs, GTIIR, gt_iir);
2130 		if (INTEL_GEN(i915) >= 6)
2131 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2132 		else
2133 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2134 		ret = IRQ_HANDLED;
2135 	}
2136 
2137 	de_iir = raw_reg_read(regs, DEIIR);
2138 	if (de_iir) {
2139 		raw_reg_write(regs, DEIIR, de_iir);
2140 		if (INTEL_GEN(i915) >= 7)
2141 			ivb_display_irq_handler(i915, de_iir);
2142 		else
2143 			ilk_display_irq_handler(i915, de_iir);
2144 		ret = IRQ_HANDLED;
2145 	}
2146 
2147 	if (INTEL_GEN(i915) >= 6) {
2148 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2149 		if (pm_iir) {
2150 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2151 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2152 			ret = IRQ_HANDLED;
2153 		}
2154 	}
2155 
2156 	raw_reg_write(regs, DEIER, de_ier);
2157 	if (sde_ier)
2158 		raw_reg_write(regs, SDEIER, sde_ier);
2159 
2160 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2161 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2162 
2163 	return ret;
2164 }
2165 
2166 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2167 				u32 hotplug_trigger)
2168 {
2169 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2170 
2171 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2172 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2173 
2174 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2175 			   hotplug_trigger, dig_hotplug_reg,
2176 			   dev_priv->hotplug.hpd,
2177 			   bxt_port_hotplug_long_detect);
2178 
2179 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2180 }
2181 
2182 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2183 {
2184 	u32 pin_mask = 0, long_mask = 0;
2185 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2186 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2187 	long_pulse_detect_func long_pulse_detect;
2188 
2189 	if (INTEL_GEN(dev_priv) >= 12)
2190 		long_pulse_detect = gen12_port_hotplug_long_detect;
2191 	else
2192 		long_pulse_detect = gen11_port_hotplug_long_detect;
2193 
2194 	if (trigger_tc) {
2195 		u32 dig_hotplug_reg;
2196 
2197 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2198 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2199 
2200 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2201 				   trigger_tc, dig_hotplug_reg,
2202 				   dev_priv->hotplug.hpd,
2203 				   long_pulse_detect);
2204 	}
2205 
2206 	if (trigger_tbt) {
2207 		u32 dig_hotplug_reg;
2208 
2209 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2210 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2211 
2212 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2213 				   trigger_tbt, dig_hotplug_reg,
2214 				   dev_priv->hotplug.hpd,
2215 				   long_pulse_detect);
2216 	}
2217 
2218 	if (pin_mask)
2219 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2220 	else
2221 		drm_err(&dev_priv->drm,
2222 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2223 }
2224 
2225 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2226 {
2227 	u32 mask;
2228 
2229 	if (INTEL_GEN(dev_priv) >= 12)
2230 		return TGL_DE_PORT_AUX_DDIA |
2231 			TGL_DE_PORT_AUX_DDIB |
2232 			TGL_DE_PORT_AUX_DDIC |
2233 			TGL_DE_PORT_AUX_USBC1 |
2234 			TGL_DE_PORT_AUX_USBC2 |
2235 			TGL_DE_PORT_AUX_USBC3 |
2236 			TGL_DE_PORT_AUX_USBC4 |
2237 			TGL_DE_PORT_AUX_USBC5 |
2238 			TGL_DE_PORT_AUX_USBC6;
2239 
2240 
2241 	mask = GEN8_AUX_CHANNEL_A;
2242 	if (INTEL_GEN(dev_priv) >= 9)
2243 		mask |= GEN9_AUX_CHANNEL_B |
2244 			GEN9_AUX_CHANNEL_C |
2245 			GEN9_AUX_CHANNEL_D;
2246 
2247 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2248 		mask |= CNL_AUX_CHANNEL_F;
2249 
2250 	if (IS_GEN(dev_priv, 11))
2251 		mask |= ICL_AUX_CHANNEL_E;
2252 
2253 	return mask;
2254 }
2255 
2256 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2257 {
2258 	if (IS_ROCKETLAKE(dev_priv))
2259 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2260 	else if (INTEL_GEN(dev_priv) >= 11)
2261 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2262 	else if (INTEL_GEN(dev_priv) >= 9)
2263 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2264 	else
2265 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2266 }
2267 
2268 static void
2269 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2270 {
2271 	bool found = false;
2272 
2273 	if (iir & GEN8_DE_MISC_GSE) {
2274 		intel_opregion_asle_intr(dev_priv);
2275 		found = true;
2276 	}
2277 
2278 	if (iir & GEN8_DE_EDP_PSR) {
2279 		u32 psr_iir;
2280 		i915_reg_t iir_reg;
2281 
2282 		if (INTEL_GEN(dev_priv) >= 12)
2283 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2284 		else
2285 			iir_reg = EDP_PSR_IIR;
2286 
2287 		psr_iir = I915_READ(iir_reg);
2288 		I915_WRITE(iir_reg, psr_iir);
2289 
2290 		if (psr_iir)
2291 			found = true;
2292 
2293 		intel_psr_irq_handler(dev_priv, psr_iir);
2294 	}
2295 
2296 	if (!found)
2297 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2298 }
2299 
2300 static irqreturn_t
2301 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2302 {
2303 	irqreturn_t ret = IRQ_NONE;
2304 	u32 iir;
2305 	enum pipe pipe;
2306 
2307 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2308 		iir = I915_READ(GEN8_DE_MISC_IIR);
2309 		if (iir) {
2310 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2311 			ret = IRQ_HANDLED;
2312 			gen8_de_misc_irq_handler(dev_priv, iir);
2313 		} else {
2314 			drm_err(&dev_priv->drm,
2315 				"The master control interrupt lied (DE MISC)!\n");
2316 		}
2317 	}
2318 
2319 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2320 		iir = I915_READ(GEN11_DE_HPD_IIR);
2321 		if (iir) {
2322 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2323 			ret = IRQ_HANDLED;
2324 			gen11_hpd_irq_handler(dev_priv, iir);
2325 		} else {
2326 			drm_err(&dev_priv->drm,
2327 				"The master control interrupt lied, (DE HPD)!\n");
2328 		}
2329 	}
2330 
2331 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2332 		iir = I915_READ(GEN8_DE_PORT_IIR);
2333 		if (iir) {
2334 			u32 tmp_mask;
2335 			bool found = false;
2336 
2337 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2338 			ret = IRQ_HANDLED;
2339 
2340 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2341 				dp_aux_irq_handler(dev_priv);
2342 				found = true;
2343 			}
2344 
2345 			if (IS_GEN9_LP(dev_priv)) {
2346 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2347 				if (tmp_mask) {
2348 					bxt_hpd_irq_handler(dev_priv, tmp_mask);
2349 					found = true;
2350 				}
2351 			} else if (IS_BROADWELL(dev_priv)) {
2352 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2353 				if (tmp_mask) {
2354 					ilk_hpd_irq_handler(dev_priv, tmp_mask);
2355 					found = true;
2356 				}
2357 			}
2358 
2359 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2360 				gmbus_irq_handler(dev_priv);
2361 				found = true;
2362 			}
2363 
2364 			if (!found)
2365 				drm_err(&dev_priv->drm,
2366 					"Unexpected DE Port interrupt\n");
2367 		}
2368 		else
2369 			drm_err(&dev_priv->drm,
2370 				"The master control interrupt lied (DE PORT)!\n");
2371 	}
2372 
2373 	for_each_pipe(dev_priv, pipe) {
2374 		u32 fault_errors;
2375 
2376 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2377 			continue;
2378 
2379 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2380 		if (!iir) {
2381 			drm_err(&dev_priv->drm,
2382 				"The master control interrupt lied (DE PIPE)!\n");
2383 			continue;
2384 		}
2385 
2386 		ret = IRQ_HANDLED;
2387 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2388 
2389 		if (iir & GEN8_PIPE_VBLANK)
2390 			intel_handle_vblank(dev_priv, pipe);
2391 
2392 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2393 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2394 
2395 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2396 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2397 
2398 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2399 		if (fault_errors)
2400 			drm_err(&dev_priv->drm,
2401 				"Fault errors on pipe %c: 0x%08x\n",
2402 				pipe_name(pipe),
2403 				fault_errors);
2404 	}
2405 
2406 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2407 	    master_ctl & GEN8_DE_PCH_IRQ) {
2408 		/*
2409 		 * FIXME(BDW): Assume for now that the new interrupt handling
2410 		 * scheme also closed the SDE interrupt handling race we've seen
2411 		 * on older pch-split platforms. But this needs testing.
2412 		 */
2413 		iir = I915_READ(SDEIIR);
2414 		if (iir) {
2415 			I915_WRITE(SDEIIR, iir);
2416 			ret = IRQ_HANDLED;
2417 
2418 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2419 				icp_irq_handler(dev_priv, iir);
2420 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2421 				spt_irq_handler(dev_priv, iir);
2422 			else
2423 				cpt_irq_handler(dev_priv, iir);
2424 		} else {
2425 			/*
2426 			 * Like on previous PCH there seems to be something
2427 			 * fishy going on with forwarding PCH interrupts.
2428 			 */
2429 			drm_dbg(&dev_priv->drm,
2430 				"The master control interrupt lied (SDE)!\n");
2431 		}
2432 	}
2433 
2434 	return ret;
2435 }
2436 
2437 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2438 {
2439 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2440 
2441 	/*
2442 	 * Now with master disabled, get a sample of level indications
2443 	 * for this interrupt. Indications will be cleared on related acks.
2444 	 * New indications can and will light up during processing,
2445 	 * and will generate new interrupt after enabling master.
2446 	 */
2447 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2448 }
2449 
2450 static inline void gen8_master_intr_enable(void __iomem * const regs)
2451 {
2452 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2453 }
2454 
2455 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2456 {
2457 	struct drm_i915_private *dev_priv = arg;
2458 	void __iomem * const regs = dev_priv->uncore.regs;
2459 	u32 master_ctl;
2460 
2461 	if (!intel_irqs_enabled(dev_priv))
2462 		return IRQ_NONE;
2463 
2464 	master_ctl = gen8_master_intr_disable(regs);
2465 	if (!master_ctl) {
2466 		gen8_master_intr_enable(regs);
2467 		return IRQ_NONE;
2468 	}
2469 
2470 	/* Find, queue (onto bottom-halves), then clear each source */
2471 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2472 
2473 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2474 	if (master_ctl & ~GEN8_GT_IRQS) {
2475 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2476 		gen8_de_irq_handler(dev_priv, master_ctl);
2477 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2478 	}
2479 
2480 	gen8_master_intr_enable(regs);
2481 
2482 	return IRQ_HANDLED;
2483 }
2484 
2485 static u32
2486 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2487 {
2488 	void __iomem * const regs = gt->uncore->regs;
2489 	u32 iir;
2490 
2491 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2492 		return 0;
2493 
2494 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2495 	if (likely(iir))
2496 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2497 
2498 	return iir;
2499 }
2500 
2501 static void
2502 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2503 {
2504 	if (iir & GEN11_GU_MISC_GSE)
2505 		intel_opregion_asle_intr(gt->i915);
2506 }
2507 
2508 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2509 {
2510 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2511 
2512 	/*
2513 	 * Now with master disabled, get a sample of level indications
2514 	 * for this interrupt. Indications will be cleared on related acks.
2515 	 * New indications can and will light up during processing,
2516 	 * and will generate new interrupt after enabling master.
2517 	 */
2518 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2519 }
2520 
2521 static inline void gen11_master_intr_enable(void __iomem * const regs)
2522 {
2523 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2524 }
2525 
2526 static void
2527 gen11_display_irq_handler(struct drm_i915_private *i915)
2528 {
2529 	void __iomem * const regs = i915->uncore.regs;
2530 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2531 
2532 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2533 	/*
2534 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2535 	 * for the display related bits.
2536 	 */
2537 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2538 	gen8_de_irq_handler(i915, disp_ctl);
2539 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2540 		      GEN11_DISPLAY_IRQ_ENABLE);
2541 
2542 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2543 }
2544 
2545 static __always_inline irqreturn_t
2546 __gen11_irq_handler(struct drm_i915_private * const i915,
2547 		    u32 (*intr_disable)(void __iomem * const regs),
2548 		    void (*intr_enable)(void __iomem * const regs))
2549 {
2550 	void __iomem * const regs = i915->uncore.regs;
2551 	struct intel_gt *gt = &i915->gt;
2552 	u32 master_ctl;
2553 	u32 gu_misc_iir;
2554 
2555 	if (!intel_irqs_enabled(i915))
2556 		return IRQ_NONE;
2557 
2558 	master_ctl = intr_disable(regs);
2559 	if (!master_ctl) {
2560 		intr_enable(regs);
2561 		return IRQ_NONE;
2562 	}
2563 
2564 	/* Find, queue (onto bottom-halves), then clear each source */
2565 	gen11_gt_irq_handler(gt, master_ctl);
2566 
2567 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2568 	if (master_ctl & GEN11_DISPLAY_IRQ)
2569 		gen11_display_irq_handler(i915);
2570 
2571 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2572 
2573 	intr_enable(regs);
2574 
2575 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2576 
2577 	return IRQ_HANDLED;
2578 }
2579 
2580 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2581 {
2582 	return __gen11_irq_handler(arg,
2583 				   gen11_master_intr_disable,
2584 				   gen11_master_intr_enable);
2585 }
2586 
2587 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2588 {
2589 	u32 val;
2590 
2591 	/* First disable interrupts */
2592 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2593 
2594 	/* Get the indication levels and ack the master unit */
2595 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2596 	if (unlikely(!val))
2597 		return 0;
2598 
2599 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2600 
2601 	/*
2602 	 * Now with master disabled, get a sample of level indications
2603 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2604 	 * out as this bit doesn't exist anymore for DG1
2605 	 */
2606 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2607 	if (unlikely(!val))
2608 		return 0;
2609 
2610 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2611 
2612 	return val;
2613 }
2614 
2615 static inline void dg1_master_intr_enable(void __iomem * const regs)
2616 {
2617 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2618 }
2619 
2620 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2621 {
2622 	return __gen11_irq_handler(arg,
2623 				   dg1_master_intr_disable_and_ack,
2624 				   dg1_master_intr_enable);
2625 }
2626 
2627 /* Called from drm generic code, passed 'crtc' which
2628  * we use as a pipe index
2629  */
2630 int i8xx_enable_vblank(struct drm_crtc *crtc)
2631 {
2632 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2633 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2634 	unsigned long irqflags;
2635 
2636 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2637 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2638 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639 
2640 	return 0;
2641 }
2642 
2643 int i915gm_enable_vblank(struct drm_crtc *crtc)
2644 {
2645 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2646 
2647 	/*
2648 	 * Vblank interrupts fail to wake the device up from C2+.
2649 	 * Disabling render clock gating during C-states avoids
2650 	 * the problem. There is a small power cost so we do this
2651 	 * only when vblank interrupts are actually enabled.
2652 	 */
2653 	if (dev_priv->vblank_enabled++ == 0)
2654 		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2655 
2656 	return i8xx_enable_vblank(crtc);
2657 }
2658 
2659 int i965_enable_vblank(struct drm_crtc *crtc)
2660 {
2661 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2662 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2663 	unsigned long irqflags;
2664 
2665 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2666 	i915_enable_pipestat(dev_priv, pipe,
2667 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2668 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2669 
2670 	return 0;
2671 }
2672 
2673 int ilk_enable_vblank(struct drm_crtc *crtc)
2674 {
2675 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2676 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2677 	unsigned long irqflags;
2678 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2679 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2680 
2681 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682 	ilk_enable_display_irq(dev_priv, bit);
2683 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2684 
2685 	/* Even though there is no DMC, frame counter can get stuck when
2686 	 * PSR is active as no frames are generated.
2687 	 */
2688 	if (HAS_PSR(dev_priv))
2689 		drm_crtc_vblank_restore(crtc);
2690 
2691 	return 0;
2692 }
2693 
2694 int bdw_enable_vblank(struct drm_crtc *crtc)
2695 {
2696 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2697 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2698 	unsigned long irqflags;
2699 
2700 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2701 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2702 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2703 
2704 	/* Even if there is no DMC, frame counter can get stuck when
2705 	 * PSR is active as no frames are generated, so check only for PSR.
2706 	 */
2707 	if (HAS_PSR(dev_priv))
2708 		drm_crtc_vblank_restore(crtc);
2709 
2710 	return 0;
2711 }
2712 
2713 /* Called from drm generic code, passed 'crtc' which
2714  * we use as a pipe index
2715  */
2716 void i8xx_disable_vblank(struct drm_crtc *crtc)
2717 {
2718 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2719 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2720 	unsigned long irqflags;
2721 
2722 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2723 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2724 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2725 }
2726 
2727 void i915gm_disable_vblank(struct drm_crtc *crtc)
2728 {
2729 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2730 
2731 	i8xx_disable_vblank(crtc);
2732 
2733 	if (--dev_priv->vblank_enabled == 0)
2734 		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2735 }
2736 
2737 void i965_disable_vblank(struct drm_crtc *crtc)
2738 {
2739 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2740 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2741 	unsigned long irqflags;
2742 
2743 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744 	i915_disable_pipestat(dev_priv, pipe,
2745 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2746 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2747 }
2748 
2749 void ilk_disable_vblank(struct drm_crtc *crtc)
2750 {
2751 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2752 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2753 	unsigned long irqflags;
2754 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2755 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2756 
2757 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2758 	ilk_disable_display_irq(dev_priv, bit);
2759 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2760 }
2761 
2762 void bdw_disable_vblank(struct drm_crtc *crtc)
2763 {
2764 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2765 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2766 	unsigned long irqflags;
2767 
2768 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2769 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2770 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771 }
2772 
2773 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2774 {
2775 	struct intel_uncore *uncore = &dev_priv->uncore;
2776 
2777 	if (HAS_PCH_NOP(dev_priv))
2778 		return;
2779 
2780 	GEN3_IRQ_RESET(uncore, SDE);
2781 
2782 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2783 		I915_WRITE(SERR_INT, 0xffffffff);
2784 }
2785 
2786 /*
2787  * SDEIER is also touched by the interrupt handler to work around missed PCH
2788  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2789  * instead we unconditionally enable all PCH interrupt sources here, but then
2790  * only unmask them as needed with SDEIMR.
2791  *
2792  * This function needs to be called before interrupts are enabled.
2793  */
2794 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2795 {
2796 	if (HAS_PCH_NOP(dev_priv))
2797 		return;
2798 
2799 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2800 	I915_WRITE(SDEIER, 0xffffffff);
2801 	POSTING_READ(SDEIER);
2802 }
2803 
2804 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2805 {
2806 	struct intel_uncore *uncore = &dev_priv->uncore;
2807 
2808 	if (IS_CHERRYVIEW(dev_priv))
2809 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2810 	else
2811 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2812 
2813 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2814 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2815 
2816 	i9xx_pipestat_irq_reset(dev_priv);
2817 
2818 	GEN3_IRQ_RESET(uncore, VLV_);
2819 	dev_priv->irq_mask = ~0u;
2820 }
2821 
2822 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2823 {
2824 	struct intel_uncore *uncore = &dev_priv->uncore;
2825 
2826 	u32 pipestat_mask;
2827 	u32 enable_mask;
2828 	enum pipe pipe;
2829 
2830 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2831 
2832 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2833 	for_each_pipe(dev_priv, pipe)
2834 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2835 
2836 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2837 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2838 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2839 		I915_LPE_PIPE_A_INTERRUPT |
2840 		I915_LPE_PIPE_B_INTERRUPT;
2841 
2842 	if (IS_CHERRYVIEW(dev_priv))
2843 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2844 			I915_LPE_PIPE_C_INTERRUPT;
2845 
2846 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2847 
2848 	dev_priv->irq_mask = ~enable_mask;
2849 
2850 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2851 }
2852 
2853 /* drm_dma.h hooks
2854 */
2855 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2856 {
2857 	struct intel_uncore *uncore = &dev_priv->uncore;
2858 
2859 	GEN3_IRQ_RESET(uncore, DE);
2860 	if (IS_GEN(dev_priv, 7))
2861 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2862 
2863 	if (IS_HASWELL(dev_priv)) {
2864 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2865 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2866 	}
2867 
2868 	gen5_gt_irq_reset(&dev_priv->gt);
2869 
2870 	ibx_irq_reset(dev_priv);
2871 }
2872 
2873 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2874 {
2875 	I915_WRITE(VLV_MASTER_IER, 0);
2876 	POSTING_READ(VLV_MASTER_IER);
2877 
2878 	gen5_gt_irq_reset(&dev_priv->gt);
2879 
2880 	spin_lock_irq(&dev_priv->irq_lock);
2881 	if (dev_priv->display_irqs_enabled)
2882 		vlv_display_irq_reset(dev_priv);
2883 	spin_unlock_irq(&dev_priv->irq_lock);
2884 }
2885 
2886 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2887 {
2888 	struct intel_uncore *uncore = &dev_priv->uncore;
2889 	enum pipe pipe;
2890 
2891 	gen8_master_intr_disable(dev_priv->uncore.regs);
2892 
2893 	gen8_gt_irq_reset(&dev_priv->gt);
2894 
2895 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2896 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2897 
2898 	for_each_pipe(dev_priv, pipe)
2899 		if (intel_display_power_is_enabled(dev_priv,
2900 						   POWER_DOMAIN_PIPE(pipe)))
2901 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2902 
2903 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2904 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2905 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2906 
2907 	if (HAS_PCH_SPLIT(dev_priv))
2908 		ibx_irq_reset(dev_priv);
2909 }
2910 
2911 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2912 {
2913 	struct intel_uncore *uncore = &dev_priv->uncore;
2914 	enum pipe pipe;
2915 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
2916 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
2917 
2918 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2919 
2920 	if (INTEL_GEN(dev_priv) >= 12) {
2921 		enum transcoder trans;
2922 
2923 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
2924 			enum intel_display_power_domain domain;
2925 
2926 			domain = POWER_DOMAIN_TRANSCODER(trans);
2927 			if (!intel_display_power_is_enabled(dev_priv, domain))
2928 				continue;
2929 
2930 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2931 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2932 		}
2933 	} else {
2934 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2935 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2936 	}
2937 
2938 	for_each_pipe(dev_priv, pipe)
2939 		if (intel_display_power_is_enabled(dev_priv,
2940 						   POWER_DOMAIN_PIPE(pipe)))
2941 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2942 
2943 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2944 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2945 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2946 
2947 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2948 		GEN3_IRQ_RESET(uncore, SDE);
2949 
2950 	/* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
2951 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
2952 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2953 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2954 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2955 				 SBCLK_RUN_REFCLK_DIS, 0);
2956 	}
2957 }
2958 
2959 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2960 {
2961 	struct intel_uncore *uncore = &dev_priv->uncore;
2962 
2963 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
2964 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
2965 	else
2966 		gen11_master_intr_disable(dev_priv->uncore.regs);
2967 
2968 	gen11_gt_irq_reset(&dev_priv->gt);
2969 	gen11_display_irq_reset(dev_priv);
2970 
2971 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2972 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2973 }
2974 
2975 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2976 				     u8 pipe_mask)
2977 {
2978 	struct intel_uncore *uncore = &dev_priv->uncore;
2979 
2980 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2981 	enum pipe pipe;
2982 
2983 	spin_lock_irq(&dev_priv->irq_lock);
2984 
2985 	if (!intel_irqs_enabled(dev_priv)) {
2986 		spin_unlock_irq(&dev_priv->irq_lock);
2987 		return;
2988 	}
2989 
2990 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2991 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2992 				  dev_priv->de_irq_mask[pipe],
2993 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2994 
2995 	spin_unlock_irq(&dev_priv->irq_lock);
2996 }
2997 
2998 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2999 				     u8 pipe_mask)
3000 {
3001 	struct intel_uncore *uncore = &dev_priv->uncore;
3002 	enum pipe pipe;
3003 
3004 	spin_lock_irq(&dev_priv->irq_lock);
3005 
3006 	if (!intel_irqs_enabled(dev_priv)) {
3007 		spin_unlock_irq(&dev_priv->irq_lock);
3008 		return;
3009 	}
3010 
3011 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3012 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3013 
3014 	spin_unlock_irq(&dev_priv->irq_lock);
3015 
3016 	/* make sure we're done processing display irqs */
3017 	intel_synchronize_irq(dev_priv);
3018 }
3019 
3020 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3021 {
3022 	struct intel_uncore *uncore = &dev_priv->uncore;
3023 
3024 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3025 	POSTING_READ(GEN8_MASTER_IRQ);
3026 
3027 	gen8_gt_irq_reset(&dev_priv->gt);
3028 
3029 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3030 
3031 	spin_lock_irq(&dev_priv->irq_lock);
3032 	if (dev_priv->display_irqs_enabled)
3033 		vlv_display_irq_reset(dev_priv);
3034 	spin_unlock_irq(&dev_priv->irq_lock);
3035 }
3036 
3037 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3038 				  const u32 hpd[HPD_NUM_PINS])
3039 {
3040 	struct intel_encoder *encoder;
3041 	u32 enabled_irqs = 0;
3042 
3043 	for_each_intel_encoder(&dev_priv->drm, encoder)
3044 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3045 			enabled_irqs |= hpd[encoder->hpd_pin];
3046 
3047 	return enabled_irqs;
3048 }
3049 
3050 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3051 {
3052 	u32 hotplug;
3053 
3054 	/*
3055 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3056 	 * duration to 2ms (which is the minimum in the Display Port spec).
3057 	 * The pulse duration bits are reserved on LPT+.
3058 	 */
3059 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3060 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3061 		     PORTC_PULSE_DURATION_MASK |
3062 		     PORTD_PULSE_DURATION_MASK);
3063 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3064 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3066 	/*
3067 	 * When CPU and PCH are on the same package, port A
3068 	 * HPD must be enabled in both north and south.
3069 	 */
3070 	if (HAS_PCH_LPT_LP(dev_priv))
3071 		hotplug |= PORTA_HOTPLUG_ENABLE;
3072 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3073 }
3074 
3075 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3076 {
3077 	u32 hotplug_irqs, enabled_irqs;
3078 
3079 	if (HAS_PCH_IBX(dev_priv))
3080 		hotplug_irqs = SDE_HOTPLUG_MASK;
3081 	else
3082 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3083 
3084 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3085 
3086 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3087 
3088 	ibx_hpd_detection_setup(dev_priv);
3089 }
3090 
3091 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3092 				    u32 ddi_hotplug_enable_mask,
3093 				    u32 tc_hotplug_enable_mask)
3094 {
3095 	u32 hotplug;
3096 
3097 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3098 	hotplug |= ddi_hotplug_enable_mask;
3099 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3100 
3101 	if (tc_hotplug_enable_mask) {
3102 		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3103 		hotplug |= tc_hotplug_enable_mask;
3104 		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3105 	}
3106 }
3107 
3108 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3109 			      u32 sde_ddi_mask, u32 sde_tc_mask,
3110 			      u32 ddi_enable_mask, u32 tc_enable_mask)
3111 {
3112 	u32 hotplug_irqs, enabled_irqs;
3113 
3114 	hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3115 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3116 
3117 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3118 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3119 
3120 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3121 
3122 	icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3123 }
3124 
3125 /*
3126  * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3127  * equivalent of SDE.
3128  */
3129 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3130 {
3131 	icp_hpd_irq_setup(dev_priv,
3132 			  SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3133 			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3134 }
3135 
3136 /*
3137  * JSP behaves exactly the same as MCC above except that port C is mapped to
3138  * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3139  * masks & tables rather than ICP's masks & tables.
3140  */
3141 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3142 {
3143 	icp_hpd_irq_setup(dev_priv,
3144 			  SDE_DDI_MASK_TGP, 0,
3145 			  TGP_DDI_HPD_ENABLE_MASK, 0);
3146 }
3147 
3148 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3149 {
3150 	u32 hotplug;
3151 
3152 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3153 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3154 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3155 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3156 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3157 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3158 
3159 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3160 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3161 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3162 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3163 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3164 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3165 }
3166 
3167 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3168 {
3169 	u32 hotplug_irqs, enabled_irqs;
3170 	u32 val;
3171 
3172 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3173 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3174 
3175 	val = I915_READ(GEN11_DE_HPD_IMR);
3176 	val &= ~hotplug_irqs;
3177 	val |= ~enabled_irqs & hotplug_irqs;
3178 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3179 	POSTING_READ(GEN11_DE_HPD_IMR);
3180 
3181 	gen11_hpd_detection_setup(dev_priv);
3182 
3183 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3184 		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3185 				  TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3186 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3187 		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3188 				  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3189 }
3190 
3191 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3192 {
3193 	u32 val, hotplug;
3194 
3195 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3196 	if (HAS_PCH_CNP(dev_priv)) {
3197 		val = I915_READ(SOUTH_CHICKEN1);
3198 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3199 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3200 		I915_WRITE(SOUTH_CHICKEN1, val);
3201 	}
3202 
3203 	/* Enable digital hotplug on the PCH */
3204 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3205 	hotplug |= PORTA_HOTPLUG_ENABLE |
3206 		   PORTB_HOTPLUG_ENABLE |
3207 		   PORTC_HOTPLUG_ENABLE |
3208 		   PORTD_HOTPLUG_ENABLE;
3209 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3210 
3211 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3212 	hotplug |= PORTE_HOTPLUG_ENABLE;
3213 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3214 }
3215 
3216 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3217 {
3218 	u32 hotplug_irqs, enabled_irqs;
3219 
3220 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3221 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3222 
3223 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3224 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3225 
3226 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3227 
3228 	spt_hpd_detection_setup(dev_priv);
3229 }
3230 
3231 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3232 {
3233 	u32 hotplug;
3234 
3235 	/*
3236 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3237 	 * duration to 2ms (which is the minimum in the Display Port spec)
3238 	 * The pulse duration bits are reserved on HSW+.
3239 	 */
3240 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3241 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3242 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3243 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3244 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3245 }
3246 
3247 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3248 {
3249 	u32 hotplug_irqs, enabled_irqs;
3250 
3251 	if (INTEL_GEN(dev_priv) >= 8) {
3252 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3253 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3254 
3255 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3256 	} else if (INTEL_GEN(dev_priv) >= 7) {
3257 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3258 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3259 
3260 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3261 	} else {
3262 		hotplug_irqs = DE_DP_A_HOTPLUG;
3263 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3264 
3265 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3266 	}
3267 
3268 	ilk_hpd_detection_setup(dev_priv);
3269 
3270 	ibx_hpd_irq_setup(dev_priv);
3271 }
3272 
3273 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3274 				      u32 enabled_irqs)
3275 {
3276 	u32 hotplug;
3277 
3278 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3279 	hotplug |= PORTA_HOTPLUG_ENABLE |
3280 		   PORTB_HOTPLUG_ENABLE |
3281 		   PORTC_HOTPLUG_ENABLE;
3282 
3283 	drm_dbg_kms(&dev_priv->drm,
3284 		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3285 		    hotplug, enabled_irqs);
3286 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3287 
3288 	/*
3289 	 * For BXT invert bit has to be set based on AOB design
3290 	 * for HPD detection logic, update it based on VBT fields.
3291 	 */
3292 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3293 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3294 		hotplug |= BXT_DDIA_HPD_INVERT;
3295 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3296 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3297 		hotplug |= BXT_DDIB_HPD_INVERT;
3298 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3299 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3300 		hotplug |= BXT_DDIC_HPD_INVERT;
3301 
3302 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3303 }
3304 
3305 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3306 {
3307 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3308 }
3309 
3310 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3311 {
3312 	u32 hotplug_irqs, enabled_irqs;
3313 
3314 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3315 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3316 
3317 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3318 
3319 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3320 }
3321 
3322 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3323 {
3324 	u32 mask;
3325 
3326 	if (HAS_PCH_NOP(dev_priv))
3327 		return;
3328 
3329 	if (HAS_PCH_IBX(dev_priv))
3330 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3331 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3332 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3333 	else
3334 		mask = SDE_GMBUS_CPT;
3335 
3336 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3337 	I915_WRITE(SDEIMR, ~mask);
3338 
3339 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3340 	    HAS_PCH_LPT(dev_priv))
3341 		ibx_hpd_detection_setup(dev_priv);
3342 	else
3343 		spt_hpd_detection_setup(dev_priv);
3344 }
3345 
3346 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3347 {
3348 	struct intel_uncore *uncore = &dev_priv->uncore;
3349 	u32 display_mask, extra_mask;
3350 
3351 	if (INTEL_GEN(dev_priv) >= 7) {
3352 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3353 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3354 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3355 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3356 			      DE_DP_A_HOTPLUG_IVB);
3357 	} else {
3358 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3359 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3360 				DE_PIPEA_CRC_DONE | DE_POISON);
3361 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3362 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3363 			      DE_DP_A_HOTPLUG);
3364 	}
3365 
3366 	if (IS_HASWELL(dev_priv)) {
3367 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3368 		display_mask |= DE_EDP_PSR_INT_HSW;
3369 	}
3370 
3371 	dev_priv->irq_mask = ~display_mask;
3372 
3373 	ibx_irq_pre_postinstall(dev_priv);
3374 
3375 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3376 		      display_mask | extra_mask);
3377 
3378 	gen5_gt_irq_postinstall(&dev_priv->gt);
3379 
3380 	ilk_hpd_detection_setup(dev_priv);
3381 
3382 	ibx_irq_postinstall(dev_priv);
3383 
3384 	if (IS_IRONLAKE_M(dev_priv)) {
3385 		/* Enable PCU event interrupts
3386 		 *
3387 		 * spinlocking not required here for correctness since interrupt
3388 		 * setup is guaranteed to run in single-threaded context. But we
3389 		 * need it to make the assert_spin_locked happy. */
3390 		spin_lock_irq(&dev_priv->irq_lock);
3391 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3392 		spin_unlock_irq(&dev_priv->irq_lock);
3393 	}
3394 }
3395 
3396 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3397 {
3398 	lockdep_assert_held(&dev_priv->irq_lock);
3399 
3400 	if (dev_priv->display_irqs_enabled)
3401 		return;
3402 
3403 	dev_priv->display_irqs_enabled = true;
3404 
3405 	if (intel_irqs_enabled(dev_priv)) {
3406 		vlv_display_irq_reset(dev_priv);
3407 		vlv_display_irq_postinstall(dev_priv);
3408 	}
3409 }
3410 
3411 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3412 {
3413 	lockdep_assert_held(&dev_priv->irq_lock);
3414 
3415 	if (!dev_priv->display_irqs_enabled)
3416 		return;
3417 
3418 	dev_priv->display_irqs_enabled = false;
3419 
3420 	if (intel_irqs_enabled(dev_priv))
3421 		vlv_display_irq_reset(dev_priv);
3422 }
3423 
3424 
3425 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427 	gen5_gt_irq_postinstall(&dev_priv->gt);
3428 
3429 	spin_lock_irq(&dev_priv->irq_lock);
3430 	if (dev_priv->display_irqs_enabled)
3431 		vlv_display_irq_postinstall(dev_priv);
3432 	spin_unlock_irq(&dev_priv->irq_lock);
3433 
3434 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3435 	POSTING_READ(VLV_MASTER_IER);
3436 }
3437 
3438 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3439 {
3440 	struct intel_uncore *uncore = &dev_priv->uncore;
3441 
3442 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3443 		GEN8_PIPE_CDCLK_CRC_DONE;
3444 	u32 de_pipe_enables;
3445 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3446 	u32 de_port_enables;
3447 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3448 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3449 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3450 	enum pipe pipe;
3451 
3452 	if (INTEL_GEN(dev_priv) <= 10)
3453 		de_misc_masked |= GEN8_DE_MISC_GSE;
3454 
3455 	if (IS_GEN9_LP(dev_priv))
3456 		de_port_masked |= BXT_DE_PORT_GMBUS;
3457 
3458 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3459 					   GEN8_PIPE_FIFO_UNDERRUN;
3460 
3461 	de_port_enables = de_port_masked;
3462 	if (IS_GEN9_LP(dev_priv))
3463 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3464 	else if (IS_BROADWELL(dev_priv))
3465 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3466 
3467 	if (INTEL_GEN(dev_priv) >= 12) {
3468 		enum transcoder trans;
3469 
3470 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3471 			enum intel_display_power_domain domain;
3472 
3473 			domain = POWER_DOMAIN_TRANSCODER(trans);
3474 			if (!intel_display_power_is_enabled(dev_priv, domain))
3475 				continue;
3476 
3477 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3478 		}
3479 	} else {
3480 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3481 	}
3482 
3483 	for_each_pipe(dev_priv, pipe) {
3484 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3485 
3486 		if (intel_display_power_is_enabled(dev_priv,
3487 				POWER_DOMAIN_PIPE(pipe)))
3488 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3489 					  dev_priv->de_irq_mask[pipe],
3490 					  de_pipe_enables);
3491 	}
3492 
3493 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3494 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3495 
3496 	if (INTEL_GEN(dev_priv) >= 11) {
3497 		u32 de_hpd_masked = 0;
3498 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3499 				     GEN11_DE_TBT_HOTPLUG_MASK;
3500 
3501 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3502 			      de_hpd_enables);
3503 		gen11_hpd_detection_setup(dev_priv);
3504 	} else if (IS_GEN9_LP(dev_priv)) {
3505 		bxt_hpd_detection_setup(dev_priv);
3506 	} else if (IS_BROADWELL(dev_priv)) {
3507 		ilk_hpd_detection_setup(dev_priv);
3508 	}
3509 }
3510 
3511 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3512 {
3513 	if (HAS_PCH_SPLIT(dev_priv))
3514 		ibx_irq_pre_postinstall(dev_priv);
3515 
3516 	gen8_gt_irq_postinstall(&dev_priv->gt);
3517 	gen8_de_irq_postinstall(dev_priv);
3518 
3519 	if (HAS_PCH_SPLIT(dev_priv))
3520 		ibx_irq_postinstall(dev_priv);
3521 
3522 	gen8_master_intr_enable(dev_priv->uncore.regs);
3523 }
3524 
3525 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3526 {
3527 	u32 mask = SDE_GMBUS_ICP;
3528 
3529 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3530 	I915_WRITE(SDEIER, 0xffffffff);
3531 	POSTING_READ(SDEIER);
3532 
3533 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3534 	I915_WRITE(SDEIMR, ~mask);
3535 
3536 	if (HAS_PCH_TGP(dev_priv))
3537 		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3538 					TGP_TC_HPD_ENABLE_MASK);
3539 	else if (HAS_PCH_JSP(dev_priv))
3540 		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3541 	else if (HAS_PCH_MCC(dev_priv))
3542 		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3543 					ICP_TC_HPD_ENABLE(PORT_TC1));
3544 	else
3545 		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3546 					ICP_TC_HPD_ENABLE_MASK);
3547 }
3548 
3549 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3550 {
3551 	struct intel_uncore *uncore = &dev_priv->uncore;
3552 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3553 
3554 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3555 		icp_irq_postinstall(dev_priv);
3556 
3557 	gen11_gt_irq_postinstall(&dev_priv->gt);
3558 	gen8_de_irq_postinstall(dev_priv);
3559 
3560 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3561 
3562 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3563 
3564 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3565 		dg1_master_intr_enable(uncore->regs);
3566 		POSTING_READ(DG1_MSTR_UNIT_INTR);
3567 	} else {
3568 		gen11_master_intr_enable(uncore->regs);
3569 		POSTING_READ(GEN11_GFX_MSTR_IRQ);
3570 	}
3571 }
3572 
3573 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3574 {
3575 	gen8_gt_irq_postinstall(&dev_priv->gt);
3576 
3577 	spin_lock_irq(&dev_priv->irq_lock);
3578 	if (dev_priv->display_irqs_enabled)
3579 		vlv_display_irq_postinstall(dev_priv);
3580 	spin_unlock_irq(&dev_priv->irq_lock);
3581 
3582 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3583 	POSTING_READ(GEN8_MASTER_IRQ);
3584 }
3585 
3586 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3587 {
3588 	struct intel_uncore *uncore = &dev_priv->uncore;
3589 
3590 	i9xx_pipestat_irq_reset(dev_priv);
3591 
3592 	GEN2_IRQ_RESET(uncore);
3593 }
3594 
3595 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3596 {
3597 	struct intel_uncore *uncore = &dev_priv->uncore;
3598 	u16 enable_mask;
3599 
3600 	intel_uncore_write16(uncore,
3601 			     EMR,
3602 			     ~(I915_ERROR_PAGE_TABLE |
3603 			       I915_ERROR_MEMORY_REFRESH));
3604 
3605 	/* Unmask the interrupts that we always want on. */
3606 	dev_priv->irq_mask =
3607 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3608 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3609 		  I915_MASTER_ERROR_INTERRUPT);
3610 
3611 	enable_mask =
3612 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3613 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3614 		I915_MASTER_ERROR_INTERRUPT |
3615 		I915_USER_INTERRUPT;
3616 
3617 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3618 
3619 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3620 	 * just to make the assert_spin_locked check happy. */
3621 	spin_lock_irq(&dev_priv->irq_lock);
3622 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3623 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3624 	spin_unlock_irq(&dev_priv->irq_lock);
3625 }
3626 
3627 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3628 			       u16 *eir, u16 *eir_stuck)
3629 {
3630 	struct intel_uncore *uncore = &i915->uncore;
3631 	u16 emr;
3632 
3633 	*eir = intel_uncore_read16(uncore, EIR);
3634 
3635 	if (*eir)
3636 		intel_uncore_write16(uncore, EIR, *eir);
3637 
3638 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3639 	if (*eir_stuck == 0)
3640 		return;
3641 
3642 	/*
3643 	 * Toggle all EMR bits to make sure we get an edge
3644 	 * in the ISR master error bit if we don't clear
3645 	 * all the EIR bits. Otherwise the edge triggered
3646 	 * IIR on i965/g4x wouldn't notice that an interrupt
3647 	 * is still pending. Also some EIR bits can't be
3648 	 * cleared except by handling the underlying error
3649 	 * (or by a GPU reset) so we mask any bit that
3650 	 * remains set.
3651 	 */
3652 	emr = intel_uncore_read16(uncore, EMR);
3653 	intel_uncore_write16(uncore, EMR, 0xffff);
3654 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3655 }
3656 
3657 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3658 				   u16 eir, u16 eir_stuck)
3659 {
3660 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3661 
3662 	if (eir_stuck)
3663 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3664 			eir_stuck);
3665 }
3666 
3667 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3668 			       u32 *eir, u32 *eir_stuck)
3669 {
3670 	u32 emr;
3671 
3672 	*eir = I915_READ(EIR);
3673 
3674 	I915_WRITE(EIR, *eir);
3675 
3676 	*eir_stuck = I915_READ(EIR);
3677 	if (*eir_stuck == 0)
3678 		return;
3679 
3680 	/*
3681 	 * Toggle all EMR bits to make sure we get an edge
3682 	 * in the ISR master error bit if we don't clear
3683 	 * all the EIR bits. Otherwise the edge triggered
3684 	 * IIR on i965/g4x wouldn't notice that an interrupt
3685 	 * is still pending. Also some EIR bits can't be
3686 	 * cleared except by handling the underlying error
3687 	 * (or by a GPU reset) so we mask any bit that
3688 	 * remains set.
3689 	 */
3690 	emr = I915_READ(EMR);
3691 	I915_WRITE(EMR, 0xffffffff);
3692 	I915_WRITE(EMR, emr | *eir_stuck);
3693 }
3694 
3695 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3696 				   u32 eir, u32 eir_stuck)
3697 {
3698 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3699 
3700 	if (eir_stuck)
3701 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3702 			eir_stuck);
3703 }
3704 
3705 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3706 {
3707 	struct drm_i915_private *dev_priv = arg;
3708 	irqreturn_t ret = IRQ_NONE;
3709 
3710 	if (!intel_irqs_enabled(dev_priv))
3711 		return IRQ_NONE;
3712 
3713 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3714 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3715 
3716 	do {
3717 		u32 pipe_stats[I915_MAX_PIPES] = {};
3718 		u16 eir = 0, eir_stuck = 0;
3719 		u16 iir;
3720 
3721 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3722 		if (iir == 0)
3723 			break;
3724 
3725 		ret = IRQ_HANDLED;
3726 
3727 		/* Call regardless, as some status bits might not be
3728 		 * signalled in iir */
3729 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3730 
3731 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3732 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3733 
3734 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3735 
3736 		if (iir & I915_USER_INTERRUPT)
3737 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3738 
3739 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3740 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3741 
3742 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3743 	} while (0);
3744 
3745 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3746 
3747 	return ret;
3748 }
3749 
3750 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3751 {
3752 	struct intel_uncore *uncore = &dev_priv->uncore;
3753 
3754 	if (I915_HAS_HOTPLUG(dev_priv)) {
3755 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3756 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3757 	}
3758 
3759 	i9xx_pipestat_irq_reset(dev_priv);
3760 
3761 	GEN3_IRQ_RESET(uncore, GEN2_);
3762 }
3763 
3764 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3765 {
3766 	struct intel_uncore *uncore = &dev_priv->uncore;
3767 	u32 enable_mask;
3768 
3769 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3770 			  I915_ERROR_MEMORY_REFRESH));
3771 
3772 	/* Unmask the interrupts that we always want on. */
3773 	dev_priv->irq_mask =
3774 		~(I915_ASLE_INTERRUPT |
3775 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3776 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3777 		  I915_MASTER_ERROR_INTERRUPT);
3778 
3779 	enable_mask =
3780 		I915_ASLE_INTERRUPT |
3781 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3782 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3783 		I915_MASTER_ERROR_INTERRUPT |
3784 		I915_USER_INTERRUPT;
3785 
3786 	if (I915_HAS_HOTPLUG(dev_priv)) {
3787 		/* Enable in IER... */
3788 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3789 		/* and unmask in IMR */
3790 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3791 	}
3792 
3793 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3794 
3795 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3796 	 * just to make the assert_spin_locked check happy. */
3797 	spin_lock_irq(&dev_priv->irq_lock);
3798 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3799 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3800 	spin_unlock_irq(&dev_priv->irq_lock);
3801 
3802 	i915_enable_asle_pipestat(dev_priv);
3803 }
3804 
3805 static irqreturn_t i915_irq_handler(int irq, void *arg)
3806 {
3807 	struct drm_i915_private *dev_priv = arg;
3808 	irqreturn_t ret = IRQ_NONE;
3809 
3810 	if (!intel_irqs_enabled(dev_priv))
3811 		return IRQ_NONE;
3812 
3813 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3814 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3815 
3816 	do {
3817 		u32 pipe_stats[I915_MAX_PIPES] = {};
3818 		u32 eir = 0, eir_stuck = 0;
3819 		u32 hotplug_status = 0;
3820 		u32 iir;
3821 
3822 		iir = I915_READ(GEN2_IIR);
3823 		if (iir == 0)
3824 			break;
3825 
3826 		ret = IRQ_HANDLED;
3827 
3828 		if (I915_HAS_HOTPLUG(dev_priv) &&
3829 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3830 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3831 
3832 		/* Call regardless, as some status bits might not be
3833 		 * signalled in iir */
3834 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3835 
3836 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3837 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3838 
3839 		I915_WRITE(GEN2_IIR, iir);
3840 
3841 		if (iir & I915_USER_INTERRUPT)
3842 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3843 
3844 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3845 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3846 
3847 		if (hotplug_status)
3848 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3849 
3850 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3851 	} while (0);
3852 
3853 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3854 
3855 	return ret;
3856 }
3857 
3858 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3859 {
3860 	struct intel_uncore *uncore = &dev_priv->uncore;
3861 
3862 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3863 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3864 
3865 	i9xx_pipestat_irq_reset(dev_priv);
3866 
3867 	GEN3_IRQ_RESET(uncore, GEN2_);
3868 }
3869 
3870 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3871 {
3872 	struct intel_uncore *uncore = &dev_priv->uncore;
3873 	u32 enable_mask;
3874 	u32 error_mask;
3875 
3876 	/*
3877 	 * Enable some error detection, note the instruction error mask
3878 	 * bit is reserved, so we leave it masked.
3879 	 */
3880 	if (IS_G4X(dev_priv)) {
3881 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3882 			       GM45_ERROR_MEM_PRIV |
3883 			       GM45_ERROR_CP_PRIV |
3884 			       I915_ERROR_MEMORY_REFRESH);
3885 	} else {
3886 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3887 			       I915_ERROR_MEMORY_REFRESH);
3888 	}
3889 	I915_WRITE(EMR, error_mask);
3890 
3891 	/* Unmask the interrupts that we always want on. */
3892 	dev_priv->irq_mask =
3893 		~(I915_ASLE_INTERRUPT |
3894 		  I915_DISPLAY_PORT_INTERRUPT |
3895 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3896 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3897 		  I915_MASTER_ERROR_INTERRUPT);
3898 
3899 	enable_mask =
3900 		I915_ASLE_INTERRUPT |
3901 		I915_DISPLAY_PORT_INTERRUPT |
3902 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3903 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3904 		I915_MASTER_ERROR_INTERRUPT |
3905 		I915_USER_INTERRUPT;
3906 
3907 	if (IS_G4X(dev_priv))
3908 		enable_mask |= I915_BSD_USER_INTERRUPT;
3909 
3910 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3911 
3912 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3913 	 * just to make the assert_spin_locked check happy. */
3914 	spin_lock_irq(&dev_priv->irq_lock);
3915 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3916 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3917 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3918 	spin_unlock_irq(&dev_priv->irq_lock);
3919 
3920 	i915_enable_asle_pipestat(dev_priv);
3921 }
3922 
3923 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3924 {
3925 	u32 hotplug_en;
3926 
3927 	lockdep_assert_held(&dev_priv->irq_lock);
3928 
3929 	/* Note HDMI and DP share hotplug bits */
3930 	/* enable bits are the same for all generations */
3931 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3932 	/* Programming the CRT detection parameters tends
3933 	   to generate a spurious hotplug event about three
3934 	   seconds later.  So just do it once.
3935 	*/
3936 	if (IS_G4X(dev_priv))
3937 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3938 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3939 
3940 	/* Ignore TV since it's buggy */
3941 	i915_hotplug_interrupt_update_locked(dev_priv,
3942 					     HOTPLUG_INT_EN_MASK |
3943 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3944 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3945 					     hotplug_en);
3946 }
3947 
3948 static irqreturn_t i965_irq_handler(int irq, void *arg)
3949 {
3950 	struct drm_i915_private *dev_priv = arg;
3951 	irqreturn_t ret = IRQ_NONE;
3952 
3953 	if (!intel_irqs_enabled(dev_priv))
3954 		return IRQ_NONE;
3955 
3956 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3957 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3958 
3959 	do {
3960 		u32 pipe_stats[I915_MAX_PIPES] = {};
3961 		u32 eir = 0, eir_stuck = 0;
3962 		u32 hotplug_status = 0;
3963 		u32 iir;
3964 
3965 		iir = I915_READ(GEN2_IIR);
3966 		if (iir == 0)
3967 			break;
3968 
3969 		ret = IRQ_HANDLED;
3970 
3971 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3972 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3973 
3974 		/* Call regardless, as some status bits might not be
3975 		 * signalled in iir */
3976 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3977 
3978 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3979 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3980 
3981 		I915_WRITE(GEN2_IIR, iir);
3982 
3983 		if (iir & I915_USER_INTERRUPT)
3984 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3985 
3986 		if (iir & I915_BSD_USER_INTERRUPT)
3987 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3988 
3989 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3990 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3991 
3992 		if (hotplug_status)
3993 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3994 
3995 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3996 	} while (0);
3997 
3998 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3999 
4000 	return ret;
4001 }
4002 
4003 /**
4004  * intel_irq_init - initializes irq support
4005  * @dev_priv: i915 device instance
4006  *
4007  * This function initializes all the irq support including work items, timers
4008  * and all the vtables. It does not setup the interrupt itself though.
4009  */
4010 void intel_irq_init(struct drm_i915_private *dev_priv)
4011 {
4012 	struct drm_device *dev = &dev_priv->drm;
4013 	int i;
4014 
4015 	intel_hpd_init_pins(dev_priv);
4016 
4017 	intel_hpd_init_work(dev_priv);
4018 
4019 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4020 	for (i = 0; i < MAX_L3_SLICES; ++i)
4021 		dev_priv->l3_parity.remap_info[i] = NULL;
4022 
4023 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4024 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4025 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4026 
4027 	dev->vblank_disable_immediate = true;
4028 
4029 	/* Most platforms treat the display irq block as an always-on
4030 	 * power domain. vlv/chv can disable it at runtime and need
4031 	 * special care to avoid writing any of the display block registers
4032 	 * outside of the power domain. We defer setting up the display irqs
4033 	 * in this case to the runtime pm.
4034 	 */
4035 	dev_priv->display_irqs_enabled = true;
4036 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4037 		dev_priv->display_irqs_enabled = false;
4038 
4039 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4040 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4041 	 * detection, as short HPD storms will occur as a natural part of
4042 	 * sideband messaging with MST.
4043 	 * On older platforms however, IRQ storms can occur with both long and
4044 	 * short pulses, as seen on some G4x systems.
4045 	 */
4046 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4047 
4048 	if (HAS_GMCH(dev_priv)) {
4049 		if (I915_HAS_HOTPLUG(dev_priv))
4050 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4051 	} else {
4052 		if (HAS_PCH_JSP(dev_priv))
4053 			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
4054 		else if (HAS_PCH_MCC(dev_priv))
4055 			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4056 		else if (INTEL_GEN(dev_priv) >= 11)
4057 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4058 		else if (IS_GEN9_LP(dev_priv))
4059 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4060 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4061 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4062 		else
4063 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4064 	}
4065 }
4066 
4067 /**
4068  * intel_irq_fini - deinitializes IRQ support
4069  * @i915: i915 device instance
4070  *
4071  * This function deinitializes all the IRQ support.
4072  */
4073 void intel_irq_fini(struct drm_i915_private *i915)
4074 {
4075 	int i;
4076 
4077 	for (i = 0; i < MAX_L3_SLICES; ++i)
4078 		kfree(i915->l3_parity.remap_info[i]);
4079 }
4080 
4081 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4082 {
4083 	if (HAS_GMCH(dev_priv)) {
4084 		if (IS_CHERRYVIEW(dev_priv))
4085 			return cherryview_irq_handler;
4086 		else if (IS_VALLEYVIEW(dev_priv))
4087 			return valleyview_irq_handler;
4088 		else if (IS_GEN(dev_priv, 4))
4089 			return i965_irq_handler;
4090 		else if (IS_GEN(dev_priv, 3))
4091 			return i915_irq_handler;
4092 		else
4093 			return i8xx_irq_handler;
4094 	} else {
4095 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4096 			return dg1_irq_handler;
4097 		if (INTEL_GEN(dev_priv) >= 11)
4098 			return gen11_irq_handler;
4099 		else if (INTEL_GEN(dev_priv) >= 8)
4100 			return gen8_irq_handler;
4101 		else
4102 			return ilk_irq_handler;
4103 	}
4104 }
4105 
4106 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4107 {
4108 	if (HAS_GMCH(dev_priv)) {
4109 		if (IS_CHERRYVIEW(dev_priv))
4110 			cherryview_irq_reset(dev_priv);
4111 		else if (IS_VALLEYVIEW(dev_priv))
4112 			valleyview_irq_reset(dev_priv);
4113 		else if (IS_GEN(dev_priv, 4))
4114 			i965_irq_reset(dev_priv);
4115 		else if (IS_GEN(dev_priv, 3))
4116 			i915_irq_reset(dev_priv);
4117 		else
4118 			i8xx_irq_reset(dev_priv);
4119 	} else {
4120 		if (INTEL_GEN(dev_priv) >= 11)
4121 			gen11_irq_reset(dev_priv);
4122 		else if (INTEL_GEN(dev_priv) >= 8)
4123 			gen8_irq_reset(dev_priv);
4124 		else
4125 			ilk_irq_reset(dev_priv);
4126 	}
4127 }
4128 
4129 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4130 {
4131 	if (HAS_GMCH(dev_priv)) {
4132 		if (IS_CHERRYVIEW(dev_priv))
4133 			cherryview_irq_postinstall(dev_priv);
4134 		else if (IS_VALLEYVIEW(dev_priv))
4135 			valleyview_irq_postinstall(dev_priv);
4136 		else if (IS_GEN(dev_priv, 4))
4137 			i965_irq_postinstall(dev_priv);
4138 		else if (IS_GEN(dev_priv, 3))
4139 			i915_irq_postinstall(dev_priv);
4140 		else
4141 			i8xx_irq_postinstall(dev_priv);
4142 	} else {
4143 		if (INTEL_GEN(dev_priv) >= 11)
4144 			gen11_irq_postinstall(dev_priv);
4145 		else if (INTEL_GEN(dev_priv) >= 8)
4146 			gen8_irq_postinstall(dev_priv);
4147 		else
4148 			ilk_irq_postinstall(dev_priv);
4149 	}
4150 }
4151 
4152 /**
4153  * intel_irq_install - enables the hardware interrupt
4154  * @dev_priv: i915 device instance
4155  *
4156  * This function enables the hardware interrupt handling, but leaves the hotplug
4157  * handling still disabled. It is called after intel_irq_init().
4158  *
4159  * In the driver load and resume code we need working interrupts in a few places
4160  * but don't want to deal with the hassle of concurrent probe and hotplug
4161  * workers. Hence the split into this two-stage approach.
4162  */
4163 int intel_irq_install(struct drm_i915_private *dev_priv)
4164 {
4165 	int irq = dev_priv->drm.pdev->irq;
4166 	int ret;
4167 
4168 	/*
4169 	 * We enable some interrupt sources in our postinstall hooks, so mark
4170 	 * interrupts as enabled _before_ actually enabling them to avoid
4171 	 * special cases in our ordering checks.
4172 	 */
4173 	dev_priv->runtime_pm.irqs_enabled = true;
4174 
4175 	dev_priv->drm.irq_enabled = true;
4176 
4177 	intel_irq_reset(dev_priv);
4178 
4179 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4180 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4181 	if (ret < 0) {
4182 		dev_priv->drm.irq_enabled = false;
4183 		return ret;
4184 	}
4185 
4186 	intel_irq_postinstall(dev_priv);
4187 
4188 	return ret;
4189 }
4190 
4191 /**
4192  * intel_irq_uninstall - finilizes all irq handling
4193  * @dev_priv: i915 device instance
4194  *
4195  * This stops interrupt and hotplug handling and unregisters and frees all
4196  * resources acquired in the init functions.
4197  */
4198 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4199 {
4200 	int irq = dev_priv->drm.pdev->irq;
4201 
4202 	/*
4203 	 * FIXME we can get called twice during driver probe
4204 	 * error handling as well as during driver remove due to
4205 	 * intel_modeset_driver_remove() calling us out of sequence.
4206 	 * Would be nice if it didn't do that...
4207 	 */
4208 	if (!dev_priv->drm.irq_enabled)
4209 		return;
4210 
4211 	dev_priv->drm.irq_enabled = false;
4212 
4213 	intel_irq_reset(dev_priv);
4214 
4215 	free_irq(irq, dev_priv);
4216 
4217 	intel_hpd_cancel_work(dev_priv);
4218 	dev_priv->runtime_pm.irqs_enabled = false;
4219 }
4220 
4221 /**
4222  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4223  * @dev_priv: i915 device instance
4224  *
4225  * This function is used to disable interrupts at runtime, both in the runtime
4226  * pm and the system suspend/resume code.
4227  */
4228 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4229 {
4230 	intel_irq_reset(dev_priv);
4231 	dev_priv->runtime_pm.irqs_enabled = false;
4232 	intel_synchronize_irq(dev_priv);
4233 }
4234 
4235 /**
4236  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4237  * @dev_priv: i915 device instance
4238  *
4239  * This function is used to enable interrupts at runtime, both in the runtime
4240  * pm and the system suspend/resume code.
4241  */
4242 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4243 {
4244 	dev_priv->runtime_pm.irqs_enabled = true;
4245 	intel_irq_reset(dev_priv);
4246 	intel_irq_postinstall(dev_priv);
4247 }
4248 
4249 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4250 {
4251 	/*
4252 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4253 	 * this is the only thing we need to check.
4254 	 */
4255 	return dev_priv->runtime_pm.irqs_enabled;
4256 }
4257 
4258 void intel_synchronize_irq(struct drm_i915_private *i915)
4259 {
4260 	synchronize_irq(i915->drm.pdev->irq);
4261 }
4262