xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision f4c3b83b)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49 
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54 
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62 
63 /*
64  * Interrupt statistic for PMU. Increments the counter only if the
65  * interrupt originated from the the GPU so interrupts from a device which
66  * shares the interrupt line are not accounted.
67  */
68 static inline void pmu_irq_stats(struct drm_i915_private *i915,
69 				 irqreturn_t res)
70 {
71 	if (unlikely(res != IRQ_HANDLED))
72 		return;
73 
74 	/*
75 	 * A clever compiler translates that into INC. A not so clever one
76 	 * should at least prevent store tearing.
77 	 */
78 	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
79 }
80 
81 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
82 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
83 				    enum hpd_pin pin);
84 
85 static const u32 hpd_ilk[HPD_NUM_PINS] = {
86 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
87 };
88 
89 static const u32 hpd_ivb[HPD_NUM_PINS] = {
90 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
91 };
92 
93 static const u32 hpd_bdw[HPD_NUM_PINS] = {
94 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
95 };
96 
97 static const u32 hpd_ibx[HPD_NUM_PINS] = {
98 	[HPD_CRT] = SDE_CRT_HOTPLUG,
99 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
100 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
101 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
102 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
103 };
104 
105 static const u32 hpd_cpt[HPD_NUM_PINS] = {
106 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
107 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
108 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
109 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
110 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
111 };
112 
113 static const u32 hpd_spt[HPD_NUM_PINS] = {
114 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
115 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
116 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
117 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
118 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
119 };
120 
121 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
122 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
123 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
124 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
125 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
126 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
127 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
128 };
129 
130 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
131 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
132 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
133 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
134 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
135 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
136 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
137 };
138 
139 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
140 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
141 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
142 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
143 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
144 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
145 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
146 };
147 
148 static const u32 hpd_bxt[HPD_NUM_PINS] = {
149 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
150 	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
151 	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
152 };
153 
154 static const u32 hpd_gen11[HPD_NUM_PINS] = {
155 	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
156 	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
157 	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
158 	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
159 	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
160 	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
161 };
162 
163 static const u32 hpd_icp[HPD_NUM_PINS] = {
164 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
165 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
166 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
167 	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
168 	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
169 	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
170 	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
171 	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
172 	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
173 };
174 
175 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
176 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
177 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
178 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
179 	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
180 };
181 
182 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
183 {
184 	struct i915_hotplug *hpd = &dev_priv->hotplug;
185 
186 	if (HAS_GMCH(dev_priv)) {
187 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
188 		    IS_CHERRYVIEW(dev_priv))
189 			hpd->hpd = hpd_status_g4x;
190 		else
191 			hpd->hpd = hpd_status_i915;
192 		return;
193 	}
194 
195 	if (INTEL_GEN(dev_priv) >= 11)
196 		hpd->hpd = hpd_gen11;
197 	else if (IS_GEN9_LP(dev_priv))
198 		hpd->hpd = hpd_bxt;
199 	else if (INTEL_GEN(dev_priv) >= 8)
200 		hpd->hpd = hpd_bdw;
201 	else if (INTEL_GEN(dev_priv) >= 7)
202 		hpd->hpd = hpd_ivb;
203 	else
204 		hpd->hpd = hpd_ilk;
205 
206 	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
207 	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
208 		return;
209 
210 	if (HAS_PCH_DG1(dev_priv))
211 		hpd->pch_hpd = hpd_sde_dg1;
212 	else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
213 		 HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
214 		hpd->pch_hpd = hpd_icp;
215 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
216 		hpd->pch_hpd = hpd_spt;
217 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
218 		hpd->pch_hpd = hpd_cpt;
219 	else if (HAS_PCH_IBX(dev_priv))
220 		hpd->pch_hpd = hpd_ibx;
221 	else
222 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
223 }
224 
225 static void
226 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
227 {
228 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
229 
230 	drm_crtc_handle_vblank(&crtc->base);
231 }
232 
233 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
234 		    i915_reg_t iir, i915_reg_t ier)
235 {
236 	intel_uncore_write(uncore, imr, 0xffffffff);
237 	intel_uncore_posting_read(uncore, imr);
238 
239 	intel_uncore_write(uncore, ier, 0);
240 
241 	/* IIR can theoretically queue up two events. Be paranoid. */
242 	intel_uncore_write(uncore, iir, 0xffffffff);
243 	intel_uncore_posting_read(uncore, iir);
244 	intel_uncore_write(uncore, iir, 0xffffffff);
245 	intel_uncore_posting_read(uncore, iir);
246 }
247 
248 void gen2_irq_reset(struct intel_uncore *uncore)
249 {
250 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
251 	intel_uncore_posting_read16(uncore, GEN2_IMR);
252 
253 	intel_uncore_write16(uncore, GEN2_IER, 0);
254 
255 	/* IIR can theoretically queue up two events. Be paranoid. */
256 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
257 	intel_uncore_posting_read16(uncore, GEN2_IIR);
258 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
259 	intel_uncore_posting_read16(uncore, GEN2_IIR);
260 }
261 
262 /*
263  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
264  */
265 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
266 {
267 	u32 val = intel_uncore_read(uncore, reg);
268 
269 	if (val == 0)
270 		return;
271 
272 	drm_WARN(&uncore->i915->drm, 1,
273 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
274 		 i915_mmio_reg_offset(reg), val);
275 	intel_uncore_write(uncore, reg, 0xffffffff);
276 	intel_uncore_posting_read(uncore, reg);
277 	intel_uncore_write(uncore, reg, 0xffffffff);
278 	intel_uncore_posting_read(uncore, reg);
279 }
280 
281 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
282 {
283 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
284 
285 	if (val == 0)
286 		return;
287 
288 	drm_WARN(&uncore->i915->drm, 1,
289 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
290 		 i915_mmio_reg_offset(GEN2_IIR), val);
291 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
292 	intel_uncore_posting_read16(uncore, GEN2_IIR);
293 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
294 	intel_uncore_posting_read16(uncore, GEN2_IIR);
295 }
296 
297 void gen3_irq_init(struct intel_uncore *uncore,
298 		   i915_reg_t imr, u32 imr_val,
299 		   i915_reg_t ier, u32 ier_val,
300 		   i915_reg_t iir)
301 {
302 	gen3_assert_iir_is_zero(uncore, iir);
303 
304 	intel_uncore_write(uncore, ier, ier_val);
305 	intel_uncore_write(uncore, imr, imr_val);
306 	intel_uncore_posting_read(uncore, imr);
307 }
308 
309 void gen2_irq_init(struct intel_uncore *uncore,
310 		   u32 imr_val, u32 ier_val)
311 {
312 	gen2_assert_iir_is_zero(uncore);
313 
314 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
315 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
316 	intel_uncore_posting_read16(uncore, GEN2_IMR);
317 }
318 
319 /* For display hotplug interrupt */
320 static inline void
321 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
322 				     u32 mask,
323 				     u32 bits)
324 {
325 	u32 val;
326 
327 	lockdep_assert_held(&dev_priv->irq_lock);
328 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
329 
330 	val = I915_READ(PORT_HOTPLUG_EN);
331 	val &= ~mask;
332 	val |= bits;
333 	I915_WRITE(PORT_HOTPLUG_EN, val);
334 }
335 
336 /**
337  * i915_hotplug_interrupt_update - update hotplug interrupt enable
338  * @dev_priv: driver private
339  * @mask: bits to update
340  * @bits: bits to enable
341  * NOTE: the HPD enable bits are modified both inside and outside
342  * of an interrupt context. To avoid that read-modify-write cycles
343  * interfer, these bits are protected by a spinlock. Since this
344  * function is usually not called from a context where the lock is
345  * held already, this function acquires the lock itself. A non-locking
346  * version is also available.
347  */
348 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
349 				   u32 mask,
350 				   u32 bits)
351 {
352 	spin_lock_irq(&dev_priv->irq_lock);
353 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
354 	spin_unlock_irq(&dev_priv->irq_lock);
355 }
356 
357 /**
358  * ilk_update_display_irq - update DEIMR
359  * @dev_priv: driver private
360  * @interrupt_mask: mask of interrupt bits to update
361  * @enabled_irq_mask: mask of interrupt bits to enable
362  */
363 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
364 			    u32 interrupt_mask,
365 			    u32 enabled_irq_mask)
366 {
367 	u32 new_val;
368 
369 	lockdep_assert_held(&dev_priv->irq_lock);
370 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
371 
372 	new_val = dev_priv->irq_mask;
373 	new_val &= ~interrupt_mask;
374 	new_val |= (~enabled_irq_mask & interrupt_mask);
375 
376 	if (new_val != dev_priv->irq_mask &&
377 	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
378 		dev_priv->irq_mask = new_val;
379 		I915_WRITE(DEIMR, dev_priv->irq_mask);
380 		POSTING_READ(DEIMR);
381 	}
382 }
383 
384 /**
385  * bdw_update_port_irq - update DE port interrupt
386  * @dev_priv: driver private
387  * @interrupt_mask: mask of interrupt bits to update
388  * @enabled_irq_mask: mask of interrupt bits to enable
389  */
390 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
391 				u32 interrupt_mask,
392 				u32 enabled_irq_mask)
393 {
394 	u32 new_val;
395 	u32 old_val;
396 
397 	lockdep_assert_held(&dev_priv->irq_lock);
398 
399 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
400 
401 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
402 		return;
403 
404 	old_val = I915_READ(GEN8_DE_PORT_IMR);
405 
406 	new_val = old_val;
407 	new_val &= ~interrupt_mask;
408 	new_val |= (~enabled_irq_mask & interrupt_mask);
409 
410 	if (new_val != old_val) {
411 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
412 		POSTING_READ(GEN8_DE_PORT_IMR);
413 	}
414 }
415 
416 /**
417  * bdw_update_pipe_irq - update DE pipe interrupt
418  * @dev_priv: driver private
419  * @pipe: pipe whose interrupt to update
420  * @interrupt_mask: mask of interrupt bits to update
421  * @enabled_irq_mask: mask of interrupt bits to enable
422  */
423 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
424 			 enum pipe pipe,
425 			 u32 interrupt_mask,
426 			 u32 enabled_irq_mask)
427 {
428 	u32 new_val;
429 
430 	lockdep_assert_held(&dev_priv->irq_lock);
431 
432 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
433 
434 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
435 		return;
436 
437 	new_val = dev_priv->de_irq_mask[pipe];
438 	new_val &= ~interrupt_mask;
439 	new_val |= (~enabled_irq_mask & interrupt_mask);
440 
441 	if (new_val != dev_priv->de_irq_mask[pipe]) {
442 		dev_priv->de_irq_mask[pipe] = new_val;
443 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
444 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
445 	}
446 }
447 
448 /**
449  * ibx_display_interrupt_update - update SDEIMR
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
455 				  u32 interrupt_mask,
456 				  u32 enabled_irq_mask)
457 {
458 	u32 sdeimr = I915_READ(SDEIMR);
459 	sdeimr &= ~interrupt_mask;
460 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
461 
462 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
463 
464 	lockdep_assert_held(&dev_priv->irq_lock);
465 
466 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
467 		return;
468 
469 	I915_WRITE(SDEIMR, sdeimr);
470 	POSTING_READ(SDEIMR);
471 }
472 
473 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
474 			      enum pipe pipe)
475 {
476 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
477 	u32 enable_mask = status_mask << 16;
478 
479 	lockdep_assert_held(&dev_priv->irq_lock);
480 
481 	if (INTEL_GEN(dev_priv) < 5)
482 		goto out;
483 
484 	/*
485 	 * On pipe A we don't support the PSR interrupt yet,
486 	 * on pipe B and C the same bit MBZ.
487 	 */
488 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
489 			     status_mask & PIPE_A_PSR_STATUS_VLV))
490 		return 0;
491 	/*
492 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
493 	 * A the same bit is for perf counters which we don't use either.
494 	 */
495 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
496 			     status_mask & PIPE_B_PSR_STATUS_VLV))
497 		return 0;
498 
499 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
500 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
501 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
502 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
503 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
504 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
505 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
506 
507 out:
508 	drm_WARN_ONCE(&dev_priv->drm,
509 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
510 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
511 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
512 		      pipe_name(pipe), enable_mask, status_mask);
513 
514 	return enable_mask;
515 }
516 
517 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
518 			  enum pipe pipe, u32 status_mask)
519 {
520 	i915_reg_t reg = PIPESTAT(pipe);
521 	u32 enable_mask;
522 
523 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
524 		      "pipe %c: status_mask=0x%x\n",
525 		      pipe_name(pipe), status_mask);
526 
527 	lockdep_assert_held(&dev_priv->irq_lock);
528 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
529 
530 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
531 		return;
532 
533 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
534 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
535 
536 	I915_WRITE(reg, enable_mask | status_mask);
537 	POSTING_READ(reg);
538 }
539 
540 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
541 			   enum pipe pipe, u32 status_mask)
542 {
543 	i915_reg_t reg = PIPESTAT(pipe);
544 	u32 enable_mask;
545 
546 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
547 		      "pipe %c: status_mask=0x%x\n",
548 		      pipe_name(pipe), status_mask);
549 
550 	lockdep_assert_held(&dev_priv->irq_lock);
551 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
552 
553 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
557 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
558 
559 	I915_WRITE(reg, enable_mask | status_mask);
560 	POSTING_READ(reg);
561 }
562 
563 static bool i915_has_asle(struct drm_i915_private *dev_priv)
564 {
565 	if (!dev_priv->opregion.asle)
566 		return false;
567 
568 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
569 }
570 
571 /**
572  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
573  * @dev_priv: i915 device private
574  */
575 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
576 {
577 	if (!i915_has_asle(dev_priv))
578 		return;
579 
580 	spin_lock_irq(&dev_priv->irq_lock);
581 
582 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
583 	if (INTEL_GEN(dev_priv) >= 4)
584 		i915_enable_pipestat(dev_priv, PIPE_A,
585 				     PIPE_LEGACY_BLC_EVENT_STATUS);
586 
587 	spin_unlock_irq(&dev_priv->irq_lock);
588 }
589 
590 /*
591  * This timing diagram depicts the video signal in and
592  * around the vertical blanking period.
593  *
594  * Assumptions about the fictitious mode used in this example:
595  *  vblank_start >= 3
596  *  vsync_start = vblank_start + 1
597  *  vsync_end = vblank_start + 2
598  *  vtotal = vblank_start + 3
599  *
600  *           start of vblank:
601  *           latch double buffered registers
602  *           increment frame counter (ctg+)
603  *           generate start of vblank interrupt (gen4+)
604  *           |
605  *           |          frame start:
606  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
607  *           |          may be shifted forward 1-3 extra lines via PIPECONF
608  *           |          |
609  *           |          |  start of vsync:
610  *           |          |  generate vsync interrupt
611  *           |          |  |
612  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
613  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
614  * ----va---> <-----------------vb--------------------> <--------va-------------
615  *       |          |       <----vs----->                     |
616  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
617  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
618  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
619  *       |          |                                         |
620  *       last visible pixel                                   first visible pixel
621  *                  |                                         increment frame counter (gen3/4)
622  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
623  *
624  * x  = horizontal active
625  * _  = horizontal blanking
626  * hs = horizontal sync
627  * va = vertical active
628  * vb = vertical blanking
629  * vs = vertical sync
630  * vbs = vblank_start (number)
631  *
632  * Summary:
633  * - most events happen at the start of horizontal sync
634  * - frame start happens at the start of horizontal blank, 1-4 lines
635  *   (depending on PIPECONF settings) after the start of vblank
636  * - gen3/4 pixel and frame counter are synchronized with the start
637  *   of horizontal active on the first line of vertical active
638  */
639 
640 /* Called from drm generic code, passed a 'crtc', which
641  * we use as a pipe index
642  */
643 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
644 {
645 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
646 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
647 	const struct drm_display_mode *mode = &vblank->hwmode;
648 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
649 	i915_reg_t high_frame, low_frame;
650 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
651 	unsigned long irqflags;
652 
653 	/*
654 	 * On i965gm TV output the frame counter only works up to
655 	 * the point when we enable the TV encoder. After that the
656 	 * frame counter ceases to work and reads zero. We need a
657 	 * vblank wait before enabling the TV encoder and so we
658 	 * have to enable vblank interrupts while the frame counter
659 	 * is still in a working state. However the core vblank code
660 	 * does not like us returning non-zero frame counter values
661 	 * when we've told it that we don't have a working frame
662 	 * counter. Thus we must stop non-zero values leaking out.
663 	 */
664 	if (!vblank->max_vblank_count)
665 		return 0;
666 
667 	htotal = mode->crtc_htotal;
668 	hsync_start = mode->crtc_hsync_start;
669 	vbl_start = mode->crtc_vblank_start;
670 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
671 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
672 
673 	/* Convert to pixel count */
674 	vbl_start *= htotal;
675 
676 	/* Start of vblank event occurs at start of hsync */
677 	vbl_start -= htotal - hsync_start;
678 
679 	high_frame = PIPEFRAME(pipe);
680 	low_frame = PIPEFRAMEPIXEL(pipe);
681 
682 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683 
684 	/*
685 	 * High & low register fields aren't synchronized, so make sure
686 	 * we get a low value that's stable across two reads of the high
687 	 * register.
688 	 */
689 	do {
690 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
691 		low   = intel_de_read_fw(dev_priv, low_frame);
692 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
693 	} while (high1 != high2);
694 
695 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
696 
697 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
698 	pixel = low & PIPE_PIXEL_MASK;
699 	low >>= PIPE_FRAME_LOW_SHIFT;
700 
701 	/*
702 	 * The frame counter increments at beginning of active.
703 	 * Cook up a vblank counter by also checking the pixel
704 	 * counter against vblank start.
705 	 */
706 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
707 }
708 
709 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
710 {
711 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
712 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
713 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
714 
715 	if (!vblank->max_vblank_count)
716 		return 0;
717 
718 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
719 }
720 
721 /*
722  * On certain encoders on certain platforms, pipe
723  * scanline register will not work to get the scanline,
724  * since the timings are driven from the PORT or issues
725  * with scanline register updates.
726  * This function will use Framestamp and current
727  * timestamp registers to calculate the scanline.
728  */
729 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
730 {
731 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
732 	struct drm_vblank_crtc *vblank =
733 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
734 	const struct drm_display_mode *mode = &vblank->hwmode;
735 	u32 vblank_start = mode->crtc_vblank_start;
736 	u32 vtotal = mode->crtc_vtotal;
737 	u32 htotal = mode->crtc_htotal;
738 	u32 clock = mode->crtc_clock;
739 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
740 
741 	/*
742 	 * To avoid the race condition where we might cross into the
743 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
744 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
745 	 * during the same frame.
746 	 */
747 	do {
748 		/*
749 		 * This field provides read back of the display
750 		 * pipe frame time stamp. The time stamp value
751 		 * is sampled at every start of vertical blank.
752 		 */
753 		scan_prev_time = intel_de_read_fw(dev_priv,
754 						  PIPE_FRMTMSTMP(crtc->pipe));
755 
756 		/*
757 		 * The TIMESTAMP_CTR register has the current
758 		 * time stamp value.
759 		 */
760 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
761 
762 		scan_post_time = intel_de_read_fw(dev_priv,
763 						  PIPE_FRMTMSTMP(crtc->pipe));
764 	} while (scan_post_time != scan_prev_time);
765 
766 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
767 					clock), 1000 * htotal);
768 	scanline = min(scanline, vtotal - 1);
769 	scanline = (scanline + vblank_start) % vtotal;
770 
771 	return scanline;
772 }
773 
774 /*
775  * intel_de_read_fw(), only for fast reads of display block, no need for
776  * forcewake etc.
777  */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 	struct drm_device *dev = crtc->base.dev;
781 	struct drm_i915_private *dev_priv = to_i915(dev);
782 	const struct drm_display_mode *mode;
783 	struct drm_vblank_crtc *vblank;
784 	enum pipe pipe = crtc->pipe;
785 	int position, vtotal;
786 
787 	if (!crtc->active)
788 		return -1;
789 
790 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
791 	mode = &vblank->hwmode;
792 
793 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
794 		return __intel_get_crtc_scanline_from_timestamp(crtc);
795 
796 	vtotal = mode->crtc_vtotal;
797 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
798 		vtotal /= 2;
799 
800 	if (IS_GEN(dev_priv, 2))
801 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
802 	else
803 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
804 
805 	/*
806 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
807 	 * read it just before the start of vblank.  So try it again
808 	 * so we don't accidentally end up spanning a vblank frame
809 	 * increment, causing the pipe_update_end() code to squak at us.
810 	 *
811 	 * The nature of this problem means we can't simply check the ISR
812 	 * bit and return the vblank start value; nor can we use the scanline
813 	 * debug register in the transcoder as it appears to have the same
814 	 * problem.  We may need to extend this to include other platforms,
815 	 * but so far testing only shows the problem on HSW.
816 	 */
817 	if (HAS_DDI(dev_priv) && !position) {
818 		int i, temp;
819 
820 		for (i = 0; i < 100; i++) {
821 			udelay(1);
822 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
823 			if (temp != position) {
824 				position = temp;
825 				break;
826 			}
827 		}
828 	}
829 
830 	/*
831 	 * See update_scanline_offset() for the details on the
832 	 * scanline_offset adjustment.
833 	 */
834 	return (position + crtc->scanline_offset) % vtotal;
835 }
836 
837 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
838 				     bool in_vblank_irq,
839 				     int *vpos, int *hpos,
840 				     ktime_t *stime, ktime_t *etime,
841 				     const struct drm_display_mode *mode)
842 {
843 	struct drm_device *dev = _crtc->dev;
844 	struct drm_i915_private *dev_priv = to_i915(dev);
845 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
846 	enum pipe pipe = crtc->pipe;
847 	int position;
848 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
849 	unsigned long irqflags;
850 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
851 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
852 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
853 
854 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
855 		drm_dbg(&dev_priv->drm,
856 			"trying to get scanoutpos for disabled "
857 			"pipe %c\n", pipe_name(pipe));
858 		return false;
859 	}
860 
861 	htotal = mode->crtc_htotal;
862 	hsync_start = mode->crtc_hsync_start;
863 	vtotal = mode->crtc_vtotal;
864 	vbl_start = mode->crtc_vblank_start;
865 	vbl_end = mode->crtc_vblank_end;
866 
867 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
868 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
869 		vbl_end /= 2;
870 		vtotal /= 2;
871 	}
872 
873 	/*
874 	 * Lock uncore.lock, as we will do multiple timing critical raw
875 	 * register reads, potentially with preemption disabled, so the
876 	 * following code must not block on uncore.lock.
877 	 */
878 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
879 
880 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
881 
882 	/* Get optional system timestamp before query. */
883 	if (stime)
884 		*stime = ktime_get();
885 
886 	if (use_scanline_counter) {
887 		/* No obvious pixelcount register. Only query vertical
888 		 * scanout position from Display scan line register.
889 		 */
890 		position = __intel_get_crtc_scanline(crtc);
891 	} else {
892 		/* Have access to pixelcount since start of frame.
893 		 * We can split this into vertical and horizontal
894 		 * scanout position.
895 		 */
896 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
897 
898 		/* convert to pixel counts */
899 		vbl_start *= htotal;
900 		vbl_end *= htotal;
901 		vtotal *= htotal;
902 
903 		/*
904 		 * In interlaced modes, the pixel counter counts all pixels,
905 		 * so one field will have htotal more pixels. In order to avoid
906 		 * the reported position from jumping backwards when the pixel
907 		 * counter is beyond the length of the shorter field, just
908 		 * clamp the position the length of the shorter field. This
909 		 * matches how the scanline counter based position works since
910 		 * the scanline counter doesn't count the two half lines.
911 		 */
912 		if (position >= vtotal)
913 			position = vtotal - 1;
914 
915 		/*
916 		 * Start of vblank interrupt is triggered at start of hsync,
917 		 * just prior to the first active line of vblank. However we
918 		 * consider lines to start at the leading edge of horizontal
919 		 * active. So, should we get here before we've crossed into
920 		 * the horizontal active of the first line in vblank, we would
921 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
922 		 * always add htotal-hsync_start to the current pixel position.
923 		 */
924 		position = (position + htotal - hsync_start) % vtotal;
925 	}
926 
927 	/* Get optional system timestamp after query. */
928 	if (etime)
929 		*etime = ktime_get();
930 
931 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
932 
933 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
934 
935 	/*
936 	 * While in vblank, position will be negative
937 	 * counting up towards 0 at vbl_end. And outside
938 	 * vblank, position will be positive counting
939 	 * up since vbl_end.
940 	 */
941 	if (position >= vbl_start)
942 		position -= vbl_end;
943 	else
944 		position += vtotal - vbl_end;
945 
946 	if (use_scanline_counter) {
947 		*vpos = position;
948 		*hpos = 0;
949 	} else {
950 		*vpos = position / htotal;
951 		*hpos = position - (*vpos * htotal);
952 	}
953 
954 	return true;
955 }
956 
957 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
958 				     ktime_t *vblank_time, bool in_vblank_irq)
959 {
960 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
961 		crtc, max_error, vblank_time, in_vblank_irq,
962 		i915_get_crtc_scanoutpos);
963 }
964 
965 int intel_get_crtc_scanline(struct intel_crtc *crtc)
966 {
967 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
968 	unsigned long irqflags;
969 	int position;
970 
971 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
972 	position = __intel_get_crtc_scanline(crtc);
973 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
974 
975 	return position;
976 }
977 
978 /**
979  * ivb_parity_work - Workqueue called when a parity error interrupt
980  * occurred.
981  * @work: workqueue struct
982  *
983  * Doesn't actually do anything except notify userspace. As a consequence of
984  * this event, userspace should try to remap the bad rows since statistically
985  * it is likely the same row is more likely to go bad again.
986  */
987 static void ivb_parity_work(struct work_struct *work)
988 {
989 	struct drm_i915_private *dev_priv =
990 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
991 	struct intel_gt *gt = &dev_priv->gt;
992 	u32 error_status, row, bank, subbank;
993 	char *parity_event[6];
994 	u32 misccpctl;
995 	u8 slice = 0;
996 
997 	/* We must turn off DOP level clock gating to access the L3 registers.
998 	 * In order to prevent a get/put style interface, acquire struct mutex
999 	 * any time we access those registers.
1000 	 */
1001 	mutex_lock(&dev_priv->drm.struct_mutex);
1002 
1003 	/* If we've screwed up tracking, just let the interrupt fire again */
1004 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1005 		goto out;
1006 
1007 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1008 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1009 	POSTING_READ(GEN7_MISCCPCTL);
1010 
1011 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1012 		i915_reg_t reg;
1013 
1014 		slice--;
1015 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1016 				     slice >= NUM_L3_SLICES(dev_priv)))
1017 			break;
1018 
1019 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1020 
1021 		reg = GEN7_L3CDERRST1(slice);
1022 
1023 		error_status = I915_READ(reg);
1024 		row = GEN7_PARITY_ERROR_ROW(error_status);
1025 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1026 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1027 
1028 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1029 		POSTING_READ(reg);
1030 
1031 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1032 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1033 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1034 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1035 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1036 		parity_event[5] = NULL;
1037 
1038 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1039 				   KOBJ_CHANGE, parity_event);
1040 
1041 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1042 			  slice, row, bank, subbank);
1043 
1044 		kfree(parity_event[4]);
1045 		kfree(parity_event[3]);
1046 		kfree(parity_event[2]);
1047 		kfree(parity_event[1]);
1048 	}
1049 
1050 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1051 
1052 out:
1053 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1054 	spin_lock_irq(&gt->irq_lock);
1055 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1056 	spin_unlock_irq(&gt->irq_lock);
1057 
1058 	mutex_unlock(&dev_priv->drm.struct_mutex);
1059 }
1060 
1061 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1062 {
1063 	switch (pin) {
1064 	case HPD_PORT_TC1:
1065 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC1);
1066 	case HPD_PORT_TC2:
1067 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC2);
1068 	case HPD_PORT_TC3:
1069 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC3);
1070 	case HPD_PORT_TC4:
1071 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC4);
1072 	case HPD_PORT_TC5:
1073 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC5);
1074 	case HPD_PORT_TC6:
1075 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC6);
1076 	default:
1077 		return false;
1078 	}
1079 }
1080 
1081 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1082 {
1083 	switch (pin) {
1084 	case HPD_PORT_A:
1085 		return val & PORTA_HOTPLUG_LONG_DETECT;
1086 	case HPD_PORT_B:
1087 		return val & PORTB_HOTPLUG_LONG_DETECT;
1088 	case HPD_PORT_C:
1089 		return val & PORTC_HOTPLUG_LONG_DETECT;
1090 	default:
1091 		return false;
1092 	}
1093 }
1094 
1095 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1096 {
1097 	switch (pin) {
1098 	case HPD_PORT_A:
1099 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_A);
1100 	case HPD_PORT_B:
1101 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_B);
1102 	case HPD_PORT_C:
1103 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_C);
1104 	case HPD_PORT_D:
1105 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_D);
1106 	default:
1107 		return false;
1108 	}
1109 }
1110 
1111 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1112 {
1113 	switch (pin) {
1114 	case HPD_PORT_TC1:
1115 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC1);
1116 	case HPD_PORT_TC2:
1117 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC2);
1118 	case HPD_PORT_TC3:
1119 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC3);
1120 	case HPD_PORT_TC4:
1121 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC4);
1122 	case HPD_PORT_TC5:
1123 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC5);
1124 	case HPD_PORT_TC6:
1125 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC6);
1126 	default:
1127 		return false;
1128 	}
1129 }
1130 
1131 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1132 {
1133 	switch (pin) {
1134 	case HPD_PORT_E:
1135 		return val & PORTE_HOTPLUG_LONG_DETECT;
1136 	default:
1137 		return false;
1138 	}
1139 }
1140 
1141 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1142 {
1143 	switch (pin) {
1144 	case HPD_PORT_A:
1145 		return val & PORTA_HOTPLUG_LONG_DETECT;
1146 	case HPD_PORT_B:
1147 		return val & PORTB_HOTPLUG_LONG_DETECT;
1148 	case HPD_PORT_C:
1149 		return val & PORTC_HOTPLUG_LONG_DETECT;
1150 	case HPD_PORT_D:
1151 		return val & PORTD_HOTPLUG_LONG_DETECT;
1152 	default:
1153 		return false;
1154 	}
1155 }
1156 
1157 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1158 {
1159 	switch (pin) {
1160 	case HPD_PORT_A:
1161 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1162 	default:
1163 		return false;
1164 	}
1165 }
1166 
1167 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1168 {
1169 	switch (pin) {
1170 	case HPD_PORT_B:
1171 		return val & PORTB_HOTPLUG_LONG_DETECT;
1172 	case HPD_PORT_C:
1173 		return val & PORTC_HOTPLUG_LONG_DETECT;
1174 	case HPD_PORT_D:
1175 		return val & PORTD_HOTPLUG_LONG_DETECT;
1176 	default:
1177 		return false;
1178 	}
1179 }
1180 
1181 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1182 {
1183 	switch (pin) {
1184 	case HPD_PORT_B:
1185 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1186 	case HPD_PORT_C:
1187 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1188 	case HPD_PORT_D:
1189 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1190 	default:
1191 		return false;
1192 	}
1193 }
1194 
1195 /*
1196  * Get a bit mask of pins that have triggered, and which ones may be long.
1197  * This can be called multiple times with the same masks to accumulate
1198  * hotplug detection results from several registers.
1199  *
1200  * Note that the caller is expected to zero out the masks initially.
1201  */
1202 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1203 			       u32 *pin_mask, u32 *long_mask,
1204 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1205 			       const u32 hpd[HPD_NUM_PINS],
1206 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1207 {
1208 	enum hpd_pin pin;
1209 
1210 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1211 
1212 	for_each_hpd_pin(pin) {
1213 		if ((hpd[pin] & hotplug_trigger) == 0)
1214 			continue;
1215 
1216 		*pin_mask |= BIT(pin);
1217 
1218 		if (long_pulse_detect(pin, dig_hotplug_reg))
1219 			*long_mask |= BIT(pin);
1220 	}
1221 
1222 	drm_dbg(&dev_priv->drm,
1223 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1224 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1225 
1226 }
1227 
1228 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1229 				  const u32 hpd[HPD_NUM_PINS])
1230 {
1231 	struct intel_encoder *encoder;
1232 	u32 enabled_irqs = 0;
1233 
1234 	for_each_intel_encoder(&dev_priv->drm, encoder)
1235 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1236 			enabled_irqs |= hpd[encoder->hpd_pin];
1237 
1238 	return enabled_irqs;
1239 }
1240 
1241 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1242 				  const u32 hpd[HPD_NUM_PINS])
1243 {
1244 	struct intel_encoder *encoder;
1245 	u32 hotplug_irqs = 0;
1246 
1247 	for_each_intel_encoder(&dev_priv->drm, encoder)
1248 		hotplug_irqs |= hpd[encoder->hpd_pin];
1249 
1250 	return hotplug_irqs;
1251 }
1252 
1253 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1254 				     hotplug_enables_func hotplug_enables)
1255 {
1256 	struct intel_encoder *encoder;
1257 	u32 hotplug = 0;
1258 
1259 	for_each_intel_encoder(&i915->drm, encoder)
1260 		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1261 
1262 	return hotplug;
1263 }
1264 
1265 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1266 {
1267 	wake_up_all(&dev_priv->gmbus_wait_queue);
1268 }
1269 
1270 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1271 {
1272 	wake_up_all(&dev_priv->gmbus_wait_queue);
1273 }
1274 
1275 #if defined(CONFIG_DEBUG_FS)
1276 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1277 					 enum pipe pipe,
1278 					 u32 crc0, u32 crc1,
1279 					 u32 crc2, u32 crc3,
1280 					 u32 crc4)
1281 {
1282 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1283 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1284 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1285 
1286 	trace_intel_pipe_crc(crtc, crcs);
1287 
1288 	spin_lock(&pipe_crc->lock);
1289 	/*
1290 	 * For some not yet identified reason, the first CRC is
1291 	 * bonkers. So let's just wait for the next vblank and read
1292 	 * out the buggy result.
1293 	 *
1294 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1295 	 * don't trust that one either.
1296 	 */
1297 	if (pipe_crc->skipped <= 0 ||
1298 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1299 		pipe_crc->skipped++;
1300 		spin_unlock(&pipe_crc->lock);
1301 		return;
1302 	}
1303 	spin_unlock(&pipe_crc->lock);
1304 
1305 	drm_crtc_add_crc_entry(&crtc->base, true,
1306 				drm_crtc_accurate_vblank_count(&crtc->base),
1307 				crcs);
1308 }
1309 #else
1310 static inline void
1311 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1312 			     enum pipe pipe,
1313 			     u32 crc0, u32 crc1,
1314 			     u32 crc2, u32 crc3,
1315 			     u32 crc4) {}
1316 #endif
1317 
1318 static void flip_done_handler(struct drm_i915_private *i915,
1319 			      enum pipe pipe)
1320 {
1321 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1322 	struct drm_crtc_state *crtc_state = crtc->base.state;
1323 	struct drm_pending_vblank_event *e = crtc_state->event;
1324 	struct drm_device *dev = &i915->drm;
1325 	unsigned long irqflags;
1326 
1327 	spin_lock_irqsave(&dev->event_lock, irqflags);
1328 
1329 	crtc_state->event = NULL;
1330 
1331 	drm_crtc_send_vblank_event(&crtc->base, e);
1332 
1333 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1334 }
1335 
1336 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1337 				     enum pipe pipe)
1338 {
1339 	display_pipe_crc_irq_handler(dev_priv, pipe,
1340 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1341 				     0, 0, 0, 0);
1342 }
1343 
1344 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1345 				     enum pipe pipe)
1346 {
1347 	display_pipe_crc_irq_handler(dev_priv, pipe,
1348 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1349 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1350 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1351 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1352 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1353 }
1354 
1355 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1356 				      enum pipe pipe)
1357 {
1358 	u32 res1, res2;
1359 
1360 	if (INTEL_GEN(dev_priv) >= 3)
1361 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1362 	else
1363 		res1 = 0;
1364 
1365 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1366 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1367 	else
1368 		res2 = 0;
1369 
1370 	display_pipe_crc_irq_handler(dev_priv, pipe,
1371 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1372 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1373 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1374 				     res1, res2);
1375 }
1376 
1377 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1378 {
1379 	enum pipe pipe;
1380 
1381 	for_each_pipe(dev_priv, pipe) {
1382 		I915_WRITE(PIPESTAT(pipe),
1383 			   PIPESTAT_INT_STATUS_MASK |
1384 			   PIPE_FIFO_UNDERRUN_STATUS);
1385 
1386 		dev_priv->pipestat_irq_mask[pipe] = 0;
1387 	}
1388 }
1389 
1390 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1391 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1392 {
1393 	enum pipe pipe;
1394 
1395 	spin_lock(&dev_priv->irq_lock);
1396 
1397 	if (!dev_priv->display_irqs_enabled) {
1398 		spin_unlock(&dev_priv->irq_lock);
1399 		return;
1400 	}
1401 
1402 	for_each_pipe(dev_priv, pipe) {
1403 		i915_reg_t reg;
1404 		u32 status_mask, enable_mask, iir_bit = 0;
1405 
1406 		/*
1407 		 * PIPESTAT bits get signalled even when the interrupt is
1408 		 * disabled with the mask bits, and some of the status bits do
1409 		 * not generate interrupts at all (like the underrun bit). Hence
1410 		 * we need to be careful that we only handle what we want to
1411 		 * handle.
1412 		 */
1413 
1414 		/* fifo underruns are filterered in the underrun handler. */
1415 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1416 
1417 		switch (pipe) {
1418 		default:
1419 		case PIPE_A:
1420 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1421 			break;
1422 		case PIPE_B:
1423 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1424 			break;
1425 		case PIPE_C:
1426 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1427 			break;
1428 		}
1429 		if (iir & iir_bit)
1430 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1431 
1432 		if (!status_mask)
1433 			continue;
1434 
1435 		reg = PIPESTAT(pipe);
1436 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1437 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1438 
1439 		/*
1440 		 * Clear the PIPE*STAT regs before the IIR
1441 		 *
1442 		 * Toggle the enable bits to make sure we get an
1443 		 * edge in the ISR pipe event bit if we don't clear
1444 		 * all the enabled status bits. Otherwise the edge
1445 		 * triggered IIR on i965/g4x wouldn't notice that
1446 		 * an interrupt is still pending.
1447 		 */
1448 		if (pipe_stats[pipe]) {
1449 			I915_WRITE(reg, pipe_stats[pipe]);
1450 			I915_WRITE(reg, enable_mask);
1451 		}
1452 	}
1453 	spin_unlock(&dev_priv->irq_lock);
1454 }
1455 
1456 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1457 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1458 {
1459 	enum pipe pipe;
1460 
1461 	for_each_pipe(dev_priv, pipe) {
1462 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1463 			intel_handle_vblank(dev_priv, pipe);
1464 
1465 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1466 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1467 
1468 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1469 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1470 	}
1471 }
1472 
1473 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1474 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1475 {
1476 	bool blc_event = false;
1477 	enum pipe pipe;
1478 
1479 	for_each_pipe(dev_priv, pipe) {
1480 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1481 			intel_handle_vblank(dev_priv, pipe);
1482 
1483 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1484 			blc_event = true;
1485 
1486 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1487 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1488 
1489 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1490 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1491 	}
1492 
1493 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1494 		intel_opregion_asle_intr(dev_priv);
1495 }
1496 
1497 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1498 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1499 {
1500 	bool blc_event = false;
1501 	enum pipe pipe;
1502 
1503 	for_each_pipe(dev_priv, pipe) {
1504 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1505 			intel_handle_vblank(dev_priv, pipe);
1506 
1507 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1508 			blc_event = true;
1509 
1510 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1511 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1512 
1513 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1514 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1515 	}
1516 
1517 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1518 		intel_opregion_asle_intr(dev_priv);
1519 
1520 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1521 		gmbus_irq_handler(dev_priv);
1522 }
1523 
1524 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1525 					    u32 pipe_stats[I915_MAX_PIPES])
1526 {
1527 	enum pipe pipe;
1528 
1529 	for_each_pipe(dev_priv, pipe) {
1530 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1531 			intel_handle_vblank(dev_priv, pipe);
1532 
1533 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1534 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1535 
1536 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1537 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1538 	}
1539 
1540 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1541 		gmbus_irq_handler(dev_priv);
1542 }
1543 
1544 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1545 {
1546 	u32 hotplug_status = 0, hotplug_status_mask;
1547 	int i;
1548 
1549 	if (IS_G4X(dev_priv) ||
1550 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1551 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1552 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1553 	else
1554 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1555 
1556 	/*
1557 	 * We absolutely have to clear all the pending interrupt
1558 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1559 	 * interrupt bit won't have an edge, and the i965/g4x
1560 	 * edge triggered IIR will not notice that an interrupt
1561 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1562 	 * guarantee the edge as the act of toggling the enable
1563 	 * bits can itself generate a new hotplug interrupt :(
1564 	 */
1565 	for (i = 0; i < 10; i++) {
1566 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1567 
1568 		if (tmp == 0)
1569 			return hotplug_status;
1570 
1571 		hotplug_status |= tmp;
1572 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1573 	}
1574 
1575 	drm_WARN_ONCE(&dev_priv->drm, 1,
1576 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1577 		      I915_READ(PORT_HOTPLUG_STAT));
1578 
1579 	return hotplug_status;
1580 }
1581 
1582 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1583 				 u32 hotplug_status)
1584 {
1585 	u32 pin_mask = 0, long_mask = 0;
1586 	u32 hotplug_trigger;
1587 
1588 	if (IS_G4X(dev_priv) ||
1589 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1590 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1591 	else
1592 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1593 
1594 	if (hotplug_trigger) {
1595 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1596 				   hotplug_trigger, hotplug_trigger,
1597 				   dev_priv->hotplug.hpd,
1598 				   i9xx_port_hotplug_long_detect);
1599 
1600 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1601 	}
1602 
1603 	if ((IS_G4X(dev_priv) ||
1604 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1605 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1606 		dp_aux_irq_handler(dev_priv);
1607 }
1608 
1609 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1610 {
1611 	struct drm_i915_private *dev_priv = arg;
1612 	irqreturn_t ret = IRQ_NONE;
1613 
1614 	if (!intel_irqs_enabled(dev_priv))
1615 		return IRQ_NONE;
1616 
1617 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1618 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1619 
1620 	do {
1621 		u32 iir, gt_iir, pm_iir;
1622 		u32 pipe_stats[I915_MAX_PIPES] = {};
1623 		u32 hotplug_status = 0;
1624 		u32 ier = 0;
1625 
1626 		gt_iir = I915_READ(GTIIR);
1627 		pm_iir = I915_READ(GEN6_PMIIR);
1628 		iir = I915_READ(VLV_IIR);
1629 
1630 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1631 			break;
1632 
1633 		ret = IRQ_HANDLED;
1634 
1635 		/*
1636 		 * Theory on interrupt generation, based on empirical evidence:
1637 		 *
1638 		 * x = ((VLV_IIR & VLV_IER) ||
1639 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1640 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1641 		 *
1642 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1643 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1644 		 * guarantee the CPU interrupt will be raised again even if we
1645 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1646 		 * bits this time around.
1647 		 */
1648 		I915_WRITE(VLV_MASTER_IER, 0);
1649 		ier = I915_READ(VLV_IER);
1650 		I915_WRITE(VLV_IER, 0);
1651 
1652 		if (gt_iir)
1653 			I915_WRITE(GTIIR, gt_iir);
1654 		if (pm_iir)
1655 			I915_WRITE(GEN6_PMIIR, pm_iir);
1656 
1657 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1658 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1659 
1660 		/* Call regardless, as some status bits might not be
1661 		 * signalled in iir */
1662 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1663 
1664 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1665 			   I915_LPE_PIPE_B_INTERRUPT))
1666 			intel_lpe_audio_irq_handler(dev_priv);
1667 
1668 		/*
1669 		 * VLV_IIR is single buffered, and reflects the level
1670 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1671 		 */
1672 		if (iir)
1673 			I915_WRITE(VLV_IIR, iir);
1674 
1675 		I915_WRITE(VLV_IER, ier);
1676 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1677 
1678 		if (gt_iir)
1679 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1680 		if (pm_iir)
1681 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1682 
1683 		if (hotplug_status)
1684 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1685 
1686 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1687 	} while (0);
1688 
1689 	pmu_irq_stats(dev_priv, ret);
1690 
1691 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1692 
1693 	return ret;
1694 }
1695 
1696 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1697 {
1698 	struct drm_i915_private *dev_priv = arg;
1699 	irqreturn_t ret = IRQ_NONE;
1700 
1701 	if (!intel_irqs_enabled(dev_priv))
1702 		return IRQ_NONE;
1703 
1704 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1705 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1706 
1707 	do {
1708 		u32 master_ctl, iir;
1709 		u32 pipe_stats[I915_MAX_PIPES] = {};
1710 		u32 hotplug_status = 0;
1711 		u32 ier = 0;
1712 
1713 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1714 		iir = I915_READ(VLV_IIR);
1715 
1716 		if (master_ctl == 0 && iir == 0)
1717 			break;
1718 
1719 		ret = IRQ_HANDLED;
1720 
1721 		/*
1722 		 * Theory on interrupt generation, based on empirical evidence:
1723 		 *
1724 		 * x = ((VLV_IIR & VLV_IER) ||
1725 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1726 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1727 		 *
1728 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1729 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1730 		 * guarantee the CPU interrupt will be raised again even if we
1731 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1732 		 * bits this time around.
1733 		 */
1734 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1735 		ier = I915_READ(VLV_IER);
1736 		I915_WRITE(VLV_IER, 0);
1737 
1738 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1739 
1740 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1741 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1742 
1743 		/* Call regardless, as some status bits might not be
1744 		 * signalled in iir */
1745 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1746 
1747 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1748 			   I915_LPE_PIPE_B_INTERRUPT |
1749 			   I915_LPE_PIPE_C_INTERRUPT))
1750 			intel_lpe_audio_irq_handler(dev_priv);
1751 
1752 		/*
1753 		 * VLV_IIR is single buffered, and reflects the level
1754 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1755 		 */
1756 		if (iir)
1757 			I915_WRITE(VLV_IIR, iir);
1758 
1759 		I915_WRITE(VLV_IER, ier);
1760 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1761 
1762 		if (hotplug_status)
1763 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1764 
1765 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1766 	} while (0);
1767 
1768 	pmu_irq_stats(dev_priv, ret);
1769 
1770 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1771 
1772 	return ret;
1773 }
1774 
1775 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1776 				u32 hotplug_trigger)
1777 {
1778 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1779 
1780 	/*
1781 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1782 	 * unless we touch the hotplug register, even if hotplug_trigger is
1783 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1784 	 * errors.
1785 	 */
1786 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1787 	if (!hotplug_trigger) {
1788 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1789 			PORTD_HOTPLUG_STATUS_MASK |
1790 			PORTC_HOTPLUG_STATUS_MASK |
1791 			PORTB_HOTPLUG_STATUS_MASK;
1792 		dig_hotplug_reg &= ~mask;
1793 	}
1794 
1795 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1796 	if (!hotplug_trigger)
1797 		return;
1798 
1799 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1800 			   hotplug_trigger, dig_hotplug_reg,
1801 			   dev_priv->hotplug.pch_hpd,
1802 			   pch_port_hotplug_long_detect);
1803 
1804 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1805 }
1806 
1807 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1808 {
1809 	enum pipe pipe;
1810 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1811 
1812 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1813 
1814 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1815 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1816 			       SDE_AUDIO_POWER_SHIFT);
1817 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1818 			port_name(port));
1819 	}
1820 
1821 	if (pch_iir & SDE_AUX_MASK)
1822 		dp_aux_irq_handler(dev_priv);
1823 
1824 	if (pch_iir & SDE_GMBUS)
1825 		gmbus_irq_handler(dev_priv);
1826 
1827 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1828 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1829 
1830 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1831 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1832 
1833 	if (pch_iir & SDE_POISON)
1834 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1835 
1836 	if (pch_iir & SDE_FDI_MASK) {
1837 		for_each_pipe(dev_priv, pipe)
1838 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1839 				pipe_name(pipe),
1840 				I915_READ(FDI_RX_IIR(pipe)));
1841 	}
1842 
1843 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1844 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1845 
1846 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1847 		drm_dbg(&dev_priv->drm,
1848 			"PCH transcoder CRC error interrupt\n");
1849 
1850 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1851 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1852 
1853 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1854 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1855 }
1856 
1857 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1858 {
1859 	u32 err_int = I915_READ(GEN7_ERR_INT);
1860 	enum pipe pipe;
1861 
1862 	if (err_int & ERR_INT_POISON)
1863 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1864 
1865 	for_each_pipe(dev_priv, pipe) {
1866 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1867 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1868 
1869 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1870 			if (IS_IVYBRIDGE(dev_priv))
1871 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1872 			else
1873 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1874 		}
1875 	}
1876 
1877 	I915_WRITE(GEN7_ERR_INT, err_int);
1878 }
1879 
1880 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1881 {
1882 	u32 serr_int = I915_READ(SERR_INT);
1883 	enum pipe pipe;
1884 
1885 	if (serr_int & SERR_INT_POISON)
1886 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1887 
1888 	for_each_pipe(dev_priv, pipe)
1889 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1890 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1891 
1892 	I915_WRITE(SERR_INT, serr_int);
1893 }
1894 
1895 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1896 {
1897 	enum pipe pipe;
1898 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1899 
1900 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1901 
1902 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1903 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1904 			       SDE_AUDIO_POWER_SHIFT_CPT);
1905 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1906 			port_name(port));
1907 	}
1908 
1909 	if (pch_iir & SDE_AUX_MASK_CPT)
1910 		dp_aux_irq_handler(dev_priv);
1911 
1912 	if (pch_iir & SDE_GMBUS_CPT)
1913 		gmbus_irq_handler(dev_priv);
1914 
1915 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1916 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1917 
1918 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1919 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1920 
1921 	if (pch_iir & SDE_FDI_MASK_CPT) {
1922 		for_each_pipe(dev_priv, pipe)
1923 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1924 				pipe_name(pipe),
1925 				I915_READ(FDI_RX_IIR(pipe)));
1926 	}
1927 
1928 	if (pch_iir & SDE_ERROR_CPT)
1929 		cpt_serr_int_handler(dev_priv);
1930 }
1931 
1932 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1933 {
1934 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1935 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1936 	u32 pin_mask = 0, long_mask = 0;
1937 
1938 	if (ddi_hotplug_trigger) {
1939 		u32 dig_hotplug_reg;
1940 
1941 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1942 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1943 
1944 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1945 				   ddi_hotplug_trigger, dig_hotplug_reg,
1946 				   dev_priv->hotplug.pch_hpd,
1947 				   icp_ddi_port_hotplug_long_detect);
1948 	}
1949 
1950 	if (tc_hotplug_trigger) {
1951 		u32 dig_hotplug_reg;
1952 
1953 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1954 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1955 
1956 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1957 				   tc_hotplug_trigger, dig_hotplug_reg,
1958 				   dev_priv->hotplug.pch_hpd,
1959 				   icp_tc_port_hotplug_long_detect);
1960 	}
1961 
1962 	if (pin_mask)
1963 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1964 
1965 	if (pch_iir & SDE_GMBUS_ICP)
1966 		gmbus_irq_handler(dev_priv);
1967 }
1968 
1969 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1970 {
1971 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1972 		~SDE_PORTE_HOTPLUG_SPT;
1973 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1974 	u32 pin_mask = 0, long_mask = 0;
1975 
1976 	if (hotplug_trigger) {
1977 		u32 dig_hotplug_reg;
1978 
1979 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1980 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1981 
1982 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1983 				   hotplug_trigger, dig_hotplug_reg,
1984 				   dev_priv->hotplug.pch_hpd,
1985 				   spt_port_hotplug_long_detect);
1986 	}
1987 
1988 	if (hotplug2_trigger) {
1989 		u32 dig_hotplug_reg;
1990 
1991 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1992 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1993 
1994 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1995 				   hotplug2_trigger, dig_hotplug_reg,
1996 				   dev_priv->hotplug.pch_hpd,
1997 				   spt_port_hotplug2_long_detect);
1998 	}
1999 
2000 	if (pin_mask)
2001 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2002 
2003 	if (pch_iir & SDE_GMBUS_CPT)
2004 		gmbus_irq_handler(dev_priv);
2005 }
2006 
2007 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2008 				u32 hotplug_trigger)
2009 {
2010 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2011 
2012 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2013 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2014 
2015 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2016 			   hotplug_trigger, dig_hotplug_reg,
2017 			   dev_priv->hotplug.hpd,
2018 			   ilk_port_hotplug_long_detect);
2019 
2020 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2021 }
2022 
2023 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2024 				    u32 de_iir)
2025 {
2026 	enum pipe pipe;
2027 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2028 
2029 	if (hotplug_trigger)
2030 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2031 
2032 	if (de_iir & DE_AUX_CHANNEL_A)
2033 		dp_aux_irq_handler(dev_priv);
2034 
2035 	if (de_iir & DE_GSE)
2036 		intel_opregion_asle_intr(dev_priv);
2037 
2038 	if (de_iir & DE_POISON)
2039 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2040 
2041 	for_each_pipe(dev_priv, pipe) {
2042 		if (de_iir & DE_PIPE_VBLANK(pipe))
2043 			intel_handle_vblank(dev_priv, pipe);
2044 
2045 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2046 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2047 
2048 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2049 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2050 	}
2051 
2052 	/* check event from PCH */
2053 	if (de_iir & DE_PCH_EVENT) {
2054 		u32 pch_iir = I915_READ(SDEIIR);
2055 
2056 		if (HAS_PCH_CPT(dev_priv))
2057 			cpt_irq_handler(dev_priv, pch_iir);
2058 		else
2059 			ibx_irq_handler(dev_priv, pch_iir);
2060 
2061 		/* should clear PCH hotplug event before clear CPU irq */
2062 		I915_WRITE(SDEIIR, pch_iir);
2063 	}
2064 
2065 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2066 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2067 }
2068 
2069 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2070 				    u32 de_iir)
2071 {
2072 	enum pipe pipe;
2073 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2074 
2075 	if (hotplug_trigger)
2076 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2077 
2078 	if (de_iir & DE_ERR_INT_IVB)
2079 		ivb_err_int_handler(dev_priv);
2080 
2081 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2082 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2083 
2084 		intel_psr_irq_handler(dev_priv, psr_iir);
2085 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2086 	}
2087 
2088 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2089 		dp_aux_irq_handler(dev_priv);
2090 
2091 	if (de_iir & DE_GSE_IVB)
2092 		intel_opregion_asle_intr(dev_priv);
2093 
2094 	for_each_pipe(dev_priv, pipe) {
2095 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2096 			intel_handle_vblank(dev_priv, pipe);
2097 	}
2098 
2099 	/* check event from PCH */
2100 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2101 		u32 pch_iir = I915_READ(SDEIIR);
2102 
2103 		cpt_irq_handler(dev_priv, pch_iir);
2104 
2105 		/* clear PCH hotplug event before clear CPU irq */
2106 		I915_WRITE(SDEIIR, pch_iir);
2107 	}
2108 }
2109 
2110 /*
2111  * To handle irqs with the minimum potential races with fresh interrupts, we:
2112  * 1 - Disable Master Interrupt Control.
2113  * 2 - Find the source(s) of the interrupt.
2114  * 3 - Clear the Interrupt Identity bits (IIR).
2115  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2116  * 5 - Re-enable Master Interrupt Control.
2117  */
2118 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2119 {
2120 	struct drm_i915_private *i915 = arg;
2121 	void __iomem * const regs = i915->uncore.regs;
2122 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2123 	irqreturn_t ret = IRQ_NONE;
2124 
2125 	if (unlikely(!intel_irqs_enabled(i915)))
2126 		return IRQ_NONE;
2127 
2128 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2129 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2130 
2131 	/* disable master interrupt before clearing iir  */
2132 	de_ier = raw_reg_read(regs, DEIER);
2133 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2134 
2135 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2136 	 * interrupts will will be stored on its back queue, and then we'll be
2137 	 * able to process them after we restore SDEIER (as soon as we restore
2138 	 * it, we'll get an interrupt if SDEIIR still has something to process
2139 	 * due to its back queue). */
2140 	if (!HAS_PCH_NOP(i915)) {
2141 		sde_ier = raw_reg_read(regs, SDEIER);
2142 		raw_reg_write(regs, SDEIER, 0);
2143 	}
2144 
2145 	/* Find, clear, then process each source of interrupt */
2146 
2147 	gt_iir = raw_reg_read(regs, GTIIR);
2148 	if (gt_iir) {
2149 		raw_reg_write(regs, GTIIR, gt_iir);
2150 		if (INTEL_GEN(i915) >= 6)
2151 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2152 		else
2153 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2154 		ret = IRQ_HANDLED;
2155 	}
2156 
2157 	de_iir = raw_reg_read(regs, DEIIR);
2158 	if (de_iir) {
2159 		raw_reg_write(regs, DEIIR, de_iir);
2160 		if (INTEL_GEN(i915) >= 7)
2161 			ivb_display_irq_handler(i915, de_iir);
2162 		else
2163 			ilk_display_irq_handler(i915, de_iir);
2164 		ret = IRQ_HANDLED;
2165 	}
2166 
2167 	if (INTEL_GEN(i915) >= 6) {
2168 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2169 		if (pm_iir) {
2170 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2171 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2172 			ret = IRQ_HANDLED;
2173 		}
2174 	}
2175 
2176 	raw_reg_write(regs, DEIER, de_ier);
2177 	if (sde_ier)
2178 		raw_reg_write(regs, SDEIER, sde_ier);
2179 
2180 	pmu_irq_stats(i915, ret);
2181 
2182 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2183 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2184 
2185 	return ret;
2186 }
2187 
2188 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2189 				u32 hotplug_trigger)
2190 {
2191 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2192 
2193 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2194 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2195 
2196 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2197 			   hotplug_trigger, dig_hotplug_reg,
2198 			   dev_priv->hotplug.hpd,
2199 			   bxt_port_hotplug_long_detect);
2200 
2201 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2202 }
2203 
2204 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2205 {
2206 	u32 pin_mask = 0, long_mask = 0;
2207 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2208 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2209 
2210 	if (trigger_tc) {
2211 		u32 dig_hotplug_reg;
2212 
2213 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2214 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2215 
2216 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2217 				   trigger_tc, dig_hotplug_reg,
2218 				   dev_priv->hotplug.hpd,
2219 				   gen11_port_hotplug_long_detect);
2220 	}
2221 
2222 	if (trigger_tbt) {
2223 		u32 dig_hotplug_reg;
2224 
2225 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2226 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2227 
2228 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2229 				   trigger_tbt, dig_hotplug_reg,
2230 				   dev_priv->hotplug.hpd,
2231 				   gen11_port_hotplug_long_detect);
2232 	}
2233 
2234 	if (pin_mask)
2235 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2236 	else
2237 		drm_err(&dev_priv->drm,
2238 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2239 }
2240 
2241 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2242 {
2243 	u32 mask;
2244 
2245 	if (INTEL_GEN(dev_priv) >= 12)
2246 		return TGL_DE_PORT_AUX_DDIA |
2247 			TGL_DE_PORT_AUX_DDIB |
2248 			TGL_DE_PORT_AUX_DDIC |
2249 			TGL_DE_PORT_AUX_USBC1 |
2250 			TGL_DE_PORT_AUX_USBC2 |
2251 			TGL_DE_PORT_AUX_USBC3 |
2252 			TGL_DE_PORT_AUX_USBC4 |
2253 			TGL_DE_PORT_AUX_USBC5 |
2254 			TGL_DE_PORT_AUX_USBC6;
2255 
2256 
2257 	mask = GEN8_AUX_CHANNEL_A;
2258 	if (INTEL_GEN(dev_priv) >= 9)
2259 		mask |= GEN9_AUX_CHANNEL_B |
2260 			GEN9_AUX_CHANNEL_C |
2261 			GEN9_AUX_CHANNEL_D;
2262 
2263 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2264 		mask |= CNL_AUX_CHANNEL_F;
2265 
2266 	if (IS_GEN(dev_priv, 11))
2267 		mask |= ICL_AUX_CHANNEL_E;
2268 
2269 	return mask;
2270 }
2271 
2272 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2273 {
2274 	if (IS_ROCKETLAKE(dev_priv))
2275 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2276 	else if (INTEL_GEN(dev_priv) >= 11)
2277 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2278 	else if (INTEL_GEN(dev_priv) >= 9)
2279 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2280 	else
2281 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2282 }
2283 
2284 static void
2285 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2286 {
2287 	bool found = false;
2288 
2289 	if (iir & GEN8_DE_MISC_GSE) {
2290 		intel_opregion_asle_intr(dev_priv);
2291 		found = true;
2292 	}
2293 
2294 	if (iir & GEN8_DE_EDP_PSR) {
2295 		u32 psr_iir;
2296 		i915_reg_t iir_reg;
2297 
2298 		if (INTEL_GEN(dev_priv) >= 12)
2299 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2300 		else
2301 			iir_reg = EDP_PSR_IIR;
2302 
2303 		psr_iir = I915_READ(iir_reg);
2304 		I915_WRITE(iir_reg, psr_iir);
2305 
2306 		if (psr_iir)
2307 			found = true;
2308 
2309 		intel_psr_irq_handler(dev_priv, psr_iir);
2310 	}
2311 
2312 	if (!found)
2313 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2314 }
2315 
2316 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2317 					   u32 te_trigger)
2318 {
2319 	enum pipe pipe = INVALID_PIPE;
2320 	enum transcoder dsi_trans;
2321 	enum port port;
2322 	u32 val, tmp;
2323 
2324 	/*
2325 	 * Incase of dual link, TE comes from DSI_1
2326 	 * this is to check if dual link is enabled
2327 	 */
2328 	val = I915_READ(TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2329 	val &= PORT_SYNC_MODE_ENABLE;
2330 
2331 	/*
2332 	 * if dual link is enabled, then read DSI_0
2333 	 * transcoder registers
2334 	 */
2335 	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2336 						  PORT_A : PORT_B;
2337 	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2338 
2339 	/* Check if DSI configured in command mode */
2340 	val = I915_READ(DSI_TRANS_FUNC_CONF(dsi_trans));
2341 	val = val & OP_MODE_MASK;
2342 
2343 	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2344 		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2345 		return;
2346 	}
2347 
2348 	/* Get PIPE for handling VBLANK event */
2349 	val = I915_READ(TRANS_DDI_FUNC_CTL(dsi_trans));
2350 	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2351 	case TRANS_DDI_EDP_INPUT_A_ON:
2352 		pipe = PIPE_A;
2353 		break;
2354 	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2355 		pipe = PIPE_B;
2356 		break;
2357 	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2358 		pipe = PIPE_C;
2359 		break;
2360 	default:
2361 		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2362 		return;
2363 	}
2364 
2365 	intel_handle_vblank(dev_priv, pipe);
2366 
2367 	/* clear TE in dsi IIR */
2368 	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2369 	tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2370 	I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2371 }
2372 
2373 static irqreturn_t
2374 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2375 {
2376 	irqreturn_t ret = IRQ_NONE;
2377 	u32 iir;
2378 	enum pipe pipe;
2379 
2380 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2381 		iir = I915_READ(GEN8_DE_MISC_IIR);
2382 		if (iir) {
2383 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2384 			ret = IRQ_HANDLED;
2385 			gen8_de_misc_irq_handler(dev_priv, iir);
2386 		} else {
2387 			drm_err(&dev_priv->drm,
2388 				"The master control interrupt lied (DE MISC)!\n");
2389 		}
2390 	}
2391 
2392 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2393 		iir = I915_READ(GEN11_DE_HPD_IIR);
2394 		if (iir) {
2395 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2396 			ret = IRQ_HANDLED;
2397 			gen11_hpd_irq_handler(dev_priv, iir);
2398 		} else {
2399 			drm_err(&dev_priv->drm,
2400 				"The master control interrupt lied, (DE HPD)!\n");
2401 		}
2402 	}
2403 
2404 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2405 		iir = I915_READ(GEN8_DE_PORT_IIR);
2406 		if (iir) {
2407 			bool found = false;
2408 
2409 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2410 			ret = IRQ_HANDLED;
2411 
2412 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2413 				dp_aux_irq_handler(dev_priv);
2414 				found = true;
2415 			}
2416 
2417 			if (IS_GEN9_LP(dev_priv)) {
2418 				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2419 
2420 				if (hotplug_trigger) {
2421 					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2422 					found = true;
2423 				}
2424 			} else if (IS_BROADWELL(dev_priv)) {
2425 				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2426 
2427 				if (hotplug_trigger) {
2428 					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2429 					found = true;
2430 				}
2431 			}
2432 
2433 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2434 				gmbus_irq_handler(dev_priv);
2435 				found = true;
2436 			}
2437 
2438 			if (INTEL_GEN(dev_priv) >= 11) {
2439 				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2440 
2441 				if (te_trigger) {
2442 					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2443 					found = true;
2444 				}
2445 			}
2446 
2447 			if (!found)
2448 				drm_err(&dev_priv->drm,
2449 					"Unexpected DE Port interrupt\n");
2450 		}
2451 		else
2452 			drm_err(&dev_priv->drm,
2453 				"The master control interrupt lied (DE PORT)!\n");
2454 	}
2455 
2456 	for_each_pipe(dev_priv, pipe) {
2457 		u32 fault_errors;
2458 
2459 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2460 			continue;
2461 
2462 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2463 		if (!iir) {
2464 			drm_err(&dev_priv->drm,
2465 				"The master control interrupt lied (DE PIPE)!\n");
2466 			continue;
2467 		}
2468 
2469 		ret = IRQ_HANDLED;
2470 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2471 
2472 		if (iir & GEN8_PIPE_VBLANK)
2473 			intel_handle_vblank(dev_priv, pipe);
2474 
2475 		if (iir & GEN9_PIPE_PLANE1_FLIP_DONE)
2476 			flip_done_handler(dev_priv, pipe);
2477 
2478 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2479 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2480 
2481 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2482 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2483 
2484 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2485 		if (fault_errors)
2486 			drm_err(&dev_priv->drm,
2487 				"Fault errors on pipe %c: 0x%08x\n",
2488 				pipe_name(pipe),
2489 				fault_errors);
2490 	}
2491 
2492 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2493 	    master_ctl & GEN8_DE_PCH_IRQ) {
2494 		/*
2495 		 * FIXME(BDW): Assume for now that the new interrupt handling
2496 		 * scheme also closed the SDE interrupt handling race we've seen
2497 		 * on older pch-split platforms. But this needs testing.
2498 		 */
2499 		iir = I915_READ(SDEIIR);
2500 		if (iir) {
2501 			I915_WRITE(SDEIIR, iir);
2502 			ret = IRQ_HANDLED;
2503 
2504 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2505 				icp_irq_handler(dev_priv, iir);
2506 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2507 				spt_irq_handler(dev_priv, iir);
2508 			else
2509 				cpt_irq_handler(dev_priv, iir);
2510 		} else {
2511 			/*
2512 			 * Like on previous PCH there seems to be something
2513 			 * fishy going on with forwarding PCH interrupts.
2514 			 */
2515 			drm_dbg(&dev_priv->drm,
2516 				"The master control interrupt lied (SDE)!\n");
2517 		}
2518 	}
2519 
2520 	return ret;
2521 }
2522 
2523 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2524 {
2525 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2526 
2527 	/*
2528 	 * Now with master disabled, get a sample of level indications
2529 	 * for this interrupt. Indications will be cleared on related acks.
2530 	 * New indications can and will light up during processing,
2531 	 * and will generate new interrupt after enabling master.
2532 	 */
2533 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2534 }
2535 
2536 static inline void gen8_master_intr_enable(void __iomem * const regs)
2537 {
2538 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2539 }
2540 
2541 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2542 {
2543 	struct drm_i915_private *dev_priv = arg;
2544 	void __iomem * const regs = dev_priv->uncore.regs;
2545 	u32 master_ctl;
2546 
2547 	if (!intel_irqs_enabled(dev_priv))
2548 		return IRQ_NONE;
2549 
2550 	master_ctl = gen8_master_intr_disable(regs);
2551 	if (!master_ctl) {
2552 		gen8_master_intr_enable(regs);
2553 		return IRQ_NONE;
2554 	}
2555 
2556 	/* Find, queue (onto bottom-halves), then clear each source */
2557 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2558 
2559 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2560 	if (master_ctl & ~GEN8_GT_IRQS) {
2561 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2562 		gen8_de_irq_handler(dev_priv, master_ctl);
2563 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2564 	}
2565 
2566 	gen8_master_intr_enable(regs);
2567 
2568 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
2569 
2570 	return IRQ_HANDLED;
2571 }
2572 
2573 static u32
2574 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2575 {
2576 	void __iomem * const regs = gt->uncore->regs;
2577 	u32 iir;
2578 
2579 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2580 		return 0;
2581 
2582 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2583 	if (likely(iir))
2584 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2585 
2586 	return iir;
2587 }
2588 
2589 static void
2590 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2591 {
2592 	if (iir & GEN11_GU_MISC_GSE)
2593 		intel_opregion_asle_intr(gt->i915);
2594 }
2595 
2596 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2597 {
2598 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2599 
2600 	/*
2601 	 * Now with master disabled, get a sample of level indications
2602 	 * for this interrupt. Indications will be cleared on related acks.
2603 	 * New indications can and will light up during processing,
2604 	 * and will generate new interrupt after enabling master.
2605 	 */
2606 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2607 }
2608 
2609 static inline void gen11_master_intr_enable(void __iomem * const regs)
2610 {
2611 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2612 }
2613 
2614 static void
2615 gen11_display_irq_handler(struct drm_i915_private *i915)
2616 {
2617 	void __iomem * const regs = i915->uncore.regs;
2618 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2619 
2620 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2621 	/*
2622 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2623 	 * for the display related bits.
2624 	 */
2625 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2626 	gen8_de_irq_handler(i915, disp_ctl);
2627 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2628 		      GEN11_DISPLAY_IRQ_ENABLE);
2629 
2630 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2631 }
2632 
2633 static __always_inline irqreturn_t
2634 __gen11_irq_handler(struct drm_i915_private * const i915,
2635 		    u32 (*intr_disable)(void __iomem * const regs),
2636 		    void (*intr_enable)(void __iomem * const regs))
2637 {
2638 	void __iomem * const regs = i915->uncore.regs;
2639 	struct intel_gt *gt = &i915->gt;
2640 	u32 master_ctl;
2641 	u32 gu_misc_iir;
2642 
2643 	if (!intel_irqs_enabled(i915))
2644 		return IRQ_NONE;
2645 
2646 	master_ctl = intr_disable(regs);
2647 	if (!master_ctl) {
2648 		intr_enable(regs);
2649 		return IRQ_NONE;
2650 	}
2651 
2652 	/* Find, queue (onto bottom-halves), then clear each source */
2653 	gen11_gt_irq_handler(gt, master_ctl);
2654 
2655 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2656 	if (master_ctl & GEN11_DISPLAY_IRQ)
2657 		gen11_display_irq_handler(i915);
2658 
2659 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2660 
2661 	intr_enable(regs);
2662 
2663 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2664 
2665 	pmu_irq_stats(i915, IRQ_HANDLED);
2666 
2667 	return IRQ_HANDLED;
2668 }
2669 
2670 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2671 {
2672 	return __gen11_irq_handler(arg,
2673 				   gen11_master_intr_disable,
2674 				   gen11_master_intr_enable);
2675 }
2676 
2677 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2678 {
2679 	u32 val;
2680 
2681 	/* First disable interrupts */
2682 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2683 
2684 	/* Get the indication levels and ack the master unit */
2685 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2686 	if (unlikely(!val))
2687 		return 0;
2688 
2689 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2690 
2691 	/*
2692 	 * Now with master disabled, get a sample of level indications
2693 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2694 	 * out as this bit doesn't exist anymore for DG1
2695 	 */
2696 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2697 	if (unlikely(!val))
2698 		return 0;
2699 
2700 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2701 
2702 	return val;
2703 }
2704 
2705 static inline void dg1_master_intr_enable(void __iomem * const regs)
2706 {
2707 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2708 }
2709 
2710 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2711 {
2712 	return __gen11_irq_handler(arg,
2713 				   dg1_master_intr_disable_and_ack,
2714 				   dg1_master_intr_enable);
2715 }
2716 
2717 /* Called from drm generic code, passed 'crtc' which
2718  * we use as a pipe index
2719  */
2720 int i8xx_enable_vblank(struct drm_crtc *crtc)
2721 {
2722 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2723 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2724 	unsigned long irqflags;
2725 
2726 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2728 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2729 
2730 	return 0;
2731 }
2732 
2733 int i915gm_enable_vblank(struct drm_crtc *crtc)
2734 {
2735 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2736 
2737 	/*
2738 	 * Vblank interrupts fail to wake the device up from C2+.
2739 	 * Disabling render clock gating during C-states avoids
2740 	 * the problem. There is a small power cost so we do this
2741 	 * only when vblank interrupts are actually enabled.
2742 	 */
2743 	if (dev_priv->vblank_enabled++ == 0)
2744 		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2745 
2746 	return i8xx_enable_vblank(crtc);
2747 }
2748 
2749 int i965_enable_vblank(struct drm_crtc *crtc)
2750 {
2751 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2752 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2753 	unsigned long irqflags;
2754 
2755 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2756 	i915_enable_pipestat(dev_priv, pipe,
2757 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2758 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2759 
2760 	return 0;
2761 }
2762 
2763 int ilk_enable_vblank(struct drm_crtc *crtc)
2764 {
2765 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2766 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2767 	unsigned long irqflags;
2768 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2769 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2770 
2771 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2772 	ilk_enable_display_irq(dev_priv, bit);
2773 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2774 
2775 	/* Even though there is no DMC, frame counter can get stuck when
2776 	 * PSR is active as no frames are generated.
2777 	 */
2778 	if (HAS_PSR(dev_priv))
2779 		drm_crtc_vblank_restore(crtc);
2780 
2781 	return 0;
2782 }
2783 
2784 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2785 				   bool enable)
2786 {
2787 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2788 	enum port port;
2789 	u32 tmp;
2790 
2791 	if (!(intel_crtc->mode_flags &
2792 	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2793 		return false;
2794 
2795 	/* for dual link cases we consider TE from slave */
2796 	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2797 		port = PORT_B;
2798 	else
2799 		port = PORT_A;
2800 
2801 	tmp =  I915_READ(DSI_INTR_MASK_REG(port));
2802 	if (enable)
2803 		tmp &= ~DSI_TE_EVENT;
2804 	else
2805 		tmp |= DSI_TE_EVENT;
2806 
2807 	I915_WRITE(DSI_INTR_MASK_REG(port), tmp);
2808 
2809 	tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2810 	I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2811 
2812 	return true;
2813 }
2814 
2815 int bdw_enable_vblank(struct drm_crtc *crtc)
2816 {
2817 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2818 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819 	enum pipe pipe = intel_crtc->pipe;
2820 	unsigned long irqflags;
2821 
2822 	if (gen11_dsi_configure_te(intel_crtc, true))
2823 		return 0;
2824 
2825 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2826 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2827 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2828 
2829 	/* Even if there is no DMC, frame counter can get stuck when
2830 	 * PSR is active as no frames are generated, so check only for PSR.
2831 	 */
2832 	if (HAS_PSR(dev_priv))
2833 		drm_crtc_vblank_restore(crtc);
2834 
2835 	return 0;
2836 }
2837 
2838 void skl_enable_flip_done(struct intel_crtc *crtc)
2839 {
2840 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2841 	enum pipe pipe = crtc->pipe;
2842 	unsigned long irqflags;
2843 
2844 	spin_lock_irqsave(&i915->irq_lock, irqflags);
2845 
2846 	bdw_enable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2847 
2848 	spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2849 }
2850 
2851 /* Called from drm generic code, passed 'crtc' which
2852  * we use as a pipe index
2853  */
2854 void i8xx_disable_vblank(struct drm_crtc *crtc)
2855 {
2856 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2857 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2858 	unsigned long irqflags;
2859 
2860 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2861 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2862 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2863 }
2864 
2865 void i915gm_disable_vblank(struct drm_crtc *crtc)
2866 {
2867 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2868 
2869 	i8xx_disable_vblank(crtc);
2870 
2871 	if (--dev_priv->vblank_enabled == 0)
2872 		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2873 }
2874 
2875 void i965_disable_vblank(struct drm_crtc *crtc)
2876 {
2877 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2878 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2879 	unsigned long irqflags;
2880 
2881 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2882 	i915_disable_pipestat(dev_priv, pipe,
2883 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2884 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2885 }
2886 
2887 void ilk_disable_vblank(struct drm_crtc *crtc)
2888 {
2889 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2890 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2891 	unsigned long irqflags;
2892 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2893 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2894 
2895 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2896 	ilk_disable_display_irq(dev_priv, bit);
2897 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2898 }
2899 
2900 void bdw_disable_vblank(struct drm_crtc *crtc)
2901 {
2902 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2903 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2904 	enum pipe pipe = intel_crtc->pipe;
2905 	unsigned long irqflags;
2906 
2907 	if (gen11_dsi_configure_te(intel_crtc, false))
2908 		return;
2909 
2910 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2911 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2912 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2913 }
2914 
2915 void skl_disable_flip_done(struct intel_crtc *crtc)
2916 {
2917 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2918 	enum pipe pipe = crtc->pipe;
2919 	unsigned long irqflags;
2920 
2921 	spin_lock_irqsave(&i915->irq_lock, irqflags);
2922 
2923 	bdw_disable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2924 
2925 	spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2926 }
2927 
2928 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2929 {
2930 	struct intel_uncore *uncore = &dev_priv->uncore;
2931 
2932 	if (HAS_PCH_NOP(dev_priv))
2933 		return;
2934 
2935 	GEN3_IRQ_RESET(uncore, SDE);
2936 
2937 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2938 		I915_WRITE(SERR_INT, 0xffffffff);
2939 }
2940 
2941 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2942 {
2943 	struct intel_uncore *uncore = &dev_priv->uncore;
2944 
2945 	if (IS_CHERRYVIEW(dev_priv))
2946 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2947 	else
2948 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2949 
2950 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2951 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2952 
2953 	i9xx_pipestat_irq_reset(dev_priv);
2954 
2955 	GEN3_IRQ_RESET(uncore, VLV_);
2956 	dev_priv->irq_mask = ~0u;
2957 }
2958 
2959 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2960 {
2961 	struct intel_uncore *uncore = &dev_priv->uncore;
2962 
2963 	u32 pipestat_mask;
2964 	u32 enable_mask;
2965 	enum pipe pipe;
2966 
2967 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2968 
2969 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2970 	for_each_pipe(dev_priv, pipe)
2971 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2972 
2973 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2974 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2975 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2976 		I915_LPE_PIPE_A_INTERRUPT |
2977 		I915_LPE_PIPE_B_INTERRUPT;
2978 
2979 	if (IS_CHERRYVIEW(dev_priv))
2980 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2981 			I915_LPE_PIPE_C_INTERRUPT;
2982 
2983 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2984 
2985 	dev_priv->irq_mask = ~enable_mask;
2986 
2987 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2988 }
2989 
2990 /* drm_dma.h hooks
2991 */
2992 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2993 {
2994 	struct intel_uncore *uncore = &dev_priv->uncore;
2995 
2996 	GEN3_IRQ_RESET(uncore, DE);
2997 	dev_priv->irq_mask = ~0u;
2998 
2999 	if (IS_GEN(dev_priv, 7))
3000 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3001 
3002 	if (IS_HASWELL(dev_priv)) {
3003 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3004 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3005 	}
3006 
3007 	gen5_gt_irq_reset(&dev_priv->gt);
3008 
3009 	ibx_irq_reset(dev_priv);
3010 }
3011 
3012 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3013 {
3014 	I915_WRITE(VLV_MASTER_IER, 0);
3015 	POSTING_READ(VLV_MASTER_IER);
3016 
3017 	gen5_gt_irq_reset(&dev_priv->gt);
3018 
3019 	spin_lock_irq(&dev_priv->irq_lock);
3020 	if (dev_priv->display_irqs_enabled)
3021 		vlv_display_irq_reset(dev_priv);
3022 	spin_unlock_irq(&dev_priv->irq_lock);
3023 }
3024 
3025 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3026 {
3027 	struct intel_uncore *uncore = &dev_priv->uncore;
3028 	enum pipe pipe;
3029 
3030 	gen8_master_intr_disable(dev_priv->uncore.regs);
3031 
3032 	gen8_gt_irq_reset(&dev_priv->gt);
3033 
3034 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3035 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3036 
3037 	for_each_pipe(dev_priv, pipe)
3038 		if (intel_display_power_is_enabled(dev_priv,
3039 						   POWER_DOMAIN_PIPE(pipe)))
3040 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3041 
3042 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3043 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3044 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3045 
3046 	if (HAS_PCH_SPLIT(dev_priv))
3047 		ibx_irq_reset(dev_priv);
3048 }
3049 
3050 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3051 {
3052 	struct intel_uncore *uncore = &dev_priv->uncore;
3053 	enum pipe pipe;
3054 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3055 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3056 
3057 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3058 
3059 	if (INTEL_GEN(dev_priv) >= 12) {
3060 		enum transcoder trans;
3061 
3062 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3063 			enum intel_display_power_domain domain;
3064 
3065 			domain = POWER_DOMAIN_TRANSCODER(trans);
3066 			if (!intel_display_power_is_enabled(dev_priv, domain))
3067 				continue;
3068 
3069 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3070 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3071 		}
3072 	} else {
3073 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3074 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3075 	}
3076 
3077 	for_each_pipe(dev_priv, pipe)
3078 		if (intel_display_power_is_enabled(dev_priv,
3079 						   POWER_DOMAIN_PIPE(pipe)))
3080 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3081 
3082 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3083 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3084 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3085 
3086 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3087 		GEN3_IRQ_RESET(uncore, SDE);
3088 
3089 	/* Wa_14010685332:cnp/cmp,tgp,adp */
3090 	if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
3091 	    (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
3092 	     INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
3093 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3094 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
3095 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3096 				 SBCLK_RUN_REFCLK_DIS, 0);
3097 	}
3098 }
3099 
3100 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3101 {
3102 	struct intel_uncore *uncore = &dev_priv->uncore;
3103 
3104 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
3105 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3106 	else
3107 		gen11_master_intr_disable(dev_priv->uncore.regs);
3108 
3109 	gen11_gt_irq_reset(&dev_priv->gt);
3110 	gen11_display_irq_reset(dev_priv);
3111 
3112 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3113 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3114 }
3115 
3116 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3117 				     u8 pipe_mask)
3118 {
3119 	struct intel_uncore *uncore = &dev_priv->uncore;
3120 
3121 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3122 	enum pipe pipe;
3123 
3124 	if (INTEL_GEN(dev_priv) >= 9)
3125 		extra_ier |= GEN9_PIPE_PLANE1_FLIP_DONE;
3126 
3127 	spin_lock_irq(&dev_priv->irq_lock);
3128 
3129 	if (!intel_irqs_enabled(dev_priv)) {
3130 		spin_unlock_irq(&dev_priv->irq_lock);
3131 		return;
3132 	}
3133 
3134 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3135 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3136 				  dev_priv->de_irq_mask[pipe],
3137 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3138 
3139 	spin_unlock_irq(&dev_priv->irq_lock);
3140 }
3141 
3142 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3143 				     u8 pipe_mask)
3144 {
3145 	struct intel_uncore *uncore = &dev_priv->uncore;
3146 	enum pipe pipe;
3147 
3148 	spin_lock_irq(&dev_priv->irq_lock);
3149 
3150 	if (!intel_irqs_enabled(dev_priv)) {
3151 		spin_unlock_irq(&dev_priv->irq_lock);
3152 		return;
3153 	}
3154 
3155 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3156 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3157 
3158 	spin_unlock_irq(&dev_priv->irq_lock);
3159 
3160 	/* make sure we're done processing display irqs */
3161 	intel_synchronize_irq(dev_priv);
3162 }
3163 
3164 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3165 {
3166 	struct intel_uncore *uncore = &dev_priv->uncore;
3167 
3168 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3169 	POSTING_READ(GEN8_MASTER_IRQ);
3170 
3171 	gen8_gt_irq_reset(&dev_priv->gt);
3172 
3173 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3174 
3175 	spin_lock_irq(&dev_priv->irq_lock);
3176 	if (dev_priv->display_irqs_enabled)
3177 		vlv_display_irq_reset(dev_priv);
3178 	spin_unlock_irq(&dev_priv->irq_lock);
3179 }
3180 
3181 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3182 			       enum hpd_pin pin)
3183 {
3184 	switch (pin) {
3185 	case HPD_PORT_A:
3186 		/*
3187 		 * When CPU and PCH are on the same package, port A
3188 		 * HPD must be enabled in both north and south.
3189 		 */
3190 		return HAS_PCH_LPT_LP(i915) ?
3191 			PORTA_HOTPLUG_ENABLE : 0;
3192 	case HPD_PORT_B:
3193 		return PORTB_HOTPLUG_ENABLE |
3194 			PORTB_PULSE_DURATION_2ms;
3195 	case HPD_PORT_C:
3196 		return PORTC_HOTPLUG_ENABLE |
3197 			PORTC_PULSE_DURATION_2ms;
3198 	case HPD_PORT_D:
3199 		return PORTD_HOTPLUG_ENABLE |
3200 			PORTD_PULSE_DURATION_2ms;
3201 	default:
3202 		return 0;
3203 	}
3204 }
3205 
3206 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3207 {
3208 	u32 hotplug;
3209 
3210 	/*
3211 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3212 	 * duration to 2ms (which is the minimum in the Display Port spec).
3213 	 * The pulse duration bits are reserved on LPT+.
3214 	 */
3215 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3216 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3217 		     PORTB_HOTPLUG_ENABLE |
3218 		     PORTC_HOTPLUG_ENABLE |
3219 		     PORTD_HOTPLUG_ENABLE |
3220 		     PORTB_PULSE_DURATION_MASK |
3221 		     PORTC_PULSE_DURATION_MASK |
3222 		     PORTD_PULSE_DURATION_MASK);
3223 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3224 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3225 }
3226 
3227 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3228 {
3229 	u32 hotplug_irqs, enabled_irqs;
3230 
3231 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3232 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3233 
3234 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3235 
3236 	ibx_hpd_detection_setup(dev_priv);
3237 }
3238 
3239 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3240 				   enum hpd_pin pin)
3241 {
3242 	switch (pin) {
3243 	case HPD_PORT_A:
3244 	case HPD_PORT_B:
3245 	case HPD_PORT_C:
3246 	case HPD_PORT_D:
3247 		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3248 	default:
3249 		return 0;
3250 	}
3251 }
3252 
3253 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3254 				  enum hpd_pin pin)
3255 {
3256 	switch (pin) {
3257 	case HPD_PORT_TC1:
3258 	case HPD_PORT_TC2:
3259 	case HPD_PORT_TC3:
3260 	case HPD_PORT_TC4:
3261 	case HPD_PORT_TC5:
3262 	case HPD_PORT_TC6:
3263 		return ICP_TC_HPD_ENABLE(pin);
3264 	default:
3265 		return 0;
3266 	}
3267 }
3268 
3269 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3270 {
3271 	u32 hotplug;
3272 
3273 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3274 	hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3275 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3276 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3277 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3278 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3279 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3280 }
3281 
3282 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3283 {
3284 	u32 hotplug;
3285 
3286 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3287 	hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3288 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3289 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3290 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3291 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3292 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3293 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3294 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3295 }
3296 
3297 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3298 {
3299 	u32 hotplug_irqs, enabled_irqs;
3300 
3301 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3302 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3303 
3304 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3305 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3306 
3307 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3308 
3309 	icp_ddi_hpd_detection_setup(dev_priv);
3310 	icp_tc_hpd_detection_setup(dev_priv);
3311 }
3312 
3313 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3314 				 enum hpd_pin pin)
3315 {
3316 	switch (pin) {
3317 	case HPD_PORT_TC1:
3318 	case HPD_PORT_TC2:
3319 	case HPD_PORT_TC3:
3320 	case HPD_PORT_TC4:
3321 	case HPD_PORT_TC5:
3322 	case HPD_PORT_TC6:
3323 		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3324 	default:
3325 		return 0;
3326 	}
3327 }
3328 
3329 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3330 {
3331 	u32 val;
3332 
3333 	val = I915_READ(SOUTH_CHICKEN1);
3334 	val |= (INVERT_DDIA_HPD |
3335 		INVERT_DDIB_HPD |
3336 		INVERT_DDIC_HPD |
3337 		INVERT_DDID_HPD);
3338 	I915_WRITE(SOUTH_CHICKEN1, val);
3339 
3340 	icp_hpd_irq_setup(dev_priv);
3341 }
3342 
3343 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3344 {
3345 	u32 hotplug;
3346 
3347 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3348 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3349 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3350 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3351 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3352 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3353 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3354 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3355 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3356 }
3357 
3358 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3359 {
3360 	u32 hotplug;
3361 
3362 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3363 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3364 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3365 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3366 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3367 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3368 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3369 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3370 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3371 }
3372 
3373 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3374 {
3375 	u32 hotplug_irqs, enabled_irqs;
3376 	u32 val;
3377 
3378 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3379 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3380 
3381 	val = I915_READ(GEN11_DE_HPD_IMR);
3382 	val &= ~hotplug_irqs;
3383 	val |= ~enabled_irqs & hotplug_irqs;
3384 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3385 	POSTING_READ(GEN11_DE_HPD_IMR);
3386 
3387 	gen11_tc_hpd_detection_setup(dev_priv);
3388 	gen11_tbt_hpd_detection_setup(dev_priv);
3389 
3390 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3391 		icp_hpd_irq_setup(dev_priv);
3392 }
3393 
3394 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3395 			       enum hpd_pin pin)
3396 {
3397 	switch (pin) {
3398 	case HPD_PORT_A:
3399 		return PORTA_HOTPLUG_ENABLE;
3400 	case HPD_PORT_B:
3401 		return PORTB_HOTPLUG_ENABLE;
3402 	case HPD_PORT_C:
3403 		return PORTC_HOTPLUG_ENABLE;
3404 	case HPD_PORT_D:
3405 		return PORTD_HOTPLUG_ENABLE;
3406 	default:
3407 		return 0;
3408 	}
3409 }
3410 
3411 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3412 				enum hpd_pin pin)
3413 {
3414 	switch (pin) {
3415 	case HPD_PORT_E:
3416 		return PORTE_HOTPLUG_ENABLE;
3417 	default:
3418 		return 0;
3419 	}
3420 }
3421 
3422 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3423 {
3424 	u32 val, hotplug;
3425 
3426 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3427 	if (HAS_PCH_CNP(dev_priv)) {
3428 		val = I915_READ(SOUTH_CHICKEN1);
3429 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3430 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3431 		I915_WRITE(SOUTH_CHICKEN1, val);
3432 	}
3433 
3434 	/* Enable digital hotplug on the PCH */
3435 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3436 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3437 		     PORTB_HOTPLUG_ENABLE |
3438 		     PORTC_HOTPLUG_ENABLE |
3439 		     PORTD_HOTPLUG_ENABLE);
3440 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3441 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3442 
3443 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3444 	hotplug &= ~PORTE_HOTPLUG_ENABLE;
3445 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3446 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3447 }
3448 
3449 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3450 {
3451 	u32 hotplug_irqs, enabled_irqs;
3452 
3453 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3454 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3455 
3456 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3457 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3458 
3459 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3460 
3461 	spt_hpd_detection_setup(dev_priv);
3462 }
3463 
3464 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3465 			       enum hpd_pin pin)
3466 {
3467 	switch (pin) {
3468 	case HPD_PORT_A:
3469 		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3470 			DIGITAL_PORTA_PULSE_DURATION_2ms;
3471 	default:
3472 		return 0;
3473 	}
3474 }
3475 
3476 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3477 {
3478 	u32 hotplug;
3479 
3480 	/*
3481 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3482 	 * duration to 2ms (which is the minimum in the Display Port spec)
3483 	 * The pulse duration bits are reserved on HSW+.
3484 	 */
3485 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3486 	hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3487 		     DIGITAL_PORTA_PULSE_DURATION_MASK);
3488 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3489 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3490 }
3491 
3492 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3493 {
3494 	u32 hotplug_irqs, enabled_irqs;
3495 
3496 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3497 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3498 
3499 	if (INTEL_GEN(dev_priv) >= 8)
3500 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3501 	else
3502 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3503 
3504 	ilk_hpd_detection_setup(dev_priv);
3505 
3506 	ibx_hpd_irq_setup(dev_priv);
3507 }
3508 
3509 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3510 			       enum hpd_pin pin)
3511 {
3512 	u32 hotplug;
3513 
3514 	switch (pin) {
3515 	case HPD_PORT_A:
3516 		hotplug = PORTA_HOTPLUG_ENABLE;
3517 		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3518 			hotplug |= BXT_DDIA_HPD_INVERT;
3519 		return hotplug;
3520 	case HPD_PORT_B:
3521 		hotplug = PORTB_HOTPLUG_ENABLE;
3522 		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3523 			hotplug |= BXT_DDIB_HPD_INVERT;
3524 		return hotplug;
3525 	case HPD_PORT_C:
3526 		hotplug = PORTC_HOTPLUG_ENABLE;
3527 		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3528 			hotplug |= BXT_DDIC_HPD_INVERT;
3529 		return hotplug;
3530 	default:
3531 		return 0;
3532 	}
3533 }
3534 
3535 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3536 {
3537 	u32 hotplug;
3538 
3539 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3540 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3541 		     PORTB_HOTPLUG_ENABLE |
3542 		     PORTC_HOTPLUG_ENABLE |
3543 		     BXT_DDIA_HPD_INVERT |
3544 		     BXT_DDIB_HPD_INVERT |
3545 		     BXT_DDIC_HPD_INVERT);
3546 	hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3547 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3548 }
3549 
3550 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3551 {
3552 	u32 hotplug_irqs, enabled_irqs;
3553 
3554 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3555 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3556 
3557 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3558 
3559 	bxt_hpd_detection_setup(dev_priv);
3560 }
3561 
3562 /*
3563  * SDEIER is also touched by the interrupt handler to work around missed PCH
3564  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3565  * instead we unconditionally enable all PCH interrupt sources here, but then
3566  * only unmask them as needed with SDEIMR.
3567  *
3568  * Note that we currently do this after installing the interrupt handler,
3569  * but before we enable the master interrupt. That should be sufficient
3570  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3571  * interrupts could still race.
3572  */
3573 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3574 {
3575 	struct intel_uncore *uncore = &dev_priv->uncore;
3576 	u32 mask;
3577 
3578 	if (HAS_PCH_NOP(dev_priv))
3579 		return;
3580 
3581 	if (HAS_PCH_IBX(dev_priv))
3582 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3583 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3584 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3585 	else
3586 		mask = SDE_GMBUS_CPT;
3587 
3588 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3589 }
3590 
3591 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3592 {
3593 	struct intel_uncore *uncore = &dev_priv->uncore;
3594 	u32 display_mask, extra_mask;
3595 
3596 	if (INTEL_GEN(dev_priv) >= 7) {
3597 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3598 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3599 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3600 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3601 			      DE_DP_A_HOTPLUG_IVB);
3602 	} else {
3603 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3604 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3605 				DE_PIPEA_CRC_DONE | DE_POISON);
3606 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3607 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3608 			      DE_DP_A_HOTPLUG);
3609 	}
3610 
3611 	if (IS_HASWELL(dev_priv)) {
3612 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3613 		display_mask |= DE_EDP_PSR_INT_HSW;
3614 	}
3615 
3616 	if (IS_IRONLAKE_M(dev_priv))
3617 		extra_mask |= DE_PCU_EVENT;
3618 
3619 	dev_priv->irq_mask = ~display_mask;
3620 
3621 	ibx_irq_postinstall(dev_priv);
3622 
3623 	gen5_gt_irq_postinstall(&dev_priv->gt);
3624 
3625 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3626 		      display_mask | extra_mask);
3627 }
3628 
3629 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3630 {
3631 	lockdep_assert_held(&dev_priv->irq_lock);
3632 
3633 	if (dev_priv->display_irqs_enabled)
3634 		return;
3635 
3636 	dev_priv->display_irqs_enabled = true;
3637 
3638 	if (intel_irqs_enabled(dev_priv)) {
3639 		vlv_display_irq_reset(dev_priv);
3640 		vlv_display_irq_postinstall(dev_priv);
3641 	}
3642 }
3643 
3644 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3645 {
3646 	lockdep_assert_held(&dev_priv->irq_lock);
3647 
3648 	if (!dev_priv->display_irqs_enabled)
3649 		return;
3650 
3651 	dev_priv->display_irqs_enabled = false;
3652 
3653 	if (intel_irqs_enabled(dev_priv))
3654 		vlv_display_irq_reset(dev_priv);
3655 }
3656 
3657 
3658 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3659 {
3660 	gen5_gt_irq_postinstall(&dev_priv->gt);
3661 
3662 	spin_lock_irq(&dev_priv->irq_lock);
3663 	if (dev_priv->display_irqs_enabled)
3664 		vlv_display_irq_postinstall(dev_priv);
3665 	spin_unlock_irq(&dev_priv->irq_lock);
3666 
3667 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3668 	POSTING_READ(VLV_MASTER_IER);
3669 }
3670 
3671 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3672 {
3673 	struct intel_uncore *uncore = &dev_priv->uncore;
3674 
3675 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3676 		GEN8_PIPE_CDCLK_CRC_DONE;
3677 	u32 de_pipe_enables;
3678 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3679 	u32 de_port_enables;
3680 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3681 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3682 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3683 	enum pipe pipe;
3684 
3685 	if (INTEL_GEN(dev_priv) <= 10)
3686 		de_misc_masked |= GEN8_DE_MISC_GSE;
3687 
3688 	if (IS_GEN9_LP(dev_priv))
3689 		de_port_masked |= BXT_DE_PORT_GMBUS;
3690 
3691 	if (INTEL_GEN(dev_priv) >= 11) {
3692 		enum port port;
3693 
3694 		if (intel_bios_is_dsi_present(dev_priv, &port))
3695 			de_port_masked |= DSI0_TE | DSI1_TE;
3696 	}
3697 
3698 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3699 					   GEN8_PIPE_FIFO_UNDERRUN;
3700 
3701 	if (INTEL_GEN(dev_priv) >= 9)
3702 		de_pipe_enables |= GEN9_PIPE_PLANE1_FLIP_DONE;
3703 
3704 	de_port_enables = de_port_masked;
3705 	if (IS_GEN9_LP(dev_priv))
3706 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3707 	else if (IS_BROADWELL(dev_priv))
3708 		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3709 
3710 	if (INTEL_GEN(dev_priv) >= 12) {
3711 		enum transcoder trans;
3712 
3713 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3714 			enum intel_display_power_domain domain;
3715 
3716 			domain = POWER_DOMAIN_TRANSCODER(trans);
3717 			if (!intel_display_power_is_enabled(dev_priv, domain))
3718 				continue;
3719 
3720 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3721 		}
3722 	} else {
3723 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3724 	}
3725 
3726 	for_each_pipe(dev_priv, pipe) {
3727 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3728 
3729 		if (intel_display_power_is_enabled(dev_priv,
3730 				POWER_DOMAIN_PIPE(pipe)))
3731 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3732 					  dev_priv->de_irq_mask[pipe],
3733 					  de_pipe_enables);
3734 	}
3735 
3736 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3737 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3738 
3739 	if (INTEL_GEN(dev_priv) >= 11) {
3740 		u32 de_hpd_masked = 0;
3741 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3742 				     GEN11_DE_TBT_HOTPLUG_MASK;
3743 
3744 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3745 			      de_hpd_enables);
3746 	}
3747 }
3748 
3749 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3750 {
3751 	if (HAS_PCH_SPLIT(dev_priv))
3752 		ibx_irq_postinstall(dev_priv);
3753 
3754 	gen8_gt_irq_postinstall(&dev_priv->gt);
3755 	gen8_de_irq_postinstall(dev_priv);
3756 
3757 	gen8_master_intr_enable(dev_priv->uncore.regs);
3758 }
3759 
3760 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3761 {
3762 	struct intel_uncore *uncore = &dev_priv->uncore;
3763 	u32 mask = SDE_GMBUS_ICP;
3764 
3765 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3766 }
3767 
3768 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3769 {
3770 	struct intel_uncore *uncore = &dev_priv->uncore;
3771 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3772 
3773 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3774 		icp_irq_postinstall(dev_priv);
3775 
3776 	gen11_gt_irq_postinstall(&dev_priv->gt);
3777 	gen8_de_irq_postinstall(dev_priv);
3778 
3779 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3780 
3781 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3782 
3783 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3784 		dg1_master_intr_enable(uncore->regs);
3785 		POSTING_READ(DG1_MSTR_UNIT_INTR);
3786 	} else {
3787 		gen11_master_intr_enable(uncore->regs);
3788 		POSTING_READ(GEN11_GFX_MSTR_IRQ);
3789 	}
3790 }
3791 
3792 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3793 {
3794 	gen8_gt_irq_postinstall(&dev_priv->gt);
3795 
3796 	spin_lock_irq(&dev_priv->irq_lock);
3797 	if (dev_priv->display_irqs_enabled)
3798 		vlv_display_irq_postinstall(dev_priv);
3799 	spin_unlock_irq(&dev_priv->irq_lock);
3800 
3801 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3802 	POSTING_READ(GEN8_MASTER_IRQ);
3803 }
3804 
3805 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3806 {
3807 	struct intel_uncore *uncore = &dev_priv->uncore;
3808 
3809 	i9xx_pipestat_irq_reset(dev_priv);
3810 
3811 	GEN2_IRQ_RESET(uncore);
3812 	dev_priv->irq_mask = ~0u;
3813 }
3814 
3815 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3816 {
3817 	struct intel_uncore *uncore = &dev_priv->uncore;
3818 	u16 enable_mask;
3819 
3820 	intel_uncore_write16(uncore,
3821 			     EMR,
3822 			     ~(I915_ERROR_PAGE_TABLE |
3823 			       I915_ERROR_MEMORY_REFRESH));
3824 
3825 	/* Unmask the interrupts that we always want on. */
3826 	dev_priv->irq_mask =
3827 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3828 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3829 		  I915_MASTER_ERROR_INTERRUPT);
3830 
3831 	enable_mask =
3832 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3833 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3834 		I915_MASTER_ERROR_INTERRUPT |
3835 		I915_USER_INTERRUPT;
3836 
3837 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3838 
3839 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3840 	 * just to make the assert_spin_locked check happy. */
3841 	spin_lock_irq(&dev_priv->irq_lock);
3842 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3843 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3844 	spin_unlock_irq(&dev_priv->irq_lock);
3845 }
3846 
3847 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3848 			       u16 *eir, u16 *eir_stuck)
3849 {
3850 	struct intel_uncore *uncore = &i915->uncore;
3851 	u16 emr;
3852 
3853 	*eir = intel_uncore_read16(uncore, EIR);
3854 
3855 	if (*eir)
3856 		intel_uncore_write16(uncore, EIR, *eir);
3857 
3858 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3859 	if (*eir_stuck == 0)
3860 		return;
3861 
3862 	/*
3863 	 * Toggle all EMR bits to make sure we get an edge
3864 	 * in the ISR master error bit if we don't clear
3865 	 * all the EIR bits. Otherwise the edge triggered
3866 	 * IIR on i965/g4x wouldn't notice that an interrupt
3867 	 * is still pending. Also some EIR bits can't be
3868 	 * cleared except by handling the underlying error
3869 	 * (or by a GPU reset) so we mask any bit that
3870 	 * remains set.
3871 	 */
3872 	emr = intel_uncore_read16(uncore, EMR);
3873 	intel_uncore_write16(uncore, EMR, 0xffff);
3874 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3875 }
3876 
3877 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3878 				   u16 eir, u16 eir_stuck)
3879 {
3880 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3881 
3882 	if (eir_stuck)
3883 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3884 			eir_stuck);
3885 }
3886 
3887 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3888 			       u32 *eir, u32 *eir_stuck)
3889 {
3890 	u32 emr;
3891 
3892 	*eir = I915_READ(EIR);
3893 
3894 	I915_WRITE(EIR, *eir);
3895 
3896 	*eir_stuck = I915_READ(EIR);
3897 	if (*eir_stuck == 0)
3898 		return;
3899 
3900 	/*
3901 	 * Toggle all EMR bits to make sure we get an edge
3902 	 * in the ISR master error bit if we don't clear
3903 	 * all the EIR bits. Otherwise the edge triggered
3904 	 * IIR on i965/g4x wouldn't notice that an interrupt
3905 	 * is still pending. Also some EIR bits can't be
3906 	 * cleared except by handling the underlying error
3907 	 * (or by a GPU reset) so we mask any bit that
3908 	 * remains set.
3909 	 */
3910 	emr = I915_READ(EMR);
3911 	I915_WRITE(EMR, 0xffffffff);
3912 	I915_WRITE(EMR, emr | *eir_stuck);
3913 }
3914 
3915 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3916 				   u32 eir, u32 eir_stuck)
3917 {
3918 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3919 
3920 	if (eir_stuck)
3921 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3922 			eir_stuck);
3923 }
3924 
3925 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3926 {
3927 	struct drm_i915_private *dev_priv = arg;
3928 	irqreturn_t ret = IRQ_NONE;
3929 
3930 	if (!intel_irqs_enabled(dev_priv))
3931 		return IRQ_NONE;
3932 
3933 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3934 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3935 
3936 	do {
3937 		u32 pipe_stats[I915_MAX_PIPES] = {};
3938 		u16 eir = 0, eir_stuck = 0;
3939 		u16 iir;
3940 
3941 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3942 		if (iir == 0)
3943 			break;
3944 
3945 		ret = IRQ_HANDLED;
3946 
3947 		/* Call regardless, as some status bits might not be
3948 		 * signalled in iir */
3949 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3950 
3951 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3952 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3953 
3954 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3955 
3956 		if (iir & I915_USER_INTERRUPT)
3957 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3958 
3959 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3960 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3961 
3962 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3963 	} while (0);
3964 
3965 	pmu_irq_stats(dev_priv, ret);
3966 
3967 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3968 
3969 	return ret;
3970 }
3971 
3972 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3973 {
3974 	struct intel_uncore *uncore = &dev_priv->uncore;
3975 
3976 	if (I915_HAS_HOTPLUG(dev_priv)) {
3977 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3978 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3979 	}
3980 
3981 	i9xx_pipestat_irq_reset(dev_priv);
3982 
3983 	GEN3_IRQ_RESET(uncore, GEN2_);
3984 	dev_priv->irq_mask = ~0u;
3985 }
3986 
3987 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3988 {
3989 	struct intel_uncore *uncore = &dev_priv->uncore;
3990 	u32 enable_mask;
3991 
3992 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3993 			  I915_ERROR_MEMORY_REFRESH));
3994 
3995 	/* Unmask the interrupts that we always want on. */
3996 	dev_priv->irq_mask =
3997 		~(I915_ASLE_INTERRUPT |
3998 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3999 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4000 		  I915_MASTER_ERROR_INTERRUPT);
4001 
4002 	enable_mask =
4003 		I915_ASLE_INTERRUPT |
4004 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4005 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4006 		I915_MASTER_ERROR_INTERRUPT |
4007 		I915_USER_INTERRUPT;
4008 
4009 	if (I915_HAS_HOTPLUG(dev_priv)) {
4010 		/* Enable in IER... */
4011 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4012 		/* and unmask in IMR */
4013 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4014 	}
4015 
4016 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4017 
4018 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4019 	 * just to make the assert_spin_locked check happy. */
4020 	spin_lock_irq(&dev_priv->irq_lock);
4021 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4022 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4023 	spin_unlock_irq(&dev_priv->irq_lock);
4024 
4025 	i915_enable_asle_pipestat(dev_priv);
4026 }
4027 
4028 static irqreturn_t i915_irq_handler(int irq, void *arg)
4029 {
4030 	struct drm_i915_private *dev_priv = arg;
4031 	irqreturn_t ret = IRQ_NONE;
4032 
4033 	if (!intel_irqs_enabled(dev_priv))
4034 		return IRQ_NONE;
4035 
4036 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4037 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4038 
4039 	do {
4040 		u32 pipe_stats[I915_MAX_PIPES] = {};
4041 		u32 eir = 0, eir_stuck = 0;
4042 		u32 hotplug_status = 0;
4043 		u32 iir;
4044 
4045 		iir = I915_READ(GEN2_IIR);
4046 		if (iir == 0)
4047 			break;
4048 
4049 		ret = IRQ_HANDLED;
4050 
4051 		if (I915_HAS_HOTPLUG(dev_priv) &&
4052 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4053 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4054 
4055 		/* Call regardless, as some status bits might not be
4056 		 * signalled in iir */
4057 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4058 
4059 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4060 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4061 
4062 		I915_WRITE(GEN2_IIR, iir);
4063 
4064 		if (iir & I915_USER_INTERRUPT)
4065 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4066 
4067 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4068 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4069 
4070 		if (hotplug_status)
4071 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4072 
4073 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4074 	} while (0);
4075 
4076 	pmu_irq_stats(dev_priv, ret);
4077 
4078 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4079 
4080 	return ret;
4081 }
4082 
4083 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4084 {
4085 	struct intel_uncore *uncore = &dev_priv->uncore;
4086 
4087 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4088 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4089 
4090 	i9xx_pipestat_irq_reset(dev_priv);
4091 
4092 	GEN3_IRQ_RESET(uncore, GEN2_);
4093 	dev_priv->irq_mask = ~0u;
4094 }
4095 
4096 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4097 {
4098 	struct intel_uncore *uncore = &dev_priv->uncore;
4099 	u32 enable_mask;
4100 	u32 error_mask;
4101 
4102 	/*
4103 	 * Enable some error detection, note the instruction error mask
4104 	 * bit is reserved, so we leave it masked.
4105 	 */
4106 	if (IS_G4X(dev_priv)) {
4107 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4108 			       GM45_ERROR_MEM_PRIV |
4109 			       GM45_ERROR_CP_PRIV |
4110 			       I915_ERROR_MEMORY_REFRESH);
4111 	} else {
4112 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4113 			       I915_ERROR_MEMORY_REFRESH);
4114 	}
4115 	I915_WRITE(EMR, error_mask);
4116 
4117 	/* Unmask the interrupts that we always want on. */
4118 	dev_priv->irq_mask =
4119 		~(I915_ASLE_INTERRUPT |
4120 		  I915_DISPLAY_PORT_INTERRUPT |
4121 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4122 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4123 		  I915_MASTER_ERROR_INTERRUPT);
4124 
4125 	enable_mask =
4126 		I915_ASLE_INTERRUPT |
4127 		I915_DISPLAY_PORT_INTERRUPT |
4128 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4129 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4130 		I915_MASTER_ERROR_INTERRUPT |
4131 		I915_USER_INTERRUPT;
4132 
4133 	if (IS_G4X(dev_priv))
4134 		enable_mask |= I915_BSD_USER_INTERRUPT;
4135 
4136 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4137 
4138 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4139 	 * just to make the assert_spin_locked check happy. */
4140 	spin_lock_irq(&dev_priv->irq_lock);
4141 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4142 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4143 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4144 	spin_unlock_irq(&dev_priv->irq_lock);
4145 
4146 	i915_enable_asle_pipestat(dev_priv);
4147 }
4148 
4149 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4150 {
4151 	u32 hotplug_en;
4152 
4153 	lockdep_assert_held(&dev_priv->irq_lock);
4154 
4155 	/* Note HDMI and DP share hotplug bits */
4156 	/* enable bits are the same for all generations */
4157 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4158 	/* Programming the CRT detection parameters tends
4159 	   to generate a spurious hotplug event about three
4160 	   seconds later.  So just do it once.
4161 	*/
4162 	if (IS_G4X(dev_priv))
4163 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4164 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4165 
4166 	/* Ignore TV since it's buggy */
4167 	i915_hotplug_interrupt_update_locked(dev_priv,
4168 					     HOTPLUG_INT_EN_MASK |
4169 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4170 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4171 					     hotplug_en);
4172 }
4173 
4174 static irqreturn_t i965_irq_handler(int irq, void *arg)
4175 {
4176 	struct drm_i915_private *dev_priv = arg;
4177 	irqreturn_t ret = IRQ_NONE;
4178 
4179 	if (!intel_irqs_enabled(dev_priv))
4180 		return IRQ_NONE;
4181 
4182 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4183 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4184 
4185 	do {
4186 		u32 pipe_stats[I915_MAX_PIPES] = {};
4187 		u32 eir = 0, eir_stuck = 0;
4188 		u32 hotplug_status = 0;
4189 		u32 iir;
4190 
4191 		iir = I915_READ(GEN2_IIR);
4192 		if (iir == 0)
4193 			break;
4194 
4195 		ret = IRQ_HANDLED;
4196 
4197 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4198 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4199 
4200 		/* Call regardless, as some status bits might not be
4201 		 * signalled in iir */
4202 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4203 
4204 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4205 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4206 
4207 		I915_WRITE(GEN2_IIR, iir);
4208 
4209 		if (iir & I915_USER_INTERRUPT)
4210 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4211 
4212 		if (iir & I915_BSD_USER_INTERRUPT)
4213 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4214 
4215 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4216 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4217 
4218 		if (hotplug_status)
4219 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4220 
4221 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4222 	} while (0);
4223 
4224 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
4225 
4226 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4227 
4228 	return ret;
4229 }
4230 
4231 /**
4232  * intel_irq_init - initializes irq support
4233  * @dev_priv: i915 device instance
4234  *
4235  * This function initializes all the irq support including work items, timers
4236  * and all the vtables. It does not setup the interrupt itself though.
4237  */
4238 void intel_irq_init(struct drm_i915_private *dev_priv)
4239 {
4240 	struct drm_device *dev = &dev_priv->drm;
4241 	int i;
4242 
4243 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4244 	for (i = 0; i < MAX_L3_SLICES; ++i)
4245 		dev_priv->l3_parity.remap_info[i] = NULL;
4246 
4247 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4248 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4249 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4250 
4251 	if (!HAS_DISPLAY(dev_priv))
4252 		return;
4253 
4254 	intel_hpd_init_pins(dev_priv);
4255 
4256 	intel_hpd_init_work(dev_priv);
4257 
4258 	dev->vblank_disable_immediate = true;
4259 
4260 	/* Most platforms treat the display irq block as an always-on
4261 	 * power domain. vlv/chv can disable it at runtime and need
4262 	 * special care to avoid writing any of the display block registers
4263 	 * outside of the power domain. We defer setting up the display irqs
4264 	 * in this case to the runtime pm.
4265 	 */
4266 	dev_priv->display_irqs_enabled = true;
4267 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4268 		dev_priv->display_irqs_enabled = false;
4269 
4270 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4271 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4272 	 * detection, as short HPD storms will occur as a natural part of
4273 	 * sideband messaging with MST.
4274 	 * On older platforms however, IRQ storms can occur with both long and
4275 	 * short pulses, as seen on some G4x systems.
4276 	 */
4277 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4278 
4279 	if (HAS_GMCH(dev_priv)) {
4280 		if (I915_HAS_HOTPLUG(dev_priv))
4281 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4282 	} else {
4283 		if (HAS_PCH_DG1(dev_priv))
4284 			dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4285 		else if (INTEL_GEN(dev_priv) >= 11)
4286 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4287 		else if (IS_GEN9_LP(dev_priv))
4288 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4289 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4290 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4291 		else
4292 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4293 	}
4294 }
4295 
4296 /**
4297  * intel_irq_fini - deinitializes IRQ support
4298  * @i915: i915 device instance
4299  *
4300  * This function deinitializes all the IRQ support.
4301  */
4302 void intel_irq_fini(struct drm_i915_private *i915)
4303 {
4304 	int i;
4305 
4306 	for (i = 0; i < MAX_L3_SLICES; ++i)
4307 		kfree(i915->l3_parity.remap_info[i]);
4308 }
4309 
4310 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4311 {
4312 	if (HAS_GMCH(dev_priv)) {
4313 		if (IS_CHERRYVIEW(dev_priv))
4314 			return cherryview_irq_handler;
4315 		else if (IS_VALLEYVIEW(dev_priv))
4316 			return valleyview_irq_handler;
4317 		else if (IS_GEN(dev_priv, 4))
4318 			return i965_irq_handler;
4319 		else if (IS_GEN(dev_priv, 3))
4320 			return i915_irq_handler;
4321 		else
4322 			return i8xx_irq_handler;
4323 	} else {
4324 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4325 			return dg1_irq_handler;
4326 		if (INTEL_GEN(dev_priv) >= 11)
4327 			return gen11_irq_handler;
4328 		else if (INTEL_GEN(dev_priv) >= 8)
4329 			return gen8_irq_handler;
4330 		else
4331 			return ilk_irq_handler;
4332 	}
4333 }
4334 
4335 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4336 {
4337 	if (HAS_GMCH(dev_priv)) {
4338 		if (IS_CHERRYVIEW(dev_priv))
4339 			cherryview_irq_reset(dev_priv);
4340 		else if (IS_VALLEYVIEW(dev_priv))
4341 			valleyview_irq_reset(dev_priv);
4342 		else if (IS_GEN(dev_priv, 4))
4343 			i965_irq_reset(dev_priv);
4344 		else if (IS_GEN(dev_priv, 3))
4345 			i915_irq_reset(dev_priv);
4346 		else
4347 			i8xx_irq_reset(dev_priv);
4348 	} else {
4349 		if (INTEL_GEN(dev_priv) >= 11)
4350 			gen11_irq_reset(dev_priv);
4351 		else if (INTEL_GEN(dev_priv) >= 8)
4352 			gen8_irq_reset(dev_priv);
4353 		else
4354 			ilk_irq_reset(dev_priv);
4355 	}
4356 }
4357 
4358 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4359 {
4360 	if (HAS_GMCH(dev_priv)) {
4361 		if (IS_CHERRYVIEW(dev_priv))
4362 			cherryview_irq_postinstall(dev_priv);
4363 		else if (IS_VALLEYVIEW(dev_priv))
4364 			valleyview_irq_postinstall(dev_priv);
4365 		else if (IS_GEN(dev_priv, 4))
4366 			i965_irq_postinstall(dev_priv);
4367 		else if (IS_GEN(dev_priv, 3))
4368 			i915_irq_postinstall(dev_priv);
4369 		else
4370 			i8xx_irq_postinstall(dev_priv);
4371 	} else {
4372 		if (INTEL_GEN(dev_priv) >= 11)
4373 			gen11_irq_postinstall(dev_priv);
4374 		else if (INTEL_GEN(dev_priv) >= 8)
4375 			gen8_irq_postinstall(dev_priv);
4376 		else
4377 			ilk_irq_postinstall(dev_priv);
4378 	}
4379 }
4380 
4381 /**
4382  * intel_irq_install - enables the hardware interrupt
4383  * @dev_priv: i915 device instance
4384  *
4385  * This function enables the hardware interrupt handling, but leaves the hotplug
4386  * handling still disabled. It is called after intel_irq_init().
4387  *
4388  * In the driver load and resume code we need working interrupts in a few places
4389  * but don't want to deal with the hassle of concurrent probe and hotplug
4390  * workers. Hence the split into this two-stage approach.
4391  */
4392 int intel_irq_install(struct drm_i915_private *dev_priv)
4393 {
4394 	int irq = dev_priv->drm.pdev->irq;
4395 	int ret;
4396 
4397 	/*
4398 	 * We enable some interrupt sources in our postinstall hooks, so mark
4399 	 * interrupts as enabled _before_ actually enabling them to avoid
4400 	 * special cases in our ordering checks.
4401 	 */
4402 	dev_priv->runtime_pm.irqs_enabled = true;
4403 
4404 	dev_priv->drm.irq_enabled = true;
4405 
4406 	intel_irq_reset(dev_priv);
4407 
4408 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4409 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4410 	if (ret < 0) {
4411 		dev_priv->drm.irq_enabled = false;
4412 		return ret;
4413 	}
4414 
4415 	intel_irq_postinstall(dev_priv);
4416 
4417 	return ret;
4418 }
4419 
4420 /**
4421  * intel_irq_uninstall - finilizes all irq handling
4422  * @dev_priv: i915 device instance
4423  *
4424  * This stops interrupt and hotplug handling and unregisters and frees all
4425  * resources acquired in the init functions.
4426  */
4427 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4428 {
4429 	int irq = dev_priv->drm.pdev->irq;
4430 
4431 	/*
4432 	 * FIXME we can get called twice during driver probe
4433 	 * error handling as well as during driver remove due to
4434 	 * intel_modeset_driver_remove() calling us out of sequence.
4435 	 * Would be nice if it didn't do that...
4436 	 */
4437 	if (!dev_priv->drm.irq_enabled)
4438 		return;
4439 
4440 	dev_priv->drm.irq_enabled = false;
4441 
4442 	intel_irq_reset(dev_priv);
4443 
4444 	free_irq(irq, dev_priv);
4445 
4446 	intel_hpd_cancel_work(dev_priv);
4447 	dev_priv->runtime_pm.irqs_enabled = false;
4448 }
4449 
4450 /**
4451  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4452  * @dev_priv: i915 device instance
4453  *
4454  * This function is used to disable interrupts at runtime, both in the runtime
4455  * pm and the system suspend/resume code.
4456  */
4457 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4458 {
4459 	intel_irq_reset(dev_priv);
4460 	dev_priv->runtime_pm.irqs_enabled = false;
4461 	intel_synchronize_irq(dev_priv);
4462 }
4463 
4464 /**
4465  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4466  * @dev_priv: i915 device instance
4467  *
4468  * This function is used to enable interrupts at runtime, both in the runtime
4469  * pm and the system suspend/resume code.
4470  */
4471 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4472 {
4473 	dev_priv->runtime_pm.irqs_enabled = true;
4474 	intel_irq_reset(dev_priv);
4475 	intel_irq_postinstall(dev_priv);
4476 }
4477 
4478 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4479 {
4480 	/*
4481 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4482 	 * this is the only thing we need to check.
4483 	 */
4484 	return dev_priv->runtime_pm.irqs_enabled;
4485 }
4486 
4487 void intel_synchronize_irq(struct drm_i915_private *i915)
4488 {
4489 	synchronize_irq(i915->drm.pdev->irq);
4490 }
4491