xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision e3d786a3)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124 
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133 
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 	POSTING_READ(GEN8_##type##_IMR(which)); \
138 	I915_WRITE(GEN8_##type##_IER(which), 0); \
139 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 	POSTING_READ(GEN8_##type##_IIR(which)); \
141 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 	POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144 
145 #define GEN3_IRQ_RESET(type) do { \
146 	I915_WRITE(type##IMR, 0xffffffff); \
147 	POSTING_READ(type##IMR); \
148 	I915_WRITE(type##IER, 0); \
149 	I915_WRITE(type##IIR, 0xffffffff); \
150 	POSTING_READ(type##IIR); \
151 	I915_WRITE(type##IIR, 0xffffffff); \
152 	POSTING_READ(type##IIR); \
153 } while (0)
154 
155 #define GEN2_IRQ_RESET(type) do { \
156 	I915_WRITE16(type##IMR, 0xffff); \
157 	POSTING_READ16(type##IMR); \
158 	I915_WRITE16(type##IER, 0); \
159 	I915_WRITE16(type##IIR, 0xffff); \
160 	POSTING_READ16(type##IIR); \
161 	I915_WRITE16(type##IIR, 0xffff); \
162 	POSTING_READ16(type##IIR); \
163 } while (0)
164 
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 				    i915_reg_t reg)
170 {
171 	u32 val = I915_READ(reg);
172 
173 	if (val == 0)
174 		return;
175 
176 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 	     i915_mmio_reg_offset(reg), val);
178 	I915_WRITE(reg, 0xffffffff);
179 	POSTING_READ(reg);
180 	I915_WRITE(reg, 0xffffffff);
181 	POSTING_READ(reg);
182 }
183 
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185 				    i915_reg_t reg)
186 {
187 	u16 val = I915_READ16(reg);
188 
189 	if (val == 0)
190 		return;
191 
192 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 	     i915_mmio_reg_offset(reg), val);
194 	I915_WRITE16(reg, 0xffff);
195 	POSTING_READ16(reg);
196 	I915_WRITE16(reg, 0xffff);
197 	POSTING_READ16(reg);
198 }
199 
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 	POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206 
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 	I915_WRITE(type##IER, (ier_val)); \
210 	I915_WRITE(type##IMR, (imr_val)); \
211 	POSTING_READ(type##IMR); \
212 } while (0)
213 
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 	I915_WRITE16(type##IER, (ier_val)); \
217 	I915_WRITE16(type##IMR, (imr_val)); \
218 	POSTING_READ16(type##IMR); \
219 } while (0)
220 
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223 
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227 				     uint32_t mask,
228 				     uint32_t bits)
229 {
230 	uint32_t val;
231 
232 	lockdep_assert_held(&dev_priv->irq_lock);
233 	WARN_ON(bits & ~mask);
234 
235 	val = I915_READ(PORT_HOTPLUG_EN);
236 	val &= ~mask;
237 	val |= bits;
238 	I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240 
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254 				   uint32_t mask,
255 				   uint32_t bits)
256 {
257 	spin_lock_irq(&dev_priv->irq_lock);
258 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 	spin_unlock_irq(&dev_priv->irq_lock);
260 }
261 
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 			 const unsigned int bank, const unsigned int bit);
265 
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 				const unsigned int bank,
268 				const unsigned int bit)
269 {
270 	void __iomem * const regs = i915->regs;
271 	u32 dw;
272 
273 	lockdep_assert_held(&i915->irq_lock);
274 
275 	dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276 	if (dw & BIT(bit)) {
277 		/*
278 		 * According to the BSpec, DW_IIR bits cannot be cleared without
279 		 * first servicing the Selector & Shared IIR registers.
280 		 */
281 		gen11_gt_engine_identity(i915, bank, bit);
282 
283 		/*
284 		 * We locked GT INT DW by reading it. If we want to (try
285 		 * to) recover from this succesfully, we need to clear
286 		 * our bit, otherwise we are locking the register for
287 		 * everybody.
288 		 */
289 		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290 
291 		return true;
292 	}
293 
294 	return false;
295 }
296 
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 			    uint32_t interrupt_mask,
305 			    uint32_t enabled_irq_mask)
306 {
307 	uint32_t new_val;
308 
309 	lockdep_assert_held(&dev_priv->irq_lock);
310 
311 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
312 
313 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314 		return;
315 
316 	new_val = dev_priv->irq_mask;
317 	new_val &= ~interrupt_mask;
318 	new_val |= (~enabled_irq_mask & interrupt_mask);
319 
320 	if (new_val != dev_priv->irq_mask) {
321 		dev_priv->irq_mask = new_val;
322 		I915_WRITE(DEIMR, dev_priv->irq_mask);
323 		POSTING_READ(DEIMR);
324 	}
325 }
326 
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 			      uint32_t interrupt_mask,
335 			      uint32_t enabled_irq_mask)
336 {
337 	lockdep_assert_held(&dev_priv->irq_lock);
338 
339 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
340 
341 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342 		return;
343 
344 	dev_priv->gt_irq_mask &= ~interrupt_mask;
345 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348 
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351 	ilk_update_gt_irq(dev_priv, mask, mask);
352 	POSTING_READ_FW(GTIMR);
353 }
354 
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357 	ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359 
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362 	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363 
364 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366 
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369 	if (INTEL_GEN(dev_priv) >= 11)
370 		return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 	else if (INTEL_GEN(dev_priv) >= 8)
372 		return GEN8_GT_IMR(2);
373 	else
374 		return GEN6_PMIMR;
375 }
376 
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379 	if (INTEL_GEN(dev_priv) >= 11)
380 		return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 	else if (INTEL_GEN(dev_priv) >= 8)
382 		return GEN8_GT_IER(2);
383 	else
384 		return GEN6_PMIER;
385 }
386 
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 			      uint32_t interrupt_mask,
395 			      uint32_t enabled_irq_mask)
396 {
397 	uint32_t new_val;
398 
399 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
400 
401 	lockdep_assert_held(&dev_priv->irq_lock);
402 
403 	new_val = dev_priv->pm_imr;
404 	new_val &= ~interrupt_mask;
405 	new_val |= (~enabled_irq_mask & interrupt_mask);
406 
407 	if (new_val != dev_priv->pm_imr) {
408 		dev_priv->pm_imr = new_val;
409 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 		POSTING_READ(gen6_pm_imr(dev_priv));
411 	}
412 }
413 
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417 		return;
418 
419 	snb_update_pm_irq(dev_priv, mask, mask);
420 }
421 
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424 	snb_update_pm_irq(dev_priv, mask, 0);
425 }
426 
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430 		return;
431 
432 	__gen6_mask_pm_irq(dev_priv, mask);
433 }
434 
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437 	i915_reg_t reg = gen6_pm_iir(dev_priv);
438 
439 	lockdep_assert_held(&dev_priv->irq_lock);
440 
441 	I915_WRITE(reg, reset_mask);
442 	I915_WRITE(reg, reset_mask);
443 	POSTING_READ(reg);
444 }
445 
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448 	lockdep_assert_held(&dev_priv->irq_lock);
449 
450 	dev_priv->pm_ier |= enable_mask;
451 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 	gen6_unmask_pm_irq(dev_priv, enable_mask);
453 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455 
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458 	lockdep_assert_held(&dev_priv->irq_lock);
459 
460 	dev_priv->pm_ier &= ~disable_mask;
461 	__gen6_mask_pm_irq(dev_priv, disable_mask);
462 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 	/* though a barrier is missing here, but don't really need a one */
464 }
465 
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468 	spin_lock_irq(&dev_priv->irq_lock);
469 
470 	while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471 		;
472 
473 	dev_priv->gt_pm.rps.pm_iir = 0;
474 
475 	spin_unlock_irq(&dev_priv->irq_lock);
476 }
477 
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480 	spin_lock_irq(&dev_priv->irq_lock);
481 	gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
482 	dev_priv->gt_pm.rps.pm_iir = 0;
483 	spin_unlock_irq(&dev_priv->irq_lock);
484 }
485 
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
489 
490 	if (READ_ONCE(rps->interrupts_enabled))
491 		return;
492 
493 	spin_lock_irq(&dev_priv->irq_lock);
494 	WARN_ON_ONCE(rps->pm_iir);
495 
496 	if (INTEL_GEN(dev_priv) >= 11)
497 		WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498 	else
499 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500 
501 	rps->interrupts_enabled = true;
502 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503 
504 	spin_unlock_irq(&dev_priv->irq_lock);
505 }
506 
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
510 
511 	if (!READ_ONCE(rps->interrupts_enabled))
512 		return;
513 
514 	spin_lock_irq(&dev_priv->irq_lock);
515 	rps->interrupts_enabled = false;
516 
517 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518 
519 	gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
520 
521 	spin_unlock_irq(&dev_priv->irq_lock);
522 	synchronize_irq(dev_priv->drm.irq);
523 
524 	/* Now that we will not be generating any more work, flush any
525 	 * outstanding tasks. As we are called on the RPS idle path,
526 	 * we will reset the GPU to minimum frequencies, so the current
527 	 * state of the worker can be discarded.
528 	 */
529 	cancel_work_sync(&rps->work);
530 	if (INTEL_GEN(dev_priv) >= 11)
531 		gen11_reset_rps_interrupts(dev_priv);
532 	else
533 		gen6_reset_rps_interrupts(dev_priv);
534 }
535 
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538 	assert_rpm_wakelock_held(dev_priv);
539 
540 	spin_lock_irq(&dev_priv->irq_lock);
541 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 	spin_unlock_irq(&dev_priv->irq_lock);
543 }
544 
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547 	assert_rpm_wakelock_held(dev_priv);
548 
549 	spin_lock_irq(&dev_priv->irq_lock);
550 	if (!dev_priv->guc.interrupts_enabled) {
551 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 				       dev_priv->pm_guc_events);
553 		dev_priv->guc.interrupts_enabled = true;
554 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555 	}
556 	spin_unlock_irq(&dev_priv->irq_lock);
557 }
558 
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561 	assert_rpm_wakelock_held(dev_priv);
562 
563 	spin_lock_irq(&dev_priv->irq_lock);
564 	dev_priv->guc.interrupts_enabled = false;
565 
566 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567 
568 	spin_unlock_irq(&dev_priv->irq_lock);
569 	synchronize_irq(dev_priv->drm.irq);
570 
571 	gen9_reset_guc_interrupts(dev_priv);
572 }
573 
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 				uint32_t interrupt_mask,
582 				uint32_t enabled_irq_mask)
583 {
584 	uint32_t new_val;
585 	uint32_t old_val;
586 
587 	lockdep_assert_held(&dev_priv->irq_lock);
588 
589 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
590 
591 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592 		return;
593 
594 	old_val = I915_READ(GEN8_DE_PORT_IMR);
595 
596 	new_val = old_val;
597 	new_val &= ~interrupt_mask;
598 	new_val |= (~enabled_irq_mask & interrupt_mask);
599 
600 	if (new_val != old_val) {
601 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 		POSTING_READ(GEN8_DE_PORT_IMR);
603 	}
604 }
605 
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614 			 enum pipe pipe,
615 			 uint32_t interrupt_mask,
616 			 uint32_t enabled_irq_mask)
617 {
618 	uint32_t new_val;
619 
620 	lockdep_assert_held(&dev_priv->irq_lock);
621 
622 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
623 
624 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625 		return;
626 
627 	new_val = dev_priv->de_irq_mask[pipe];
628 	new_val &= ~interrupt_mask;
629 	new_val |= (~enabled_irq_mask & interrupt_mask);
630 
631 	if (new_val != dev_priv->de_irq_mask[pipe]) {
632 		dev_priv->de_irq_mask[pipe] = new_val;
633 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635 	}
636 }
637 
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 				  uint32_t interrupt_mask,
646 				  uint32_t enabled_irq_mask)
647 {
648 	uint32_t sdeimr = I915_READ(SDEIMR);
649 	sdeimr &= ~interrupt_mask;
650 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
651 
652 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
653 
654 	lockdep_assert_held(&dev_priv->irq_lock);
655 
656 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657 		return;
658 
659 	I915_WRITE(SDEIMR, sdeimr);
660 	POSTING_READ(SDEIMR);
661 }
662 
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664 			      enum pipe pipe)
665 {
666 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 	u32 enable_mask = status_mask << 16;
668 
669 	lockdep_assert_held(&dev_priv->irq_lock);
670 
671 	if (INTEL_GEN(dev_priv) < 5)
672 		goto out;
673 
674 	/*
675 	 * On pipe A we don't support the PSR interrupt yet,
676 	 * on pipe B and C the same bit MBZ.
677 	 */
678 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679 		return 0;
680 	/*
681 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 	 * A the same bit is for perf counters which we don't use either.
683 	 */
684 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685 		return 0;
686 
687 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694 
695 out:
696 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 		  pipe_name(pipe), enable_mask, status_mask);
700 
701 	return enable_mask;
702 }
703 
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 			  enum pipe pipe, u32 status_mask)
706 {
707 	i915_reg_t reg = PIPESTAT(pipe);
708 	u32 enable_mask;
709 
710 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 		  "pipe %c: status_mask=0x%x\n",
712 		  pipe_name(pipe), status_mask);
713 
714 	lockdep_assert_held(&dev_priv->irq_lock);
715 	WARN_ON(!intel_irqs_enabled(dev_priv));
716 
717 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718 		return;
719 
720 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722 
723 	I915_WRITE(reg, enable_mask | status_mask);
724 	POSTING_READ(reg);
725 }
726 
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 			   enum pipe pipe, u32 status_mask)
729 {
730 	i915_reg_t reg = PIPESTAT(pipe);
731 	u32 enable_mask;
732 
733 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 		  "pipe %c: status_mask=0x%x\n",
735 		  pipe_name(pipe), status_mask);
736 
737 	lockdep_assert_held(&dev_priv->irq_lock);
738 	WARN_ON(!intel_irqs_enabled(dev_priv));
739 
740 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741 		return;
742 
743 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745 
746 	I915_WRITE(reg, enable_mask | status_mask);
747 	POSTING_READ(reg);
748 }
749 
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757 		return;
758 
759 	spin_lock_irq(&dev_priv->irq_lock);
760 
761 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 	if (INTEL_GEN(dev_priv) >= 4)
763 		i915_enable_pipestat(dev_priv, PIPE_A,
764 				     PIPE_LEGACY_BLC_EVENT_STATUS);
765 
766 	spin_unlock_irq(&dev_priv->irq_lock);
767 }
768 
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818 
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(dev);
825 	i915_reg_t high_frame, low_frame;
826 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 	unsigned long irqflags;
829 
830 	htotal = mode->crtc_htotal;
831 	hsync_start = mode->crtc_hsync_start;
832 	vbl_start = mode->crtc_vblank_start;
833 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
835 
836 	/* Convert to pixel count */
837 	vbl_start *= htotal;
838 
839 	/* Start of vblank event occurs at start of hsync */
840 	vbl_start -= htotal - hsync_start;
841 
842 	high_frame = PIPEFRAME(pipe);
843 	low_frame = PIPEFRAMEPIXEL(pipe);
844 
845 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846 
847 	/*
848 	 * High & low register fields aren't synchronized, so make sure
849 	 * we get a low value that's stable across two reads of the high
850 	 * register.
851 	 */
852 	do {
853 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 		low   = I915_READ_FW(low_frame);
855 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 	} while (high1 != high2);
857 
858 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859 
860 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 	pixel = low & PIPE_PIXEL_MASK;
862 	low >>= PIPE_FRAME_LOW_SHIFT;
863 
864 	/*
865 	 * The frame counter increments at beginning of active.
866 	 * Cook up a vblank counter by also checking the pixel
867 	 * counter against vblank start.
868 	 */
869 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871 
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874 	struct drm_i915_private *dev_priv = to_i915(dev);
875 
876 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878 
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 	struct drm_vblank_crtc *vblank =
891 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 	const struct drm_display_mode *mode = &vblank->hwmode;
893 	u32 vblank_start = mode->crtc_vblank_start;
894 	u32 vtotal = mode->crtc_vtotal;
895 	u32 htotal = mode->crtc_htotal;
896 	u32 clock = mode->crtc_clock;
897 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898 
899 	/*
900 	 * To avoid the race condition where we might cross into the
901 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 	 * during the same frame.
904 	 */
905 	do {
906 		/*
907 		 * This field provides read back of the display
908 		 * pipe frame time stamp. The time stamp value
909 		 * is sampled at every start of vertical blank.
910 		 */
911 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912 
913 		/*
914 		 * The TIMESTAMP_CTR register has the current
915 		 * time stamp value.
916 		 */
917 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918 
919 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 	} while (scan_post_time != scan_prev_time);
921 
922 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 					clock), 1000 * htotal);
924 	scanline = min(scanline, vtotal - 1);
925 	scanline = (scanline + vblank_start) % vtotal;
926 
927 	return scanline;
928 }
929 
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933 	struct drm_device *dev = crtc->base.dev;
934 	struct drm_i915_private *dev_priv = to_i915(dev);
935 	const struct drm_display_mode *mode;
936 	struct drm_vblank_crtc *vblank;
937 	enum pipe pipe = crtc->pipe;
938 	int position, vtotal;
939 
940 	if (!crtc->active)
941 		return -1;
942 
943 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 	mode = &vblank->hwmode;
945 
946 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 		return __intel_get_crtc_scanline_from_timestamp(crtc);
948 
949 	vtotal = mode->crtc_vtotal;
950 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951 		vtotal /= 2;
952 
953 	if (IS_GEN2(dev_priv))
954 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955 	else
956 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957 
958 	/*
959 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 	 * read it just before the start of vblank.  So try it again
961 	 * so we don't accidentally end up spanning a vblank frame
962 	 * increment, causing the pipe_update_end() code to squak at us.
963 	 *
964 	 * The nature of this problem means we can't simply check the ISR
965 	 * bit and return the vblank start value; nor can we use the scanline
966 	 * debug register in the transcoder as it appears to have the same
967 	 * problem.  We may need to extend this to include other platforms,
968 	 * but so far testing only shows the problem on HSW.
969 	 */
970 	if (HAS_DDI(dev_priv) && !position) {
971 		int i, temp;
972 
973 		for (i = 0; i < 100; i++) {
974 			udelay(1);
975 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 			if (temp != position) {
977 				position = temp;
978 				break;
979 			}
980 		}
981 	}
982 
983 	/*
984 	 * See update_scanline_offset() for the details on the
985 	 * scanline_offset adjustment.
986 	 */
987 	return (position + crtc->scanline_offset) % vtotal;
988 }
989 
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 				     bool in_vblank_irq, int *vpos, int *hpos,
992 				     ktime_t *stime, ktime_t *etime,
993 				     const struct drm_display_mode *mode)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(dev);
996 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997 								pipe);
998 	int position;
999 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 	unsigned long irqflags;
1001 
1002 	if (WARN_ON(!mode->crtc_clock)) {
1003 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 				 "pipe %c\n", pipe_name(pipe));
1005 		return false;
1006 	}
1007 
1008 	htotal = mode->crtc_htotal;
1009 	hsync_start = mode->crtc_hsync_start;
1010 	vtotal = mode->crtc_vtotal;
1011 	vbl_start = mode->crtc_vblank_start;
1012 	vbl_end = mode->crtc_vblank_end;
1013 
1014 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016 		vbl_end /= 2;
1017 		vtotal /= 2;
1018 	}
1019 
1020 	/*
1021 	 * Lock uncore.lock, as we will do multiple timing critical raw
1022 	 * register reads, potentially with preemption disabled, so the
1023 	 * following code must not block on uncore.lock.
1024 	 */
1025 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026 
1027 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028 
1029 	/* Get optional system timestamp before query. */
1030 	if (stime)
1031 		*stime = ktime_get();
1032 
1033 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 		/* No obvious pixelcount register. Only query vertical
1035 		 * scanout position from Display scan line register.
1036 		 */
1037 		position = __intel_get_crtc_scanline(intel_crtc);
1038 	} else {
1039 		/* Have access to pixelcount since start of frame.
1040 		 * We can split this into vertical and horizontal
1041 		 * scanout position.
1042 		 */
1043 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044 
1045 		/* convert to pixel counts */
1046 		vbl_start *= htotal;
1047 		vbl_end *= htotal;
1048 		vtotal *= htotal;
1049 
1050 		/*
1051 		 * In interlaced modes, the pixel counter counts all pixels,
1052 		 * so one field will have htotal more pixels. In order to avoid
1053 		 * the reported position from jumping backwards when the pixel
1054 		 * counter is beyond the length of the shorter field, just
1055 		 * clamp the position the length of the shorter field. This
1056 		 * matches how the scanline counter based position works since
1057 		 * the scanline counter doesn't count the two half lines.
1058 		 */
1059 		if (position >= vtotal)
1060 			position = vtotal - 1;
1061 
1062 		/*
1063 		 * Start of vblank interrupt is triggered at start of hsync,
1064 		 * just prior to the first active line of vblank. However we
1065 		 * consider lines to start at the leading edge of horizontal
1066 		 * active. So, should we get here before we've crossed into
1067 		 * the horizontal active of the first line in vblank, we would
1068 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 		 * always add htotal-hsync_start to the current pixel position.
1070 		 */
1071 		position = (position + htotal - hsync_start) % vtotal;
1072 	}
1073 
1074 	/* Get optional system timestamp after query. */
1075 	if (etime)
1076 		*etime = ktime_get();
1077 
1078 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079 
1080 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081 
1082 	/*
1083 	 * While in vblank, position will be negative
1084 	 * counting up towards 0 at vbl_end. And outside
1085 	 * vblank, position will be positive counting
1086 	 * up since vbl_end.
1087 	 */
1088 	if (position >= vbl_start)
1089 		position -= vbl_end;
1090 	else
1091 		position += vtotal - vbl_end;
1092 
1093 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094 		*vpos = position;
1095 		*hpos = 0;
1096 	} else {
1097 		*vpos = position / htotal;
1098 		*hpos = position - (*vpos * htotal);
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 	unsigned long irqflags;
1108 	int position;
1109 
1110 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 	position = __intel_get_crtc_scanline(crtc);
1112 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113 
1114 	return position;
1115 }
1116 
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119 	u32 busy_up, busy_down, max_avg, min_avg;
1120 	u8 new_delay;
1121 
1122 	spin_lock(&mchdev_lock);
1123 
1124 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125 
1126 	new_delay = dev_priv->ips.cur_delay;
1127 
1128 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 	max_avg = I915_READ(RCBMAXAVG);
1132 	min_avg = I915_READ(RCBMINAVG);
1133 
1134 	/* Handle RCS change request from hw */
1135 	if (busy_up > max_avg) {
1136 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 			new_delay = dev_priv->ips.cur_delay - 1;
1138 		if (new_delay < dev_priv->ips.max_delay)
1139 			new_delay = dev_priv->ips.max_delay;
1140 	} else if (busy_down < min_avg) {
1141 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 			new_delay = dev_priv->ips.cur_delay + 1;
1143 		if (new_delay > dev_priv->ips.min_delay)
1144 			new_delay = dev_priv->ips.min_delay;
1145 	}
1146 
1147 	if (ironlake_set_drps(dev_priv, new_delay))
1148 		dev_priv->ips.cur_delay = new_delay;
1149 
1150 	spin_unlock(&mchdev_lock);
1151 
1152 	return;
1153 }
1154 
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157 	const u32 seqno = intel_engine_get_seqno(engine);
1158 	struct i915_request *rq = NULL;
1159 	struct task_struct *tsk = NULL;
1160 	struct intel_wait *wait;
1161 
1162 	if (unlikely(!engine->breadcrumbs.irq_armed))
1163 		return;
1164 
1165 	rcu_read_lock();
1166 
1167 	spin_lock(&engine->breadcrumbs.irq_lock);
1168 	wait = engine->breadcrumbs.irq_wait;
1169 	if (wait) {
1170 		/*
1171 		 * We use a callback from the dma-fence to submit
1172 		 * requests after waiting on our own requests. To
1173 		 * ensure minimum delay in queuing the next request to
1174 		 * hardware, signal the fence now rather than wait for
1175 		 * the signaler to be woken up. We still wake up the
1176 		 * waiter in order to handle the irq-seqno coherency
1177 		 * issues (we may receive the interrupt before the
1178 		 * seqno is written, see __i915_request_irq_complete())
1179 		 * and to handle coalescing of multiple seqno updates
1180 		 * and many waiters.
1181 		 */
1182 		if (i915_seqno_passed(seqno, wait->seqno)) {
1183 			struct i915_request *waiter = wait->request;
1184 
1185 			if (waiter &&
1186 			    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 				      &waiter->fence.flags) &&
1188 			    intel_wait_check_request(wait, waiter))
1189 				rq = i915_request_get(waiter);
1190 
1191 			tsk = wait->tsk;
1192 		} else {
1193 			if (engine->irq_seqno_barrier &&
1194 			    i915_seqno_passed(seqno, wait->seqno - 1)) {
1195 				set_bit(ENGINE_IRQ_BREADCRUMB,
1196 					&engine->irq_posted);
1197 				tsk = wait->tsk;
1198 			}
1199 		}
1200 
1201 		engine->breadcrumbs.irq_count++;
1202 	} else {
1203 		if (engine->breadcrumbs.irq_armed)
1204 			__intel_engine_disarm_breadcrumbs(engine);
1205 	}
1206 	spin_unlock(&engine->breadcrumbs.irq_lock);
1207 
1208 	if (rq) {
1209 		spin_lock(&rq->lock);
1210 		dma_fence_signal_locked(&rq->fence);
1211 		GEM_BUG_ON(!i915_request_completed(rq));
1212 		spin_unlock(&rq->lock);
1213 
1214 		i915_request_put(rq);
1215 	}
1216 
1217 	if (tsk && tsk->state & TASK_NORMAL)
1218 		wake_up_process(tsk);
1219 
1220 	rcu_read_unlock();
1221 
1222 	trace_intel_engine_notify(engine, wait);
1223 }
1224 
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226 			struct intel_rps_ei *ei)
1227 {
1228 	ei->ktime = ktime_get_raw();
1229 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1231 }
1232 
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1234 {
1235 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1236 }
1237 
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1239 {
1240 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241 	const struct intel_rps_ei *prev = &rps->ei;
1242 	struct intel_rps_ei now;
1243 	u32 events = 0;
1244 
1245 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246 		return 0;
1247 
1248 	vlv_c0_read(dev_priv, &now);
1249 
1250 	if (prev->ktime) {
1251 		u64 time, c0;
1252 		u32 render, media;
1253 
1254 		time = ktime_us_delta(now.ktime, prev->ktime);
1255 
1256 		time *= dev_priv->czclk_freq;
1257 
1258 		/* Workload can be split between render + media,
1259 		 * e.g. SwapBuffers being blitted in X after being rendered in
1260 		 * mesa. To account for this we need to combine both engines
1261 		 * into our activity counter.
1262 		 */
1263 		render = now.render_c0 - prev->render_c0;
1264 		media = now.media_c0 - prev->media_c0;
1265 		c0 = max(render, media);
1266 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1267 
1268 		if (c0 > time * rps->power.up_threshold)
1269 			events = GEN6_PM_RP_UP_THRESHOLD;
1270 		else if (c0 < time * rps->power.down_threshold)
1271 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1272 	}
1273 
1274 	rps->ei = now;
1275 	return events;
1276 }
1277 
1278 static void gen6_pm_rps_work(struct work_struct *work)
1279 {
1280 	struct drm_i915_private *dev_priv =
1281 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283 	bool client_boost = false;
1284 	int new_delay, adj, min, max;
1285 	u32 pm_iir = 0;
1286 
1287 	spin_lock_irq(&dev_priv->irq_lock);
1288 	if (rps->interrupts_enabled) {
1289 		pm_iir = fetch_and_zero(&rps->pm_iir);
1290 		client_boost = atomic_read(&rps->num_waiters);
1291 	}
1292 	spin_unlock_irq(&dev_priv->irq_lock);
1293 
1294 	/* Make sure we didn't queue anything we're not going to process. */
1295 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297 		goto out;
1298 
1299 	mutex_lock(&dev_priv->pcu_lock);
1300 
1301 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1302 
1303 	adj = rps->last_adj;
1304 	new_delay = rps->cur_freq;
1305 	min = rps->min_freq_softlimit;
1306 	max = rps->max_freq_softlimit;
1307 	if (client_boost)
1308 		max = rps->max_freq;
1309 	if (client_boost && new_delay < rps->boost_freq) {
1310 		new_delay = rps->boost_freq;
1311 		adj = 0;
1312 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313 		if (adj > 0)
1314 			adj *= 2;
1315 		else /* CHV needs even encode values */
1316 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1317 
1318 		if (new_delay >= rps->max_freq_softlimit)
1319 			adj = 0;
1320 	} else if (client_boost) {
1321 		adj = 0;
1322 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323 		if (rps->cur_freq > rps->efficient_freq)
1324 			new_delay = rps->efficient_freq;
1325 		else if (rps->cur_freq > rps->min_freq_softlimit)
1326 			new_delay = rps->min_freq_softlimit;
1327 		adj = 0;
1328 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329 		if (adj < 0)
1330 			adj *= 2;
1331 		else /* CHV needs even encode values */
1332 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1333 
1334 		if (new_delay <= rps->min_freq_softlimit)
1335 			adj = 0;
1336 	} else { /* unknown event */
1337 		adj = 0;
1338 	}
1339 
1340 	rps->last_adj = adj;
1341 
1342 	/* sysfs frequency interfaces may have snuck in while servicing the
1343 	 * interrupt
1344 	 */
1345 	new_delay += adj;
1346 	new_delay = clamp_t(int, new_delay, min, max);
1347 
1348 	if (intel_set_rps(dev_priv, new_delay)) {
1349 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350 		rps->last_adj = 0;
1351 	}
1352 
1353 	mutex_unlock(&dev_priv->pcu_lock);
1354 
1355 out:
1356 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 	spin_lock_irq(&dev_priv->irq_lock);
1358 	if (rps->interrupts_enabled)
1359 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360 	spin_unlock_irq(&dev_priv->irq_lock);
1361 }
1362 
1363 
1364 /**
1365  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366  * occurred.
1367  * @work: workqueue struct
1368  *
1369  * Doesn't actually do anything except notify userspace. As a consequence of
1370  * this event, userspace should try to remap the bad rows since statistically
1371  * it is likely the same row is more likely to go bad again.
1372  */
1373 static void ivybridge_parity_work(struct work_struct *work)
1374 {
1375 	struct drm_i915_private *dev_priv =
1376 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377 	u32 error_status, row, bank, subbank;
1378 	char *parity_event[6];
1379 	uint32_t misccpctl;
1380 	uint8_t slice = 0;
1381 
1382 	/* We must turn off DOP level clock gating to access the L3 registers.
1383 	 * In order to prevent a get/put style interface, acquire struct mutex
1384 	 * any time we access those registers.
1385 	 */
1386 	mutex_lock(&dev_priv->drm.struct_mutex);
1387 
1388 	/* If we've screwed up tracking, just let the interrupt fire again */
1389 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390 		goto out;
1391 
1392 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1393 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394 	POSTING_READ(GEN7_MISCCPCTL);
1395 
1396 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397 		i915_reg_t reg;
1398 
1399 		slice--;
1400 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401 			break;
1402 
1403 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1404 
1405 		reg = GEN7_L3CDERRST1(slice);
1406 
1407 		error_status = I915_READ(reg);
1408 		row = GEN7_PARITY_ERROR_ROW(error_status);
1409 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1410 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1411 
1412 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413 		POSTING_READ(reg);
1414 
1415 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420 		parity_event[5] = NULL;
1421 
1422 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423 				   KOBJ_CHANGE, parity_event);
1424 
1425 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 			  slice, row, bank, subbank);
1427 
1428 		kfree(parity_event[4]);
1429 		kfree(parity_event[3]);
1430 		kfree(parity_event[2]);
1431 		kfree(parity_event[1]);
1432 	}
1433 
1434 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1435 
1436 out:
1437 	WARN_ON(dev_priv->l3_parity.which_slice);
1438 	spin_lock_irq(&dev_priv->irq_lock);
1439 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440 	spin_unlock_irq(&dev_priv->irq_lock);
1441 
1442 	mutex_unlock(&dev_priv->drm.struct_mutex);
1443 }
1444 
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446 					       u32 iir)
1447 {
1448 	if (!HAS_L3_DPF(dev_priv))
1449 		return;
1450 
1451 	spin_lock(&dev_priv->irq_lock);
1452 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 	spin_unlock(&dev_priv->irq_lock);
1454 
1455 	iir &= GT_PARITY_ERROR(dev_priv);
1456 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457 		dev_priv->l3_parity.which_slice |= 1 << 1;
1458 
1459 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460 		dev_priv->l3_parity.which_slice |= 1 << 0;
1461 
1462 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1463 }
1464 
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466 			       u32 gt_iir)
1467 {
1468 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469 		notify_ring(dev_priv->engine[RCS]);
1470 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471 		notify_ring(dev_priv->engine[VCS]);
1472 }
1473 
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475 			       u32 gt_iir)
1476 {
1477 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478 		notify_ring(dev_priv->engine[RCS]);
1479 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1480 		notify_ring(dev_priv->engine[VCS]);
1481 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1482 		notify_ring(dev_priv->engine[BCS]);
1483 
1484 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485 		      GT_BSD_CS_ERROR_INTERRUPT |
1486 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1488 
1489 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1491 }
1492 
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1495 {
1496 	bool tasklet = false;
1497 
1498 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499 		tasklet = true;
1500 
1501 	if (iir & GT_RENDER_USER_INTERRUPT) {
1502 		notify_ring(engine);
1503 		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1504 	}
1505 
1506 	if (tasklet)
1507 		tasklet_hi_schedule(&engine->execlists.tasklet);
1508 }
1509 
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511 			    u32 master_ctl, u32 gt_iir[4])
1512 {
1513 	void __iomem * const regs = i915->regs;
1514 
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516 		      GEN8_GT_BCS_IRQ | \
1517 		      GEN8_GT_VCS1_IRQ | \
1518 		      GEN8_GT_VCS2_IRQ | \
1519 		      GEN8_GT_VECS_IRQ | \
1520 		      GEN8_GT_PM_IRQ | \
1521 		      GEN8_GT_GUC_IRQ)
1522 
1523 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524 		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525 		if (likely(gt_iir[0]))
1526 			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1527 	}
1528 
1529 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530 		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531 		if (likely(gt_iir[1]))
1532 			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1533 	}
1534 
1535 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536 		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537 		if (likely(gt_iir[2]))
1538 			raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1539 	}
1540 
1541 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1542 		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1543 		if (likely(gt_iir[3]))
1544 			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1545 	}
1546 }
1547 
1548 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1549 				u32 master_ctl, u32 gt_iir[4])
1550 {
1551 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1552 		gen8_cs_irq_handler(i915->engine[RCS],
1553 				    gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1554 		gen8_cs_irq_handler(i915->engine[BCS],
1555 				    gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1556 	}
1557 
1558 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1559 		gen8_cs_irq_handler(i915->engine[VCS],
1560 				    gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1561 		gen8_cs_irq_handler(i915->engine[VCS2],
1562 				    gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1563 	}
1564 
1565 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1566 		gen8_cs_irq_handler(i915->engine[VECS],
1567 				    gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1568 	}
1569 
1570 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1571 		gen6_rps_irq_handler(i915, gt_iir[2]);
1572 		gen9_guc_irq_handler(i915, gt_iir[2]);
1573 	}
1574 }
1575 
1576 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1577 {
1578 	switch (pin) {
1579 	case HPD_PORT_C:
1580 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1581 	case HPD_PORT_D:
1582 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1583 	case HPD_PORT_E:
1584 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1585 	case HPD_PORT_F:
1586 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1587 	default:
1588 		return false;
1589 	}
1590 }
1591 
1592 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1593 {
1594 	switch (pin) {
1595 	case HPD_PORT_A:
1596 		return val & PORTA_HOTPLUG_LONG_DETECT;
1597 	case HPD_PORT_B:
1598 		return val & PORTB_HOTPLUG_LONG_DETECT;
1599 	case HPD_PORT_C:
1600 		return val & PORTC_HOTPLUG_LONG_DETECT;
1601 	default:
1602 		return false;
1603 	}
1604 }
1605 
1606 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1607 {
1608 	switch (pin) {
1609 	case HPD_PORT_A:
1610 		return val & ICP_DDIA_HPD_LONG_DETECT;
1611 	case HPD_PORT_B:
1612 		return val & ICP_DDIB_HPD_LONG_DETECT;
1613 	default:
1614 		return false;
1615 	}
1616 }
1617 
1618 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1619 {
1620 	switch (pin) {
1621 	case HPD_PORT_C:
1622 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1623 	case HPD_PORT_D:
1624 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1625 	case HPD_PORT_E:
1626 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1627 	case HPD_PORT_F:
1628 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1629 	default:
1630 		return false;
1631 	}
1632 }
1633 
1634 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1635 {
1636 	switch (pin) {
1637 	case HPD_PORT_E:
1638 		return val & PORTE_HOTPLUG_LONG_DETECT;
1639 	default:
1640 		return false;
1641 	}
1642 }
1643 
1644 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1645 {
1646 	switch (pin) {
1647 	case HPD_PORT_A:
1648 		return val & PORTA_HOTPLUG_LONG_DETECT;
1649 	case HPD_PORT_B:
1650 		return val & PORTB_HOTPLUG_LONG_DETECT;
1651 	case HPD_PORT_C:
1652 		return val & PORTC_HOTPLUG_LONG_DETECT;
1653 	case HPD_PORT_D:
1654 		return val & PORTD_HOTPLUG_LONG_DETECT;
1655 	default:
1656 		return false;
1657 	}
1658 }
1659 
1660 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1661 {
1662 	switch (pin) {
1663 	case HPD_PORT_A:
1664 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1665 	default:
1666 		return false;
1667 	}
1668 }
1669 
1670 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1671 {
1672 	switch (pin) {
1673 	case HPD_PORT_B:
1674 		return val & PORTB_HOTPLUG_LONG_DETECT;
1675 	case HPD_PORT_C:
1676 		return val & PORTC_HOTPLUG_LONG_DETECT;
1677 	case HPD_PORT_D:
1678 		return val & PORTD_HOTPLUG_LONG_DETECT;
1679 	default:
1680 		return false;
1681 	}
1682 }
1683 
1684 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1685 {
1686 	switch (pin) {
1687 	case HPD_PORT_B:
1688 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1689 	case HPD_PORT_C:
1690 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1691 	case HPD_PORT_D:
1692 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1693 	default:
1694 		return false;
1695 	}
1696 }
1697 
1698 /*
1699  * Get a bit mask of pins that have triggered, and which ones may be long.
1700  * This can be called multiple times with the same masks to accumulate
1701  * hotplug detection results from several registers.
1702  *
1703  * Note that the caller is expected to zero out the masks initially.
1704  */
1705 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1706 			       u32 *pin_mask, u32 *long_mask,
1707 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1708 			       const u32 hpd[HPD_NUM_PINS],
1709 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1710 {
1711 	enum hpd_pin pin;
1712 
1713 	for_each_hpd_pin(pin) {
1714 		if ((hpd[pin] & hotplug_trigger) == 0)
1715 			continue;
1716 
1717 		*pin_mask |= BIT(pin);
1718 
1719 		if (long_pulse_detect(pin, dig_hotplug_reg))
1720 			*long_mask |= BIT(pin);
1721 	}
1722 
1723 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1724 			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1725 
1726 }
1727 
1728 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1729 {
1730 	wake_up_all(&dev_priv->gmbus_wait_queue);
1731 }
1732 
1733 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1734 {
1735 	wake_up_all(&dev_priv->gmbus_wait_queue);
1736 }
1737 
1738 #if defined(CONFIG_DEBUG_FS)
1739 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1740 					 enum pipe pipe,
1741 					 uint32_t crc0, uint32_t crc1,
1742 					 uint32_t crc2, uint32_t crc3,
1743 					 uint32_t crc4)
1744 {
1745 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1746 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1747 	uint32_t crcs[5];
1748 
1749 	spin_lock(&pipe_crc->lock);
1750 	/*
1751 	 * For some not yet identified reason, the first CRC is
1752 	 * bonkers. So let's just wait for the next vblank and read
1753 	 * out the buggy result.
1754 	 *
1755 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1756 	 * don't trust that one either.
1757 	 */
1758 	if (pipe_crc->skipped <= 0 ||
1759 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1760 		pipe_crc->skipped++;
1761 		spin_unlock(&pipe_crc->lock);
1762 		return;
1763 	}
1764 	spin_unlock(&pipe_crc->lock);
1765 
1766 	crcs[0] = crc0;
1767 	crcs[1] = crc1;
1768 	crcs[2] = crc2;
1769 	crcs[3] = crc3;
1770 	crcs[4] = crc4;
1771 	drm_crtc_add_crc_entry(&crtc->base, true,
1772 				drm_crtc_accurate_vblank_count(&crtc->base),
1773 				crcs);
1774 }
1775 #else
1776 static inline void
1777 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1778 			     enum pipe pipe,
1779 			     uint32_t crc0, uint32_t crc1,
1780 			     uint32_t crc2, uint32_t crc3,
1781 			     uint32_t crc4) {}
1782 #endif
1783 
1784 
1785 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1786 				     enum pipe pipe)
1787 {
1788 	display_pipe_crc_irq_handler(dev_priv, pipe,
1789 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1790 				     0, 0, 0, 0);
1791 }
1792 
1793 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1794 				     enum pipe pipe)
1795 {
1796 	display_pipe_crc_irq_handler(dev_priv, pipe,
1797 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1798 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1799 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1800 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1801 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1802 }
1803 
1804 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1805 				      enum pipe pipe)
1806 {
1807 	uint32_t res1, res2;
1808 
1809 	if (INTEL_GEN(dev_priv) >= 3)
1810 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1811 	else
1812 		res1 = 0;
1813 
1814 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1815 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1816 	else
1817 		res2 = 0;
1818 
1819 	display_pipe_crc_irq_handler(dev_priv, pipe,
1820 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1821 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1822 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1823 				     res1, res2);
1824 }
1825 
1826 /* The RPS events need forcewake, so we add them to a work queue and mask their
1827  * IMR bits until the work is done. Other interrupts can be processed without
1828  * the work queue. */
1829 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1830 {
1831 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1832 
1833 	if (pm_iir & dev_priv->pm_rps_events) {
1834 		spin_lock(&dev_priv->irq_lock);
1835 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1836 		if (rps->interrupts_enabled) {
1837 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1838 			schedule_work(&rps->work);
1839 		}
1840 		spin_unlock(&dev_priv->irq_lock);
1841 	}
1842 
1843 	if (INTEL_GEN(dev_priv) >= 8)
1844 		return;
1845 
1846 	if (HAS_VEBOX(dev_priv)) {
1847 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1848 			notify_ring(dev_priv->engine[VECS]);
1849 
1850 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1851 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1852 	}
1853 }
1854 
1855 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1856 {
1857 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1858 		intel_guc_to_host_event_handler(&dev_priv->guc);
1859 }
1860 
1861 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1862 {
1863 	enum pipe pipe;
1864 
1865 	for_each_pipe(dev_priv, pipe) {
1866 		I915_WRITE(PIPESTAT(pipe),
1867 			   PIPESTAT_INT_STATUS_MASK |
1868 			   PIPE_FIFO_UNDERRUN_STATUS);
1869 
1870 		dev_priv->pipestat_irq_mask[pipe] = 0;
1871 	}
1872 }
1873 
1874 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1875 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1876 {
1877 	int pipe;
1878 
1879 	spin_lock(&dev_priv->irq_lock);
1880 
1881 	if (!dev_priv->display_irqs_enabled) {
1882 		spin_unlock(&dev_priv->irq_lock);
1883 		return;
1884 	}
1885 
1886 	for_each_pipe(dev_priv, pipe) {
1887 		i915_reg_t reg;
1888 		u32 status_mask, enable_mask, iir_bit = 0;
1889 
1890 		/*
1891 		 * PIPESTAT bits get signalled even when the interrupt is
1892 		 * disabled with the mask bits, and some of the status bits do
1893 		 * not generate interrupts at all (like the underrun bit). Hence
1894 		 * we need to be careful that we only handle what we want to
1895 		 * handle.
1896 		 */
1897 
1898 		/* fifo underruns are filterered in the underrun handler. */
1899 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1900 
1901 		switch (pipe) {
1902 		case PIPE_A:
1903 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1904 			break;
1905 		case PIPE_B:
1906 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1907 			break;
1908 		case PIPE_C:
1909 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1910 			break;
1911 		}
1912 		if (iir & iir_bit)
1913 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1914 
1915 		if (!status_mask)
1916 			continue;
1917 
1918 		reg = PIPESTAT(pipe);
1919 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1920 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1921 
1922 		/*
1923 		 * Clear the PIPE*STAT regs before the IIR
1924 		 *
1925 		 * Toggle the enable bits to make sure we get an
1926 		 * edge in the ISR pipe event bit if we don't clear
1927 		 * all the enabled status bits. Otherwise the edge
1928 		 * triggered IIR on i965/g4x wouldn't notice that
1929 		 * an interrupt is still pending.
1930 		 */
1931 		if (pipe_stats[pipe]) {
1932 			I915_WRITE(reg, pipe_stats[pipe]);
1933 			I915_WRITE(reg, enable_mask);
1934 		}
1935 	}
1936 	spin_unlock(&dev_priv->irq_lock);
1937 }
1938 
1939 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1940 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1941 {
1942 	enum pipe pipe;
1943 
1944 	for_each_pipe(dev_priv, pipe) {
1945 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1946 			drm_handle_vblank(&dev_priv->drm, pipe);
1947 
1948 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1949 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1950 
1951 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1952 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1953 	}
1954 }
1955 
1956 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1957 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1958 {
1959 	bool blc_event = false;
1960 	enum pipe pipe;
1961 
1962 	for_each_pipe(dev_priv, pipe) {
1963 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1964 			drm_handle_vblank(&dev_priv->drm, pipe);
1965 
1966 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1967 			blc_event = true;
1968 
1969 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1970 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1971 
1972 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1973 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1974 	}
1975 
1976 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1977 		intel_opregion_asle_intr(dev_priv);
1978 }
1979 
1980 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1981 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1982 {
1983 	bool blc_event = false;
1984 	enum pipe pipe;
1985 
1986 	for_each_pipe(dev_priv, pipe) {
1987 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1988 			drm_handle_vblank(&dev_priv->drm, pipe);
1989 
1990 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1991 			blc_event = true;
1992 
1993 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1994 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1995 
1996 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1997 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1998 	}
1999 
2000 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
2001 		intel_opregion_asle_intr(dev_priv);
2002 
2003 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2004 		gmbus_irq_handler(dev_priv);
2005 }
2006 
2007 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2008 					    u32 pipe_stats[I915_MAX_PIPES])
2009 {
2010 	enum pipe pipe;
2011 
2012 	for_each_pipe(dev_priv, pipe) {
2013 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2014 			drm_handle_vblank(&dev_priv->drm, pipe);
2015 
2016 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2017 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2018 
2019 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2020 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2021 	}
2022 
2023 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2024 		gmbus_irq_handler(dev_priv);
2025 }
2026 
2027 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2028 {
2029 	u32 hotplug_status = 0, hotplug_status_mask;
2030 	int i;
2031 
2032 	if (IS_G4X(dev_priv) ||
2033 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2034 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2035 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2036 	else
2037 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2038 
2039 	/*
2040 	 * We absolutely have to clear all the pending interrupt
2041 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2042 	 * interrupt bit won't have an edge, and the i965/g4x
2043 	 * edge triggered IIR will not notice that an interrupt
2044 	 * is still pending. We can't use PORT_HOTPLUG_EN to
2045 	 * guarantee the edge as the act of toggling the enable
2046 	 * bits can itself generate a new hotplug interrupt :(
2047 	 */
2048 	for (i = 0; i < 10; i++) {
2049 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2050 
2051 		if (tmp == 0)
2052 			return hotplug_status;
2053 
2054 		hotplug_status |= tmp;
2055 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2056 	}
2057 
2058 	WARN_ONCE(1,
2059 		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2060 		  I915_READ(PORT_HOTPLUG_STAT));
2061 
2062 	return hotplug_status;
2063 }
2064 
2065 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2066 				 u32 hotplug_status)
2067 {
2068 	u32 pin_mask = 0, long_mask = 0;
2069 
2070 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2071 	    IS_CHERRYVIEW(dev_priv)) {
2072 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2073 
2074 		if (hotplug_trigger) {
2075 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2076 					   hotplug_trigger, hotplug_trigger,
2077 					   hpd_status_g4x,
2078 					   i9xx_port_hotplug_long_detect);
2079 
2080 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2081 		}
2082 
2083 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2084 			dp_aux_irq_handler(dev_priv);
2085 	} else {
2086 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2087 
2088 		if (hotplug_trigger) {
2089 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2090 					   hotplug_trigger, hotplug_trigger,
2091 					   hpd_status_i915,
2092 					   i9xx_port_hotplug_long_detect);
2093 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2094 		}
2095 	}
2096 }
2097 
2098 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2099 {
2100 	struct drm_device *dev = arg;
2101 	struct drm_i915_private *dev_priv = to_i915(dev);
2102 	irqreturn_t ret = IRQ_NONE;
2103 
2104 	if (!intel_irqs_enabled(dev_priv))
2105 		return IRQ_NONE;
2106 
2107 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2108 	disable_rpm_wakeref_asserts(dev_priv);
2109 
2110 	do {
2111 		u32 iir, gt_iir, pm_iir;
2112 		u32 pipe_stats[I915_MAX_PIPES] = {};
2113 		u32 hotplug_status = 0;
2114 		u32 ier = 0;
2115 
2116 		gt_iir = I915_READ(GTIIR);
2117 		pm_iir = I915_READ(GEN6_PMIIR);
2118 		iir = I915_READ(VLV_IIR);
2119 
2120 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2121 			break;
2122 
2123 		ret = IRQ_HANDLED;
2124 
2125 		/*
2126 		 * Theory on interrupt generation, based on empirical evidence:
2127 		 *
2128 		 * x = ((VLV_IIR & VLV_IER) ||
2129 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2130 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2131 		 *
2132 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2133 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2134 		 * guarantee the CPU interrupt will be raised again even if we
2135 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2136 		 * bits this time around.
2137 		 */
2138 		I915_WRITE(VLV_MASTER_IER, 0);
2139 		ier = I915_READ(VLV_IER);
2140 		I915_WRITE(VLV_IER, 0);
2141 
2142 		if (gt_iir)
2143 			I915_WRITE(GTIIR, gt_iir);
2144 		if (pm_iir)
2145 			I915_WRITE(GEN6_PMIIR, pm_iir);
2146 
2147 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2148 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2149 
2150 		/* Call regardless, as some status bits might not be
2151 		 * signalled in iir */
2152 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2153 
2154 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2155 			   I915_LPE_PIPE_B_INTERRUPT))
2156 			intel_lpe_audio_irq_handler(dev_priv);
2157 
2158 		/*
2159 		 * VLV_IIR is single buffered, and reflects the level
2160 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2161 		 */
2162 		if (iir)
2163 			I915_WRITE(VLV_IIR, iir);
2164 
2165 		I915_WRITE(VLV_IER, ier);
2166 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2167 
2168 		if (gt_iir)
2169 			snb_gt_irq_handler(dev_priv, gt_iir);
2170 		if (pm_iir)
2171 			gen6_rps_irq_handler(dev_priv, pm_iir);
2172 
2173 		if (hotplug_status)
2174 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2175 
2176 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2177 	} while (0);
2178 
2179 	enable_rpm_wakeref_asserts(dev_priv);
2180 
2181 	return ret;
2182 }
2183 
2184 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2185 {
2186 	struct drm_device *dev = arg;
2187 	struct drm_i915_private *dev_priv = to_i915(dev);
2188 	irqreturn_t ret = IRQ_NONE;
2189 
2190 	if (!intel_irqs_enabled(dev_priv))
2191 		return IRQ_NONE;
2192 
2193 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2194 	disable_rpm_wakeref_asserts(dev_priv);
2195 
2196 	do {
2197 		u32 master_ctl, iir;
2198 		u32 pipe_stats[I915_MAX_PIPES] = {};
2199 		u32 hotplug_status = 0;
2200 		u32 gt_iir[4];
2201 		u32 ier = 0;
2202 
2203 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2204 		iir = I915_READ(VLV_IIR);
2205 
2206 		if (master_ctl == 0 && iir == 0)
2207 			break;
2208 
2209 		ret = IRQ_HANDLED;
2210 
2211 		/*
2212 		 * Theory on interrupt generation, based on empirical evidence:
2213 		 *
2214 		 * x = ((VLV_IIR & VLV_IER) ||
2215 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2216 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2217 		 *
2218 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2219 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2220 		 * guarantee the CPU interrupt will be raised again even if we
2221 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2222 		 * bits this time around.
2223 		 */
2224 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2225 		ier = I915_READ(VLV_IER);
2226 		I915_WRITE(VLV_IER, 0);
2227 
2228 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2229 
2230 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2231 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2232 
2233 		/* Call regardless, as some status bits might not be
2234 		 * signalled in iir */
2235 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2236 
2237 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2238 			   I915_LPE_PIPE_B_INTERRUPT |
2239 			   I915_LPE_PIPE_C_INTERRUPT))
2240 			intel_lpe_audio_irq_handler(dev_priv);
2241 
2242 		/*
2243 		 * VLV_IIR is single buffered, and reflects the level
2244 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2245 		 */
2246 		if (iir)
2247 			I915_WRITE(VLV_IIR, iir);
2248 
2249 		I915_WRITE(VLV_IER, ier);
2250 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2251 
2252 		gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2253 
2254 		if (hotplug_status)
2255 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2256 
2257 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2258 	} while (0);
2259 
2260 	enable_rpm_wakeref_asserts(dev_priv);
2261 
2262 	return ret;
2263 }
2264 
2265 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2266 				u32 hotplug_trigger,
2267 				const u32 hpd[HPD_NUM_PINS])
2268 {
2269 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2270 
2271 	/*
2272 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2273 	 * unless we touch the hotplug register, even if hotplug_trigger is
2274 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2275 	 * errors.
2276 	 */
2277 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2278 	if (!hotplug_trigger) {
2279 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2280 			PORTD_HOTPLUG_STATUS_MASK |
2281 			PORTC_HOTPLUG_STATUS_MASK |
2282 			PORTB_HOTPLUG_STATUS_MASK;
2283 		dig_hotplug_reg &= ~mask;
2284 	}
2285 
2286 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2287 	if (!hotplug_trigger)
2288 		return;
2289 
2290 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2291 			   dig_hotplug_reg, hpd,
2292 			   pch_port_hotplug_long_detect);
2293 
2294 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2295 }
2296 
2297 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2298 {
2299 	int pipe;
2300 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2301 
2302 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2303 
2304 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2305 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2306 			       SDE_AUDIO_POWER_SHIFT);
2307 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2308 				 port_name(port));
2309 	}
2310 
2311 	if (pch_iir & SDE_AUX_MASK)
2312 		dp_aux_irq_handler(dev_priv);
2313 
2314 	if (pch_iir & SDE_GMBUS)
2315 		gmbus_irq_handler(dev_priv);
2316 
2317 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2318 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2319 
2320 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2321 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2322 
2323 	if (pch_iir & SDE_POISON)
2324 		DRM_ERROR("PCH poison interrupt\n");
2325 
2326 	if (pch_iir & SDE_FDI_MASK)
2327 		for_each_pipe(dev_priv, pipe)
2328 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2329 					 pipe_name(pipe),
2330 					 I915_READ(FDI_RX_IIR(pipe)));
2331 
2332 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2333 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2334 
2335 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2336 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2337 
2338 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2339 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2340 
2341 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2342 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2343 }
2344 
2345 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2346 {
2347 	u32 err_int = I915_READ(GEN7_ERR_INT);
2348 	enum pipe pipe;
2349 
2350 	if (err_int & ERR_INT_POISON)
2351 		DRM_ERROR("Poison interrupt\n");
2352 
2353 	for_each_pipe(dev_priv, pipe) {
2354 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2355 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2356 
2357 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2358 			if (IS_IVYBRIDGE(dev_priv))
2359 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2360 			else
2361 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2362 		}
2363 	}
2364 
2365 	I915_WRITE(GEN7_ERR_INT, err_int);
2366 }
2367 
2368 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2369 {
2370 	u32 serr_int = I915_READ(SERR_INT);
2371 	enum pipe pipe;
2372 
2373 	if (serr_int & SERR_INT_POISON)
2374 		DRM_ERROR("PCH poison interrupt\n");
2375 
2376 	for_each_pipe(dev_priv, pipe)
2377 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2378 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2379 
2380 	I915_WRITE(SERR_INT, serr_int);
2381 }
2382 
2383 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2384 {
2385 	int pipe;
2386 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2387 
2388 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2389 
2390 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2391 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2392 			       SDE_AUDIO_POWER_SHIFT_CPT);
2393 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2394 				 port_name(port));
2395 	}
2396 
2397 	if (pch_iir & SDE_AUX_MASK_CPT)
2398 		dp_aux_irq_handler(dev_priv);
2399 
2400 	if (pch_iir & SDE_GMBUS_CPT)
2401 		gmbus_irq_handler(dev_priv);
2402 
2403 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2404 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2405 
2406 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2407 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2408 
2409 	if (pch_iir & SDE_FDI_MASK_CPT)
2410 		for_each_pipe(dev_priv, pipe)
2411 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2412 					 pipe_name(pipe),
2413 					 I915_READ(FDI_RX_IIR(pipe)));
2414 
2415 	if (pch_iir & SDE_ERROR_CPT)
2416 		cpt_serr_int_handler(dev_priv);
2417 }
2418 
2419 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2420 {
2421 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2422 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2423 	u32 pin_mask = 0, long_mask = 0;
2424 
2425 	if (ddi_hotplug_trigger) {
2426 		u32 dig_hotplug_reg;
2427 
2428 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2429 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2430 
2431 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2432 				   ddi_hotplug_trigger,
2433 				   dig_hotplug_reg, hpd_icp,
2434 				   icp_ddi_port_hotplug_long_detect);
2435 	}
2436 
2437 	if (tc_hotplug_trigger) {
2438 		u32 dig_hotplug_reg;
2439 
2440 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2441 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2442 
2443 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2444 				   tc_hotplug_trigger,
2445 				   dig_hotplug_reg, hpd_icp,
2446 				   icp_tc_port_hotplug_long_detect);
2447 	}
2448 
2449 	if (pin_mask)
2450 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2451 
2452 	if (pch_iir & SDE_GMBUS_ICP)
2453 		gmbus_irq_handler(dev_priv);
2454 }
2455 
2456 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2457 {
2458 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2459 		~SDE_PORTE_HOTPLUG_SPT;
2460 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2461 	u32 pin_mask = 0, long_mask = 0;
2462 
2463 	if (hotplug_trigger) {
2464 		u32 dig_hotplug_reg;
2465 
2466 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2467 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2468 
2469 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2470 				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2471 				   spt_port_hotplug_long_detect);
2472 	}
2473 
2474 	if (hotplug2_trigger) {
2475 		u32 dig_hotplug_reg;
2476 
2477 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2478 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2479 
2480 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2481 				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2482 				   spt_port_hotplug2_long_detect);
2483 	}
2484 
2485 	if (pin_mask)
2486 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2487 
2488 	if (pch_iir & SDE_GMBUS_CPT)
2489 		gmbus_irq_handler(dev_priv);
2490 }
2491 
2492 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2493 				u32 hotplug_trigger,
2494 				const u32 hpd[HPD_NUM_PINS])
2495 {
2496 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2497 
2498 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2499 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2500 
2501 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2502 			   dig_hotplug_reg, hpd,
2503 			   ilk_port_hotplug_long_detect);
2504 
2505 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2506 }
2507 
2508 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2509 				    u32 de_iir)
2510 {
2511 	enum pipe pipe;
2512 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2513 
2514 	if (hotplug_trigger)
2515 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2516 
2517 	if (de_iir & DE_AUX_CHANNEL_A)
2518 		dp_aux_irq_handler(dev_priv);
2519 
2520 	if (de_iir & DE_GSE)
2521 		intel_opregion_asle_intr(dev_priv);
2522 
2523 	if (de_iir & DE_POISON)
2524 		DRM_ERROR("Poison interrupt\n");
2525 
2526 	for_each_pipe(dev_priv, pipe) {
2527 		if (de_iir & DE_PIPE_VBLANK(pipe))
2528 			drm_handle_vblank(&dev_priv->drm, pipe);
2529 
2530 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2531 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2532 
2533 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2534 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2535 	}
2536 
2537 	/* check event from PCH */
2538 	if (de_iir & DE_PCH_EVENT) {
2539 		u32 pch_iir = I915_READ(SDEIIR);
2540 
2541 		if (HAS_PCH_CPT(dev_priv))
2542 			cpt_irq_handler(dev_priv, pch_iir);
2543 		else
2544 			ibx_irq_handler(dev_priv, pch_iir);
2545 
2546 		/* should clear PCH hotplug event before clear CPU irq */
2547 		I915_WRITE(SDEIIR, pch_iir);
2548 	}
2549 
2550 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2551 		ironlake_rps_change_irq_handler(dev_priv);
2552 }
2553 
2554 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2555 				    u32 de_iir)
2556 {
2557 	enum pipe pipe;
2558 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2559 
2560 	if (hotplug_trigger)
2561 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2562 
2563 	if (de_iir & DE_ERR_INT_IVB)
2564 		ivb_err_int_handler(dev_priv);
2565 
2566 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2567 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2568 
2569 		intel_psr_irq_handler(dev_priv, psr_iir);
2570 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2571 	}
2572 
2573 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2574 		dp_aux_irq_handler(dev_priv);
2575 
2576 	if (de_iir & DE_GSE_IVB)
2577 		intel_opregion_asle_intr(dev_priv);
2578 
2579 	for_each_pipe(dev_priv, pipe) {
2580 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2581 			drm_handle_vblank(&dev_priv->drm, pipe);
2582 	}
2583 
2584 	/* check event from PCH */
2585 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2586 		u32 pch_iir = I915_READ(SDEIIR);
2587 
2588 		cpt_irq_handler(dev_priv, pch_iir);
2589 
2590 		/* clear PCH hotplug event before clear CPU irq */
2591 		I915_WRITE(SDEIIR, pch_iir);
2592 	}
2593 }
2594 
2595 /*
2596  * To handle irqs with the minimum potential races with fresh interrupts, we:
2597  * 1 - Disable Master Interrupt Control.
2598  * 2 - Find the source(s) of the interrupt.
2599  * 3 - Clear the Interrupt Identity bits (IIR).
2600  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2601  * 5 - Re-enable Master Interrupt Control.
2602  */
2603 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2604 {
2605 	struct drm_device *dev = arg;
2606 	struct drm_i915_private *dev_priv = to_i915(dev);
2607 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2608 	irqreturn_t ret = IRQ_NONE;
2609 
2610 	if (!intel_irqs_enabled(dev_priv))
2611 		return IRQ_NONE;
2612 
2613 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2614 	disable_rpm_wakeref_asserts(dev_priv);
2615 
2616 	/* disable master interrupt before clearing iir  */
2617 	de_ier = I915_READ(DEIER);
2618 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2619 
2620 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2621 	 * interrupts will will be stored on its back queue, and then we'll be
2622 	 * able to process them after we restore SDEIER (as soon as we restore
2623 	 * it, we'll get an interrupt if SDEIIR still has something to process
2624 	 * due to its back queue). */
2625 	if (!HAS_PCH_NOP(dev_priv)) {
2626 		sde_ier = I915_READ(SDEIER);
2627 		I915_WRITE(SDEIER, 0);
2628 	}
2629 
2630 	/* Find, clear, then process each source of interrupt */
2631 
2632 	gt_iir = I915_READ(GTIIR);
2633 	if (gt_iir) {
2634 		I915_WRITE(GTIIR, gt_iir);
2635 		ret = IRQ_HANDLED;
2636 		if (INTEL_GEN(dev_priv) >= 6)
2637 			snb_gt_irq_handler(dev_priv, gt_iir);
2638 		else
2639 			ilk_gt_irq_handler(dev_priv, gt_iir);
2640 	}
2641 
2642 	de_iir = I915_READ(DEIIR);
2643 	if (de_iir) {
2644 		I915_WRITE(DEIIR, de_iir);
2645 		ret = IRQ_HANDLED;
2646 		if (INTEL_GEN(dev_priv) >= 7)
2647 			ivb_display_irq_handler(dev_priv, de_iir);
2648 		else
2649 			ilk_display_irq_handler(dev_priv, de_iir);
2650 	}
2651 
2652 	if (INTEL_GEN(dev_priv) >= 6) {
2653 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2654 		if (pm_iir) {
2655 			I915_WRITE(GEN6_PMIIR, pm_iir);
2656 			ret = IRQ_HANDLED;
2657 			gen6_rps_irq_handler(dev_priv, pm_iir);
2658 		}
2659 	}
2660 
2661 	I915_WRITE(DEIER, de_ier);
2662 	if (!HAS_PCH_NOP(dev_priv))
2663 		I915_WRITE(SDEIER, sde_ier);
2664 
2665 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2666 	enable_rpm_wakeref_asserts(dev_priv);
2667 
2668 	return ret;
2669 }
2670 
2671 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2672 				u32 hotplug_trigger,
2673 				const u32 hpd[HPD_NUM_PINS])
2674 {
2675 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2676 
2677 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2678 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2679 
2680 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2681 			   dig_hotplug_reg, hpd,
2682 			   bxt_port_hotplug_long_detect);
2683 
2684 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2685 }
2686 
2687 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2688 {
2689 	u32 pin_mask = 0, long_mask = 0;
2690 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2691 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2692 
2693 	if (trigger_tc) {
2694 		u32 dig_hotplug_reg;
2695 
2696 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2697 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2698 
2699 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2700 				   dig_hotplug_reg, hpd_gen11,
2701 				   gen11_port_hotplug_long_detect);
2702 	}
2703 
2704 	if (trigger_tbt) {
2705 		u32 dig_hotplug_reg;
2706 
2707 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2708 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2709 
2710 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2711 				   dig_hotplug_reg, hpd_gen11,
2712 				   gen11_port_hotplug_long_detect);
2713 	}
2714 
2715 	if (pin_mask)
2716 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2717 	else
2718 		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2719 }
2720 
2721 static irqreturn_t
2722 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2723 {
2724 	irqreturn_t ret = IRQ_NONE;
2725 	u32 iir;
2726 	enum pipe pipe;
2727 
2728 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2729 		iir = I915_READ(GEN8_DE_MISC_IIR);
2730 		if (iir) {
2731 			bool found = false;
2732 
2733 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2734 			ret = IRQ_HANDLED;
2735 
2736 			if (iir & GEN8_DE_MISC_GSE) {
2737 				intel_opregion_asle_intr(dev_priv);
2738 				found = true;
2739 			}
2740 
2741 			if (iir & GEN8_DE_EDP_PSR) {
2742 				u32 psr_iir = I915_READ(EDP_PSR_IIR);
2743 
2744 				intel_psr_irq_handler(dev_priv, psr_iir);
2745 				I915_WRITE(EDP_PSR_IIR, psr_iir);
2746 				found = true;
2747 			}
2748 
2749 			if (!found)
2750 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2751 		}
2752 		else
2753 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2754 	}
2755 
2756 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2757 		iir = I915_READ(GEN11_DE_HPD_IIR);
2758 		if (iir) {
2759 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2760 			ret = IRQ_HANDLED;
2761 			gen11_hpd_irq_handler(dev_priv, iir);
2762 		} else {
2763 			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2764 		}
2765 	}
2766 
2767 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2768 		iir = I915_READ(GEN8_DE_PORT_IIR);
2769 		if (iir) {
2770 			u32 tmp_mask;
2771 			bool found = false;
2772 
2773 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2774 			ret = IRQ_HANDLED;
2775 
2776 			tmp_mask = GEN8_AUX_CHANNEL_A;
2777 			if (INTEL_GEN(dev_priv) >= 9)
2778 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2779 					    GEN9_AUX_CHANNEL_C |
2780 					    GEN9_AUX_CHANNEL_D;
2781 
2782 			if (INTEL_GEN(dev_priv) >= 11)
2783 				tmp_mask |= ICL_AUX_CHANNEL_E;
2784 
2785 			if (IS_CNL_WITH_PORT_F(dev_priv) ||
2786 			    INTEL_GEN(dev_priv) >= 11)
2787 				tmp_mask |= CNL_AUX_CHANNEL_F;
2788 
2789 			if (iir & tmp_mask) {
2790 				dp_aux_irq_handler(dev_priv);
2791 				found = true;
2792 			}
2793 
2794 			if (IS_GEN9_LP(dev_priv)) {
2795 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2796 				if (tmp_mask) {
2797 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2798 							    hpd_bxt);
2799 					found = true;
2800 				}
2801 			} else if (IS_BROADWELL(dev_priv)) {
2802 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2803 				if (tmp_mask) {
2804 					ilk_hpd_irq_handler(dev_priv,
2805 							    tmp_mask, hpd_bdw);
2806 					found = true;
2807 				}
2808 			}
2809 
2810 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2811 				gmbus_irq_handler(dev_priv);
2812 				found = true;
2813 			}
2814 
2815 			if (!found)
2816 				DRM_ERROR("Unexpected DE Port interrupt\n");
2817 		}
2818 		else
2819 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2820 	}
2821 
2822 	for_each_pipe(dev_priv, pipe) {
2823 		u32 fault_errors;
2824 
2825 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2826 			continue;
2827 
2828 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2829 		if (!iir) {
2830 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2831 			continue;
2832 		}
2833 
2834 		ret = IRQ_HANDLED;
2835 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2836 
2837 		if (iir & GEN8_PIPE_VBLANK)
2838 			drm_handle_vblank(&dev_priv->drm, pipe);
2839 
2840 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2841 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2842 
2843 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2844 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2845 
2846 		fault_errors = iir;
2847 		if (INTEL_GEN(dev_priv) >= 9)
2848 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2849 		else
2850 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2851 
2852 		if (fault_errors)
2853 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2854 				  pipe_name(pipe),
2855 				  fault_errors);
2856 	}
2857 
2858 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2859 	    master_ctl & GEN8_DE_PCH_IRQ) {
2860 		/*
2861 		 * FIXME(BDW): Assume for now that the new interrupt handling
2862 		 * scheme also closed the SDE interrupt handling race we've seen
2863 		 * on older pch-split platforms. But this needs testing.
2864 		 */
2865 		iir = I915_READ(SDEIIR);
2866 		if (iir) {
2867 			I915_WRITE(SDEIIR, iir);
2868 			ret = IRQ_HANDLED;
2869 
2870 			if (HAS_PCH_ICP(dev_priv))
2871 				icp_irq_handler(dev_priv, iir);
2872 			else if (HAS_PCH_SPT(dev_priv) ||
2873 				 HAS_PCH_KBP(dev_priv) ||
2874 				 HAS_PCH_CNP(dev_priv))
2875 				spt_irq_handler(dev_priv, iir);
2876 			else
2877 				cpt_irq_handler(dev_priv, iir);
2878 		} else {
2879 			/*
2880 			 * Like on previous PCH there seems to be something
2881 			 * fishy going on with forwarding PCH interrupts.
2882 			 */
2883 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2884 		}
2885 	}
2886 
2887 	return ret;
2888 }
2889 
2890 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2891 {
2892 	struct drm_i915_private *dev_priv = to_i915(arg);
2893 	u32 master_ctl;
2894 	u32 gt_iir[4];
2895 
2896 	if (!intel_irqs_enabled(dev_priv))
2897 		return IRQ_NONE;
2898 
2899 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2900 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2901 	if (!master_ctl)
2902 		return IRQ_NONE;
2903 
2904 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2905 
2906 	/* Find, clear, then process each source of interrupt */
2907 	gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2908 
2909 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2910 	if (master_ctl & ~GEN8_GT_IRQS) {
2911 		disable_rpm_wakeref_asserts(dev_priv);
2912 		gen8_de_irq_handler(dev_priv, master_ctl);
2913 		enable_rpm_wakeref_asserts(dev_priv);
2914 	}
2915 
2916 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2917 
2918 	gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2919 
2920 	return IRQ_HANDLED;
2921 }
2922 
2923 struct wedge_me {
2924 	struct delayed_work work;
2925 	struct drm_i915_private *i915;
2926 	const char *name;
2927 };
2928 
2929 static void wedge_me(struct work_struct *work)
2930 {
2931 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2932 
2933 	dev_err(w->i915->drm.dev,
2934 		"%s timed out, cancelling all in-flight rendering.\n",
2935 		w->name);
2936 	i915_gem_set_wedged(w->i915);
2937 }
2938 
2939 static void __init_wedge(struct wedge_me *w,
2940 			 struct drm_i915_private *i915,
2941 			 long timeout,
2942 			 const char *name)
2943 {
2944 	w->i915 = i915;
2945 	w->name = name;
2946 
2947 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2948 	schedule_delayed_work(&w->work, timeout);
2949 }
2950 
2951 static void __fini_wedge(struct wedge_me *w)
2952 {
2953 	cancel_delayed_work_sync(&w->work);
2954 	destroy_delayed_work_on_stack(&w->work);
2955 	w->i915 = NULL;
2956 }
2957 
2958 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2959 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2960 	     (W)->i915;							\
2961 	     __fini_wedge((W)))
2962 
2963 static u32
2964 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2965 			 const unsigned int bank, const unsigned int bit)
2966 {
2967 	void __iomem * const regs = i915->regs;
2968 	u32 timeout_ts;
2969 	u32 ident;
2970 
2971 	lockdep_assert_held(&i915->irq_lock);
2972 
2973 	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2974 
2975 	/*
2976 	 * NB: Specs do not specify how long to spin wait,
2977 	 * so we do ~100us as an educated guess.
2978 	 */
2979 	timeout_ts = (local_clock() >> 10) + 100;
2980 	do {
2981 		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2982 	} while (!(ident & GEN11_INTR_DATA_VALID) &&
2983 		 !time_after32(local_clock() >> 10, timeout_ts));
2984 
2985 	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2986 		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2987 			  bank, bit, ident);
2988 		return 0;
2989 	}
2990 
2991 	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2992 		      GEN11_INTR_DATA_VALID);
2993 
2994 	return ident;
2995 }
2996 
2997 static void
2998 gen11_other_irq_handler(struct drm_i915_private * const i915,
2999 			const u8 instance, const u16 iir)
3000 {
3001 	if (instance == OTHER_GTPM_INSTANCE)
3002 		return gen6_rps_irq_handler(i915, iir);
3003 
3004 	WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3005 		  instance, iir);
3006 }
3007 
3008 static void
3009 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3010 			 const u8 class, const u8 instance, const u16 iir)
3011 {
3012 	struct intel_engine_cs *engine;
3013 
3014 	if (instance <= MAX_ENGINE_INSTANCE)
3015 		engine = i915->engine_class[class][instance];
3016 	else
3017 		engine = NULL;
3018 
3019 	if (likely(engine))
3020 		return gen8_cs_irq_handler(engine, iir);
3021 
3022 	WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3023 		  class, instance);
3024 }
3025 
3026 static void
3027 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3028 			  const u32 identity)
3029 {
3030 	const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3031 	const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3032 	const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3033 
3034 	if (unlikely(!intr))
3035 		return;
3036 
3037 	if (class <= COPY_ENGINE_CLASS)
3038 		return gen11_engine_irq_handler(i915, class, instance, intr);
3039 
3040 	if (class == OTHER_CLASS)
3041 		return gen11_other_irq_handler(i915, instance, intr);
3042 
3043 	WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3044 		  class, instance, intr);
3045 }
3046 
3047 static void
3048 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3049 		      const unsigned int bank)
3050 {
3051 	void __iomem * const regs = i915->regs;
3052 	unsigned long intr_dw;
3053 	unsigned int bit;
3054 
3055 	lockdep_assert_held(&i915->irq_lock);
3056 
3057 	intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3058 
3059 	if (unlikely(!intr_dw)) {
3060 		DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3061 		return;
3062 	}
3063 
3064 	for_each_set_bit(bit, &intr_dw, 32) {
3065 		const u32 ident = gen11_gt_engine_identity(i915,
3066 							   bank, bit);
3067 
3068 		gen11_gt_identity_handler(i915, ident);
3069 	}
3070 
3071 	/* Clear must be after shared has been served for engine */
3072 	raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3073 }
3074 
3075 static void
3076 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3077 		     const u32 master_ctl)
3078 {
3079 	unsigned int bank;
3080 
3081 	spin_lock(&i915->irq_lock);
3082 
3083 	for (bank = 0; bank < 2; bank++) {
3084 		if (master_ctl & GEN11_GT_DW_IRQ(bank))
3085 			gen11_gt_bank_handler(i915, bank);
3086 	}
3087 
3088 	spin_unlock(&i915->irq_lock);
3089 }
3090 
3091 static u32
3092 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3093 {
3094 	void __iomem * const regs = dev_priv->regs;
3095 	u32 iir;
3096 
3097 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
3098 		return 0;
3099 
3100 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3101 	if (likely(iir))
3102 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3103 
3104 	return iir;
3105 }
3106 
3107 static void
3108 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3109 {
3110 	if (iir & GEN11_GU_MISC_GSE)
3111 		intel_opregion_asle_intr(dev_priv);
3112 }
3113 
3114 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3115 {
3116 	struct drm_i915_private * const i915 = to_i915(arg);
3117 	void __iomem * const regs = i915->regs;
3118 	u32 master_ctl;
3119 	u32 gu_misc_iir;
3120 
3121 	if (!intel_irqs_enabled(i915))
3122 		return IRQ_NONE;
3123 
3124 	master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3125 	master_ctl &= ~GEN11_MASTER_IRQ;
3126 	if (!master_ctl)
3127 		return IRQ_NONE;
3128 
3129 	/* Disable interrupts. */
3130 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3131 
3132 	/* Find, clear, then process each source of interrupt. */
3133 	gen11_gt_irq_handler(i915, master_ctl);
3134 
3135 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3136 	if (master_ctl & GEN11_DISPLAY_IRQ) {
3137 		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3138 
3139 		disable_rpm_wakeref_asserts(i915);
3140 		/*
3141 		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3142 		 * for the display related bits.
3143 		 */
3144 		gen8_de_irq_handler(i915, disp_ctl);
3145 		enable_rpm_wakeref_asserts(i915);
3146 	}
3147 
3148 	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3149 
3150 	/* Acknowledge and enable interrupts. */
3151 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3152 
3153 	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3154 
3155 	return IRQ_HANDLED;
3156 }
3157 
3158 static void i915_reset_device(struct drm_i915_private *dev_priv,
3159 			      u32 engine_mask,
3160 			      const char *reason)
3161 {
3162 	struct i915_gpu_error *error = &dev_priv->gpu_error;
3163 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3164 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3165 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3166 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3167 	struct wedge_me w;
3168 
3169 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3170 
3171 	DRM_DEBUG_DRIVER("resetting chip\n");
3172 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3173 
3174 	/* Use a watchdog to ensure that our reset completes */
3175 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3176 		intel_prepare_reset(dev_priv);
3177 
3178 		error->reason = reason;
3179 		error->stalled_mask = engine_mask;
3180 
3181 		/* Signal that locked waiters should reset the GPU */
3182 		smp_mb__before_atomic();
3183 		set_bit(I915_RESET_HANDOFF, &error->flags);
3184 		wake_up_all(&error->wait_queue);
3185 
3186 		/* Wait for anyone holding the lock to wakeup, without
3187 		 * blocking indefinitely on struct_mutex.
3188 		 */
3189 		do {
3190 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3191 				i915_reset(dev_priv, engine_mask, reason);
3192 				mutex_unlock(&dev_priv->drm.struct_mutex);
3193 			}
3194 		} while (wait_on_bit_timeout(&error->flags,
3195 					     I915_RESET_HANDOFF,
3196 					     TASK_UNINTERRUPTIBLE,
3197 					     1));
3198 
3199 		error->stalled_mask = 0;
3200 		error->reason = NULL;
3201 
3202 		intel_finish_reset(dev_priv);
3203 	}
3204 
3205 	if (!test_bit(I915_WEDGED, &error->flags))
3206 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3207 }
3208 
3209 void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3210 {
3211 	u32 eir;
3212 
3213 	if (!IS_GEN2(dev_priv))
3214 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3215 
3216 	if (INTEL_GEN(dev_priv) < 4)
3217 		I915_WRITE(IPEIR, I915_READ(IPEIR));
3218 	else
3219 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3220 
3221 	I915_WRITE(EIR, I915_READ(EIR));
3222 	eir = I915_READ(EIR);
3223 	if (eir) {
3224 		/*
3225 		 * some errors might have become stuck,
3226 		 * mask them.
3227 		 */
3228 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3229 		I915_WRITE(EMR, I915_READ(EMR) | eir);
3230 		I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3231 	}
3232 
3233 	if (INTEL_GEN(dev_priv) >= 8) {
3234 		I915_WRITE(GEN8_RING_FAULT_REG,
3235 			   I915_READ(GEN8_RING_FAULT_REG) & ~RING_FAULT_VALID);
3236 		POSTING_READ(GEN8_RING_FAULT_REG);
3237 	} else if (INTEL_GEN(dev_priv) >= 6) {
3238 		struct intel_engine_cs *engine;
3239 		enum intel_engine_id id;
3240 
3241 		for_each_engine(engine, dev_priv, id) {
3242 			I915_WRITE(RING_FAULT_REG(engine),
3243 				   I915_READ(RING_FAULT_REG(engine)) &
3244 				   ~RING_FAULT_VALID);
3245 		}
3246 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
3247 	}
3248 }
3249 
3250 /**
3251  * i915_handle_error - handle a gpu error
3252  * @dev_priv: i915 device private
3253  * @engine_mask: mask representing engines that are hung
3254  * @flags: control flags
3255  * @fmt: Error message format string
3256  *
3257  * Do some basic checking of register state at error time and
3258  * dump it to the syslog.  Also call i915_capture_error_state() to make
3259  * sure we get a record and make it available in debugfs.  Fire a uevent
3260  * so userspace knows something bad happened (should trigger collection
3261  * of a ring dump etc.).
3262  */
3263 void i915_handle_error(struct drm_i915_private *dev_priv,
3264 		       u32 engine_mask,
3265 		       unsigned long flags,
3266 		       const char *fmt, ...)
3267 {
3268 	struct intel_engine_cs *engine;
3269 	unsigned int tmp;
3270 	char error_msg[80];
3271 	char *msg = NULL;
3272 
3273 	if (fmt) {
3274 		va_list args;
3275 
3276 		va_start(args, fmt);
3277 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3278 		va_end(args);
3279 
3280 		msg = error_msg;
3281 	}
3282 
3283 	/*
3284 	 * In most cases it's guaranteed that we get here with an RPM
3285 	 * reference held, for example because there is a pending GPU
3286 	 * request that won't finish until the reset is done. This
3287 	 * isn't the case at least when we get here by doing a
3288 	 * simulated reset via debugfs, so get an RPM reference.
3289 	 */
3290 	intel_runtime_pm_get(dev_priv);
3291 
3292 	engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3293 
3294 	if (flags & I915_ERROR_CAPTURE) {
3295 		i915_capture_error_state(dev_priv, engine_mask, msg);
3296 		i915_clear_error_registers(dev_priv);
3297 	}
3298 
3299 	/*
3300 	 * Try engine reset when available. We fall back to full reset if
3301 	 * single reset fails.
3302 	 */
3303 	if (intel_has_reset_engine(dev_priv) &&
3304 	    !i915_terminally_wedged(&dev_priv->gpu_error)) {
3305 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3306 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3307 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3308 					     &dev_priv->gpu_error.flags))
3309 				continue;
3310 
3311 			if (i915_reset_engine(engine, msg) == 0)
3312 				engine_mask &= ~intel_engine_flag(engine);
3313 
3314 			clear_bit(I915_RESET_ENGINE + engine->id,
3315 				  &dev_priv->gpu_error.flags);
3316 			wake_up_bit(&dev_priv->gpu_error.flags,
3317 				    I915_RESET_ENGINE + engine->id);
3318 		}
3319 	}
3320 
3321 	if (!engine_mask)
3322 		goto out;
3323 
3324 	/* Full reset needs the mutex, stop any other user trying to do so. */
3325 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3326 		wait_event(dev_priv->gpu_error.reset_queue,
3327 			   !test_bit(I915_RESET_BACKOFF,
3328 				     &dev_priv->gpu_error.flags));
3329 		goto out;
3330 	}
3331 
3332 	/* Prevent any other reset-engine attempt. */
3333 	for_each_engine(engine, dev_priv, tmp) {
3334 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3335 					&dev_priv->gpu_error.flags))
3336 			wait_on_bit(&dev_priv->gpu_error.flags,
3337 				    I915_RESET_ENGINE + engine->id,
3338 				    TASK_UNINTERRUPTIBLE);
3339 	}
3340 
3341 	i915_reset_device(dev_priv, engine_mask, msg);
3342 
3343 	for_each_engine(engine, dev_priv, tmp) {
3344 		clear_bit(I915_RESET_ENGINE + engine->id,
3345 			  &dev_priv->gpu_error.flags);
3346 	}
3347 
3348 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3349 	wake_up_all(&dev_priv->gpu_error.reset_queue);
3350 
3351 out:
3352 	intel_runtime_pm_put(dev_priv);
3353 }
3354 
3355 /* Called from drm generic code, passed 'crtc' which
3356  * we use as a pipe index
3357  */
3358 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3359 {
3360 	struct drm_i915_private *dev_priv = to_i915(dev);
3361 	unsigned long irqflags;
3362 
3363 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3364 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3365 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3366 
3367 	return 0;
3368 }
3369 
3370 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3371 {
3372 	struct drm_i915_private *dev_priv = to_i915(dev);
3373 	unsigned long irqflags;
3374 
3375 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3376 	i915_enable_pipestat(dev_priv, pipe,
3377 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3378 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3379 
3380 	return 0;
3381 }
3382 
3383 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3384 {
3385 	struct drm_i915_private *dev_priv = to_i915(dev);
3386 	unsigned long irqflags;
3387 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3388 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3389 
3390 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3391 	ilk_enable_display_irq(dev_priv, bit);
3392 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3393 
3394 	/* Even though there is no DMC, frame counter can get stuck when
3395 	 * PSR is active as no frames are generated.
3396 	 */
3397 	if (HAS_PSR(dev_priv))
3398 		drm_vblank_restore(dev, pipe);
3399 
3400 	return 0;
3401 }
3402 
3403 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3404 {
3405 	struct drm_i915_private *dev_priv = to_i915(dev);
3406 	unsigned long irqflags;
3407 
3408 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3409 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3410 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3411 
3412 	/* Even if there is no DMC, frame counter can get stuck when
3413 	 * PSR is active as no frames are generated, so check only for PSR.
3414 	 */
3415 	if (HAS_PSR(dev_priv))
3416 		drm_vblank_restore(dev, pipe);
3417 
3418 	return 0;
3419 }
3420 
3421 /* Called from drm generic code, passed 'crtc' which
3422  * we use as a pipe index
3423  */
3424 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3425 {
3426 	struct drm_i915_private *dev_priv = to_i915(dev);
3427 	unsigned long irqflags;
3428 
3429 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3430 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3431 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3432 }
3433 
3434 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3435 {
3436 	struct drm_i915_private *dev_priv = to_i915(dev);
3437 	unsigned long irqflags;
3438 
3439 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3440 	i915_disable_pipestat(dev_priv, pipe,
3441 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3442 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3443 }
3444 
3445 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3446 {
3447 	struct drm_i915_private *dev_priv = to_i915(dev);
3448 	unsigned long irqflags;
3449 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3450 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3451 
3452 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3453 	ilk_disable_display_irq(dev_priv, bit);
3454 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3455 }
3456 
3457 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3458 {
3459 	struct drm_i915_private *dev_priv = to_i915(dev);
3460 	unsigned long irqflags;
3461 
3462 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3463 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3464 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3465 }
3466 
3467 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3468 {
3469 	if (HAS_PCH_NOP(dev_priv))
3470 		return;
3471 
3472 	GEN3_IRQ_RESET(SDE);
3473 
3474 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3475 		I915_WRITE(SERR_INT, 0xffffffff);
3476 }
3477 
3478 /*
3479  * SDEIER is also touched by the interrupt handler to work around missed PCH
3480  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3481  * instead we unconditionally enable all PCH interrupt sources here, but then
3482  * only unmask them as needed with SDEIMR.
3483  *
3484  * This function needs to be called before interrupts are enabled.
3485  */
3486 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3487 {
3488 	struct drm_i915_private *dev_priv = to_i915(dev);
3489 
3490 	if (HAS_PCH_NOP(dev_priv))
3491 		return;
3492 
3493 	WARN_ON(I915_READ(SDEIER) != 0);
3494 	I915_WRITE(SDEIER, 0xffffffff);
3495 	POSTING_READ(SDEIER);
3496 }
3497 
3498 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3499 {
3500 	GEN3_IRQ_RESET(GT);
3501 	if (INTEL_GEN(dev_priv) >= 6)
3502 		GEN3_IRQ_RESET(GEN6_PM);
3503 }
3504 
3505 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3506 {
3507 	if (IS_CHERRYVIEW(dev_priv))
3508 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3509 	else
3510 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3511 
3512 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3513 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3514 
3515 	i9xx_pipestat_irq_reset(dev_priv);
3516 
3517 	GEN3_IRQ_RESET(VLV_);
3518 	dev_priv->irq_mask = ~0u;
3519 }
3520 
3521 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3522 {
3523 	u32 pipestat_mask;
3524 	u32 enable_mask;
3525 	enum pipe pipe;
3526 
3527 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3528 
3529 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3530 	for_each_pipe(dev_priv, pipe)
3531 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3532 
3533 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3534 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536 		I915_LPE_PIPE_A_INTERRUPT |
3537 		I915_LPE_PIPE_B_INTERRUPT;
3538 
3539 	if (IS_CHERRYVIEW(dev_priv))
3540 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3541 			I915_LPE_PIPE_C_INTERRUPT;
3542 
3543 	WARN_ON(dev_priv->irq_mask != ~0u);
3544 
3545 	dev_priv->irq_mask = ~enable_mask;
3546 
3547 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3548 }
3549 
3550 /* drm_dma.h hooks
3551 */
3552 static void ironlake_irq_reset(struct drm_device *dev)
3553 {
3554 	struct drm_i915_private *dev_priv = to_i915(dev);
3555 
3556 	if (IS_GEN5(dev_priv))
3557 		I915_WRITE(HWSTAM, 0xffffffff);
3558 
3559 	GEN3_IRQ_RESET(DE);
3560 	if (IS_GEN7(dev_priv))
3561 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3562 
3563 	if (IS_HASWELL(dev_priv)) {
3564 		I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3565 		I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3566 	}
3567 
3568 	gen5_gt_irq_reset(dev_priv);
3569 
3570 	ibx_irq_reset(dev_priv);
3571 }
3572 
3573 static void valleyview_irq_reset(struct drm_device *dev)
3574 {
3575 	struct drm_i915_private *dev_priv = to_i915(dev);
3576 
3577 	I915_WRITE(VLV_MASTER_IER, 0);
3578 	POSTING_READ(VLV_MASTER_IER);
3579 
3580 	gen5_gt_irq_reset(dev_priv);
3581 
3582 	spin_lock_irq(&dev_priv->irq_lock);
3583 	if (dev_priv->display_irqs_enabled)
3584 		vlv_display_irq_reset(dev_priv);
3585 	spin_unlock_irq(&dev_priv->irq_lock);
3586 }
3587 
3588 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3589 {
3590 	GEN8_IRQ_RESET_NDX(GT, 0);
3591 	GEN8_IRQ_RESET_NDX(GT, 1);
3592 	GEN8_IRQ_RESET_NDX(GT, 2);
3593 	GEN8_IRQ_RESET_NDX(GT, 3);
3594 }
3595 
3596 static void gen8_irq_reset(struct drm_device *dev)
3597 {
3598 	struct drm_i915_private *dev_priv = to_i915(dev);
3599 	int pipe;
3600 
3601 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3602 	POSTING_READ(GEN8_MASTER_IRQ);
3603 
3604 	gen8_gt_irq_reset(dev_priv);
3605 
3606 	I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3607 	I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3608 
3609 	for_each_pipe(dev_priv, pipe)
3610 		if (intel_display_power_is_enabled(dev_priv,
3611 						   POWER_DOMAIN_PIPE(pipe)))
3612 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3613 
3614 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3615 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3616 	GEN3_IRQ_RESET(GEN8_PCU_);
3617 
3618 	if (HAS_PCH_SPLIT(dev_priv))
3619 		ibx_irq_reset(dev_priv);
3620 }
3621 
3622 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3623 {
3624 	/* Disable RCS, BCS, VCS and VECS class engines. */
3625 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3626 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  0);
3627 
3628 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3629 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~0);
3630 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~0);
3631 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~0);
3632 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~0);
3633 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~0);
3634 
3635 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3636 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3637 }
3638 
3639 static void gen11_irq_reset(struct drm_device *dev)
3640 {
3641 	struct drm_i915_private *dev_priv = dev->dev_private;
3642 	int pipe;
3643 
3644 	I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3645 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3646 
3647 	gen11_gt_irq_reset(dev_priv);
3648 
3649 	I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3650 
3651 	for_each_pipe(dev_priv, pipe)
3652 		if (intel_display_power_is_enabled(dev_priv,
3653 						   POWER_DOMAIN_PIPE(pipe)))
3654 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3655 
3656 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3657 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3658 	GEN3_IRQ_RESET(GEN11_DE_HPD_);
3659 	GEN3_IRQ_RESET(GEN11_GU_MISC_);
3660 	GEN3_IRQ_RESET(GEN8_PCU_);
3661 
3662 	if (HAS_PCH_ICP(dev_priv))
3663 		GEN3_IRQ_RESET(SDE);
3664 }
3665 
3666 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3667 				     u8 pipe_mask)
3668 {
3669 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3670 	enum pipe pipe;
3671 
3672 	spin_lock_irq(&dev_priv->irq_lock);
3673 
3674 	if (!intel_irqs_enabled(dev_priv)) {
3675 		spin_unlock_irq(&dev_priv->irq_lock);
3676 		return;
3677 	}
3678 
3679 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3680 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3681 				  dev_priv->de_irq_mask[pipe],
3682 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3683 
3684 	spin_unlock_irq(&dev_priv->irq_lock);
3685 }
3686 
3687 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3688 				     u8 pipe_mask)
3689 {
3690 	enum pipe pipe;
3691 
3692 	spin_lock_irq(&dev_priv->irq_lock);
3693 
3694 	if (!intel_irqs_enabled(dev_priv)) {
3695 		spin_unlock_irq(&dev_priv->irq_lock);
3696 		return;
3697 	}
3698 
3699 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3700 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3701 
3702 	spin_unlock_irq(&dev_priv->irq_lock);
3703 
3704 	/* make sure we're done processing display irqs */
3705 	synchronize_irq(dev_priv->drm.irq);
3706 }
3707 
3708 static void cherryview_irq_reset(struct drm_device *dev)
3709 {
3710 	struct drm_i915_private *dev_priv = to_i915(dev);
3711 
3712 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3713 	POSTING_READ(GEN8_MASTER_IRQ);
3714 
3715 	gen8_gt_irq_reset(dev_priv);
3716 
3717 	GEN3_IRQ_RESET(GEN8_PCU_);
3718 
3719 	spin_lock_irq(&dev_priv->irq_lock);
3720 	if (dev_priv->display_irqs_enabled)
3721 		vlv_display_irq_reset(dev_priv);
3722 	spin_unlock_irq(&dev_priv->irq_lock);
3723 }
3724 
3725 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3726 				  const u32 hpd[HPD_NUM_PINS])
3727 {
3728 	struct intel_encoder *encoder;
3729 	u32 enabled_irqs = 0;
3730 
3731 	for_each_intel_encoder(&dev_priv->drm, encoder)
3732 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3733 			enabled_irqs |= hpd[encoder->hpd_pin];
3734 
3735 	return enabled_irqs;
3736 }
3737 
3738 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3739 {
3740 	u32 hotplug;
3741 
3742 	/*
3743 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3744 	 * duration to 2ms (which is the minimum in the Display Port spec).
3745 	 * The pulse duration bits are reserved on LPT+.
3746 	 */
3747 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3748 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3749 		     PORTC_PULSE_DURATION_MASK |
3750 		     PORTD_PULSE_DURATION_MASK);
3751 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3752 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3753 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3754 	/*
3755 	 * When CPU and PCH are on the same package, port A
3756 	 * HPD must be enabled in both north and south.
3757 	 */
3758 	if (HAS_PCH_LPT_LP(dev_priv))
3759 		hotplug |= PORTA_HOTPLUG_ENABLE;
3760 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3761 }
3762 
3763 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3764 {
3765 	u32 hotplug_irqs, enabled_irqs;
3766 
3767 	if (HAS_PCH_IBX(dev_priv)) {
3768 		hotplug_irqs = SDE_HOTPLUG_MASK;
3769 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3770 	} else {
3771 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3772 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3773 	}
3774 
3775 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3776 
3777 	ibx_hpd_detection_setup(dev_priv);
3778 }
3779 
3780 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3781 {
3782 	u32 hotplug;
3783 
3784 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3785 	hotplug |= ICP_DDIA_HPD_ENABLE |
3786 		   ICP_DDIB_HPD_ENABLE;
3787 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3788 
3789 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3790 	hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3791 		   ICP_TC_HPD_ENABLE(PORT_TC2) |
3792 		   ICP_TC_HPD_ENABLE(PORT_TC3) |
3793 		   ICP_TC_HPD_ENABLE(PORT_TC4);
3794 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3795 }
3796 
3797 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3798 {
3799 	u32 hotplug_irqs, enabled_irqs;
3800 
3801 	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3802 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3803 
3804 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3805 
3806 	icp_hpd_detection_setup(dev_priv);
3807 }
3808 
3809 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3810 {
3811 	u32 hotplug;
3812 
3813 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3814 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3815 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3816 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3817 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3818 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3819 
3820 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3821 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3822 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3823 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3824 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3825 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3826 }
3827 
3828 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3829 {
3830 	u32 hotplug_irqs, enabled_irqs;
3831 	u32 val;
3832 
3833 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3834 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3835 
3836 	val = I915_READ(GEN11_DE_HPD_IMR);
3837 	val &= ~hotplug_irqs;
3838 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3839 	POSTING_READ(GEN11_DE_HPD_IMR);
3840 
3841 	gen11_hpd_detection_setup(dev_priv);
3842 
3843 	if (HAS_PCH_ICP(dev_priv))
3844 		icp_hpd_irq_setup(dev_priv);
3845 }
3846 
3847 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3848 {
3849 	u32 val, hotplug;
3850 
3851 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3852 	if (HAS_PCH_CNP(dev_priv)) {
3853 		val = I915_READ(SOUTH_CHICKEN1);
3854 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3855 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3856 		I915_WRITE(SOUTH_CHICKEN1, val);
3857 	}
3858 
3859 	/* Enable digital hotplug on the PCH */
3860 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3861 	hotplug |= PORTA_HOTPLUG_ENABLE |
3862 		   PORTB_HOTPLUG_ENABLE |
3863 		   PORTC_HOTPLUG_ENABLE |
3864 		   PORTD_HOTPLUG_ENABLE;
3865 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3866 
3867 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3868 	hotplug |= PORTE_HOTPLUG_ENABLE;
3869 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3870 }
3871 
3872 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3873 {
3874 	u32 hotplug_irqs, enabled_irqs;
3875 
3876 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3877 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3878 
3879 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3880 
3881 	spt_hpd_detection_setup(dev_priv);
3882 }
3883 
3884 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3885 {
3886 	u32 hotplug;
3887 
3888 	/*
3889 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3890 	 * duration to 2ms (which is the minimum in the Display Port spec)
3891 	 * The pulse duration bits are reserved on HSW+.
3892 	 */
3893 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3894 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3895 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3896 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3897 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3898 }
3899 
3900 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3901 {
3902 	u32 hotplug_irqs, enabled_irqs;
3903 
3904 	if (INTEL_GEN(dev_priv) >= 8) {
3905 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3906 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3907 
3908 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3909 	} else if (INTEL_GEN(dev_priv) >= 7) {
3910 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3911 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3912 
3913 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3914 	} else {
3915 		hotplug_irqs = DE_DP_A_HOTPLUG;
3916 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3917 
3918 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3919 	}
3920 
3921 	ilk_hpd_detection_setup(dev_priv);
3922 
3923 	ibx_hpd_irq_setup(dev_priv);
3924 }
3925 
3926 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3927 				      u32 enabled_irqs)
3928 {
3929 	u32 hotplug;
3930 
3931 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3932 	hotplug |= PORTA_HOTPLUG_ENABLE |
3933 		   PORTB_HOTPLUG_ENABLE |
3934 		   PORTC_HOTPLUG_ENABLE;
3935 
3936 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3937 		      hotplug, enabled_irqs);
3938 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3939 
3940 	/*
3941 	 * For BXT invert bit has to be set based on AOB design
3942 	 * for HPD detection logic, update it based on VBT fields.
3943 	 */
3944 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3945 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3946 		hotplug |= BXT_DDIA_HPD_INVERT;
3947 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3948 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3949 		hotplug |= BXT_DDIB_HPD_INVERT;
3950 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3951 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3952 		hotplug |= BXT_DDIC_HPD_INVERT;
3953 
3954 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3955 }
3956 
3957 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3958 {
3959 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3960 }
3961 
3962 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3963 {
3964 	u32 hotplug_irqs, enabled_irqs;
3965 
3966 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3967 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3968 
3969 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3970 
3971 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3972 }
3973 
3974 static void ibx_irq_postinstall(struct drm_device *dev)
3975 {
3976 	struct drm_i915_private *dev_priv = to_i915(dev);
3977 	u32 mask;
3978 
3979 	if (HAS_PCH_NOP(dev_priv))
3980 		return;
3981 
3982 	if (HAS_PCH_IBX(dev_priv))
3983 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3984 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3985 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3986 	else
3987 		mask = SDE_GMBUS_CPT;
3988 
3989 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3990 	I915_WRITE(SDEIMR, ~mask);
3991 
3992 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3993 	    HAS_PCH_LPT(dev_priv))
3994 		ibx_hpd_detection_setup(dev_priv);
3995 	else
3996 		spt_hpd_detection_setup(dev_priv);
3997 }
3998 
3999 static void gen5_gt_irq_postinstall(struct drm_device *dev)
4000 {
4001 	struct drm_i915_private *dev_priv = to_i915(dev);
4002 	u32 pm_irqs, gt_irqs;
4003 
4004 	pm_irqs = gt_irqs = 0;
4005 
4006 	dev_priv->gt_irq_mask = ~0;
4007 	if (HAS_L3_DPF(dev_priv)) {
4008 		/* L3 parity interrupt is always unmasked. */
4009 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
4010 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
4011 	}
4012 
4013 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
4014 	if (IS_GEN5(dev_priv)) {
4015 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
4016 	} else {
4017 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4018 	}
4019 
4020 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4021 
4022 	if (INTEL_GEN(dev_priv) >= 6) {
4023 		/*
4024 		 * RPS interrupts will get enabled/disabled on demand when RPS
4025 		 * itself is enabled/disabled.
4026 		 */
4027 		if (HAS_VEBOX(dev_priv)) {
4028 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4029 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4030 		}
4031 
4032 		dev_priv->pm_imr = 0xffffffff;
4033 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4034 	}
4035 }
4036 
4037 static int ironlake_irq_postinstall(struct drm_device *dev)
4038 {
4039 	struct drm_i915_private *dev_priv = to_i915(dev);
4040 	u32 display_mask, extra_mask;
4041 
4042 	if (INTEL_GEN(dev_priv) >= 7) {
4043 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4044 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4045 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4046 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4047 			      DE_DP_A_HOTPLUG_IVB);
4048 	} else {
4049 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4050 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4051 				DE_PIPEA_CRC_DONE | DE_POISON);
4052 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4053 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4054 			      DE_DP_A_HOTPLUG);
4055 	}
4056 
4057 	if (IS_HASWELL(dev_priv)) {
4058 		gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4059 		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4060 		display_mask |= DE_EDP_PSR_INT_HSW;
4061 	}
4062 
4063 	dev_priv->irq_mask = ~display_mask;
4064 
4065 	ibx_irq_pre_postinstall(dev);
4066 
4067 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4068 
4069 	gen5_gt_irq_postinstall(dev);
4070 
4071 	ilk_hpd_detection_setup(dev_priv);
4072 
4073 	ibx_irq_postinstall(dev);
4074 
4075 	if (IS_IRONLAKE_M(dev_priv)) {
4076 		/* Enable PCU event interrupts
4077 		 *
4078 		 * spinlocking not required here for correctness since interrupt
4079 		 * setup is guaranteed to run in single-threaded context. But we
4080 		 * need it to make the assert_spin_locked happy. */
4081 		spin_lock_irq(&dev_priv->irq_lock);
4082 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4083 		spin_unlock_irq(&dev_priv->irq_lock);
4084 	}
4085 
4086 	return 0;
4087 }
4088 
4089 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4090 {
4091 	lockdep_assert_held(&dev_priv->irq_lock);
4092 
4093 	if (dev_priv->display_irqs_enabled)
4094 		return;
4095 
4096 	dev_priv->display_irqs_enabled = true;
4097 
4098 	if (intel_irqs_enabled(dev_priv)) {
4099 		vlv_display_irq_reset(dev_priv);
4100 		vlv_display_irq_postinstall(dev_priv);
4101 	}
4102 }
4103 
4104 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4105 {
4106 	lockdep_assert_held(&dev_priv->irq_lock);
4107 
4108 	if (!dev_priv->display_irqs_enabled)
4109 		return;
4110 
4111 	dev_priv->display_irqs_enabled = false;
4112 
4113 	if (intel_irqs_enabled(dev_priv))
4114 		vlv_display_irq_reset(dev_priv);
4115 }
4116 
4117 
4118 static int valleyview_irq_postinstall(struct drm_device *dev)
4119 {
4120 	struct drm_i915_private *dev_priv = to_i915(dev);
4121 
4122 	gen5_gt_irq_postinstall(dev);
4123 
4124 	spin_lock_irq(&dev_priv->irq_lock);
4125 	if (dev_priv->display_irqs_enabled)
4126 		vlv_display_irq_postinstall(dev_priv);
4127 	spin_unlock_irq(&dev_priv->irq_lock);
4128 
4129 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4130 	POSTING_READ(VLV_MASTER_IER);
4131 
4132 	return 0;
4133 }
4134 
4135 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4136 {
4137 	/* These are interrupts we'll toggle with the ring mask register */
4138 	uint32_t gt_interrupts[] = {
4139 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4140 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4141 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4142 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4143 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4144 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4145 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4146 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4147 		0,
4148 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4149 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4150 		};
4151 
4152 	if (HAS_L3_DPF(dev_priv))
4153 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4154 
4155 	dev_priv->pm_ier = 0x0;
4156 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4157 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4158 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4159 	/*
4160 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4161 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
4162 	 */
4163 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4164 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4165 }
4166 
4167 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4168 {
4169 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4170 	uint32_t de_pipe_enables;
4171 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4172 	u32 de_port_enables;
4173 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
4174 	enum pipe pipe;
4175 
4176 	if (INTEL_GEN(dev_priv) <= 10)
4177 		de_misc_masked |= GEN8_DE_MISC_GSE;
4178 
4179 	if (INTEL_GEN(dev_priv) >= 9) {
4180 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4181 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4182 				  GEN9_AUX_CHANNEL_D;
4183 		if (IS_GEN9_LP(dev_priv))
4184 			de_port_masked |= BXT_DE_PORT_GMBUS;
4185 	} else {
4186 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4187 	}
4188 
4189 	if (INTEL_GEN(dev_priv) >= 11)
4190 		de_port_masked |= ICL_AUX_CHANNEL_E;
4191 
4192 	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4193 		de_port_masked |= CNL_AUX_CHANNEL_F;
4194 
4195 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4196 					   GEN8_PIPE_FIFO_UNDERRUN;
4197 
4198 	de_port_enables = de_port_masked;
4199 	if (IS_GEN9_LP(dev_priv))
4200 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4201 	else if (IS_BROADWELL(dev_priv))
4202 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4203 
4204 	gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4205 	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4206 
4207 	for_each_pipe(dev_priv, pipe) {
4208 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4209 
4210 		if (intel_display_power_is_enabled(dev_priv,
4211 				POWER_DOMAIN_PIPE(pipe)))
4212 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4213 					  dev_priv->de_irq_mask[pipe],
4214 					  de_pipe_enables);
4215 	}
4216 
4217 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4218 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4219 
4220 	if (INTEL_GEN(dev_priv) >= 11) {
4221 		u32 de_hpd_masked = 0;
4222 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4223 				     GEN11_DE_TBT_HOTPLUG_MASK;
4224 
4225 		GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4226 		gen11_hpd_detection_setup(dev_priv);
4227 	} else if (IS_GEN9_LP(dev_priv)) {
4228 		bxt_hpd_detection_setup(dev_priv);
4229 	} else if (IS_BROADWELL(dev_priv)) {
4230 		ilk_hpd_detection_setup(dev_priv);
4231 	}
4232 }
4233 
4234 static int gen8_irq_postinstall(struct drm_device *dev)
4235 {
4236 	struct drm_i915_private *dev_priv = to_i915(dev);
4237 
4238 	if (HAS_PCH_SPLIT(dev_priv))
4239 		ibx_irq_pre_postinstall(dev);
4240 
4241 	gen8_gt_irq_postinstall(dev_priv);
4242 	gen8_de_irq_postinstall(dev_priv);
4243 
4244 	if (HAS_PCH_SPLIT(dev_priv))
4245 		ibx_irq_postinstall(dev);
4246 
4247 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4248 	POSTING_READ(GEN8_MASTER_IRQ);
4249 
4250 	return 0;
4251 }
4252 
4253 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4254 {
4255 	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4256 
4257 	BUILD_BUG_ON(irqs & 0xffff0000);
4258 
4259 	/* Enable RCS, BCS, VCS and VECS class interrupts. */
4260 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4261 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  irqs << 16 | irqs);
4262 
4263 	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4264 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~(irqs << 16));
4265 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~(irqs << 16));
4266 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~(irqs | irqs << 16));
4267 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~(irqs | irqs << 16));
4268 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~(irqs | irqs << 16));
4269 
4270 	/*
4271 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4272 	 * is enabled/disabled.
4273 	 */
4274 	dev_priv->pm_ier = 0x0;
4275 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4276 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4277 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4278 }
4279 
4280 static void icp_irq_postinstall(struct drm_device *dev)
4281 {
4282 	struct drm_i915_private *dev_priv = to_i915(dev);
4283 	u32 mask = SDE_GMBUS_ICP;
4284 
4285 	WARN_ON(I915_READ(SDEIER) != 0);
4286 	I915_WRITE(SDEIER, 0xffffffff);
4287 	POSTING_READ(SDEIER);
4288 
4289 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4290 	I915_WRITE(SDEIMR, ~mask);
4291 
4292 	icp_hpd_detection_setup(dev_priv);
4293 }
4294 
4295 static int gen11_irq_postinstall(struct drm_device *dev)
4296 {
4297 	struct drm_i915_private *dev_priv = dev->dev_private;
4298 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4299 
4300 	if (HAS_PCH_ICP(dev_priv))
4301 		icp_irq_postinstall(dev);
4302 
4303 	gen11_gt_irq_postinstall(dev_priv);
4304 	gen8_de_irq_postinstall(dev_priv);
4305 
4306 	GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4307 
4308 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4309 
4310 	I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4311 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
4312 
4313 	return 0;
4314 }
4315 
4316 static int cherryview_irq_postinstall(struct drm_device *dev)
4317 {
4318 	struct drm_i915_private *dev_priv = to_i915(dev);
4319 
4320 	gen8_gt_irq_postinstall(dev_priv);
4321 
4322 	spin_lock_irq(&dev_priv->irq_lock);
4323 	if (dev_priv->display_irqs_enabled)
4324 		vlv_display_irq_postinstall(dev_priv);
4325 	spin_unlock_irq(&dev_priv->irq_lock);
4326 
4327 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4328 	POSTING_READ(GEN8_MASTER_IRQ);
4329 
4330 	return 0;
4331 }
4332 
4333 static void i8xx_irq_reset(struct drm_device *dev)
4334 {
4335 	struct drm_i915_private *dev_priv = to_i915(dev);
4336 
4337 	i9xx_pipestat_irq_reset(dev_priv);
4338 
4339 	I915_WRITE16(HWSTAM, 0xffff);
4340 
4341 	GEN2_IRQ_RESET();
4342 }
4343 
4344 static int i8xx_irq_postinstall(struct drm_device *dev)
4345 {
4346 	struct drm_i915_private *dev_priv = to_i915(dev);
4347 	u16 enable_mask;
4348 
4349 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4350 			    I915_ERROR_MEMORY_REFRESH));
4351 
4352 	/* Unmask the interrupts that we always want on. */
4353 	dev_priv->irq_mask =
4354 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4355 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4356 		  I915_MASTER_ERROR_INTERRUPT);
4357 
4358 	enable_mask =
4359 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4360 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4361 		I915_MASTER_ERROR_INTERRUPT |
4362 		I915_USER_INTERRUPT;
4363 
4364 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4365 
4366 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4367 	 * just to make the assert_spin_locked check happy. */
4368 	spin_lock_irq(&dev_priv->irq_lock);
4369 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4370 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4371 	spin_unlock_irq(&dev_priv->irq_lock);
4372 
4373 	return 0;
4374 }
4375 
4376 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4377 			       u16 *eir, u16 *eir_stuck)
4378 {
4379 	u16 emr;
4380 
4381 	*eir = I915_READ16(EIR);
4382 
4383 	if (*eir)
4384 		I915_WRITE16(EIR, *eir);
4385 
4386 	*eir_stuck = I915_READ16(EIR);
4387 	if (*eir_stuck == 0)
4388 		return;
4389 
4390 	/*
4391 	 * Toggle all EMR bits to make sure we get an edge
4392 	 * in the ISR master error bit if we don't clear
4393 	 * all the EIR bits. Otherwise the edge triggered
4394 	 * IIR on i965/g4x wouldn't notice that an interrupt
4395 	 * is still pending. Also some EIR bits can't be
4396 	 * cleared except by handling the underlying error
4397 	 * (or by a GPU reset) so we mask any bit that
4398 	 * remains set.
4399 	 */
4400 	emr = I915_READ16(EMR);
4401 	I915_WRITE16(EMR, 0xffff);
4402 	I915_WRITE16(EMR, emr | *eir_stuck);
4403 }
4404 
4405 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4406 				   u16 eir, u16 eir_stuck)
4407 {
4408 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4409 
4410 	if (eir_stuck)
4411 		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4412 }
4413 
4414 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4415 			       u32 *eir, u32 *eir_stuck)
4416 {
4417 	u32 emr;
4418 
4419 	*eir = I915_READ(EIR);
4420 
4421 	I915_WRITE(EIR, *eir);
4422 
4423 	*eir_stuck = I915_READ(EIR);
4424 	if (*eir_stuck == 0)
4425 		return;
4426 
4427 	/*
4428 	 * Toggle all EMR bits to make sure we get an edge
4429 	 * in the ISR master error bit if we don't clear
4430 	 * all the EIR bits. Otherwise the edge triggered
4431 	 * IIR on i965/g4x wouldn't notice that an interrupt
4432 	 * is still pending. Also some EIR bits can't be
4433 	 * cleared except by handling the underlying error
4434 	 * (or by a GPU reset) so we mask any bit that
4435 	 * remains set.
4436 	 */
4437 	emr = I915_READ(EMR);
4438 	I915_WRITE(EMR, 0xffffffff);
4439 	I915_WRITE(EMR, emr | *eir_stuck);
4440 }
4441 
4442 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4443 				   u32 eir, u32 eir_stuck)
4444 {
4445 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4446 
4447 	if (eir_stuck)
4448 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4449 }
4450 
4451 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4452 {
4453 	struct drm_device *dev = arg;
4454 	struct drm_i915_private *dev_priv = to_i915(dev);
4455 	irqreturn_t ret = IRQ_NONE;
4456 
4457 	if (!intel_irqs_enabled(dev_priv))
4458 		return IRQ_NONE;
4459 
4460 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4461 	disable_rpm_wakeref_asserts(dev_priv);
4462 
4463 	do {
4464 		u32 pipe_stats[I915_MAX_PIPES] = {};
4465 		u16 eir = 0, eir_stuck = 0;
4466 		u16 iir;
4467 
4468 		iir = I915_READ16(IIR);
4469 		if (iir == 0)
4470 			break;
4471 
4472 		ret = IRQ_HANDLED;
4473 
4474 		/* Call regardless, as some status bits might not be
4475 		 * signalled in iir */
4476 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4477 
4478 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4479 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4480 
4481 		I915_WRITE16(IIR, iir);
4482 
4483 		if (iir & I915_USER_INTERRUPT)
4484 			notify_ring(dev_priv->engine[RCS]);
4485 
4486 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4487 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4488 
4489 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4490 	} while (0);
4491 
4492 	enable_rpm_wakeref_asserts(dev_priv);
4493 
4494 	return ret;
4495 }
4496 
4497 static void i915_irq_reset(struct drm_device *dev)
4498 {
4499 	struct drm_i915_private *dev_priv = to_i915(dev);
4500 
4501 	if (I915_HAS_HOTPLUG(dev_priv)) {
4502 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4503 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4504 	}
4505 
4506 	i9xx_pipestat_irq_reset(dev_priv);
4507 
4508 	I915_WRITE(HWSTAM, 0xffffffff);
4509 
4510 	GEN3_IRQ_RESET();
4511 }
4512 
4513 static int i915_irq_postinstall(struct drm_device *dev)
4514 {
4515 	struct drm_i915_private *dev_priv = to_i915(dev);
4516 	u32 enable_mask;
4517 
4518 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4519 			  I915_ERROR_MEMORY_REFRESH));
4520 
4521 	/* Unmask the interrupts that we always want on. */
4522 	dev_priv->irq_mask =
4523 		~(I915_ASLE_INTERRUPT |
4524 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4525 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4526 		  I915_MASTER_ERROR_INTERRUPT);
4527 
4528 	enable_mask =
4529 		I915_ASLE_INTERRUPT |
4530 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4531 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4532 		I915_MASTER_ERROR_INTERRUPT |
4533 		I915_USER_INTERRUPT;
4534 
4535 	if (I915_HAS_HOTPLUG(dev_priv)) {
4536 		/* Enable in IER... */
4537 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4538 		/* and unmask in IMR */
4539 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4540 	}
4541 
4542 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4543 
4544 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4545 	 * just to make the assert_spin_locked check happy. */
4546 	spin_lock_irq(&dev_priv->irq_lock);
4547 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4548 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4549 	spin_unlock_irq(&dev_priv->irq_lock);
4550 
4551 	i915_enable_asle_pipestat(dev_priv);
4552 
4553 	return 0;
4554 }
4555 
4556 static irqreturn_t i915_irq_handler(int irq, void *arg)
4557 {
4558 	struct drm_device *dev = arg;
4559 	struct drm_i915_private *dev_priv = to_i915(dev);
4560 	irqreturn_t ret = IRQ_NONE;
4561 
4562 	if (!intel_irqs_enabled(dev_priv))
4563 		return IRQ_NONE;
4564 
4565 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4566 	disable_rpm_wakeref_asserts(dev_priv);
4567 
4568 	do {
4569 		u32 pipe_stats[I915_MAX_PIPES] = {};
4570 		u32 eir = 0, eir_stuck = 0;
4571 		u32 hotplug_status = 0;
4572 		u32 iir;
4573 
4574 		iir = I915_READ(IIR);
4575 		if (iir == 0)
4576 			break;
4577 
4578 		ret = IRQ_HANDLED;
4579 
4580 		if (I915_HAS_HOTPLUG(dev_priv) &&
4581 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4582 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4583 
4584 		/* Call regardless, as some status bits might not be
4585 		 * signalled in iir */
4586 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4587 
4588 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4589 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4590 
4591 		I915_WRITE(IIR, iir);
4592 
4593 		if (iir & I915_USER_INTERRUPT)
4594 			notify_ring(dev_priv->engine[RCS]);
4595 
4596 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4597 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4598 
4599 		if (hotplug_status)
4600 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4601 
4602 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4603 	} while (0);
4604 
4605 	enable_rpm_wakeref_asserts(dev_priv);
4606 
4607 	return ret;
4608 }
4609 
4610 static void i965_irq_reset(struct drm_device *dev)
4611 {
4612 	struct drm_i915_private *dev_priv = to_i915(dev);
4613 
4614 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4615 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4616 
4617 	i9xx_pipestat_irq_reset(dev_priv);
4618 
4619 	I915_WRITE(HWSTAM, 0xffffffff);
4620 
4621 	GEN3_IRQ_RESET();
4622 }
4623 
4624 static int i965_irq_postinstall(struct drm_device *dev)
4625 {
4626 	struct drm_i915_private *dev_priv = to_i915(dev);
4627 	u32 enable_mask;
4628 	u32 error_mask;
4629 
4630 	/*
4631 	 * Enable some error detection, note the instruction error mask
4632 	 * bit is reserved, so we leave it masked.
4633 	 */
4634 	if (IS_G4X(dev_priv)) {
4635 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4636 			       GM45_ERROR_MEM_PRIV |
4637 			       GM45_ERROR_CP_PRIV |
4638 			       I915_ERROR_MEMORY_REFRESH);
4639 	} else {
4640 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4641 			       I915_ERROR_MEMORY_REFRESH);
4642 	}
4643 	I915_WRITE(EMR, error_mask);
4644 
4645 	/* Unmask the interrupts that we always want on. */
4646 	dev_priv->irq_mask =
4647 		~(I915_ASLE_INTERRUPT |
4648 		  I915_DISPLAY_PORT_INTERRUPT |
4649 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4650 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4651 		  I915_MASTER_ERROR_INTERRUPT);
4652 
4653 	enable_mask =
4654 		I915_ASLE_INTERRUPT |
4655 		I915_DISPLAY_PORT_INTERRUPT |
4656 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4657 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4658 		I915_MASTER_ERROR_INTERRUPT |
4659 		I915_USER_INTERRUPT;
4660 
4661 	if (IS_G4X(dev_priv))
4662 		enable_mask |= I915_BSD_USER_INTERRUPT;
4663 
4664 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4665 
4666 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4667 	 * just to make the assert_spin_locked check happy. */
4668 	spin_lock_irq(&dev_priv->irq_lock);
4669 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4670 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4671 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4672 	spin_unlock_irq(&dev_priv->irq_lock);
4673 
4674 	i915_enable_asle_pipestat(dev_priv);
4675 
4676 	return 0;
4677 }
4678 
4679 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4680 {
4681 	u32 hotplug_en;
4682 
4683 	lockdep_assert_held(&dev_priv->irq_lock);
4684 
4685 	/* Note HDMI and DP share hotplug bits */
4686 	/* enable bits are the same for all generations */
4687 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4688 	/* Programming the CRT detection parameters tends
4689 	   to generate a spurious hotplug event about three
4690 	   seconds later.  So just do it once.
4691 	*/
4692 	if (IS_G4X(dev_priv))
4693 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4694 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4695 
4696 	/* Ignore TV since it's buggy */
4697 	i915_hotplug_interrupt_update_locked(dev_priv,
4698 					     HOTPLUG_INT_EN_MASK |
4699 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4700 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4701 					     hotplug_en);
4702 }
4703 
4704 static irqreturn_t i965_irq_handler(int irq, void *arg)
4705 {
4706 	struct drm_device *dev = arg;
4707 	struct drm_i915_private *dev_priv = to_i915(dev);
4708 	irqreturn_t ret = IRQ_NONE;
4709 
4710 	if (!intel_irqs_enabled(dev_priv))
4711 		return IRQ_NONE;
4712 
4713 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4714 	disable_rpm_wakeref_asserts(dev_priv);
4715 
4716 	do {
4717 		u32 pipe_stats[I915_MAX_PIPES] = {};
4718 		u32 eir = 0, eir_stuck = 0;
4719 		u32 hotplug_status = 0;
4720 		u32 iir;
4721 
4722 		iir = I915_READ(IIR);
4723 		if (iir == 0)
4724 			break;
4725 
4726 		ret = IRQ_HANDLED;
4727 
4728 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4729 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4730 
4731 		/* Call regardless, as some status bits might not be
4732 		 * signalled in iir */
4733 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4734 
4735 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4736 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4737 
4738 		I915_WRITE(IIR, iir);
4739 
4740 		if (iir & I915_USER_INTERRUPT)
4741 			notify_ring(dev_priv->engine[RCS]);
4742 
4743 		if (iir & I915_BSD_USER_INTERRUPT)
4744 			notify_ring(dev_priv->engine[VCS]);
4745 
4746 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4747 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4748 
4749 		if (hotplug_status)
4750 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4751 
4752 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4753 	} while (0);
4754 
4755 	enable_rpm_wakeref_asserts(dev_priv);
4756 
4757 	return ret;
4758 }
4759 
4760 /**
4761  * intel_irq_init - initializes irq support
4762  * @dev_priv: i915 device instance
4763  *
4764  * This function initializes all the irq support including work items, timers
4765  * and all the vtables. It does not setup the interrupt itself though.
4766  */
4767 void intel_irq_init(struct drm_i915_private *dev_priv)
4768 {
4769 	struct drm_device *dev = &dev_priv->drm;
4770 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4771 	int i;
4772 
4773 	intel_hpd_init_work(dev_priv);
4774 
4775 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4776 
4777 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4778 	for (i = 0; i < MAX_L3_SLICES; ++i)
4779 		dev_priv->l3_parity.remap_info[i] = NULL;
4780 
4781 	if (HAS_GUC_SCHED(dev_priv))
4782 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4783 
4784 	/* Let's track the enabled rps events */
4785 	if (IS_VALLEYVIEW(dev_priv))
4786 		/* WaGsvRC0ResidencyMethod:vlv */
4787 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4788 	else
4789 		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4790 					   GEN6_PM_RP_DOWN_THRESHOLD |
4791 					   GEN6_PM_RP_DOWN_TIMEOUT);
4792 
4793 	rps->pm_intrmsk_mbz = 0;
4794 
4795 	/*
4796 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4797 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4798 	 *
4799 	 * TODO: verify if this can be reproduced on VLV,CHV.
4800 	 */
4801 	if (INTEL_GEN(dev_priv) <= 7)
4802 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4803 
4804 	if (INTEL_GEN(dev_priv) >= 8)
4805 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4806 
4807 	if (IS_GEN2(dev_priv)) {
4808 		/* Gen2 doesn't have a hardware frame counter */
4809 		dev->max_vblank_count = 0;
4810 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4811 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4812 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4813 	} else {
4814 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4815 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4816 	}
4817 
4818 	/*
4819 	 * Opt out of the vblank disable timer on everything except gen2.
4820 	 * Gen2 doesn't have a hardware frame counter and so depends on
4821 	 * vblank interrupts to produce sane vblank seuquence numbers.
4822 	 */
4823 	if (!IS_GEN2(dev_priv))
4824 		dev->vblank_disable_immediate = true;
4825 
4826 	/* Most platforms treat the display irq block as an always-on
4827 	 * power domain. vlv/chv can disable it at runtime and need
4828 	 * special care to avoid writing any of the display block registers
4829 	 * outside of the power domain. We defer setting up the display irqs
4830 	 * in this case to the runtime pm.
4831 	 */
4832 	dev_priv->display_irqs_enabled = true;
4833 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4834 		dev_priv->display_irqs_enabled = false;
4835 
4836 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4837 
4838 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4839 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4840 
4841 	if (IS_CHERRYVIEW(dev_priv)) {
4842 		dev->driver->irq_handler = cherryview_irq_handler;
4843 		dev->driver->irq_preinstall = cherryview_irq_reset;
4844 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4845 		dev->driver->irq_uninstall = cherryview_irq_reset;
4846 		dev->driver->enable_vblank = i965_enable_vblank;
4847 		dev->driver->disable_vblank = i965_disable_vblank;
4848 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4849 	} else if (IS_VALLEYVIEW(dev_priv)) {
4850 		dev->driver->irq_handler = valleyview_irq_handler;
4851 		dev->driver->irq_preinstall = valleyview_irq_reset;
4852 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4853 		dev->driver->irq_uninstall = valleyview_irq_reset;
4854 		dev->driver->enable_vblank = i965_enable_vblank;
4855 		dev->driver->disable_vblank = i965_disable_vblank;
4856 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4857 	} else if (INTEL_GEN(dev_priv) >= 11) {
4858 		dev->driver->irq_handler = gen11_irq_handler;
4859 		dev->driver->irq_preinstall = gen11_irq_reset;
4860 		dev->driver->irq_postinstall = gen11_irq_postinstall;
4861 		dev->driver->irq_uninstall = gen11_irq_reset;
4862 		dev->driver->enable_vblank = gen8_enable_vblank;
4863 		dev->driver->disable_vblank = gen8_disable_vblank;
4864 		dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4865 	} else if (INTEL_GEN(dev_priv) >= 8) {
4866 		dev->driver->irq_handler = gen8_irq_handler;
4867 		dev->driver->irq_preinstall = gen8_irq_reset;
4868 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4869 		dev->driver->irq_uninstall = gen8_irq_reset;
4870 		dev->driver->enable_vblank = gen8_enable_vblank;
4871 		dev->driver->disable_vblank = gen8_disable_vblank;
4872 		if (IS_GEN9_LP(dev_priv))
4873 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4874 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4875 			 HAS_PCH_CNP(dev_priv))
4876 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4877 		else
4878 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4879 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4880 		dev->driver->irq_handler = ironlake_irq_handler;
4881 		dev->driver->irq_preinstall = ironlake_irq_reset;
4882 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4883 		dev->driver->irq_uninstall = ironlake_irq_reset;
4884 		dev->driver->enable_vblank = ironlake_enable_vblank;
4885 		dev->driver->disable_vblank = ironlake_disable_vblank;
4886 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4887 	} else {
4888 		if (IS_GEN2(dev_priv)) {
4889 			dev->driver->irq_preinstall = i8xx_irq_reset;
4890 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4891 			dev->driver->irq_handler = i8xx_irq_handler;
4892 			dev->driver->irq_uninstall = i8xx_irq_reset;
4893 			dev->driver->enable_vblank = i8xx_enable_vblank;
4894 			dev->driver->disable_vblank = i8xx_disable_vblank;
4895 		} else if (IS_GEN3(dev_priv)) {
4896 			dev->driver->irq_preinstall = i915_irq_reset;
4897 			dev->driver->irq_postinstall = i915_irq_postinstall;
4898 			dev->driver->irq_uninstall = i915_irq_reset;
4899 			dev->driver->irq_handler = i915_irq_handler;
4900 			dev->driver->enable_vblank = i8xx_enable_vblank;
4901 			dev->driver->disable_vblank = i8xx_disable_vblank;
4902 		} else {
4903 			dev->driver->irq_preinstall = i965_irq_reset;
4904 			dev->driver->irq_postinstall = i965_irq_postinstall;
4905 			dev->driver->irq_uninstall = i965_irq_reset;
4906 			dev->driver->irq_handler = i965_irq_handler;
4907 			dev->driver->enable_vblank = i965_enable_vblank;
4908 			dev->driver->disable_vblank = i965_disable_vblank;
4909 		}
4910 		if (I915_HAS_HOTPLUG(dev_priv))
4911 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4912 	}
4913 }
4914 
4915 /**
4916  * intel_irq_fini - deinitializes IRQ support
4917  * @i915: i915 device instance
4918  *
4919  * This function deinitializes all the IRQ support.
4920  */
4921 void intel_irq_fini(struct drm_i915_private *i915)
4922 {
4923 	int i;
4924 
4925 	for (i = 0; i < MAX_L3_SLICES; ++i)
4926 		kfree(i915->l3_parity.remap_info[i]);
4927 }
4928 
4929 /**
4930  * intel_irq_install - enables the hardware interrupt
4931  * @dev_priv: i915 device instance
4932  *
4933  * This function enables the hardware interrupt handling, but leaves the hotplug
4934  * handling still disabled. It is called after intel_irq_init().
4935  *
4936  * In the driver load and resume code we need working interrupts in a few places
4937  * but don't want to deal with the hassle of concurrent probe and hotplug
4938  * workers. Hence the split into this two-stage approach.
4939  */
4940 int intel_irq_install(struct drm_i915_private *dev_priv)
4941 {
4942 	/*
4943 	 * We enable some interrupt sources in our postinstall hooks, so mark
4944 	 * interrupts as enabled _before_ actually enabling them to avoid
4945 	 * special cases in our ordering checks.
4946 	 */
4947 	dev_priv->runtime_pm.irqs_enabled = true;
4948 
4949 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4950 }
4951 
4952 /**
4953  * intel_irq_uninstall - finilizes all irq handling
4954  * @dev_priv: i915 device instance
4955  *
4956  * This stops interrupt and hotplug handling and unregisters and frees all
4957  * resources acquired in the init functions.
4958  */
4959 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4960 {
4961 	drm_irq_uninstall(&dev_priv->drm);
4962 	intel_hpd_cancel_work(dev_priv);
4963 	dev_priv->runtime_pm.irqs_enabled = false;
4964 }
4965 
4966 /**
4967  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4968  * @dev_priv: i915 device instance
4969  *
4970  * This function is used to disable interrupts at runtime, both in the runtime
4971  * pm and the system suspend/resume code.
4972  */
4973 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4974 {
4975 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4976 	dev_priv->runtime_pm.irqs_enabled = false;
4977 	synchronize_irq(dev_priv->drm.irq);
4978 }
4979 
4980 /**
4981  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4982  * @dev_priv: i915 device instance
4983  *
4984  * This function is used to enable interrupts at runtime, both in the runtime
4985  * pm and the system suspend/resume code.
4986  */
4987 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4988 {
4989 	dev_priv->runtime_pm.irqs_enabled = true;
4990 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4991 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4992 }
4993