xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision ddc141e5)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN3_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 #define GEN2_IRQ_RESET(type) do { \
140 	I915_WRITE16(type##IMR, 0xffff); \
141 	POSTING_READ16(type##IMR); \
142 	I915_WRITE16(type##IER, 0); \
143 	I915_WRITE16(type##IIR, 0xffff); \
144 	POSTING_READ16(type##IIR); \
145 	I915_WRITE16(type##IIR, 0xffff); \
146 	POSTING_READ16(type##IIR); \
147 } while (0)
148 
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153 				    i915_reg_t reg)
154 {
155 	u32 val = I915_READ(reg);
156 
157 	if (val == 0)
158 		return;
159 
160 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161 	     i915_mmio_reg_offset(reg), val);
162 	I915_WRITE(reg, 0xffffffff);
163 	POSTING_READ(reg);
164 	I915_WRITE(reg, 0xffffffff);
165 	POSTING_READ(reg);
166 }
167 
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 				    i915_reg_t reg)
170 {
171 	u16 val = I915_READ16(reg);
172 
173 	if (val == 0)
174 		return;
175 
176 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 	     i915_mmio_reg_offset(reg), val);
178 	I915_WRITE16(reg, 0xffff);
179 	POSTING_READ16(reg);
180 	I915_WRITE16(reg, 0xffff);
181 	POSTING_READ16(reg);
182 }
183 
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188 	POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190 
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193 	I915_WRITE(type##IER, (ier_val)); \
194 	I915_WRITE(type##IMR, (imr_val)); \
195 	POSTING_READ(type##IMR); \
196 } while (0)
197 
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200 	I915_WRITE16(type##IER, (ier_val)); \
201 	I915_WRITE16(type##IMR, (imr_val)); \
202 	POSTING_READ16(type##IMR); \
203 } while (0)
204 
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207 
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211 				     uint32_t mask,
212 				     uint32_t bits)
213 {
214 	uint32_t val;
215 
216 	lockdep_assert_held(&dev_priv->irq_lock);
217 	WARN_ON(bits & ~mask);
218 
219 	val = I915_READ(PORT_HOTPLUG_EN);
220 	val &= ~mask;
221 	val |= bits;
222 	I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224 
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238 				   uint32_t mask,
239 				   uint32_t bits)
240 {
241 	spin_lock_irq(&dev_priv->irq_lock);
242 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243 	spin_unlock_irq(&dev_priv->irq_lock);
244 }
245 
246 /**
247  * ilk_update_display_irq - update DEIMR
248  * @dev_priv: driver private
249  * @interrupt_mask: mask of interrupt bits to update
250  * @enabled_irq_mask: mask of interrupt bits to enable
251  */
252 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
253 			    uint32_t interrupt_mask,
254 			    uint32_t enabled_irq_mask)
255 {
256 	uint32_t new_val;
257 
258 	lockdep_assert_held(&dev_priv->irq_lock);
259 
260 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
261 
262 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263 		return;
264 
265 	new_val = dev_priv->irq_mask;
266 	new_val &= ~interrupt_mask;
267 	new_val |= (~enabled_irq_mask & interrupt_mask);
268 
269 	if (new_val != dev_priv->irq_mask) {
270 		dev_priv->irq_mask = new_val;
271 		I915_WRITE(DEIMR, dev_priv->irq_mask);
272 		POSTING_READ(DEIMR);
273 	}
274 }
275 
276 /**
277  * ilk_update_gt_irq - update GTIMR
278  * @dev_priv: driver private
279  * @interrupt_mask: mask of interrupt bits to update
280  * @enabled_irq_mask: mask of interrupt bits to enable
281  */
282 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
283 			      uint32_t interrupt_mask,
284 			      uint32_t enabled_irq_mask)
285 {
286 	lockdep_assert_held(&dev_priv->irq_lock);
287 
288 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
289 
290 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
291 		return;
292 
293 	dev_priv->gt_irq_mask &= ~interrupt_mask;
294 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
295 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
296 }
297 
298 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
299 {
300 	ilk_update_gt_irq(dev_priv, mask, mask);
301 	POSTING_READ_FW(GTIMR);
302 }
303 
304 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
305 {
306 	ilk_update_gt_irq(dev_priv, mask, 0);
307 }
308 
309 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
310 {
311 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
312 }
313 
314 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
315 {
316 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
317 }
318 
319 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
320 {
321 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
322 }
323 
324 /**
325  * snb_update_pm_irq - update GEN6_PMIMR
326  * @dev_priv: driver private
327  * @interrupt_mask: mask of interrupt bits to update
328  * @enabled_irq_mask: mask of interrupt bits to enable
329  */
330 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
331 			      uint32_t interrupt_mask,
332 			      uint32_t enabled_irq_mask)
333 {
334 	uint32_t new_val;
335 
336 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
337 
338 	lockdep_assert_held(&dev_priv->irq_lock);
339 
340 	new_val = dev_priv->pm_imr;
341 	new_val &= ~interrupt_mask;
342 	new_val |= (~enabled_irq_mask & interrupt_mask);
343 
344 	if (new_val != dev_priv->pm_imr) {
345 		dev_priv->pm_imr = new_val;
346 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
347 		POSTING_READ(gen6_pm_imr(dev_priv));
348 	}
349 }
350 
351 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
352 {
353 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354 		return;
355 
356 	snb_update_pm_irq(dev_priv, mask, mask);
357 }
358 
359 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
360 {
361 	snb_update_pm_irq(dev_priv, mask, 0);
362 }
363 
364 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
365 {
366 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
367 		return;
368 
369 	__gen6_mask_pm_irq(dev_priv, mask);
370 }
371 
372 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
373 {
374 	i915_reg_t reg = gen6_pm_iir(dev_priv);
375 
376 	lockdep_assert_held(&dev_priv->irq_lock);
377 
378 	I915_WRITE(reg, reset_mask);
379 	I915_WRITE(reg, reset_mask);
380 	POSTING_READ(reg);
381 }
382 
383 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
384 {
385 	lockdep_assert_held(&dev_priv->irq_lock);
386 
387 	dev_priv->pm_ier |= enable_mask;
388 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
389 	gen6_unmask_pm_irq(dev_priv, enable_mask);
390 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
391 }
392 
393 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
394 {
395 	lockdep_assert_held(&dev_priv->irq_lock);
396 
397 	dev_priv->pm_ier &= ~disable_mask;
398 	__gen6_mask_pm_irq(dev_priv, disable_mask);
399 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
400 	/* though a barrier is missing here, but don't really need a one */
401 }
402 
403 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
404 {
405 	spin_lock_irq(&dev_priv->irq_lock);
406 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
407 	dev_priv->gt_pm.rps.pm_iir = 0;
408 	spin_unlock_irq(&dev_priv->irq_lock);
409 }
410 
411 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
412 {
413 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
414 
415 	if (READ_ONCE(rps->interrupts_enabled))
416 		return;
417 
418 	spin_lock_irq(&dev_priv->irq_lock);
419 	WARN_ON_ONCE(rps->pm_iir);
420 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
421 	rps->interrupts_enabled = true;
422 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
423 
424 	spin_unlock_irq(&dev_priv->irq_lock);
425 }
426 
427 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
428 {
429 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
430 
431 	if (!READ_ONCE(rps->interrupts_enabled))
432 		return;
433 
434 	spin_lock_irq(&dev_priv->irq_lock);
435 	rps->interrupts_enabled = false;
436 
437 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
438 
439 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
440 
441 	spin_unlock_irq(&dev_priv->irq_lock);
442 	synchronize_irq(dev_priv->drm.irq);
443 
444 	/* Now that we will not be generating any more work, flush any
445 	 * outstanding tasks. As we are called on the RPS idle path,
446 	 * we will reset the GPU to minimum frequencies, so the current
447 	 * state of the worker can be discarded.
448 	 */
449 	cancel_work_sync(&rps->work);
450 	gen6_reset_rps_interrupts(dev_priv);
451 }
452 
453 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
454 {
455 	spin_lock_irq(&dev_priv->irq_lock);
456 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
457 	spin_unlock_irq(&dev_priv->irq_lock);
458 }
459 
460 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
461 {
462 	spin_lock_irq(&dev_priv->irq_lock);
463 	if (!dev_priv->guc.interrupts_enabled) {
464 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
465 				       dev_priv->pm_guc_events);
466 		dev_priv->guc.interrupts_enabled = true;
467 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
468 	}
469 	spin_unlock_irq(&dev_priv->irq_lock);
470 }
471 
472 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
473 {
474 	spin_lock_irq(&dev_priv->irq_lock);
475 	dev_priv->guc.interrupts_enabled = false;
476 
477 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
478 
479 	spin_unlock_irq(&dev_priv->irq_lock);
480 	synchronize_irq(dev_priv->drm.irq);
481 
482 	gen9_reset_guc_interrupts(dev_priv);
483 }
484 
485 /**
486  * bdw_update_port_irq - update DE port interrupt
487  * @dev_priv: driver private
488  * @interrupt_mask: mask of interrupt bits to update
489  * @enabled_irq_mask: mask of interrupt bits to enable
490  */
491 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
492 				uint32_t interrupt_mask,
493 				uint32_t enabled_irq_mask)
494 {
495 	uint32_t new_val;
496 	uint32_t old_val;
497 
498 	lockdep_assert_held(&dev_priv->irq_lock);
499 
500 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
501 
502 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
503 		return;
504 
505 	old_val = I915_READ(GEN8_DE_PORT_IMR);
506 
507 	new_val = old_val;
508 	new_val &= ~interrupt_mask;
509 	new_val |= (~enabled_irq_mask & interrupt_mask);
510 
511 	if (new_val != old_val) {
512 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
513 		POSTING_READ(GEN8_DE_PORT_IMR);
514 	}
515 }
516 
517 /**
518  * bdw_update_pipe_irq - update DE pipe interrupt
519  * @dev_priv: driver private
520  * @pipe: pipe whose interrupt to update
521  * @interrupt_mask: mask of interrupt bits to update
522  * @enabled_irq_mask: mask of interrupt bits to enable
523  */
524 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
525 			 enum pipe pipe,
526 			 uint32_t interrupt_mask,
527 			 uint32_t enabled_irq_mask)
528 {
529 	uint32_t new_val;
530 
531 	lockdep_assert_held(&dev_priv->irq_lock);
532 
533 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
534 
535 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 		return;
537 
538 	new_val = dev_priv->de_irq_mask[pipe];
539 	new_val &= ~interrupt_mask;
540 	new_val |= (~enabled_irq_mask & interrupt_mask);
541 
542 	if (new_val != dev_priv->de_irq_mask[pipe]) {
543 		dev_priv->de_irq_mask[pipe] = new_val;
544 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
545 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
546 	}
547 }
548 
549 /**
550  * ibx_display_interrupt_update - update SDEIMR
551  * @dev_priv: driver private
552  * @interrupt_mask: mask of interrupt bits to update
553  * @enabled_irq_mask: mask of interrupt bits to enable
554  */
555 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
556 				  uint32_t interrupt_mask,
557 				  uint32_t enabled_irq_mask)
558 {
559 	uint32_t sdeimr = I915_READ(SDEIMR);
560 	sdeimr &= ~interrupt_mask;
561 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
562 
563 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
564 
565 	lockdep_assert_held(&dev_priv->irq_lock);
566 
567 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
568 		return;
569 
570 	I915_WRITE(SDEIMR, sdeimr);
571 	POSTING_READ(SDEIMR);
572 }
573 
574 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
575 			      enum pipe pipe)
576 {
577 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
578 	u32 enable_mask = status_mask << 16;
579 
580 	lockdep_assert_held(&dev_priv->irq_lock);
581 
582 	if (INTEL_GEN(dev_priv) < 5)
583 		goto out;
584 
585 	/*
586 	 * On pipe A we don't support the PSR interrupt yet,
587 	 * on pipe B and C the same bit MBZ.
588 	 */
589 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
590 		return 0;
591 	/*
592 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
593 	 * A the same bit is for perf counters which we don't use either.
594 	 */
595 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
596 		return 0;
597 
598 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
599 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
600 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
601 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
602 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
603 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
604 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
605 
606 out:
607 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
608 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
609 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
610 		  pipe_name(pipe), enable_mask, status_mask);
611 
612 	return enable_mask;
613 }
614 
615 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
616 			  enum pipe pipe, u32 status_mask)
617 {
618 	i915_reg_t reg = PIPESTAT(pipe);
619 	u32 enable_mask;
620 
621 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
622 		  "pipe %c: status_mask=0x%x\n",
623 		  pipe_name(pipe), status_mask);
624 
625 	lockdep_assert_held(&dev_priv->irq_lock);
626 	WARN_ON(!intel_irqs_enabled(dev_priv));
627 
628 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
629 		return;
630 
631 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
632 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
633 
634 	I915_WRITE(reg, enable_mask | status_mask);
635 	POSTING_READ(reg);
636 }
637 
638 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
639 			   enum pipe pipe, u32 status_mask)
640 {
641 	i915_reg_t reg = PIPESTAT(pipe);
642 	u32 enable_mask;
643 
644 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
645 		  "pipe %c: status_mask=0x%x\n",
646 		  pipe_name(pipe), status_mask);
647 
648 	lockdep_assert_held(&dev_priv->irq_lock);
649 	WARN_ON(!intel_irqs_enabled(dev_priv));
650 
651 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
652 		return;
653 
654 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
655 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
656 
657 	I915_WRITE(reg, enable_mask | status_mask);
658 	POSTING_READ(reg);
659 }
660 
661 /**
662  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
663  * @dev_priv: i915 device private
664  */
665 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
666 {
667 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
668 		return;
669 
670 	spin_lock_irq(&dev_priv->irq_lock);
671 
672 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
673 	if (INTEL_GEN(dev_priv) >= 4)
674 		i915_enable_pipestat(dev_priv, PIPE_A,
675 				     PIPE_LEGACY_BLC_EVENT_STATUS);
676 
677 	spin_unlock_irq(&dev_priv->irq_lock);
678 }
679 
680 /*
681  * This timing diagram depicts the video signal in and
682  * around the vertical blanking period.
683  *
684  * Assumptions about the fictitious mode used in this example:
685  *  vblank_start >= 3
686  *  vsync_start = vblank_start + 1
687  *  vsync_end = vblank_start + 2
688  *  vtotal = vblank_start + 3
689  *
690  *           start of vblank:
691  *           latch double buffered registers
692  *           increment frame counter (ctg+)
693  *           generate start of vblank interrupt (gen4+)
694  *           |
695  *           |          frame start:
696  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
697  *           |          may be shifted forward 1-3 extra lines via PIPECONF
698  *           |          |
699  *           |          |  start of vsync:
700  *           |          |  generate vsync interrupt
701  *           |          |  |
702  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
703  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
704  * ----va---> <-----------------vb--------------------> <--------va-------------
705  *       |          |       <----vs----->                     |
706  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
707  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
708  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
709  *       |          |                                         |
710  *       last visible pixel                                   first visible pixel
711  *                  |                                         increment frame counter (gen3/4)
712  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
713  *
714  * x  = horizontal active
715  * _  = horizontal blanking
716  * hs = horizontal sync
717  * va = vertical active
718  * vb = vertical blanking
719  * vs = vertical sync
720  * vbs = vblank_start (number)
721  *
722  * Summary:
723  * - most events happen at the start of horizontal sync
724  * - frame start happens at the start of horizontal blank, 1-4 lines
725  *   (depending on PIPECONF settings) after the start of vblank
726  * - gen3/4 pixel and frame counter are synchronized with the start
727  *   of horizontal active on the first line of vertical active
728  */
729 
730 /* Called from drm generic code, passed a 'crtc', which
731  * we use as a pipe index
732  */
733 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 	struct drm_i915_private *dev_priv = to_i915(dev);
736 	i915_reg_t high_frame, low_frame;
737 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
738 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
739 	unsigned long irqflags;
740 
741 	htotal = mode->crtc_htotal;
742 	hsync_start = mode->crtc_hsync_start;
743 	vbl_start = mode->crtc_vblank_start;
744 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
746 
747 	/* Convert to pixel count */
748 	vbl_start *= htotal;
749 
750 	/* Start of vblank event occurs at start of hsync */
751 	vbl_start -= htotal - hsync_start;
752 
753 	high_frame = PIPEFRAME(pipe);
754 	low_frame = PIPEFRAMEPIXEL(pipe);
755 
756 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
757 
758 	/*
759 	 * High & low register fields aren't synchronized, so make sure
760 	 * we get a low value that's stable across two reads of the high
761 	 * register.
762 	 */
763 	do {
764 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
765 		low   = I915_READ_FW(low_frame);
766 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
767 	} while (high1 != high2);
768 
769 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770 
771 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
772 	pixel = low & PIPE_PIXEL_MASK;
773 	low >>= PIPE_FRAME_LOW_SHIFT;
774 
775 	/*
776 	 * The frame counter increments at beginning of active.
777 	 * Cook up a vblank counter by also checking the pixel
778 	 * counter against vblank start.
779 	 */
780 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
781 }
782 
783 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
784 {
785 	struct drm_i915_private *dev_priv = to_i915(dev);
786 
787 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
788 }
789 
790 /*
791  * On certain encoders on certain platforms, pipe
792  * scanline register will not work to get the scanline,
793  * since the timings are driven from the PORT or issues
794  * with scanline register updates.
795  * This function will use Framestamp and current
796  * timestamp registers to calculate the scanline.
797  */
798 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
799 {
800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
801 	struct drm_vblank_crtc *vblank =
802 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
803 	const struct drm_display_mode *mode = &vblank->hwmode;
804 	u32 vblank_start = mode->crtc_vblank_start;
805 	u32 vtotal = mode->crtc_vtotal;
806 	u32 htotal = mode->crtc_htotal;
807 	u32 clock = mode->crtc_clock;
808 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
809 
810 	/*
811 	 * To avoid the race condition where we might cross into the
812 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
813 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
814 	 * during the same frame.
815 	 */
816 	do {
817 		/*
818 		 * This field provides read back of the display
819 		 * pipe frame time stamp. The time stamp value
820 		 * is sampled at every start of vertical blank.
821 		 */
822 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
823 
824 		/*
825 		 * The TIMESTAMP_CTR register has the current
826 		 * time stamp value.
827 		 */
828 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
829 
830 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
831 	} while (scan_post_time != scan_prev_time);
832 
833 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
834 					clock), 1000 * htotal);
835 	scanline = min(scanline, vtotal - 1);
836 	scanline = (scanline + vblank_start) % vtotal;
837 
838 	return scanline;
839 }
840 
841 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
842 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
843 {
844 	struct drm_device *dev = crtc->base.dev;
845 	struct drm_i915_private *dev_priv = to_i915(dev);
846 	const struct drm_display_mode *mode;
847 	struct drm_vblank_crtc *vblank;
848 	enum pipe pipe = crtc->pipe;
849 	int position, vtotal;
850 
851 	if (!crtc->active)
852 		return -1;
853 
854 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
855 	mode = &vblank->hwmode;
856 
857 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
858 		return __intel_get_crtc_scanline_from_timestamp(crtc);
859 
860 	vtotal = mode->crtc_vtotal;
861 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
862 		vtotal /= 2;
863 
864 	if (IS_GEN2(dev_priv))
865 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
866 	else
867 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
868 
869 	/*
870 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
871 	 * read it just before the start of vblank.  So try it again
872 	 * so we don't accidentally end up spanning a vblank frame
873 	 * increment, causing the pipe_update_end() code to squak at us.
874 	 *
875 	 * The nature of this problem means we can't simply check the ISR
876 	 * bit and return the vblank start value; nor can we use the scanline
877 	 * debug register in the transcoder as it appears to have the same
878 	 * problem.  We may need to extend this to include other platforms,
879 	 * but so far testing only shows the problem on HSW.
880 	 */
881 	if (HAS_DDI(dev_priv) && !position) {
882 		int i, temp;
883 
884 		for (i = 0; i < 100; i++) {
885 			udelay(1);
886 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
887 			if (temp != position) {
888 				position = temp;
889 				break;
890 			}
891 		}
892 	}
893 
894 	/*
895 	 * See update_scanline_offset() for the details on the
896 	 * scanline_offset adjustment.
897 	 */
898 	return (position + crtc->scanline_offset) % vtotal;
899 }
900 
901 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
902 				     bool in_vblank_irq, int *vpos, int *hpos,
903 				     ktime_t *stime, ktime_t *etime,
904 				     const struct drm_display_mode *mode)
905 {
906 	struct drm_i915_private *dev_priv = to_i915(dev);
907 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
908 								pipe);
909 	int position;
910 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
911 	unsigned long irqflags;
912 
913 	if (WARN_ON(!mode->crtc_clock)) {
914 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
915 				 "pipe %c\n", pipe_name(pipe));
916 		return false;
917 	}
918 
919 	htotal = mode->crtc_htotal;
920 	hsync_start = mode->crtc_hsync_start;
921 	vtotal = mode->crtc_vtotal;
922 	vbl_start = mode->crtc_vblank_start;
923 	vbl_end = mode->crtc_vblank_end;
924 
925 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
926 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
927 		vbl_end /= 2;
928 		vtotal /= 2;
929 	}
930 
931 	/*
932 	 * Lock uncore.lock, as we will do multiple timing critical raw
933 	 * register reads, potentially with preemption disabled, so the
934 	 * following code must not block on uncore.lock.
935 	 */
936 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
937 
938 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
939 
940 	/* Get optional system timestamp before query. */
941 	if (stime)
942 		*stime = ktime_get();
943 
944 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
945 		/* No obvious pixelcount register. Only query vertical
946 		 * scanout position from Display scan line register.
947 		 */
948 		position = __intel_get_crtc_scanline(intel_crtc);
949 	} else {
950 		/* Have access to pixelcount since start of frame.
951 		 * We can split this into vertical and horizontal
952 		 * scanout position.
953 		 */
954 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
955 
956 		/* convert to pixel counts */
957 		vbl_start *= htotal;
958 		vbl_end *= htotal;
959 		vtotal *= htotal;
960 
961 		/*
962 		 * In interlaced modes, the pixel counter counts all pixels,
963 		 * so one field will have htotal more pixels. In order to avoid
964 		 * the reported position from jumping backwards when the pixel
965 		 * counter is beyond the length of the shorter field, just
966 		 * clamp the position the length of the shorter field. This
967 		 * matches how the scanline counter based position works since
968 		 * the scanline counter doesn't count the two half lines.
969 		 */
970 		if (position >= vtotal)
971 			position = vtotal - 1;
972 
973 		/*
974 		 * Start of vblank interrupt is triggered at start of hsync,
975 		 * just prior to the first active line of vblank. However we
976 		 * consider lines to start at the leading edge of horizontal
977 		 * active. So, should we get here before we've crossed into
978 		 * the horizontal active of the first line in vblank, we would
979 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
980 		 * always add htotal-hsync_start to the current pixel position.
981 		 */
982 		position = (position + htotal - hsync_start) % vtotal;
983 	}
984 
985 	/* Get optional system timestamp after query. */
986 	if (etime)
987 		*etime = ktime_get();
988 
989 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
990 
991 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
992 
993 	/*
994 	 * While in vblank, position will be negative
995 	 * counting up towards 0 at vbl_end. And outside
996 	 * vblank, position will be positive counting
997 	 * up since vbl_end.
998 	 */
999 	if (position >= vbl_start)
1000 		position -= vbl_end;
1001 	else
1002 		position += vtotal - vbl_end;
1003 
1004 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1005 		*vpos = position;
1006 		*hpos = 0;
1007 	} else {
1008 		*vpos = position / htotal;
1009 		*hpos = position - (*vpos * htotal);
1010 	}
1011 
1012 	return true;
1013 }
1014 
1015 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1016 {
1017 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1018 	unsigned long irqflags;
1019 	int position;
1020 
1021 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1022 	position = __intel_get_crtc_scanline(crtc);
1023 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1024 
1025 	return position;
1026 }
1027 
1028 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1029 {
1030 	u32 busy_up, busy_down, max_avg, min_avg;
1031 	u8 new_delay;
1032 
1033 	spin_lock(&mchdev_lock);
1034 
1035 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1036 
1037 	new_delay = dev_priv->ips.cur_delay;
1038 
1039 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1040 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1041 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1042 	max_avg = I915_READ(RCBMAXAVG);
1043 	min_avg = I915_READ(RCBMINAVG);
1044 
1045 	/* Handle RCS change request from hw */
1046 	if (busy_up > max_avg) {
1047 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1048 			new_delay = dev_priv->ips.cur_delay - 1;
1049 		if (new_delay < dev_priv->ips.max_delay)
1050 			new_delay = dev_priv->ips.max_delay;
1051 	} else if (busy_down < min_avg) {
1052 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1053 			new_delay = dev_priv->ips.cur_delay + 1;
1054 		if (new_delay > dev_priv->ips.min_delay)
1055 			new_delay = dev_priv->ips.min_delay;
1056 	}
1057 
1058 	if (ironlake_set_drps(dev_priv, new_delay))
1059 		dev_priv->ips.cur_delay = new_delay;
1060 
1061 	spin_unlock(&mchdev_lock);
1062 
1063 	return;
1064 }
1065 
1066 static void notify_ring(struct intel_engine_cs *engine)
1067 {
1068 	struct drm_i915_gem_request *rq = NULL;
1069 	struct intel_wait *wait;
1070 
1071 	if (!engine->breadcrumbs.irq_armed)
1072 		return;
1073 
1074 	atomic_inc(&engine->irq_count);
1075 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1076 
1077 	spin_lock(&engine->breadcrumbs.irq_lock);
1078 	wait = engine->breadcrumbs.irq_wait;
1079 	if (wait) {
1080 		bool wakeup = engine->irq_seqno_barrier;
1081 
1082 		/* We use a callback from the dma-fence to submit
1083 		 * requests after waiting on our own requests. To
1084 		 * ensure minimum delay in queuing the next request to
1085 		 * hardware, signal the fence now rather than wait for
1086 		 * the signaler to be woken up. We still wake up the
1087 		 * waiter in order to handle the irq-seqno coherency
1088 		 * issues (we may receive the interrupt before the
1089 		 * seqno is written, see __i915_request_irq_complete())
1090 		 * and to handle coalescing of multiple seqno updates
1091 		 * and many waiters.
1092 		 */
1093 		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1094 				      wait->seqno)) {
1095 			struct drm_i915_gem_request *waiter = wait->request;
1096 
1097 			wakeup = true;
1098 			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1099 				      &waiter->fence.flags) &&
1100 			    intel_wait_check_request(wait, waiter))
1101 				rq = i915_gem_request_get(waiter);
1102 		}
1103 
1104 		if (wakeup)
1105 			wake_up_process(wait->tsk);
1106 	} else {
1107 		if (engine->breadcrumbs.irq_armed)
1108 			__intel_engine_disarm_breadcrumbs(engine);
1109 	}
1110 	spin_unlock(&engine->breadcrumbs.irq_lock);
1111 
1112 	if (rq) {
1113 		dma_fence_signal(&rq->fence);
1114 		i915_gem_request_put(rq);
1115 	}
1116 
1117 	trace_intel_engine_notify(engine, wait);
1118 }
1119 
1120 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1121 			struct intel_rps_ei *ei)
1122 {
1123 	ei->ktime = ktime_get_raw();
1124 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1125 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1126 }
1127 
1128 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1129 {
1130 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1131 }
1132 
1133 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1134 {
1135 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1136 	const struct intel_rps_ei *prev = &rps->ei;
1137 	struct intel_rps_ei now;
1138 	u32 events = 0;
1139 
1140 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1141 		return 0;
1142 
1143 	vlv_c0_read(dev_priv, &now);
1144 
1145 	if (prev->ktime) {
1146 		u64 time, c0;
1147 		u32 render, media;
1148 
1149 		time = ktime_us_delta(now.ktime, prev->ktime);
1150 
1151 		time *= dev_priv->czclk_freq;
1152 
1153 		/* Workload can be split between render + media,
1154 		 * e.g. SwapBuffers being blitted in X after being rendered in
1155 		 * mesa. To account for this we need to combine both engines
1156 		 * into our activity counter.
1157 		 */
1158 		render = now.render_c0 - prev->render_c0;
1159 		media = now.media_c0 - prev->media_c0;
1160 		c0 = max(render, media);
1161 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1162 
1163 		if (c0 > time * rps->up_threshold)
1164 			events = GEN6_PM_RP_UP_THRESHOLD;
1165 		else if (c0 < time * rps->down_threshold)
1166 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1167 	}
1168 
1169 	rps->ei = now;
1170 	return events;
1171 }
1172 
1173 static void gen6_pm_rps_work(struct work_struct *work)
1174 {
1175 	struct drm_i915_private *dev_priv =
1176 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1177 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1178 	bool client_boost = false;
1179 	int new_delay, adj, min, max;
1180 	u32 pm_iir = 0;
1181 
1182 	spin_lock_irq(&dev_priv->irq_lock);
1183 	if (rps->interrupts_enabled) {
1184 		pm_iir = fetch_and_zero(&rps->pm_iir);
1185 		client_boost = atomic_read(&rps->num_waiters);
1186 	}
1187 	spin_unlock_irq(&dev_priv->irq_lock);
1188 
1189 	/* Make sure we didn't queue anything we're not going to process. */
1190 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1191 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1192 		goto out;
1193 
1194 	mutex_lock(&dev_priv->pcu_lock);
1195 
1196 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1197 
1198 	adj = rps->last_adj;
1199 	new_delay = rps->cur_freq;
1200 	min = rps->min_freq_softlimit;
1201 	max = rps->max_freq_softlimit;
1202 	if (client_boost)
1203 		max = rps->max_freq;
1204 	if (client_boost && new_delay < rps->boost_freq) {
1205 		new_delay = rps->boost_freq;
1206 		adj = 0;
1207 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1208 		if (adj > 0)
1209 			adj *= 2;
1210 		else /* CHV needs even encode values */
1211 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1212 
1213 		if (new_delay >= rps->max_freq_softlimit)
1214 			adj = 0;
1215 	} else if (client_boost) {
1216 		adj = 0;
1217 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1218 		if (rps->cur_freq > rps->efficient_freq)
1219 			new_delay = rps->efficient_freq;
1220 		else if (rps->cur_freq > rps->min_freq_softlimit)
1221 			new_delay = rps->min_freq_softlimit;
1222 		adj = 0;
1223 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1224 		if (adj < 0)
1225 			adj *= 2;
1226 		else /* CHV needs even encode values */
1227 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1228 
1229 		if (new_delay <= rps->min_freq_softlimit)
1230 			adj = 0;
1231 	} else { /* unknown event */
1232 		adj = 0;
1233 	}
1234 
1235 	rps->last_adj = adj;
1236 
1237 	/* sysfs frequency interfaces may have snuck in while servicing the
1238 	 * interrupt
1239 	 */
1240 	new_delay += adj;
1241 	new_delay = clamp_t(int, new_delay, min, max);
1242 
1243 	if (intel_set_rps(dev_priv, new_delay)) {
1244 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1245 		rps->last_adj = 0;
1246 	}
1247 
1248 	mutex_unlock(&dev_priv->pcu_lock);
1249 
1250 out:
1251 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1252 	spin_lock_irq(&dev_priv->irq_lock);
1253 	if (rps->interrupts_enabled)
1254 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1255 	spin_unlock_irq(&dev_priv->irq_lock);
1256 }
1257 
1258 
1259 /**
1260  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1261  * occurred.
1262  * @work: workqueue struct
1263  *
1264  * Doesn't actually do anything except notify userspace. As a consequence of
1265  * this event, userspace should try to remap the bad rows since statistically
1266  * it is likely the same row is more likely to go bad again.
1267  */
1268 static void ivybridge_parity_work(struct work_struct *work)
1269 {
1270 	struct drm_i915_private *dev_priv =
1271 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1272 	u32 error_status, row, bank, subbank;
1273 	char *parity_event[6];
1274 	uint32_t misccpctl;
1275 	uint8_t slice = 0;
1276 
1277 	/* We must turn off DOP level clock gating to access the L3 registers.
1278 	 * In order to prevent a get/put style interface, acquire struct mutex
1279 	 * any time we access those registers.
1280 	 */
1281 	mutex_lock(&dev_priv->drm.struct_mutex);
1282 
1283 	/* If we've screwed up tracking, just let the interrupt fire again */
1284 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1285 		goto out;
1286 
1287 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1288 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1289 	POSTING_READ(GEN7_MISCCPCTL);
1290 
1291 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1292 		i915_reg_t reg;
1293 
1294 		slice--;
1295 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1296 			break;
1297 
1298 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1299 
1300 		reg = GEN7_L3CDERRST1(slice);
1301 
1302 		error_status = I915_READ(reg);
1303 		row = GEN7_PARITY_ERROR_ROW(error_status);
1304 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1305 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1306 
1307 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1308 		POSTING_READ(reg);
1309 
1310 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1311 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1312 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1313 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1314 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1315 		parity_event[5] = NULL;
1316 
1317 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1318 				   KOBJ_CHANGE, parity_event);
1319 
1320 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1321 			  slice, row, bank, subbank);
1322 
1323 		kfree(parity_event[4]);
1324 		kfree(parity_event[3]);
1325 		kfree(parity_event[2]);
1326 		kfree(parity_event[1]);
1327 	}
1328 
1329 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1330 
1331 out:
1332 	WARN_ON(dev_priv->l3_parity.which_slice);
1333 	spin_lock_irq(&dev_priv->irq_lock);
1334 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1335 	spin_unlock_irq(&dev_priv->irq_lock);
1336 
1337 	mutex_unlock(&dev_priv->drm.struct_mutex);
1338 }
1339 
1340 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1341 					       u32 iir)
1342 {
1343 	if (!HAS_L3_DPF(dev_priv))
1344 		return;
1345 
1346 	spin_lock(&dev_priv->irq_lock);
1347 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1348 	spin_unlock(&dev_priv->irq_lock);
1349 
1350 	iir &= GT_PARITY_ERROR(dev_priv);
1351 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1352 		dev_priv->l3_parity.which_slice |= 1 << 1;
1353 
1354 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1355 		dev_priv->l3_parity.which_slice |= 1 << 0;
1356 
1357 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1358 }
1359 
1360 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1361 			       u32 gt_iir)
1362 {
1363 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1364 		notify_ring(dev_priv->engine[RCS]);
1365 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1366 		notify_ring(dev_priv->engine[VCS]);
1367 }
1368 
1369 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1370 			       u32 gt_iir)
1371 {
1372 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1373 		notify_ring(dev_priv->engine[RCS]);
1374 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1375 		notify_ring(dev_priv->engine[VCS]);
1376 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1377 		notify_ring(dev_priv->engine[BCS]);
1378 
1379 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1380 		      GT_BSD_CS_ERROR_INTERRUPT |
1381 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1382 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1383 
1384 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1385 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1386 }
1387 
1388 static void
1389 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1390 {
1391 	struct intel_engine_execlists * const execlists = &engine->execlists;
1392 	bool tasklet = false;
1393 
1394 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1395 		if (READ_ONCE(engine->execlists.active)) {
1396 			__set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1397 			tasklet = true;
1398 		}
1399 	}
1400 
1401 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1402 		notify_ring(engine);
1403 		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1404 	}
1405 
1406 	if (tasklet)
1407 		tasklet_hi_schedule(&execlists->tasklet);
1408 }
1409 
1410 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1411 				   u32 master_ctl,
1412 				   u32 gt_iir[4])
1413 {
1414 	irqreturn_t ret = IRQ_NONE;
1415 
1416 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1417 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1418 		if (gt_iir[0]) {
1419 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1420 			ret = IRQ_HANDLED;
1421 		} else
1422 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1423 	}
1424 
1425 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1426 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1427 		if (gt_iir[1]) {
1428 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1429 			ret = IRQ_HANDLED;
1430 		} else
1431 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1432 	}
1433 
1434 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1435 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1436 		if (gt_iir[3]) {
1437 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1438 			ret = IRQ_HANDLED;
1439 		} else
1440 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1441 	}
1442 
1443 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1444 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1445 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1446 				 dev_priv->pm_guc_events)) {
1447 			I915_WRITE_FW(GEN8_GT_IIR(2),
1448 				      gt_iir[2] & (dev_priv->pm_rps_events |
1449 						   dev_priv->pm_guc_events));
1450 			ret = IRQ_HANDLED;
1451 		} else
1452 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1459 				u32 gt_iir[4])
1460 {
1461 	if (gt_iir[0]) {
1462 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1463 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1464 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1465 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1466 	}
1467 
1468 	if (gt_iir[1]) {
1469 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1470 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1471 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1472 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1473 	}
1474 
1475 	if (gt_iir[3])
1476 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1477 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1478 
1479 	if (gt_iir[2] & dev_priv->pm_rps_events)
1480 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1481 
1482 	if (gt_iir[2] & dev_priv->pm_guc_events)
1483 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1484 }
1485 
1486 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1487 {
1488 	switch (port) {
1489 	case PORT_A:
1490 		return val & PORTA_HOTPLUG_LONG_DETECT;
1491 	case PORT_B:
1492 		return val & PORTB_HOTPLUG_LONG_DETECT;
1493 	case PORT_C:
1494 		return val & PORTC_HOTPLUG_LONG_DETECT;
1495 	default:
1496 		return false;
1497 	}
1498 }
1499 
1500 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1501 {
1502 	switch (port) {
1503 	case PORT_E:
1504 		return val & PORTE_HOTPLUG_LONG_DETECT;
1505 	default:
1506 		return false;
1507 	}
1508 }
1509 
1510 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1511 {
1512 	switch (port) {
1513 	case PORT_A:
1514 		return val & PORTA_HOTPLUG_LONG_DETECT;
1515 	case PORT_B:
1516 		return val & PORTB_HOTPLUG_LONG_DETECT;
1517 	case PORT_C:
1518 		return val & PORTC_HOTPLUG_LONG_DETECT;
1519 	case PORT_D:
1520 		return val & PORTD_HOTPLUG_LONG_DETECT;
1521 	default:
1522 		return false;
1523 	}
1524 }
1525 
1526 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1527 {
1528 	switch (port) {
1529 	case PORT_A:
1530 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1531 	default:
1532 		return false;
1533 	}
1534 }
1535 
1536 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1537 {
1538 	switch (port) {
1539 	case PORT_B:
1540 		return val & PORTB_HOTPLUG_LONG_DETECT;
1541 	case PORT_C:
1542 		return val & PORTC_HOTPLUG_LONG_DETECT;
1543 	case PORT_D:
1544 		return val & PORTD_HOTPLUG_LONG_DETECT;
1545 	default:
1546 		return false;
1547 	}
1548 }
1549 
1550 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1551 {
1552 	switch (port) {
1553 	case PORT_B:
1554 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1555 	case PORT_C:
1556 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1557 	case PORT_D:
1558 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1559 	default:
1560 		return false;
1561 	}
1562 }
1563 
1564 /*
1565  * Get a bit mask of pins that have triggered, and which ones may be long.
1566  * This can be called multiple times with the same masks to accumulate
1567  * hotplug detection results from several registers.
1568  *
1569  * Note that the caller is expected to zero out the masks initially.
1570  */
1571 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1572 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1573 			     const u32 hpd[HPD_NUM_PINS],
1574 			     bool long_pulse_detect(enum port port, u32 val))
1575 {
1576 	enum port port;
1577 	int i;
1578 
1579 	for_each_hpd_pin(i) {
1580 		if ((hpd[i] & hotplug_trigger) == 0)
1581 			continue;
1582 
1583 		*pin_mask |= BIT(i);
1584 
1585 		port = intel_hpd_pin_to_port(i);
1586 		if (port == PORT_NONE)
1587 			continue;
1588 
1589 		if (long_pulse_detect(port, dig_hotplug_reg))
1590 			*long_mask |= BIT(i);
1591 	}
1592 
1593 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1594 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1595 
1596 }
1597 
1598 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1599 {
1600 	wake_up_all(&dev_priv->gmbus_wait_queue);
1601 }
1602 
1603 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1604 {
1605 	wake_up_all(&dev_priv->gmbus_wait_queue);
1606 }
1607 
1608 #if defined(CONFIG_DEBUG_FS)
1609 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1610 					 enum pipe pipe,
1611 					 uint32_t crc0, uint32_t crc1,
1612 					 uint32_t crc2, uint32_t crc3,
1613 					 uint32_t crc4)
1614 {
1615 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1616 	struct intel_pipe_crc_entry *entry;
1617 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1618 	struct drm_driver *driver = dev_priv->drm.driver;
1619 	uint32_t crcs[5];
1620 	int head, tail;
1621 
1622 	spin_lock(&pipe_crc->lock);
1623 	if (pipe_crc->source) {
1624 		if (!pipe_crc->entries) {
1625 			spin_unlock(&pipe_crc->lock);
1626 			DRM_DEBUG_KMS("spurious interrupt\n");
1627 			return;
1628 		}
1629 
1630 		head = pipe_crc->head;
1631 		tail = pipe_crc->tail;
1632 
1633 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1634 			spin_unlock(&pipe_crc->lock);
1635 			DRM_ERROR("CRC buffer overflowing\n");
1636 			return;
1637 		}
1638 
1639 		entry = &pipe_crc->entries[head];
1640 
1641 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1642 		entry->crc[0] = crc0;
1643 		entry->crc[1] = crc1;
1644 		entry->crc[2] = crc2;
1645 		entry->crc[3] = crc3;
1646 		entry->crc[4] = crc4;
1647 
1648 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1649 		pipe_crc->head = head;
1650 
1651 		spin_unlock(&pipe_crc->lock);
1652 
1653 		wake_up_interruptible(&pipe_crc->wq);
1654 	} else {
1655 		/*
1656 		 * For some not yet identified reason, the first CRC is
1657 		 * bonkers. So let's just wait for the next vblank and read
1658 		 * out the buggy result.
1659 		 *
1660 		 * On GEN8+ sometimes the second CRC is bonkers as well, so
1661 		 * don't trust that one either.
1662 		 */
1663 		if (pipe_crc->skipped == 0 ||
1664 		    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1665 			pipe_crc->skipped++;
1666 			spin_unlock(&pipe_crc->lock);
1667 			return;
1668 		}
1669 		spin_unlock(&pipe_crc->lock);
1670 		crcs[0] = crc0;
1671 		crcs[1] = crc1;
1672 		crcs[2] = crc2;
1673 		crcs[3] = crc3;
1674 		crcs[4] = crc4;
1675 		drm_crtc_add_crc_entry(&crtc->base, true,
1676 				       drm_crtc_accurate_vblank_count(&crtc->base),
1677 				       crcs);
1678 	}
1679 }
1680 #else
1681 static inline void
1682 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1683 			     enum pipe pipe,
1684 			     uint32_t crc0, uint32_t crc1,
1685 			     uint32_t crc2, uint32_t crc3,
1686 			     uint32_t crc4) {}
1687 #endif
1688 
1689 
1690 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1691 				     enum pipe pipe)
1692 {
1693 	display_pipe_crc_irq_handler(dev_priv, pipe,
1694 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1695 				     0, 0, 0, 0);
1696 }
1697 
1698 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1699 				     enum pipe pipe)
1700 {
1701 	display_pipe_crc_irq_handler(dev_priv, pipe,
1702 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1703 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1704 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1705 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1706 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1707 }
1708 
1709 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1710 				      enum pipe pipe)
1711 {
1712 	uint32_t res1, res2;
1713 
1714 	if (INTEL_GEN(dev_priv) >= 3)
1715 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1716 	else
1717 		res1 = 0;
1718 
1719 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1720 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1721 	else
1722 		res2 = 0;
1723 
1724 	display_pipe_crc_irq_handler(dev_priv, pipe,
1725 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1726 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1727 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1728 				     res1, res2);
1729 }
1730 
1731 /* The RPS events need forcewake, so we add them to a work queue and mask their
1732  * IMR bits until the work is done. Other interrupts can be processed without
1733  * the work queue. */
1734 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1735 {
1736 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1737 
1738 	if (pm_iir & dev_priv->pm_rps_events) {
1739 		spin_lock(&dev_priv->irq_lock);
1740 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1741 		if (rps->interrupts_enabled) {
1742 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1743 			schedule_work(&rps->work);
1744 		}
1745 		spin_unlock(&dev_priv->irq_lock);
1746 	}
1747 
1748 	if (INTEL_GEN(dev_priv) >= 8)
1749 		return;
1750 
1751 	if (HAS_VEBOX(dev_priv)) {
1752 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1753 			notify_ring(dev_priv->engine[VECS]);
1754 
1755 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1756 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1757 	}
1758 }
1759 
1760 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1761 {
1762 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1763 		/* Sample the log buffer flush related bits & clear them out now
1764 		 * itself from the message identity register to minimize the
1765 		 * probability of losing a flush interrupt, when there are back
1766 		 * to back flush interrupts.
1767 		 * There can be a new flush interrupt, for different log buffer
1768 		 * type (like for ISR), whilst Host is handling one (for DPC).
1769 		 * Since same bit is used in message register for ISR & DPC, it
1770 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1771 		 * clears out the bit on handling the 1st interrupt.
1772 		 */
1773 		u32 msg, flush;
1774 
1775 		msg = I915_READ(SOFT_SCRATCH(15));
1776 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1777 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1778 		if (flush) {
1779 			/* Clear the message bits that are handled */
1780 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1781 
1782 			/* Handle flush interrupt in bottom half */
1783 			queue_work(dev_priv->guc.log.runtime.flush_wq,
1784 				   &dev_priv->guc.log.runtime.flush_work);
1785 
1786 			dev_priv->guc.log.flush_interrupt_count++;
1787 		} else {
1788 			/* Not clearing of unhandled event bits won't result in
1789 			 * re-triggering of the interrupt.
1790 			 */
1791 		}
1792 	}
1793 }
1794 
1795 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1796 {
1797 	enum pipe pipe;
1798 
1799 	for_each_pipe(dev_priv, pipe) {
1800 		I915_WRITE(PIPESTAT(pipe),
1801 			   PIPESTAT_INT_STATUS_MASK |
1802 			   PIPE_FIFO_UNDERRUN_STATUS);
1803 
1804 		dev_priv->pipestat_irq_mask[pipe] = 0;
1805 	}
1806 }
1807 
1808 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1809 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1810 {
1811 	int pipe;
1812 
1813 	spin_lock(&dev_priv->irq_lock);
1814 
1815 	if (!dev_priv->display_irqs_enabled) {
1816 		spin_unlock(&dev_priv->irq_lock);
1817 		return;
1818 	}
1819 
1820 	for_each_pipe(dev_priv, pipe) {
1821 		i915_reg_t reg;
1822 		u32 status_mask, enable_mask, iir_bit = 0;
1823 
1824 		/*
1825 		 * PIPESTAT bits get signalled even when the interrupt is
1826 		 * disabled with the mask bits, and some of the status bits do
1827 		 * not generate interrupts at all (like the underrun bit). Hence
1828 		 * we need to be careful that we only handle what we want to
1829 		 * handle.
1830 		 */
1831 
1832 		/* fifo underruns are filterered in the underrun handler. */
1833 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1834 
1835 		switch (pipe) {
1836 		case PIPE_A:
1837 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1838 			break;
1839 		case PIPE_B:
1840 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1841 			break;
1842 		case PIPE_C:
1843 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1844 			break;
1845 		}
1846 		if (iir & iir_bit)
1847 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1848 
1849 		if (!status_mask)
1850 			continue;
1851 
1852 		reg = PIPESTAT(pipe);
1853 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1854 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1855 
1856 		/*
1857 		 * Clear the PIPE*STAT regs before the IIR
1858 		 */
1859 		if (pipe_stats[pipe])
1860 			I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1861 	}
1862 	spin_unlock(&dev_priv->irq_lock);
1863 }
1864 
1865 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1866 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1867 {
1868 	enum pipe pipe;
1869 
1870 	for_each_pipe(dev_priv, pipe) {
1871 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1872 			drm_handle_vblank(&dev_priv->drm, pipe);
1873 
1874 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1875 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1876 
1877 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1878 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1879 	}
1880 }
1881 
1882 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1883 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1884 {
1885 	bool blc_event = false;
1886 	enum pipe pipe;
1887 
1888 	for_each_pipe(dev_priv, pipe) {
1889 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1890 			drm_handle_vblank(&dev_priv->drm, pipe);
1891 
1892 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1893 			blc_event = true;
1894 
1895 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1896 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1897 
1898 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1899 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1900 	}
1901 
1902 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1903 		intel_opregion_asle_intr(dev_priv);
1904 }
1905 
1906 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1907 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1908 {
1909 	bool blc_event = false;
1910 	enum pipe pipe;
1911 
1912 	for_each_pipe(dev_priv, pipe) {
1913 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1914 			drm_handle_vblank(&dev_priv->drm, pipe);
1915 
1916 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1917 			blc_event = true;
1918 
1919 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1920 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1921 
1922 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1923 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1924 	}
1925 
1926 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1927 		intel_opregion_asle_intr(dev_priv);
1928 
1929 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1930 		gmbus_irq_handler(dev_priv);
1931 }
1932 
1933 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1934 					    u32 pipe_stats[I915_MAX_PIPES])
1935 {
1936 	enum pipe pipe;
1937 
1938 	for_each_pipe(dev_priv, pipe) {
1939 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1940 			drm_handle_vblank(&dev_priv->drm, pipe);
1941 
1942 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1943 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1944 
1945 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1946 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1947 	}
1948 
1949 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1950 		gmbus_irq_handler(dev_priv);
1951 }
1952 
1953 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1954 {
1955 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1956 
1957 	if (hotplug_status)
1958 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1959 
1960 	return hotplug_status;
1961 }
1962 
1963 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1964 				 u32 hotplug_status)
1965 {
1966 	u32 pin_mask = 0, long_mask = 0;
1967 
1968 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1969 	    IS_CHERRYVIEW(dev_priv)) {
1970 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1971 
1972 		if (hotplug_trigger) {
1973 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1974 					   hotplug_trigger, hpd_status_g4x,
1975 					   i9xx_port_hotplug_long_detect);
1976 
1977 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1978 		}
1979 
1980 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1981 			dp_aux_irq_handler(dev_priv);
1982 	} else {
1983 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1984 
1985 		if (hotplug_trigger) {
1986 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987 					   hotplug_trigger, hpd_status_i915,
1988 					   i9xx_port_hotplug_long_detect);
1989 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1990 		}
1991 	}
1992 }
1993 
1994 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1995 {
1996 	struct drm_device *dev = arg;
1997 	struct drm_i915_private *dev_priv = to_i915(dev);
1998 	irqreturn_t ret = IRQ_NONE;
1999 
2000 	if (!intel_irqs_enabled(dev_priv))
2001 		return IRQ_NONE;
2002 
2003 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2004 	disable_rpm_wakeref_asserts(dev_priv);
2005 
2006 	do {
2007 		u32 iir, gt_iir, pm_iir;
2008 		u32 pipe_stats[I915_MAX_PIPES] = {};
2009 		u32 hotplug_status = 0;
2010 		u32 ier = 0;
2011 
2012 		gt_iir = I915_READ(GTIIR);
2013 		pm_iir = I915_READ(GEN6_PMIIR);
2014 		iir = I915_READ(VLV_IIR);
2015 
2016 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2017 			break;
2018 
2019 		ret = IRQ_HANDLED;
2020 
2021 		/*
2022 		 * Theory on interrupt generation, based on empirical evidence:
2023 		 *
2024 		 * x = ((VLV_IIR & VLV_IER) ||
2025 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2026 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2027 		 *
2028 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2029 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2030 		 * guarantee the CPU interrupt will be raised again even if we
2031 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2032 		 * bits this time around.
2033 		 */
2034 		I915_WRITE(VLV_MASTER_IER, 0);
2035 		ier = I915_READ(VLV_IER);
2036 		I915_WRITE(VLV_IER, 0);
2037 
2038 		if (gt_iir)
2039 			I915_WRITE(GTIIR, gt_iir);
2040 		if (pm_iir)
2041 			I915_WRITE(GEN6_PMIIR, pm_iir);
2042 
2043 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2044 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2045 
2046 		/* Call regardless, as some status bits might not be
2047 		 * signalled in iir */
2048 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2049 
2050 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2051 			   I915_LPE_PIPE_B_INTERRUPT))
2052 			intel_lpe_audio_irq_handler(dev_priv);
2053 
2054 		/*
2055 		 * VLV_IIR is single buffered, and reflects the level
2056 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2057 		 */
2058 		if (iir)
2059 			I915_WRITE(VLV_IIR, iir);
2060 
2061 		I915_WRITE(VLV_IER, ier);
2062 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2063 		POSTING_READ(VLV_MASTER_IER);
2064 
2065 		if (gt_iir)
2066 			snb_gt_irq_handler(dev_priv, gt_iir);
2067 		if (pm_iir)
2068 			gen6_rps_irq_handler(dev_priv, pm_iir);
2069 
2070 		if (hotplug_status)
2071 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2072 
2073 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2074 	} while (0);
2075 
2076 	enable_rpm_wakeref_asserts(dev_priv);
2077 
2078 	return ret;
2079 }
2080 
2081 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2082 {
2083 	struct drm_device *dev = arg;
2084 	struct drm_i915_private *dev_priv = to_i915(dev);
2085 	irqreturn_t ret = IRQ_NONE;
2086 
2087 	if (!intel_irqs_enabled(dev_priv))
2088 		return IRQ_NONE;
2089 
2090 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2091 	disable_rpm_wakeref_asserts(dev_priv);
2092 
2093 	do {
2094 		u32 master_ctl, iir;
2095 		u32 gt_iir[4] = {};
2096 		u32 pipe_stats[I915_MAX_PIPES] = {};
2097 		u32 hotplug_status = 0;
2098 		u32 ier = 0;
2099 
2100 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2101 		iir = I915_READ(VLV_IIR);
2102 
2103 		if (master_ctl == 0 && iir == 0)
2104 			break;
2105 
2106 		ret = IRQ_HANDLED;
2107 
2108 		/*
2109 		 * Theory on interrupt generation, based on empirical evidence:
2110 		 *
2111 		 * x = ((VLV_IIR & VLV_IER) ||
2112 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2113 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2114 		 *
2115 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2116 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2117 		 * guarantee the CPU interrupt will be raised again even if we
2118 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2119 		 * bits this time around.
2120 		 */
2121 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2122 		ier = I915_READ(VLV_IER);
2123 		I915_WRITE(VLV_IER, 0);
2124 
2125 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2126 
2127 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2128 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2129 
2130 		/* Call regardless, as some status bits might not be
2131 		 * signalled in iir */
2132 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2133 
2134 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2135 			   I915_LPE_PIPE_B_INTERRUPT |
2136 			   I915_LPE_PIPE_C_INTERRUPT))
2137 			intel_lpe_audio_irq_handler(dev_priv);
2138 
2139 		/*
2140 		 * VLV_IIR is single buffered, and reflects the level
2141 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2142 		 */
2143 		if (iir)
2144 			I915_WRITE(VLV_IIR, iir);
2145 
2146 		I915_WRITE(VLV_IER, ier);
2147 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2148 		POSTING_READ(GEN8_MASTER_IRQ);
2149 
2150 		gen8_gt_irq_handler(dev_priv, gt_iir);
2151 
2152 		if (hotplug_status)
2153 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2154 
2155 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2156 	} while (0);
2157 
2158 	enable_rpm_wakeref_asserts(dev_priv);
2159 
2160 	return ret;
2161 }
2162 
2163 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2164 				u32 hotplug_trigger,
2165 				const u32 hpd[HPD_NUM_PINS])
2166 {
2167 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2168 
2169 	/*
2170 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2171 	 * unless we touch the hotplug register, even if hotplug_trigger is
2172 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2173 	 * errors.
2174 	 */
2175 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2176 	if (!hotplug_trigger) {
2177 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2178 			PORTD_HOTPLUG_STATUS_MASK |
2179 			PORTC_HOTPLUG_STATUS_MASK |
2180 			PORTB_HOTPLUG_STATUS_MASK;
2181 		dig_hotplug_reg &= ~mask;
2182 	}
2183 
2184 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2185 	if (!hotplug_trigger)
2186 		return;
2187 
2188 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2189 			   dig_hotplug_reg, hpd,
2190 			   pch_port_hotplug_long_detect);
2191 
2192 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2193 }
2194 
2195 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2196 {
2197 	int pipe;
2198 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2199 
2200 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2201 
2202 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2203 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2204 			       SDE_AUDIO_POWER_SHIFT);
2205 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2206 				 port_name(port));
2207 	}
2208 
2209 	if (pch_iir & SDE_AUX_MASK)
2210 		dp_aux_irq_handler(dev_priv);
2211 
2212 	if (pch_iir & SDE_GMBUS)
2213 		gmbus_irq_handler(dev_priv);
2214 
2215 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2216 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2217 
2218 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2219 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2220 
2221 	if (pch_iir & SDE_POISON)
2222 		DRM_ERROR("PCH poison interrupt\n");
2223 
2224 	if (pch_iir & SDE_FDI_MASK)
2225 		for_each_pipe(dev_priv, pipe)
2226 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2227 					 pipe_name(pipe),
2228 					 I915_READ(FDI_RX_IIR(pipe)));
2229 
2230 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2231 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2232 
2233 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2234 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2235 
2236 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2237 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2238 
2239 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2240 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2241 }
2242 
2243 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2244 {
2245 	u32 err_int = I915_READ(GEN7_ERR_INT);
2246 	enum pipe pipe;
2247 
2248 	if (err_int & ERR_INT_POISON)
2249 		DRM_ERROR("Poison interrupt\n");
2250 
2251 	for_each_pipe(dev_priv, pipe) {
2252 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2253 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2254 
2255 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2256 			if (IS_IVYBRIDGE(dev_priv))
2257 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2258 			else
2259 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2260 		}
2261 	}
2262 
2263 	I915_WRITE(GEN7_ERR_INT, err_int);
2264 }
2265 
2266 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2267 {
2268 	u32 serr_int = I915_READ(SERR_INT);
2269 	enum pipe pipe;
2270 
2271 	if (serr_int & SERR_INT_POISON)
2272 		DRM_ERROR("PCH poison interrupt\n");
2273 
2274 	for_each_pipe(dev_priv, pipe)
2275 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2276 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2277 
2278 	I915_WRITE(SERR_INT, serr_int);
2279 }
2280 
2281 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2282 {
2283 	int pipe;
2284 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2285 
2286 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2287 
2288 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2289 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2290 			       SDE_AUDIO_POWER_SHIFT_CPT);
2291 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2292 				 port_name(port));
2293 	}
2294 
2295 	if (pch_iir & SDE_AUX_MASK_CPT)
2296 		dp_aux_irq_handler(dev_priv);
2297 
2298 	if (pch_iir & SDE_GMBUS_CPT)
2299 		gmbus_irq_handler(dev_priv);
2300 
2301 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2302 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2303 
2304 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2305 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2306 
2307 	if (pch_iir & SDE_FDI_MASK_CPT)
2308 		for_each_pipe(dev_priv, pipe)
2309 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2310 					 pipe_name(pipe),
2311 					 I915_READ(FDI_RX_IIR(pipe)));
2312 
2313 	if (pch_iir & SDE_ERROR_CPT)
2314 		cpt_serr_int_handler(dev_priv);
2315 }
2316 
2317 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2318 {
2319 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2320 		~SDE_PORTE_HOTPLUG_SPT;
2321 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2322 	u32 pin_mask = 0, long_mask = 0;
2323 
2324 	if (hotplug_trigger) {
2325 		u32 dig_hotplug_reg;
2326 
2327 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2328 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2329 
2330 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2331 				   dig_hotplug_reg, hpd_spt,
2332 				   spt_port_hotplug_long_detect);
2333 	}
2334 
2335 	if (hotplug2_trigger) {
2336 		u32 dig_hotplug_reg;
2337 
2338 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2339 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2340 
2341 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2342 				   dig_hotplug_reg, hpd_spt,
2343 				   spt_port_hotplug2_long_detect);
2344 	}
2345 
2346 	if (pin_mask)
2347 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2348 
2349 	if (pch_iir & SDE_GMBUS_CPT)
2350 		gmbus_irq_handler(dev_priv);
2351 }
2352 
2353 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2354 				u32 hotplug_trigger,
2355 				const u32 hpd[HPD_NUM_PINS])
2356 {
2357 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2358 
2359 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2360 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2361 
2362 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2363 			   dig_hotplug_reg, hpd,
2364 			   ilk_port_hotplug_long_detect);
2365 
2366 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2367 }
2368 
2369 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2370 				    u32 de_iir)
2371 {
2372 	enum pipe pipe;
2373 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2374 
2375 	if (hotplug_trigger)
2376 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2377 
2378 	if (de_iir & DE_AUX_CHANNEL_A)
2379 		dp_aux_irq_handler(dev_priv);
2380 
2381 	if (de_iir & DE_GSE)
2382 		intel_opregion_asle_intr(dev_priv);
2383 
2384 	if (de_iir & DE_POISON)
2385 		DRM_ERROR("Poison interrupt\n");
2386 
2387 	for_each_pipe(dev_priv, pipe) {
2388 		if (de_iir & DE_PIPE_VBLANK(pipe))
2389 			drm_handle_vblank(&dev_priv->drm, pipe);
2390 
2391 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2392 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2393 
2394 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2395 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2396 	}
2397 
2398 	/* check event from PCH */
2399 	if (de_iir & DE_PCH_EVENT) {
2400 		u32 pch_iir = I915_READ(SDEIIR);
2401 
2402 		if (HAS_PCH_CPT(dev_priv))
2403 			cpt_irq_handler(dev_priv, pch_iir);
2404 		else
2405 			ibx_irq_handler(dev_priv, pch_iir);
2406 
2407 		/* should clear PCH hotplug event before clear CPU irq */
2408 		I915_WRITE(SDEIIR, pch_iir);
2409 	}
2410 
2411 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2412 		ironlake_rps_change_irq_handler(dev_priv);
2413 }
2414 
2415 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2416 				    u32 de_iir)
2417 {
2418 	enum pipe pipe;
2419 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2420 
2421 	if (hotplug_trigger)
2422 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2423 
2424 	if (de_iir & DE_ERR_INT_IVB)
2425 		ivb_err_int_handler(dev_priv);
2426 
2427 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2428 		dp_aux_irq_handler(dev_priv);
2429 
2430 	if (de_iir & DE_GSE_IVB)
2431 		intel_opregion_asle_intr(dev_priv);
2432 
2433 	for_each_pipe(dev_priv, pipe) {
2434 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2435 			drm_handle_vblank(&dev_priv->drm, pipe);
2436 	}
2437 
2438 	/* check event from PCH */
2439 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2440 		u32 pch_iir = I915_READ(SDEIIR);
2441 
2442 		cpt_irq_handler(dev_priv, pch_iir);
2443 
2444 		/* clear PCH hotplug event before clear CPU irq */
2445 		I915_WRITE(SDEIIR, pch_iir);
2446 	}
2447 }
2448 
2449 /*
2450  * To handle irqs with the minimum potential races with fresh interrupts, we:
2451  * 1 - Disable Master Interrupt Control.
2452  * 2 - Find the source(s) of the interrupt.
2453  * 3 - Clear the Interrupt Identity bits (IIR).
2454  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2455  * 5 - Re-enable Master Interrupt Control.
2456  */
2457 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2458 {
2459 	struct drm_device *dev = arg;
2460 	struct drm_i915_private *dev_priv = to_i915(dev);
2461 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2462 	irqreturn_t ret = IRQ_NONE;
2463 
2464 	if (!intel_irqs_enabled(dev_priv))
2465 		return IRQ_NONE;
2466 
2467 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2468 	disable_rpm_wakeref_asserts(dev_priv);
2469 
2470 	/* disable master interrupt before clearing iir  */
2471 	de_ier = I915_READ(DEIER);
2472 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2473 	POSTING_READ(DEIER);
2474 
2475 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2476 	 * interrupts will will be stored on its back queue, and then we'll be
2477 	 * able to process them after we restore SDEIER (as soon as we restore
2478 	 * it, we'll get an interrupt if SDEIIR still has something to process
2479 	 * due to its back queue). */
2480 	if (!HAS_PCH_NOP(dev_priv)) {
2481 		sde_ier = I915_READ(SDEIER);
2482 		I915_WRITE(SDEIER, 0);
2483 		POSTING_READ(SDEIER);
2484 	}
2485 
2486 	/* Find, clear, then process each source of interrupt */
2487 
2488 	gt_iir = I915_READ(GTIIR);
2489 	if (gt_iir) {
2490 		I915_WRITE(GTIIR, gt_iir);
2491 		ret = IRQ_HANDLED;
2492 		if (INTEL_GEN(dev_priv) >= 6)
2493 			snb_gt_irq_handler(dev_priv, gt_iir);
2494 		else
2495 			ilk_gt_irq_handler(dev_priv, gt_iir);
2496 	}
2497 
2498 	de_iir = I915_READ(DEIIR);
2499 	if (de_iir) {
2500 		I915_WRITE(DEIIR, de_iir);
2501 		ret = IRQ_HANDLED;
2502 		if (INTEL_GEN(dev_priv) >= 7)
2503 			ivb_display_irq_handler(dev_priv, de_iir);
2504 		else
2505 			ilk_display_irq_handler(dev_priv, de_iir);
2506 	}
2507 
2508 	if (INTEL_GEN(dev_priv) >= 6) {
2509 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2510 		if (pm_iir) {
2511 			I915_WRITE(GEN6_PMIIR, pm_iir);
2512 			ret = IRQ_HANDLED;
2513 			gen6_rps_irq_handler(dev_priv, pm_iir);
2514 		}
2515 	}
2516 
2517 	I915_WRITE(DEIER, de_ier);
2518 	POSTING_READ(DEIER);
2519 	if (!HAS_PCH_NOP(dev_priv)) {
2520 		I915_WRITE(SDEIER, sde_ier);
2521 		POSTING_READ(SDEIER);
2522 	}
2523 
2524 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2525 	enable_rpm_wakeref_asserts(dev_priv);
2526 
2527 	return ret;
2528 }
2529 
2530 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2531 				u32 hotplug_trigger,
2532 				const u32 hpd[HPD_NUM_PINS])
2533 {
2534 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2535 
2536 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2537 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2538 
2539 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2540 			   dig_hotplug_reg, hpd,
2541 			   bxt_port_hotplug_long_detect);
2542 
2543 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2544 }
2545 
2546 static irqreturn_t
2547 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2548 {
2549 	irqreturn_t ret = IRQ_NONE;
2550 	u32 iir;
2551 	enum pipe pipe;
2552 
2553 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2554 		iir = I915_READ(GEN8_DE_MISC_IIR);
2555 		if (iir) {
2556 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2557 			ret = IRQ_HANDLED;
2558 			if (iir & GEN8_DE_MISC_GSE)
2559 				intel_opregion_asle_intr(dev_priv);
2560 			else
2561 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2562 		}
2563 		else
2564 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2565 	}
2566 
2567 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2568 		iir = I915_READ(GEN8_DE_PORT_IIR);
2569 		if (iir) {
2570 			u32 tmp_mask;
2571 			bool found = false;
2572 
2573 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2574 			ret = IRQ_HANDLED;
2575 
2576 			tmp_mask = GEN8_AUX_CHANNEL_A;
2577 			if (INTEL_GEN(dev_priv) >= 9)
2578 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2579 					    GEN9_AUX_CHANNEL_C |
2580 					    GEN9_AUX_CHANNEL_D;
2581 
2582 			if (iir & tmp_mask) {
2583 				dp_aux_irq_handler(dev_priv);
2584 				found = true;
2585 			}
2586 
2587 			if (IS_GEN9_LP(dev_priv)) {
2588 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2589 				if (tmp_mask) {
2590 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2591 							    hpd_bxt);
2592 					found = true;
2593 				}
2594 			} else if (IS_BROADWELL(dev_priv)) {
2595 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2596 				if (tmp_mask) {
2597 					ilk_hpd_irq_handler(dev_priv,
2598 							    tmp_mask, hpd_bdw);
2599 					found = true;
2600 				}
2601 			}
2602 
2603 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2604 				gmbus_irq_handler(dev_priv);
2605 				found = true;
2606 			}
2607 
2608 			if (!found)
2609 				DRM_ERROR("Unexpected DE Port interrupt\n");
2610 		}
2611 		else
2612 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2613 	}
2614 
2615 	for_each_pipe(dev_priv, pipe) {
2616 		u32 fault_errors;
2617 
2618 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2619 			continue;
2620 
2621 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2622 		if (!iir) {
2623 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2624 			continue;
2625 		}
2626 
2627 		ret = IRQ_HANDLED;
2628 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2629 
2630 		if (iir & GEN8_PIPE_VBLANK)
2631 			drm_handle_vblank(&dev_priv->drm, pipe);
2632 
2633 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2634 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2635 
2636 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2637 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2638 
2639 		fault_errors = iir;
2640 		if (INTEL_GEN(dev_priv) >= 9)
2641 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2642 		else
2643 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2644 
2645 		if (fault_errors)
2646 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2647 				  pipe_name(pipe),
2648 				  fault_errors);
2649 	}
2650 
2651 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2652 	    master_ctl & GEN8_DE_PCH_IRQ) {
2653 		/*
2654 		 * FIXME(BDW): Assume for now that the new interrupt handling
2655 		 * scheme also closed the SDE interrupt handling race we've seen
2656 		 * on older pch-split platforms. But this needs testing.
2657 		 */
2658 		iir = I915_READ(SDEIIR);
2659 		if (iir) {
2660 			I915_WRITE(SDEIIR, iir);
2661 			ret = IRQ_HANDLED;
2662 
2663 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2664 			    HAS_PCH_CNP(dev_priv))
2665 				spt_irq_handler(dev_priv, iir);
2666 			else
2667 				cpt_irq_handler(dev_priv, iir);
2668 		} else {
2669 			/*
2670 			 * Like on previous PCH there seems to be something
2671 			 * fishy going on with forwarding PCH interrupts.
2672 			 */
2673 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2674 		}
2675 	}
2676 
2677 	return ret;
2678 }
2679 
2680 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2681 {
2682 	struct drm_device *dev = arg;
2683 	struct drm_i915_private *dev_priv = to_i915(dev);
2684 	u32 master_ctl;
2685 	u32 gt_iir[4] = {};
2686 	irqreturn_t ret;
2687 
2688 	if (!intel_irqs_enabled(dev_priv))
2689 		return IRQ_NONE;
2690 
2691 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2692 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2693 	if (!master_ctl)
2694 		return IRQ_NONE;
2695 
2696 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2697 
2698 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2699 	disable_rpm_wakeref_asserts(dev_priv);
2700 
2701 	/* Find, clear, then process each source of interrupt */
2702 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2703 	gen8_gt_irq_handler(dev_priv, gt_iir);
2704 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2705 
2706 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2707 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2708 
2709 	enable_rpm_wakeref_asserts(dev_priv);
2710 
2711 	return ret;
2712 }
2713 
2714 struct wedge_me {
2715 	struct delayed_work work;
2716 	struct drm_i915_private *i915;
2717 	const char *name;
2718 };
2719 
2720 static void wedge_me(struct work_struct *work)
2721 {
2722 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2723 
2724 	dev_err(w->i915->drm.dev,
2725 		"%s timed out, cancelling all in-flight rendering.\n",
2726 		w->name);
2727 	i915_gem_set_wedged(w->i915);
2728 }
2729 
2730 static void __init_wedge(struct wedge_me *w,
2731 			 struct drm_i915_private *i915,
2732 			 long timeout,
2733 			 const char *name)
2734 {
2735 	w->i915 = i915;
2736 	w->name = name;
2737 
2738 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2739 	schedule_delayed_work(&w->work, timeout);
2740 }
2741 
2742 static void __fini_wedge(struct wedge_me *w)
2743 {
2744 	cancel_delayed_work_sync(&w->work);
2745 	destroy_delayed_work_on_stack(&w->work);
2746 	w->i915 = NULL;
2747 }
2748 
2749 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2750 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2751 	     (W)->i915;							\
2752 	     __fini_wedge((W)))
2753 
2754 /**
2755  * i915_reset_device - do process context error handling work
2756  * @dev_priv: i915 device private
2757  *
2758  * Fire an error uevent so userspace can see that a hang or error
2759  * was detected.
2760  */
2761 static void i915_reset_device(struct drm_i915_private *dev_priv)
2762 {
2763 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2764 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2765 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2766 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2767 	struct wedge_me w;
2768 
2769 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2770 
2771 	DRM_DEBUG_DRIVER("resetting chip\n");
2772 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2773 
2774 	/* Use a watchdog to ensure that our reset completes */
2775 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2776 		intel_prepare_reset(dev_priv);
2777 
2778 		/* Signal that locked waiters should reset the GPU */
2779 		set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2780 		wake_up_all(&dev_priv->gpu_error.wait_queue);
2781 
2782 		/* Wait for anyone holding the lock to wakeup, without
2783 		 * blocking indefinitely on struct_mutex.
2784 		 */
2785 		do {
2786 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2787 				i915_reset(dev_priv, 0);
2788 				mutex_unlock(&dev_priv->drm.struct_mutex);
2789 			}
2790 		} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2791 					     I915_RESET_HANDOFF,
2792 					     TASK_UNINTERRUPTIBLE,
2793 					     1));
2794 
2795 		intel_finish_reset(dev_priv);
2796 	}
2797 
2798 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2799 		kobject_uevent_env(kobj,
2800 				   KOBJ_CHANGE, reset_done_event);
2801 }
2802 
2803 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2804 {
2805 	u32 eir;
2806 
2807 	if (!IS_GEN2(dev_priv))
2808 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2809 
2810 	if (INTEL_GEN(dev_priv) < 4)
2811 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2812 	else
2813 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2814 
2815 	I915_WRITE(EIR, I915_READ(EIR));
2816 	eir = I915_READ(EIR);
2817 	if (eir) {
2818 		/*
2819 		 * some errors might have become stuck,
2820 		 * mask them.
2821 		 */
2822 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2823 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2824 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2825 	}
2826 }
2827 
2828 /**
2829  * i915_handle_error - handle a gpu error
2830  * @dev_priv: i915 device private
2831  * @engine_mask: mask representing engines that are hung
2832  * @fmt: Error message format string
2833  *
2834  * Do some basic checking of register state at error time and
2835  * dump it to the syslog.  Also call i915_capture_error_state() to make
2836  * sure we get a record and make it available in debugfs.  Fire a uevent
2837  * so userspace knows something bad happened (should trigger collection
2838  * of a ring dump etc.).
2839  */
2840 void i915_handle_error(struct drm_i915_private *dev_priv,
2841 		       u32 engine_mask,
2842 		       const char *fmt, ...)
2843 {
2844 	struct intel_engine_cs *engine;
2845 	unsigned int tmp;
2846 	va_list args;
2847 	char error_msg[80];
2848 
2849 	va_start(args, fmt);
2850 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2851 	va_end(args);
2852 
2853 	/*
2854 	 * In most cases it's guaranteed that we get here with an RPM
2855 	 * reference held, for example because there is a pending GPU
2856 	 * request that won't finish until the reset is done. This
2857 	 * isn't the case at least when we get here by doing a
2858 	 * simulated reset via debugfs, so get an RPM reference.
2859 	 */
2860 	intel_runtime_pm_get(dev_priv);
2861 
2862 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2863 	i915_clear_error_registers(dev_priv);
2864 
2865 	/*
2866 	 * Try engine reset when available. We fall back to full reset if
2867 	 * single reset fails.
2868 	 */
2869 	if (intel_has_reset_engine(dev_priv)) {
2870 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2871 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2872 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2873 					     &dev_priv->gpu_error.flags))
2874 				continue;
2875 
2876 			if (i915_reset_engine(engine, 0) == 0)
2877 				engine_mask &= ~intel_engine_flag(engine);
2878 
2879 			clear_bit(I915_RESET_ENGINE + engine->id,
2880 				  &dev_priv->gpu_error.flags);
2881 			wake_up_bit(&dev_priv->gpu_error.flags,
2882 				    I915_RESET_ENGINE + engine->id);
2883 		}
2884 	}
2885 
2886 	if (!engine_mask)
2887 		goto out;
2888 
2889 	/* Full reset needs the mutex, stop any other user trying to do so. */
2890 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2891 		wait_event(dev_priv->gpu_error.reset_queue,
2892 			   !test_bit(I915_RESET_BACKOFF,
2893 				     &dev_priv->gpu_error.flags));
2894 		goto out;
2895 	}
2896 
2897 	/* Prevent any other reset-engine attempt. */
2898 	for_each_engine(engine, dev_priv, tmp) {
2899 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2900 					&dev_priv->gpu_error.flags))
2901 			wait_on_bit(&dev_priv->gpu_error.flags,
2902 				    I915_RESET_ENGINE + engine->id,
2903 				    TASK_UNINTERRUPTIBLE);
2904 	}
2905 
2906 	i915_reset_device(dev_priv);
2907 
2908 	for_each_engine(engine, dev_priv, tmp) {
2909 		clear_bit(I915_RESET_ENGINE + engine->id,
2910 			  &dev_priv->gpu_error.flags);
2911 	}
2912 
2913 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2914 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2915 
2916 out:
2917 	intel_runtime_pm_put(dev_priv);
2918 }
2919 
2920 /* Called from drm generic code, passed 'crtc' which
2921  * we use as a pipe index
2922  */
2923 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2924 {
2925 	struct drm_i915_private *dev_priv = to_i915(dev);
2926 	unsigned long irqflags;
2927 
2928 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2929 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2930 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2931 
2932 	return 0;
2933 }
2934 
2935 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2936 {
2937 	struct drm_i915_private *dev_priv = to_i915(dev);
2938 	unsigned long irqflags;
2939 
2940 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2941 	i915_enable_pipestat(dev_priv, pipe,
2942 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2943 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2944 
2945 	return 0;
2946 }
2947 
2948 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2949 {
2950 	struct drm_i915_private *dev_priv = to_i915(dev);
2951 	unsigned long irqflags;
2952 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2953 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2954 
2955 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2956 	ilk_enable_display_irq(dev_priv, bit);
2957 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2958 
2959 	return 0;
2960 }
2961 
2962 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2963 {
2964 	struct drm_i915_private *dev_priv = to_i915(dev);
2965 	unsigned long irqflags;
2966 
2967 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2968 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2969 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2970 
2971 	return 0;
2972 }
2973 
2974 /* Called from drm generic code, passed 'crtc' which
2975  * we use as a pipe index
2976  */
2977 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2978 {
2979 	struct drm_i915_private *dev_priv = to_i915(dev);
2980 	unsigned long irqflags;
2981 
2982 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2983 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2984 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2985 }
2986 
2987 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2988 {
2989 	struct drm_i915_private *dev_priv = to_i915(dev);
2990 	unsigned long irqflags;
2991 
2992 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2993 	i915_disable_pipestat(dev_priv, pipe,
2994 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2995 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2996 }
2997 
2998 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2999 {
3000 	struct drm_i915_private *dev_priv = to_i915(dev);
3001 	unsigned long irqflags;
3002 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3003 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3004 
3005 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3006 	ilk_disable_display_irq(dev_priv, bit);
3007 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3008 }
3009 
3010 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3011 {
3012 	struct drm_i915_private *dev_priv = to_i915(dev);
3013 	unsigned long irqflags;
3014 
3015 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3016 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3017 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3018 }
3019 
3020 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3021 {
3022 	if (HAS_PCH_NOP(dev_priv))
3023 		return;
3024 
3025 	GEN3_IRQ_RESET(SDE);
3026 
3027 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3028 		I915_WRITE(SERR_INT, 0xffffffff);
3029 }
3030 
3031 /*
3032  * SDEIER is also touched by the interrupt handler to work around missed PCH
3033  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3034  * instead we unconditionally enable all PCH interrupt sources here, but then
3035  * only unmask them as needed with SDEIMR.
3036  *
3037  * This function needs to be called before interrupts are enabled.
3038  */
3039 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3040 {
3041 	struct drm_i915_private *dev_priv = to_i915(dev);
3042 
3043 	if (HAS_PCH_NOP(dev_priv))
3044 		return;
3045 
3046 	WARN_ON(I915_READ(SDEIER) != 0);
3047 	I915_WRITE(SDEIER, 0xffffffff);
3048 	POSTING_READ(SDEIER);
3049 }
3050 
3051 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3052 {
3053 	GEN3_IRQ_RESET(GT);
3054 	if (INTEL_GEN(dev_priv) >= 6)
3055 		GEN3_IRQ_RESET(GEN6_PM);
3056 }
3057 
3058 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3059 {
3060 	if (IS_CHERRYVIEW(dev_priv))
3061 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3062 	else
3063 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3064 
3065 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3066 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3067 
3068 	i9xx_pipestat_irq_reset(dev_priv);
3069 
3070 	GEN3_IRQ_RESET(VLV_);
3071 	dev_priv->irq_mask = ~0u;
3072 }
3073 
3074 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3075 {
3076 	u32 pipestat_mask;
3077 	u32 enable_mask;
3078 	enum pipe pipe;
3079 
3080 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3081 
3082 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3083 	for_each_pipe(dev_priv, pipe)
3084 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3085 
3086 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3087 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3088 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3089 		I915_LPE_PIPE_A_INTERRUPT |
3090 		I915_LPE_PIPE_B_INTERRUPT;
3091 
3092 	if (IS_CHERRYVIEW(dev_priv))
3093 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3094 			I915_LPE_PIPE_C_INTERRUPT;
3095 
3096 	WARN_ON(dev_priv->irq_mask != ~0u);
3097 
3098 	dev_priv->irq_mask = ~enable_mask;
3099 
3100 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3101 }
3102 
3103 /* drm_dma.h hooks
3104 */
3105 static void ironlake_irq_reset(struct drm_device *dev)
3106 {
3107 	struct drm_i915_private *dev_priv = to_i915(dev);
3108 
3109 	if (IS_GEN5(dev_priv))
3110 		I915_WRITE(HWSTAM, 0xffffffff);
3111 
3112 	GEN3_IRQ_RESET(DE);
3113 	if (IS_GEN7(dev_priv))
3114 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3115 
3116 	gen5_gt_irq_reset(dev_priv);
3117 
3118 	ibx_irq_reset(dev_priv);
3119 }
3120 
3121 static void valleyview_irq_reset(struct drm_device *dev)
3122 {
3123 	struct drm_i915_private *dev_priv = to_i915(dev);
3124 
3125 	I915_WRITE(VLV_MASTER_IER, 0);
3126 	POSTING_READ(VLV_MASTER_IER);
3127 
3128 	gen5_gt_irq_reset(dev_priv);
3129 
3130 	spin_lock_irq(&dev_priv->irq_lock);
3131 	if (dev_priv->display_irqs_enabled)
3132 		vlv_display_irq_reset(dev_priv);
3133 	spin_unlock_irq(&dev_priv->irq_lock);
3134 }
3135 
3136 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3137 {
3138 	GEN8_IRQ_RESET_NDX(GT, 0);
3139 	GEN8_IRQ_RESET_NDX(GT, 1);
3140 	GEN8_IRQ_RESET_NDX(GT, 2);
3141 	GEN8_IRQ_RESET_NDX(GT, 3);
3142 }
3143 
3144 static void gen8_irq_reset(struct drm_device *dev)
3145 {
3146 	struct drm_i915_private *dev_priv = to_i915(dev);
3147 	int pipe;
3148 
3149 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3150 	POSTING_READ(GEN8_MASTER_IRQ);
3151 
3152 	gen8_gt_irq_reset(dev_priv);
3153 
3154 	for_each_pipe(dev_priv, pipe)
3155 		if (intel_display_power_is_enabled(dev_priv,
3156 						   POWER_DOMAIN_PIPE(pipe)))
3157 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3158 
3159 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3160 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3161 	GEN3_IRQ_RESET(GEN8_PCU_);
3162 
3163 	if (HAS_PCH_SPLIT(dev_priv))
3164 		ibx_irq_reset(dev_priv);
3165 }
3166 
3167 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3168 				     u8 pipe_mask)
3169 {
3170 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3171 	enum pipe pipe;
3172 
3173 	spin_lock_irq(&dev_priv->irq_lock);
3174 
3175 	if (!intel_irqs_enabled(dev_priv)) {
3176 		spin_unlock_irq(&dev_priv->irq_lock);
3177 		return;
3178 	}
3179 
3180 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3181 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3182 				  dev_priv->de_irq_mask[pipe],
3183 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3184 
3185 	spin_unlock_irq(&dev_priv->irq_lock);
3186 }
3187 
3188 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3189 				     u8 pipe_mask)
3190 {
3191 	enum pipe pipe;
3192 
3193 	spin_lock_irq(&dev_priv->irq_lock);
3194 
3195 	if (!intel_irqs_enabled(dev_priv)) {
3196 		spin_unlock_irq(&dev_priv->irq_lock);
3197 		return;
3198 	}
3199 
3200 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3201 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3202 
3203 	spin_unlock_irq(&dev_priv->irq_lock);
3204 
3205 	/* make sure we're done processing display irqs */
3206 	synchronize_irq(dev_priv->drm.irq);
3207 }
3208 
3209 static void cherryview_irq_reset(struct drm_device *dev)
3210 {
3211 	struct drm_i915_private *dev_priv = to_i915(dev);
3212 
3213 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3214 	POSTING_READ(GEN8_MASTER_IRQ);
3215 
3216 	gen8_gt_irq_reset(dev_priv);
3217 
3218 	GEN3_IRQ_RESET(GEN8_PCU_);
3219 
3220 	spin_lock_irq(&dev_priv->irq_lock);
3221 	if (dev_priv->display_irqs_enabled)
3222 		vlv_display_irq_reset(dev_priv);
3223 	spin_unlock_irq(&dev_priv->irq_lock);
3224 }
3225 
3226 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3227 				  const u32 hpd[HPD_NUM_PINS])
3228 {
3229 	struct intel_encoder *encoder;
3230 	u32 enabled_irqs = 0;
3231 
3232 	for_each_intel_encoder(&dev_priv->drm, encoder)
3233 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3234 			enabled_irqs |= hpd[encoder->hpd_pin];
3235 
3236 	return enabled_irqs;
3237 }
3238 
3239 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3240 {
3241 	u32 hotplug;
3242 
3243 	/*
3244 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3245 	 * duration to 2ms (which is the minimum in the Display Port spec).
3246 	 * The pulse duration bits are reserved on LPT+.
3247 	 */
3248 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3249 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3250 		     PORTC_PULSE_DURATION_MASK |
3251 		     PORTD_PULSE_DURATION_MASK);
3252 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3253 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3254 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3255 	/*
3256 	 * When CPU and PCH are on the same package, port A
3257 	 * HPD must be enabled in both north and south.
3258 	 */
3259 	if (HAS_PCH_LPT_LP(dev_priv))
3260 		hotplug |= PORTA_HOTPLUG_ENABLE;
3261 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3262 }
3263 
3264 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3265 {
3266 	u32 hotplug_irqs, enabled_irqs;
3267 
3268 	if (HAS_PCH_IBX(dev_priv)) {
3269 		hotplug_irqs = SDE_HOTPLUG_MASK;
3270 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3271 	} else {
3272 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3273 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3274 	}
3275 
3276 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3277 
3278 	ibx_hpd_detection_setup(dev_priv);
3279 }
3280 
3281 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3282 {
3283 	u32 val, hotplug;
3284 
3285 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3286 	if (HAS_PCH_CNP(dev_priv)) {
3287 		val = I915_READ(SOUTH_CHICKEN1);
3288 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3289 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3290 		I915_WRITE(SOUTH_CHICKEN1, val);
3291 	}
3292 
3293 	/* Enable digital hotplug on the PCH */
3294 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3295 	hotplug |= PORTA_HOTPLUG_ENABLE |
3296 		   PORTB_HOTPLUG_ENABLE |
3297 		   PORTC_HOTPLUG_ENABLE |
3298 		   PORTD_HOTPLUG_ENABLE;
3299 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3300 
3301 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3302 	hotplug |= PORTE_HOTPLUG_ENABLE;
3303 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3304 }
3305 
3306 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3307 {
3308 	u32 hotplug_irqs, enabled_irqs;
3309 
3310 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3311 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3312 
3313 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3314 
3315 	spt_hpd_detection_setup(dev_priv);
3316 }
3317 
3318 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3319 {
3320 	u32 hotplug;
3321 
3322 	/*
3323 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3324 	 * duration to 2ms (which is the minimum in the Display Port spec)
3325 	 * The pulse duration bits are reserved on HSW+.
3326 	 */
3327 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3328 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3329 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3330 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3331 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3332 }
3333 
3334 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3335 {
3336 	u32 hotplug_irqs, enabled_irqs;
3337 
3338 	if (INTEL_GEN(dev_priv) >= 8) {
3339 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3340 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3341 
3342 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3343 	} else if (INTEL_GEN(dev_priv) >= 7) {
3344 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3345 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3346 
3347 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3348 	} else {
3349 		hotplug_irqs = DE_DP_A_HOTPLUG;
3350 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3351 
3352 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3353 	}
3354 
3355 	ilk_hpd_detection_setup(dev_priv);
3356 
3357 	ibx_hpd_irq_setup(dev_priv);
3358 }
3359 
3360 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3361 				      u32 enabled_irqs)
3362 {
3363 	u32 hotplug;
3364 
3365 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3366 	hotplug |= PORTA_HOTPLUG_ENABLE |
3367 		   PORTB_HOTPLUG_ENABLE |
3368 		   PORTC_HOTPLUG_ENABLE;
3369 
3370 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3371 		      hotplug, enabled_irqs);
3372 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3373 
3374 	/*
3375 	 * For BXT invert bit has to be set based on AOB design
3376 	 * for HPD detection logic, update it based on VBT fields.
3377 	 */
3378 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3379 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3380 		hotplug |= BXT_DDIA_HPD_INVERT;
3381 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3382 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3383 		hotplug |= BXT_DDIB_HPD_INVERT;
3384 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3385 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3386 		hotplug |= BXT_DDIC_HPD_INVERT;
3387 
3388 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3389 }
3390 
3391 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3392 {
3393 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3394 }
3395 
3396 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3397 {
3398 	u32 hotplug_irqs, enabled_irqs;
3399 
3400 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3401 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3402 
3403 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3404 
3405 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3406 }
3407 
3408 static void ibx_irq_postinstall(struct drm_device *dev)
3409 {
3410 	struct drm_i915_private *dev_priv = to_i915(dev);
3411 	u32 mask;
3412 
3413 	if (HAS_PCH_NOP(dev_priv))
3414 		return;
3415 
3416 	if (HAS_PCH_IBX(dev_priv))
3417 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3418 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3419 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3420 	else
3421 		mask = SDE_GMBUS_CPT;
3422 
3423 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3424 	I915_WRITE(SDEIMR, ~mask);
3425 
3426 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3427 	    HAS_PCH_LPT(dev_priv))
3428 		ibx_hpd_detection_setup(dev_priv);
3429 	else
3430 		spt_hpd_detection_setup(dev_priv);
3431 }
3432 
3433 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3434 {
3435 	struct drm_i915_private *dev_priv = to_i915(dev);
3436 	u32 pm_irqs, gt_irqs;
3437 
3438 	pm_irqs = gt_irqs = 0;
3439 
3440 	dev_priv->gt_irq_mask = ~0;
3441 	if (HAS_L3_DPF(dev_priv)) {
3442 		/* L3 parity interrupt is always unmasked. */
3443 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3444 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3445 	}
3446 
3447 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3448 	if (IS_GEN5(dev_priv)) {
3449 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3450 	} else {
3451 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3452 	}
3453 
3454 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3455 
3456 	if (INTEL_GEN(dev_priv) >= 6) {
3457 		/*
3458 		 * RPS interrupts will get enabled/disabled on demand when RPS
3459 		 * itself is enabled/disabled.
3460 		 */
3461 		if (HAS_VEBOX(dev_priv)) {
3462 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3463 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3464 		}
3465 
3466 		dev_priv->pm_imr = 0xffffffff;
3467 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3468 	}
3469 }
3470 
3471 static int ironlake_irq_postinstall(struct drm_device *dev)
3472 {
3473 	struct drm_i915_private *dev_priv = to_i915(dev);
3474 	u32 display_mask, extra_mask;
3475 
3476 	if (INTEL_GEN(dev_priv) >= 7) {
3477 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3478 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3479 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3480 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3481 			      DE_DP_A_HOTPLUG_IVB);
3482 	} else {
3483 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3484 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3485 				DE_PIPEA_CRC_DONE | DE_POISON);
3486 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3487 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3488 			      DE_DP_A_HOTPLUG);
3489 	}
3490 
3491 	dev_priv->irq_mask = ~display_mask;
3492 
3493 	ibx_irq_pre_postinstall(dev);
3494 
3495 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3496 
3497 	gen5_gt_irq_postinstall(dev);
3498 
3499 	ilk_hpd_detection_setup(dev_priv);
3500 
3501 	ibx_irq_postinstall(dev);
3502 
3503 	if (IS_IRONLAKE_M(dev_priv)) {
3504 		/* Enable PCU event interrupts
3505 		 *
3506 		 * spinlocking not required here for correctness since interrupt
3507 		 * setup is guaranteed to run in single-threaded context. But we
3508 		 * need it to make the assert_spin_locked happy. */
3509 		spin_lock_irq(&dev_priv->irq_lock);
3510 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3511 		spin_unlock_irq(&dev_priv->irq_lock);
3512 	}
3513 
3514 	return 0;
3515 }
3516 
3517 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3518 {
3519 	lockdep_assert_held(&dev_priv->irq_lock);
3520 
3521 	if (dev_priv->display_irqs_enabled)
3522 		return;
3523 
3524 	dev_priv->display_irqs_enabled = true;
3525 
3526 	if (intel_irqs_enabled(dev_priv)) {
3527 		vlv_display_irq_reset(dev_priv);
3528 		vlv_display_irq_postinstall(dev_priv);
3529 	}
3530 }
3531 
3532 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3533 {
3534 	lockdep_assert_held(&dev_priv->irq_lock);
3535 
3536 	if (!dev_priv->display_irqs_enabled)
3537 		return;
3538 
3539 	dev_priv->display_irqs_enabled = false;
3540 
3541 	if (intel_irqs_enabled(dev_priv))
3542 		vlv_display_irq_reset(dev_priv);
3543 }
3544 
3545 
3546 static int valleyview_irq_postinstall(struct drm_device *dev)
3547 {
3548 	struct drm_i915_private *dev_priv = to_i915(dev);
3549 
3550 	gen5_gt_irq_postinstall(dev);
3551 
3552 	spin_lock_irq(&dev_priv->irq_lock);
3553 	if (dev_priv->display_irqs_enabled)
3554 		vlv_display_irq_postinstall(dev_priv);
3555 	spin_unlock_irq(&dev_priv->irq_lock);
3556 
3557 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3558 	POSTING_READ(VLV_MASTER_IER);
3559 
3560 	return 0;
3561 }
3562 
3563 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3564 {
3565 	/* These are interrupts we'll toggle with the ring mask register */
3566 	uint32_t gt_interrupts[] = {
3567 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3568 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3569 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3570 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3571 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3572 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3573 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3574 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3575 		0,
3576 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3577 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3578 		};
3579 
3580 	if (HAS_L3_DPF(dev_priv))
3581 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3582 
3583 	dev_priv->pm_ier = 0x0;
3584 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3585 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3586 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3587 	/*
3588 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3589 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3590 	 */
3591 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3592 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3593 }
3594 
3595 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3596 {
3597 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3598 	uint32_t de_pipe_enables;
3599 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3600 	u32 de_port_enables;
3601 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3602 	enum pipe pipe;
3603 
3604 	if (INTEL_GEN(dev_priv) >= 9) {
3605 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3606 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3607 				  GEN9_AUX_CHANNEL_D;
3608 		if (IS_GEN9_LP(dev_priv))
3609 			de_port_masked |= BXT_DE_PORT_GMBUS;
3610 	} else {
3611 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3612 	}
3613 
3614 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3615 					   GEN8_PIPE_FIFO_UNDERRUN;
3616 
3617 	de_port_enables = de_port_masked;
3618 	if (IS_GEN9_LP(dev_priv))
3619 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3620 	else if (IS_BROADWELL(dev_priv))
3621 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3622 
3623 	for_each_pipe(dev_priv, pipe) {
3624 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3625 
3626 		if (intel_display_power_is_enabled(dev_priv,
3627 				POWER_DOMAIN_PIPE(pipe)))
3628 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3629 					  dev_priv->de_irq_mask[pipe],
3630 					  de_pipe_enables);
3631 	}
3632 
3633 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3634 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3635 
3636 	if (IS_GEN9_LP(dev_priv))
3637 		bxt_hpd_detection_setup(dev_priv);
3638 	else if (IS_BROADWELL(dev_priv))
3639 		ilk_hpd_detection_setup(dev_priv);
3640 }
3641 
3642 static int gen8_irq_postinstall(struct drm_device *dev)
3643 {
3644 	struct drm_i915_private *dev_priv = to_i915(dev);
3645 
3646 	if (HAS_PCH_SPLIT(dev_priv))
3647 		ibx_irq_pre_postinstall(dev);
3648 
3649 	gen8_gt_irq_postinstall(dev_priv);
3650 	gen8_de_irq_postinstall(dev_priv);
3651 
3652 	if (HAS_PCH_SPLIT(dev_priv))
3653 		ibx_irq_postinstall(dev);
3654 
3655 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3656 	POSTING_READ(GEN8_MASTER_IRQ);
3657 
3658 	return 0;
3659 }
3660 
3661 static int cherryview_irq_postinstall(struct drm_device *dev)
3662 {
3663 	struct drm_i915_private *dev_priv = to_i915(dev);
3664 
3665 	gen8_gt_irq_postinstall(dev_priv);
3666 
3667 	spin_lock_irq(&dev_priv->irq_lock);
3668 	if (dev_priv->display_irqs_enabled)
3669 		vlv_display_irq_postinstall(dev_priv);
3670 	spin_unlock_irq(&dev_priv->irq_lock);
3671 
3672 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3673 	POSTING_READ(GEN8_MASTER_IRQ);
3674 
3675 	return 0;
3676 }
3677 
3678 static void i8xx_irq_reset(struct drm_device *dev)
3679 {
3680 	struct drm_i915_private *dev_priv = to_i915(dev);
3681 
3682 	i9xx_pipestat_irq_reset(dev_priv);
3683 
3684 	I915_WRITE16(HWSTAM, 0xffff);
3685 
3686 	GEN2_IRQ_RESET();
3687 }
3688 
3689 static int i8xx_irq_postinstall(struct drm_device *dev)
3690 {
3691 	struct drm_i915_private *dev_priv = to_i915(dev);
3692 	u16 enable_mask;
3693 
3694 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3695 			    I915_ERROR_MEMORY_REFRESH));
3696 
3697 	/* Unmask the interrupts that we always want on. */
3698 	dev_priv->irq_mask =
3699 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3700 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3701 
3702 	enable_mask =
3703 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3704 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3705 		I915_USER_INTERRUPT;
3706 
3707 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3708 
3709 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3710 	 * just to make the assert_spin_locked check happy. */
3711 	spin_lock_irq(&dev_priv->irq_lock);
3712 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3713 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3714 	spin_unlock_irq(&dev_priv->irq_lock);
3715 
3716 	return 0;
3717 }
3718 
3719 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3720 {
3721 	struct drm_device *dev = arg;
3722 	struct drm_i915_private *dev_priv = to_i915(dev);
3723 	irqreturn_t ret = IRQ_NONE;
3724 
3725 	if (!intel_irqs_enabled(dev_priv))
3726 		return IRQ_NONE;
3727 
3728 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3729 	disable_rpm_wakeref_asserts(dev_priv);
3730 
3731 	do {
3732 		u32 pipe_stats[I915_MAX_PIPES] = {};
3733 		u16 iir;
3734 
3735 		iir = I915_READ16(IIR);
3736 		if (iir == 0)
3737 			break;
3738 
3739 		ret = IRQ_HANDLED;
3740 
3741 		/* Call regardless, as some status bits might not be
3742 		 * signalled in iir */
3743 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3744 
3745 		I915_WRITE16(IIR, iir);
3746 
3747 		if (iir & I915_USER_INTERRUPT)
3748 			notify_ring(dev_priv->engine[RCS]);
3749 
3750 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3751 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3752 
3753 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3754 	} while (0);
3755 
3756 	enable_rpm_wakeref_asserts(dev_priv);
3757 
3758 	return ret;
3759 }
3760 
3761 static void i915_irq_reset(struct drm_device *dev)
3762 {
3763 	struct drm_i915_private *dev_priv = to_i915(dev);
3764 
3765 	if (I915_HAS_HOTPLUG(dev_priv)) {
3766 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3767 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3768 	}
3769 
3770 	i9xx_pipestat_irq_reset(dev_priv);
3771 
3772 	I915_WRITE(HWSTAM, 0xffffffff);
3773 
3774 	GEN3_IRQ_RESET();
3775 }
3776 
3777 static int i915_irq_postinstall(struct drm_device *dev)
3778 {
3779 	struct drm_i915_private *dev_priv = to_i915(dev);
3780 	u32 enable_mask;
3781 
3782 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3783 			  I915_ERROR_MEMORY_REFRESH));
3784 
3785 	/* Unmask the interrupts that we always want on. */
3786 	dev_priv->irq_mask =
3787 		~(I915_ASLE_INTERRUPT |
3788 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3789 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3790 
3791 	enable_mask =
3792 		I915_ASLE_INTERRUPT |
3793 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3794 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3795 		I915_USER_INTERRUPT;
3796 
3797 	if (I915_HAS_HOTPLUG(dev_priv)) {
3798 		/* Enable in IER... */
3799 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3800 		/* and unmask in IMR */
3801 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3802 	}
3803 
3804 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3805 
3806 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3807 	 * just to make the assert_spin_locked check happy. */
3808 	spin_lock_irq(&dev_priv->irq_lock);
3809 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3810 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3811 	spin_unlock_irq(&dev_priv->irq_lock);
3812 
3813 	i915_enable_asle_pipestat(dev_priv);
3814 
3815 	return 0;
3816 }
3817 
3818 static irqreturn_t i915_irq_handler(int irq, void *arg)
3819 {
3820 	struct drm_device *dev = arg;
3821 	struct drm_i915_private *dev_priv = to_i915(dev);
3822 	irqreturn_t ret = IRQ_NONE;
3823 
3824 	if (!intel_irqs_enabled(dev_priv))
3825 		return IRQ_NONE;
3826 
3827 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3828 	disable_rpm_wakeref_asserts(dev_priv);
3829 
3830 	do {
3831 		u32 pipe_stats[I915_MAX_PIPES] = {};
3832 		u32 hotplug_status = 0;
3833 		u32 iir;
3834 
3835 		iir = I915_READ(IIR);
3836 		if (iir == 0)
3837 			break;
3838 
3839 		ret = IRQ_HANDLED;
3840 
3841 		if (I915_HAS_HOTPLUG(dev_priv) &&
3842 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3843 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3844 
3845 		/* Call regardless, as some status bits might not be
3846 		 * signalled in iir */
3847 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3848 
3849 		I915_WRITE(IIR, iir);
3850 
3851 		if (iir & I915_USER_INTERRUPT)
3852 			notify_ring(dev_priv->engine[RCS]);
3853 
3854 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3855 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3856 
3857 		if (hotplug_status)
3858 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3859 
3860 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3861 	} while (0);
3862 
3863 	enable_rpm_wakeref_asserts(dev_priv);
3864 
3865 	return ret;
3866 }
3867 
3868 static void i965_irq_reset(struct drm_device *dev)
3869 {
3870 	struct drm_i915_private *dev_priv = to_i915(dev);
3871 
3872 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3873 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3874 
3875 	i9xx_pipestat_irq_reset(dev_priv);
3876 
3877 	I915_WRITE(HWSTAM, 0xffffffff);
3878 
3879 	GEN3_IRQ_RESET();
3880 }
3881 
3882 static int i965_irq_postinstall(struct drm_device *dev)
3883 {
3884 	struct drm_i915_private *dev_priv = to_i915(dev);
3885 	u32 enable_mask;
3886 	u32 error_mask;
3887 
3888 	/*
3889 	 * Enable some error detection, note the instruction error mask
3890 	 * bit is reserved, so we leave it masked.
3891 	 */
3892 	if (IS_G4X(dev_priv)) {
3893 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3894 			       GM45_ERROR_MEM_PRIV |
3895 			       GM45_ERROR_CP_PRIV |
3896 			       I915_ERROR_MEMORY_REFRESH);
3897 	} else {
3898 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3899 			       I915_ERROR_MEMORY_REFRESH);
3900 	}
3901 	I915_WRITE(EMR, error_mask);
3902 
3903 	/* Unmask the interrupts that we always want on. */
3904 	dev_priv->irq_mask =
3905 		~(I915_ASLE_INTERRUPT |
3906 		  I915_DISPLAY_PORT_INTERRUPT |
3907 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3908 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3909 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3910 
3911 	enable_mask =
3912 		I915_ASLE_INTERRUPT |
3913 		I915_DISPLAY_PORT_INTERRUPT |
3914 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3915 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3916 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3917 		I915_USER_INTERRUPT;
3918 
3919 	if (IS_G4X(dev_priv))
3920 		enable_mask |= I915_BSD_USER_INTERRUPT;
3921 
3922 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3923 
3924 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3925 	 * just to make the assert_spin_locked check happy. */
3926 	spin_lock_irq(&dev_priv->irq_lock);
3927 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3928 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3929 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3930 	spin_unlock_irq(&dev_priv->irq_lock);
3931 
3932 	i915_enable_asle_pipestat(dev_priv);
3933 
3934 	return 0;
3935 }
3936 
3937 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3938 {
3939 	u32 hotplug_en;
3940 
3941 	lockdep_assert_held(&dev_priv->irq_lock);
3942 
3943 	/* Note HDMI and DP share hotplug bits */
3944 	/* enable bits are the same for all generations */
3945 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3946 	/* Programming the CRT detection parameters tends
3947 	   to generate a spurious hotplug event about three
3948 	   seconds later.  So just do it once.
3949 	*/
3950 	if (IS_G4X(dev_priv))
3951 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3952 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3953 
3954 	/* Ignore TV since it's buggy */
3955 	i915_hotplug_interrupt_update_locked(dev_priv,
3956 					     HOTPLUG_INT_EN_MASK |
3957 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3958 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3959 					     hotplug_en);
3960 }
3961 
3962 static irqreturn_t i965_irq_handler(int irq, void *arg)
3963 {
3964 	struct drm_device *dev = arg;
3965 	struct drm_i915_private *dev_priv = to_i915(dev);
3966 	irqreturn_t ret = IRQ_NONE;
3967 
3968 	if (!intel_irqs_enabled(dev_priv))
3969 		return IRQ_NONE;
3970 
3971 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3972 	disable_rpm_wakeref_asserts(dev_priv);
3973 
3974 	do {
3975 		u32 pipe_stats[I915_MAX_PIPES] = {};
3976 		u32 hotplug_status = 0;
3977 		u32 iir;
3978 
3979 		iir = I915_READ(IIR);
3980 		if (iir == 0)
3981 			break;
3982 
3983 		ret = IRQ_HANDLED;
3984 
3985 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3986 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3987 
3988 		/* Call regardless, as some status bits might not be
3989 		 * signalled in iir */
3990 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3991 
3992 		I915_WRITE(IIR, iir);
3993 
3994 		if (iir & I915_USER_INTERRUPT)
3995 			notify_ring(dev_priv->engine[RCS]);
3996 
3997 		if (iir & I915_BSD_USER_INTERRUPT)
3998 			notify_ring(dev_priv->engine[VCS]);
3999 
4000 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4001 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4002 
4003 		if (hotplug_status)
4004 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4005 
4006 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4007 	} while (0);
4008 
4009 	enable_rpm_wakeref_asserts(dev_priv);
4010 
4011 	return ret;
4012 }
4013 
4014 /**
4015  * intel_irq_init - initializes irq support
4016  * @dev_priv: i915 device instance
4017  *
4018  * This function initializes all the irq support including work items, timers
4019  * and all the vtables. It does not setup the interrupt itself though.
4020  */
4021 void intel_irq_init(struct drm_i915_private *dev_priv)
4022 {
4023 	struct drm_device *dev = &dev_priv->drm;
4024 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4025 	int i;
4026 
4027 	intel_hpd_init_work(dev_priv);
4028 
4029 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4030 
4031 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4032 	for (i = 0; i < MAX_L3_SLICES; ++i)
4033 		dev_priv->l3_parity.remap_info[i] = NULL;
4034 
4035 	if (HAS_GUC_SCHED(dev_priv))
4036 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4037 
4038 	/* Let's track the enabled rps events */
4039 	if (IS_VALLEYVIEW(dev_priv))
4040 		/* WaGsvRC0ResidencyMethod:vlv */
4041 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4042 	else
4043 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4044 
4045 	rps->pm_intrmsk_mbz = 0;
4046 
4047 	/*
4048 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4049 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4050 	 *
4051 	 * TODO: verify if this can be reproduced on VLV,CHV.
4052 	 */
4053 	if (INTEL_GEN(dev_priv) <= 7)
4054 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4055 
4056 	if (INTEL_GEN(dev_priv) >= 8)
4057 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4058 
4059 	if (IS_GEN2(dev_priv)) {
4060 		/* Gen2 doesn't have a hardware frame counter */
4061 		dev->max_vblank_count = 0;
4062 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4063 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4064 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4065 	} else {
4066 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4067 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4068 	}
4069 
4070 	/*
4071 	 * Opt out of the vblank disable timer on everything except gen2.
4072 	 * Gen2 doesn't have a hardware frame counter and so depends on
4073 	 * vblank interrupts to produce sane vblank seuquence numbers.
4074 	 */
4075 	if (!IS_GEN2(dev_priv))
4076 		dev->vblank_disable_immediate = true;
4077 
4078 	/* Most platforms treat the display irq block as an always-on
4079 	 * power domain. vlv/chv can disable it at runtime and need
4080 	 * special care to avoid writing any of the display block registers
4081 	 * outside of the power domain. We defer setting up the display irqs
4082 	 * in this case to the runtime pm.
4083 	 */
4084 	dev_priv->display_irqs_enabled = true;
4085 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4086 		dev_priv->display_irqs_enabled = false;
4087 
4088 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4089 
4090 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4091 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4092 
4093 	if (IS_CHERRYVIEW(dev_priv)) {
4094 		dev->driver->irq_handler = cherryview_irq_handler;
4095 		dev->driver->irq_preinstall = cherryview_irq_reset;
4096 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4097 		dev->driver->irq_uninstall = cherryview_irq_reset;
4098 		dev->driver->enable_vblank = i965_enable_vblank;
4099 		dev->driver->disable_vblank = i965_disable_vblank;
4100 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4101 	} else if (IS_VALLEYVIEW(dev_priv)) {
4102 		dev->driver->irq_handler = valleyview_irq_handler;
4103 		dev->driver->irq_preinstall = valleyview_irq_reset;
4104 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4105 		dev->driver->irq_uninstall = valleyview_irq_reset;
4106 		dev->driver->enable_vblank = i965_enable_vblank;
4107 		dev->driver->disable_vblank = i965_disable_vblank;
4108 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4109 	} else if (INTEL_GEN(dev_priv) >= 8) {
4110 		dev->driver->irq_handler = gen8_irq_handler;
4111 		dev->driver->irq_preinstall = gen8_irq_reset;
4112 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4113 		dev->driver->irq_uninstall = gen8_irq_reset;
4114 		dev->driver->enable_vblank = gen8_enable_vblank;
4115 		dev->driver->disable_vblank = gen8_disable_vblank;
4116 		if (IS_GEN9_LP(dev_priv))
4117 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4118 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4119 			 HAS_PCH_CNP(dev_priv))
4120 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4121 		else
4122 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4123 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4124 		dev->driver->irq_handler = ironlake_irq_handler;
4125 		dev->driver->irq_preinstall = ironlake_irq_reset;
4126 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4127 		dev->driver->irq_uninstall = ironlake_irq_reset;
4128 		dev->driver->enable_vblank = ironlake_enable_vblank;
4129 		dev->driver->disable_vblank = ironlake_disable_vblank;
4130 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4131 	} else {
4132 		if (IS_GEN2(dev_priv)) {
4133 			dev->driver->irq_preinstall = i8xx_irq_reset;
4134 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4135 			dev->driver->irq_handler = i8xx_irq_handler;
4136 			dev->driver->irq_uninstall = i8xx_irq_reset;
4137 			dev->driver->enable_vblank = i8xx_enable_vblank;
4138 			dev->driver->disable_vblank = i8xx_disable_vblank;
4139 		} else if (IS_GEN3(dev_priv)) {
4140 			dev->driver->irq_preinstall = i915_irq_reset;
4141 			dev->driver->irq_postinstall = i915_irq_postinstall;
4142 			dev->driver->irq_uninstall = i915_irq_reset;
4143 			dev->driver->irq_handler = i915_irq_handler;
4144 			dev->driver->enable_vblank = i8xx_enable_vblank;
4145 			dev->driver->disable_vblank = i8xx_disable_vblank;
4146 		} else {
4147 			dev->driver->irq_preinstall = i965_irq_reset;
4148 			dev->driver->irq_postinstall = i965_irq_postinstall;
4149 			dev->driver->irq_uninstall = i965_irq_reset;
4150 			dev->driver->irq_handler = i965_irq_handler;
4151 			dev->driver->enable_vblank = i965_enable_vblank;
4152 			dev->driver->disable_vblank = i965_disable_vblank;
4153 		}
4154 		if (I915_HAS_HOTPLUG(dev_priv))
4155 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4156 	}
4157 }
4158 
4159 /**
4160  * intel_irq_fini - deinitializes IRQ support
4161  * @i915: i915 device instance
4162  *
4163  * This function deinitializes all the IRQ support.
4164  */
4165 void intel_irq_fini(struct drm_i915_private *i915)
4166 {
4167 	int i;
4168 
4169 	for (i = 0; i < MAX_L3_SLICES; ++i)
4170 		kfree(i915->l3_parity.remap_info[i]);
4171 }
4172 
4173 /**
4174  * intel_irq_install - enables the hardware interrupt
4175  * @dev_priv: i915 device instance
4176  *
4177  * This function enables the hardware interrupt handling, but leaves the hotplug
4178  * handling still disabled. It is called after intel_irq_init().
4179  *
4180  * In the driver load and resume code we need working interrupts in a few places
4181  * but don't want to deal with the hassle of concurrent probe and hotplug
4182  * workers. Hence the split into this two-stage approach.
4183  */
4184 int intel_irq_install(struct drm_i915_private *dev_priv)
4185 {
4186 	/*
4187 	 * We enable some interrupt sources in our postinstall hooks, so mark
4188 	 * interrupts as enabled _before_ actually enabling them to avoid
4189 	 * special cases in our ordering checks.
4190 	 */
4191 	dev_priv->runtime_pm.irqs_enabled = true;
4192 
4193 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4194 }
4195 
4196 /**
4197  * intel_irq_uninstall - finilizes all irq handling
4198  * @dev_priv: i915 device instance
4199  *
4200  * This stops interrupt and hotplug handling and unregisters and frees all
4201  * resources acquired in the init functions.
4202  */
4203 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4204 {
4205 	drm_irq_uninstall(&dev_priv->drm);
4206 	intel_hpd_cancel_work(dev_priv);
4207 	dev_priv->runtime_pm.irqs_enabled = false;
4208 }
4209 
4210 /**
4211  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4212  * @dev_priv: i915 device instance
4213  *
4214  * This function is used to disable interrupts at runtime, both in the runtime
4215  * pm and the system suspend/resume code.
4216  */
4217 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4218 {
4219 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4220 	dev_priv->runtime_pm.irqs_enabled = false;
4221 	synchronize_irq(dev_priv->drm.irq);
4222 }
4223 
4224 /**
4225  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4226  * @dev_priv: i915 device instance
4227  *
4228  * This function is used to enable interrupts at runtime, both in the runtime
4229  * pm and the system suspend/resume code.
4230  */
4231 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4232 {
4233 	dev_priv->runtime_pm.irqs_enabled = true;
4234 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4235 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4236 }
4237