xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision d236d361)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174 
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 				     uint32_t mask,
179 				     uint32_t bits)
180 {
181 	uint32_t val;
182 
183 	lockdep_assert_held(&dev_priv->irq_lock);
184 	WARN_ON(bits & ~mask);
185 
186 	val = I915_READ(PORT_HOTPLUG_EN);
187 	val &= ~mask;
188 	val |= bits;
189 	I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191 
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 				   uint32_t mask,
206 				   uint32_t bits)
207 {
208 	spin_lock_irq(&dev_priv->irq_lock);
209 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 	spin_unlock_irq(&dev_priv->irq_lock);
211 }
212 
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 			    uint32_t interrupt_mask,
221 			    uint32_t enabled_irq_mask)
222 {
223 	uint32_t new_val;
224 
225 	lockdep_assert_held(&dev_priv->irq_lock);
226 
227 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
228 
229 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 		return;
231 
232 	new_val = dev_priv->irq_mask;
233 	new_val &= ~interrupt_mask;
234 	new_val |= (~enabled_irq_mask & interrupt_mask);
235 
236 	if (new_val != dev_priv->irq_mask) {
237 		dev_priv->irq_mask = new_val;
238 		I915_WRITE(DEIMR, dev_priv->irq_mask);
239 		POSTING_READ(DEIMR);
240 	}
241 }
242 
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 			      uint32_t interrupt_mask,
251 			      uint32_t enabled_irq_mask)
252 {
253 	lockdep_assert_held(&dev_priv->irq_lock);
254 
255 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
256 
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	dev_priv->gt_irq_mask &= ~interrupt_mask;
261 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 	POSTING_READ_FW(GTIMR);
269 }
270 
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275 
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280 
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285 
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290 
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 			      uint32_t interrupt_mask,
299 			      uint32_t enabled_irq_mask)
300 {
301 	uint32_t new_val;
302 
303 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
304 
305 	lockdep_assert_held(&dev_priv->irq_lock);
306 
307 	new_val = dev_priv->pm_imr;
308 	new_val &= ~interrupt_mask;
309 	new_val |= (~enabled_irq_mask & interrupt_mask);
310 
311 	if (new_val != dev_priv->pm_imr) {
312 		dev_priv->pm_imr = new_val;
313 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 		POSTING_READ(gen6_pm_imr(dev_priv));
315 	}
316 }
317 
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 		return;
322 
323 	snb_update_pm_irq(dev_priv, mask, mask);
324 }
325 
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_mask_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	lockdep_assert_held(&dev_priv->irq_lock);
344 
345 	I915_WRITE(reg, reset_mask);
346 	I915_WRITE(reg, reset_mask);
347 	POSTING_READ(reg);
348 }
349 
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 	lockdep_assert_held(&dev_priv->irq_lock);
353 
354 	dev_priv->pm_ier |= enable_mask;
355 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 	gen6_unmask_pm_irq(dev_priv, enable_mask);
357 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359 
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 	lockdep_assert_held(&dev_priv->irq_lock);
363 
364 	dev_priv->pm_ier &= ~disable_mask;
365 	__gen6_mask_pm_irq(dev_priv, disable_mask);
366 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 	/* though a barrier is missing here, but don't really need a one */
368 }
369 
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 	spin_lock_irq(&dev_priv->irq_lock);
373 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 	dev_priv->rps.pm_iir = 0;
375 	spin_unlock_irq(&dev_priv->irq_lock);
376 }
377 
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 		return;
382 
383 	spin_lock_irq(&dev_priv->irq_lock);
384 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 	dev_priv->rps.interrupts_enabled = true;
387 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388 
389 	spin_unlock_irq(&dev_priv->irq_lock);
390 }
391 
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 		return;
396 
397 	spin_lock_irq(&dev_priv->irq_lock);
398 	dev_priv->rps.interrupts_enabled = false;
399 
400 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401 
402 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403 
404 	spin_unlock_irq(&dev_priv->irq_lock);
405 	synchronize_irq(dev_priv->drm.irq);
406 
407 	/* Now that we will not be generating any more work, flush any
408 	 * outsanding tasks. As we are called on the RPS idle path,
409 	 * we will reset the GPU to minimum frequencies, so the current
410 	 * state of the worker can be discarded.
411 	 */
412 	cancel_work_sync(&dev_priv->rps.work);
413 	gen6_reset_rps_interrupts(dev_priv);
414 }
415 
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 	spin_lock_irq(&dev_priv->irq_lock);
419 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 	spin_unlock_irq(&dev_priv->irq_lock);
421 }
422 
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 	spin_lock_irq(&dev_priv->irq_lock);
426 	if (!dev_priv->guc.interrupts_enabled) {
427 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 				       dev_priv->pm_guc_events);
429 		dev_priv->guc.interrupts_enabled = true;
430 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 	}
432 	spin_unlock_irq(&dev_priv->irq_lock);
433 }
434 
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 	spin_lock_irq(&dev_priv->irq_lock);
438 	dev_priv->guc.interrupts_enabled = false;
439 
440 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441 
442 	spin_unlock_irq(&dev_priv->irq_lock);
443 	synchronize_irq(dev_priv->drm.irq);
444 
445 	gen9_reset_guc_interrupts(dev_priv);
446 }
447 
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 				uint32_t interrupt_mask,
456 				uint32_t enabled_irq_mask)
457 {
458 	uint32_t new_val;
459 	uint32_t old_val;
460 
461 	lockdep_assert_held(&dev_priv->irq_lock);
462 
463 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
464 
465 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 		return;
467 
468 	old_val = I915_READ(GEN8_DE_PORT_IMR);
469 
470 	new_val = old_val;
471 	new_val &= ~interrupt_mask;
472 	new_val |= (~enabled_irq_mask & interrupt_mask);
473 
474 	if (new_val != old_val) {
475 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 		POSTING_READ(GEN8_DE_PORT_IMR);
477 	}
478 }
479 
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 			 enum pipe pipe,
489 			 uint32_t interrupt_mask,
490 			 uint32_t enabled_irq_mask)
491 {
492 	uint32_t new_val;
493 
494 	lockdep_assert_held(&dev_priv->irq_lock);
495 
496 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
497 
498 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 		return;
500 
501 	new_val = dev_priv->de_irq_mask[pipe];
502 	new_val &= ~interrupt_mask;
503 	new_val |= (~enabled_irq_mask & interrupt_mask);
504 
505 	if (new_val != dev_priv->de_irq_mask[pipe]) {
506 		dev_priv->de_irq_mask[pipe] = new_val;
507 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 	}
510 }
511 
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 				  uint32_t interrupt_mask,
520 				  uint32_t enabled_irq_mask)
521 {
522 	uint32_t sdeimr = I915_READ(SDEIMR);
523 	sdeimr &= ~interrupt_mask;
524 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
525 
526 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
527 
528 	lockdep_assert_held(&dev_priv->irq_lock);
529 
530 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 		return;
532 
533 	I915_WRITE(SDEIMR, sdeimr);
534 	POSTING_READ(SDEIMR);
535 }
536 
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 		       u32 enable_mask, u32 status_mask)
540 {
541 	i915_reg_t reg = PIPESTAT(pipe);
542 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543 
544 	lockdep_assert_held(&dev_priv->irq_lock);
545 	WARN_ON(!intel_irqs_enabled(dev_priv));
546 
547 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 		      pipe_name(pipe), enable_mask, status_mask))
551 		return;
552 
553 	if ((pipestat & enable_mask) == enable_mask)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557 
558 	/* Enable the interrupt, clear any pending status */
559 	pipestat |= enable_mask | status_mask;
560 	I915_WRITE(reg, pipestat);
561 	POSTING_READ(reg);
562 }
563 
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 		        u32 enable_mask, u32 status_mask)
567 {
568 	i915_reg_t reg = PIPESTAT(pipe);
569 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570 
571 	lockdep_assert_held(&dev_priv->irq_lock);
572 	WARN_ON(!intel_irqs_enabled(dev_priv));
573 
574 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 		      pipe_name(pipe), enable_mask, status_mask))
578 		return;
579 
580 	if ((pipestat & enable_mask) == 0)
581 		return;
582 
583 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584 
585 	pipestat &= ~enable_mask;
586 	I915_WRITE(reg, pipestat);
587 	POSTING_READ(reg);
588 }
589 
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 	u32 enable_mask = status_mask << 16;
593 
594 	/*
595 	 * On pipe A we don't support the PSR interrupt yet,
596 	 * on pipe B and C the same bit MBZ.
597 	 */
598 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 		return 0;
600 	/*
601 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 	 * A the same bit is for perf counters which we don't use either.
603 	 */
604 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 		return 0;
606 
607 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614 
615 	return enable_mask;
616 }
617 
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 		     u32 status_mask)
621 {
622 	u32 enable_mask;
623 
624 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 							   status_mask);
627 	else
628 		enable_mask = status_mask << 16;
629 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631 
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 		      u32 status_mask)
635 {
636 	u32 enable_mask;
637 
638 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 							   status_mask);
641 	else
642 		enable_mask = status_mask << 16;
643 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645 
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 		return;
654 
655 	spin_lock_irq(&dev_priv->irq_lock);
656 
657 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 	if (INTEL_GEN(dev_priv) >= 4)
659 		i915_enable_pipestat(dev_priv, PIPE_A,
660 				     PIPE_LEGACY_BLC_EVENT_STATUS);
661 
662 	spin_unlock_irq(&dev_priv->irq_lock);
663 }
664 
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714 
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 	struct drm_i915_private *dev_priv = to_i915(dev);
721 	i915_reg_t high_frame, low_frame;
722 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
724 								pipe);
725 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
726 	unsigned long irqflags;
727 
728 	htotal = mode->crtc_htotal;
729 	hsync_start = mode->crtc_hsync_start;
730 	vbl_start = mode->crtc_vblank_start;
731 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
733 
734 	/* Convert to pixel count */
735 	vbl_start *= htotal;
736 
737 	/* Start of vblank event occurs at start of hsync */
738 	vbl_start -= htotal - hsync_start;
739 
740 	high_frame = PIPEFRAME(pipe);
741 	low_frame = PIPEFRAMEPIXEL(pipe);
742 
743 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
744 
745 	/*
746 	 * High & low register fields aren't synchronized, so make sure
747 	 * we get a low value that's stable across two reads of the high
748 	 * register.
749 	 */
750 	do {
751 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 		low   = I915_READ_FW(low_frame);
753 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
754 	} while (high1 != high2);
755 
756 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
757 
758 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 	pixel = low & PIPE_PIXEL_MASK;
760 	low >>= PIPE_FRAME_LOW_SHIFT;
761 
762 	/*
763 	 * The frame counter increments at beginning of active.
764 	 * Cook up a vblank counter by also checking the pixel
765 	 * counter against vblank start.
766 	 */
767 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769 
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 	struct drm_i915_private *dev_priv = to_i915(dev);
773 
774 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776 
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 	struct drm_device *dev = crtc->base.dev;
781 	struct drm_i915_private *dev_priv = to_i915(dev);
782 	const struct drm_display_mode *mode = &crtc->base.hwmode;
783 	enum pipe pipe = crtc->pipe;
784 	int position, vtotal;
785 
786 	if (!crtc->active)
787 		return -1;
788 
789 	vtotal = mode->crtc_vtotal;
790 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
791 		vtotal /= 2;
792 
793 	if (IS_GEN2(dev_priv))
794 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
795 	else
796 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
797 
798 	/*
799 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
800 	 * read it just before the start of vblank.  So try it again
801 	 * so we don't accidentally end up spanning a vblank frame
802 	 * increment, causing the pipe_update_end() code to squak at us.
803 	 *
804 	 * The nature of this problem means we can't simply check the ISR
805 	 * bit and return the vblank start value; nor can we use the scanline
806 	 * debug register in the transcoder as it appears to have the same
807 	 * problem.  We may need to extend this to include other platforms,
808 	 * but so far testing only shows the problem on HSW.
809 	 */
810 	if (HAS_DDI(dev_priv) && !position) {
811 		int i, temp;
812 
813 		for (i = 0; i < 100; i++) {
814 			udelay(1);
815 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
816 			if (temp != position) {
817 				position = temp;
818 				break;
819 			}
820 		}
821 	}
822 
823 	/*
824 	 * See update_scanline_offset() for the details on the
825 	 * scanline_offset adjustment.
826 	 */
827 	return (position + crtc->scanline_offset) % vtotal;
828 }
829 
830 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
831 				    unsigned int flags, int *vpos, int *hpos,
832 				    ktime_t *stime, ktime_t *etime,
833 				    const struct drm_display_mode *mode)
834 {
835 	struct drm_i915_private *dev_priv = to_i915(dev);
836 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
837 								pipe);
838 	int position;
839 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
840 	bool in_vbl = true;
841 	int ret = 0;
842 	unsigned long irqflags;
843 
844 	if (WARN_ON(!mode->crtc_clock)) {
845 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
846 				 "pipe %c\n", pipe_name(pipe));
847 		return 0;
848 	}
849 
850 	htotal = mode->crtc_htotal;
851 	hsync_start = mode->crtc_hsync_start;
852 	vtotal = mode->crtc_vtotal;
853 	vbl_start = mode->crtc_vblank_start;
854 	vbl_end = mode->crtc_vblank_end;
855 
856 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
857 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
858 		vbl_end /= 2;
859 		vtotal /= 2;
860 	}
861 
862 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
863 
864 	/*
865 	 * Lock uncore.lock, as we will do multiple timing critical raw
866 	 * register reads, potentially with preemption disabled, so the
867 	 * following code must not block on uncore.lock.
868 	 */
869 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
870 
871 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
872 
873 	/* Get optional system timestamp before query. */
874 	if (stime)
875 		*stime = ktime_get();
876 
877 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
878 		/* No obvious pixelcount register. Only query vertical
879 		 * scanout position from Display scan line register.
880 		 */
881 		position = __intel_get_crtc_scanline(intel_crtc);
882 	} else {
883 		/* Have access to pixelcount since start of frame.
884 		 * We can split this into vertical and horizontal
885 		 * scanout position.
886 		 */
887 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
888 
889 		/* convert to pixel counts */
890 		vbl_start *= htotal;
891 		vbl_end *= htotal;
892 		vtotal *= htotal;
893 
894 		/*
895 		 * In interlaced modes, the pixel counter counts all pixels,
896 		 * so one field will have htotal more pixels. In order to avoid
897 		 * the reported position from jumping backwards when the pixel
898 		 * counter is beyond the length of the shorter field, just
899 		 * clamp the position the length of the shorter field. This
900 		 * matches how the scanline counter based position works since
901 		 * the scanline counter doesn't count the two half lines.
902 		 */
903 		if (position >= vtotal)
904 			position = vtotal - 1;
905 
906 		/*
907 		 * Start of vblank interrupt is triggered at start of hsync,
908 		 * just prior to the first active line of vblank. However we
909 		 * consider lines to start at the leading edge of horizontal
910 		 * active. So, should we get here before we've crossed into
911 		 * the horizontal active of the first line in vblank, we would
912 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
913 		 * always add htotal-hsync_start to the current pixel position.
914 		 */
915 		position = (position + htotal - hsync_start) % vtotal;
916 	}
917 
918 	/* Get optional system timestamp after query. */
919 	if (etime)
920 		*etime = ktime_get();
921 
922 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
923 
924 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
925 
926 	in_vbl = position >= vbl_start && position < vbl_end;
927 
928 	/*
929 	 * While in vblank, position will be negative
930 	 * counting up towards 0 at vbl_end. And outside
931 	 * vblank, position will be positive counting
932 	 * up since vbl_end.
933 	 */
934 	if (position >= vbl_start)
935 		position -= vbl_end;
936 	else
937 		position += vtotal - vbl_end;
938 
939 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
940 		*vpos = position;
941 		*hpos = 0;
942 	} else {
943 		*vpos = position / htotal;
944 		*hpos = position - (*vpos * htotal);
945 	}
946 
947 	/* In vblank? */
948 	if (in_vbl)
949 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
950 
951 	return ret;
952 }
953 
954 int intel_get_crtc_scanline(struct intel_crtc *crtc)
955 {
956 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
957 	unsigned long irqflags;
958 	int position;
959 
960 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
961 	position = __intel_get_crtc_scanline(crtc);
962 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
963 
964 	return position;
965 }
966 
967 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
968 			      int *max_error,
969 			      struct timeval *vblank_time,
970 			      unsigned flags)
971 {
972 	struct drm_i915_private *dev_priv = to_i915(dev);
973 	struct intel_crtc *crtc;
974 
975 	if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
976 		DRM_ERROR("Invalid crtc %u\n", pipe);
977 		return -EINVAL;
978 	}
979 
980 	/* Get drm_crtc to timestamp: */
981 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
982 	if (crtc == NULL) {
983 		DRM_ERROR("Invalid crtc %u\n", pipe);
984 		return -EINVAL;
985 	}
986 
987 	if (!crtc->base.hwmode.crtc_clock) {
988 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
989 		return -EBUSY;
990 	}
991 
992 	/* Helper routine in DRM core does all the work: */
993 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
994 						     vblank_time, flags,
995 						     &crtc->base.hwmode);
996 }
997 
998 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
999 {
1000 	u32 busy_up, busy_down, max_avg, min_avg;
1001 	u8 new_delay;
1002 
1003 	spin_lock(&mchdev_lock);
1004 
1005 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1006 
1007 	new_delay = dev_priv->ips.cur_delay;
1008 
1009 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1010 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1011 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1012 	max_avg = I915_READ(RCBMAXAVG);
1013 	min_avg = I915_READ(RCBMINAVG);
1014 
1015 	/* Handle RCS change request from hw */
1016 	if (busy_up > max_avg) {
1017 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1018 			new_delay = dev_priv->ips.cur_delay - 1;
1019 		if (new_delay < dev_priv->ips.max_delay)
1020 			new_delay = dev_priv->ips.max_delay;
1021 	} else if (busy_down < min_avg) {
1022 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1023 			new_delay = dev_priv->ips.cur_delay + 1;
1024 		if (new_delay > dev_priv->ips.min_delay)
1025 			new_delay = dev_priv->ips.min_delay;
1026 	}
1027 
1028 	if (ironlake_set_drps(dev_priv, new_delay))
1029 		dev_priv->ips.cur_delay = new_delay;
1030 
1031 	spin_unlock(&mchdev_lock);
1032 
1033 	return;
1034 }
1035 
1036 static void notify_ring(struct intel_engine_cs *engine)
1037 {
1038 	struct drm_i915_gem_request *rq = NULL;
1039 	struct intel_wait *wait;
1040 
1041 	atomic_inc(&engine->irq_count);
1042 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1043 
1044 	spin_lock(&engine->breadcrumbs.irq_lock);
1045 	wait = engine->breadcrumbs.irq_wait;
1046 	if (wait) {
1047 		/* We use a callback from the dma-fence to submit
1048 		 * requests after waiting on our own requests. To
1049 		 * ensure minimum delay in queuing the next request to
1050 		 * hardware, signal the fence now rather than wait for
1051 		 * the signaler to be woken up. We still wake up the
1052 		 * waiter in order to handle the irq-seqno coherency
1053 		 * issues (we may receive the interrupt before the
1054 		 * seqno is written, see __i915_request_irq_complete())
1055 		 * and to handle coalescing of multiple seqno updates
1056 		 * and many waiters.
1057 		 */
1058 		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1059 				      wait->seqno) &&
1060 		    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1061 			      &wait->request->fence.flags))
1062 			rq = i915_gem_request_get(wait->request);
1063 
1064 		wake_up_process(wait->tsk);
1065 	} else {
1066 		__intel_engine_disarm_breadcrumbs(engine);
1067 	}
1068 	spin_unlock(&engine->breadcrumbs.irq_lock);
1069 
1070 	if (rq) {
1071 		dma_fence_signal(&rq->fence);
1072 		i915_gem_request_put(rq);
1073 	}
1074 
1075 	trace_intel_engine_notify(engine, wait);
1076 }
1077 
1078 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1079 			struct intel_rps_ei *ei)
1080 {
1081 	ei->ktime = ktime_get_raw();
1082 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1083 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1084 }
1085 
1086 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1087 {
1088 	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1089 }
1090 
1091 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1092 {
1093 	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1094 	struct intel_rps_ei now;
1095 	u32 events = 0;
1096 
1097 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1098 		return 0;
1099 
1100 	vlv_c0_read(dev_priv, &now);
1101 
1102 	if (prev->ktime) {
1103 		u64 time, c0;
1104 		u32 render, media;
1105 
1106 		time = ktime_us_delta(now.ktime, prev->ktime);
1107 
1108 		time *= dev_priv->czclk_freq;
1109 
1110 		/* Workload can be split between render + media,
1111 		 * e.g. SwapBuffers being blitted in X after being rendered in
1112 		 * mesa. To account for this we need to combine both engines
1113 		 * into our activity counter.
1114 		 */
1115 		render = now.render_c0 - prev->render_c0;
1116 		media = now.media_c0 - prev->media_c0;
1117 		c0 = max(render, media);
1118 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1119 
1120 		if (c0 > time * dev_priv->rps.up_threshold)
1121 			events = GEN6_PM_RP_UP_THRESHOLD;
1122 		else if (c0 < time * dev_priv->rps.down_threshold)
1123 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1124 	}
1125 
1126 	dev_priv->rps.ei = now;
1127 	return events;
1128 }
1129 
1130 static bool any_waiters(struct drm_i915_private *dev_priv)
1131 {
1132 	struct intel_engine_cs *engine;
1133 	enum intel_engine_id id;
1134 
1135 	for_each_engine(engine, dev_priv, id)
1136 		if (intel_engine_has_waiter(engine))
1137 			return true;
1138 
1139 	return false;
1140 }
1141 
1142 static void gen6_pm_rps_work(struct work_struct *work)
1143 {
1144 	struct drm_i915_private *dev_priv =
1145 		container_of(work, struct drm_i915_private, rps.work);
1146 	bool client_boost = false;
1147 	int new_delay, adj, min, max;
1148 	u32 pm_iir = 0;
1149 
1150 	spin_lock_irq(&dev_priv->irq_lock);
1151 	if (dev_priv->rps.interrupts_enabled) {
1152 		pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1153 		client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1154 	}
1155 	spin_unlock_irq(&dev_priv->irq_lock);
1156 
1157 	/* Make sure we didn't queue anything we're not going to process. */
1158 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1159 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1160 		goto out;
1161 
1162 	mutex_lock(&dev_priv->rps.hw_lock);
1163 
1164 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1165 
1166 	adj = dev_priv->rps.last_adj;
1167 	new_delay = dev_priv->rps.cur_freq;
1168 	min = dev_priv->rps.min_freq_softlimit;
1169 	max = dev_priv->rps.max_freq_softlimit;
1170 	if (client_boost || any_waiters(dev_priv))
1171 		max = dev_priv->rps.max_freq;
1172 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1173 		new_delay = dev_priv->rps.boost_freq;
1174 		adj = 0;
1175 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1176 		if (adj > 0)
1177 			adj *= 2;
1178 		else /* CHV needs even encode values */
1179 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1180 
1181 		if (new_delay >= dev_priv->rps.max_freq_softlimit)
1182 			adj = 0;
1183 	} else if (client_boost || any_waiters(dev_priv)) {
1184 		adj = 0;
1185 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1186 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1187 			new_delay = dev_priv->rps.efficient_freq;
1188 		else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1189 			new_delay = dev_priv->rps.min_freq_softlimit;
1190 		adj = 0;
1191 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1192 		if (adj < 0)
1193 			adj *= 2;
1194 		else /* CHV needs even encode values */
1195 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1196 
1197 		if (new_delay <= dev_priv->rps.min_freq_softlimit)
1198 			adj = 0;
1199 	} else { /* unknown event */
1200 		adj = 0;
1201 	}
1202 
1203 	dev_priv->rps.last_adj = adj;
1204 
1205 	/* sysfs frequency interfaces may have snuck in while servicing the
1206 	 * interrupt
1207 	 */
1208 	new_delay += adj;
1209 	new_delay = clamp_t(int, new_delay, min, max);
1210 
1211 	if (intel_set_rps(dev_priv, new_delay)) {
1212 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1213 		dev_priv->rps.last_adj = 0;
1214 	}
1215 
1216 	mutex_unlock(&dev_priv->rps.hw_lock);
1217 
1218 out:
1219 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1220 	spin_lock_irq(&dev_priv->irq_lock);
1221 	if (dev_priv->rps.interrupts_enabled)
1222 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1223 	spin_unlock_irq(&dev_priv->irq_lock);
1224 }
1225 
1226 
1227 /**
1228  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1229  * occurred.
1230  * @work: workqueue struct
1231  *
1232  * Doesn't actually do anything except notify userspace. As a consequence of
1233  * this event, userspace should try to remap the bad rows since statistically
1234  * it is likely the same row is more likely to go bad again.
1235  */
1236 static void ivybridge_parity_work(struct work_struct *work)
1237 {
1238 	struct drm_i915_private *dev_priv =
1239 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1240 	u32 error_status, row, bank, subbank;
1241 	char *parity_event[6];
1242 	uint32_t misccpctl;
1243 	uint8_t slice = 0;
1244 
1245 	/* We must turn off DOP level clock gating to access the L3 registers.
1246 	 * In order to prevent a get/put style interface, acquire struct mutex
1247 	 * any time we access those registers.
1248 	 */
1249 	mutex_lock(&dev_priv->drm.struct_mutex);
1250 
1251 	/* If we've screwed up tracking, just let the interrupt fire again */
1252 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1253 		goto out;
1254 
1255 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1256 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1257 	POSTING_READ(GEN7_MISCCPCTL);
1258 
1259 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1260 		i915_reg_t reg;
1261 
1262 		slice--;
1263 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1264 			break;
1265 
1266 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1267 
1268 		reg = GEN7_L3CDERRST1(slice);
1269 
1270 		error_status = I915_READ(reg);
1271 		row = GEN7_PARITY_ERROR_ROW(error_status);
1272 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1273 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1274 
1275 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1276 		POSTING_READ(reg);
1277 
1278 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1279 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1280 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1281 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1282 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1283 		parity_event[5] = NULL;
1284 
1285 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1286 				   KOBJ_CHANGE, parity_event);
1287 
1288 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1289 			  slice, row, bank, subbank);
1290 
1291 		kfree(parity_event[4]);
1292 		kfree(parity_event[3]);
1293 		kfree(parity_event[2]);
1294 		kfree(parity_event[1]);
1295 	}
1296 
1297 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1298 
1299 out:
1300 	WARN_ON(dev_priv->l3_parity.which_slice);
1301 	spin_lock_irq(&dev_priv->irq_lock);
1302 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1303 	spin_unlock_irq(&dev_priv->irq_lock);
1304 
1305 	mutex_unlock(&dev_priv->drm.struct_mutex);
1306 }
1307 
1308 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1309 					       u32 iir)
1310 {
1311 	if (!HAS_L3_DPF(dev_priv))
1312 		return;
1313 
1314 	spin_lock(&dev_priv->irq_lock);
1315 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1316 	spin_unlock(&dev_priv->irq_lock);
1317 
1318 	iir &= GT_PARITY_ERROR(dev_priv);
1319 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1320 		dev_priv->l3_parity.which_slice |= 1 << 1;
1321 
1322 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1323 		dev_priv->l3_parity.which_slice |= 1 << 0;
1324 
1325 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1326 }
1327 
1328 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1329 			       u32 gt_iir)
1330 {
1331 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1332 		notify_ring(dev_priv->engine[RCS]);
1333 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1334 		notify_ring(dev_priv->engine[VCS]);
1335 }
1336 
1337 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1338 			       u32 gt_iir)
1339 {
1340 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1341 		notify_ring(dev_priv->engine[RCS]);
1342 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1343 		notify_ring(dev_priv->engine[VCS]);
1344 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1345 		notify_ring(dev_priv->engine[BCS]);
1346 
1347 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1348 		      GT_BSD_CS_ERROR_INTERRUPT |
1349 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1350 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1351 
1352 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1353 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1354 }
1355 
1356 static __always_inline void
1357 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1358 {
1359 	bool tasklet = false;
1360 
1361 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1362 		set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1363 		tasklet = true;
1364 	}
1365 
1366 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1367 		notify_ring(engine);
1368 		tasklet |= i915.enable_guc_submission;
1369 	}
1370 
1371 	if (tasklet)
1372 		tasklet_hi_schedule(&engine->irq_tasklet);
1373 }
1374 
1375 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1376 				   u32 master_ctl,
1377 				   u32 gt_iir[4])
1378 {
1379 	irqreturn_t ret = IRQ_NONE;
1380 
1381 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1382 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1383 		if (gt_iir[0]) {
1384 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1385 			ret = IRQ_HANDLED;
1386 		} else
1387 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1388 	}
1389 
1390 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1391 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1392 		if (gt_iir[1]) {
1393 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1394 			ret = IRQ_HANDLED;
1395 		} else
1396 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1397 	}
1398 
1399 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1400 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1401 		if (gt_iir[3]) {
1402 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1403 			ret = IRQ_HANDLED;
1404 		} else
1405 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1406 	}
1407 
1408 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1409 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1410 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1411 				 dev_priv->pm_guc_events)) {
1412 			I915_WRITE_FW(GEN8_GT_IIR(2),
1413 				      gt_iir[2] & (dev_priv->pm_rps_events |
1414 						   dev_priv->pm_guc_events));
1415 			ret = IRQ_HANDLED;
1416 		} else
1417 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1424 				u32 gt_iir[4])
1425 {
1426 	if (gt_iir[0]) {
1427 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1428 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1429 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1430 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1431 	}
1432 
1433 	if (gt_iir[1]) {
1434 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1435 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1436 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1437 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1438 	}
1439 
1440 	if (gt_iir[3])
1441 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1442 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1443 
1444 	if (gt_iir[2] & dev_priv->pm_rps_events)
1445 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1446 
1447 	if (gt_iir[2] & dev_priv->pm_guc_events)
1448 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1449 }
1450 
1451 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1452 {
1453 	switch (port) {
1454 	case PORT_A:
1455 		return val & PORTA_HOTPLUG_LONG_DETECT;
1456 	case PORT_B:
1457 		return val & PORTB_HOTPLUG_LONG_DETECT;
1458 	case PORT_C:
1459 		return val & PORTC_HOTPLUG_LONG_DETECT;
1460 	default:
1461 		return false;
1462 	}
1463 }
1464 
1465 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1466 {
1467 	switch (port) {
1468 	case PORT_E:
1469 		return val & PORTE_HOTPLUG_LONG_DETECT;
1470 	default:
1471 		return false;
1472 	}
1473 }
1474 
1475 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1476 {
1477 	switch (port) {
1478 	case PORT_A:
1479 		return val & PORTA_HOTPLUG_LONG_DETECT;
1480 	case PORT_B:
1481 		return val & PORTB_HOTPLUG_LONG_DETECT;
1482 	case PORT_C:
1483 		return val & PORTC_HOTPLUG_LONG_DETECT;
1484 	case PORT_D:
1485 		return val & PORTD_HOTPLUG_LONG_DETECT;
1486 	default:
1487 		return false;
1488 	}
1489 }
1490 
1491 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1492 {
1493 	switch (port) {
1494 	case PORT_A:
1495 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1496 	default:
1497 		return false;
1498 	}
1499 }
1500 
1501 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1502 {
1503 	switch (port) {
1504 	case PORT_B:
1505 		return val & PORTB_HOTPLUG_LONG_DETECT;
1506 	case PORT_C:
1507 		return val & PORTC_HOTPLUG_LONG_DETECT;
1508 	case PORT_D:
1509 		return val & PORTD_HOTPLUG_LONG_DETECT;
1510 	default:
1511 		return false;
1512 	}
1513 }
1514 
1515 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1516 {
1517 	switch (port) {
1518 	case PORT_B:
1519 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1520 	case PORT_C:
1521 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1522 	case PORT_D:
1523 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1524 	default:
1525 		return false;
1526 	}
1527 }
1528 
1529 /*
1530  * Get a bit mask of pins that have triggered, and which ones may be long.
1531  * This can be called multiple times with the same masks to accumulate
1532  * hotplug detection results from several registers.
1533  *
1534  * Note that the caller is expected to zero out the masks initially.
1535  */
1536 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1537 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1538 			     const u32 hpd[HPD_NUM_PINS],
1539 			     bool long_pulse_detect(enum port port, u32 val))
1540 {
1541 	enum port port;
1542 	int i;
1543 
1544 	for_each_hpd_pin(i) {
1545 		if ((hpd[i] & hotplug_trigger) == 0)
1546 			continue;
1547 
1548 		*pin_mask |= BIT(i);
1549 
1550 		if (!intel_hpd_pin_to_port(i, &port))
1551 			continue;
1552 
1553 		if (long_pulse_detect(port, dig_hotplug_reg))
1554 			*long_mask |= BIT(i);
1555 	}
1556 
1557 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1558 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1559 
1560 }
1561 
1562 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1563 {
1564 	wake_up_all(&dev_priv->gmbus_wait_queue);
1565 }
1566 
1567 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1568 {
1569 	wake_up_all(&dev_priv->gmbus_wait_queue);
1570 }
1571 
1572 #if defined(CONFIG_DEBUG_FS)
1573 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1574 					 enum pipe pipe,
1575 					 uint32_t crc0, uint32_t crc1,
1576 					 uint32_t crc2, uint32_t crc3,
1577 					 uint32_t crc4)
1578 {
1579 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1580 	struct intel_pipe_crc_entry *entry;
1581 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1582 	struct drm_driver *driver = dev_priv->drm.driver;
1583 	uint32_t crcs[5];
1584 	int head, tail;
1585 
1586 	spin_lock(&pipe_crc->lock);
1587 	if (pipe_crc->source) {
1588 		if (!pipe_crc->entries) {
1589 			spin_unlock(&pipe_crc->lock);
1590 			DRM_DEBUG_KMS("spurious interrupt\n");
1591 			return;
1592 		}
1593 
1594 		head = pipe_crc->head;
1595 		tail = pipe_crc->tail;
1596 
1597 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1598 			spin_unlock(&pipe_crc->lock);
1599 			DRM_ERROR("CRC buffer overflowing\n");
1600 			return;
1601 		}
1602 
1603 		entry = &pipe_crc->entries[head];
1604 
1605 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1606 		entry->crc[0] = crc0;
1607 		entry->crc[1] = crc1;
1608 		entry->crc[2] = crc2;
1609 		entry->crc[3] = crc3;
1610 		entry->crc[4] = crc4;
1611 
1612 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1613 		pipe_crc->head = head;
1614 
1615 		spin_unlock(&pipe_crc->lock);
1616 
1617 		wake_up_interruptible(&pipe_crc->wq);
1618 	} else {
1619 		/*
1620 		 * For some not yet identified reason, the first CRC is
1621 		 * bonkers. So let's just wait for the next vblank and read
1622 		 * out the buggy result.
1623 		 *
1624 		 * On CHV sometimes the second CRC is bonkers as well, so
1625 		 * don't trust that one either.
1626 		 */
1627 		if (pipe_crc->skipped == 0 ||
1628 		    (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1629 			pipe_crc->skipped++;
1630 			spin_unlock(&pipe_crc->lock);
1631 			return;
1632 		}
1633 		spin_unlock(&pipe_crc->lock);
1634 		crcs[0] = crc0;
1635 		crcs[1] = crc1;
1636 		crcs[2] = crc2;
1637 		crcs[3] = crc3;
1638 		crcs[4] = crc4;
1639 		drm_crtc_add_crc_entry(&crtc->base, true,
1640 				       drm_accurate_vblank_count(&crtc->base),
1641 				       crcs);
1642 	}
1643 }
1644 #else
1645 static inline void
1646 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1647 			     enum pipe pipe,
1648 			     uint32_t crc0, uint32_t crc1,
1649 			     uint32_t crc2, uint32_t crc3,
1650 			     uint32_t crc4) {}
1651 #endif
1652 
1653 
1654 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1655 				     enum pipe pipe)
1656 {
1657 	display_pipe_crc_irq_handler(dev_priv, pipe,
1658 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1659 				     0, 0, 0, 0);
1660 }
1661 
1662 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1663 				     enum pipe pipe)
1664 {
1665 	display_pipe_crc_irq_handler(dev_priv, pipe,
1666 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672 
1673 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1674 				      enum pipe pipe)
1675 {
1676 	uint32_t res1, res2;
1677 
1678 	if (INTEL_GEN(dev_priv) >= 3)
1679 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680 	else
1681 		res1 = 0;
1682 
1683 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1684 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685 	else
1686 		res2 = 0;
1687 
1688 	display_pipe_crc_irq_handler(dev_priv, pipe,
1689 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1690 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692 				     res1, res2);
1693 }
1694 
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696  * IMR bits until the work is done. Other interrupts can be processed without
1697  * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700 	if (pm_iir & dev_priv->pm_rps_events) {
1701 		spin_lock(&dev_priv->irq_lock);
1702 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1703 		if (dev_priv->rps.interrupts_enabled) {
1704 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1705 			schedule_work(&dev_priv->rps.work);
1706 		}
1707 		spin_unlock(&dev_priv->irq_lock);
1708 	}
1709 
1710 	if (INTEL_INFO(dev_priv)->gen >= 8)
1711 		return;
1712 
1713 	if (HAS_VEBOX(dev_priv)) {
1714 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1715 			notify_ring(dev_priv->engine[VECS]);
1716 
1717 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1718 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1719 	}
1720 }
1721 
1722 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1723 {
1724 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1725 		/* Sample the log buffer flush related bits & clear them out now
1726 		 * itself from the message identity register to minimize the
1727 		 * probability of losing a flush interrupt, when there are back
1728 		 * to back flush interrupts.
1729 		 * There can be a new flush interrupt, for different log buffer
1730 		 * type (like for ISR), whilst Host is handling one (for DPC).
1731 		 * Since same bit is used in message register for ISR & DPC, it
1732 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1733 		 * clears out the bit on handling the 1st interrupt.
1734 		 */
1735 		u32 msg, flush;
1736 
1737 		msg = I915_READ(SOFT_SCRATCH(15));
1738 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1739 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1740 		if (flush) {
1741 			/* Clear the message bits that are handled */
1742 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1743 
1744 			/* Handle flush interrupt in bottom half */
1745 			queue_work(dev_priv->guc.log.runtime.flush_wq,
1746 				   &dev_priv->guc.log.runtime.flush_work);
1747 
1748 			dev_priv->guc.log.flush_interrupt_count++;
1749 		} else {
1750 			/* Not clearing of unhandled event bits won't result in
1751 			 * re-triggering of the interrupt.
1752 			 */
1753 		}
1754 	}
1755 }
1756 
1757 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1758 				     enum pipe pipe)
1759 {
1760 	bool ret;
1761 
1762 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1763 	if (ret)
1764 		intel_finish_page_flip_mmio(dev_priv, pipe);
1765 
1766 	return ret;
1767 }
1768 
1769 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1770 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1771 {
1772 	int pipe;
1773 
1774 	spin_lock(&dev_priv->irq_lock);
1775 
1776 	if (!dev_priv->display_irqs_enabled) {
1777 		spin_unlock(&dev_priv->irq_lock);
1778 		return;
1779 	}
1780 
1781 	for_each_pipe(dev_priv, pipe) {
1782 		i915_reg_t reg;
1783 		u32 mask, iir_bit = 0;
1784 
1785 		/*
1786 		 * PIPESTAT bits get signalled even when the interrupt is
1787 		 * disabled with the mask bits, and some of the status bits do
1788 		 * not generate interrupts at all (like the underrun bit). Hence
1789 		 * we need to be careful that we only handle what we want to
1790 		 * handle.
1791 		 */
1792 
1793 		/* fifo underruns are filterered in the underrun handler. */
1794 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1795 
1796 		switch (pipe) {
1797 		case PIPE_A:
1798 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1799 			break;
1800 		case PIPE_B:
1801 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1802 			break;
1803 		case PIPE_C:
1804 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1805 			break;
1806 		}
1807 		if (iir & iir_bit)
1808 			mask |= dev_priv->pipestat_irq_mask[pipe];
1809 
1810 		if (!mask)
1811 			continue;
1812 
1813 		reg = PIPESTAT(pipe);
1814 		mask |= PIPESTAT_INT_ENABLE_MASK;
1815 		pipe_stats[pipe] = I915_READ(reg) & mask;
1816 
1817 		/*
1818 		 * Clear the PIPE*STAT regs before the IIR
1819 		 */
1820 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1821 					PIPESTAT_INT_STATUS_MASK))
1822 			I915_WRITE(reg, pipe_stats[pipe]);
1823 	}
1824 	spin_unlock(&dev_priv->irq_lock);
1825 }
1826 
1827 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1828 					    u32 pipe_stats[I915_MAX_PIPES])
1829 {
1830 	enum pipe pipe;
1831 
1832 	for_each_pipe(dev_priv, pipe) {
1833 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1834 		    intel_pipe_handle_vblank(dev_priv, pipe))
1835 			intel_check_page_flip(dev_priv, pipe);
1836 
1837 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1838 			intel_finish_page_flip_cs(dev_priv, pipe);
1839 
1840 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1841 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1842 
1843 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1844 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1845 	}
1846 
1847 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1848 		gmbus_irq_handler(dev_priv);
1849 }
1850 
1851 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1852 {
1853 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1854 
1855 	if (hotplug_status)
1856 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1857 
1858 	return hotplug_status;
1859 }
1860 
1861 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1862 				 u32 hotplug_status)
1863 {
1864 	u32 pin_mask = 0, long_mask = 0;
1865 
1866 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1867 	    IS_CHERRYVIEW(dev_priv)) {
1868 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1869 
1870 		if (hotplug_trigger) {
1871 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1872 					   hotplug_trigger, hpd_status_g4x,
1873 					   i9xx_port_hotplug_long_detect);
1874 
1875 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1876 		}
1877 
1878 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1879 			dp_aux_irq_handler(dev_priv);
1880 	} else {
1881 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1882 
1883 		if (hotplug_trigger) {
1884 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1885 					   hotplug_trigger, hpd_status_i915,
1886 					   i9xx_port_hotplug_long_detect);
1887 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1888 		}
1889 	}
1890 }
1891 
1892 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1893 {
1894 	struct drm_device *dev = arg;
1895 	struct drm_i915_private *dev_priv = to_i915(dev);
1896 	irqreturn_t ret = IRQ_NONE;
1897 
1898 	if (!intel_irqs_enabled(dev_priv))
1899 		return IRQ_NONE;
1900 
1901 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1902 	disable_rpm_wakeref_asserts(dev_priv);
1903 
1904 	do {
1905 		u32 iir, gt_iir, pm_iir;
1906 		u32 pipe_stats[I915_MAX_PIPES] = {};
1907 		u32 hotplug_status = 0;
1908 		u32 ier = 0;
1909 
1910 		gt_iir = I915_READ(GTIIR);
1911 		pm_iir = I915_READ(GEN6_PMIIR);
1912 		iir = I915_READ(VLV_IIR);
1913 
1914 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1915 			break;
1916 
1917 		ret = IRQ_HANDLED;
1918 
1919 		/*
1920 		 * Theory on interrupt generation, based on empirical evidence:
1921 		 *
1922 		 * x = ((VLV_IIR & VLV_IER) ||
1923 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1924 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1925 		 *
1926 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1927 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1928 		 * guarantee the CPU interrupt will be raised again even if we
1929 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1930 		 * bits this time around.
1931 		 */
1932 		I915_WRITE(VLV_MASTER_IER, 0);
1933 		ier = I915_READ(VLV_IER);
1934 		I915_WRITE(VLV_IER, 0);
1935 
1936 		if (gt_iir)
1937 			I915_WRITE(GTIIR, gt_iir);
1938 		if (pm_iir)
1939 			I915_WRITE(GEN6_PMIIR, pm_iir);
1940 
1941 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1942 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1943 
1944 		/* Call regardless, as some status bits might not be
1945 		 * signalled in iir */
1946 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1947 
1948 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1949 			   I915_LPE_PIPE_B_INTERRUPT))
1950 			intel_lpe_audio_irq_handler(dev_priv);
1951 
1952 		/*
1953 		 * VLV_IIR is single buffered, and reflects the level
1954 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1955 		 */
1956 		if (iir)
1957 			I915_WRITE(VLV_IIR, iir);
1958 
1959 		I915_WRITE(VLV_IER, ier);
1960 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1961 		POSTING_READ(VLV_MASTER_IER);
1962 
1963 		if (gt_iir)
1964 			snb_gt_irq_handler(dev_priv, gt_iir);
1965 		if (pm_iir)
1966 			gen6_rps_irq_handler(dev_priv, pm_iir);
1967 
1968 		if (hotplug_status)
1969 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1970 
1971 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1972 	} while (0);
1973 
1974 	enable_rpm_wakeref_asserts(dev_priv);
1975 
1976 	return ret;
1977 }
1978 
1979 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1980 {
1981 	struct drm_device *dev = arg;
1982 	struct drm_i915_private *dev_priv = to_i915(dev);
1983 	irqreturn_t ret = IRQ_NONE;
1984 
1985 	if (!intel_irqs_enabled(dev_priv))
1986 		return IRQ_NONE;
1987 
1988 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1989 	disable_rpm_wakeref_asserts(dev_priv);
1990 
1991 	do {
1992 		u32 master_ctl, iir;
1993 		u32 gt_iir[4] = {};
1994 		u32 pipe_stats[I915_MAX_PIPES] = {};
1995 		u32 hotplug_status = 0;
1996 		u32 ier = 0;
1997 
1998 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1999 		iir = I915_READ(VLV_IIR);
2000 
2001 		if (master_ctl == 0 && iir == 0)
2002 			break;
2003 
2004 		ret = IRQ_HANDLED;
2005 
2006 		/*
2007 		 * Theory on interrupt generation, based on empirical evidence:
2008 		 *
2009 		 * x = ((VLV_IIR & VLV_IER) ||
2010 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2011 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2012 		 *
2013 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2014 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2015 		 * guarantee the CPU interrupt will be raised again even if we
2016 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2017 		 * bits this time around.
2018 		 */
2019 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2020 		ier = I915_READ(VLV_IER);
2021 		I915_WRITE(VLV_IER, 0);
2022 
2023 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2024 
2025 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2026 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2027 
2028 		/* Call regardless, as some status bits might not be
2029 		 * signalled in iir */
2030 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2031 
2032 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2033 			   I915_LPE_PIPE_B_INTERRUPT |
2034 			   I915_LPE_PIPE_C_INTERRUPT))
2035 			intel_lpe_audio_irq_handler(dev_priv);
2036 
2037 		/*
2038 		 * VLV_IIR is single buffered, and reflects the level
2039 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2040 		 */
2041 		if (iir)
2042 			I915_WRITE(VLV_IIR, iir);
2043 
2044 		I915_WRITE(VLV_IER, ier);
2045 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2046 		POSTING_READ(GEN8_MASTER_IRQ);
2047 
2048 		gen8_gt_irq_handler(dev_priv, gt_iir);
2049 
2050 		if (hotplug_status)
2051 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2052 
2053 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2054 	} while (0);
2055 
2056 	enable_rpm_wakeref_asserts(dev_priv);
2057 
2058 	return ret;
2059 }
2060 
2061 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2062 				u32 hotplug_trigger,
2063 				const u32 hpd[HPD_NUM_PINS])
2064 {
2065 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2066 
2067 	/*
2068 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2069 	 * unless we touch the hotplug register, even if hotplug_trigger is
2070 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2071 	 * errors.
2072 	 */
2073 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2074 	if (!hotplug_trigger) {
2075 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2076 			PORTD_HOTPLUG_STATUS_MASK |
2077 			PORTC_HOTPLUG_STATUS_MASK |
2078 			PORTB_HOTPLUG_STATUS_MASK;
2079 		dig_hotplug_reg &= ~mask;
2080 	}
2081 
2082 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2083 	if (!hotplug_trigger)
2084 		return;
2085 
2086 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2087 			   dig_hotplug_reg, hpd,
2088 			   pch_port_hotplug_long_detect);
2089 
2090 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2091 }
2092 
2093 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2094 {
2095 	int pipe;
2096 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2097 
2098 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2099 
2100 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2101 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2102 			       SDE_AUDIO_POWER_SHIFT);
2103 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2104 				 port_name(port));
2105 	}
2106 
2107 	if (pch_iir & SDE_AUX_MASK)
2108 		dp_aux_irq_handler(dev_priv);
2109 
2110 	if (pch_iir & SDE_GMBUS)
2111 		gmbus_irq_handler(dev_priv);
2112 
2113 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2114 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2115 
2116 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2117 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2118 
2119 	if (pch_iir & SDE_POISON)
2120 		DRM_ERROR("PCH poison interrupt\n");
2121 
2122 	if (pch_iir & SDE_FDI_MASK)
2123 		for_each_pipe(dev_priv, pipe)
2124 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2125 					 pipe_name(pipe),
2126 					 I915_READ(FDI_RX_IIR(pipe)));
2127 
2128 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2129 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2130 
2131 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2132 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2133 
2134 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2135 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2136 
2137 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2138 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2139 }
2140 
2141 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2142 {
2143 	u32 err_int = I915_READ(GEN7_ERR_INT);
2144 	enum pipe pipe;
2145 
2146 	if (err_int & ERR_INT_POISON)
2147 		DRM_ERROR("Poison interrupt\n");
2148 
2149 	for_each_pipe(dev_priv, pipe) {
2150 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2151 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2152 
2153 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2154 			if (IS_IVYBRIDGE(dev_priv))
2155 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2156 			else
2157 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2158 		}
2159 	}
2160 
2161 	I915_WRITE(GEN7_ERR_INT, err_int);
2162 }
2163 
2164 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2165 {
2166 	u32 serr_int = I915_READ(SERR_INT);
2167 
2168 	if (serr_int & SERR_INT_POISON)
2169 		DRM_ERROR("PCH poison interrupt\n");
2170 
2171 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2172 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2173 
2174 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2175 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2176 
2177 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2178 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2179 
2180 	I915_WRITE(SERR_INT, serr_int);
2181 }
2182 
2183 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185 	int pipe;
2186 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2187 
2188 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2189 
2190 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2191 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2192 			       SDE_AUDIO_POWER_SHIFT_CPT);
2193 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2194 				 port_name(port));
2195 	}
2196 
2197 	if (pch_iir & SDE_AUX_MASK_CPT)
2198 		dp_aux_irq_handler(dev_priv);
2199 
2200 	if (pch_iir & SDE_GMBUS_CPT)
2201 		gmbus_irq_handler(dev_priv);
2202 
2203 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2204 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2205 
2206 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2207 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2208 
2209 	if (pch_iir & SDE_FDI_MASK_CPT)
2210 		for_each_pipe(dev_priv, pipe)
2211 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2212 					 pipe_name(pipe),
2213 					 I915_READ(FDI_RX_IIR(pipe)));
2214 
2215 	if (pch_iir & SDE_ERROR_CPT)
2216 		cpt_serr_int_handler(dev_priv);
2217 }
2218 
2219 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2220 {
2221 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2222 		~SDE_PORTE_HOTPLUG_SPT;
2223 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2224 	u32 pin_mask = 0, long_mask = 0;
2225 
2226 	if (hotplug_trigger) {
2227 		u32 dig_hotplug_reg;
2228 
2229 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2230 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2231 
2232 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2233 				   dig_hotplug_reg, hpd_spt,
2234 				   spt_port_hotplug_long_detect);
2235 	}
2236 
2237 	if (hotplug2_trigger) {
2238 		u32 dig_hotplug_reg;
2239 
2240 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2241 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2242 
2243 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2244 				   dig_hotplug_reg, hpd_spt,
2245 				   spt_port_hotplug2_long_detect);
2246 	}
2247 
2248 	if (pin_mask)
2249 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2250 
2251 	if (pch_iir & SDE_GMBUS_CPT)
2252 		gmbus_irq_handler(dev_priv);
2253 }
2254 
2255 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2256 				u32 hotplug_trigger,
2257 				const u32 hpd[HPD_NUM_PINS])
2258 {
2259 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2260 
2261 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2262 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2263 
2264 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2265 			   dig_hotplug_reg, hpd,
2266 			   ilk_port_hotplug_long_detect);
2267 
2268 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2269 }
2270 
2271 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2272 				    u32 de_iir)
2273 {
2274 	enum pipe pipe;
2275 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2276 
2277 	if (hotplug_trigger)
2278 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2279 
2280 	if (de_iir & DE_AUX_CHANNEL_A)
2281 		dp_aux_irq_handler(dev_priv);
2282 
2283 	if (de_iir & DE_GSE)
2284 		intel_opregion_asle_intr(dev_priv);
2285 
2286 	if (de_iir & DE_POISON)
2287 		DRM_ERROR("Poison interrupt\n");
2288 
2289 	for_each_pipe(dev_priv, pipe) {
2290 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2291 		    intel_pipe_handle_vblank(dev_priv, pipe))
2292 			intel_check_page_flip(dev_priv, pipe);
2293 
2294 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2295 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2296 
2297 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2298 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2299 
2300 		/* plane/pipes map 1:1 on ilk+ */
2301 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2302 			intel_finish_page_flip_cs(dev_priv, pipe);
2303 	}
2304 
2305 	/* check event from PCH */
2306 	if (de_iir & DE_PCH_EVENT) {
2307 		u32 pch_iir = I915_READ(SDEIIR);
2308 
2309 		if (HAS_PCH_CPT(dev_priv))
2310 			cpt_irq_handler(dev_priv, pch_iir);
2311 		else
2312 			ibx_irq_handler(dev_priv, pch_iir);
2313 
2314 		/* should clear PCH hotplug event before clear CPU irq */
2315 		I915_WRITE(SDEIIR, pch_iir);
2316 	}
2317 
2318 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2319 		ironlake_rps_change_irq_handler(dev_priv);
2320 }
2321 
2322 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2323 				    u32 de_iir)
2324 {
2325 	enum pipe pipe;
2326 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2327 
2328 	if (hotplug_trigger)
2329 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2330 
2331 	if (de_iir & DE_ERR_INT_IVB)
2332 		ivb_err_int_handler(dev_priv);
2333 
2334 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2335 		dp_aux_irq_handler(dev_priv);
2336 
2337 	if (de_iir & DE_GSE_IVB)
2338 		intel_opregion_asle_intr(dev_priv);
2339 
2340 	for_each_pipe(dev_priv, pipe) {
2341 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2342 		    intel_pipe_handle_vblank(dev_priv, pipe))
2343 			intel_check_page_flip(dev_priv, pipe);
2344 
2345 		/* plane/pipes map 1:1 on ilk+ */
2346 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2347 			intel_finish_page_flip_cs(dev_priv, pipe);
2348 	}
2349 
2350 	/* check event from PCH */
2351 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2352 		u32 pch_iir = I915_READ(SDEIIR);
2353 
2354 		cpt_irq_handler(dev_priv, pch_iir);
2355 
2356 		/* clear PCH hotplug event before clear CPU irq */
2357 		I915_WRITE(SDEIIR, pch_iir);
2358 	}
2359 }
2360 
2361 /*
2362  * To handle irqs with the minimum potential races with fresh interrupts, we:
2363  * 1 - Disable Master Interrupt Control.
2364  * 2 - Find the source(s) of the interrupt.
2365  * 3 - Clear the Interrupt Identity bits (IIR).
2366  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2367  * 5 - Re-enable Master Interrupt Control.
2368  */
2369 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2370 {
2371 	struct drm_device *dev = arg;
2372 	struct drm_i915_private *dev_priv = to_i915(dev);
2373 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2374 	irqreturn_t ret = IRQ_NONE;
2375 
2376 	if (!intel_irqs_enabled(dev_priv))
2377 		return IRQ_NONE;
2378 
2379 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2380 	disable_rpm_wakeref_asserts(dev_priv);
2381 
2382 	/* disable master interrupt before clearing iir  */
2383 	de_ier = I915_READ(DEIER);
2384 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2385 	POSTING_READ(DEIER);
2386 
2387 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2388 	 * interrupts will will be stored on its back queue, and then we'll be
2389 	 * able to process them after we restore SDEIER (as soon as we restore
2390 	 * it, we'll get an interrupt if SDEIIR still has something to process
2391 	 * due to its back queue). */
2392 	if (!HAS_PCH_NOP(dev_priv)) {
2393 		sde_ier = I915_READ(SDEIER);
2394 		I915_WRITE(SDEIER, 0);
2395 		POSTING_READ(SDEIER);
2396 	}
2397 
2398 	/* Find, clear, then process each source of interrupt */
2399 
2400 	gt_iir = I915_READ(GTIIR);
2401 	if (gt_iir) {
2402 		I915_WRITE(GTIIR, gt_iir);
2403 		ret = IRQ_HANDLED;
2404 		if (INTEL_GEN(dev_priv) >= 6)
2405 			snb_gt_irq_handler(dev_priv, gt_iir);
2406 		else
2407 			ilk_gt_irq_handler(dev_priv, gt_iir);
2408 	}
2409 
2410 	de_iir = I915_READ(DEIIR);
2411 	if (de_iir) {
2412 		I915_WRITE(DEIIR, de_iir);
2413 		ret = IRQ_HANDLED;
2414 		if (INTEL_GEN(dev_priv) >= 7)
2415 			ivb_display_irq_handler(dev_priv, de_iir);
2416 		else
2417 			ilk_display_irq_handler(dev_priv, de_iir);
2418 	}
2419 
2420 	if (INTEL_GEN(dev_priv) >= 6) {
2421 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2422 		if (pm_iir) {
2423 			I915_WRITE(GEN6_PMIIR, pm_iir);
2424 			ret = IRQ_HANDLED;
2425 			gen6_rps_irq_handler(dev_priv, pm_iir);
2426 		}
2427 	}
2428 
2429 	I915_WRITE(DEIER, de_ier);
2430 	POSTING_READ(DEIER);
2431 	if (!HAS_PCH_NOP(dev_priv)) {
2432 		I915_WRITE(SDEIER, sde_ier);
2433 		POSTING_READ(SDEIER);
2434 	}
2435 
2436 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2437 	enable_rpm_wakeref_asserts(dev_priv);
2438 
2439 	return ret;
2440 }
2441 
2442 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2443 				u32 hotplug_trigger,
2444 				const u32 hpd[HPD_NUM_PINS])
2445 {
2446 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2447 
2448 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2449 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2450 
2451 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2452 			   dig_hotplug_reg, hpd,
2453 			   bxt_port_hotplug_long_detect);
2454 
2455 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2456 }
2457 
2458 static irqreturn_t
2459 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2460 {
2461 	irqreturn_t ret = IRQ_NONE;
2462 	u32 iir;
2463 	enum pipe pipe;
2464 
2465 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2466 		iir = I915_READ(GEN8_DE_MISC_IIR);
2467 		if (iir) {
2468 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2469 			ret = IRQ_HANDLED;
2470 			if (iir & GEN8_DE_MISC_GSE)
2471 				intel_opregion_asle_intr(dev_priv);
2472 			else
2473 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2474 		}
2475 		else
2476 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2477 	}
2478 
2479 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2480 		iir = I915_READ(GEN8_DE_PORT_IIR);
2481 		if (iir) {
2482 			u32 tmp_mask;
2483 			bool found = false;
2484 
2485 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2486 			ret = IRQ_HANDLED;
2487 
2488 			tmp_mask = GEN8_AUX_CHANNEL_A;
2489 			if (INTEL_INFO(dev_priv)->gen >= 9)
2490 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2491 					    GEN9_AUX_CHANNEL_C |
2492 					    GEN9_AUX_CHANNEL_D;
2493 
2494 			if (iir & tmp_mask) {
2495 				dp_aux_irq_handler(dev_priv);
2496 				found = true;
2497 			}
2498 
2499 			if (IS_GEN9_LP(dev_priv)) {
2500 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2501 				if (tmp_mask) {
2502 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2503 							    hpd_bxt);
2504 					found = true;
2505 				}
2506 			} else if (IS_BROADWELL(dev_priv)) {
2507 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2508 				if (tmp_mask) {
2509 					ilk_hpd_irq_handler(dev_priv,
2510 							    tmp_mask, hpd_bdw);
2511 					found = true;
2512 				}
2513 			}
2514 
2515 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2516 				gmbus_irq_handler(dev_priv);
2517 				found = true;
2518 			}
2519 
2520 			if (!found)
2521 				DRM_ERROR("Unexpected DE Port interrupt\n");
2522 		}
2523 		else
2524 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2525 	}
2526 
2527 	for_each_pipe(dev_priv, pipe) {
2528 		u32 flip_done, fault_errors;
2529 
2530 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2531 			continue;
2532 
2533 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2534 		if (!iir) {
2535 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2536 			continue;
2537 		}
2538 
2539 		ret = IRQ_HANDLED;
2540 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2541 
2542 		if (iir & GEN8_PIPE_VBLANK &&
2543 		    intel_pipe_handle_vblank(dev_priv, pipe))
2544 			intel_check_page_flip(dev_priv, pipe);
2545 
2546 		flip_done = iir;
2547 		if (INTEL_INFO(dev_priv)->gen >= 9)
2548 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2549 		else
2550 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2551 
2552 		if (flip_done)
2553 			intel_finish_page_flip_cs(dev_priv, pipe);
2554 
2555 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2556 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2557 
2558 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2559 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2560 
2561 		fault_errors = iir;
2562 		if (INTEL_INFO(dev_priv)->gen >= 9)
2563 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2564 		else
2565 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2566 
2567 		if (fault_errors)
2568 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2569 				  pipe_name(pipe),
2570 				  fault_errors);
2571 	}
2572 
2573 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2574 	    master_ctl & GEN8_DE_PCH_IRQ) {
2575 		/*
2576 		 * FIXME(BDW): Assume for now that the new interrupt handling
2577 		 * scheme also closed the SDE interrupt handling race we've seen
2578 		 * on older pch-split platforms. But this needs testing.
2579 		 */
2580 		iir = I915_READ(SDEIIR);
2581 		if (iir) {
2582 			I915_WRITE(SDEIIR, iir);
2583 			ret = IRQ_HANDLED;
2584 
2585 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2586 				spt_irq_handler(dev_priv, iir);
2587 			else
2588 				cpt_irq_handler(dev_priv, iir);
2589 		} else {
2590 			/*
2591 			 * Like on previous PCH there seems to be something
2592 			 * fishy going on with forwarding PCH interrupts.
2593 			 */
2594 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2595 		}
2596 	}
2597 
2598 	return ret;
2599 }
2600 
2601 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2602 {
2603 	struct drm_device *dev = arg;
2604 	struct drm_i915_private *dev_priv = to_i915(dev);
2605 	u32 master_ctl;
2606 	u32 gt_iir[4] = {};
2607 	irqreturn_t ret;
2608 
2609 	if (!intel_irqs_enabled(dev_priv))
2610 		return IRQ_NONE;
2611 
2612 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2613 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2614 	if (!master_ctl)
2615 		return IRQ_NONE;
2616 
2617 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2618 
2619 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2620 	disable_rpm_wakeref_asserts(dev_priv);
2621 
2622 	/* Find, clear, then process each source of interrupt */
2623 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2624 	gen8_gt_irq_handler(dev_priv, gt_iir);
2625 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2626 
2627 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2628 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2629 
2630 	enable_rpm_wakeref_asserts(dev_priv);
2631 
2632 	return ret;
2633 }
2634 
2635 /**
2636  * i915_reset_and_wakeup - do process context error handling work
2637  * @dev_priv: i915 device private
2638  *
2639  * Fire an error uevent so userspace can see that a hang or error
2640  * was detected.
2641  */
2642 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2643 {
2644 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2645 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2646 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2647 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2648 
2649 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2650 
2651 	DRM_DEBUG_DRIVER("resetting chip\n");
2652 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2653 
2654 	intel_prepare_reset(dev_priv);
2655 
2656 	set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2657 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2658 
2659 	do {
2660 		/*
2661 		 * All state reset _must_ be completed before we update the
2662 		 * reset counter, for otherwise waiters might miss the reset
2663 		 * pending state and not properly drop locks, resulting in
2664 		 * deadlocks with the reset work.
2665 		 */
2666 		if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2667 			i915_reset(dev_priv);
2668 			mutex_unlock(&dev_priv->drm.struct_mutex);
2669 		}
2670 
2671 		/* We need to wait for anyone holding the lock to wakeup */
2672 	} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2673 				     I915_RESET_HANDOFF,
2674 				     TASK_UNINTERRUPTIBLE,
2675 				     HZ));
2676 
2677 	intel_finish_reset(dev_priv);
2678 
2679 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2680 		kobject_uevent_env(kobj,
2681 				   KOBJ_CHANGE, reset_done_event);
2682 
2683 	/*
2684 	 * Note: The wake_up also serves as a memory barrier so that
2685 	 * waiters see the updated value of the dev_priv->gpu_error.
2686 	 */
2687 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2688 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2689 }
2690 
2691 static inline void
2692 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2693 			struct intel_instdone *instdone)
2694 {
2695 	int slice;
2696 	int subslice;
2697 
2698 	pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2699 
2700 	if (INTEL_GEN(dev_priv) <= 3)
2701 		return;
2702 
2703 	pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2704 
2705 	if (INTEL_GEN(dev_priv) <= 6)
2706 		return;
2707 
2708 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2709 		pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2710 		       slice, subslice, instdone->sampler[slice][subslice]);
2711 
2712 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2713 		pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2714 		       slice, subslice, instdone->row[slice][subslice]);
2715 }
2716 
2717 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2718 {
2719 	u32 eir;
2720 
2721 	if (!IS_GEN2(dev_priv))
2722 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2723 
2724 	if (INTEL_GEN(dev_priv) < 4)
2725 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2726 	else
2727 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2728 
2729 	I915_WRITE(EIR, I915_READ(EIR));
2730 	eir = I915_READ(EIR);
2731 	if (eir) {
2732 		/*
2733 		 * some errors might have become stuck,
2734 		 * mask them.
2735 		 */
2736 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2737 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2738 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2739 	}
2740 }
2741 
2742 /**
2743  * i915_handle_error - handle a gpu error
2744  * @dev_priv: i915 device private
2745  * @engine_mask: mask representing engines that are hung
2746  * @fmt: Error message format string
2747  *
2748  * Do some basic checking of register state at error time and
2749  * dump it to the syslog.  Also call i915_capture_error_state() to make
2750  * sure we get a record and make it available in debugfs.  Fire a uevent
2751  * so userspace knows something bad happened (should trigger collection
2752  * of a ring dump etc.).
2753  */
2754 void i915_handle_error(struct drm_i915_private *dev_priv,
2755 		       u32 engine_mask,
2756 		       const char *fmt, ...)
2757 {
2758 	va_list args;
2759 	char error_msg[80];
2760 
2761 	va_start(args, fmt);
2762 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2763 	va_end(args);
2764 
2765 	/*
2766 	 * In most cases it's guaranteed that we get here with an RPM
2767 	 * reference held, for example because there is a pending GPU
2768 	 * request that won't finish until the reset is done. This
2769 	 * isn't the case at least when we get here by doing a
2770 	 * simulated reset via debugfs, so get an RPM reference.
2771 	 */
2772 	intel_runtime_pm_get(dev_priv);
2773 
2774 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2775 	i915_clear_error_registers(dev_priv);
2776 
2777 	if (!engine_mask)
2778 		goto out;
2779 
2780 	if (test_and_set_bit(I915_RESET_BACKOFF,
2781 			     &dev_priv->gpu_error.flags))
2782 		goto out;
2783 
2784 	i915_reset_and_wakeup(dev_priv);
2785 
2786 out:
2787 	intel_runtime_pm_put(dev_priv);
2788 }
2789 
2790 /* Called from drm generic code, passed 'crtc' which
2791  * we use as a pipe index
2792  */
2793 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2794 {
2795 	struct drm_i915_private *dev_priv = to_i915(dev);
2796 	unsigned long irqflags;
2797 
2798 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2800 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801 
2802 	return 0;
2803 }
2804 
2805 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2806 {
2807 	struct drm_i915_private *dev_priv = to_i915(dev);
2808 	unsigned long irqflags;
2809 
2810 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2811 	i915_enable_pipestat(dev_priv, pipe,
2812 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2813 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2814 
2815 	return 0;
2816 }
2817 
2818 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2819 {
2820 	struct drm_i915_private *dev_priv = to_i915(dev);
2821 	unsigned long irqflags;
2822 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2823 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2824 
2825 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2826 	ilk_enable_display_irq(dev_priv, bit);
2827 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2828 
2829 	return 0;
2830 }
2831 
2832 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2833 {
2834 	struct drm_i915_private *dev_priv = to_i915(dev);
2835 	unsigned long irqflags;
2836 
2837 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2838 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2839 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2840 
2841 	return 0;
2842 }
2843 
2844 /* Called from drm generic code, passed 'crtc' which
2845  * we use as a pipe index
2846  */
2847 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2848 {
2849 	struct drm_i915_private *dev_priv = to_i915(dev);
2850 	unsigned long irqflags;
2851 
2852 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2854 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855 }
2856 
2857 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2858 {
2859 	struct drm_i915_private *dev_priv = to_i915(dev);
2860 	unsigned long irqflags;
2861 
2862 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2863 	i915_disable_pipestat(dev_priv, pipe,
2864 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2865 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2866 }
2867 
2868 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2869 {
2870 	struct drm_i915_private *dev_priv = to_i915(dev);
2871 	unsigned long irqflags;
2872 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2873 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2874 
2875 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2876 	ilk_disable_display_irq(dev_priv, bit);
2877 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2878 }
2879 
2880 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2881 {
2882 	struct drm_i915_private *dev_priv = to_i915(dev);
2883 	unsigned long irqflags;
2884 
2885 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2886 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2887 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2888 }
2889 
2890 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2891 {
2892 	if (HAS_PCH_NOP(dev_priv))
2893 		return;
2894 
2895 	GEN5_IRQ_RESET(SDE);
2896 
2897 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2898 		I915_WRITE(SERR_INT, 0xffffffff);
2899 }
2900 
2901 /*
2902  * SDEIER is also touched by the interrupt handler to work around missed PCH
2903  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2904  * instead we unconditionally enable all PCH interrupt sources here, but then
2905  * only unmask them as needed with SDEIMR.
2906  *
2907  * This function needs to be called before interrupts are enabled.
2908  */
2909 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2910 {
2911 	struct drm_i915_private *dev_priv = to_i915(dev);
2912 
2913 	if (HAS_PCH_NOP(dev_priv))
2914 		return;
2915 
2916 	WARN_ON(I915_READ(SDEIER) != 0);
2917 	I915_WRITE(SDEIER, 0xffffffff);
2918 	POSTING_READ(SDEIER);
2919 }
2920 
2921 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2922 {
2923 	GEN5_IRQ_RESET(GT);
2924 	if (INTEL_GEN(dev_priv) >= 6)
2925 		GEN5_IRQ_RESET(GEN6_PM);
2926 }
2927 
2928 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2929 {
2930 	enum pipe pipe;
2931 
2932 	if (IS_CHERRYVIEW(dev_priv))
2933 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2934 	else
2935 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2936 
2937 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2938 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2939 
2940 	for_each_pipe(dev_priv, pipe) {
2941 		I915_WRITE(PIPESTAT(pipe),
2942 			   PIPE_FIFO_UNDERRUN_STATUS |
2943 			   PIPESTAT_INT_STATUS_MASK);
2944 		dev_priv->pipestat_irq_mask[pipe] = 0;
2945 	}
2946 
2947 	GEN5_IRQ_RESET(VLV_);
2948 	dev_priv->irq_mask = ~0;
2949 }
2950 
2951 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2952 {
2953 	u32 pipestat_mask;
2954 	u32 enable_mask;
2955 	enum pipe pipe;
2956 	u32 val;
2957 
2958 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2959 			PIPE_CRC_DONE_INTERRUPT_STATUS;
2960 
2961 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2962 	for_each_pipe(dev_priv, pipe)
2963 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2964 
2965 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2966 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2967 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2968 	if (IS_CHERRYVIEW(dev_priv))
2969 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2970 
2971 	WARN_ON(dev_priv->irq_mask != ~0);
2972 
2973 	val = (I915_LPE_PIPE_A_INTERRUPT |
2974 		I915_LPE_PIPE_B_INTERRUPT |
2975 		I915_LPE_PIPE_C_INTERRUPT);
2976 
2977 	enable_mask |= val;
2978 
2979 	dev_priv->irq_mask = ~enable_mask;
2980 
2981 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2982 }
2983 
2984 /* drm_dma.h hooks
2985 */
2986 static void ironlake_irq_reset(struct drm_device *dev)
2987 {
2988 	struct drm_i915_private *dev_priv = to_i915(dev);
2989 
2990 	I915_WRITE(HWSTAM, 0xffffffff);
2991 
2992 	GEN5_IRQ_RESET(DE);
2993 	if (IS_GEN7(dev_priv))
2994 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2995 
2996 	gen5_gt_irq_reset(dev_priv);
2997 
2998 	ibx_irq_reset(dev_priv);
2999 }
3000 
3001 static void valleyview_irq_preinstall(struct drm_device *dev)
3002 {
3003 	struct drm_i915_private *dev_priv = to_i915(dev);
3004 
3005 	I915_WRITE(VLV_MASTER_IER, 0);
3006 	POSTING_READ(VLV_MASTER_IER);
3007 
3008 	gen5_gt_irq_reset(dev_priv);
3009 
3010 	spin_lock_irq(&dev_priv->irq_lock);
3011 	if (dev_priv->display_irqs_enabled)
3012 		vlv_display_irq_reset(dev_priv);
3013 	spin_unlock_irq(&dev_priv->irq_lock);
3014 }
3015 
3016 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3017 {
3018 	GEN8_IRQ_RESET_NDX(GT, 0);
3019 	GEN8_IRQ_RESET_NDX(GT, 1);
3020 	GEN8_IRQ_RESET_NDX(GT, 2);
3021 	GEN8_IRQ_RESET_NDX(GT, 3);
3022 }
3023 
3024 static void gen8_irq_reset(struct drm_device *dev)
3025 {
3026 	struct drm_i915_private *dev_priv = to_i915(dev);
3027 	int pipe;
3028 
3029 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3030 	POSTING_READ(GEN8_MASTER_IRQ);
3031 
3032 	gen8_gt_irq_reset(dev_priv);
3033 
3034 	for_each_pipe(dev_priv, pipe)
3035 		if (intel_display_power_is_enabled(dev_priv,
3036 						   POWER_DOMAIN_PIPE(pipe)))
3037 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3038 
3039 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3040 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3041 	GEN5_IRQ_RESET(GEN8_PCU_);
3042 
3043 	if (HAS_PCH_SPLIT(dev_priv))
3044 		ibx_irq_reset(dev_priv);
3045 }
3046 
3047 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3048 				     unsigned int pipe_mask)
3049 {
3050 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3051 	enum pipe pipe;
3052 
3053 	spin_lock_irq(&dev_priv->irq_lock);
3054 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3055 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3056 				  dev_priv->de_irq_mask[pipe],
3057 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3058 	spin_unlock_irq(&dev_priv->irq_lock);
3059 }
3060 
3061 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3062 				     unsigned int pipe_mask)
3063 {
3064 	enum pipe pipe;
3065 
3066 	spin_lock_irq(&dev_priv->irq_lock);
3067 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3068 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3069 	spin_unlock_irq(&dev_priv->irq_lock);
3070 
3071 	/* make sure we're done processing display irqs */
3072 	synchronize_irq(dev_priv->drm.irq);
3073 }
3074 
3075 static void cherryview_irq_preinstall(struct drm_device *dev)
3076 {
3077 	struct drm_i915_private *dev_priv = to_i915(dev);
3078 
3079 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3080 	POSTING_READ(GEN8_MASTER_IRQ);
3081 
3082 	gen8_gt_irq_reset(dev_priv);
3083 
3084 	GEN5_IRQ_RESET(GEN8_PCU_);
3085 
3086 	spin_lock_irq(&dev_priv->irq_lock);
3087 	if (dev_priv->display_irqs_enabled)
3088 		vlv_display_irq_reset(dev_priv);
3089 	spin_unlock_irq(&dev_priv->irq_lock);
3090 }
3091 
3092 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3093 				  const u32 hpd[HPD_NUM_PINS])
3094 {
3095 	struct intel_encoder *encoder;
3096 	u32 enabled_irqs = 0;
3097 
3098 	for_each_intel_encoder(&dev_priv->drm, encoder)
3099 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3100 			enabled_irqs |= hpd[encoder->hpd_pin];
3101 
3102 	return enabled_irqs;
3103 }
3104 
3105 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3106 {
3107 	u32 hotplug;
3108 
3109 	/*
3110 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3111 	 * duration to 2ms (which is the minimum in the Display Port spec).
3112 	 * The pulse duration bits are reserved on LPT+.
3113 	 */
3114 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3115 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3116 		     PORTC_PULSE_DURATION_MASK |
3117 		     PORTD_PULSE_DURATION_MASK);
3118 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3119 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3120 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3121 	/*
3122 	 * When CPU and PCH are on the same package, port A
3123 	 * HPD must be enabled in both north and south.
3124 	 */
3125 	if (HAS_PCH_LPT_LP(dev_priv))
3126 		hotplug |= PORTA_HOTPLUG_ENABLE;
3127 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3128 }
3129 
3130 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3131 {
3132 	u32 hotplug_irqs, enabled_irqs;
3133 
3134 	if (HAS_PCH_IBX(dev_priv)) {
3135 		hotplug_irqs = SDE_HOTPLUG_MASK;
3136 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3137 	} else {
3138 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3139 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3140 	}
3141 
3142 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3143 
3144 	ibx_hpd_detection_setup(dev_priv);
3145 }
3146 
3147 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3148 {
3149 	u32 hotplug;
3150 
3151 	/* Enable digital hotplug on the PCH */
3152 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3153 	hotplug |= PORTA_HOTPLUG_ENABLE |
3154 		   PORTB_HOTPLUG_ENABLE |
3155 		   PORTC_HOTPLUG_ENABLE |
3156 		   PORTD_HOTPLUG_ENABLE;
3157 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3158 
3159 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3160 	hotplug |= PORTE_HOTPLUG_ENABLE;
3161 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3162 }
3163 
3164 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3165 {
3166 	u32 hotplug_irqs, enabled_irqs;
3167 
3168 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3169 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3170 
3171 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3172 
3173 	spt_hpd_detection_setup(dev_priv);
3174 }
3175 
3176 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3177 {
3178 	u32 hotplug;
3179 
3180 	/*
3181 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3182 	 * duration to 2ms (which is the minimum in the Display Port spec)
3183 	 * The pulse duration bits are reserved on HSW+.
3184 	 */
3185 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3186 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3187 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3188 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3189 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3190 }
3191 
3192 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3193 {
3194 	u32 hotplug_irqs, enabled_irqs;
3195 
3196 	if (INTEL_GEN(dev_priv) >= 8) {
3197 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3198 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3199 
3200 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3201 	} else if (INTEL_GEN(dev_priv) >= 7) {
3202 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3203 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3204 
3205 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3206 	} else {
3207 		hotplug_irqs = DE_DP_A_HOTPLUG;
3208 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3209 
3210 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3211 	}
3212 
3213 	ilk_hpd_detection_setup(dev_priv);
3214 
3215 	ibx_hpd_irq_setup(dev_priv);
3216 }
3217 
3218 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3219 				      u32 enabled_irqs)
3220 {
3221 	u32 hotplug;
3222 
3223 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3224 	hotplug |= PORTA_HOTPLUG_ENABLE |
3225 		   PORTB_HOTPLUG_ENABLE |
3226 		   PORTC_HOTPLUG_ENABLE;
3227 
3228 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3229 		      hotplug, enabled_irqs);
3230 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3231 
3232 	/*
3233 	 * For BXT invert bit has to be set based on AOB design
3234 	 * for HPD detection logic, update it based on VBT fields.
3235 	 */
3236 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3237 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3238 		hotplug |= BXT_DDIA_HPD_INVERT;
3239 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3240 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3241 		hotplug |= BXT_DDIB_HPD_INVERT;
3242 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3243 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3244 		hotplug |= BXT_DDIC_HPD_INVERT;
3245 
3246 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3247 }
3248 
3249 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3250 {
3251 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3252 }
3253 
3254 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3255 {
3256 	u32 hotplug_irqs, enabled_irqs;
3257 
3258 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3259 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3260 
3261 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3262 
3263 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3264 }
3265 
3266 static void ibx_irq_postinstall(struct drm_device *dev)
3267 {
3268 	struct drm_i915_private *dev_priv = to_i915(dev);
3269 	u32 mask;
3270 
3271 	if (HAS_PCH_NOP(dev_priv))
3272 		return;
3273 
3274 	if (HAS_PCH_IBX(dev_priv))
3275 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3276 	else
3277 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3278 
3279 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3280 	I915_WRITE(SDEIMR, ~mask);
3281 
3282 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3283 	    HAS_PCH_LPT(dev_priv))
3284 		ibx_hpd_detection_setup(dev_priv);
3285 	else
3286 		spt_hpd_detection_setup(dev_priv);
3287 }
3288 
3289 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3290 {
3291 	struct drm_i915_private *dev_priv = to_i915(dev);
3292 	u32 pm_irqs, gt_irqs;
3293 
3294 	pm_irqs = gt_irqs = 0;
3295 
3296 	dev_priv->gt_irq_mask = ~0;
3297 	if (HAS_L3_DPF(dev_priv)) {
3298 		/* L3 parity interrupt is always unmasked. */
3299 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3300 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3301 	}
3302 
3303 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3304 	if (IS_GEN5(dev_priv)) {
3305 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3306 	} else {
3307 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3308 	}
3309 
3310 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3311 
3312 	if (INTEL_GEN(dev_priv) >= 6) {
3313 		/*
3314 		 * RPS interrupts will get enabled/disabled on demand when RPS
3315 		 * itself is enabled/disabled.
3316 		 */
3317 		if (HAS_VEBOX(dev_priv)) {
3318 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3319 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3320 		}
3321 
3322 		dev_priv->pm_imr = 0xffffffff;
3323 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3324 	}
3325 }
3326 
3327 static int ironlake_irq_postinstall(struct drm_device *dev)
3328 {
3329 	struct drm_i915_private *dev_priv = to_i915(dev);
3330 	u32 display_mask, extra_mask;
3331 
3332 	if (INTEL_GEN(dev_priv) >= 7) {
3333 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3334 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3335 				DE_PLANEB_FLIP_DONE_IVB |
3336 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3337 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3338 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3339 			      DE_DP_A_HOTPLUG_IVB);
3340 	} else {
3341 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3342 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3343 				DE_AUX_CHANNEL_A |
3344 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3345 				DE_POISON);
3346 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3347 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3348 			      DE_DP_A_HOTPLUG);
3349 	}
3350 
3351 	dev_priv->irq_mask = ~display_mask;
3352 
3353 	I915_WRITE(HWSTAM, 0xeffe);
3354 
3355 	ibx_irq_pre_postinstall(dev);
3356 
3357 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3358 
3359 	gen5_gt_irq_postinstall(dev);
3360 
3361 	ilk_hpd_detection_setup(dev_priv);
3362 
3363 	ibx_irq_postinstall(dev);
3364 
3365 	if (IS_IRONLAKE_M(dev_priv)) {
3366 		/* Enable PCU event interrupts
3367 		 *
3368 		 * spinlocking not required here for correctness since interrupt
3369 		 * setup is guaranteed to run in single-threaded context. But we
3370 		 * need it to make the assert_spin_locked happy. */
3371 		spin_lock_irq(&dev_priv->irq_lock);
3372 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3373 		spin_unlock_irq(&dev_priv->irq_lock);
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3380 {
3381 	lockdep_assert_held(&dev_priv->irq_lock);
3382 
3383 	if (dev_priv->display_irqs_enabled)
3384 		return;
3385 
3386 	dev_priv->display_irqs_enabled = true;
3387 
3388 	if (intel_irqs_enabled(dev_priv)) {
3389 		vlv_display_irq_reset(dev_priv);
3390 		vlv_display_irq_postinstall(dev_priv);
3391 	}
3392 }
3393 
3394 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3395 {
3396 	lockdep_assert_held(&dev_priv->irq_lock);
3397 
3398 	if (!dev_priv->display_irqs_enabled)
3399 		return;
3400 
3401 	dev_priv->display_irqs_enabled = false;
3402 
3403 	if (intel_irqs_enabled(dev_priv))
3404 		vlv_display_irq_reset(dev_priv);
3405 }
3406 
3407 
3408 static int valleyview_irq_postinstall(struct drm_device *dev)
3409 {
3410 	struct drm_i915_private *dev_priv = to_i915(dev);
3411 
3412 	gen5_gt_irq_postinstall(dev);
3413 
3414 	spin_lock_irq(&dev_priv->irq_lock);
3415 	if (dev_priv->display_irqs_enabled)
3416 		vlv_display_irq_postinstall(dev_priv);
3417 	spin_unlock_irq(&dev_priv->irq_lock);
3418 
3419 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3420 	POSTING_READ(VLV_MASTER_IER);
3421 
3422 	return 0;
3423 }
3424 
3425 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427 	/* These are interrupts we'll toggle with the ring mask register */
3428 	uint32_t gt_interrupts[] = {
3429 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3430 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3431 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3432 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3433 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3434 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3435 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3436 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3437 		0,
3438 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3439 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3440 		};
3441 
3442 	if (HAS_L3_DPF(dev_priv))
3443 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3444 
3445 	dev_priv->pm_ier = 0x0;
3446 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3447 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3448 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3449 	/*
3450 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3451 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3452 	 */
3453 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3454 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3455 }
3456 
3457 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3458 {
3459 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3460 	uint32_t de_pipe_enables;
3461 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3462 	u32 de_port_enables;
3463 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3464 	enum pipe pipe;
3465 
3466 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3467 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3468 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3469 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3470 				  GEN9_AUX_CHANNEL_D;
3471 		if (IS_GEN9_LP(dev_priv))
3472 			de_port_masked |= BXT_DE_PORT_GMBUS;
3473 	} else {
3474 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3475 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3476 	}
3477 
3478 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3479 					   GEN8_PIPE_FIFO_UNDERRUN;
3480 
3481 	de_port_enables = de_port_masked;
3482 	if (IS_GEN9_LP(dev_priv))
3483 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3484 	else if (IS_BROADWELL(dev_priv))
3485 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3486 
3487 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3488 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3489 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3490 
3491 	for_each_pipe(dev_priv, pipe)
3492 		if (intel_display_power_is_enabled(dev_priv,
3493 				POWER_DOMAIN_PIPE(pipe)))
3494 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3495 					  dev_priv->de_irq_mask[pipe],
3496 					  de_pipe_enables);
3497 
3498 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3499 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3500 
3501 	if (IS_GEN9_LP(dev_priv))
3502 		bxt_hpd_detection_setup(dev_priv);
3503 	else if (IS_BROADWELL(dev_priv))
3504 		ilk_hpd_detection_setup(dev_priv);
3505 }
3506 
3507 static int gen8_irq_postinstall(struct drm_device *dev)
3508 {
3509 	struct drm_i915_private *dev_priv = to_i915(dev);
3510 
3511 	if (HAS_PCH_SPLIT(dev_priv))
3512 		ibx_irq_pre_postinstall(dev);
3513 
3514 	gen8_gt_irq_postinstall(dev_priv);
3515 	gen8_de_irq_postinstall(dev_priv);
3516 
3517 	if (HAS_PCH_SPLIT(dev_priv))
3518 		ibx_irq_postinstall(dev);
3519 
3520 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3521 	POSTING_READ(GEN8_MASTER_IRQ);
3522 
3523 	return 0;
3524 }
3525 
3526 static int cherryview_irq_postinstall(struct drm_device *dev)
3527 {
3528 	struct drm_i915_private *dev_priv = to_i915(dev);
3529 
3530 	gen8_gt_irq_postinstall(dev_priv);
3531 
3532 	spin_lock_irq(&dev_priv->irq_lock);
3533 	if (dev_priv->display_irqs_enabled)
3534 		vlv_display_irq_postinstall(dev_priv);
3535 	spin_unlock_irq(&dev_priv->irq_lock);
3536 
3537 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3538 	POSTING_READ(GEN8_MASTER_IRQ);
3539 
3540 	return 0;
3541 }
3542 
3543 static void gen8_irq_uninstall(struct drm_device *dev)
3544 {
3545 	struct drm_i915_private *dev_priv = to_i915(dev);
3546 
3547 	if (!dev_priv)
3548 		return;
3549 
3550 	gen8_irq_reset(dev);
3551 }
3552 
3553 static void valleyview_irq_uninstall(struct drm_device *dev)
3554 {
3555 	struct drm_i915_private *dev_priv = to_i915(dev);
3556 
3557 	if (!dev_priv)
3558 		return;
3559 
3560 	I915_WRITE(VLV_MASTER_IER, 0);
3561 	POSTING_READ(VLV_MASTER_IER);
3562 
3563 	gen5_gt_irq_reset(dev_priv);
3564 
3565 	I915_WRITE(HWSTAM, 0xffffffff);
3566 
3567 	spin_lock_irq(&dev_priv->irq_lock);
3568 	if (dev_priv->display_irqs_enabled)
3569 		vlv_display_irq_reset(dev_priv);
3570 	spin_unlock_irq(&dev_priv->irq_lock);
3571 }
3572 
3573 static void cherryview_irq_uninstall(struct drm_device *dev)
3574 {
3575 	struct drm_i915_private *dev_priv = to_i915(dev);
3576 
3577 	if (!dev_priv)
3578 		return;
3579 
3580 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3581 	POSTING_READ(GEN8_MASTER_IRQ);
3582 
3583 	gen8_gt_irq_reset(dev_priv);
3584 
3585 	GEN5_IRQ_RESET(GEN8_PCU_);
3586 
3587 	spin_lock_irq(&dev_priv->irq_lock);
3588 	if (dev_priv->display_irqs_enabled)
3589 		vlv_display_irq_reset(dev_priv);
3590 	spin_unlock_irq(&dev_priv->irq_lock);
3591 }
3592 
3593 static void ironlake_irq_uninstall(struct drm_device *dev)
3594 {
3595 	struct drm_i915_private *dev_priv = to_i915(dev);
3596 
3597 	if (!dev_priv)
3598 		return;
3599 
3600 	ironlake_irq_reset(dev);
3601 }
3602 
3603 static void i8xx_irq_preinstall(struct drm_device * dev)
3604 {
3605 	struct drm_i915_private *dev_priv = to_i915(dev);
3606 	int pipe;
3607 
3608 	for_each_pipe(dev_priv, pipe)
3609 		I915_WRITE(PIPESTAT(pipe), 0);
3610 	I915_WRITE16(IMR, 0xffff);
3611 	I915_WRITE16(IER, 0x0);
3612 	POSTING_READ16(IER);
3613 }
3614 
3615 static int i8xx_irq_postinstall(struct drm_device *dev)
3616 {
3617 	struct drm_i915_private *dev_priv = to_i915(dev);
3618 
3619 	I915_WRITE16(EMR,
3620 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3621 
3622 	/* Unmask the interrupts that we always want on. */
3623 	dev_priv->irq_mask =
3624 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3625 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3626 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3627 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3628 	I915_WRITE16(IMR, dev_priv->irq_mask);
3629 
3630 	I915_WRITE16(IER,
3631 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3632 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3633 		     I915_USER_INTERRUPT);
3634 	POSTING_READ16(IER);
3635 
3636 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3637 	 * just to make the assert_spin_locked check happy. */
3638 	spin_lock_irq(&dev_priv->irq_lock);
3639 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3640 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3641 	spin_unlock_irq(&dev_priv->irq_lock);
3642 
3643 	return 0;
3644 }
3645 
3646 /*
3647  * Returns true when a page flip has completed.
3648  */
3649 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3650 			       int plane, int pipe, u32 iir)
3651 {
3652 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3653 
3654 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3655 		return false;
3656 
3657 	if ((iir & flip_pending) == 0)
3658 		goto check_page_flip;
3659 
3660 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3661 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3662 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3663 	 * the flip is completed (no longer pending). Since this doesn't raise
3664 	 * an interrupt per se, we watch for the change at vblank.
3665 	 */
3666 	if (I915_READ16(ISR) & flip_pending)
3667 		goto check_page_flip;
3668 
3669 	intel_finish_page_flip_cs(dev_priv, pipe);
3670 	return true;
3671 
3672 check_page_flip:
3673 	intel_check_page_flip(dev_priv, pipe);
3674 	return false;
3675 }
3676 
3677 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3678 {
3679 	struct drm_device *dev = arg;
3680 	struct drm_i915_private *dev_priv = to_i915(dev);
3681 	u16 iir, new_iir;
3682 	u32 pipe_stats[2];
3683 	int pipe;
3684 	u16 flip_mask =
3685 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3686 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3687 	irqreturn_t ret;
3688 
3689 	if (!intel_irqs_enabled(dev_priv))
3690 		return IRQ_NONE;
3691 
3692 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3693 	disable_rpm_wakeref_asserts(dev_priv);
3694 
3695 	ret = IRQ_NONE;
3696 	iir = I915_READ16(IIR);
3697 	if (iir == 0)
3698 		goto out;
3699 
3700 	while (iir & ~flip_mask) {
3701 		/* Can't rely on pipestat interrupt bit in iir as it might
3702 		 * have been cleared after the pipestat interrupt was received.
3703 		 * It doesn't set the bit in iir again, but it still produces
3704 		 * interrupts (for non-MSI).
3705 		 */
3706 		spin_lock(&dev_priv->irq_lock);
3707 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3708 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3709 
3710 		for_each_pipe(dev_priv, pipe) {
3711 			i915_reg_t reg = PIPESTAT(pipe);
3712 			pipe_stats[pipe] = I915_READ(reg);
3713 
3714 			/*
3715 			 * Clear the PIPE*STAT regs before the IIR
3716 			 */
3717 			if (pipe_stats[pipe] & 0x8000ffff)
3718 				I915_WRITE(reg, pipe_stats[pipe]);
3719 		}
3720 		spin_unlock(&dev_priv->irq_lock);
3721 
3722 		I915_WRITE16(IIR, iir & ~flip_mask);
3723 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3724 
3725 		if (iir & I915_USER_INTERRUPT)
3726 			notify_ring(dev_priv->engine[RCS]);
3727 
3728 		for_each_pipe(dev_priv, pipe) {
3729 			int plane = pipe;
3730 			if (HAS_FBC(dev_priv))
3731 				plane = !plane;
3732 
3733 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3734 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3735 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3736 
3737 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3738 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3739 
3740 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3741 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3742 								    pipe);
3743 		}
3744 
3745 		iir = new_iir;
3746 	}
3747 	ret = IRQ_HANDLED;
3748 
3749 out:
3750 	enable_rpm_wakeref_asserts(dev_priv);
3751 
3752 	return ret;
3753 }
3754 
3755 static void i8xx_irq_uninstall(struct drm_device * dev)
3756 {
3757 	struct drm_i915_private *dev_priv = to_i915(dev);
3758 	int pipe;
3759 
3760 	for_each_pipe(dev_priv, pipe) {
3761 		/* Clear enable bits; then clear status bits */
3762 		I915_WRITE(PIPESTAT(pipe), 0);
3763 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3764 	}
3765 	I915_WRITE16(IMR, 0xffff);
3766 	I915_WRITE16(IER, 0x0);
3767 	I915_WRITE16(IIR, I915_READ16(IIR));
3768 }
3769 
3770 static void i915_irq_preinstall(struct drm_device * dev)
3771 {
3772 	struct drm_i915_private *dev_priv = to_i915(dev);
3773 	int pipe;
3774 
3775 	if (I915_HAS_HOTPLUG(dev_priv)) {
3776 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3777 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3778 	}
3779 
3780 	I915_WRITE16(HWSTAM, 0xeffe);
3781 	for_each_pipe(dev_priv, pipe)
3782 		I915_WRITE(PIPESTAT(pipe), 0);
3783 	I915_WRITE(IMR, 0xffffffff);
3784 	I915_WRITE(IER, 0x0);
3785 	POSTING_READ(IER);
3786 }
3787 
3788 static int i915_irq_postinstall(struct drm_device *dev)
3789 {
3790 	struct drm_i915_private *dev_priv = to_i915(dev);
3791 	u32 enable_mask;
3792 
3793 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3794 
3795 	/* Unmask the interrupts that we always want on. */
3796 	dev_priv->irq_mask =
3797 		~(I915_ASLE_INTERRUPT |
3798 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3799 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3800 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3801 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3802 
3803 	enable_mask =
3804 		I915_ASLE_INTERRUPT |
3805 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3806 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3807 		I915_USER_INTERRUPT;
3808 
3809 	if (I915_HAS_HOTPLUG(dev_priv)) {
3810 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3811 		POSTING_READ(PORT_HOTPLUG_EN);
3812 
3813 		/* Enable in IER... */
3814 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3815 		/* and unmask in IMR */
3816 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3817 	}
3818 
3819 	I915_WRITE(IMR, dev_priv->irq_mask);
3820 	I915_WRITE(IER, enable_mask);
3821 	POSTING_READ(IER);
3822 
3823 	i915_enable_asle_pipestat(dev_priv);
3824 
3825 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3826 	 * just to make the assert_spin_locked check happy. */
3827 	spin_lock_irq(&dev_priv->irq_lock);
3828 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3829 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3830 	spin_unlock_irq(&dev_priv->irq_lock);
3831 
3832 	return 0;
3833 }
3834 
3835 /*
3836  * Returns true when a page flip has completed.
3837  */
3838 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3839 			       int plane, int pipe, u32 iir)
3840 {
3841 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3842 
3843 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3844 		return false;
3845 
3846 	if ((iir & flip_pending) == 0)
3847 		goto check_page_flip;
3848 
3849 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3850 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3851 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3852 	 * the flip is completed (no longer pending). Since this doesn't raise
3853 	 * an interrupt per se, we watch for the change at vblank.
3854 	 */
3855 	if (I915_READ(ISR) & flip_pending)
3856 		goto check_page_flip;
3857 
3858 	intel_finish_page_flip_cs(dev_priv, pipe);
3859 	return true;
3860 
3861 check_page_flip:
3862 	intel_check_page_flip(dev_priv, pipe);
3863 	return false;
3864 }
3865 
3866 static irqreturn_t i915_irq_handler(int irq, void *arg)
3867 {
3868 	struct drm_device *dev = arg;
3869 	struct drm_i915_private *dev_priv = to_i915(dev);
3870 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3871 	u32 flip_mask =
3872 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3873 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3874 	int pipe, ret = IRQ_NONE;
3875 
3876 	if (!intel_irqs_enabled(dev_priv))
3877 		return IRQ_NONE;
3878 
3879 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3880 	disable_rpm_wakeref_asserts(dev_priv);
3881 
3882 	iir = I915_READ(IIR);
3883 	do {
3884 		bool irq_received = (iir & ~flip_mask) != 0;
3885 		bool blc_event = false;
3886 
3887 		/* Can't rely on pipestat interrupt bit in iir as it might
3888 		 * have been cleared after the pipestat interrupt was received.
3889 		 * It doesn't set the bit in iir again, but it still produces
3890 		 * interrupts (for non-MSI).
3891 		 */
3892 		spin_lock(&dev_priv->irq_lock);
3893 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3894 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3895 
3896 		for_each_pipe(dev_priv, pipe) {
3897 			i915_reg_t reg = PIPESTAT(pipe);
3898 			pipe_stats[pipe] = I915_READ(reg);
3899 
3900 			/* Clear the PIPE*STAT regs before the IIR */
3901 			if (pipe_stats[pipe] & 0x8000ffff) {
3902 				I915_WRITE(reg, pipe_stats[pipe]);
3903 				irq_received = true;
3904 			}
3905 		}
3906 		spin_unlock(&dev_priv->irq_lock);
3907 
3908 		if (!irq_received)
3909 			break;
3910 
3911 		/* Consume port.  Then clear IIR or we'll miss events */
3912 		if (I915_HAS_HOTPLUG(dev_priv) &&
3913 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
3914 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3915 			if (hotplug_status)
3916 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3917 		}
3918 
3919 		I915_WRITE(IIR, iir & ~flip_mask);
3920 		new_iir = I915_READ(IIR); /* Flush posted writes */
3921 
3922 		if (iir & I915_USER_INTERRUPT)
3923 			notify_ring(dev_priv->engine[RCS]);
3924 
3925 		for_each_pipe(dev_priv, pipe) {
3926 			int plane = pipe;
3927 			if (HAS_FBC(dev_priv))
3928 				plane = !plane;
3929 
3930 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3931 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
3932 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3933 
3934 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3935 				blc_event = true;
3936 
3937 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3938 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3939 
3940 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3941 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3942 								    pipe);
3943 		}
3944 
3945 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3946 			intel_opregion_asle_intr(dev_priv);
3947 
3948 		/* With MSI, interrupts are only generated when iir
3949 		 * transitions from zero to nonzero.  If another bit got
3950 		 * set while we were handling the existing iir bits, then
3951 		 * we would never get another interrupt.
3952 		 *
3953 		 * This is fine on non-MSI as well, as if we hit this path
3954 		 * we avoid exiting the interrupt handler only to generate
3955 		 * another one.
3956 		 *
3957 		 * Note that for MSI this could cause a stray interrupt report
3958 		 * if an interrupt landed in the time between writing IIR and
3959 		 * the posting read.  This should be rare enough to never
3960 		 * trigger the 99% of 100,000 interrupts test for disabling
3961 		 * stray interrupts.
3962 		 */
3963 		ret = IRQ_HANDLED;
3964 		iir = new_iir;
3965 	} while (iir & ~flip_mask);
3966 
3967 	enable_rpm_wakeref_asserts(dev_priv);
3968 
3969 	return ret;
3970 }
3971 
3972 static void i915_irq_uninstall(struct drm_device * dev)
3973 {
3974 	struct drm_i915_private *dev_priv = to_i915(dev);
3975 	int pipe;
3976 
3977 	if (I915_HAS_HOTPLUG(dev_priv)) {
3978 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3979 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3980 	}
3981 
3982 	I915_WRITE16(HWSTAM, 0xffff);
3983 	for_each_pipe(dev_priv, pipe) {
3984 		/* Clear enable bits; then clear status bits */
3985 		I915_WRITE(PIPESTAT(pipe), 0);
3986 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3987 	}
3988 	I915_WRITE(IMR, 0xffffffff);
3989 	I915_WRITE(IER, 0x0);
3990 
3991 	I915_WRITE(IIR, I915_READ(IIR));
3992 }
3993 
3994 static void i965_irq_preinstall(struct drm_device * dev)
3995 {
3996 	struct drm_i915_private *dev_priv = to_i915(dev);
3997 	int pipe;
3998 
3999 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4000 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4001 
4002 	I915_WRITE(HWSTAM, 0xeffe);
4003 	for_each_pipe(dev_priv, pipe)
4004 		I915_WRITE(PIPESTAT(pipe), 0);
4005 	I915_WRITE(IMR, 0xffffffff);
4006 	I915_WRITE(IER, 0x0);
4007 	POSTING_READ(IER);
4008 }
4009 
4010 static int i965_irq_postinstall(struct drm_device *dev)
4011 {
4012 	struct drm_i915_private *dev_priv = to_i915(dev);
4013 	u32 enable_mask;
4014 	u32 error_mask;
4015 
4016 	/* Unmask the interrupts that we always want on. */
4017 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4018 			       I915_DISPLAY_PORT_INTERRUPT |
4019 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4020 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4021 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4022 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4023 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4024 
4025 	enable_mask = ~dev_priv->irq_mask;
4026 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4027 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4028 	enable_mask |= I915_USER_INTERRUPT;
4029 
4030 	if (IS_G4X(dev_priv))
4031 		enable_mask |= I915_BSD_USER_INTERRUPT;
4032 
4033 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4034 	 * just to make the assert_spin_locked check happy. */
4035 	spin_lock_irq(&dev_priv->irq_lock);
4036 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4037 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4038 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4039 	spin_unlock_irq(&dev_priv->irq_lock);
4040 
4041 	/*
4042 	 * Enable some error detection, note the instruction error mask
4043 	 * bit is reserved, so we leave it masked.
4044 	 */
4045 	if (IS_G4X(dev_priv)) {
4046 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4047 			       GM45_ERROR_MEM_PRIV |
4048 			       GM45_ERROR_CP_PRIV |
4049 			       I915_ERROR_MEMORY_REFRESH);
4050 	} else {
4051 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4052 			       I915_ERROR_MEMORY_REFRESH);
4053 	}
4054 	I915_WRITE(EMR, error_mask);
4055 
4056 	I915_WRITE(IMR, dev_priv->irq_mask);
4057 	I915_WRITE(IER, enable_mask);
4058 	POSTING_READ(IER);
4059 
4060 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4061 	POSTING_READ(PORT_HOTPLUG_EN);
4062 
4063 	i915_enable_asle_pipestat(dev_priv);
4064 
4065 	return 0;
4066 }
4067 
4068 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4069 {
4070 	u32 hotplug_en;
4071 
4072 	lockdep_assert_held(&dev_priv->irq_lock);
4073 
4074 	/* Note HDMI and DP share hotplug bits */
4075 	/* enable bits are the same for all generations */
4076 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4077 	/* Programming the CRT detection parameters tends
4078 	   to generate a spurious hotplug event about three
4079 	   seconds later.  So just do it once.
4080 	*/
4081 	if (IS_G4X(dev_priv))
4082 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4083 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4084 
4085 	/* Ignore TV since it's buggy */
4086 	i915_hotplug_interrupt_update_locked(dev_priv,
4087 					     HOTPLUG_INT_EN_MASK |
4088 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4089 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4090 					     hotplug_en);
4091 }
4092 
4093 static irqreturn_t i965_irq_handler(int irq, void *arg)
4094 {
4095 	struct drm_device *dev = arg;
4096 	struct drm_i915_private *dev_priv = to_i915(dev);
4097 	u32 iir, new_iir;
4098 	u32 pipe_stats[I915_MAX_PIPES];
4099 	int ret = IRQ_NONE, pipe;
4100 	u32 flip_mask =
4101 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4102 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4103 
4104 	if (!intel_irqs_enabled(dev_priv))
4105 		return IRQ_NONE;
4106 
4107 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4108 	disable_rpm_wakeref_asserts(dev_priv);
4109 
4110 	iir = I915_READ(IIR);
4111 
4112 	for (;;) {
4113 		bool irq_received = (iir & ~flip_mask) != 0;
4114 		bool blc_event = false;
4115 
4116 		/* Can't rely on pipestat interrupt bit in iir as it might
4117 		 * have been cleared after the pipestat interrupt was received.
4118 		 * It doesn't set the bit in iir again, but it still produces
4119 		 * interrupts (for non-MSI).
4120 		 */
4121 		spin_lock(&dev_priv->irq_lock);
4122 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4123 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4124 
4125 		for_each_pipe(dev_priv, pipe) {
4126 			i915_reg_t reg = PIPESTAT(pipe);
4127 			pipe_stats[pipe] = I915_READ(reg);
4128 
4129 			/*
4130 			 * Clear the PIPE*STAT regs before the IIR
4131 			 */
4132 			if (pipe_stats[pipe] & 0x8000ffff) {
4133 				I915_WRITE(reg, pipe_stats[pipe]);
4134 				irq_received = true;
4135 			}
4136 		}
4137 		spin_unlock(&dev_priv->irq_lock);
4138 
4139 		if (!irq_received)
4140 			break;
4141 
4142 		ret = IRQ_HANDLED;
4143 
4144 		/* Consume port.  Then clear IIR or we'll miss events */
4145 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4146 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4147 			if (hotplug_status)
4148 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4149 		}
4150 
4151 		I915_WRITE(IIR, iir & ~flip_mask);
4152 		new_iir = I915_READ(IIR); /* Flush posted writes */
4153 
4154 		if (iir & I915_USER_INTERRUPT)
4155 			notify_ring(dev_priv->engine[RCS]);
4156 		if (iir & I915_BSD_USER_INTERRUPT)
4157 			notify_ring(dev_priv->engine[VCS]);
4158 
4159 		for_each_pipe(dev_priv, pipe) {
4160 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4161 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4162 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4163 
4164 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4165 				blc_event = true;
4166 
4167 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4168 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4169 
4170 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4171 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4172 		}
4173 
4174 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4175 			intel_opregion_asle_intr(dev_priv);
4176 
4177 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4178 			gmbus_irq_handler(dev_priv);
4179 
4180 		/* With MSI, interrupts are only generated when iir
4181 		 * transitions from zero to nonzero.  If another bit got
4182 		 * set while we were handling the existing iir bits, then
4183 		 * we would never get another interrupt.
4184 		 *
4185 		 * This is fine on non-MSI as well, as if we hit this path
4186 		 * we avoid exiting the interrupt handler only to generate
4187 		 * another one.
4188 		 *
4189 		 * Note that for MSI this could cause a stray interrupt report
4190 		 * if an interrupt landed in the time between writing IIR and
4191 		 * the posting read.  This should be rare enough to never
4192 		 * trigger the 99% of 100,000 interrupts test for disabling
4193 		 * stray interrupts.
4194 		 */
4195 		iir = new_iir;
4196 	}
4197 
4198 	enable_rpm_wakeref_asserts(dev_priv);
4199 
4200 	return ret;
4201 }
4202 
4203 static void i965_irq_uninstall(struct drm_device * dev)
4204 {
4205 	struct drm_i915_private *dev_priv = to_i915(dev);
4206 	int pipe;
4207 
4208 	if (!dev_priv)
4209 		return;
4210 
4211 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4212 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4213 
4214 	I915_WRITE(HWSTAM, 0xffffffff);
4215 	for_each_pipe(dev_priv, pipe)
4216 		I915_WRITE(PIPESTAT(pipe), 0);
4217 	I915_WRITE(IMR, 0xffffffff);
4218 	I915_WRITE(IER, 0x0);
4219 
4220 	for_each_pipe(dev_priv, pipe)
4221 		I915_WRITE(PIPESTAT(pipe),
4222 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4223 	I915_WRITE(IIR, I915_READ(IIR));
4224 }
4225 
4226 /**
4227  * intel_irq_init - initializes irq support
4228  * @dev_priv: i915 device instance
4229  *
4230  * This function initializes all the irq support including work items, timers
4231  * and all the vtables. It does not setup the interrupt itself though.
4232  */
4233 void intel_irq_init(struct drm_i915_private *dev_priv)
4234 {
4235 	struct drm_device *dev = &dev_priv->drm;
4236 
4237 	intel_hpd_init_work(dev_priv);
4238 
4239 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4240 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4241 
4242 	if (HAS_GUC_SCHED(dev_priv))
4243 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4244 
4245 	/* Let's track the enabled rps events */
4246 	if (IS_VALLEYVIEW(dev_priv))
4247 		/* WaGsvRC0ResidencyMethod:vlv */
4248 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4249 	else
4250 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4251 
4252 	dev_priv->rps.pm_intrmsk_mbz = 0;
4253 
4254 	/*
4255 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4256 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4257 	 *
4258 	 * TODO: verify if this can be reproduced on VLV,CHV.
4259 	 */
4260 	if (INTEL_INFO(dev_priv)->gen <= 7)
4261 		dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4262 
4263 	if (INTEL_INFO(dev_priv)->gen >= 8)
4264 		dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4265 
4266 	if (IS_GEN2(dev_priv)) {
4267 		/* Gen2 doesn't have a hardware frame counter */
4268 		dev->max_vblank_count = 0;
4269 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4270 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4271 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4272 	} else {
4273 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4274 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4275 	}
4276 
4277 	/*
4278 	 * Opt out of the vblank disable timer on everything except gen2.
4279 	 * Gen2 doesn't have a hardware frame counter and so depends on
4280 	 * vblank interrupts to produce sane vblank seuquence numbers.
4281 	 */
4282 	if (!IS_GEN2(dev_priv))
4283 		dev->vblank_disable_immediate = true;
4284 
4285 	/* Most platforms treat the display irq block as an always-on
4286 	 * power domain. vlv/chv can disable it at runtime and need
4287 	 * special care to avoid writing any of the display block registers
4288 	 * outside of the power domain. We defer setting up the display irqs
4289 	 * in this case to the runtime pm.
4290 	 */
4291 	dev_priv->display_irqs_enabled = true;
4292 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4293 		dev_priv->display_irqs_enabled = false;
4294 
4295 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4296 
4297 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4298 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4299 
4300 	if (IS_CHERRYVIEW(dev_priv)) {
4301 		dev->driver->irq_handler = cherryview_irq_handler;
4302 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4303 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4304 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4305 		dev->driver->enable_vblank = i965_enable_vblank;
4306 		dev->driver->disable_vblank = i965_disable_vblank;
4307 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4308 	} else if (IS_VALLEYVIEW(dev_priv)) {
4309 		dev->driver->irq_handler = valleyview_irq_handler;
4310 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4311 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4312 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4313 		dev->driver->enable_vblank = i965_enable_vblank;
4314 		dev->driver->disable_vblank = i965_disable_vblank;
4315 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4316 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4317 		dev->driver->irq_handler = gen8_irq_handler;
4318 		dev->driver->irq_preinstall = gen8_irq_reset;
4319 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4320 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4321 		dev->driver->enable_vblank = gen8_enable_vblank;
4322 		dev->driver->disable_vblank = gen8_disable_vblank;
4323 		if (IS_GEN9_LP(dev_priv))
4324 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4325 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4326 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4327 		else
4328 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4329 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4330 		dev->driver->irq_handler = ironlake_irq_handler;
4331 		dev->driver->irq_preinstall = ironlake_irq_reset;
4332 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4333 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4334 		dev->driver->enable_vblank = ironlake_enable_vblank;
4335 		dev->driver->disable_vblank = ironlake_disable_vblank;
4336 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4337 	} else {
4338 		if (IS_GEN2(dev_priv)) {
4339 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4340 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4341 			dev->driver->irq_handler = i8xx_irq_handler;
4342 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4343 			dev->driver->enable_vblank = i8xx_enable_vblank;
4344 			dev->driver->disable_vblank = i8xx_disable_vblank;
4345 		} else if (IS_GEN3(dev_priv)) {
4346 			dev->driver->irq_preinstall = i915_irq_preinstall;
4347 			dev->driver->irq_postinstall = i915_irq_postinstall;
4348 			dev->driver->irq_uninstall = i915_irq_uninstall;
4349 			dev->driver->irq_handler = i915_irq_handler;
4350 			dev->driver->enable_vblank = i8xx_enable_vblank;
4351 			dev->driver->disable_vblank = i8xx_disable_vblank;
4352 		} else {
4353 			dev->driver->irq_preinstall = i965_irq_preinstall;
4354 			dev->driver->irq_postinstall = i965_irq_postinstall;
4355 			dev->driver->irq_uninstall = i965_irq_uninstall;
4356 			dev->driver->irq_handler = i965_irq_handler;
4357 			dev->driver->enable_vblank = i965_enable_vblank;
4358 			dev->driver->disable_vblank = i965_disable_vblank;
4359 		}
4360 		if (I915_HAS_HOTPLUG(dev_priv))
4361 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4362 	}
4363 }
4364 
4365 /**
4366  * intel_irq_install - enables the hardware interrupt
4367  * @dev_priv: i915 device instance
4368  *
4369  * This function enables the hardware interrupt handling, but leaves the hotplug
4370  * handling still disabled. It is called after intel_irq_init().
4371  *
4372  * In the driver load and resume code we need working interrupts in a few places
4373  * but don't want to deal with the hassle of concurrent probe and hotplug
4374  * workers. Hence the split into this two-stage approach.
4375  */
4376 int intel_irq_install(struct drm_i915_private *dev_priv)
4377 {
4378 	/*
4379 	 * We enable some interrupt sources in our postinstall hooks, so mark
4380 	 * interrupts as enabled _before_ actually enabling them to avoid
4381 	 * special cases in our ordering checks.
4382 	 */
4383 	dev_priv->pm.irqs_enabled = true;
4384 
4385 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4386 }
4387 
4388 /**
4389  * intel_irq_uninstall - finilizes all irq handling
4390  * @dev_priv: i915 device instance
4391  *
4392  * This stops interrupt and hotplug handling and unregisters and frees all
4393  * resources acquired in the init functions.
4394  */
4395 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4396 {
4397 	drm_irq_uninstall(&dev_priv->drm);
4398 	intel_hpd_cancel_work(dev_priv);
4399 	dev_priv->pm.irqs_enabled = false;
4400 }
4401 
4402 /**
4403  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4404  * @dev_priv: i915 device instance
4405  *
4406  * This function is used to disable interrupts at runtime, both in the runtime
4407  * pm and the system suspend/resume code.
4408  */
4409 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4410 {
4411 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4412 	dev_priv->pm.irqs_enabled = false;
4413 	synchronize_irq(dev_priv->drm.irq);
4414 }
4415 
4416 /**
4417  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4418  * @dev_priv: i915 device instance
4419  *
4420  * This function is used to enable interrupts at runtime, both in the runtime
4421  * pm and the system suspend/resume code.
4422  */
4423 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4424 {
4425 	dev_priv->pm.irqs_enabled = true;
4426 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4427 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4428 }
4429