xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision bc5aa3a0)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 				     uint32_t mask,
178 				     uint32_t bits)
179 {
180 	uint32_t val;
181 
182 	assert_spin_locked(&dev_priv->irq_lock);
183 	WARN_ON(bits & ~mask);
184 
185 	val = I915_READ(PORT_HOTPLUG_EN);
186 	val &= ~mask;
187 	val |= bits;
188 	I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190 
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 				   uint32_t mask,
205 				   uint32_t bits)
206 {
207 	spin_lock_irq(&dev_priv->irq_lock);
208 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 	spin_unlock_irq(&dev_priv->irq_lock);
210 }
211 
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 			    uint32_t interrupt_mask,
220 			    uint32_t enabled_irq_mask)
221 {
222 	uint32_t new_val;
223 
224 	assert_spin_locked(&dev_priv->irq_lock);
225 
226 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
227 
228 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 		return;
230 
231 	new_val = dev_priv->irq_mask;
232 	new_val &= ~interrupt_mask;
233 	new_val |= (~enabled_irq_mask & interrupt_mask);
234 
235 	if (new_val != dev_priv->irq_mask) {
236 		dev_priv->irq_mask = new_val;
237 		I915_WRITE(DEIMR, dev_priv->irq_mask);
238 		POSTING_READ(DEIMR);
239 	}
240 }
241 
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 			      uint32_t interrupt_mask,
250 			      uint32_t enabled_irq_mask)
251 {
252 	assert_spin_locked(&dev_priv->irq_lock);
253 
254 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
255 
256 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 		return;
258 
259 	dev_priv->gt_irq_mask &= ~interrupt_mask;
260 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263 
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266 	ilk_update_gt_irq(dev_priv, mask, mask);
267 	POSTING_READ_FW(GTIMR);
268 }
269 
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 	ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274 
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279 
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284 
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289 
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 			      uint32_t interrupt_mask,
298 			      uint32_t enabled_irq_mask)
299 {
300 	uint32_t new_val;
301 
302 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
303 
304 	assert_spin_locked(&dev_priv->irq_lock);
305 
306 	new_val = dev_priv->pm_irq_mask;
307 	new_val &= ~interrupt_mask;
308 	new_val |= (~enabled_irq_mask & interrupt_mask);
309 
310 	if (new_val != dev_priv->pm_irq_mask) {
311 		dev_priv->pm_irq_mask = new_val;
312 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 		POSTING_READ(gen6_pm_imr(dev_priv));
314 	}
315 }
316 
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 		return;
321 
322 	snb_update_pm_irq(dev_priv, mask, mask);
323 }
324 
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 				  uint32_t mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_disable_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	spin_lock_irq(&dev_priv->irq_lock);
344 	I915_WRITE(reg, dev_priv->pm_rps_events);
345 	I915_WRITE(reg, dev_priv->pm_rps_events);
346 	POSTING_READ(reg);
347 	dev_priv->rps.pm_iir = 0;
348 	spin_unlock_irq(&dev_priv->irq_lock);
349 }
350 
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353 	spin_lock_irq(&dev_priv->irq_lock);
354 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
355 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
356 	dev_priv->rps.interrupts_enabled = true;
357 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
358 				dev_priv->pm_rps_events);
359 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
360 
361 	spin_unlock_irq(&dev_priv->irq_lock);
362 }
363 
364 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
365 {
366 	return (mask & ~dev_priv->rps.pm_intr_keep);
367 }
368 
369 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
370 {
371 	spin_lock_irq(&dev_priv->irq_lock);
372 	dev_priv->rps.interrupts_enabled = false;
373 
374 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
375 
376 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
377 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
378 				~dev_priv->pm_rps_events);
379 
380 	spin_unlock_irq(&dev_priv->irq_lock);
381 	synchronize_irq(dev_priv->drm.irq);
382 
383 	/* Now that we will not be generating any more work, flush any
384 	 * outsanding tasks. As we are called on the RPS idle path,
385 	 * we will reset the GPU to minimum frequencies, so the current
386 	 * state of the worker can be discarded.
387 	 */
388 	cancel_work_sync(&dev_priv->rps.work);
389 	gen6_reset_rps_interrupts(dev_priv);
390 }
391 
392 /**
393  * bdw_update_port_irq - update DE port interrupt
394  * @dev_priv: driver private
395  * @interrupt_mask: mask of interrupt bits to update
396  * @enabled_irq_mask: mask of interrupt bits to enable
397  */
398 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
399 				uint32_t interrupt_mask,
400 				uint32_t enabled_irq_mask)
401 {
402 	uint32_t new_val;
403 	uint32_t old_val;
404 
405 	assert_spin_locked(&dev_priv->irq_lock);
406 
407 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
408 
409 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
410 		return;
411 
412 	old_val = I915_READ(GEN8_DE_PORT_IMR);
413 
414 	new_val = old_val;
415 	new_val &= ~interrupt_mask;
416 	new_val |= (~enabled_irq_mask & interrupt_mask);
417 
418 	if (new_val != old_val) {
419 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
420 		POSTING_READ(GEN8_DE_PORT_IMR);
421 	}
422 }
423 
424 /**
425  * bdw_update_pipe_irq - update DE pipe interrupt
426  * @dev_priv: driver private
427  * @pipe: pipe whose interrupt to update
428  * @interrupt_mask: mask of interrupt bits to update
429  * @enabled_irq_mask: mask of interrupt bits to enable
430  */
431 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
432 			 enum pipe pipe,
433 			 uint32_t interrupt_mask,
434 			 uint32_t enabled_irq_mask)
435 {
436 	uint32_t new_val;
437 
438 	assert_spin_locked(&dev_priv->irq_lock);
439 
440 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
441 
442 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
443 		return;
444 
445 	new_val = dev_priv->de_irq_mask[pipe];
446 	new_val &= ~interrupt_mask;
447 	new_val |= (~enabled_irq_mask & interrupt_mask);
448 
449 	if (new_val != dev_priv->de_irq_mask[pipe]) {
450 		dev_priv->de_irq_mask[pipe] = new_val;
451 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
452 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
453 	}
454 }
455 
456 /**
457  * ibx_display_interrupt_update - update SDEIMR
458  * @dev_priv: driver private
459  * @interrupt_mask: mask of interrupt bits to update
460  * @enabled_irq_mask: mask of interrupt bits to enable
461  */
462 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
463 				  uint32_t interrupt_mask,
464 				  uint32_t enabled_irq_mask)
465 {
466 	uint32_t sdeimr = I915_READ(SDEIMR);
467 	sdeimr &= ~interrupt_mask;
468 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
469 
470 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
471 
472 	assert_spin_locked(&dev_priv->irq_lock);
473 
474 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
475 		return;
476 
477 	I915_WRITE(SDEIMR, sdeimr);
478 	POSTING_READ(SDEIMR);
479 }
480 
481 static void
482 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
483 		       u32 enable_mask, u32 status_mask)
484 {
485 	i915_reg_t reg = PIPESTAT(pipe);
486 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
487 
488 	assert_spin_locked(&dev_priv->irq_lock);
489 	WARN_ON(!intel_irqs_enabled(dev_priv));
490 
491 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
493 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494 		      pipe_name(pipe), enable_mask, status_mask))
495 		return;
496 
497 	if ((pipestat & enable_mask) == enable_mask)
498 		return;
499 
500 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
501 
502 	/* Enable the interrupt, clear any pending status */
503 	pipestat |= enable_mask | status_mask;
504 	I915_WRITE(reg, pipestat);
505 	POSTING_READ(reg);
506 }
507 
508 static void
509 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
510 		        u32 enable_mask, u32 status_mask)
511 {
512 	i915_reg_t reg = PIPESTAT(pipe);
513 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
514 
515 	assert_spin_locked(&dev_priv->irq_lock);
516 	WARN_ON(!intel_irqs_enabled(dev_priv));
517 
518 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
519 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
520 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
521 		      pipe_name(pipe), enable_mask, status_mask))
522 		return;
523 
524 	if ((pipestat & enable_mask) == 0)
525 		return;
526 
527 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
528 
529 	pipestat &= ~enable_mask;
530 	I915_WRITE(reg, pipestat);
531 	POSTING_READ(reg);
532 }
533 
534 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
535 {
536 	u32 enable_mask = status_mask << 16;
537 
538 	/*
539 	 * On pipe A we don't support the PSR interrupt yet,
540 	 * on pipe B and C the same bit MBZ.
541 	 */
542 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
543 		return 0;
544 	/*
545 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
546 	 * A the same bit is for perf counters which we don't use either.
547 	 */
548 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
549 		return 0;
550 
551 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
552 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
553 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
554 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
555 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
556 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
557 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
558 
559 	return enable_mask;
560 }
561 
562 void
563 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
564 		     u32 status_mask)
565 {
566 	u32 enable_mask;
567 
568 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
569 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
570 							   status_mask);
571 	else
572 		enable_mask = status_mask << 16;
573 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
574 }
575 
576 void
577 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
578 		      u32 status_mask)
579 {
580 	u32 enable_mask;
581 
582 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
583 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
584 							   status_mask);
585 	else
586 		enable_mask = status_mask << 16;
587 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
588 }
589 
590 /**
591  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
592  * @dev_priv: i915 device private
593  */
594 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
595 {
596 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
597 		return;
598 
599 	spin_lock_irq(&dev_priv->irq_lock);
600 
601 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
602 	if (INTEL_GEN(dev_priv) >= 4)
603 		i915_enable_pipestat(dev_priv, PIPE_A,
604 				     PIPE_LEGACY_BLC_EVENT_STATUS);
605 
606 	spin_unlock_irq(&dev_priv->irq_lock);
607 }
608 
609 /*
610  * This timing diagram depicts the video signal in and
611  * around the vertical blanking period.
612  *
613  * Assumptions about the fictitious mode used in this example:
614  *  vblank_start >= 3
615  *  vsync_start = vblank_start + 1
616  *  vsync_end = vblank_start + 2
617  *  vtotal = vblank_start + 3
618  *
619  *           start of vblank:
620  *           latch double buffered registers
621  *           increment frame counter (ctg+)
622  *           generate start of vblank interrupt (gen4+)
623  *           |
624  *           |          frame start:
625  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
626  *           |          may be shifted forward 1-3 extra lines via PIPECONF
627  *           |          |
628  *           |          |  start of vsync:
629  *           |          |  generate vsync interrupt
630  *           |          |  |
631  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
632  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
633  * ----va---> <-----------------vb--------------------> <--------va-------------
634  *       |          |       <----vs----->                     |
635  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
636  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
637  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
638  *       |          |                                         |
639  *       last visible pixel                                   first visible pixel
640  *                  |                                         increment frame counter (gen3/4)
641  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
642  *
643  * x  = horizontal active
644  * _  = horizontal blanking
645  * hs = horizontal sync
646  * va = vertical active
647  * vb = vertical blanking
648  * vs = vertical sync
649  * vbs = vblank_start (number)
650  *
651  * Summary:
652  * - most events happen at the start of horizontal sync
653  * - frame start happens at the start of horizontal blank, 1-4 lines
654  *   (depending on PIPECONF settings) after the start of vblank
655  * - gen3/4 pixel and frame counter are synchronized with the start
656  *   of horizontal active on the first line of vertical active
657  */
658 
659 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
660 {
661 	/* Gen2 doesn't have a hardware frame counter */
662 	return 0;
663 }
664 
665 /* Called from drm generic code, passed a 'crtc', which
666  * we use as a pipe index
667  */
668 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
669 {
670 	struct drm_i915_private *dev_priv = to_i915(dev);
671 	i915_reg_t high_frame, low_frame;
672 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
673 	struct intel_crtc *intel_crtc =
674 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
675 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
676 
677 	htotal = mode->crtc_htotal;
678 	hsync_start = mode->crtc_hsync_start;
679 	vbl_start = mode->crtc_vblank_start;
680 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
681 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
682 
683 	/* Convert to pixel count */
684 	vbl_start *= htotal;
685 
686 	/* Start of vblank event occurs at start of hsync */
687 	vbl_start -= htotal - hsync_start;
688 
689 	high_frame = PIPEFRAME(pipe);
690 	low_frame = PIPEFRAMEPIXEL(pipe);
691 
692 	/*
693 	 * High & low register fields aren't synchronized, so make sure
694 	 * we get a low value that's stable across two reads of the high
695 	 * register.
696 	 */
697 	do {
698 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699 		low   = I915_READ(low_frame);
700 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
701 	} while (high1 != high2);
702 
703 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
704 	pixel = low & PIPE_PIXEL_MASK;
705 	low >>= PIPE_FRAME_LOW_SHIFT;
706 
707 	/*
708 	 * The frame counter increments at beginning of active.
709 	 * Cook up a vblank counter by also checking the pixel
710 	 * counter against vblank start.
711 	 */
712 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
713 }
714 
715 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
716 {
717 	struct drm_i915_private *dev_priv = to_i915(dev);
718 
719 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
720 }
721 
722 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725 	struct drm_device *dev = crtc->base.dev;
726 	struct drm_i915_private *dev_priv = to_i915(dev);
727 	const struct drm_display_mode *mode = &crtc->base.hwmode;
728 	enum pipe pipe = crtc->pipe;
729 	int position, vtotal;
730 
731 	vtotal = mode->crtc_vtotal;
732 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733 		vtotal /= 2;
734 
735 	if (IS_GEN2(dev_priv))
736 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737 	else
738 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739 
740 	/*
741 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
742 	 * read it just before the start of vblank.  So try it again
743 	 * so we don't accidentally end up spanning a vblank frame
744 	 * increment, causing the pipe_update_end() code to squak at us.
745 	 *
746 	 * The nature of this problem means we can't simply check the ISR
747 	 * bit and return the vblank start value; nor can we use the scanline
748 	 * debug register in the transcoder as it appears to have the same
749 	 * problem.  We may need to extend this to include other platforms,
750 	 * but so far testing only shows the problem on HSW.
751 	 */
752 	if (HAS_DDI(dev_priv) && !position) {
753 		int i, temp;
754 
755 		for (i = 0; i < 100; i++) {
756 			udelay(1);
757 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758 				DSL_LINEMASK_GEN3;
759 			if (temp != position) {
760 				position = temp;
761 				break;
762 			}
763 		}
764 	}
765 
766 	/*
767 	 * See update_scanline_offset() for the details on the
768 	 * scanline_offset adjustment.
769 	 */
770 	return (position + crtc->scanline_offset) % vtotal;
771 }
772 
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774 				    unsigned int flags, int *vpos, int *hpos,
775 				    ktime_t *stime, ktime_t *etime,
776 				    const struct drm_display_mode *mode)
777 {
778 	struct drm_i915_private *dev_priv = to_i915(dev);
779 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781 	int position;
782 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783 	bool in_vbl = true;
784 	int ret = 0;
785 	unsigned long irqflags;
786 
787 	if (WARN_ON(!mode->crtc_clock)) {
788 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789 				 "pipe %c\n", pipe_name(pipe));
790 		return 0;
791 	}
792 
793 	htotal = mode->crtc_htotal;
794 	hsync_start = mode->crtc_hsync_start;
795 	vtotal = mode->crtc_vtotal;
796 	vbl_start = mode->crtc_vblank_start;
797 	vbl_end = mode->crtc_vblank_end;
798 
799 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
801 		vbl_end /= 2;
802 		vtotal /= 2;
803 	}
804 
805 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806 
807 	/*
808 	 * Lock uncore.lock, as we will do multiple timing critical raw
809 	 * register reads, potentially with preemption disabled, so the
810 	 * following code must not block on uncore.lock.
811 	 */
812 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813 
814 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815 
816 	/* Get optional system timestamp before query. */
817 	if (stime)
818 		*stime = ktime_get();
819 
820 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
821 		/* No obvious pixelcount register. Only query vertical
822 		 * scanout position from Display scan line register.
823 		 */
824 		position = __intel_get_crtc_scanline(intel_crtc);
825 	} else {
826 		/* Have access to pixelcount since start of frame.
827 		 * We can split this into vertical and horizontal
828 		 * scanout position.
829 		 */
830 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831 
832 		/* convert to pixel counts */
833 		vbl_start *= htotal;
834 		vbl_end *= htotal;
835 		vtotal *= htotal;
836 
837 		/*
838 		 * In interlaced modes, the pixel counter counts all pixels,
839 		 * so one field will have htotal more pixels. In order to avoid
840 		 * the reported position from jumping backwards when the pixel
841 		 * counter is beyond the length of the shorter field, just
842 		 * clamp the position the length of the shorter field. This
843 		 * matches how the scanline counter based position works since
844 		 * the scanline counter doesn't count the two half lines.
845 		 */
846 		if (position >= vtotal)
847 			position = vtotal - 1;
848 
849 		/*
850 		 * Start of vblank interrupt is triggered at start of hsync,
851 		 * just prior to the first active line of vblank. However we
852 		 * consider lines to start at the leading edge of horizontal
853 		 * active. So, should we get here before we've crossed into
854 		 * the horizontal active of the first line in vblank, we would
855 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856 		 * always add htotal-hsync_start to the current pixel position.
857 		 */
858 		position = (position + htotal - hsync_start) % vtotal;
859 	}
860 
861 	/* Get optional system timestamp after query. */
862 	if (etime)
863 		*etime = ktime_get();
864 
865 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866 
867 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868 
869 	in_vbl = position >= vbl_start && position < vbl_end;
870 
871 	/*
872 	 * While in vblank, position will be negative
873 	 * counting up towards 0 at vbl_end. And outside
874 	 * vblank, position will be positive counting
875 	 * up since vbl_end.
876 	 */
877 	if (position >= vbl_start)
878 		position -= vbl_end;
879 	else
880 		position += vtotal - vbl_end;
881 
882 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
883 		*vpos = position;
884 		*hpos = 0;
885 	} else {
886 		*vpos = position / htotal;
887 		*hpos = position - (*vpos * htotal);
888 	}
889 
890 	/* In vblank? */
891 	if (in_vbl)
892 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
893 
894 	return ret;
895 }
896 
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900 	unsigned long irqflags;
901 	int position;
902 
903 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904 	position = __intel_get_crtc_scanline(crtc);
905 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906 
907 	return position;
908 }
909 
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911 			      int *max_error,
912 			      struct timeval *vblank_time,
913 			      unsigned flags)
914 {
915 	struct drm_crtc *crtc;
916 
917 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
918 		DRM_ERROR("Invalid crtc %u\n", pipe);
919 		return -EINVAL;
920 	}
921 
922 	/* Get drm_crtc to timestamp: */
923 	crtc = intel_get_crtc_for_pipe(dev, pipe);
924 	if (crtc == NULL) {
925 		DRM_ERROR("Invalid crtc %u\n", pipe);
926 		return -EINVAL;
927 	}
928 
929 	if (!crtc->hwmode.crtc_clock) {
930 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931 		return -EBUSY;
932 	}
933 
934 	/* Helper routine in DRM core does all the work: */
935 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936 						     vblank_time, flags,
937 						     &crtc->hwmode);
938 }
939 
940 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
941 {
942 	u32 busy_up, busy_down, max_avg, min_avg;
943 	u8 new_delay;
944 
945 	spin_lock(&mchdev_lock);
946 
947 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948 
949 	new_delay = dev_priv->ips.cur_delay;
950 
951 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952 	busy_up = I915_READ(RCPREVBSYTUPAVG);
953 	busy_down = I915_READ(RCPREVBSYTDNAVG);
954 	max_avg = I915_READ(RCBMAXAVG);
955 	min_avg = I915_READ(RCBMINAVG);
956 
957 	/* Handle RCS change request from hw */
958 	if (busy_up > max_avg) {
959 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960 			new_delay = dev_priv->ips.cur_delay - 1;
961 		if (new_delay < dev_priv->ips.max_delay)
962 			new_delay = dev_priv->ips.max_delay;
963 	} else if (busy_down < min_avg) {
964 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965 			new_delay = dev_priv->ips.cur_delay + 1;
966 		if (new_delay > dev_priv->ips.min_delay)
967 			new_delay = dev_priv->ips.min_delay;
968 	}
969 
970 	if (ironlake_set_drps(dev_priv, new_delay))
971 		dev_priv->ips.cur_delay = new_delay;
972 
973 	spin_unlock(&mchdev_lock);
974 
975 	return;
976 }
977 
978 static void notify_ring(struct intel_engine_cs *engine)
979 {
980 	smp_store_mb(engine->breadcrumbs.irq_posted, true);
981 	if (intel_engine_wakeup(engine)) {
982 		trace_i915_gem_request_notify(engine);
983 		engine->breadcrumbs.irq_wakeups++;
984 	}
985 }
986 
987 static void vlv_c0_read(struct drm_i915_private *dev_priv,
988 			struct intel_rps_ei *ei)
989 {
990 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
991 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
992 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
993 }
994 
995 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
996 			 const struct intel_rps_ei *old,
997 			 const struct intel_rps_ei *now,
998 			 int threshold)
999 {
1000 	u64 time, c0;
1001 	unsigned int mul = 100;
1002 
1003 	if (old->cz_clock == 0)
1004 		return false;
1005 
1006 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1007 		mul <<= 8;
1008 
1009 	time = now->cz_clock - old->cz_clock;
1010 	time *= threshold * dev_priv->czclk_freq;
1011 
1012 	/* Workload can be split between render + media, e.g. SwapBuffers
1013 	 * being blitted in X after being rendered in mesa. To account for
1014 	 * this we need to combine both engines into our activity counter.
1015 	 */
1016 	c0 = now->render_c0 - old->render_c0;
1017 	c0 += now->media_c0 - old->media_c0;
1018 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1019 
1020 	return c0 >= time;
1021 }
1022 
1023 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1024 {
1025 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1026 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1027 }
1028 
1029 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1030 {
1031 	struct intel_rps_ei now;
1032 	u32 events = 0;
1033 
1034 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1035 		return 0;
1036 
1037 	vlv_c0_read(dev_priv, &now);
1038 	if (now.cz_clock == 0)
1039 		return 0;
1040 
1041 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1042 		if (!vlv_c0_above(dev_priv,
1043 				  &dev_priv->rps.down_ei, &now,
1044 				  dev_priv->rps.down_threshold))
1045 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1046 		dev_priv->rps.down_ei = now;
1047 	}
1048 
1049 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1050 		if (vlv_c0_above(dev_priv,
1051 				 &dev_priv->rps.up_ei, &now,
1052 				 dev_priv->rps.up_threshold))
1053 			events |= GEN6_PM_RP_UP_THRESHOLD;
1054 		dev_priv->rps.up_ei = now;
1055 	}
1056 
1057 	return events;
1058 }
1059 
1060 static bool any_waiters(struct drm_i915_private *dev_priv)
1061 {
1062 	struct intel_engine_cs *engine;
1063 
1064 	for_each_engine(engine, dev_priv)
1065 		if (intel_engine_has_waiter(engine))
1066 			return true;
1067 
1068 	return false;
1069 }
1070 
1071 static void gen6_pm_rps_work(struct work_struct *work)
1072 {
1073 	struct drm_i915_private *dev_priv =
1074 		container_of(work, struct drm_i915_private, rps.work);
1075 	bool client_boost;
1076 	int new_delay, adj, min, max;
1077 	u32 pm_iir;
1078 
1079 	spin_lock_irq(&dev_priv->irq_lock);
1080 	/* Speed up work cancelation during disabling rps interrupts. */
1081 	if (!dev_priv->rps.interrupts_enabled) {
1082 		spin_unlock_irq(&dev_priv->irq_lock);
1083 		return;
1084 	}
1085 
1086 	pm_iir = dev_priv->rps.pm_iir;
1087 	dev_priv->rps.pm_iir = 0;
1088 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1089 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1090 	client_boost = dev_priv->rps.client_boost;
1091 	dev_priv->rps.client_boost = false;
1092 	spin_unlock_irq(&dev_priv->irq_lock);
1093 
1094 	/* Make sure we didn't queue anything we're not going to process. */
1095 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1096 
1097 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1098 		return;
1099 
1100 	mutex_lock(&dev_priv->rps.hw_lock);
1101 
1102 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1103 
1104 	adj = dev_priv->rps.last_adj;
1105 	new_delay = dev_priv->rps.cur_freq;
1106 	min = dev_priv->rps.min_freq_softlimit;
1107 	max = dev_priv->rps.max_freq_softlimit;
1108 
1109 	if (client_boost) {
1110 		new_delay = dev_priv->rps.max_freq_softlimit;
1111 		adj = 0;
1112 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1113 		if (adj > 0)
1114 			adj *= 2;
1115 		else /* CHV needs even encode values */
1116 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1117 		/*
1118 		 * For better performance, jump directly
1119 		 * to RPe if we're below it.
1120 		 */
1121 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1122 			new_delay = dev_priv->rps.efficient_freq;
1123 			adj = 0;
1124 		}
1125 	} else if (any_waiters(dev_priv)) {
1126 		adj = 0;
1127 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1128 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1129 			new_delay = dev_priv->rps.efficient_freq;
1130 		else
1131 			new_delay = dev_priv->rps.min_freq_softlimit;
1132 		adj = 0;
1133 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1134 		if (adj < 0)
1135 			adj *= 2;
1136 		else /* CHV needs even encode values */
1137 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1138 	} else { /* unknown event */
1139 		adj = 0;
1140 	}
1141 
1142 	dev_priv->rps.last_adj = adj;
1143 
1144 	/* sysfs frequency interfaces may have snuck in while servicing the
1145 	 * interrupt
1146 	 */
1147 	new_delay += adj;
1148 	new_delay = clamp_t(int, new_delay, min, max);
1149 
1150 	intel_set_rps(dev_priv, new_delay);
1151 
1152 	mutex_unlock(&dev_priv->rps.hw_lock);
1153 }
1154 
1155 
1156 /**
1157  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1158  * occurred.
1159  * @work: workqueue struct
1160  *
1161  * Doesn't actually do anything except notify userspace. As a consequence of
1162  * this event, userspace should try to remap the bad rows since statistically
1163  * it is likely the same row is more likely to go bad again.
1164  */
1165 static void ivybridge_parity_work(struct work_struct *work)
1166 {
1167 	struct drm_i915_private *dev_priv =
1168 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1169 	u32 error_status, row, bank, subbank;
1170 	char *parity_event[6];
1171 	uint32_t misccpctl;
1172 	uint8_t slice = 0;
1173 
1174 	/* We must turn off DOP level clock gating to access the L3 registers.
1175 	 * In order to prevent a get/put style interface, acquire struct mutex
1176 	 * any time we access those registers.
1177 	 */
1178 	mutex_lock(&dev_priv->drm.struct_mutex);
1179 
1180 	/* If we've screwed up tracking, just let the interrupt fire again */
1181 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1182 		goto out;
1183 
1184 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1185 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1186 	POSTING_READ(GEN7_MISCCPCTL);
1187 
1188 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1189 		i915_reg_t reg;
1190 
1191 		slice--;
1192 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1193 			break;
1194 
1195 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1196 
1197 		reg = GEN7_L3CDERRST1(slice);
1198 
1199 		error_status = I915_READ(reg);
1200 		row = GEN7_PARITY_ERROR_ROW(error_status);
1201 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1202 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1203 
1204 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1205 		POSTING_READ(reg);
1206 
1207 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1208 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1209 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1210 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1211 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1212 		parity_event[5] = NULL;
1213 
1214 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1215 				   KOBJ_CHANGE, parity_event);
1216 
1217 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1218 			  slice, row, bank, subbank);
1219 
1220 		kfree(parity_event[4]);
1221 		kfree(parity_event[3]);
1222 		kfree(parity_event[2]);
1223 		kfree(parity_event[1]);
1224 	}
1225 
1226 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1227 
1228 out:
1229 	WARN_ON(dev_priv->l3_parity.which_slice);
1230 	spin_lock_irq(&dev_priv->irq_lock);
1231 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1232 	spin_unlock_irq(&dev_priv->irq_lock);
1233 
1234 	mutex_unlock(&dev_priv->drm.struct_mutex);
1235 }
1236 
1237 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1238 					       u32 iir)
1239 {
1240 	if (!HAS_L3_DPF(dev_priv))
1241 		return;
1242 
1243 	spin_lock(&dev_priv->irq_lock);
1244 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1245 	spin_unlock(&dev_priv->irq_lock);
1246 
1247 	iir &= GT_PARITY_ERROR(dev_priv);
1248 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1249 		dev_priv->l3_parity.which_slice |= 1 << 1;
1250 
1251 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1252 		dev_priv->l3_parity.which_slice |= 1 << 0;
1253 
1254 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1255 }
1256 
1257 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1258 			       u32 gt_iir)
1259 {
1260 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1261 		notify_ring(&dev_priv->engine[RCS]);
1262 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1263 		notify_ring(&dev_priv->engine[VCS]);
1264 }
1265 
1266 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1267 			       u32 gt_iir)
1268 {
1269 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1270 		notify_ring(&dev_priv->engine[RCS]);
1271 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1272 		notify_ring(&dev_priv->engine[VCS]);
1273 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1274 		notify_ring(&dev_priv->engine[BCS]);
1275 
1276 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1277 		      GT_BSD_CS_ERROR_INTERRUPT |
1278 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1279 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1280 
1281 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1282 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1283 }
1284 
1285 static __always_inline void
1286 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1287 {
1288 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1289 		notify_ring(engine);
1290 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1291 		tasklet_schedule(&engine->irq_tasklet);
1292 }
1293 
1294 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1295 				   u32 master_ctl,
1296 				   u32 gt_iir[4])
1297 {
1298 	irqreturn_t ret = IRQ_NONE;
1299 
1300 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1301 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1302 		if (gt_iir[0]) {
1303 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1304 			ret = IRQ_HANDLED;
1305 		} else
1306 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1307 	}
1308 
1309 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1310 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1311 		if (gt_iir[1]) {
1312 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1313 			ret = IRQ_HANDLED;
1314 		} else
1315 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1316 	}
1317 
1318 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1319 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1320 		if (gt_iir[3]) {
1321 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1322 			ret = IRQ_HANDLED;
1323 		} else
1324 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1325 	}
1326 
1327 	if (master_ctl & GEN8_GT_PM_IRQ) {
1328 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1329 		if (gt_iir[2] & dev_priv->pm_rps_events) {
1330 			I915_WRITE_FW(GEN8_GT_IIR(2),
1331 				      gt_iir[2] & dev_priv->pm_rps_events);
1332 			ret = IRQ_HANDLED;
1333 		} else
1334 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1341 				u32 gt_iir[4])
1342 {
1343 	if (gt_iir[0]) {
1344 		gen8_cs_irq_handler(&dev_priv->engine[RCS],
1345 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1346 		gen8_cs_irq_handler(&dev_priv->engine[BCS],
1347 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1348 	}
1349 
1350 	if (gt_iir[1]) {
1351 		gen8_cs_irq_handler(&dev_priv->engine[VCS],
1352 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1353 		gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1354 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1355 	}
1356 
1357 	if (gt_iir[3])
1358 		gen8_cs_irq_handler(&dev_priv->engine[VECS],
1359 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1360 
1361 	if (gt_iir[2] & dev_priv->pm_rps_events)
1362 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1363 }
1364 
1365 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1366 {
1367 	switch (port) {
1368 	case PORT_A:
1369 		return val & PORTA_HOTPLUG_LONG_DETECT;
1370 	case PORT_B:
1371 		return val & PORTB_HOTPLUG_LONG_DETECT;
1372 	case PORT_C:
1373 		return val & PORTC_HOTPLUG_LONG_DETECT;
1374 	default:
1375 		return false;
1376 	}
1377 }
1378 
1379 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1380 {
1381 	switch (port) {
1382 	case PORT_E:
1383 		return val & PORTE_HOTPLUG_LONG_DETECT;
1384 	default:
1385 		return false;
1386 	}
1387 }
1388 
1389 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1390 {
1391 	switch (port) {
1392 	case PORT_A:
1393 		return val & PORTA_HOTPLUG_LONG_DETECT;
1394 	case PORT_B:
1395 		return val & PORTB_HOTPLUG_LONG_DETECT;
1396 	case PORT_C:
1397 		return val & PORTC_HOTPLUG_LONG_DETECT;
1398 	case PORT_D:
1399 		return val & PORTD_HOTPLUG_LONG_DETECT;
1400 	default:
1401 		return false;
1402 	}
1403 }
1404 
1405 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407 	switch (port) {
1408 	case PORT_A:
1409 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1410 	default:
1411 		return false;
1412 	}
1413 }
1414 
1415 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 	switch (port) {
1418 	case PORT_B:
1419 		return val & PORTB_HOTPLUG_LONG_DETECT;
1420 	case PORT_C:
1421 		return val & PORTC_HOTPLUG_LONG_DETECT;
1422 	case PORT_D:
1423 		return val & PORTD_HOTPLUG_LONG_DETECT;
1424 	default:
1425 		return false;
1426 	}
1427 }
1428 
1429 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431 	switch (port) {
1432 	case PORT_B:
1433 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1434 	case PORT_C:
1435 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1436 	case PORT_D:
1437 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1438 	default:
1439 		return false;
1440 	}
1441 }
1442 
1443 /*
1444  * Get a bit mask of pins that have triggered, and which ones may be long.
1445  * This can be called multiple times with the same masks to accumulate
1446  * hotplug detection results from several registers.
1447  *
1448  * Note that the caller is expected to zero out the masks initially.
1449  */
1450 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1451 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1452 			     const u32 hpd[HPD_NUM_PINS],
1453 			     bool long_pulse_detect(enum port port, u32 val))
1454 {
1455 	enum port port;
1456 	int i;
1457 
1458 	for_each_hpd_pin(i) {
1459 		if ((hpd[i] & hotplug_trigger) == 0)
1460 			continue;
1461 
1462 		*pin_mask |= BIT(i);
1463 
1464 		if (!intel_hpd_pin_to_port(i, &port))
1465 			continue;
1466 
1467 		if (long_pulse_detect(port, dig_hotplug_reg))
1468 			*long_mask |= BIT(i);
1469 	}
1470 
1471 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1472 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1473 
1474 }
1475 
1476 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1477 {
1478 	wake_up_all(&dev_priv->gmbus_wait_queue);
1479 }
1480 
1481 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1482 {
1483 	wake_up_all(&dev_priv->gmbus_wait_queue);
1484 }
1485 
1486 #if defined(CONFIG_DEBUG_FS)
1487 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1488 					 enum pipe pipe,
1489 					 uint32_t crc0, uint32_t crc1,
1490 					 uint32_t crc2, uint32_t crc3,
1491 					 uint32_t crc4)
1492 {
1493 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1494 	struct intel_pipe_crc_entry *entry;
1495 	int head, tail;
1496 
1497 	spin_lock(&pipe_crc->lock);
1498 
1499 	if (!pipe_crc->entries) {
1500 		spin_unlock(&pipe_crc->lock);
1501 		DRM_DEBUG_KMS("spurious interrupt\n");
1502 		return;
1503 	}
1504 
1505 	head = pipe_crc->head;
1506 	tail = pipe_crc->tail;
1507 
1508 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1509 		spin_unlock(&pipe_crc->lock);
1510 		DRM_ERROR("CRC buffer overflowing\n");
1511 		return;
1512 	}
1513 
1514 	entry = &pipe_crc->entries[head];
1515 
1516 	entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1517 								 pipe);
1518 	entry->crc[0] = crc0;
1519 	entry->crc[1] = crc1;
1520 	entry->crc[2] = crc2;
1521 	entry->crc[3] = crc3;
1522 	entry->crc[4] = crc4;
1523 
1524 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1525 	pipe_crc->head = head;
1526 
1527 	spin_unlock(&pipe_crc->lock);
1528 
1529 	wake_up_interruptible(&pipe_crc->wq);
1530 }
1531 #else
1532 static inline void
1533 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1534 			     enum pipe pipe,
1535 			     uint32_t crc0, uint32_t crc1,
1536 			     uint32_t crc2, uint32_t crc3,
1537 			     uint32_t crc4) {}
1538 #endif
1539 
1540 
1541 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1542 				     enum pipe pipe)
1543 {
1544 	display_pipe_crc_irq_handler(dev_priv, pipe,
1545 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1546 				     0, 0, 0, 0);
1547 }
1548 
1549 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1550 				     enum pipe pipe)
1551 {
1552 	display_pipe_crc_irq_handler(dev_priv, pipe,
1553 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1554 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1555 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1556 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1557 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1558 }
1559 
1560 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1561 				      enum pipe pipe)
1562 {
1563 	uint32_t res1, res2;
1564 
1565 	if (INTEL_GEN(dev_priv) >= 3)
1566 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1567 	else
1568 		res1 = 0;
1569 
1570 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1571 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1572 	else
1573 		res2 = 0;
1574 
1575 	display_pipe_crc_irq_handler(dev_priv, pipe,
1576 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1577 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1578 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1579 				     res1, res2);
1580 }
1581 
1582 /* The RPS events need forcewake, so we add them to a work queue and mask their
1583  * IMR bits until the work is done. Other interrupts can be processed without
1584  * the work queue. */
1585 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1586 {
1587 	if (pm_iir & dev_priv->pm_rps_events) {
1588 		spin_lock(&dev_priv->irq_lock);
1589 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1590 		if (dev_priv->rps.interrupts_enabled) {
1591 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1592 			schedule_work(&dev_priv->rps.work);
1593 		}
1594 		spin_unlock(&dev_priv->irq_lock);
1595 	}
1596 
1597 	if (INTEL_INFO(dev_priv)->gen >= 8)
1598 		return;
1599 
1600 	if (HAS_VEBOX(dev_priv)) {
1601 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1602 			notify_ring(&dev_priv->engine[VECS]);
1603 
1604 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1605 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1606 	}
1607 }
1608 
1609 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1610 				     enum pipe pipe)
1611 {
1612 	bool ret;
1613 
1614 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1615 	if (ret)
1616 		intel_finish_page_flip_mmio(dev_priv, pipe);
1617 
1618 	return ret;
1619 }
1620 
1621 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1622 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1623 {
1624 	int pipe;
1625 
1626 	spin_lock(&dev_priv->irq_lock);
1627 
1628 	if (!dev_priv->display_irqs_enabled) {
1629 		spin_unlock(&dev_priv->irq_lock);
1630 		return;
1631 	}
1632 
1633 	for_each_pipe(dev_priv, pipe) {
1634 		i915_reg_t reg;
1635 		u32 mask, iir_bit = 0;
1636 
1637 		/*
1638 		 * PIPESTAT bits get signalled even when the interrupt is
1639 		 * disabled with the mask bits, and some of the status bits do
1640 		 * not generate interrupts at all (like the underrun bit). Hence
1641 		 * we need to be careful that we only handle what we want to
1642 		 * handle.
1643 		 */
1644 
1645 		/* fifo underruns are filterered in the underrun handler. */
1646 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1647 
1648 		switch (pipe) {
1649 		case PIPE_A:
1650 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1651 			break;
1652 		case PIPE_B:
1653 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1654 			break;
1655 		case PIPE_C:
1656 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1657 			break;
1658 		}
1659 		if (iir & iir_bit)
1660 			mask |= dev_priv->pipestat_irq_mask[pipe];
1661 
1662 		if (!mask)
1663 			continue;
1664 
1665 		reg = PIPESTAT(pipe);
1666 		mask |= PIPESTAT_INT_ENABLE_MASK;
1667 		pipe_stats[pipe] = I915_READ(reg) & mask;
1668 
1669 		/*
1670 		 * Clear the PIPE*STAT regs before the IIR
1671 		 */
1672 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1673 					PIPESTAT_INT_STATUS_MASK))
1674 			I915_WRITE(reg, pipe_stats[pipe]);
1675 	}
1676 	spin_unlock(&dev_priv->irq_lock);
1677 }
1678 
1679 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1680 					    u32 pipe_stats[I915_MAX_PIPES])
1681 {
1682 	enum pipe pipe;
1683 
1684 	for_each_pipe(dev_priv, pipe) {
1685 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1686 		    intel_pipe_handle_vblank(dev_priv, pipe))
1687 			intel_check_page_flip(dev_priv, pipe);
1688 
1689 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1690 			intel_finish_page_flip_cs(dev_priv, pipe);
1691 
1692 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1693 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1694 
1695 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1696 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1697 	}
1698 
1699 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1700 		gmbus_irq_handler(dev_priv);
1701 }
1702 
1703 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1704 {
1705 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1706 
1707 	if (hotplug_status)
1708 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1709 
1710 	return hotplug_status;
1711 }
1712 
1713 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1714 				 u32 hotplug_status)
1715 {
1716 	u32 pin_mask = 0, long_mask = 0;
1717 
1718 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1719 	    IS_CHERRYVIEW(dev_priv)) {
1720 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1721 
1722 		if (hotplug_trigger) {
1723 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1724 					   hotplug_trigger, hpd_status_g4x,
1725 					   i9xx_port_hotplug_long_detect);
1726 
1727 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1728 		}
1729 
1730 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1731 			dp_aux_irq_handler(dev_priv);
1732 	} else {
1733 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1734 
1735 		if (hotplug_trigger) {
1736 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1737 					   hotplug_trigger, hpd_status_i915,
1738 					   i9xx_port_hotplug_long_detect);
1739 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1740 		}
1741 	}
1742 }
1743 
1744 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1745 {
1746 	struct drm_device *dev = arg;
1747 	struct drm_i915_private *dev_priv = to_i915(dev);
1748 	irqreturn_t ret = IRQ_NONE;
1749 
1750 	if (!intel_irqs_enabled(dev_priv))
1751 		return IRQ_NONE;
1752 
1753 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1754 	disable_rpm_wakeref_asserts(dev_priv);
1755 
1756 	do {
1757 		u32 iir, gt_iir, pm_iir;
1758 		u32 pipe_stats[I915_MAX_PIPES] = {};
1759 		u32 hotplug_status = 0;
1760 		u32 ier = 0;
1761 
1762 		gt_iir = I915_READ(GTIIR);
1763 		pm_iir = I915_READ(GEN6_PMIIR);
1764 		iir = I915_READ(VLV_IIR);
1765 
1766 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1767 			break;
1768 
1769 		ret = IRQ_HANDLED;
1770 
1771 		/*
1772 		 * Theory on interrupt generation, based on empirical evidence:
1773 		 *
1774 		 * x = ((VLV_IIR & VLV_IER) ||
1775 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1776 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1777 		 *
1778 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1779 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1780 		 * guarantee the CPU interrupt will be raised again even if we
1781 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1782 		 * bits this time around.
1783 		 */
1784 		I915_WRITE(VLV_MASTER_IER, 0);
1785 		ier = I915_READ(VLV_IER);
1786 		I915_WRITE(VLV_IER, 0);
1787 
1788 		if (gt_iir)
1789 			I915_WRITE(GTIIR, gt_iir);
1790 		if (pm_iir)
1791 			I915_WRITE(GEN6_PMIIR, pm_iir);
1792 
1793 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1794 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1795 
1796 		/* Call regardless, as some status bits might not be
1797 		 * signalled in iir */
1798 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1799 
1800 		/*
1801 		 * VLV_IIR is single buffered, and reflects the level
1802 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1803 		 */
1804 		if (iir)
1805 			I915_WRITE(VLV_IIR, iir);
1806 
1807 		I915_WRITE(VLV_IER, ier);
1808 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1809 		POSTING_READ(VLV_MASTER_IER);
1810 
1811 		if (gt_iir)
1812 			snb_gt_irq_handler(dev_priv, gt_iir);
1813 		if (pm_iir)
1814 			gen6_rps_irq_handler(dev_priv, pm_iir);
1815 
1816 		if (hotplug_status)
1817 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1818 
1819 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1820 	} while (0);
1821 
1822 	enable_rpm_wakeref_asserts(dev_priv);
1823 
1824 	return ret;
1825 }
1826 
1827 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1828 {
1829 	struct drm_device *dev = arg;
1830 	struct drm_i915_private *dev_priv = to_i915(dev);
1831 	irqreturn_t ret = IRQ_NONE;
1832 
1833 	if (!intel_irqs_enabled(dev_priv))
1834 		return IRQ_NONE;
1835 
1836 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1837 	disable_rpm_wakeref_asserts(dev_priv);
1838 
1839 	do {
1840 		u32 master_ctl, iir;
1841 		u32 gt_iir[4] = {};
1842 		u32 pipe_stats[I915_MAX_PIPES] = {};
1843 		u32 hotplug_status = 0;
1844 		u32 ier = 0;
1845 
1846 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1847 		iir = I915_READ(VLV_IIR);
1848 
1849 		if (master_ctl == 0 && iir == 0)
1850 			break;
1851 
1852 		ret = IRQ_HANDLED;
1853 
1854 		/*
1855 		 * Theory on interrupt generation, based on empirical evidence:
1856 		 *
1857 		 * x = ((VLV_IIR & VLV_IER) ||
1858 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1859 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1860 		 *
1861 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1862 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1863 		 * guarantee the CPU interrupt will be raised again even if we
1864 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1865 		 * bits this time around.
1866 		 */
1867 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1868 		ier = I915_READ(VLV_IER);
1869 		I915_WRITE(VLV_IER, 0);
1870 
1871 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1872 
1873 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1874 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1875 
1876 		/* Call regardless, as some status bits might not be
1877 		 * signalled in iir */
1878 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1879 
1880 		/*
1881 		 * VLV_IIR is single buffered, and reflects the level
1882 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1883 		 */
1884 		if (iir)
1885 			I915_WRITE(VLV_IIR, iir);
1886 
1887 		I915_WRITE(VLV_IER, ier);
1888 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1889 		POSTING_READ(GEN8_MASTER_IRQ);
1890 
1891 		gen8_gt_irq_handler(dev_priv, gt_iir);
1892 
1893 		if (hotplug_status)
1894 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1895 
1896 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1897 	} while (0);
1898 
1899 	enable_rpm_wakeref_asserts(dev_priv);
1900 
1901 	return ret;
1902 }
1903 
1904 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1905 				u32 hotplug_trigger,
1906 				const u32 hpd[HPD_NUM_PINS])
1907 {
1908 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1909 
1910 	/*
1911 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1912 	 * unless we touch the hotplug register, even if hotplug_trigger is
1913 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1914 	 * errors.
1915 	 */
1916 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1917 	if (!hotplug_trigger) {
1918 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1919 			PORTD_HOTPLUG_STATUS_MASK |
1920 			PORTC_HOTPLUG_STATUS_MASK |
1921 			PORTB_HOTPLUG_STATUS_MASK;
1922 		dig_hotplug_reg &= ~mask;
1923 	}
1924 
1925 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1926 	if (!hotplug_trigger)
1927 		return;
1928 
1929 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1930 			   dig_hotplug_reg, hpd,
1931 			   pch_port_hotplug_long_detect);
1932 
1933 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1934 }
1935 
1936 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1937 {
1938 	int pipe;
1939 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1940 
1941 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1942 
1943 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1944 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1945 			       SDE_AUDIO_POWER_SHIFT);
1946 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1947 				 port_name(port));
1948 	}
1949 
1950 	if (pch_iir & SDE_AUX_MASK)
1951 		dp_aux_irq_handler(dev_priv);
1952 
1953 	if (pch_iir & SDE_GMBUS)
1954 		gmbus_irq_handler(dev_priv);
1955 
1956 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1957 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1958 
1959 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1960 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1961 
1962 	if (pch_iir & SDE_POISON)
1963 		DRM_ERROR("PCH poison interrupt\n");
1964 
1965 	if (pch_iir & SDE_FDI_MASK)
1966 		for_each_pipe(dev_priv, pipe)
1967 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1968 					 pipe_name(pipe),
1969 					 I915_READ(FDI_RX_IIR(pipe)));
1970 
1971 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1972 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1973 
1974 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1975 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1976 
1977 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1978 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1979 
1980 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1981 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1982 }
1983 
1984 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1985 {
1986 	u32 err_int = I915_READ(GEN7_ERR_INT);
1987 	enum pipe pipe;
1988 
1989 	if (err_int & ERR_INT_POISON)
1990 		DRM_ERROR("Poison interrupt\n");
1991 
1992 	for_each_pipe(dev_priv, pipe) {
1993 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1994 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1995 
1996 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1997 			if (IS_IVYBRIDGE(dev_priv))
1998 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1999 			else
2000 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2001 		}
2002 	}
2003 
2004 	I915_WRITE(GEN7_ERR_INT, err_int);
2005 }
2006 
2007 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2008 {
2009 	u32 serr_int = I915_READ(SERR_INT);
2010 
2011 	if (serr_int & SERR_INT_POISON)
2012 		DRM_ERROR("PCH poison interrupt\n");
2013 
2014 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2015 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2016 
2017 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2018 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2019 
2020 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2021 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2022 
2023 	I915_WRITE(SERR_INT, serr_int);
2024 }
2025 
2026 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2027 {
2028 	int pipe;
2029 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2030 
2031 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2032 
2033 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2034 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2035 			       SDE_AUDIO_POWER_SHIFT_CPT);
2036 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2037 				 port_name(port));
2038 	}
2039 
2040 	if (pch_iir & SDE_AUX_MASK_CPT)
2041 		dp_aux_irq_handler(dev_priv);
2042 
2043 	if (pch_iir & SDE_GMBUS_CPT)
2044 		gmbus_irq_handler(dev_priv);
2045 
2046 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2047 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2048 
2049 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2050 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2051 
2052 	if (pch_iir & SDE_FDI_MASK_CPT)
2053 		for_each_pipe(dev_priv, pipe)
2054 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2055 					 pipe_name(pipe),
2056 					 I915_READ(FDI_RX_IIR(pipe)));
2057 
2058 	if (pch_iir & SDE_ERROR_CPT)
2059 		cpt_serr_int_handler(dev_priv);
2060 }
2061 
2062 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2063 {
2064 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2065 		~SDE_PORTE_HOTPLUG_SPT;
2066 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2067 	u32 pin_mask = 0, long_mask = 0;
2068 
2069 	if (hotplug_trigger) {
2070 		u32 dig_hotplug_reg;
2071 
2072 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2073 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2074 
2075 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076 				   dig_hotplug_reg, hpd_spt,
2077 				   spt_port_hotplug_long_detect);
2078 	}
2079 
2080 	if (hotplug2_trigger) {
2081 		u32 dig_hotplug_reg;
2082 
2083 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2084 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2085 
2086 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2087 				   dig_hotplug_reg, hpd_spt,
2088 				   spt_port_hotplug2_long_detect);
2089 	}
2090 
2091 	if (pin_mask)
2092 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2093 
2094 	if (pch_iir & SDE_GMBUS_CPT)
2095 		gmbus_irq_handler(dev_priv);
2096 }
2097 
2098 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2099 				u32 hotplug_trigger,
2100 				const u32 hpd[HPD_NUM_PINS])
2101 {
2102 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2103 
2104 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2105 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2106 
2107 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2108 			   dig_hotplug_reg, hpd,
2109 			   ilk_port_hotplug_long_detect);
2110 
2111 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2112 }
2113 
2114 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2115 				    u32 de_iir)
2116 {
2117 	enum pipe pipe;
2118 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2119 
2120 	if (hotplug_trigger)
2121 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2122 
2123 	if (de_iir & DE_AUX_CHANNEL_A)
2124 		dp_aux_irq_handler(dev_priv);
2125 
2126 	if (de_iir & DE_GSE)
2127 		intel_opregion_asle_intr(dev_priv);
2128 
2129 	if (de_iir & DE_POISON)
2130 		DRM_ERROR("Poison interrupt\n");
2131 
2132 	for_each_pipe(dev_priv, pipe) {
2133 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2134 		    intel_pipe_handle_vblank(dev_priv, pipe))
2135 			intel_check_page_flip(dev_priv, pipe);
2136 
2137 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2138 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2139 
2140 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2141 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2142 
2143 		/* plane/pipes map 1:1 on ilk+ */
2144 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2145 			intel_finish_page_flip_cs(dev_priv, pipe);
2146 	}
2147 
2148 	/* check event from PCH */
2149 	if (de_iir & DE_PCH_EVENT) {
2150 		u32 pch_iir = I915_READ(SDEIIR);
2151 
2152 		if (HAS_PCH_CPT(dev_priv))
2153 			cpt_irq_handler(dev_priv, pch_iir);
2154 		else
2155 			ibx_irq_handler(dev_priv, pch_iir);
2156 
2157 		/* should clear PCH hotplug event before clear CPU irq */
2158 		I915_WRITE(SDEIIR, pch_iir);
2159 	}
2160 
2161 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2162 		ironlake_rps_change_irq_handler(dev_priv);
2163 }
2164 
2165 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2166 				    u32 de_iir)
2167 {
2168 	enum pipe pipe;
2169 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2170 
2171 	if (hotplug_trigger)
2172 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2173 
2174 	if (de_iir & DE_ERR_INT_IVB)
2175 		ivb_err_int_handler(dev_priv);
2176 
2177 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2178 		dp_aux_irq_handler(dev_priv);
2179 
2180 	if (de_iir & DE_GSE_IVB)
2181 		intel_opregion_asle_intr(dev_priv);
2182 
2183 	for_each_pipe(dev_priv, pipe) {
2184 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2185 		    intel_pipe_handle_vblank(dev_priv, pipe))
2186 			intel_check_page_flip(dev_priv, pipe);
2187 
2188 		/* plane/pipes map 1:1 on ilk+ */
2189 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2190 			intel_finish_page_flip_cs(dev_priv, pipe);
2191 	}
2192 
2193 	/* check event from PCH */
2194 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2195 		u32 pch_iir = I915_READ(SDEIIR);
2196 
2197 		cpt_irq_handler(dev_priv, pch_iir);
2198 
2199 		/* clear PCH hotplug event before clear CPU irq */
2200 		I915_WRITE(SDEIIR, pch_iir);
2201 	}
2202 }
2203 
2204 /*
2205  * To handle irqs with the minimum potential races with fresh interrupts, we:
2206  * 1 - Disable Master Interrupt Control.
2207  * 2 - Find the source(s) of the interrupt.
2208  * 3 - Clear the Interrupt Identity bits (IIR).
2209  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2210  * 5 - Re-enable Master Interrupt Control.
2211  */
2212 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2213 {
2214 	struct drm_device *dev = arg;
2215 	struct drm_i915_private *dev_priv = to_i915(dev);
2216 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2217 	irqreturn_t ret = IRQ_NONE;
2218 
2219 	if (!intel_irqs_enabled(dev_priv))
2220 		return IRQ_NONE;
2221 
2222 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2223 	disable_rpm_wakeref_asserts(dev_priv);
2224 
2225 	/* disable master interrupt before clearing iir  */
2226 	de_ier = I915_READ(DEIER);
2227 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2228 	POSTING_READ(DEIER);
2229 
2230 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2231 	 * interrupts will will be stored on its back queue, and then we'll be
2232 	 * able to process them after we restore SDEIER (as soon as we restore
2233 	 * it, we'll get an interrupt if SDEIIR still has something to process
2234 	 * due to its back queue). */
2235 	if (!HAS_PCH_NOP(dev_priv)) {
2236 		sde_ier = I915_READ(SDEIER);
2237 		I915_WRITE(SDEIER, 0);
2238 		POSTING_READ(SDEIER);
2239 	}
2240 
2241 	/* Find, clear, then process each source of interrupt */
2242 
2243 	gt_iir = I915_READ(GTIIR);
2244 	if (gt_iir) {
2245 		I915_WRITE(GTIIR, gt_iir);
2246 		ret = IRQ_HANDLED;
2247 		if (INTEL_GEN(dev_priv) >= 6)
2248 			snb_gt_irq_handler(dev_priv, gt_iir);
2249 		else
2250 			ilk_gt_irq_handler(dev_priv, gt_iir);
2251 	}
2252 
2253 	de_iir = I915_READ(DEIIR);
2254 	if (de_iir) {
2255 		I915_WRITE(DEIIR, de_iir);
2256 		ret = IRQ_HANDLED;
2257 		if (INTEL_GEN(dev_priv) >= 7)
2258 			ivb_display_irq_handler(dev_priv, de_iir);
2259 		else
2260 			ilk_display_irq_handler(dev_priv, de_iir);
2261 	}
2262 
2263 	if (INTEL_GEN(dev_priv) >= 6) {
2264 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2265 		if (pm_iir) {
2266 			I915_WRITE(GEN6_PMIIR, pm_iir);
2267 			ret = IRQ_HANDLED;
2268 			gen6_rps_irq_handler(dev_priv, pm_iir);
2269 		}
2270 	}
2271 
2272 	I915_WRITE(DEIER, de_ier);
2273 	POSTING_READ(DEIER);
2274 	if (!HAS_PCH_NOP(dev_priv)) {
2275 		I915_WRITE(SDEIER, sde_ier);
2276 		POSTING_READ(SDEIER);
2277 	}
2278 
2279 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2280 	enable_rpm_wakeref_asserts(dev_priv);
2281 
2282 	return ret;
2283 }
2284 
2285 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2286 				u32 hotplug_trigger,
2287 				const u32 hpd[HPD_NUM_PINS])
2288 {
2289 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2290 
2291 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2292 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2293 
2294 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2295 			   dig_hotplug_reg, hpd,
2296 			   bxt_port_hotplug_long_detect);
2297 
2298 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2299 }
2300 
2301 static irqreturn_t
2302 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2303 {
2304 	irqreturn_t ret = IRQ_NONE;
2305 	u32 iir;
2306 	enum pipe pipe;
2307 
2308 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2309 		iir = I915_READ(GEN8_DE_MISC_IIR);
2310 		if (iir) {
2311 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2312 			ret = IRQ_HANDLED;
2313 			if (iir & GEN8_DE_MISC_GSE)
2314 				intel_opregion_asle_intr(dev_priv);
2315 			else
2316 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2317 		}
2318 		else
2319 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2320 	}
2321 
2322 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2323 		iir = I915_READ(GEN8_DE_PORT_IIR);
2324 		if (iir) {
2325 			u32 tmp_mask;
2326 			bool found = false;
2327 
2328 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2329 			ret = IRQ_HANDLED;
2330 
2331 			tmp_mask = GEN8_AUX_CHANNEL_A;
2332 			if (INTEL_INFO(dev_priv)->gen >= 9)
2333 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2334 					    GEN9_AUX_CHANNEL_C |
2335 					    GEN9_AUX_CHANNEL_D;
2336 
2337 			if (iir & tmp_mask) {
2338 				dp_aux_irq_handler(dev_priv);
2339 				found = true;
2340 			}
2341 
2342 			if (IS_BROXTON(dev_priv)) {
2343 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2344 				if (tmp_mask) {
2345 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2346 							    hpd_bxt);
2347 					found = true;
2348 				}
2349 			} else if (IS_BROADWELL(dev_priv)) {
2350 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2351 				if (tmp_mask) {
2352 					ilk_hpd_irq_handler(dev_priv,
2353 							    tmp_mask, hpd_bdw);
2354 					found = true;
2355 				}
2356 			}
2357 
2358 			if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2359 				gmbus_irq_handler(dev_priv);
2360 				found = true;
2361 			}
2362 
2363 			if (!found)
2364 				DRM_ERROR("Unexpected DE Port interrupt\n");
2365 		}
2366 		else
2367 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2368 	}
2369 
2370 	for_each_pipe(dev_priv, pipe) {
2371 		u32 flip_done, fault_errors;
2372 
2373 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2374 			continue;
2375 
2376 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2377 		if (!iir) {
2378 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2379 			continue;
2380 		}
2381 
2382 		ret = IRQ_HANDLED;
2383 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2384 
2385 		if (iir & GEN8_PIPE_VBLANK &&
2386 		    intel_pipe_handle_vblank(dev_priv, pipe))
2387 			intel_check_page_flip(dev_priv, pipe);
2388 
2389 		flip_done = iir;
2390 		if (INTEL_INFO(dev_priv)->gen >= 9)
2391 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2392 		else
2393 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2394 
2395 		if (flip_done)
2396 			intel_finish_page_flip_cs(dev_priv, pipe);
2397 
2398 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2399 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2400 
2401 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2402 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2403 
2404 		fault_errors = iir;
2405 		if (INTEL_INFO(dev_priv)->gen >= 9)
2406 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2407 		else
2408 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2409 
2410 		if (fault_errors)
2411 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2412 				  pipe_name(pipe),
2413 				  fault_errors);
2414 	}
2415 
2416 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2417 	    master_ctl & GEN8_DE_PCH_IRQ) {
2418 		/*
2419 		 * FIXME(BDW): Assume for now that the new interrupt handling
2420 		 * scheme also closed the SDE interrupt handling race we've seen
2421 		 * on older pch-split platforms. But this needs testing.
2422 		 */
2423 		iir = I915_READ(SDEIIR);
2424 		if (iir) {
2425 			I915_WRITE(SDEIIR, iir);
2426 			ret = IRQ_HANDLED;
2427 
2428 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2429 				spt_irq_handler(dev_priv, iir);
2430 			else
2431 				cpt_irq_handler(dev_priv, iir);
2432 		} else {
2433 			/*
2434 			 * Like on previous PCH there seems to be something
2435 			 * fishy going on with forwarding PCH interrupts.
2436 			 */
2437 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2438 		}
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2445 {
2446 	struct drm_device *dev = arg;
2447 	struct drm_i915_private *dev_priv = to_i915(dev);
2448 	u32 master_ctl;
2449 	u32 gt_iir[4] = {};
2450 	irqreturn_t ret;
2451 
2452 	if (!intel_irqs_enabled(dev_priv))
2453 		return IRQ_NONE;
2454 
2455 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2456 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2457 	if (!master_ctl)
2458 		return IRQ_NONE;
2459 
2460 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2461 
2462 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2463 	disable_rpm_wakeref_asserts(dev_priv);
2464 
2465 	/* Find, clear, then process each source of interrupt */
2466 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2467 	gen8_gt_irq_handler(dev_priv, gt_iir);
2468 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2469 
2470 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2471 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2472 
2473 	enable_rpm_wakeref_asserts(dev_priv);
2474 
2475 	return ret;
2476 }
2477 
2478 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2479 {
2480 	/*
2481 	 * Notify all waiters for GPU completion events that reset state has
2482 	 * been changed, and that they need to restart their wait after
2483 	 * checking for potential errors (and bail out to drop locks if there is
2484 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2485 	 */
2486 
2487 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2488 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2489 
2490 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2491 	wake_up_all(&dev_priv->pending_flip_queue);
2492 }
2493 
2494 /**
2495  * i915_reset_and_wakeup - do process context error handling work
2496  * @dev_priv: i915 device private
2497  *
2498  * Fire an error uevent so userspace can see that a hang or error
2499  * was detected.
2500  */
2501 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2502 {
2503 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2504 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2505 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2506 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2507 	int ret;
2508 
2509 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2510 
2511 	/*
2512 	 * Note that there's only one work item which does gpu resets, so we
2513 	 * need not worry about concurrent gpu resets potentially incrementing
2514 	 * error->reset_counter twice. We only need to take care of another
2515 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2516 	 * quick check for that is good enough: schedule_work ensures the
2517 	 * correct ordering between hang detection and this work item, and since
2518 	 * the reset in-progress bit is only ever set by code outside of this
2519 	 * work we don't need to worry about any other races.
2520 	 */
2521 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2522 		DRM_DEBUG_DRIVER("resetting chip\n");
2523 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2524 
2525 		/*
2526 		 * In most cases it's guaranteed that we get here with an RPM
2527 		 * reference held, for example because there is a pending GPU
2528 		 * request that won't finish until the reset is done. This
2529 		 * isn't the case at least when we get here by doing a
2530 		 * simulated reset via debugs, so get an RPM reference.
2531 		 */
2532 		intel_runtime_pm_get(dev_priv);
2533 
2534 		intel_prepare_reset(dev_priv);
2535 
2536 		/*
2537 		 * All state reset _must_ be completed before we update the
2538 		 * reset counter, for otherwise waiters might miss the reset
2539 		 * pending state and not properly drop locks, resulting in
2540 		 * deadlocks with the reset work.
2541 		 */
2542 		ret = i915_reset(dev_priv);
2543 
2544 		intel_finish_reset(dev_priv);
2545 
2546 		intel_runtime_pm_put(dev_priv);
2547 
2548 		if (ret == 0)
2549 			kobject_uevent_env(kobj,
2550 					   KOBJ_CHANGE, reset_done_event);
2551 
2552 		/*
2553 		 * Note: The wake_up also serves as a memory barrier so that
2554 		 * waiters see the update value of the reset counter atomic_t.
2555 		 */
2556 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2557 	}
2558 }
2559 
2560 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2561 {
2562 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2563 	u32 eir = I915_READ(EIR);
2564 	int pipe, i;
2565 
2566 	if (!eir)
2567 		return;
2568 
2569 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2570 
2571 	i915_get_extra_instdone(dev_priv, instdone);
2572 
2573 	if (IS_G4X(dev_priv)) {
2574 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2575 			u32 ipeir = I915_READ(IPEIR_I965);
2576 
2577 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2578 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2579 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2580 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2581 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2582 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2583 			I915_WRITE(IPEIR_I965, ipeir);
2584 			POSTING_READ(IPEIR_I965);
2585 		}
2586 		if (eir & GM45_ERROR_PAGE_TABLE) {
2587 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2588 			pr_err("page table error\n");
2589 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2590 			I915_WRITE(PGTBL_ER, pgtbl_err);
2591 			POSTING_READ(PGTBL_ER);
2592 		}
2593 	}
2594 
2595 	if (!IS_GEN2(dev_priv)) {
2596 		if (eir & I915_ERROR_PAGE_TABLE) {
2597 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2598 			pr_err("page table error\n");
2599 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2600 			I915_WRITE(PGTBL_ER, pgtbl_err);
2601 			POSTING_READ(PGTBL_ER);
2602 		}
2603 	}
2604 
2605 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2606 		pr_err("memory refresh error:\n");
2607 		for_each_pipe(dev_priv, pipe)
2608 			pr_err("pipe %c stat: 0x%08x\n",
2609 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2610 		/* pipestat has already been acked */
2611 	}
2612 	if (eir & I915_ERROR_INSTRUCTION) {
2613 		pr_err("instruction error\n");
2614 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2615 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2616 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2617 		if (INTEL_GEN(dev_priv) < 4) {
2618 			u32 ipeir = I915_READ(IPEIR);
2619 
2620 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2621 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2622 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2623 			I915_WRITE(IPEIR, ipeir);
2624 			POSTING_READ(IPEIR);
2625 		} else {
2626 			u32 ipeir = I915_READ(IPEIR_I965);
2627 
2628 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2629 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2630 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2631 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2632 			I915_WRITE(IPEIR_I965, ipeir);
2633 			POSTING_READ(IPEIR_I965);
2634 		}
2635 	}
2636 
2637 	I915_WRITE(EIR, eir);
2638 	POSTING_READ(EIR);
2639 	eir = I915_READ(EIR);
2640 	if (eir) {
2641 		/*
2642 		 * some errors might have become stuck,
2643 		 * mask them.
2644 		 */
2645 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2646 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2647 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2648 	}
2649 }
2650 
2651 /**
2652  * i915_handle_error - handle a gpu error
2653  * @dev_priv: i915 device private
2654  * @engine_mask: mask representing engines that are hung
2655  * Do some basic checking of register state at error time and
2656  * dump it to the syslog.  Also call i915_capture_error_state() to make
2657  * sure we get a record and make it available in debugfs.  Fire a uevent
2658  * so userspace knows something bad happened (should trigger collection
2659  * of a ring dump etc.).
2660  * @fmt: Error message format string
2661  */
2662 void i915_handle_error(struct drm_i915_private *dev_priv,
2663 		       u32 engine_mask,
2664 		       const char *fmt, ...)
2665 {
2666 	va_list args;
2667 	char error_msg[80];
2668 
2669 	va_start(args, fmt);
2670 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2671 	va_end(args);
2672 
2673 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2674 	i915_report_and_clear_eir(dev_priv);
2675 
2676 	if (engine_mask) {
2677 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2678 				&dev_priv->gpu_error.reset_counter);
2679 
2680 		/*
2681 		 * Wakeup waiting processes so that the reset function
2682 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2683 		 * various locks. By bumping the reset counter first, the woken
2684 		 * processes will see a reset in progress and back off,
2685 		 * releasing their locks and then wait for the reset completion.
2686 		 * We must do this for _all_ gpu waiters that might hold locks
2687 		 * that the reset work needs to acquire.
2688 		 *
2689 		 * Note: The wake_up serves as the required memory barrier to
2690 		 * ensure that the waiters see the updated value of the reset
2691 		 * counter atomic_t.
2692 		 */
2693 		i915_error_wake_up(dev_priv);
2694 	}
2695 
2696 	i915_reset_and_wakeup(dev_priv);
2697 }
2698 
2699 /* Called from drm generic code, passed 'crtc' which
2700  * we use as a pipe index
2701  */
2702 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2703 {
2704 	struct drm_i915_private *dev_priv = to_i915(dev);
2705 	unsigned long irqflags;
2706 
2707 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708 	if (INTEL_INFO(dev)->gen >= 4)
2709 		i915_enable_pipestat(dev_priv, pipe,
2710 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2711 	else
2712 		i915_enable_pipestat(dev_priv, pipe,
2713 				     PIPE_VBLANK_INTERRUPT_STATUS);
2714 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2715 
2716 	return 0;
2717 }
2718 
2719 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2720 {
2721 	struct drm_i915_private *dev_priv = to_i915(dev);
2722 	unsigned long irqflags;
2723 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2724 						     DE_PIPE_VBLANK(pipe);
2725 
2726 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727 	ilk_enable_display_irq(dev_priv, bit);
2728 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2729 
2730 	return 0;
2731 }
2732 
2733 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2734 {
2735 	struct drm_i915_private *dev_priv = to_i915(dev);
2736 	unsigned long irqflags;
2737 
2738 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2739 	i915_enable_pipestat(dev_priv, pipe,
2740 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2741 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742 
2743 	return 0;
2744 }
2745 
2746 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2747 {
2748 	struct drm_i915_private *dev_priv = to_i915(dev);
2749 	unsigned long irqflags;
2750 
2751 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2753 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 
2755 	return 0;
2756 }
2757 
2758 /* Called from drm generic code, passed 'crtc' which
2759  * we use as a pipe index
2760  */
2761 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2762 {
2763 	struct drm_i915_private *dev_priv = to_i915(dev);
2764 	unsigned long irqflags;
2765 
2766 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767 	i915_disable_pipestat(dev_priv, pipe,
2768 			      PIPE_VBLANK_INTERRUPT_STATUS |
2769 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2770 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771 }
2772 
2773 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775 	struct drm_i915_private *dev_priv = to_i915(dev);
2776 	unsigned long irqflags;
2777 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2778 						     DE_PIPE_VBLANK(pipe);
2779 
2780 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2781 	ilk_disable_display_irq(dev_priv, bit);
2782 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2783 }
2784 
2785 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787 	struct drm_i915_private *dev_priv = to_i915(dev);
2788 	unsigned long irqflags;
2789 
2790 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2791 	i915_disable_pipestat(dev_priv, pipe,
2792 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2793 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2794 }
2795 
2796 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2797 {
2798 	struct drm_i915_private *dev_priv = to_i915(dev);
2799 	unsigned long irqflags;
2800 
2801 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2802 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2803 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2804 }
2805 
2806 static bool
2807 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2808 {
2809 	return i915_seqno_passed(seqno,
2810 				 READ_ONCE(engine->last_submitted_seqno));
2811 }
2812 
2813 static bool
2814 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2815 {
2816 	if (INTEL_GEN(engine->i915) >= 8) {
2817 		return (ipehr >> 23) == 0x1c;
2818 	} else {
2819 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2820 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2821 				 MI_SEMAPHORE_REGISTER);
2822 	}
2823 }
2824 
2825 static struct intel_engine_cs *
2826 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2827 				 u64 offset)
2828 {
2829 	struct drm_i915_private *dev_priv = engine->i915;
2830 	struct intel_engine_cs *signaller;
2831 
2832 	if (INTEL_GEN(dev_priv) >= 8) {
2833 		for_each_engine(signaller, dev_priv) {
2834 			if (engine == signaller)
2835 				continue;
2836 
2837 			if (offset == signaller->semaphore.signal_ggtt[engine->id])
2838 				return signaller;
2839 		}
2840 	} else {
2841 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2842 
2843 		for_each_engine(signaller, dev_priv) {
2844 			if(engine == signaller)
2845 				continue;
2846 
2847 			if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2848 				return signaller;
2849 		}
2850 	}
2851 
2852 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2853 		  engine->id, ipehr, offset);
2854 
2855 	return NULL;
2856 }
2857 
2858 static struct intel_engine_cs *
2859 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2860 {
2861 	struct drm_i915_private *dev_priv = engine->i915;
2862 	u32 cmd, ipehr, head;
2863 	u64 offset = 0;
2864 	int i, backwards;
2865 
2866 	/*
2867 	 * This function does not support execlist mode - any attempt to
2868 	 * proceed further into this function will result in a kernel panic
2869 	 * when dereferencing ring->buffer, which is not set up in execlist
2870 	 * mode.
2871 	 *
2872 	 * The correct way of doing it would be to derive the currently
2873 	 * executing ring buffer from the current context, which is derived
2874 	 * from the currently running request. Unfortunately, to get the
2875 	 * current request we would have to grab the struct_mutex before doing
2876 	 * anything else, which would be ill-advised since some other thread
2877 	 * might have grabbed it already and managed to hang itself, causing
2878 	 * the hang checker to deadlock.
2879 	 *
2880 	 * Therefore, this function does not support execlist mode in its
2881 	 * current form. Just return NULL and move on.
2882 	 */
2883 	if (engine->buffer == NULL)
2884 		return NULL;
2885 
2886 	ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2887 	if (!ipehr_is_semaphore_wait(engine, ipehr))
2888 		return NULL;
2889 
2890 	/*
2891 	 * HEAD is likely pointing to the dword after the actual command,
2892 	 * so scan backwards until we find the MBOX. But limit it to just 3
2893 	 * or 4 dwords depending on the semaphore wait command size.
2894 	 * Note that we don't care about ACTHD here since that might
2895 	 * point at at batch, and semaphores are always emitted into the
2896 	 * ringbuffer itself.
2897 	 */
2898 	head = I915_READ_HEAD(engine) & HEAD_ADDR;
2899 	backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2900 
2901 	for (i = backwards; i; --i) {
2902 		/*
2903 		 * Be paranoid and presume the hw has gone off into the wild -
2904 		 * our ring is smaller than what the hardware (and hence
2905 		 * HEAD_ADDR) allows. Also handles wrap-around.
2906 		 */
2907 		head &= engine->buffer->size - 1;
2908 
2909 		/* This here seems to blow up */
2910 		cmd = ioread32(engine->buffer->virtual_start + head);
2911 		if (cmd == ipehr)
2912 			break;
2913 
2914 		head -= 4;
2915 	}
2916 
2917 	if (!i)
2918 		return NULL;
2919 
2920 	*seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2921 	if (INTEL_GEN(dev_priv) >= 8) {
2922 		offset = ioread32(engine->buffer->virtual_start + head + 12);
2923 		offset <<= 32;
2924 		offset = ioread32(engine->buffer->virtual_start + head + 8);
2925 	}
2926 	return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2927 }
2928 
2929 static int semaphore_passed(struct intel_engine_cs *engine)
2930 {
2931 	struct drm_i915_private *dev_priv = engine->i915;
2932 	struct intel_engine_cs *signaller;
2933 	u32 seqno;
2934 
2935 	engine->hangcheck.deadlock++;
2936 
2937 	signaller = semaphore_waits_for(engine, &seqno);
2938 	if (signaller == NULL)
2939 		return -1;
2940 
2941 	/* Prevent pathological recursion due to driver bugs */
2942 	if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2943 		return -1;
2944 
2945 	if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2946 		return 1;
2947 
2948 	/* cursory check for an unkickable deadlock */
2949 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2950 	    semaphore_passed(signaller) < 0)
2951 		return -1;
2952 
2953 	return 0;
2954 }
2955 
2956 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2957 {
2958 	struct intel_engine_cs *engine;
2959 
2960 	for_each_engine(engine, dev_priv)
2961 		engine->hangcheck.deadlock = 0;
2962 }
2963 
2964 static bool subunits_stuck(struct intel_engine_cs *engine)
2965 {
2966 	u32 instdone[I915_NUM_INSTDONE_REG];
2967 	bool stuck;
2968 	int i;
2969 
2970 	if (engine->id != RCS)
2971 		return true;
2972 
2973 	i915_get_extra_instdone(engine->i915, instdone);
2974 
2975 	/* There might be unstable subunit states even when
2976 	 * actual head is not moving. Filter out the unstable ones by
2977 	 * accumulating the undone -> done transitions and only
2978 	 * consider those as progress.
2979 	 */
2980 	stuck = true;
2981 	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2982 		const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2983 
2984 		if (tmp != engine->hangcheck.instdone[i])
2985 			stuck = false;
2986 
2987 		engine->hangcheck.instdone[i] |= tmp;
2988 	}
2989 
2990 	return stuck;
2991 }
2992 
2993 static enum intel_ring_hangcheck_action
2994 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2995 {
2996 	if (acthd != engine->hangcheck.acthd) {
2997 
2998 		/* Clear subunit states on head movement */
2999 		memset(engine->hangcheck.instdone, 0,
3000 		       sizeof(engine->hangcheck.instdone));
3001 
3002 		return HANGCHECK_ACTIVE;
3003 	}
3004 
3005 	if (!subunits_stuck(engine))
3006 		return HANGCHECK_ACTIVE;
3007 
3008 	return HANGCHECK_HUNG;
3009 }
3010 
3011 static enum intel_ring_hangcheck_action
3012 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3013 {
3014 	struct drm_i915_private *dev_priv = engine->i915;
3015 	enum intel_ring_hangcheck_action ha;
3016 	u32 tmp;
3017 
3018 	ha = head_stuck(engine, acthd);
3019 	if (ha != HANGCHECK_HUNG)
3020 		return ha;
3021 
3022 	if (IS_GEN2(dev_priv))
3023 		return HANGCHECK_HUNG;
3024 
3025 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3026 	 * If so we can simply poke the RB_WAIT bit
3027 	 * and break the hang. This should work on
3028 	 * all but the second generation chipsets.
3029 	 */
3030 	tmp = I915_READ_CTL(engine);
3031 	if (tmp & RING_WAIT) {
3032 		i915_handle_error(dev_priv, 0,
3033 				  "Kicking stuck wait on %s",
3034 				  engine->name);
3035 		I915_WRITE_CTL(engine, tmp);
3036 		return HANGCHECK_KICK;
3037 	}
3038 
3039 	if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3040 		switch (semaphore_passed(engine)) {
3041 		default:
3042 			return HANGCHECK_HUNG;
3043 		case 1:
3044 			i915_handle_error(dev_priv, 0,
3045 					  "Kicking stuck semaphore on %s",
3046 					  engine->name);
3047 			I915_WRITE_CTL(engine, tmp);
3048 			return HANGCHECK_KICK;
3049 		case 0:
3050 			return HANGCHECK_WAIT;
3051 		}
3052 	}
3053 
3054 	return HANGCHECK_HUNG;
3055 }
3056 
3057 static unsigned long kick_waiters(struct intel_engine_cs *engine)
3058 {
3059 	struct drm_i915_private *i915 = engine->i915;
3060 	unsigned long irq_count = READ_ONCE(engine->breadcrumbs.irq_wakeups);
3061 
3062 	if (engine->hangcheck.user_interrupts == irq_count &&
3063 	    !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3064 		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
3065 			DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3066 				  engine->name);
3067 
3068 		intel_engine_enable_fake_irq(engine);
3069 	}
3070 
3071 	return irq_count;
3072 }
3073 /*
3074  * This is called when the chip hasn't reported back with completed
3075  * batchbuffers in a long time. We keep track per ring seqno progress and
3076  * if there are no progress, hangcheck score for that ring is increased.
3077  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3078  * we kick the ring. If we see no progress on three subsequent calls
3079  * we assume chip is wedged and try to fix it by resetting the chip.
3080  */
3081 static void i915_hangcheck_elapsed(struct work_struct *work)
3082 {
3083 	struct drm_i915_private *dev_priv =
3084 		container_of(work, typeof(*dev_priv),
3085 			     gpu_error.hangcheck_work.work);
3086 	struct intel_engine_cs *engine;
3087 	unsigned int hung = 0, stuck = 0;
3088 	int busy_count = 0;
3089 #define BUSY 1
3090 #define KICK 5
3091 #define HUNG 20
3092 #define ACTIVE_DECAY 15
3093 
3094 	if (!i915.enable_hangcheck)
3095 		return;
3096 
3097 	if (!READ_ONCE(dev_priv->gt.awake))
3098 		return;
3099 
3100 	/* As enabling the GPU requires fairly extensive mmio access,
3101 	 * periodically arm the mmio checker to see if we are triggering
3102 	 * any invalid access.
3103 	 */
3104 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3105 
3106 	for_each_engine(engine, dev_priv) {
3107 		bool busy = intel_engine_has_waiter(engine);
3108 		u64 acthd;
3109 		u32 seqno;
3110 		unsigned user_interrupts;
3111 
3112 		semaphore_clear_deadlocks(dev_priv);
3113 
3114 		/* We don't strictly need an irq-barrier here, as we are not
3115 		 * serving an interrupt request, be paranoid in case the
3116 		 * barrier has side-effects (such as preventing a broken
3117 		 * cacheline snoop) and so be sure that we can see the seqno
3118 		 * advance. If the seqno should stick, due to a stale
3119 		 * cacheline, we would erroneously declare the GPU hung.
3120 		 */
3121 		if (engine->irq_seqno_barrier)
3122 			engine->irq_seqno_barrier(engine);
3123 
3124 		acthd = intel_ring_get_active_head(engine);
3125 		seqno = intel_engine_get_seqno(engine);
3126 
3127 		/* Reset stuck interrupts between batch advances */
3128 		user_interrupts = 0;
3129 
3130 		if (engine->hangcheck.seqno == seqno) {
3131 			if (ring_idle(engine, seqno)) {
3132 				engine->hangcheck.action = HANGCHECK_IDLE;
3133 				if (busy) {
3134 					/* Safeguard against driver failure */
3135 					user_interrupts = kick_waiters(engine);
3136 					engine->hangcheck.score += BUSY;
3137 				}
3138 			} else {
3139 				/* We always increment the hangcheck score
3140 				 * if the ring is busy and still processing
3141 				 * the same request, so that no single request
3142 				 * can run indefinitely (such as a chain of
3143 				 * batches). The only time we do not increment
3144 				 * the hangcheck score on this ring, if this
3145 				 * ring is in a legitimate wait for another
3146 				 * ring. In that case the waiting ring is a
3147 				 * victim and we want to be sure we catch the
3148 				 * right culprit. Then every time we do kick
3149 				 * the ring, add a small increment to the
3150 				 * score so that we can catch a batch that is
3151 				 * being repeatedly kicked and so responsible
3152 				 * for stalling the machine.
3153 				 */
3154 				engine->hangcheck.action = ring_stuck(engine,
3155 								      acthd);
3156 
3157 				switch (engine->hangcheck.action) {
3158 				case HANGCHECK_IDLE:
3159 				case HANGCHECK_WAIT:
3160 					break;
3161 				case HANGCHECK_ACTIVE:
3162 					engine->hangcheck.score += BUSY;
3163 					break;
3164 				case HANGCHECK_KICK:
3165 					engine->hangcheck.score += KICK;
3166 					break;
3167 				case HANGCHECK_HUNG:
3168 					engine->hangcheck.score += HUNG;
3169 					break;
3170 				}
3171 			}
3172 
3173 			if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3174 				hung |= intel_engine_flag(engine);
3175 				if (engine->hangcheck.action != HANGCHECK_HUNG)
3176 					stuck |= intel_engine_flag(engine);
3177 			}
3178 		} else {
3179 			engine->hangcheck.action = HANGCHECK_ACTIVE;
3180 
3181 			/* Gradually reduce the count so that we catch DoS
3182 			 * attempts across multiple batches.
3183 			 */
3184 			if (engine->hangcheck.score > 0)
3185 				engine->hangcheck.score -= ACTIVE_DECAY;
3186 			if (engine->hangcheck.score < 0)
3187 				engine->hangcheck.score = 0;
3188 
3189 			/* Clear head and subunit states on seqno movement */
3190 			acthd = 0;
3191 
3192 			memset(engine->hangcheck.instdone, 0,
3193 			       sizeof(engine->hangcheck.instdone));
3194 		}
3195 
3196 		engine->hangcheck.seqno = seqno;
3197 		engine->hangcheck.acthd = acthd;
3198 		engine->hangcheck.user_interrupts = user_interrupts;
3199 		busy_count += busy;
3200 	}
3201 
3202 	if (hung) {
3203 		char msg[80];
3204 		int len;
3205 
3206 		/* If some rings hung but others were still busy, only
3207 		 * blame the hanging rings in the synopsis.
3208 		 */
3209 		if (stuck != hung)
3210 			hung &= ~stuck;
3211 		len = scnprintf(msg, sizeof(msg),
3212 				"%s on ", stuck == hung ? "No progress" : "Hang");
3213 		for_each_engine_masked(engine, dev_priv, hung)
3214 			len += scnprintf(msg + len, sizeof(msg) - len,
3215 					 "%s, ", engine->name);
3216 		msg[len-2] = '\0';
3217 
3218 		return i915_handle_error(dev_priv, hung, msg);
3219 	}
3220 
3221 	/* Reset timer in case GPU hangs without another request being added */
3222 	if (busy_count)
3223 		i915_queue_hangcheck(dev_priv);
3224 }
3225 
3226 static void ibx_irq_reset(struct drm_device *dev)
3227 {
3228 	struct drm_i915_private *dev_priv = to_i915(dev);
3229 
3230 	if (HAS_PCH_NOP(dev))
3231 		return;
3232 
3233 	GEN5_IRQ_RESET(SDE);
3234 
3235 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3236 		I915_WRITE(SERR_INT, 0xffffffff);
3237 }
3238 
3239 /*
3240  * SDEIER is also touched by the interrupt handler to work around missed PCH
3241  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3242  * instead we unconditionally enable all PCH interrupt sources here, but then
3243  * only unmask them as needed with SDEIMR.
3244  *
3245  * This function needs to be called before interrupts are enabled.
3246  */
3247 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3248 {
3249 	struct drm_i915_private *dev_priv = to_i915(dev);
3250 
3251 	if (HAS_PCH_NOP(dev))
3252 		return;
3253 
3254 	WARN_ON(I915_READ(SDEIER) != 0);
3255 	I915_WRITE(SDEIER, 0xffffffff);
3256 	POSTING_READ(SDEIER);
3257 }
3258 
3259 static void gen5_gt_irq_reset(struct drm_device *dev)
3260 {
3261 	struct drm_i915_private *dev_priv = to_i915(dev);
3262 
3263 	GEN5_IRQ_RESET(GT);
3264 	if (INTEL_INFO(dev)->gen >= 6)
3265 		GEN5_IRQ_RESET(GEN6_PM);
3266 }
3267 
3268 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3269 {
3270 	enum pipe pipe;
3271 
3272 	if (IS_CHERRYVIEW(dev_priv))
3273 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3274 	else
3275 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3276 
3277 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3278 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3279 
3280 	for_each_pipe(dev_priv, pipe) {
3281 		I915_WRITE(PIPESTAT(pipe),
3282 			   PIPE_FIFO_UNDERRUN_STATUS |
3283 			   PIPESTAT_INT_STATUS_MASK);
3284 		dev_priv->pipestat_irq_mask[pipe] = 0;
3285 	}
3286 
3287 	GEN5_IRQ_RESET(VLV_);
3288 	dev_priv->irq_mask = ~0;
3289 }
3290 
3291 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3292 {
3293 	u32 pipestat_mask;
3294 	u32 enable_mask;
3295 	enum pipe pipe;
3296 
3297 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3298 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3299 
3300 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3301 	for_each_pipe(dev_priv, pipe)
3302 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3303 
3304 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3305 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3306 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3307 	if (IS_CHERRYVIEW(dev_priv))
3308 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3309 
3310 	WARN_ON(dev_priv->irq_mask != ~0);
3311 
3312 	dev_priv->irq_mask = ~enable_mask;
3313 
3314 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3315 }
3316 
3317 /* drm_dma.h hooks
3318 */
3319 static void ironlake_irq_reset(struct drm_device *dev)
3320 {
3321 	struct drm_i915_private *dev_priv = to_i915(dev);
3322 
3323 	I915_WRITE(HWSTAM, 0xffffffff);
3324 
3325 	GEN5_IRQ_RESET(DE);
3326 	if (IS_GEN7(dev))
3327 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3328 
3329 	gen5_gt_irq_reset(dev);
3330 
3331 	ibx_irq_reset(dev);
3332 }
3333 
3334 static void valleyview_irq_preinstall(struct drm_device *dev)
3335 {
3336 	struct drm_i915_private *dev_priv = to_i915(dev);
3337 
3338 	I915_WRITE(VLV_MASTER_IER, 0);
3339 	POSTING_READ(VLV_MASTER_IER);
3340 
3341 	gen5_gt_irq_reset(dev);
3342 
3343 	spin_lock_irq(&dev_priv->irq_lock);
3344 	if (dev_priv->display_irqs_enabled)
3345 		vlv_display_irq_reset(dev_priv);
3346 	spin_unlock_irq(&dev_priv->irq_lock);
3347 }
3348 
3349 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3350 {
3351 	GEN8_IRQ_RESET_NDX(GT, 0);
3352 	GEN8_IRQ_RESET_NDX(GT, 1);
3353 	GEN8_IRQ_RESET_NDX(GT, 2);
3354 	GEN8_IRQ_RESET_NDX(GT, 3);
3355 }
3356 
3357 static void gen8_irq_reset(struct drm_device *dev)
3358 {
3359 	struct drm_i915_private *dev_priv = to_i915(dev);
3360 	int pipe;
3361 
3362 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3363 	POSTING_READ(GEN8_MASTER_IRQ);
3364 
3365 	gen8_gt_irq_reset(dev_priv);
3366 
3367 	for_each_pipe(dev_priv, pipe)
3368 		if (intel_display_power_is_enabled(dev_priv,
3369 						   POWER_DOMAIN_PIPE(pipe)))
3370 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3371 
3372 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3373 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3374 	GEN5_IRQ_RESET(GEN8_PCU_);
3375 
3376 	if (HAS_PCH_SPLIT(dev))
3377 		ibx_irq_reset(dev);
3378 }
3379 
3380 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3381 				     unsigned int pipe_mask)
3382 {
3383 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3384 	enum pipe pipe;
3385 
3386 	spin_lock_irq(&dev_priv->irq_lock);
3387 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3388 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3389 				  dev_priv->de_irq_mask[pipe],
3390 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3391 	spin_unlock_irq(&dev_priv->irq_lock);
3392 }
3393 
3394 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3395 				     unsigned int pipe_mask)
3396 {
3397 	enum pipe pipe;
3398 
3399 	spin_lock_irq(&dev_priv->irq_lock);
3400 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3401 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3402 	spin_unlock_irq(&dev_priv->irq_lock);
3403 
3404 	/* make sure we're done processing display irqs */
3405 	synchronize_irq(dev_priv->drm.irq);
3406 }
3407 
3408 static void cherryview_irq_preinstall(struct drm_device *dev)
3409 {
3410 	struct drm_i915_private *dev_priv = to_i915(dev);
3411 
3412 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3413 	POSTING_READ(GEN8_MASTER_IRQ);
3414 
3415 	gen8_gt_irq_reset(dev_priv);
3416 
3417 	GEN5_IRQ_RESET(GEN8_PCU_);
3418 
3419 	spin_lock_irq(&dev_priv->irq_lock);
3420 	if (dev_priv->display_irqs_enabled)
3421 		vlv_display_irq_reset(dev_priv);
3422 	spin_unlock_irq(&dev_priv->irq_lock);
3423 }
3424 
3425 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3426 				  const u32 hpd[HPD_NUM_PINS])
3427 {
3428 	struct intel_encoder *encoder;
3429 	u32 enabled_irqs = 0;
3430 
3431 	for_each_intel_encoder(&dev_priv->drm, encoder)
3432 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3433 			enabled_irqs |= hpd[encoder->hpd_pin];
3434 
3435 	return enabled_irqs;
3436 }
3437 
3438 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3439 {
3440 	u32 hotplug_irqs, hotplug, enabled_irqs;
3441 
3442 	if (HAS_PCH_IBX(dev_priv)) {
3443 		hotplug_irqs = SDE_HOTPLUG_MASK;
3444 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3445 	} else {
3446 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3447 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3448 	}
3449 
3450 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3451 
3452 	/*
3453 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3454 	 * duration to 2ms (which is the minimum in the Display Port spec).
3455 	 * The pulse duration bits are reserved on LPT+.
3456 	 */
3457 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3458 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3459 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3460 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3461 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3462 	/*
3463 	 * When CPU and PCH are on the same package, port A
3464 	 * HPD must be enabled in both north and south.
3465 	 */
3466 	if (HAS_PCH_LPT_LP(dev_priv))
3467 		hotplug |= PORTA_HOTPLUG_ENABLE;
3468 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3469 }
3470 
3471 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3472 {
3473 	u32 hotplug_irqs, hotplug, enabled_irqs;
3474 
3475 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3476 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3477 
3478 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3479 
3480 	/* Enable digital hotplug on the PCH */
3481 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3482 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3483 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3484 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3485 
3486 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3487 	hotplug |= PORTE_HOTPLUG_ENABLE;
3488 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3489 }
3490 
3491 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492 {
3493 	u32 hotplug_irqs, hotplug, enabled_irqs;
3494 
3495 	if (INTEL_GEN(dev_priv) >= 8) {
3496 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3497 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3498 
3499 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3500 	} else if (INTEL_GEN(dev_priv) >= 7) {
3501 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3502 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3503 
3504 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505 	} else {
3506 		hotplug_irqs = DE_DP_A_HOTPLUG;
3507 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3508 
3509 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3510 	}
3511 
3512 	/*
3513 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3514 	 * duration to 2ms (which is the minimum in the Display Port spec)
3515 	 * The pulse duration bits are reserved on HSW+.
3516 	 */
3517 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3518 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3519 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3520 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3521 
3522 	ibx_hpd_irq_setup(dev_priv);
3523 }
3524 
3525 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3526 {
3527 	u32 hotplug_irqs, hotplug, enabled_irqs;
3528 
3529 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3530 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3531 
3532 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3533 
3534 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3535 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3536 		PORTA_HOTPLUG_ENABLE;
3537 
3538 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3539 		      hotplug, enabled_irqs);
3540 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3541 
3542 	/*
3543 	 * For BXT invert bit has to be set based on AOB design
3544 	 * for HPD detection logic, update it based on VBT fields.
3545 	 */
3546 
3547 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3548 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3549 		hotplug |= BXT_DDIA_HPD_INVERT;
3550 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3551 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3552 		hotplug |= BXT_DDIB_HPD_INVERT;
3553 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3554 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3555 		hotplug |= BXT_DDIC_HPD_INVERT;
3556 
3557 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3558 }
3559 
3560 static void ibx_irq_postinstall(struct drm_device *dev)
3561 {
3562 	struct drm_i915_private *dev_priv = to_i915(dev);
3563 	u32 mask;
3564 
3565 	if (HAS_PCH_NOP(dev))
3566 		return;
3567 
3568 	if (HAS_PCH_IBX(dev))
3569 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3570 	else
3571 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3572 
3573 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3574 	I915_WRITE(SDEIMR, ~mask);
3575 }
3576 
3577 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3578 {
3579 	struct drm_i915_private *dev_priv = to_i915(dev);
3580 	u32 pm_irqs, gt_irqs;
3581 
3582 	pm_irqs = gt_irqs = 0;
3583 
3584 	dev_priv->gt_irq_mask = ~0;
3585 	if (HAS_L3_DPF(dev)) {
3586 		/* L3 parity interrupt is always unmasked. */
3587 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3588 		gt_irqs |= GT_PARITY_ERROR(dev);
3589 	}
3590 
3591 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3592 	if (IS_GEN5(dev)) {
3593 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3594 	} else {
3595 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3596 	}
3597 
3598 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3599 
3600 	if (INTEL_INFO(dev)->gen >= 6) {
3601 		/*
3602 		 * RPS interrupts will get enabled/disabled on demand when RPS
3603 		 * itself is enabled/disabled.
3604 		 */
3605 		if (HAS_VEBOX(dev))
3606 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3607 
3608 		dev_priv->pm_irq_mask = 0xffffffff;
3609 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3610 	}
3611 }
3612 
3613 static int ironlake_irq_postinstall(struct drm_device *dev)
3614 {
3615 	struct drm_i915_private *dev_priv = to_i915(dev);
3616 	u32 display_mask, extra_mask;
3617 
3618 	if (INTEL_INFO(dev)->gen >= 7) {
3619 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3620 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3621 				DE_PLANEB_FLIP_DONE_IVB |
3622 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3623 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3624 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3625 			      DE_DP_A_HOTPLUG_IVB);
3626 	} else {
3627 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3628 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3629 				DE_AUX_CHANNEL_A |
3630 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3631 				DE_POISON);
3632 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3633 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3634 			      DE_DP_A_HOTPLUG);
3635 	}
3636 
3637 	dev_priv->irq_mask = ~display_mask;
3638 
3639 	I915_WRITE(HWSTAM, 0xeffe);
3640 
3641 	ibx_irq_pre_postinstall(dev);
3642 
3643 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3644 
3645 	gen5_gt_irq_postinstall(dev);
3646 
3647 	ibx_irq_postinstall(dev);
3648 
3649 	if (IS_IRONLAKE_M(dev)) {
3650 		/* Enable PCU event interrupts
3651 		 *
3652 		 * spinlocking not required here for correctness since interrupt
3653 		 * setup is guaranteed to run in single-threaded context. But we
3654 		 * need it to make the assert_spin_locked happy. */
3655 		spin_lock_irq(&dev_priv->irq_lock);
3656 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3657 		spin_unlock_irq(&dev_priv->irq_lock);
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3664 {
3665 	assert_spin_locked(&dev_priv->irq_lock);
3666 
3667 	if (dev_priv->display_irqs_enabled)
3668 		return;
3669 
3670 	dev_priv->display_irqs_enabled = true;
3671 
3672 	if (intel_irqs_enabled(dev_priv)) {
3673 		vlv_display_irq_reset(dev_priv);
3674 		vlv_display_irq_postinstall(dev_priv);
3675 	}
3676 }
3677 
3678 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3679 {
3680 	assert_spin_locked(&dev_priv->irq_lock);
3681 
3682 	if (!dev_priv->display_irqs_enabled)
3683 		return;
3684 
3685 	dev_priv->display_irqs_enabled = false;
3686 
3687 	if (intel_irqs_enabled(dev_priv))
3688 		vlv_display_irq_reset(dev_priv);
3689 }
3690 
3691 
3692 static int valleyview_irq_postinstall(struct drm_device *dev)
3693 {
3694 	struct drm_i915_private *dev_priv = to_i915(dev);
3695 
3696 	gen5_gt_irq_postinstall(dev);
3697 
3698 	spin_lock_irq(&dev_priv->irq_lock);
3699 	if (dev_priv->display_irqs_enabled)
3700 		vlv_display_irq_postinstall(dev_priv);
3701 	spin_unlock_irq(&dev_priv->irq_lock);
3702 
3703 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3704 	POSTING_READ(VLV_MASTER_IER);
3705 
3706 	return 0;
3707 }
3708 
3709 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3710 {
3711 	/* These are interrupts we'll toggle with the ring mask register */
3712 	uint32_t gt_interrupts[] = {
3713 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3714 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3715 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3716 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3717 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3718 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3719 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3720 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3721 		0,
3722 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3723 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3724 		};
3725 
3726 	if (HAS_L3_DPF(dev_priv))
3727 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3728 
3729 	dev_priv->pm_irq_mask = 0xffffffff;
3730 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3731 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3732 	/*
3733 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3734 	 * is enabled/disabled.
3735 	 */
3736 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3737 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3738 }
3739 
3740 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3741 {
3742 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3743 	uint32_t de_pipe_enables;
3744 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3745 	u32 de_port_enables;
3746 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3747 	enum pipe pipe;
3748 
3749 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3750 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3751 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3752 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3753 				  GEN9_AUX_CHANNEL_D;
3754 		if (IS_BROXTON(dev_priv))
3755 			de_port_masked |= BXT_DE_PORT_GMBUS;
3756 	} else {
3757 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3758 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3759 	}
3760 
3761 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3762 					   GEN8_PIPE_FIFO_UNDERRUN;
3763 
3764 	de_port_enables = de_port_masked;
3765 	if (IS_BROXTON(dev_priv))
3766 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3767 	else if (IS_BROADWELL(dev_priv))
3768 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3769 
3770 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3771 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3772 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3773 
3774 	for_each_pipe(dev_priv, pipe)
3775 		if (intel_display_power_is_enabled(dev_priv,
3776 				POWER_DOMAIN_PIPE(pipe)))
3777 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3778 					  dev_priv->de_irq_mask[pipe],
3779 					  de_pipe_enables);
3780 
3781 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3782 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3783 }
3784 
3785 static int gen8_irq_postinstall(struct drm_device *dev)
3786 {
3787 	struct drm_i915_private *dev_priv = to_i915(dev);
3788 
3789 	if (HAS_PCH_SPLIT(dev))
3790 		ibx_irq_pre_postinstall(dev);
3791 
3792 	gen8_gt_irq_postinstall(dev_priv);
3793 	gen8_de_irq_postinstall(dev_priv);
3794 
3795 	if (HAS_PCH_SPLIT(dev))
3796 		ibx_irq_postinstall(dev);
3797 
3798 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3799 	POSTING_READ(GEN8_MASTER_IRQ);
3800 
3801 	return 0;
3802 }
3803 
3804 static int cherryview_irq_postinstall(struct drm_device *dev)
3805 {
3806 	struct drm_i915_private *dev_priv = to_i915(dev);
3807 
3808 	gen8_gt_irq_postinstall(dev_priv);
3809 
3810 	spin_lock_irq(&dev_priv->irq_lock);
3811 	if (dev_priv->display_irqs_enabled)
3812 		vlv_display_irq_postinstall(dev_priv);
3813 	spin_unlock_irq(&dev_priv->irq_lock);
3814 
3815 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3816 	POSTING_READ(GEN8_MASTER_IRQ);
3817 
3818 	return 0;
3819 }
3820 
3821 static void gen8_irq_uninstall(struct drm_device *dev)
3822 {
3823 	struct drm_i915_private *dev_priv = to_i915(dev);
3824 
3825 	if (!dev_priv)
3826 		return;
3827 
3828 	gen8_irq_reset(dev);
3829 }
3830 
3831 static void valleyview_irq_uninstall(struct drm_device *dev)
3832 {
3833 	struct drm_i915_private *dev_priv = to_i915(dev);
3834 
3835 	if (!dev_priv)
3836 		return;
3837 
3838 	I915_WRITE(VLV_MASTER_IER, 0);
3839 	POSTING_READ(VLV_MASTER_IER);
3840 
3841 	gen5_gt_irq_reset(dev);
3842 
3843 	I915_WRITE(HWSTAM, 0xffffffff);
3844 
3845 	spin_lock_irq(&dev_priv->irq_lock);
3846 	if (dev_priv->display_irqs_enabled)
3847 		vlv_display_irq_reset(dev_priv);
3848 	spin_unlock_irq(&dev_priv->irq_lock);
3849 }
3850 
3851 static void cherryview_irq_uninstall(struct drm_device *dev)
3852 {
3853 	struct drm_i915_private *dev_priv = to_i915(dev);
3854 
3855 	if (!dev_priv)
3856 		return;
3857 
3858 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3859 	POSTING_READ(GEN8_MASTER_IRQ);
3860 
3861 	gen8_gt_irq_reset(dev_priv);
3862 
3863 	GEN5_IRQ_RESET(GEN8_PCU_);
3864 
3865 	spin_lock_irq(&dev_priv->irq_lock);
3866 	if (dev_priv->display_irqs_enabled)
3867 		vlv_display_irq_reset(dev_priv);
3868 	spin_unlock_irq(&dev_priv->irq_lock);
3869 }
3870 
3871 static void ironlake_irq_uninstall(struct drm_device *dev)
3872 {
3873 	struct drm_i915_private *dev_priv = to_i915(dev);
3874 
3875 	if (!dev_priv)
3876 		return;
3877 
3878 	ironlake_irq_reset(dev);
3879 }
3880 
3881 static void i8xx_irq_preinstall(struct drm_device * dev)
3882 {
3883 	struct drm_i915_private *dev_priv = to_i915(dev);
3884 	int pipe;
3885 
3886 	for_each_pipe(dev_priv, pipe)
3887 		I915_WRITE(PIPESTAT(pipe), 0);
3888 	I915_WRITE16(IMR, 0xffff);
3889 	I915_WRITE16(IER, 0x0);
3890 	POSTING_READ16(IER);
3891 }
3892 
3893 static int i8xx_irq_postinstall(struct drm_device *dev)
3894 {
3895 	struct drm_i915_private *dev_priv = to_i915(dev);
3896 
3897 	I915_WRITE16(EMR,
3898 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3899 
3900 	/* Unmask the interrupts that we always want on. */
3901 	dev_priv->irq_mask =
3902 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3903 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3904 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3905 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3906 	I915_WRITE16(IMR, dev_priv->irq_mask);
3907 
3908 	I915_WRITE16(IER,
3909 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3910 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3911 		     I915_USER_INTERRUPT);
3912 	POSTING_READ16(IER);
3913 
3914 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3915 	 * just to make the assert_spin_locked check happy. */
3916 	spin_lock_irq(&dev_priv->irq_lock);
3917 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3918 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3919 	spin_unlock_irq(&dev_priv->irq_lock);
3920 
3921 	return 0;
3922 }
3923 
3924 /*
3925  * Returns true when a page flip has completed.
3926  */
3927 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3928 			       int plane, int pipe, u32 iir)
3929 {
3930 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3931 
3932 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3933 		return false;
3934 
3935 	if ((iir & flip_pending) == 0)
3936 		goto check_page_flip;
3937 
3938 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3939 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3940 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3941 	 * the flip is completed (no longer pending). Since this doesn't raise
3942 	 * an interrupt per se, we watch for the change at vblank.
3943 	 */
3944 	if (I915_READ16(ISR) & flip_pending)
3945 		goto check_page_flip;
3946 
3947 	intel_finish_page_flip_cs(dev_priv, pipe);
3948 	return true;
3949 
3950 check_page_flip:
3951 	intel_check_page_flip(dev_priv, pipe);
3952 	return false;
3953 }
3954 
3955 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3956 {
3957 	struct drm_device *dev = arg;
3958 	struct drm_i915_private *dev_priv = to_i915(dev);
3959 	u16 iir, new_iir;
3960 	u32 pipe_stats[2];
3961 	int pipe;
3962 	u16 flip_mask =
3963 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3964 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3965 	irqreturn_t ret;
3966 
3967 	if (!intel_irqs_enabled(dev_priv))
3968 		return IRQ_NONE;
3969 
3970 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3971 	disable_rpm_wakeref_asserts(dev_priv);
3972 
3973 	ret = IRQ_NONE;
3974 	iir = I915_READ16(IIR);
3975 	if (iir == 0)
3976 		goto out;
3977 
3978 	while (iir & ~flip_mask) {
3979 		/* Can't rely on pipestat interrupt bit in iir as it might
3980 		 * have been cleared after the pipestat interrupt was received.
3981 		 * It doesn't set the bit in iir again, but it still produces
3982 		 * interrupts (for non-MSI).
3983 		 */
3984 		spin_lock(&dev_priv->irq_lock);
3985 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3986 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3987 
3988 		for_each_pipe(dev_priv, pipe) {
3989 			i915_reg_t reg = PIPESTAT(pipe);
3990 			pipe_stats[pipe] = I915_READ(reg);
3991 
3992 			/*
3993 			 * Clear the PIPE*STAT regs before the IIR
3994 			 */
3995 			if (pipe_stats[pipe] & 0x8000ffff)
3996 				I915_WRITE(reg, pipe_stats[pipe]);
3997 		}
3998 		spin_unlock(&dev_priv->irq_lock);
3999 
4000 		I915_WRITE16(IIR, iir & ~flip_mask);
4001 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4002 
4003 		if (iir & I915_USER_INTERRUPT)
4004 			notify_ring(&dev_priv->engine[RCS]);
4005 
4006 		for_each_pipe(dev_priv, pipe) {
4007 			int plane = pipe;
4008 			if (HAS_FBC(dev_priv))
4009 				plane = !plane;
4010 
4011 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4012 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4013 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4014 
4015 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4016 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4017 
4018 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4019 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4020 								    pipe);
4021 		}
4022 
4023 		iir = new_iir;
4024 	}
4025 	ret = IRQ_HANDLED;
4026 
4027 out:
4028 	enable_rpm_wakeref_asserts(dev_priv);
4029 
4030 	return ret;
4031 }
4032 
4033 static void i8xx_irq_uninstall(struct drm_device * dev)
4034 {
4035 	struct drm_i915_private *dev_priv = to_i915(dev);
4036 	int pipe;
4037 
4038 	for_each_pipe(dev_priv, pipe) {
4039 		/* Clear enable bits; then clear status bits */
4040 		I915_WRITE(PIPESTAT(pipe), 0);
4041 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4042 	}
4043 	I915_WRITE16(IMR, 0xffff);
4044 	I915_WRITE16(IER, 0x0);
4045 	I915_WRITE16(IIR, I915_READ16(IIR));
4046 }
4047 
4048 static void i915_irq_preinstall(struct drm_device * dev)
4049 {
4050 	struct drm_i915_private *dev_priv = to_i915(dev);
4051 	int pipe;
4052 
4053 	if (I915_HAS_HOTPLUG(dev)) {
4054 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4055 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4056 	}
4057 
4058 	I915_WRITE16(HWSTAM, 0xeffe);
4059 	for_each_pipe(dev_priv, pipe)
4060 		I915_WRITE(PIPESTAT(pipe), 0);
4061 	I915_WRITE(IMR, 0xffffffff);
4062 	I915_WRITE(IER, 0x0);
4063 	POSTING_READ(IER);
4064 }
4065 
4066 static int i915_irq_postinstall(struct drm_device *dev)
4067 {
4068 	struct drm_i915_private *dev_priv = to_i915(dev);
4069 	u32 enable_mask;
4070 
4071 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4072 
4073 	/* Unmask the interrupts that we always want on. */
4074 	dev_priv->irq_mask =
4075 		~(I915_ASLE_INTERRUPT |
4076 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4077 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4078 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4079 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4080 
4081 	enable_mask =
4082 		I915_ASLE_INTERRUPT |
4083 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4084 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4085 		I915_USER_INTERRUPT;
4086 
4087 	if (I915_HAS_HOTPLUG(dev)) {
4088 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4089 		POSTING_READ(PORT_HOTPLUG_EN);
4090 
4091 		/* Enable in IER... */
4092 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4093 		/* and unmask in IMR */
4094 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4095 	}
4096 
4097 	I915_WRITE(IMR, dev_priv->irq_mask);
4098 	I915_WRITE(IER, enable_mask);
4099 	POSTING_READ(IER);
4100 
4101 	i915_enable_asle_pipestat(dev_priv);
4102 
4103 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4104 	 * just to make the assert_spin_locked check happy. */
4105 	spin_lock_irq(&dev_priv->irq_lock);
4106 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4108 	spin_unlock_irq(&dev_priv->irq_lock);
4109 
4110 	return 0;
4111 }
4112 
4113 /*
4114  * Returns true when a page flip has completed.
4115  */
4116 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4117 			       int plane, int pipe, u32 iir)
4118 {
4119 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4120 
4121 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
4122 		return false;
4123 
4124 	if ((iir & flip_pending) == 0)
4125 		goto check_page_flip;
4126 
4127 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4128 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4129 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4130 	 * the flip is completed (no longer pending). Since this doesn't raise
4131 	 * an interrupt per se, we watch for the change at vblank.
4132 	 */
4133 	if (I915_READ(ISR) & flip_pending)
4134 		goto check_page_flip;
4135 
4136 	intel_finish_page_flip_cs(dev_priv, pipe);
4137 	return true;
4138 
4139 check_page_flip:
4140 	intel_check_page_flip(dev_priv, pipe);
4141 	return false;
4142 }
4143 
4144 static irqreturn_t i915_irq_handler(int irq, void *arg)
4145 {
4146 	struct drm_device *dev = arg;
4147 	struct drm_i915_private *dev_priv = to_i915(dev);
4148 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4149 	u32 flip_mask =
4150 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4151 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4152 	int pipe, ret = IRQ_NONE;
4153 
4154 	if (!intel_irqs_enabled(dev_priv))
4155 		return IRQ_NONE;
4156 
4157 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4158 	disable_rpm_wakeref_asserts(dev_priv);
4159 
4160 	iir = I915_READ(IIR);
4161 	do {
4162 		bool irq_received = (iir & ~flip_mask) != 0;
4163 		bool blc_event = false;
4164 
4165 		/* Can't rely on pipestat interrupt bit in iir as it might
4166 		 * have been cleared after the pipestat interrupt was received.
4167 		 * It doesn't set the bit in iir again, but it still produces
4168 		 * interrupts (for non-MSI).
4169 		 */
4170 		spin_lock(&dev_priv->irq_lock);
4171 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4172 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4173 
4174 		for_each_pipe(dev_priv, pipe) {
4175 			i915_reg_t reg = PIPESTAT(pipe);
4176 			pipe_stats[pipe] = I915_READ(reg);
4177 
4178 			/* Clear the PIPE*STAT regs before the IIR */
4179 			if (pipe_stats[pipe] & 0x8000ffff) {
4180 				I915_WRITE(reg, pipe_stats[pipe]);
4181 				irq_received = true;
4182 			}
4183 		}
4184 		spin_unlock(&dev_priv->irq_lock);
4185 
4186 		if (!irq_received)
4187 			break;
4188 
4189 		/* Consume port.  Then clear IIR or we'll miss events */
4190 		if (I915_HAS_HOTPLUG(dev_priv) &&
4191 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
4192 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4193 			if (hotplug_status)
4194 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4195 		}
4196 
4197 		I915_WRITE(IIR, iir & ~flip_mask);
4198 		new_iir = I915_READ(IIR); /* Flush posted writes */
4199 
4200 		if (iir & I915_USER_INTERRUPT)
4201 			notify_ring(&dev_priv->engine[RCS]);
4202 
4203 		for_each_pipe(dev_priv, pipe) {
4204 			int plane = pipe;
4205 			if (HAS_FBC(dev_priv))
4206 				plane = !plane;
4207 
4208 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4209 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
4210 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4211 
4212 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4213 				blc_event = true;
4214 
4215 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4216 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4217 
4218 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4219 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4220 								    pipe);
4221 		}
4222 
4223 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4224 			intel_opregion_asle_intr(dev_priv);
4225 
4226 		/* With MSI, interrupts are only generated when iir
4227 		 * transitions from zero to nonzero.  If another bit got
4228 		 * set while we were handling the existing iir bits, then
4229 		 * we would never get another interrupt.
4230 		 *
4231 		 * This is fine on non-MSI as well, as if we hit this path
4232 		 * we avoid exiting the interrupt handler only to generate
4233 		 * another one.
4234 		 *
4235 		 * Note that for MSI this could cause a stray interrupt report
4236 		 * if an interrupt landed in the time between writing IIR and
4237 		 * the posting read.  This should be rare enough to never
4238 		 * trigger the 99% of 100,000 interrupts test for disabling
4239 		 * stray interrupts.
4240 		 */
4241 		ret = IRQ_HANDLED;
4242 		iir = new_iir;
4243 	} while (iir & ~flip_mask);
4244 
4245 	enable_rpm_wakeref_asserts(dev_priv);
4246 
4247 	return ret;
4248 }
4249 
4250 static void i915_irq_uninstall(struct drm_device * dev)
4251 {
4252 	struct drm_i915_private *dev_priv = to_i915(dev);
4253 	int pipe;
4254 
4255 	if (I915_HAS_HOTPLUG(dev)) {
4256 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4257 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4258 	}
4259 
4260 	I915_WRITE16(HWSTAM, 0xffff);
4261 	for_each_pipe(dev_priv, pipe) {
4262 		/* Clear enable bits; then clear status bits */
4263 		I915_WRITE(PIPESTAT(pipe), 0);
4264 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4265 	}
4266 	I915_WRITE(IMR, 0xffffffff);
4267 	I915_WRITE(IER, 0x0);
4268 
4269 	I915_WRITE(IIR, I915_READ(IIR));
4270 }
4271 
4272 static void i965_irq_preinstall(struct drm_device * dev)
4273 {
4274 	struct drm_i915_private *dev_priv = to_i915(dev);
4275 	int pipe;
4276 
4277 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4278 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4279 
4280 	I915_WRITE(HWSTAM, 0xeffe);
4281 	for_each_pipe(dev_priv, pipe)
4282 		I915_WRITE(PIPESTAT(pipe), 0);
4283 	I915_WRITE(IMR, 0xffffffff);
4284 	I915_WRITE(IER, 0x0);
4285 	POSTING_READ(IER);
4286 }
4287 
4288 static int i965_irq_postinstall(struct drm_device *dev)
4289 {
4290 	struct drm_i915_private *dev_priv = to_i915(dev);
4291 	u32 enable_mask;
4292 	u32 error_mask;
4293 
4294 	/* Unmask the interrupts that we always want on. */
4295 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4296 			       I915_DISPLAY_PORT_INTERRUPT |
4297 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4298 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4299 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4300 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4301 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4302 
4303 	enable_mask = ~dev_priv->irq_mask;
4304 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4305 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4306 	enable_mask |= I915_USER_INTERRUPT;
4307 
4308 	if (IS_G4X(dev_priv))
4309 		enable_mask |= I915_BSD_USER_INTERRUPT;
4310 
4311 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4312 	 * just to make the assert_spin_locked check happy. */
4313 	spin_lock_irq(&dev_priv->irq_lock);
4314 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4315 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4316 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4317 	spin_unlock_irq(&dev_priv->irq_lock);
4318 
4319 	/*
4320 	 * Enable some error detection, note the instruction error mask
4321 	 * bit is reserved, so we leave it masked.
4322 	 */
4323 	if (IS_G4X(dev_priv)) {
4324 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4325 			       GM45_ERROR_MEM_PRIV |
4326 			       GM45_ERROR_CP_PRIV |
4327 			       I915_ERROR_MEMORY_REFRESH);
4328 	} else {
4329 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4330 			       I915_ERROR_MEMORY_REFRESH);
4331 	}
4332 	I915_WRITE(EMR, error_mask);
4333 
4334 	I915_WRITE(IMR, dev_priv->irq_mask);
4335 	I915_WRITE(IER, enable_mask);
4336 	POSTING_READ(IER);
4337 
4338 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4339 	POSTING_READ(PORT_HOTPLUG_EN);
4340 
4341 	i915_enable_asle_pipestat(dev_priv);
4342 
4343 	return 0;
4344 }
4345 
4346 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4347 {
4348 	u32 hotplug_en;
4349 
4350 	assert_spin_locked(&dev_priv->irq_lock);
4351 
4352 	/* Note HDMI and DP share hotplug bits */
4353 	/* enable bits are the same for all generations */
4354 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4355 	/* Programming the CRT detection parameters tends
4356 	   to generate a spurious hotplug event about three
4357 	   seconds later.  So just do it once.
4358 	*/
4359 	if (IS_G4X(dev_priv))
4360 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4361 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4362 
4363 	/* Ignore TV since it's buggy */
4364 	i915_hotplug_interrupt_update_locked(dev_priv,
4365 					     HOTPLUG_INT_EN_MASK |
4366 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4367 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4368 					     hotplug_en);
4369 }
4370 
4371 static irqreturn_t i965_irq_handler(int irq, void *arg)
4372 {
4373 	struct drm_device *dev = arg;
4374 	struct drm_i915_private *dev_priv = to_i915(dev);
4375 	u32 iir, new_iir;
4376 	u32 pipe_stats[I915_MAX_PIPES];
4377 	int ret = IRQ_NONE, pipe;
4378 	u32 flip_mask =
4379 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4380 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4381 
4382 	if (!intel_irqs_enabled(dev_priv))
4383 		return IRQ_NONE;
4384 
4385 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4386 	disable_rpm_wakeref_asserts(dev_priv);
4387 
4388 	iir = I915_READ(IIR);
4389 
4390 	for (;;) {
4391 		bool irq_received = (iir & ~flip_mask) != 0;
4392 		bool blc_event = false;
4393 
4394 		/* Can't rely on pipestat interrupt bit in iir as it might
4395 		 * have been cleared after the pipestat interrupt was received.
4396 		 * It doesn't set the bit in iir again, but it still produces
4397 		 * interrupts (for non-MSI).
4398 		 */
4399 		spin_lock(&dev_priv->irq_lock);
4400 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4401 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4402 
4403 		for_each_pipe(dev_priv, pipe) {
4404 			i915_reg_t reg = PIPESTAT(pipe);
4405 			pipe_stats[pipe] = I915_READ(reg);
4406 
4407 			/*
4408 			 * Clear the PIPE*STAT regs before the IIR
4409 			 */
4410 			if (pipe_stats[pipe] & 0x8000ffff) {
4411 				I915_WRITE(reg, pipe_stats[pipe]);
4412 				irq_received = true;
4413 			}
4414 		}
4415 		spin_unlock(&dev_priv->irq_lock);
4416 
4417 		if (!irq_received)
4418 			break;
4419 
4420 		ret = IRQ_HANDLED;
4421 
4422 		/* Consume port.  Then clear IIR or we'll miss events */
4423 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4424 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4425 			if (hotplug_status)
4426 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4427 		}
4428 
4429 		I915_WRITE(IIR, iir & ~flip_mask);
4430 		new_iir = I915_READ(IIR); /* Flush posted writes */
4431 
4432 		if (iir & I915_USER_INTERRUPT)
4433 			notify_ring(&dev_priv->engine[RCS]);
4434 		if (iir & I915_BSD_USER_INTERRUPT)
4435 			notify_ring(&dev_priv->engine[VCS]);
4436 
4437 		for_each_pipe(dev_priv, pipe) {
4438 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4439 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4440 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4441 
4442 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4443 				blc_event = true;
4444 
4445 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4446 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4447 
4448 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4449 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4450 		}
4451 
4452 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4453 			intel_opregion_asle_intr(dev_priv);
4454 
4455 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4456 			gmbus_irq_handler(dev_priv);
4457 
4458 		/* With MSI, interrupts are only generated when iir
4459 		 * transitions from zero to nonzero.  If another bit got
4460 		 * set while we were handling the existing iir bits, then
4461 		 * we would never get another interrupt.
4462 		 *
4463 		 * This is fine on non-MSI as well, as if we hit this path
4464 		 * we avoid exiting the interrupt handler only to generate
4465 		 * another one.
4466 		 *
4467 		 * Note that for MSI this could cause a stray interrupt report
4468 		 * if an interrupt landed in the time between writing IIR and
4469 		 * the posting read.  This should be rare enough to never
4470 		 * trigger the 99% of 100,000 interrupts test for disabling
4471 		 * stray interrupts.
4472 		 */
4473 		iir = new_iir;
4474 	}
4475 
4476 	enable_rpm_wakeref_asserts(dev_priv);
4477 
4478 	return ret;
4479 }
4480 
4481 static void i965_irq_uninstall(struct drm_device * dev)
4482 {
4483 	struct drm_i915_private *dev_priv = to_i915(dev);
4484 	int pipe;
4485 
4486 	if (!dev_priv)
4487 		return;
4488 
4489 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4490 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4491 
4492 	I915_WRITE(HWSTAM, 0xffffffff);
4493 	for_each_pipe(dev_priv, pipe)
4494 		I915_WRITE(PIPESTAT(pipe), 0);
4495 	I915_WRITE(IMR, 0xffffffff);
4496 	I915_WRITE(IER, 0x0);
4497 
4498 	for_each_pipe(dev_priv, pipe)
4499 		I915_WRITE(PIPESTAT(pipe),
4500 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4501 	I915_WRITE(IIR, I915_READ(IIR));
4502 }
4503 
4504 /**
4505  * intel_irq_init - initializes irq support
4506  * @dev_priv: i915 device instance
4507  *
4508  * This function initializes all the irq support including work items, timers
4509  * and all the vtables. It does not setup the interrupt itself though.
4510  */
4511 void intel_irq_init(struct drm_i915_private *dev_priv)
4512 {
4513 	struct drm_device *dev = &dev_priv->drm;
4514 
4515 	intel_hpd_init_work(dev_priv);
4516 
4517 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4518 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4519 
4520 	/* Let's track the enabled rps events */
4521 	if (IS_VALLEYVIEW(dev_priv))
4522 		/* WaGsvRC0ResidencyMethod:vlv */
4523 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4524 	else
4525 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4526 
4527 	dev_priv->rps.pm_intr_keep = 0;
4528 
4529 	/*
4530 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4531 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4532 	 *
4533 	 * TODO: verify if this can be reproduced on VLV,CHV.
4534 	 */
4535 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4536 		dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4537 
4538 	if (INTEL_INFO(dev_priv)->gen >= 8)
4539 		dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4540 
4541 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4542 			  i915_hangcheck_elapsed);
4543 
4544 	if (IS_GEN2(dev_priv)) {
4545 		dev->max_vblank_count = 0;
4546 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4547 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4548 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4549 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4550 	} else {
4551 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4552 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4553 	}
4554 
4555 	/*
4556 	 * Opt out of the vblank disable timer on everything except gen2.
4557 	 * Gen2 doesn't have a hardware frame counter and so depends on
4558 	 * vblank interrupts to produce sane vblank seuquence numbers.
4559 	 */
4560 	if (!IS_GEN2(dev_priv))
4561 		dev->vblank_disable_immediate = true;
4562 
4563 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4564 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4565 
4566 	if (IS_CHERRYVIEW(dev_priv)) {
4567 		dev->driver->irq_handler = cherryview_irq_handler;
4568 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4569 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4570 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4571 		dev->driver->enable_vblank = valleyview_enable_vblank;
4572 		dev->driver->disable_vblank = valleyview_disable_vblank;
4573 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4574 	} else if (IS_VALLEYVIEW(dev_priv)) {
4575 		dev->driver->irq_handler = valleyview_irq_handler;
4576 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4577 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4578 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4579 		dev->driver->enable_vblank = valleyview_enable_vblank;
4580 		dev->driver->disable_vblank = valleyview_disable_vblank;
4581 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4582 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4583 		dev->driver->irq_handler = gen8_irq_handler;
4584 		dev->driver->irq_preinstall = gen8_irq_reset;
4585 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4586 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4587 		dev->driver->enable_vblank = gen8_enable_vblank;
4588 		dev->driver->disable_vblank = gen8_disable_vblank;
4589 		if (IS_BROXTON(dev))
4590 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4591 		else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4592 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4593 		else
4594 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4595 	} else if (HAS_PCH_SPLIT(dev)) {
4596 		dev->driver->irq_handler = ironlake_irq_handler;
4597 		dev->driver->irq_preinstall = ironlake_irq_reset;
4598 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4599 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4600 		dev->driver->enable_vblank = ironlake_enable_vblank;
4601 		dev->driver->disable_vblank = ironlake_disable_vblank;
4602 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4603 	} else {
4604 		if (IS_GEN2(dev_priv)) {
4605 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4606 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4607 			dev->driver->irq_handler = i8xx_irq_handler;
4608 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4609 		} else if (IS_GEN3(dev_priv)) {
4610 			dev->driver->irq_preinstall = i915_irq_preinstall;
4611 			dev->driver->irq_postinstall = i915_irq_postinstall;
4612 			dev->driver->irq_uninstall = i915_irq_uninstall;
4613 			dev->driver->irq_handler = i915_irq_handler;
4614 		} else {
4615 			dev->driver->irq_preinstall = i965_irq_preinstall;
4616 			dev->driver->irq_postinstall = i965_irq_postinstall;
4617 			dev->driver->irq_uninstall = i965_irq_uninstall;
4618 			dev->driver->irq_handler = i965_irq_handler;
4619 		}
4620 		if (I915_HAS_HOTPLUG(dev_priv))
4621 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4622 		dev->driver->enable_vblank = i915_enable_vblank;
4623 		dev->driver->disable_vblank = i915_disable_vblank;
4624 	}
4625 }
4626 
4627 /**
4628  * intel_irq_install - enables the hardware interrupt
4629  * @dev_priv: i915 device instance
4630  *
4631  * This function enables the hardware interrupt handling, but leaves the hotplug
4632  * handling still disabled. It is called after intel_irq_init().
4633  *
4634  * In the driver load and resume code we need working interrupts in a few places
4635  * but don't want to deal with the hassle of concurrent probe and hotplug
4636  * workers. Hence the split into this two-stage approach.
4637  */
4638 int intel_irq_install(struct drm_i915_private *dev_priv)
4639 {
4640 	/*
4641 	 * We enable some interrupt sources in our postinstall hooks, so mark
4642 	 * interrupts as enabled _before_ actually enabling them to avoid
4643 	 * special cases in our ordering checks.
4644 	 */
4645 	dev_priv->pm.irqs_enabled = true;
4646 
4647 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4648 }
4649 
4650 /**
4651  * intel_irq_uninstall - finilizes all irq handling
4652  * @dev_priv: i915 device instance
4653  *
4654  * This stops interrupt and hotplug handling and unregisters and frees all
4655  * resources acquired in the init functions.
4656  */
4657 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4658 {
4659 	drm_irq_uninstall(&dev_priv->drm);
4660 	intel_hpd_cancel_work(dev_priv);
4661 	dev_priv->pm.irqs_enabled = false;
4662 }
4663 
4664 /**
4665  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4666  * @dev_priv: i915 device instance
4667  *
4668  * This function is used to disable interrupts at runtime, both in the runtime
4669  * pm and the system suspend/resume code.
4670  */
4671 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4672 {
4673 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4674 	dev_priv->pm.irqs_enabled = false;
4675 	synchronize_irq(dev_priv->drm.irq);
4676 }
4677 
4678 /**
4679  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4680  * @dev_priv: i915 device instance
4681  *
4682  * This function is used to enable interrupts at runtime, both in the runtime
4683  * pm and the system suspend/resume code.
4684  */
4685 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4686 {
4687 	dev_priv->pm.irqs_enabled = true;
4688 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4689 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4690 }
4691