1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/slab.h> 33 #include <linux/sysrq.h> 34 35 #include <drm/drm_drv.h> 36 37 #include "display/icl_dsi_regs.h" 38 #include "display/intel_de.h" 39 #include "display/intel_display_trace.h" 40 #include "display/intel_display_types.h" 41 #include "display/intel_fifo_underrun.h" 42 #include "display/intel_hotplug.h" 43 #include "display/intel_lpe_audio.h" 44 #include "display/intel_psr.h" 45 46 #include "gt/intel_breadcrumbs.h" 47 #include "gt/intel_gt.h" 48 #include "gt/intel_gt_irq.h" 49 #include "gt/intel_gt_pm_irq.h" 50 #include "gt/intel_gt_regs.h" 51 #include "gt/intel_rps.h" 52 53 #include "i915_driver.h" 54 #include "i915_drv.h" 55 #include "i915_irq.h" 56 #include "intel_pm.h" 57 58 /** 59 * DOC: interrupt handling 60 * 61 * These functions provide the basic support for enabling and disabling the 62 * interrupt handling support. There's a lot more functionality in i915_irq.c 63 * and related files, but that will be described in separate chapters. 64 */ 65 66 /* 67 * Interrupt statistic for PMU. Increments the counter only if the 68 * interrupt originated from the the GPU so interrupts from a device which 69 * shares the interrupt line are not accounted. 70 */ 71 static inline void pmu_irq_stats(struct drm_i915_private *i915, 72 irqreturn_t res) 73 { 74 if (unlikely(res != IRQ_HANDLED)) 75 return; 76 77 /* 78 * A clever compiler translates that into INC. A not so clever one 79 * should at least prevent store tearing. 80 */ 81 WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1); 82 } 83 84 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val); 85 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915, 86 enum hpd_pin pin); 87 88 static const u32 hpd_ilk[HPD_NUM_PINS] = { 89 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 90 }; 91 92 static const u32 hpd_ivb[HPD_NUM_PINS] = { 93 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 94 }; 95 96 static const u32 hpd_bdw[HPD_NUM_PINS] = { 97 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A), 98 }; 99 100 static const u32 hpd_ibx[HPD_NUM_PINS] = { 101 [HPD_CRT] = SDE_CRT_HOTPLUG, 102 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 103 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 104 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 105 [HPD_PORT_D] = SDE_PORTD_HOTPLUG, 106 }; 107 108 static const u32 hpd_cpt[HPD_NUM_PINS] = { 109 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 110 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 111 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 112 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 113 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 114 }; 115 116 static const u32 hpd_spt[HPD_NUM_PINS] = { 117 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 118 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 119 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 120 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 121 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT, 122 }; 123 124 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 125 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 126 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 127 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 128 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 129 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 130 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN, 131 }; 132 133 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 134 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 135 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 136 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 137 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 138 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 139 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 140 }; 141 142 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 143 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 144 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 145 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 146 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 147 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 148 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 149 }; 150 151 static const u32 hpd_bxt[HPD_NUM_PINS] = { 152 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A), 153 [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B), 154 [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C), 155 }; 156 157 static const u32 hpd_gen11[HPD_NUM_PINS] = { 158 [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1), 159 [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2), 160 [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3), 161 [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4), 162 [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5), 163 [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6), 164 }; 165 166 static const u32 hpd_icp[HPD_NUM_PINS] = { 167 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A), 168 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B), 169 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C), 170 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1), 171 [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2), 172 [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3), 173 [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4), 174 [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5), 175 [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6), 176 }; 177 178 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = { 179 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A), 180 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B), 181 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C), 182 [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D), 183 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_DG2(HPD_PORT_TC1), 184 }; 185 186 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv) 187 { 188 struct i915_hotplug *hpd = &dev_priv->hotplug; 189 190 if (HAS_GMCH(dev_priv)) { 191 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 192 IS_CHERRYVIEW(dev_priv)) 193 hpd->hpd = hpd_status_g4x; 194 else 195 hpd->hpd = hpd_status_i915; 196 return; 197 } 198 199 if (DISPLAY_VER(dev_priv) >= 11) 200 hpd->hpd = hpd_gen11; 201 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 202 hpd->hpd = hpd_bxt; 203 else if (DISPLAY_VER(dev_priv) >= 8) 204 hpd->hpd = hpd_bdw; 205 else if (DISPLAY_VER(dev_priv) >= 7) 206 hpd->hpd = hpd_ivb; 207 else 208 hpd->hpd = hpd_ilk; 209 210 if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) && 211 (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))) 212 return; 213 214 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 215 hpd->pch_hpd = hpd_sde_dg1; 216 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 217 hpd->pch_hpd = hpd_icp; 218 else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv)) 219 hpd->pch_hpd = hpd_spt; 220 else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv)) 221 hpd->pch_hpd = hpd_cpt; 222 else if (HAS_PCH_IBX(dev_priv)) 223 hpd->pch_hpd = hpd_ibx; 224 else 225 MISSING_CASE(INTEL_PCH_TYPE(dev_priv)); 226 } 227 228 static void 229 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) 230 { 231 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); 232 233 drm_crtc_handle_vblank(&crtc->base); 234 } 235 236 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 237 i915_reg_t iir, i915_reg_t ier) 238 { 239 intel_uncore_write(uncore, imr, 0xffffffff); 240 intel_uncore_posting_read(uncore, imr); 241 242 intel_uncore_write(uncore, ier, 0); 243 244 /* IIR can theoretically queue up two events. Be paranoid. */ 245 intel_uncore_write(uncore, iir, 0xffffffff); 246 intel_uncore_posting_read(uncore, iir); 247 intel_uncore_write(uncore, iir, 0xffffffff); 248 intel_uncore_posting_read(uncore, iir); 249 } 250 251 void gen2_irq_reset(struct intel_uncore *uncore) 252 { 253 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 254 intel_uncore_posting_read16(uncore, GEN2_IMR); 255 256 intel_uncore_write16(uncore, GEN2_IER, 0); 257 258 /* IIR can theoretically queue up two events. Be paranoid. */ 259 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 260 intel_uncore_posting_read16(uncore, GEN2_IIR); 261 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 262 intel_uncore_posting_read16(uncore, GEN2_IIR); 263 } 264 265 /* 266 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 267 */ 268 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 269 { 270 u32 val = intel_uncore_read(uncore, reg); 271 272 if (val == 0) 273 return; 274 275 drm_WARN(&uncore->i915->drm, 1, 276 "Interrupt register 0x%x is not zero: 0x%08x\n", 277 i915_mmio_reg_offset(reg), val); 278 intel_uncore_write(uncore, reg, 0xffffffff); 279 intel_uncore_posting_read(uncore, reg); 280 intel_uncore_write(uncore, reg, 0xffffffff); 281 intel_uncore_posting_read(uncore, reg); 282 } 283 284 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 285 { 286 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 287 288 if (val == 0) 289 return; 290 291 drm_WARN(&uncore->i915->drm, 1, 292 "Interrupt register 0x%x is not zero: 0x%08x\n", 293 i915_mmio_reg_offset(GEN2_IIR), val); 294 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 295 intel_uncore_posting_read16(uncore, GEN2_IIR); 296 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 297 intel_uncore_posting_read16(uncore, GEN2_IIR); 298 } 299 300 void gen3_irq_init(struct intel_uncore *uncore, 301 i915_reg_t imr, u32 imr_val, 302 i915_reg_t ier, u32 ier_val, 303 i915_reg_t iir) 304 { 305 gen3_assert_iir_is_zero(uncore, iir); 306 307 intel_uncore_write(uncore, ier, ier_val); 308 intel_uncore_write(uncore, imr, imr_val); 309 intel_uncore_posting_read(uncore, imr); 310 } 311 312 void gen2_irq_init(struct intel_uncore *uncore, 313 u32 imr_val, u32 ier_val) 314 { 315 gen2_assert_iir_is_zero(uncore); 316 317 intel_uncore_write16(uncore, GEN2_IER, ier_val); 318 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 319 intel_uncore_posting_read16(uncore, GEN2_IMR); 320 } 321 322 /* For display hotplug interrupt */ 323 static inline void 324 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 325 u32 mask, 326 u32 bits) 327 { 328 u32 val; 329 330 lockdep_assert_held(&dev_priv->irq_lock); 331 drm_WARN_ON(&dev_priv->drm, bits & ~mask); 332 333 val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN); 334 val &= ~mask; 335 val |= bits; 336 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val); 337 } 338 339 /** 340 * i915_hotplug_interrupt_update - update hotplug interrupt enable 341 * @dev_priv: driver private 342 * @mask: bits to update 343 * @bits: bits to enable 344 * NOTE: the HPD enable bits are modified both inside and outside 345 * of an interrupt context. To avoid that read-modify-write cycles 346 * interfer, these bits are protected by a spinlock. Since this 347 * function is usually not called from a context where the lock is 348 * held already, this function acquires the lock itself. A non-locking 349 * version is also available. 350 */ 351 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 352 u32 mask, 353 u32 bits) 354 { 355 spin_lock_irq(&dev_priv->irq_lock); 356 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 357 spin_unlock_irq(&dev_priv->irq_lock); 358 } 359 360 /** 361 * ilk_update_display_irq - update DEIMR 362 * @dev_priv: driver private 363 * @interrupt_mask: mask of interrupt bits to update 364 * @enabled_irq_mask: mask of interrupt bits to enable 365 */ 366 static void ilk_update_display_irq(struct drm_i915_private *dev_priv, 367 u32 interrupt_mask, u32 enabled_irq_mask) 368 { 369 u32 new_val; 370 371 lockdep_assert_held(&dev_priv->irq_lock); 372 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 373 374 new_val = dev_priv->irq_mask; 375 new_val &= ~interrupt_mask; 376 new_val |= (~enabled_irq_mask & interrupt_mask); 377 378 if (new_val != dev_priv->irq_mask && 379 !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) { 380 dev_priv->irq_mask = new_val; 381 intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask); 382 intel_uncore_posting_read(&dev_priv->uncore, DEIMR); 383 } 384 } 385 386 void ilk_enable_display_irq(struct drm_i915_private *i915, u32 bits) 387 { 388 ilk_update_display_irq(i915, bits, bits); 389 } 390 391 void ilk_disable_display_irq(struct drm_i915_private *i915, u32 bits) 392 { 393 ilk_update_display_irq(i915, bits, 0); 394 } 395 396 /** 397 * bdw_update_port_irq - update DE port interrupt 398 * @dev_priv: driver private 399 * @interrupt_mask: mask of interrupt bits to update 400 * @enabled_irq_mask: mask of interrupt bits to enable 401 */ 402 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 403 u32 interrupt_mask, 404 u32 enabled_irq_mask) 405 { 406 u32 new_val; 407 u32 old_val; 408 409 lockdep_assert_held(&dev_priv->irq_lock); 410 411 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 412 413 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 414 return; 415 416 old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR); 417 418 new_val = old_val; 419 new_val &= ~interrupt_mask; 420 new_val |= (~enabled_irq_mask & interrupt_mask); 421 422 if (new_val != old_val) { 423 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val); 424 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR); 425 } 426 } 427 428 /** 429 * bdw_update_pipe_irq - update DE pipe interrupt 430 * @dev_priv: driver private 431 * @pipe: pipe whose interrupt to update 432 * @interrupt_mask: mask of interrupt bits to update 433 * @enabled_irq_mask: mask of interrupt bits to enable 434 */ 435 static void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 436 enum pipe pipe, u32 interrupt_mask, 437 u32 enabled_irq_mask) 438 { 439 u32 new_val; 440 441 lockdep_assert_held(&dev_priv->irq_lock); 442 443 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 444 445 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 446 return; 447 448 new_val = dev_priv->de_irq_mask[pipe]; 449 new_val &= ~interrupt_mask; 450 new_val |= (~enabled_irq_mask & interrupt_mask); 451 452 if (new_val != dev_priv->de_irq_mask[pipe]) { 453 dev_priv->de_irq_mask[pipe] = new_val; 454 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 455 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe)); 456 } 457 } 458 459 void bdw_enable_pipe_irq(struct drm_i915_private *i915, 460 enum pipe pipe, u32 bits) 461 { 462 bdw_update_pipe_irq(i915, pipe, bits, bits); 463 } 464 465 void bdw_disable_pipe_irq(struct drm_i915_private *i915, 466 enum pipe pipe, u32 bits) 467 { 468 bdw_update_pipe_irq(i915, pipe, bits, 0); 469 } 470 471 /** 472 * ibx_display_interrupt_update - update SDEIMR 473 * @dev_priv: driver private 474 * @interrupt_mask: mask of interrupt bits to update 475 * @enabled_irq_mask: mask of interrupt bits to enable 476 */ 477 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 478 u32 interrupt_mask, 479 u32 enabled_irq_mask) 480 { 481 u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR); 482 sdeimr &= ~interrupt_mask; 483 sdeimr |= (~enabled_irq_mask & interrupt_mask); 484 485 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 486 487 lockdep_assert_held(&dev_priv->irq_lock); 488 489 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 490 return; 491 492 intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr); 493 intel_uncore_posting_read(&dev_priv->uncore, SDEIMR); 494 } 495 496 void ibx_enable_display_interrupt(struct drm_i915_private *i915, u32 bits) 497 { 498 ibx_display_interrupt_update(i915, bits, bits); 499 } 500 501 void ibx_disable_display_interrupt(struct drm_i915_private *i915, u32 bits) 502 { 503 ibx_display_interrupt_update(i915, bits, 0); 504 } 505 506 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 507 enum pipe pipe) 508 { 509 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 510 u32 enable_mask = status_mask << 16; 511 512 lockdep_assert_held(&dev_priv->irq_lock); 513 514 if (DISPLAY_VER(dev_priv) < 5) 515 goto out; 516 517 /* 518 * On pipe A we don't support the PSR interrupt yet, 519 * on pipe B and C the same bit MBZ. 520 */ 521 if (drm_WARN_ON_ONCE(&dev_priv->drm, 522 status_mask & PIPE_A_PSR_STATUS_VLV)) 523 return 0; 524 /* 525 * On pipe B and C we don't support the PSR interrupt yet, on pipe 526 * A the same bit is for perf counters which we don't use either. 527 */ 528 if (drm_WARN_ON_ONCE(&dev_priv->drm, 529 status_mask & PIPE_B_PSR_STATUS_VLV)) 530 return 0; 531 532 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 533 SPRITE0_FLIP_DONE_INT_EN_VLV | 534 SPRITE1_FLIP_DONE_INT_EN_VLV); 535 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 536 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 537 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 538 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 539 540 out: 541 drm_WARN_ONCE(&dev_priv->drm, 542 enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 543 status_mask & ~PIPESTAT_INT_STATUS_MASK, 544 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 545 pipe_name(pipe), enable_mask, status_mask); 546 547 return enable_mask; 548 } 549 550 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 551 enum pipe pipe, u32 status_mask) 552 { 553 i915_reg_t reg = PIPESTAT(pipe); 554 u32 enable_mask; 555 556 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 557 "pipe %c: status_mask=0x%x\n", 558 pipe_name(pipe), status_mask); 559 560 lockdep_assert_held(&dev_priv->irq_lock); 561 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 562 563 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 564 return; 565 566 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 567 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 568 569 intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask); 570 intel_uncore_posting_read(&dev_priv->uncore, reg); 571 } 572 573 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 574 enum pipe pipe, u32 status_mask) 575 { 576 i915_reg_t reg = PIPESTAT(pipe); 577 u32 enable_mask; 578 579 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 580 "pipe %c: status_mask=0x%x\n", 581 pipe_name(pipe), status_mask); 582 583 lockdep_assert_held(&dev_priv->irq_lock); 584 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 585 586 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 587 return; 588 589 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 590 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 591 592 intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask); 593 intel_uncore_posting_read(&dev_priv->uncore, reg); 594 } 595 596 static bool i915_has_asle(struct drm_i915_private *dev_priv) 597 { 598 if (!dev_priv->opregion.asle) 599 return false; 600 601 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 602 } 603 604 /** 605 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 606 * @dev_priv: i915 device private 607 */ 608 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 609 { 610 if (!i915_has_asle(dev_priv)) 611 return; 612 613 spin_lock_irq(&dev_priv->irq_lock); 614 615 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 616 if (DISPLAY_VER(dev_priv) >= 4) 617 i915_enable_pipestat(dev_priv, PIPE_A, 618 PIPE_LEGACY_BLC_EVENT_STATUS); 619 620 spin_unlock_irq(&dev_priv->irq_lock); 621 } 622 623 /* 624 * This timing diagram depicts the video signal in and 625 * around the vertical blanking period. 626 * 627 * Assumptions about the fictitious mode used in this example: 628 * vblank_start >= 3 629 * vsync_start = vblank_start + 1 630 * vsync_end = vblank_start + 2 631 * vtotal = vblank_start + 3 632 * 633 * start of vblank: 634 * latch double buffered registers 635 * increment frame counter (ctg+) 636 * generate start of vblank interrupt (gen4+) 637 * | 638 * | frame start: 639 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 640 * | may be shifted forward 1-3 extra lines via PIPECONF 641 * | | 642 * | | start of vsync: 643 * | | generate vsync interrupt 644 * | | | 645 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 646 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 647 * ----va---> <-----------------vb--------------------> <--------va------------- 648 * | | <----vs-----> | 649 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 650 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 651 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 652 * | | | 653 * last visible pixel first visible pixel 654 * | increment frame counter (gen3/4) 655 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 656 * 657 * x = horizontal active 658 * _ = horizontal blanking 659 * hs = horizontal sync 660 * va = vertical active 661 * vb = vertical blanking 662 * vs = vertical sync 663 * vbs = vblank_start (number) 664 * 665 * Summary: 666 * - most events happen at the start of horizontal sync 667 * - frame start happens at the start of horizontal blank, 1-4 lines 668 * (depending on PIPECONF settings) after the start of vblank 669 * - gen3/4 pixel and frame counter are synchronized with the start 670 * of horizontal active on the first line of vertical active 671 */ 672 673 /* Called from drm generic code, passed a 'crtc', which 674 * we use as a pipe index 675 */ 676 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 677 { 678 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 679 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 680 const struct drm_display_mode *mode = &vblank->hwmode; 681 enum pipe pipe = to_intel_crtc(crtc)->pipe; 682 i915_reg_t high_frame, low_frame; 683 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 684 unsigned long irqflags; 685 686 /* 687 * On i965gm TV output the frame counter only works up to 688 * the point when we enable the TV encoder. After that the 689 * frame counter ceases to work and reads zero. We need a 690 * vblank wait before enabling the TV encoder and so we 691 * have to enable vblank interrupts while the frame counter 692 * is still in a working state. However the core vblank code 693 * does not like us returning non-zero frame counter values 694 * when we've told it that we don't have a working frame 695 * counter. Thus we must stop non-zero values leaking out. 696 */ 697 if (!vblank->max_vblank_count) 698 return 0; 699 700 htotal = mode->crtc_htotal; 701 hsync_start = mode->crtc_hsync_start; 702 vbl_start = mode->crtc_vblank_start; 703 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 704 vbl_start = DIV_ROUND_UP(vbl_start, 2); 705 706 /* Convert to pixel count */ 707 vbl_start *= htotal; 708 709 /* Start of vblank event occurs at start of hsync */ 710 vbl_start -= htotal - hsync_start; 711 712 high_frame = PIPEFRAME(pipe); 713 low_frame = PIPEFRAMEPIXEL(pipe); 714 715 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 716 717 /* 718 * High & low register fields aren't synchronized, so make sure 719 * we get a low value that's stable across two reads of the high 720 * register. 721 */ 722 do { 723 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 724 low = intel_de_read_fw(dev_priv, low_frame); 725 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 726 } while (high1 != high2); 727 728 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 729 730 high1 >>= PIPE_FRAME_HIGH_SHIFT; 731 pixel = low & PIPE_PIXEL_MASK; 732 low >>= PIPE_FRAME_LOW_SHIFT; 733 734 /* 735 * The frame counter increments at beginning of active. 736 * Cook up a vblank counter by also checking the pixel 737 * counter against vblank start. 738 */ 739 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 740 } 741 742 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 743 { 744 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 745 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 746 enum pipe pipe = to_intel_crtc(crtc)->pipe; 747 748 if (!vblank->max_vblank_count) 749 return 0; 750 751 return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe)); 752 } 753 754 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 755 { 756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 757 struct drm_vblank_crtc *vblank = 758 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 759 const struct drm_display_mode *mode = &vblank->hwmode; 760 u32 htotal = mode->crtc_htotal; 761 u32 clock = mode->crtc_clock; 762 u32 scan_prev_time, scan_curr_time, scan_post_time; 763 764 /* 765 * To avoid the race condition where we might cross into the 766 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 767 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 768 * during the same frame. 769 */ 770 do { 771 /* 772 * This field provides read back of the display 773 * pipe frame time stamp. The time stamp value 774 * is sampled at every start of vertical blank. 775 */ 776 scan_prev_time = intel_de_read_fw(dev_priv, 777 PIPE_FRMTMSTMP(crtc->pipe)); 778 779 /* 780 * The TIMESTAMP_CTR register has the current 781 * time stamp value. 782 */ 783 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 784 785 scan_post_time = intel_de_read_fw(dev_priv, 786 PIPE_FRMTMSTMP(crtc->pipe)); 787 } while (scan_post_time != scan_prev_time); 788 789 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 790 clock), 1000 * htotal); 791 } 792 793 /* 794 * On certain encoders on certain platforms, pipe 795 * scanline register will not work to get the scanline, 796 * since the timings are driven from the PORT or issues 797 * with scanline register updates. 798 * This function will use Framestamp and current 799 * timestamp registers to calculate the scanline. 800 */ 801 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 802 { 803 struct drm_vblank_crtc *vblank = 804 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 805 const struct drm_display_mode *mode = &vblank->hwmode; 806 u32 vblank_start = mode->crtc_vblank_start; 807 u32 vtotal = mode->crtc_vtotal; 808 u32 scanline; 809 810 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 811 scanline = min(scanline, vtotal - 1); 812 scanline = (scanline + vblank_start) % vtotal; 813 814 return scanline; 815 } 816 817 /* 818 * intel_de_read_fw(), only for fast reads of display block, no need for 819 * forcewake etc. 820 */ 821 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 822 { 823 struct drm_device *dev = crtc->base.dev; 824 struct drm_i915_private *dev_priv = to_i915(dev); 825 const struct drm_display_mode *mode; 826 struct drm_vblank_crtc *vblank; 827 enum pipe pipe = crtc->pipe; 828 int position, vtotal; 829 830 if (!crtc->active) 831 return 0; 832 833 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 834 mode = &vblank->hwmode; 835 836 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 837 return __intel_get_crtc_scanline_from_timestamp(crtc); 838 839 vtotal = mode->crtc_vtotal; 840 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 841 vtotal /= 2; 842 843 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK; 844 845 /* 846 * On HSW, the DSL reg (0x70000) appears to return 0 if we 847 * read it just before the start of vblank. So try it again 848 * so we don't accidentally end up spanning a vblank frame 849 * increment, causing the pipe_update_end() code to squak at us. 850 * 851 * The nature of this problem means we can't simply check the ISR 852 * bit and return the vblank start value; nor can we use the scanline 853 * debug register in the transcoder as it appears to have the same 854 * problem. We may need to extend this to include other platforms, 855 * but so far testing only shows the problem on HSW. 856 */ 857 if (HAS_DDI(dev_priv) && !position) { 858 int i, temp; 859 860 for (i = 0; i < 100; i++) { 861 udelay(1); 862 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK; 863 if (temp != position) { 864 position = temp; 865 break; 866 } 867 } 868 } 869 870 /* 871 * See update_scanline_offset() for the details on the 872 * scanline_offset adjustment. 873 */ 874 return (position + crtc->scanline_offset) % vtotal; 875 } 876 877 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 878 bool in_vblank_irq, 879 int *vpos, int *hpos, 880 ktime_t *stime, ktime_t *etime, 881 const struct drm_display_mode *mode) 882 { 883 struct drm_device *dev = _crtc->dev; 884 struct drm_i915_private *dev_priv = to_i915(dev); 885 struct intel_crtc *crtc = to_intel_crtc(_crtc); 886 enum pipe pipe = crtc->pipe; 887 int position; 888 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 889 unsigned long irqflags; 890 bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 || 891 IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 || 892 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 893 894 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 895 drm_dbg(&dev_priv->drm, 896 "trying to get scanoutpos for disabled " 897 "pipe %c\n", pipe_name(pipe)); 898 return false; 899 } 900 901 htotal = mode->crtc_htotal; 902 hsync_start = mode->crtc_hsync_start; 903 vtotal = mode->crtc_vtotal; 904 vbl_start = mode->crtc_vblank_start; 905 vbl_end = mode->crtc_vblank_end; 906 907 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 908 vbl_start = DIV_ROUND_UP(vbl_start, 2); 909 vbl_end /= 2; 910 vtotal /= 2; 911 } 912 913 /* 914 * Lock uncore.lock, as we will do multiple timing critical raw 915 * register reads, potentially with preemption disabled, so the 916 * following code must not block on uncore.lock. 917 */ 918 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 919 920 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 921 922 /* Get optional system timestamp before query. */ 923 if (stime) 924 *stime = ktime_get(); 925 926 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 927 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 928 929 position = __intel_get_crtc_scanline(crtc); 930 931 /* 932 * Already exiting vblank? If so, shift our position 933 * so it looks like we're already apporaching the full 934 * vblank end. This should make the generated timestamp 935 * more or less match when the active portion will start. 936 */ 937 if (position >= vbl_start && scanlines < position) 938 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 939 } else if (use_scanline_counter) { 940 /* No obvious pixelcount register. Only query vertical 941 * scanout position from Display scan line register. 942 */ 943 position = __intel_get_crtc_scanline(crtc); 944 } else { 945 /* Have access to pixelcount since start of frame. 946 * We can split this into vertical and horizontal 947 * scanout position. 948 */ 949 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 950 951 /* convert to pixel counts */ 952 vbl_start *= htotal; 953 vbl_end *= htotal; 954 vtotal *= htotal; 955 956 /* 957 * In interlaced modes, the pixel counter counts all pixels, 958 * so one field will have htotal more pixels. In order to avoid 959 * the reported position from jumping backwards when the pixel 960 * counter is beyond the length of the shorter field, just 961 * clamp the position the length of the shorter field. This 962 * matches how the scanline counter based position works since 963 * the scanline counter doesn't count the two half lines. 964 */ 965 if (position >= vtotal) 966 position = vtotal - 1; 967 968 /* 969 * Start of vblank interrupt is triggered at start of hsync, 970 * just prior to the first active line of vblank. However we 971 * consider lines to start at the leading edge of horizontal 972 * active. So, should we get here before we've crossed into 973 * the horizontal active of the first line in vblank, we would 974 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 975 * always add htotal-hsync_start to the current pixel position. 976 */ 977 position = (position + htotal - hsync_start) % vtotal; 978 } 979 980 /* Get optional system timestamp after query. */ 981 if (etime) 982 *etime = ktime_get(); 983 984 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 985 986 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 987 988 /* 989 * While in vblank, position will be negative 990 * counting up towards 0 at vbl_end. And outside 991 * vblank, position will be positive counting 992 * up since vbl_end. 993 */ 994 if (position >= vbl_start) 995 position -= vbl_end; 996 else 997 position += vtotal - vbl_end; 998 999 if (use_scanline_counter) { 1000 *vpos = position; 1001 *hpos = 0; 1002 } else { 1003 *vpos = position / htotal; 1004 *hpos = position - (*vpos * htotal); 1005 } 1006 1007 return true; 1008 } 1009 1010 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 1011 ktime_t *vblank_time, bool in_vblank_irq) 1012 { 1013 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 1014 crtc, max_error, vblank_time, in_vblank_irq, 1015 i915_get_crtc_scanoutpos); 1016 } 1017 1018 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1019 { 1020 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1021 unsigned long irqflags; 1022 int position; 1023 1024 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1025 position = __intel_get_crtc_scanline(crtc); 1026 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1027 1028 return position; 1029 } 1030 1031 /** 1032 * ivb_parity_work - Workqueue called when a parity error interrupt 1033 * occurred. 1034 * @work: workqueue struct 1035 * 1036 * Doesn't actually do anything except notify userspace. As a consequence of 1037 * this event, userspace should try to remap the bad rows since statistically 1038 * it is likely the same row is more likely to go bad again. 1039 */ 1040 static void ivb_parity_work(struct work_struct *work) 1041 { 1042 struct drm_i915_private *dev_priv = 1043 container_of(work, typeof(*dev_priv), l3_parity.error_work); 1044 struct intel_gt *gt = to_gt(dev_priv); 1045 u32 error_status, row, bank, subbank; 1046 char *parity_event[6]; 1047 u32 misccpctl; 1048 u8 slice = 0; 1049 1050 /* We must turn off DOP level clock gating to access the L3 registers. 1051 * In order to prevent a get/put style interface, acquire struct mutex 1052 * any time we access those registers. 1053 */ 1054 mutex_lock(&dev_priv->drm.struct_mutex); 1055 1056 /* If we've screwed up tracking, just let the interrupt fire again */ 1057 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice)) 1058 goto out; 1059 1060 misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL); 1061 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1062 intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL); 1063 1064 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1065 i915_reg_t reg; 1066 1067 slice--; 1068 if (drm_WARN_ON_ONCE(&dev_priv->drm, 1069 slice >= NUM_L3_SLICES(dev_priv))) 1070 break; 1071 1072 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1073 1074 reg = GEN7_L3CDERRST1(slice); 1075 1076 error_status = intel_uncore_read(&dev_priv->uncore, reg); 1077 row = GEN7_PARITY_ERROR_ROW(error_status); 1078 bank = GEN7_PARITY_ERROR_BANK(error_status); 1079 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1080 1081 intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1082 intel_uncore_posting_read(&dev_priv->uncore, reg); 1083 1084 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1085 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1086 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1087 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1088 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1089 parity_event[5] = NULL; 1090 1091 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1092 KOBJ_CHANGE, parity_event); 1093 1094 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1095 slice, row, bank, subbank); 1096 1097 kfree(parity_event[4]); 1098 kfree(parity_event[3]); 1099 kfree(parity_event[2]); 1100 kfree(parity_event[1]); 1101 } 1102 1103 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl); 1104 1105 out: 1106 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice); 1107 spin_lock_irq(>->irq_lock); 1108 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv)); 1109 spin_unlock_irq(>->irq_lock); 1110 1111 mutex_unlock(&dev_priv->drm.struct_mutex); 1112 } 1113 1114 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1115 { 1116 switch (pin) { 1117 case HPD_PORT_TC1: 1118 case HPD_PORT_TC2: 1119 case HPD_PORT_TC3: 1120 case HPD_PORT_TC4: 1121 case HPD_PORT_TC5: 1122 case HPD_PORT_TC6: 1123 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin); 1124 default: 1125 return false; 1126 } 1127 } 1128 1129 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1130 { 1131 switch (pin) { 1132 case HPD_PORT_A: 1133 return val & PORTA_HOTPLUG_LONG_DETECT; 1134 case HPD_PORT_B: 1135 return val & PORTB_HOTPLUG_LONG_DETECT; 1136 case HPD_PORT_C: 1137 return val & PORTC_HOTPLUG_LONG_DETECT; 1138 default: 1139 return false; 1140 } 1141 } 1142 1143 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1144 { 1145 switch (pin) { 1146 case HPD_PORT_A: 1147 case HPD_PORT_B: 1148 case HPD_PORT_C: 1149 case HPD_PORT_D: 1150 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin); 1151 default: 1152 return false; 1153 } 1154 } 1155 1156 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1157 { 1158 switch (pin) { 1159 case HPD_PORT_TC1: 1160 case HPD_PORT_TC2: 1161 case HPD_PORT_TC3: 1162 case HPD_PORT_TC4: 1163 case HPD_PORT_TC5: 1164 case HPD_PORT_TC6: 1165 return val & ICP_TC_HPD_LONG_DETECT(pin); 1166 default: 1167 return false; 1168 } 1169 } 1170 1171 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1172 { 1173 switch (pin) { 1174 case HPD_PORT_E: 1175 return val & PORTE_HOTPLUG_LONG_DETECT; 1176 default: 1177 return false; 1178 } 1179 } 1180 1181 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1182 { 1183 switch (pin) { 1184 case HPD_PORT_A: 1185 return val & PORTA_HOTPLUG_LONG_DETECT; 1186 case HPD_PORT_B: 1187 return val & PORTB_HOTPLUG_LONG_DETECT; 1188 case HPD_PORT_C: 1189 return val & PORTC_HOTPLUG_LONG_DETECT; 1190 case HPD_PORT_D: 1191 return val & PORTD_HOTPLUG_LONG_DETECT; 1192 default: 1193 return false; 1194 } 1195 } 1196 1197 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1198 { 1199 switch (pin) { 1200 case HPD_PORT_A: 1201 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1202 default: 1203 return false; 1204 } 1205 } 1206 1207 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1208 { 1209 switch (pin) { 1210 case HPD_PORT_B: 1211 return val & PORTB_HOTPLUG_LONG_DETECT; 1212 case HPD_PORT_C: 1213 return val & PORTC_HOTPLUG_LONG_DETECT; 1214 case HPD_PORT_D: 1215 return val & PORTD_HOTPLUG_LONG_DETECT; 1216 default: 1217 return false; 1218 } 1219 } 1220 1221 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1222 { 1223 switch (pin) { 1224 case HPD_PORT_B: 1225 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1226 case HPD_PORT_C: 1227 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1228 case HPD_PORT_D: 1229 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1230 default: 1231 return false; 1232 } 1233 } 1234 1235 /* 1236 * Get a bit mask of pins that have triggered, and which ones may be long. 1237 * This can be called multiple times with the same masks to accumulate 1238 * hotplug detection results from several registers. 1239 * 1240 * Note that the caller is expected to zero out the masks initially. 1241 */ 1242 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1243 u32 *pin_mask, u32 *long_mask, 1244 u32 hotplug_trigger, u32 dig_hotplug_reg, 1245 const u32 hpd[HPD_NUM_PINS], 1246 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1247 { 1248 enum hpd_pin pin; 1249 1250 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS); 1251 1252 for_each_hpd_pin(pin) { 1253 if ((hpd[pin] & hotplug_trigger) == 0) 1254 continue; 1255 1256 *pin_mask |= BIT(pin); 1257 1258 if (long_pulse_detect(pin, dig_hotplug_reg)) 1259 *long_mask |= BIT(pin); 1260 } 1261 1262 drm_dbg(&dev_priv->drm, 1263 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1264 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1265 1266 } 1267 1268 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 1269 const u32 hpd[HPD_NUM_PINS]) 1270 { 1271 struct intel_encoder *encoder; 1272 u32 enabled_irqs = 0; 1273 1274 for_each_intel_encoder(&dev_priv->drm, encoder) 1275 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 1276 enabled_irqs |= hpd[encoder->hpd_pin]; 1277 1278 return enabled_irqs; 1279 } 1280 1281 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv, 1282 const u32 hpd[HPD_NUM_PINS]) 1283 { 1284 struct intel_encoder *encoder; 1285 u32 hotplug_irqs = 0; 1286 1287 for_each_intel_encoder(&dev_priv->drm, encoder) 1288 hotplug_irqs |= hpd[encoder->hpd_pin]; 1289 1290 return hotplug_irqs; 1291 } 1292 1293 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915, 1294 hotplug_enables_func hotplug_enables) 1295 { 1296 struct intel_encoder *encoder; 1297 u32 hotplug = 0; 1298 1299 for_each_intel_encoder(&i915->drm, encoder) 1300 hotplug |= hotplug_enables(i915, encoder->hpd_pin); 1301 1302 return hotplug; 1303 } 1304 1305 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1306 { 1307 wake_up_all(&dev_priv->gmbus_wait_queue); 1308 } 1309 1310 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1311 { 1312 wake_up_all(&dev_priv->gmbus_wait_queue); 1313 } 1314 1315 #if defined(CONFIG_DEBUG_FS) 1316 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1317 enum pipe pipe, 1318 u32 crc0, u32 crc1, 1319 u32 crc2, u32 crc3, 1320 u32 crc4) 1321 { 1322 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); 1323 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc; 1324 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1325 1326 trace_intel_pipe_crc(crtc, crcs); 1327 1328 spin_lock(&pipe_crc->lock); 1329 /* 1330 * For some not yet identified reason, the first CRC is 1331 * bonkers. So let's just wait for the next vblank and read 1332 * out the buggy result. 1333 * 1334 * On GEN8+ sometimes the second CRC is bonkers as well, so 1335 * don't trust that one either. 1336 */ 1337 if (pipe_crc->skipped <= 0 || 1338 (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1339 pipe_crc->skipped++; 1340 spin_unlock(&pipe_crc->lock); 1341 return; 1342 } 1343 spin_unlock(&pipe_crc->lock); 1344 1345 drm_crtc_add_crc_entry(&crtc->base, true, 1346 drm_crtc_accurate_vblank_count(&crtc->base), 1347 crcs); 1348 } 1349 #else 1350 static inline void 1351 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1352 enum pipe pipe, 1353 u32 crc0, u32 crc1, 1354 u32 crc2, u32 crc3, 1355 u32 crc4) {} 1356 #endif 1357 1358 static void flip_done_handler(struct drm_i915_private *i915, 1359 enum pipe pipe) 1360 { 1361 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); 1362 struct drm_crtc_state *crtc_state = crtc->base.state; 1363 struct drm_pending_vblank_event *e = crtc_state->event; 1364 struct drm_device *dev = &i915->drm; 1365 unsigned long irqflags; 1366 1367 spin_lock_irqsave(&dev->event_lock, irqflags); 1368 1369 crtc_state->event = NULL; 1370 1371 drm_crtc_send_vblank_event(&crtc->base, e); 1372 1373 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1374 } 1375 1376 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1377 enum pipe pipe) 1378 { 1379 display_pipe_crc_irq_handler(dev_priv, pipe, 1380 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)), 1381 0, 0, 0, 0); 1382 } 1383 1384 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1385 enum pipe pipe) 1386 { 1387 display_pipe_crc_irq_handler(dev_priv, pipe, 1388 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)), 1389 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)), 1390 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)), 1391 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)), 1392 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe))); 1393 } 1394 1395 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1396 enum pipe pipe) 1397 { 1398 u32 res1, res2; 1399 1400 if (DISPLAY_VER(dev_priv) >= 3) 1401 res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe)); 1402 else 1403 res1 = 0; 1404 1405 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) 1406 res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe)); 1407 else 1408 res2 = 0; 1409 1410 display_pipe_crc_irq_handler(dev_priv, pipe, 1411 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)), 1412 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)), 1413 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)), 1414 res1, res2); 1415 } 1416 1417 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1418 { 1419 enum pipe pipe; 1420 1421 for_each_pipe(dev_priv, pipe) { 1422 intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe), 1423 PIPESTAT_INT_STATUS_MASK | 1424 PIPE_FIFO_UNDERRUN_STATUS); 1425 1426 dev_priv->pipestat_irq_mask[pipe] = 0; 1427 } 1428 } 1429 1430 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1431 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1432 { 1433 enum pipe pipe; 1434 1435 spin_lock(&dev_priv->irq_lock); 1436 1437 if (!dev_priv->display_irqs_enabled) { 1438 spin_unlock(&dev_priv->irq_lock); 1439 return; 1440 } 1441 1442 for_each_pipe(dev_priv, pipe) { 1443 i915_reg_t reg; 1444 u32 status_mask, enable_mask, iir_bit = 0; 1445 1446 /* 1447 * PIPESTAT bits get signalled even when the interrupt is 1448 * disabled with the mask bits, and some of the status bits do 1449 * not generate interrupts at all (like the underrun bit). Hence 1450 * we need to be careful that we only handle what we want to 1451 * handle. 1452 */ 1453 1454 /* fifo underruns are filterered in the underrun handler. */ 1455 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1456 1457 switch (pipe) { 1458 default: 1459 case PIPE_A: 1460 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1461 break; 1462 case PIPE_B: 1463 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1464 break; 1465 case PIPE_C: 1466 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1467 break; 1468 } 1469 if (iir & iir_bit) 1470 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1471 1472 if (!status_mask) 1473 continue; 1474 1475 reg = PIPESTAT(pipe); 1476 pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask; 1477 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1478 1479 /* 1480 * Clear the PIPE*STAT regs before the IIR 1481 * 1482 * Toggle the enable bits to make sure we get an 1483 * edge in the ISR pipe event bit if we don't clear 1484 * all the enabled status bits. Otherwise the edge 1485 * triggered IIR on i965/g4x wouldn't notice that 1486 * an interrupt is still pending. 1487 */ 1488 if (pipe_stats[pipe]) { 1489 intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]); 1490 intel_uncore_write(&dev_priv->uncore, reg, enable_mask); 1491 } 1492 } 1493 spin_unlock(&dev_priv->irq_lock); 1494 } 1495 1496 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1497 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1498 { 1499 enum pipe pipe; 1500 1501 for_each_pipe(dev_priv, pipe) { 1502 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1503 intel_handle_vblank(dev_priv, pipe); 1504 1505 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1506 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1507 1508 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1509 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1510 } 1511 } 1512 1513 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1514 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1515 { 1516 bool blc_event = false; 1517 enum pipe pipe; 1518 1519 for_each_pipe(dev_priv, pipe) { 1520 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1521 intel_handle_vblank(dev_priv, pipe); 1522 1523 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1524 blc_event = true; 1525 1526 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1527 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1528 1529 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1530 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1531 } 1532 1533 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1534 intel_opregion_asle_intr(dev_priv); 1535 } 1536 1537 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1538 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1539 { 1540 bool blc_event = false; 1541 enum pipe pipe; 1542 1543 for_each_pipe(dev_priv, pipe) { 1544 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1545 intel_handle_vblank(dev_priv, pipe); 1546 1547 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1548 blc_event = true; 1549 1550 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1551 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1552 1553 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1554 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1555 } 1556 1557 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1558 intel_opregion_asle_intr(dev_priv); 1559 1560 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1561 gmbus_irq_handler(dev_priv); 1562 } 1563 1564 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1565 u32 pipe_stats[I915_MAX_PIPES]) 1566 { 1567 enum pipe pipe; 1568 1569 for_each_pipe(dev_priv, pipe) { 1570 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1571 intel_handle_vblank(dev_priv, pipe); 1572 1573 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) 1574 flip_done_handler(dev_priv, pipe); 1575 1576 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1577 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1578 1579 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1580 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1581 } 1582 1583 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1584 gmbus_irq_handler(dev_priv); 1585 } 1586 1587 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1588 { 1589 u32 hotplug_status = 0, hotplug_status_mask; 1590 int i; 1591 1592 if (IS_G4X(dev_priv) || 1593 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1594 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 1595 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 1596 else 1597 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 1598 1599 /* 1600 * We absolutely have to clear all the pending interrupt 1601 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 1602 * interrupt bit won't have an edge, and the i965/g4x 1603 * edge triggered IIR will not notice that an interrupt 1604 * is still pending. We can't use PORT_HOTPLUG_EN to 1605 * guarantee the edge as the act of toggling the enable 1606 * bits can itself generate a new hotplug interrupt :( 1607 */ 1608 for (i = 0; i < 10; i++) { 1609 u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask; 1610 1611 if (tmp == 0) 1612 return hotplug_status; 1613 1614 hotplug_status |= tmp; 1615 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status); 1616 } 1617 1618 drm_WARN_ONCE(&dev_priv->drm, 1, 1619 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 1620 intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT)); 1621 1622 return hotplug_status; 1623 } 1624 1625 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1626 u32 hotplug_status) 1627 { 1628 u32 pin_mask = 0, long_mask = 0; 1629 u32 hotplug_trigger; 1630 1631 if (IS_G4X(dev_priv) || 1632 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1633 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1634 else 1635 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1636 1637 if (hotplug_trigger) { 1638 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1639 hotplug_trigger, hotplug_trigger, 1640 dev_priv->hotplug.hpd, 1641 i9xx_port_hotplug_long_detect); 1642 1643 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1644 } 1645 1646 if ((IS_G4X(dev_priv) || 1647 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1648 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1649 dp_aux_irq_handler(dev_priv); 1650 } 1651 1652 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1653 { 1654 struct drm_i915_private *dev_priv = arg; 1655 irqreturn_t ret = IRQ_NONE; 1656 1657 if (!intel_irqs_enabled(dev_priv)) 1658 return IRQ_NONE; 1659 1660 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1661 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1662 1663 do { 1664 u32 iir, gt_iir, pm_iir; 1665 u32 pipe_stats[I915_MAX_PIPES] = {}; 1666 u32 hotplug_status = 0; 1667 u32 ier = 0; 1668 1669 gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR); 1670 pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR); 1671 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR); 1672 1673 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1674 break; 1675 1676 ret = IRQ_HANDLED; 1677 1678 /* 1679 * Theory on interrupt generation, based on empirical evidence: 1680 * 1681 * x = ((VLV_IIR & VLV_IER) || 1682 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1683 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1684 * 1685 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1686 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1687 * guarantee the CPU interrupt will be raised again even if we 1688 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1689 * bits this time around. 1690 */ 1691 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0); 1692 ier = intel_uncore_read(&dev_priv->uncore, VLV_IER); 1693 intel_uncore_write(&dev_priv->uncore, VLV_IER, 0); 1694 1695 if (gt_iir) 1696 intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir); 1697 if (pm_iir) 1698 intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir); 1699 1700 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1701 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1702 1703 /* Call regardless, as some status bits might not be 1704 * signalled in iir */ 1705 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1706 1707 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1708 I915_LPE_PIPE_B_INTERRUPT)) 1709 intel_lpe_audio_irq_handler(dev_priv); 1710 1711 /* 1712 * VLV_IIR is single buffered, and reflects the level 1713 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1714 */ 1715 if (iir) 1716 intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir); 1717 1718 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier); 1719 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1720 1721 if (gt_iir) 1722 gen6_gt_irq_handler(to_gt(dev_priv), gt_iir); 1723 if (pm_iir) 1724 gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir); 1725 1726 if (hotplug_status) 1727 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1728 1729 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1730 } while (0); 1731 1732 pmu_irq_stats(dev_priv, ret); 1733 1734 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1735 1736 return ret; 1737 } 1738 1739 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1740 { 1741 struct drm_i915_private *dev_priv = arg; 1742 irqreturn_t ret = IRQ_NONE; 1743 1744 if (!intel_irqs_enabled(dev_priv)) 1745 return IRQ_NONE; 1746 1747 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1748 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1749 1750 do { 1751 u32 master_ctl, iir; 1752 u32 pipe_stats[I915_MAX_PIPES] = {}; 1753 u32 hotplug_status = 0; 1754 u32 ier = 0; 1755 1756 master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1757 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR); 1758 1759 if (master_ctl == 0 && iir == 0) 1760 break; 1761 1762 ret = IRQ_HANDLED; 1763 1764 /* 1765 * Theory on interrupt generation, based on empirical evidence: 1766 * 1767 * x = ((VLV_IIR & VLV_IER) || 1768 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1769 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1770 * 1771 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1772 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1773 * guarantee the CPU interrupt will be raised again even if we 1774 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1775 * bits this time around. 1776 */ 1777 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0); 1778 ier = intel_uncore_read(&dev_priv->uncore, VLV_IER); 1779 intel_uncore_write(&dev_priv->uncore, VLV_IER, 0); 1780 1781 gen8_gt_irq_handler(to_gt(dev_priv), master_ctl); 1782 1783 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1784 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1785 1786 /* Call regardless, as some status bits might not be 1787 * signalled in iir */ 1788 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1789 1790 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1791 I915_LPE_PIPE_B_INTERRUPT | 1792 I915_LPE_PIPE_C_INTERRUPT)) 1793 intel_lpe_audio_irq_handler(dev_priv); 1794 1795 /* 1796 * VLV_IIR is single buffered, and reflects the level 1797 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1798 */ 1799 if (iir) 1800 intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir); 1801 1802 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier); 1803 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1804 1805 if (hotplug_status) 1806 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1807 1808 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1809 } while (0); 1810 1811 pmu_irq_stats(dev_priv, ret); 1812 1813 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1814 1815 return ret; 1816 } 1817 1818 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1819 u32 hotplug_trigger) 1820 { 1821 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1822 1823 /* 1824 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 1825 * unless we touch the hotplug register, even if hotplug_trigger is 1826 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 1827 * errors. 1828 */ 1829 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 1830 if (!hotplug_trigger) { 1831 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 1832 PORTD_HOTPLUG_STATUS_MASK | 1833 PORTC_HOTPLUG_STATUS_MASK | 1834 PORTB_HOTPLUG_STATUS_MASK; 1835 dig_hotplug_reg &= ~mask; 1836 } 1837 1838 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg); 1839 if (!hotplug_trigger) 1840 return; 1841 1842 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1843 hotplug_trigger, dig_hotplug_reg, 1844 dev_priv->hotplug.pch_hpd, 1845 pch_port_hotplug_long_detect); 1846 1847 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1848 } 1849 1850 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1851 { 1852 enum pipe pipe; 1853 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 1854 1855 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1856 1857 if (pch_iir & SDE_AUDIO_POWER_MASK) { 1858 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 1859 SDE_AUDIO_POWER_SHIFT); 1860 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n", 1861 port_name(port)); 1862 } 1863 1864 if (pch_iir & SDE_AUX_MASK) 1865 dp_aux_irq_handler(dev_priv); 1866 1867 if (pch_iir & SDE_GMBUS) 1868 gmbus_irq_handler(dev_priv); 1869 1870 if (pch_iir & SDE_AUDIO_HDCP_MASK) 1871 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n"); 1872 1873 if (pch_iir & SDE_AUDIO_TRANS_MASK) 1874 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n"); 1875 1876 if (pch_iir & SDE_POISON) 1877 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1878 1879 if (pch_iir & SDE_FDI_MASK) { 1880 for_each_pipe(dev_priv, pipe) 1881 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1882 pipe_name(pipe), 1883 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe))); 1884 } 1885 1886 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 1887 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n"); 1888 1889 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 1890 drm_dbg(&dev_priv->drm, 1891 "PCH transcoder CRC error interrupt\n"); 1892 1893 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 1894 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 1895 1896 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 1897 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 1898 } 1899 1900 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 1901 { 1902 u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT); 1903 enum pipe pipe; 1904 1905 if (err_int & ERR_INT_POISON) 1906 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1907 1908 for_each_pipe(dev_priv, pipe) { 1909 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 1910 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1911 1912 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 1913 if (IS_IVYBRIDGE(dev_priv)) 1914 ivb_pipe_crc_irq_handler(dev_priv, pipe); 1915 else 1916 hsw_pipe_crc_irq_handler(dev_priv, pipe); 1917 } 1918 } 1919 1920 intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int); 1921 } 1922 1923 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 1924 { 1925 u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT); 1926 enum pipe pipe; 1927 1928 if (serr_int & SERR_INT_POISON) 1929 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1930 1931 for_each_pipe(dev_priv, pipe) 1932 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 1933 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 1934 1935 intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int); 1936 } 1937 1938 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1939 { 1940 enum pipe pipe; 1941 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 1942 1943 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1944 1945 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 1946 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 1947 SDE_AUDIO_POWER_SHIFT_CPT); 1948 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n", 1949 port_name(port)); 1950 } 1951 1952 if (pch_iir & SDE_AUX_MASK_CPT) 1953 dp_aux_irq_handler(dev_priv); 1954 1955 if (pch_iir & SDE_GMBUS_CPT) 1956 gmbus_irq_handler(dev_priv); 1957 1958 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 1959 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n"); 1960 1961 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 1962 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n"); 1963 1964 if (pch_iir & SDE_FDI_MASK_CPT) { 1965 for_each_pipe(dev_priv, pipe) 1966 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1967 pipe_name(pipe), 1968 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe))); 1969 } 1970 1971 if (pch_iir & SDE_ERROR_CPT) 1972 cpt_serr_int_handler(dev_priv); 1973 } 1974 1975 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1976 { 1977 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP; 1978 u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP; 1979 u32 pin_mask = 0, long_mask = 0; 1980 1981 if (ddi_hotplug_trigger) { 1982 u32 dig_hotplug_reg; 1983 1984 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI); 1985 intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg); 1986 1987 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1988 ddi_hotplug_trigger, dig_hotplug_reg, 1989 dev_priv->hotplug.pch_hpd, 1990 icp_ddi_port_hotplug_long_detect); 1991 } 1992 1993 if (tc_hotplug_trigger) { 1994 u32 dig_hotplug_reg; 1995 1996 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC); 1997 intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg); 1998 1999 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2000 tc_hotplug_trigger, dig_hotplug_reg, 2001 dev_priv->hotplug.pch_hpd, 2002 icp_tc_port_hotplug_long_detect); 2003 } 2004 2005 if (pin_mask) 2006 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2007 2008 if (pch_iir & SDE_GMBUS_ICP) 2009 gmbus_irq_handler(dev_priv); 2010 } 2011 2012 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2013 { 2014 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2015 ~SDE_PORTE_HOTPLUG_SPT; 2016 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2017 u32 pin_mask = 0, long_mask = 0; 2018 2019 if (hotplug_trigger) { 2020 u32 dig_hotplug_reg; 2021 2022 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 2023 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg); 2024 2025 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2026 hotplug_trigger, dig_hotplug_reg, 2027 dev_priv->hotplug.pch_hpd, 2028 spt_port_hotplug_long_detect); 2029 } 2030 2031 if (hotplug2_trigger) { 2032 u32 dig_hotplug_reg; 2033 2034 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2); 2035 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2036 2037 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2038 hotplug2_trigger, dig_hotplug_reg, 2039 dev_priv->hotplug.pch_hpd, 2040 spt_port_hotplug2_long_detect); 2041 } 2042 2043 if (pin_mask) 2044 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2045 2046 if (pch_iir & SDE_GMBUS_CPT) 2047 gmbus_irq_handler(dev_priv); 2048 } 2049 2050 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2051 u32 hotplug_trigger) 2052 { 2053 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2054 2055 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL); 2056 intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2057 2058 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2059 hotplug_trigger, dig_hotplug_reg, 2060 dev_priv->hotplug.hpd, 2061 ilk_port_hotplug_long_detect); 2062 2063 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2064 } 2065 2066 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2067 u32 de_iir) 2068 { 2069 enum pipe pipe; 2070 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2071 2072 if (hotplug_trigger) 2073 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2074 2075 if (de_iir & DE_AUX_CHANNEL_A) 2076 dp_aux_irq_handler(dev_priv); 2077 2078 if (de_iir & DE_GSE) 2079 intel_opregion_asle_intr(dev_priv); 2080 2081 if (de_iir & DE_POISON) 2082 drm_err(&dev_priv->drm, "Poison interrupt\n"); 2083 2084 for_each_pipe(dev_priv, pipe) { 2085 if (de_iir & DE_PIPE_VBLANK(pipe)) 2086 intel_handle_vblank(dev_priv, pipe); 2087 2088 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) 2089 flip_done_handler(dev_priv, pipe); 2090 2091 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2092 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2093 2094 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2095 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2096 } 2097 2098 /* check event from PCH */ 2099 if (de_iir & DE_PCH_EVENT) { 2100 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR); 2101 2102 if (HAS_PCH_CPT(dev_priv)) 2103 cpt_irq_handler(dev_priv, pch_iir); 2104 else 2105 ibx_irq_handler(dev_priv, pch_iir); 2106 2107 /* should clear PCH hotplug event before clear CPU irq */ 2108 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir); 2109 } 2110 2111 if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT) 2112 gen5_rps_irq_handler(&to_gt(dev_priv)->rps); 2113 } 2114 2115 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2116 u32 de_iir) 2117 { 2118 enum pipe pipe; 2119 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2120 2121 if (hotplug_trigger) 2122 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2123 2124 if (de_iir & DE_ERR_INT_IVB) 2125 ivb_err_int_handler(dev_priv); 2126 2127 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2128 dp_aux_irq_handler(dev_priv); 2129 2130 if (de_iir & DE_GSE_IVB) 2131 intel_opregion_asle_intr(dev_priv); 2132 2133 for_each_pipe(dev_priv, pipe) { 2134 if (de_iir & DE_PIPE_VBLANK_IVB(pipe)) 2135 intel_handle_vblank(dev_priv, pipe); 2136 2137 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) 2138 flip_done_handler(dev_priv, pipe); 2139 } 2140 2141 /* check event from PCH */ 2142 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2143 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR); 2144 2145 cpt_irq_handler(dev_priv, pch_iir); 2146 2147 /* clear PCH hotplug event before clear CPU irq */ 2148 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir); 2149 } 2150 } 2151 2152 /* 2153 * To handle irqs with the minimum potential races with fresh interrupts, we: 2154 * 1 - Disable Master Interrupt Control. 2155 * 2 - Find the source(s) of the interrupt. 2156 * 3 - Clear the Interrupt Identity bits (IIR). 2157 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2158 * 5 - Re-enable Master Interrupt Control. 2159 */ 2160 static irqreturn_t ilk_irq_handler(int irq, void *arg) 2161 { 2162 struct drm_i915_private *i915 = arg; 2163 void __iomem * const regs = i915->uncore.regs; 2164 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2165 irqreturn_t ret = IRQ_NONE; 2166 2167 if (unlikely(!intel_irqs_enabled(i915))) 2168 return IRQ_NONE; 2169 2170 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2171 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2172 2173 /* disable master interrupt before clearing iir */ 2174 de_ier = raw_reg_read(regs, DEIER); 2175 raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2176 2177 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2178 * interrupts will will be stored on its back queue, and then we'll be 2179 * able to process them after we restore SDEIER (as soon as we restore 2180 * it, we'll get an interrupt if SDEIIR still has something to process 2181 * due to its back queue). */ 2182 if (!HAS_PCH_NOP(i915)) { 2183 sde_ier = raw_reg_read(regs, SDEIER); 2184 raw_reg_write(regs, SDEIER, 0); 2185 } 2186 2187 /* Find, clear, then process each source of interrupt */ 2188 2189 gt_iir = raw_reg_read(regs, GTIIR); 2190 if (gt_iir) { 2191 raw_reg_write(regs, GTIIR, gt_iir); 2192 if (GRAPHICS_VER(i915) >= 6) 2193 gen6_gt_irq_handler(to_gt(i915), gt_iir); 2194 else 2195 gen5_gt_irq_handler(to_gt(i915), gt_iir); 2196 ret = IRQ_HANDLED; 2197 } 2198 2199 de_iir = raw_reg_read(regs, DEIIR); 2200 if (de_iir) { 2201 raw_reg_write(regs, DEIIR, de_iir); 2202 if (DISPLAY_VER(i915) >= 7) 2203 ivb_display_irq_handler(i915, de_iir); 2204 else 2205 ilk_display_irq_handler(i915, de_iir); 2206 ret = IRQ_HANDLED; 2207 } 2208 2209 if (GRAPHICS_VER(i915) >= 6) { 2210 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR); 2211 if (pm_iir) { 2212 raw_reg_write(regs, GEN6_PMIIR, pm_iir); 2213 gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir); 2214 ret = IRQ_HANDLED; 2215 } 2216 } 2217 2218 raw_reg_write(regs, DEIER, de_ier); 2219 if (sde_ier) 2220 raw_reg_write(regs, SDEIER, sde_ier); 2221 2222 pmu_irq_stats(i915, ret); 2223 2224 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2225 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2226 2227 return ret; 2228 } 2229 2230 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2231 u32 hotplug_trigger) 2232 { 2233 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2234 2235 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 2236 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg); 2237 2238 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2239 hotplug_trigger, dig_hotplug_reg, 2240 dev_priv->hotplug.hpd, 2241 bxt_port_hotplug_long_detect); 2242 2243 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2244 } 2245 2246 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2247 { 2248 u32 pin_mask = 0, long_mask = 0; 2249 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2250 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2251 2252 if (trigger_tc) { 2253 u32 dig_hotplug_reg; 2254 2255 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL); 2256 intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); 2257 2258 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2259 trigger_tc, dig_hotplug_reg, 2260 dev_priv->hotplug.hpd, 2261 gen11_port_hotplug_long_detect); 2262 } 2263 2264 if (trigger_tbt) { 2265 u32 dig_hotplug_reg; 2266 2267 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL); 2268 intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); 2269 2270 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2271 trigger_tbt, dig_hotplug_reg, 2272 dev_priv->hotplug.hpd, 2273 gen11_port_hotplug_long_detect); 2274 } 2275 2276 if (pin_mask) 2277 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2278 else 2279 drm_err(&dev_priv->drm, 2280 "Unexpected DE HPD interrupt 0x%08x\n", iir); 2281 } 2282 2283 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2284 { 2285 u32 mask; 2286 2287 if (DISPLAY_VER(dev_priv) >= 13) 2288 return TGL_DE_PORT_AUX_DDIA | 2289 TGL_DE_PORT_AUX_DDIB | 2290 TGL_DE_PORT_AUX_DDIC | 2291 XELPD_DE_PORT_AUX_DDID | 2292 XELPD_DE_PORT_AUX_DDIE | 2293 TGL_DE_PORT_AUX_USBC1 | 2294 TGL_DE_PORT_AUX_USBC2 | 2295 TGL_DE_PORT_AUX_USBC3 | 2296 TGL_DE_PORT_AUX_USBC4; 2297 else if (DISPLAY_VER(dev_priv) >= 12) 2298 return TGL_DE_PORT_AUX_DDIA | 2299 TGL_DE_PORT_AUX_DDIB | 2300 TGL_DE_PORT_AUX_DDIC | 2301 TGL_DE_PORT_AUX_USBC1 | 2302 TGL_DE_PORT_AUX_USBC2 | 2303 TGL_DE_PORT_AUX_USBC3 | 2304 TGL_DE_PORT_AUX_USBC4 | 2305 TGL_DE_PORT_AUX_USBC5 | 2306 TGL_DE_PORT_AUX_USBC6; 2307 2308 2309 mask = GEN8_AUX_CHANNEL_A; 2310 if (DISPLAY_VER(dev_priv) >= 9) 2311 mask |= GEN9_AUX_CHANNEL_B | 2312 GEN9_AUX_CHANNEL_C | 2313 GEN9_AUX_CHANNEL_D; 2314 2315 if (DISPLAY_VER(dev_priv) == 11) { 2316 mask |= ICL_AUX_CHANNEL_F; 2317 mask |= ICL_AUX_CHANNEL_E; 2318 } 2319 2320 return mask; 2321 } 2322 2323 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv) 2324 { 2325 if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv)) 2326 return RKL_DE_PIPE_IRQ_FAULT_ERRORS; 2327 else if (DISPLAY_VER(dev_priv) >= 11) 2328 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS; 2329 else if (DISPLAY_VER(dev_priv) >= 9) 2330 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2331 else 2332 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2333 } 2334 2335 static void 2336 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2337 { 2338 bool found = false; 2339 2340 if (iir & GEN8_DE_MISC_GSE) { 2341 intel_opregion_asle_intr(dev_priv); 2342 found = true; 2343 } 2344 2345 if (iir & GEN8_DE_EDP_PSR) { 2346 struct intel_encoder *encoder; 2347 u32 psr_iir; 2348 i915_reg_t iir_reg; 2349 2350 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2351 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2352 2353 if (DISPLAY_VER(dev_priv) >= 12) 2354 iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder); 2355 else 2356 iir_reg = EDP_PSR_IIR; 2357 2358 psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg); 2359 intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir); 2360 2361 if (psr_iir) 2362 found = true; 2363 2364 intel_psr_irq_handler(intel_dp, psr_iir); 2365 2366 /* prior GEN12 only have one EDP PSR */ 2367 if (DISPLAY_VER(dev_priv) < 12) 2368 break; 2369 } 2370 } 2371 2372 if (!found) 2373 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n"); 2374 } 2375 2376 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv, 2377 u32 te_trigger) 2378 { 2379 enum pipe pipe = INVALID_PIPE; 2380 enum transcoder dsi_trans; 2381 enum port port; 2382 u32 val, tmp; 2383 2384 /* 2385 * Incase of dual link, TE comes from DSI_1 2386 * this is to check if dual link is enabled 2387 */ 2388 val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0)); 2389 val &= PORT_SYNC_MODE_ENABLE; 2390 2391 /* 2392 * if dual link is enabled, then read DSI_0 2393 * transcoder registers 2394 */ 2395 port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ? 2396 PORT_A : PORT_B; 2397 dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1; 2398 2399 /* Check if DSI configured in command mode */ 2400 val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans)); 2401 val = val & OP_MODE_MASK; 2402 2403 if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) { 2404 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n"); 2405 return; 2406 } 2407 2408 /* Get PIPE for handling VBLANK event */ 2409 val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans)); 2410 switch (val & TRANS_DDI_EDP_INPUT_MASK) { 2411 case TRANS_DDI_EDP_INPUT_A_ON: 2412 pipe = PIPE_A; 2413 break; 2414 case TRANS_DDI_EDP_INPUT_B_ONOFF: 2415 pipe = PIPE_B; 2416 break; 2417 case TRANS_DDI_EDP_INPUT_C_ONOFF: 2418 pipe = PIPE_C; 2419 break; 2420 default: 2421 drm_err(&dev_priv->drm, "Invalid PIPE\n"); 2422 return; 2423 } 2424 2425 intel_handle_vblank(dev_priv, pipe); 2426 2427 /* clear TE in dsi IIR */ 2428 port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A; 2429 tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port)); 2430 intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp); 2431 } 2432 2433 static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915) 2434 { 2435 if (DISPLAY_VER(i915) >= 9) 2436 return GEN9_PIPE_PLANE1_FLIP_DONE; 2437 else 2438 return GEN8_PIPE_PRIMARY_FLIP_DONE; 2439 } 2440 2441 u32 gen8_de_pipe_underrun_mask(struct drm_i915_private *dev_priv) 2442 { 2443 u32 mask = GEN8_PIPE_FIFO_UNDERRUN; 2444 2445 if (DISPLAY_VER(dev_priv) >= 13) 2446 mask |= XELPD_PIPE_SOFT_UNDERRUN | 2447 XELPD_PIPE_HARD_UNDERRUN; 2448 2449 return mask; 2450 } 2451 2452 static irqreturn_t 2453 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2454 { 2455 irqreturn_t ret = IRQ_NONE; 2456 u32 iir; 2457 enum pipe pipe; 2458 2459 drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv)); 2460 2461 if (master_ctl & GEN8_DE_MISC_IRQ) { 2462 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR); 2463 if (iir) { 2464 intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir); 2465 ret = IRQ_HANDLED; 2466 gen8_de_misc_irq_handler(dev_priv, iir); 2467 } else { 2468 drm_err(&dev_priv->drm, 2469 "The master control interrupt lied (DE MISC)!\n"); 2470 } 2471 } 2472 2473 if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2474 iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR); 2475 if (iir) { 2476 intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir); 2477 ret = IRQ_HANDLED; 2478 gen11_hpd_irq_handler(dev_priv, iir); 2479 } else { 2480 drm_err(&dev_priv->drm, 2481 "The master control interrupt lied, (DE HPD)!\n"); 2482 } 2483 } 2484 2485 if (master_ctl & GEN8_DE_PORT_IRQ) { 2486 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR); 2487 if (iir) { 2488 bool found = false; 2489 2490 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir); 2491 ret = IRQ_HANDLED; 2492 2493 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2494 dp_aux_irq_handler(dev_priv); 2495 found = true; 2496 } 2497 2498 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 2499 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK; 2500 2501 if (hotplug_trigger) { 2502 bxt_hpd_irq_handler(dev_priv, hotplug_trigger); 2503 found = true; 2504 } 2505 } else if (IS_BROADWELL(dev_priv)) { 2506 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK; 2507 2508 if (hotplug_trigger) { 2509 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2510 found = true; 2511 } 2512 } 2513 2514 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 2515 (iir & BXT_DE_PORT_GMBUS)) { 2516 gmbus_irq_handler(dev_priv); 2517 found = true; 2518 } 2519 2520 if (DISPLAY_VER(dev_priv) >= 11) { 2521 u32 te_trigger = iir & (DSI0_TE | DSI1_TE); 2522 2523 if (te_trigger) { 2524 gen11_dsi_te_interrupt_handler(dev_priv, te_trigger); 2525 found = true; 2526 } 2527 } 2528 2529 if (!found) 2530 drm_err(&dev_priv->drm, 2531 "Unexpected DE Port interrupt\n"); 2532 } 2533 else 2534 drm_err(&dev_priv->drm, 2535 "The master control interrupt lied (DE PORT)!\n"); 2536 } 2537 2538 for_each_pipe(dev_priv, pipe) { 2539 u32 fault_errors; 2540 2541 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2542 continue; 2543 2544 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe)); 2545 if (!iir) { 2546 drm_err(&dev_priv->drm, 2547 "The master control interrupt lied (DE PIPE)!\n"); 2548 continue; 2549 } 2550 2551 ret = IRQ_HANDLED; 2552 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir); 2553 2554 if (iir & GEN8_PIPE_VBLANK) 2555 intel_handle_vblank(dev_priv, pipe); 2556 2557 if (iir & gen8_de_pipe_flip_done_mask(dev_priv)) 2558 flip_done_handler(dev_priv, pipe); 2559 2560 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2561 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2562 2563 if (iir & gen8_de_pipe_underrun_mask(dev_priv)) 2564 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2565 2566 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv); 2567 if (fault_errors) 2568 drm_err(&dev_priv->drm, 2569 "Fault errors on pipe %c: 0x%08x\n", 2570 pipe_name(pipe), 2571 fault_errors); 2572 } 2573 2574 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2575 master_ctl & GEN8_DE_PCH_IRQ) { 2576 /* 2577 * FIXME(BDW): Assume for now that the new interrupt handling 2578 * scheme also closed the SDE interrupt handling race we've seen 2579 * on older pch-split platforms. But this needs testing. 2580 */ 2581 iir = intel_uncore_read(&dev_priv->uncore, SDEIIR); 2582 if (iir) { 2583 intel_uncore_write(&dev_priv->uncore, SDEIIR, iir); 2584 ret = IRQ_HANDLED; 2585 2586 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2587 icp_irq_handler(dev_priv, iir); 2588 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2589 spt_irq_handler(dev_priv, iir); 2590 else 2591 cpt_irq_handler(dev_priv, iir); 2592 } else { 2593 /* 2594 * Like on previous PCH there seems to be something 2595 * fishy going on with forwarding PCH interrupts. 2596 */ 2597 drm_dbg(&dev_priv->drm, 2598 "The master control interrupt lied (SDE)!\n"); 2599 } 2600 } 2601 2602 return ret; 2603 } 2604 2605 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2606 { 2607 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2608 2609 /* 2610 * Now with master disabled, get a sample of level indications 2611 * for this interrupt. Indications will be cleared on related acks. 2612 * New indications can and will light up during processing, 2613 * and will generate new interrupt after enabling master. 2614 */ 2615 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2616 } 2617 2618 static inline void gen8_master_intr_enable(void __iomem * const regs) 2619 { 2620 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2621 } 2622 2623 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2624 { 2625 struct drm_i915_private *dev_priv = arg; 2626 void __iomem * const regs = dev_priv->uncore.regs; 2627 u32 master_ctl; 2628 2629 if (!intel_irqs_enabled(dev_priv)) 2630 return IRQ_NONE; 2631 2632 master_ctl = gen8_master_intr_disable(regs); 2633 if (!master_ctl) { 2634 gen8_master_intr_enable(regs); 2635 return IRQ_NONE; 2636 } 2637 2638 /* Find, queue (onto bottom-halves), then clear each source */ 2639 gen8_gt_irq_handler(to_gt(dev_priv), master_ctl); 2640 2641 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2642 if (master_ctl & ~GEN8_GT_IRQS) { 2643 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2644 gen8_de_irq_handler(dev_priv, master_ctl); 2645 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2646 } 2647 2648 gen8_master_intr_enable(regs); 2649 2650 pmu_irq_stats(dev_priv, IRQ_HANDLED); 2651 2652 return IRQ_HANDLED; 2653 } 2654 2655 static u32 2656 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl) 2657 { 2658 void __iomem * const regs = gt->uncore->regs; 2659 u32 iir; 2660 2661 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 2662 return 0; 2663 2664 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 2665 if (likely(iir)) 2666 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 2667 2668 return iir; 2669 } 2670 2671 static void 2672 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir) 2673 { 2674 if (iir & GEN11_GU_MISC_GSE) 2675 intel_opregion_asle_intr(gt->i915); 2676 } 2677 2678 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 2679 { 2680 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2681 2682 /* 2683 * Now with master disabled, get a sample of level indications 2684 * for this interrupt. Indications will be cleared on related acks. 2685 * New indications can and will light up during processing, 2686 * and will generate new interrupt after enabling master. 2687 */ 2688 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2689 } 2690 2691 static inline void gen11_master_intr_enable(void __iomem * const regs) 2692 { 2693 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 2694 } 2695 2696 static void 2697 gen11_display_irq_handler(struct drm_i915_private *i915) 2698 { 2699 void __iomem * const regs = i915->uncore.regs; 2700 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2701 2702 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2703 /* 2704 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2705 * for the display related bits. 2706 */ 2707 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0); 2708 gen8_de_irq_handler(i915, disp_ctl); 2709 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 2710 GEN11_DISPLAY_IRQ_ENABLE); 2711 2712 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2713 } 2714 2715 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2716 { 2717 struct drm_i915_private *i915 = arg; 2718 void __iomem * const regs = i915->uncore.regs; 2719 struct intel_gt *gt = to_gt(i915); 2720 u32 master_ctl; 2721 u32 gu_misc_iir; 2722 2723 if (!intel_irqs_enabled(i915)) 2724 return IRQ_NONE; 2725 2726 master_ctl = gen11_master_intr_disable(regs); 2727 if (!master_ctl) { 2728 gen11_master_intr_enable(regs); 2729 return IRQ_NONE; 2730 } 2731 2732 /* Find, queue (onto bottom-halves), then clear each source */ 2733 gen11_gt_irq_handler(gt, master_ctl); 2734 2735 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2736 if (master_ctl & GEN11_DISPLAY_IRQ) 2737 gen11_display_irq_handler(i915); 2738 2739 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl); 2740 2741 gen11_master_intr_enable(regs); 2742 2743 gen11_gu_misc_irq_handler(gt, gu_misc_iir); 2744 2745 pmu_irq_stats(i915, IRQ_HANDLED); 2746 2747 return IRQ_HANDLED; 2748 } 2749 2750 static inline u32 dg1_master_intr_disable(void __iomem * const regs) 2751 { 2752 u32 val; 2753 2754 /* First disable interrupts */ 2755 raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0); 2756 2757 /* Get the indication levels and ack the master unit */ 2758 val = raw_reg_read(regs, DG1_MSTR_TILE_INTR); 2759 if (unlikely(!val)) 2760 return 0; 2761 2762 raw_reg_write(regs, DG1_MSTR_TILE_INTR, val); 2763 2764 return val; 2765 } 2766 2767 static inline void dg1_master_intr_enable(void __iomem * const regs) 2768 { 2769 raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); 2770 } 2771 2772 static irqreturn_t dg1_irq_handler(int irq, void *arg) 2773 { 2774 struct drm_i915_private * const i915 = arg; 2775 struct intel_gt *gt = to_gt(i915); 2776 void __iomem * const regs = gt->uncore->regs; 2777 u32 master_tile_ctl, master_ctl; 2778 u32 gu_misc_iir; 2779 2780 if (!intel_irqs_enabled(i915)) 2781 return IRQ_NONE; 2782 2783 master_tile_ctl = dg1_master_intr_disable(regs); 2784 if (!master_tile_ctl) { 2785 dg1_master_intr_enable(regs); 2786 return IRQ_NONE; 2787 } 2788 2789 /* FIXME: we only support tile 0 for now. */ 2790 if (master_tile_ctl & DG1_MSTR_TILE(0)) { 2791 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2792 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl); 2793 } else { 2794 DRM_ERROR("Tile not supported: 0x%08x\n", master_tile_ctl); 2795 dg1_master_intr_enable(regs); 2796 return IRQ_NONE; 2797 } 2798 2799 gen11_gt_irq_handler(gt, master_ctl); 2800 2801 if (master_ctl & GEN11_DISPLAY_IRQ) 2802 gen11_display_irq_handler(i915); 2803 2804 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl); 2805 2806 dg1_master_intr_enable(regs); 2807 2808 gen11_gu_misc_irq_handler(gt, gu_misc_iir); 2809 2810 pmu_irq_stats(i915, IRQ_HANDLED); 2811 2812 return IRQ_HANDLED; 2813 } 2814 2815 /* Called from drm generic code, passed 'crtc' which 2816 * we use as a pipe index 2817 */ 2818 int i8xx_enable_vblank(struct drm_crtc *crtc) 2819 { 2820 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2821 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2822 unsigned long irqflags; 2823 2824 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2825 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2826 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2827 2828 return 0; 2829 } 2830 2831 int i915gm_enable_vblank(struct drm_crtc *crtc) 2832 { 2833 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2834 2835 /* 2836 * Vblank interrupts fail to wake the device up from C2+. 2837 * Disabling render clock gating during C-states avoids 2838 * the problem. There is a small power cost so we do this 2839 * only when vblank interrupts are actually enabled. 2840 */ 2841 if (dev_priv->vblank_enabled++ == 0) 2842 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2843 2844 return i8xx_enable_vblank(crtc); 2845 } 2846 2847 int i965_enable_vblank(struct drm_crtc *crtc) 2848 { 2849 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2850 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2851 unsigned long irqflags; 2852 2853 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2854 i915_enable_pipestat(dev_priv, pipe, 2855 PIPE_START_VBLANK_INTERRUPT_STATUS); 2856 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2857 2858 return 0; 2859 } 2860 2861 int ilk_enable_vblank(struct drm_crtc *crtc) 2862 { 2863 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2864 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2865 unsigned long irqflags; 2866 u32 bit = DISPLAY_VER(dev_priv) >= 7 ? 2867 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2868 2869 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2870 ilk_enable_display_irq(dev_priv, bit); 2871 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2872 2873 /* Even though there is no DMC, frame counter can get stuck when 2874 * PSR is active as no frames are generated. 2875 */ 2876 if (HAS_PSR(dev_priv)) 2877 drm_crtc_vblank_restore(crtc); 2878 2879 return 0; 2880 } 2881 2882 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc, 2883 bool enable) 2884 { 2885 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 2886 enum port port; 2887 u32 tmp; 2888 2889 if (!(intel_crtc->mode_flags & 2890 (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0))) 2891 return false; 2892 2893 /* for dual link cases we consider TE from slave */ 2894 if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1) 2895 port = PORT_B; 2896 else 2897 port = PORT_A; 2898 2899 tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port)); 2900 if (enable) 2901 tmp &= ~DSI_TE_EVENT; 2902 else 2903 tmp |= DSI_TE_EVENT; 2904 2905 intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp); 2906 2907 tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port)); 2908 intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp); 2909 2910 return true; 2911 } 2912 2913 int bdw_enable_vblank(struct drm_crtc *_crtc) 2914 { 2915 struct intel_crtc *crtc = to_intel_crtc(_crtc); 2916 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2917 enum pipe pipe = crtc->pipe; 2918 unsigned long irqflags; 2919 2920 if (gen11_dsi_configure_te(crtc, true)) 2921 return 0; 2922 2923 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2924 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2925 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2926 2927 /* Even if there is no DMC, frame counter can get stuck when 2928 * PSR is active as no frames are generated, so check only for PSR. 2929 */ 2930 if (HAS_PSR(dev_priv)) 2931 drm_crtc_vblank_restore(&crtc->base); 2932 2933 return 0; 2934 } 2935 2936 /* Called from drm generic code, passed 'crtc' which 2937 * we use as a pipe index 2938 */ 2939 void i8xx_disable_vblank(struct drm_crtc *crtc) 2940 { 2941 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2942 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2943 unsigned long irqflags; 2944 2945 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2946 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2947 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2948 } 2949 2950 void i915gm_disable_vblank(struct drm_crtc *crtc) 2951 { 2952 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2953 2954 i8xx_disable_vblank(crtc); 2955 2956 if (--dev_priv->vblank_enabled == 0) 2957 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2958 } 2959 2960 void i965_disable_vblank(struct drm_crtc *crtc) 2961 { 2962 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2963 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2964 unsigned long irqflags; 2965 2966 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2967 i915_disable_pipestat(dev_priv, pipe, 2968 PIPE_START_VBLANK_INTERRUPT_STATUS); 2969 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2970 } 2971 2972 void ilk_disable_vblank(struct drm_crtc *crtc) 2973 { 2974 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2975 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2976 unsigned long irqflags; 2977 u32 bit = DISPLAY_VER(dev_priv) >= 7 ? 2978 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2979 2980 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2981 ilk_disable_display_irq(dev_priv, bit); 2982 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2983 } 2984 2985 void bdw_disable_vblank(struct drm_crtc *_crtc) 2986 { 2987 struct intel_crtc *crtc = to_intel_crtc(_crtc); 2988 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2989 enum pipe pipe = crtc->pipe; 2990 unsigned long irqflags; 2991 2992 if (gen11_dsi_configure_te(crtc, false)) 2993 return; 2994 2995 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2996 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2997 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2998 } 2999 3000 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 3001 { 3002 struct intel_uncore *uncore = &dev_priv->uncore; 3003 3004 if (HAS_PCH_NOP(dev_priv)) 3005 return; 3006 3007 GEN3_IRQ_RESET(uncore, SDE); 3008 3009 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3010 intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff); 3011 } 3012 3013 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 3014 { 3015 struct intel_uncore *uncore = &dev_priv->uncore; 3016 3017 if (IS_CHERRYVIEW(dev_priv)) 3018 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 3019 else 3020 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_VLV); 3021 3022 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 3023 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT)); 3024 3025 i9xx_pipestat_irq_reset(dev_priv); 3026 3027 GEN3_IRQ_RESET(uncore, VLV_); 3028 dev_priv->irq_mask = ~0u; 3029 } 3030 3031 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 3032 { 3033 struct intel_uncore *uncore = &dev_priv->uncore; 3034 3035 u32 pipestat_mask; 3036 u32 enable_mask; 3037 enum pipe pipe; 3038 3039 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 3040 3041 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3042 for_each_pipe(dev_priv, pipe) 3043 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 3044 3045 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3046 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3047 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3048 I915_LPE_PIPE_A_INTERRUPT | 3049 I915_LPE_PIPE_B_INTERRUPT; 3050 3051 if (IS_CHERRYVIEW(dev_priv)) 3052 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 3053 I915_LPE_PIPE_C_INTERRUPT; 3054 3055 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u); 3056 3057 dev_priv->irq_mask = ~enable_mask; 3058 3059 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 3060 } 3061 3062 /* drm_dma.h hooks 3063 */ 3064 static void ilk_irq_reset(struct drm_i915_private *dev_priv) 3065 { 3066 struct intel_uncore *uncore = &dev_priv->uncore; 3067 3068 GEN3_IRQ_RESET(uncore, DE); 3069 dev_priv->irq_mask = ~0u; 3070 3071 if (GRAPHICS_VER(dev_priv) == 7) 3072 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); 3073 3074 if (IS_HASWELL(dev_priv)) { 3075 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3076 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3077 } 3078 3079 gen5_gt_irq_reset(to_gt(dev_priv)); 3080 3081 ibx_irq_reset(dev_priv); 3082 } 3083 3084 static void valleyview_irq_reset(struct drm_i915_private *dev_priv) 3085 { 3086 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0); 3087 intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER); 3088 3089 gen5_gt_irq_reset(to_gt(dev_priv)); 3090 3091 spin_lock_irq(&dev_priv->irq_lock); 3092 if (dev_priv->display_irqs_enabled) 3093 vlv_display_irq_reset(dev_priv); 3094 spin_unlock_irq(&dev_priv->irq_lock); 3095 } 3096 3097 static void gen8_display_irq_reset(struct drm_i915_private *dev_priv) 3098 { 3099 struct intel_uncore *uncore = &dev_priv->uncore; 3100 enum pipe pipe; 3101 3102 if (!HAS_DISPLAY(dev_priv)) 3103 return; 3104 3105 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3106 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3107 3108 for_each_pipe(dev_priv, pipe) 3109 if (intel_display_power_is_enabled(dev_priv, 3110 POWER_DOMAIN_PIPE(pipe))) 3111 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3112 3113 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3114 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3115 } 3116 3117 static void gen8_irq_reset(struct drm_i915_private *dev_priv) 3118 { 3119 struct intel_uncore *uncore = &dev_priv->uncore; 3120 3121 gen8_master_intr_disable(dev_priv->uncore.regs); 3122 3123 gen8_gt_irq_reset(to_gt(dev_priv)); 3124 gen8_display_irq_reset(dev_priv); 3125 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3126 3127 if (HAS_PCH_SPLIT(dev_priv)) 3128 ibx_irq_reset(dev_priv); 3129 3130 } 3131 3132 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv) 3133 { 3134 struct intel_uncore *uncore = &dev_priv->uncore; 3135 enum pipe pipe; 3136 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3137 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3138 3139 if (!HAS_DISPLAY(dev_priv)) 3140 return; 3141 3142 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0); 3143 3144 if (DISPLAY_VER(dev_priv) >= 12) { 3145 enum transcoder trans; 3146 3147 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3148 enum intel_display_power_domain domain; 3149 3150 domain = POWER_DOMAIN_TRANSCODER(trans); 3151 if (!intel_display_power_is_enabled(dev_priv, domain)) 3152 continue; 3153 3154 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff); 3155 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff); 3156 } 3157 } else { 3158 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3159 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3160 } 3161 3162 for_each_pipe(dev_priv, pipe) 3163 if (intel_display_power_is_enabled(dev_priv, 3164 POWER_DOMAIN_PIPE(pipe))) 3165 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3166 3167 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3168 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3169 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 3170 3171 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3172 GEN3_IRQ_RESET(uncore, SDE); 3173 } 3174 3175 static void gen11_irq_reset(struct drm_i915_private *dev_priv) 3176 { 3177 struct intel_gt *gt = to_gt(dev_priv); 3178 struct intel_uncore *uncore = gt->uncore; 3179 3180 gen11_master_intr_disable(dev_priv->uncore.regs); 3181 3182 gen11_gt_irq_reset(gt); 3183 gen11_display_irq_reset(dev_priv); 3184 3185 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3186 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3187 } 3188 3189 static void dg1_irq_reset(struct drm_i915_private *dev_priv) 3190 { 3191 struct intel_gt *gt = to_gt(dev_priv); 3192 struct intel_uncore *uncore = gt->uncore; 3193 3194 dg1_master_intr_disable(dev_priv->uncore.regs); 3195 3196 gen11_gt_irq_reset(gt); 3197 gen11_display_irq_reset(dev_priv); 3198 3199 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3200 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3201 } 3202 3203 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3204 u8 pipe_mask) 3205 { 3206 struct intel_uncore *uncore = &dev_priv->uncore; 3207 u32 extra_ier = GEN8_PIPE_VBLANK | 3208 gen8_de_pipe_underrun_mask(dev_priv) | 3209 gen8_de_pipe_flip_done_mask(dev_priv); 3210 enum pipe pipe; 3211 3212 spin_lock_irq(&dev_priv->irq_lock); 3213 3214 if (!intel_irqs_enabled(dev_priv)) { 3215 spin_unlock_irq(&dev_priv->irq_lock); 3216 return; 3217 } 3218 3219 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3220 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3221 dev_priv->de_irq_mask[pipe], 3222 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3223 3224 spin_unlock_irq(&dev_priv->irq_lock); 3225 } 3226 3227 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3228 u8 pipe_mask) 3229 { 3230 struct intel_uncore *uncore = &dev_priv->uncore; 3231 enum pipe pipe; 3232 3233 spin_lock_irq(&dev_priv->irq_lock); 3234 3235 if (!intel_irqs_enabled(dev_priv)) { 3236 spin_unlock_irq(&dev_priv->irq_lock); 3237 return; 3238 } 3239 3240 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3241 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3242 3243 spin_unlock_irq(&dev_priv->irq_lock); 3244 3245 /* make sure we're done processing display irqs */ 3246 intel_synchronize_irq(dev_priv); 3247 } 3248 3249 static void cherryview_irq_reset(struct drm_i915_private *dev_priv) 3250 { 3251 struct intel_uncore *uncore = &dev_priv->uncore; 3252 3253 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0); 3254 intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ); 3255 3256 gen8_gt_irq_reset(to_gt(dev_priv)); 3257 3258 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3259 3260 spin_lock_irq(&dev_priv->irq_lock); 3261 if (dev_priv->display_irqs_enabled) 3262 vlv_display_irq_reset(dev_priv); 3263 spin_unlock_irq(&dev_priv->irq_lock); 3264 } 3265 3266 static u32 ibx_hotplug_enables(struct drm_i915_private *i915, 3267 enum hpd_pin pin) 3268 { 3269 switch (pin) { 3270 case HPD_PORT_A: 3271 /* 3272 * When CPU and PCH are on the same package, port A 3273 * HPD must be enabled in both north and south. 3274 */ 3275 return HAS_PCH_LPT_LP(i915) ? 3276 PORTA_HOTPLUG_ENABLE : 0; 3277 case HPD_PORT_B: 3278 return PORTB_HOTPLUG_ENABLE | 3279 PORTB_PULSE_DURATION_2ms; 3280 case HPD_PORT_C: 3281 return PORTC_HOTPLUG_ENABLE | 3282 PORTC_PULSE_DURATION_2ms; 3283 case HPD_PORT_D: 3284 return PORTD_HOTPLUG_ENABLE | 3285 PORTD_PULSE_DURATION_2ms; 3286 default: 3287 return 0; 3288 } 3289 } 3290 3291 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3292 { 3293 u32 hotplug; 3294 3295 /* 3296 * Enable digital hotplug on the PCH, and configure the DP short pulse 3297 * duration to 2ms (which is the minimum in the Display Port spec). 3298 * The pulse duration bits are reserved on LPT+. 3299 */ 3300 hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 3301 hotplug &= ~(PORTA_HOTPLUG_ENABLE | 3302 PORTB_HOTPLUG_ENABLE | 3303 PORTC_HOTPLUG_ENABLE | 3304 PORTD_HOTPLUG_ENABLE | 3305 PORTB_PULSE_DURATION_MASK | 3306 PORTC_PULSE_DURATION_MASK | 3307 PORTD_PULSE_DURATION_MASK); 3308 hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables); 3309 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug); 3310 } 3311 3312 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3313 { 3314 u32 hotplug_irqs, enabled_irqs; 3315 3316 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3317 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3318 3319 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3320 3321 ibx_hpd_detection_setup(dev_priv); 3322 } 3323 3324 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915, 3325 enum hpd_pin pin) 3326 { 3327 switch (pin) { 3328 case HPD_PORT_A: 3329 case HPD_PORT_B: 3330 case HPD_PORT_C: 3331 case HPD_PORT_D: 3332 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin); 3333 default: 3334 return 0; 3335 } 3336 } 3337 3338 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915, 3339 enum hpd_pin pin) 3340 { 3341 switch (pin) { 3342 case HPD_PORT_TC1: 3343 case HPD_PORT_TC2: 3344 case HPD_PORT_TC3: 3345 case HPD_PORT_TC4: 3346 case HPD_PORT_TC5: 3347 case HPD_PORT_TC6: 3348 return ICP_TC_HPD_ENABLE(pin); 3349 default: 3350 return 0; 3351 } 3352 } 3353 3354 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv) 3355 { 3356 u32 hotplug; 3357 3358 hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI); 3359 hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) | 3360 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) | 3361 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) | 3362 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D)); 3363 hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables); 3364 intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug); 3365 } 3366 3367 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv) 3368 { 3369 u32 hotplug; 3370 3371 hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC); 3372 hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) | 3373 ICP_TC_HPD_ENABLE(HPD_PORT_TC2) | 3374 ICP_TC_HPD_ENABLE(HPD_PORT_TC3) | 3375 ICP_TC_HPD_ENABLE(HPD_PORT_TC4) | 3376 ICP_TC_HPD_ENABLE(HPD_PORT_TC5) | 3377 ICP_TC_HPD_ENABLE(HPD_PORT_TC6)); 3378 hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables); 3379 intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug); 3380 } 3381 3382 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3383 { 3384 u32 hotplug_irqs, enabled_irqs; 3385 3386 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3387 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3388 3389 if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP) 3390 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3391 3392 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3393 3394 icp_ddi_hpd_detection_setup(dev_priv); 3395 icp_tc_hpd_detection_setup(dev_priv); 3396 } 3397 3398 static u32 gen11_hotplug_enables(struct drm_i915_private *i915, 3399 enum hpd_pin pin) 3400 { 3401 switch (pin) { 3402 case HPD_PORT_TC1: 3403 case HPD_PORT_TC2: 3404 case HPD_PORT_TC3: 3405 case HPD_PORT_TC4: 3406 case HPD_PORT_TC5: 3407 case HPD_PORT_TC6: 3408 return GEN11_HOTPLUG_CTL_ENABLE(pin); 3409 default: 3410 return 0; 3411 } 3412 } 3413 3414 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv) 3415 { 3416 u32 val; 3417 3418 val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1); 3419 val |= (INVERT_DDIA_HPD | 3420 INVERT_DDIB_HPD | 3421 INVERT_DDIC_HPD | 3422 INVERT_DDID_HPD); 3423 intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val); 3424 3425 icp_hpd_irq_setup(dev_priv); 3426 } 3427 3428 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv) 3429 { 3430 u32 hotplug; 3431 3432 hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL); 3433 hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) | 3434 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) | 3435 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) | 3436 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) | 3437 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) | 3438 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6)); 3439 hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables); 3440 intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug); 3441 } 3442 3443 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3444 { 3445 u32 hotplug; 3446 3447 hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL); 3448 hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) | 3449 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) | 3450 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) | 3451 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) | 3452 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) | 3453 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6)); 3454 hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables); 3455 intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug); 3456 } 3457 3458 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3459 { 3460 u32 hotplug_irqs, enabled_irqs; 3461 u32 val; 3462 3463 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3464 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3465 3466 val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR); 3467 val &= ~hotplug_irqs; 3468 val |= ~enabled_irqs & hotplug_irqs; 3469 intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val); 3470 intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR); 3471 3472 gen11_tc_hpd_detection_setup(dev_priv); 3473 gen11_tbt_hpd_detection_setup(dev_priv); 3474 3475 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3476 icp_hpd_irq_setup(dev_priv); 3477 } 3478 3479 static u32 spt_hotplug_enables(struct drm_i915_private *i915, 3480 enum hpd_pin pin) 3481 { 3482 switch (pin) { 3483 case HPD_PORT_A: 3484 return PORTA_HOTPLUG_ENABLE; 3485 case HPD_PORT_B: 3486 return PORTB_HOTPLUG_ENABLE; 3487 case HPD_PORT_C: 3488 return PORTC_HOTPLUG_ENABLE; 3489 case HPD_PORT_D: 3490 return PORTD_HOTPLUG_ENABLE; 3491 default: 3492 return 0; 3493 } 3494 } 3495 3496 static u32 spt_hotplug2_enables(struct drm_i915_private *i915, 3497 enum hpd_pin pin) 3498 { 3499 switch (pin) { 3500 case HPD_PORT_E: 3501 return PORTE_HOTPLUG_ENABLE; 3502 default: 3503 return 0; 3504 } 3505 } 3506 3507 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3508 { 3509 u32 val, hotplug; 3510 3511 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3512 if (HAS_PCH_CNP(dev_priv)) { 3513 val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1); 3514 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3515 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3516 intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val); 3517 } 3518 3519 /* Enable digital hotplug on the PCH */ 3520 hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 3521 hotplug &= ~(PORTA_HOTPLUG_ENABLE | 3522 PORTB_HOTPLUG_ENABLE | 3523 PORTC_HOTPLUG_ENABLE | 3524 PORTD_HOTPLUG_ENABLE); 3525 hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables); 3526 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug); 3527 3528 hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2); 3529 hotplug &= ~PORTE_HOTPLUG_ENABLE; 3530 hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables); 3531 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug); 3532 } 3533 3534 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3535 { 3536 u32 hotplug_irqs, enabled_irqs; 3537 3538 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3539 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3540 3541 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3542 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3543 3544 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3545 3546 spt_hpd_detection_setup(dev_priv); 3547 } 3548 3549 static u32 ilk_hotplug_enables(struct drm_i915_private *i915, 3550 enum hpd_pin pin) 3551 { 3552 switch (pin) { 3553 case HPD_PORT_A: 3554 return DIGITAL_PORTA_HOTPLUG_ENABLE | 3555 DIGITAL_PORTA_PULSE_DURATION_2ms; 3556 default: 3557 return 0; 3558 } 3559 } 3560 3561 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3562 { 3563 u32 hotplug; 3564 3565 /* 3566 * Enable digital hotplug on the CPU, and configure the DP short pulse 3567 * duration to 2ms (which is the minimum in the Display Port spec) 3568 * The pulse duration bits are reserved on HSW+. 3569 */ 3570 hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL); 3571 hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE | 3572 DIGITAL_PORTA_PULSE_DURATION_MASK); 3573 hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables); 3574 intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3575 } 3576 3577 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3578 { 3579 u32 hotplug_irqs, enabled_irqs; 3580 3581 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3582 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3583 3584 if (DISPLAY_VER(dev_priv) >= 8) 3585 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3586 else 3587 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3588 3589 ilk_hpd_detection_setup(dev_priv); 3590 3591 ibx_hpd_irq_setup(dev_priv); 3592 } 3593 3594 static u32 bxt_hotplug_enables(struct drm_i915_private *i915, 3595 enum hpd_pin pin) 3596 { 3597 u32 hotplug; 3598 3599 switch (pin) { 3600 case HPD_PORT_A: 3601 hotplug = PORTA_HOTPLUG_ENABLE; 3602 if (intel_bios_is_port_hpd_inverted(i915, PORT_A)) 3603 hotplug |= BXT_DDIA_HPD_INVERT; 3604 return hotplug; 3605 case HPD_PORT_B: 3606 hotplug = PORTB_HOTPLUG_ENABLE; 3607 if (intel_bios_is_port_hpd_inverted(i915, PORT_B)) 3608 hotplug |= BXT_DDIB_HPD_INVERT; 3609 return hotplug; 3610 case HPD_PORT_C: 3611 hotplug = PORTC_HOTPLUG_ENABLE; 3612 if (intel_bios_is_port_hpd_inverted(i915, PORT_C)) 3613 hotplug |= BXT_DDIC_HPD_INVERT; 3614 return hotplug; 3615 default: 3616 return 0; 3617 } 3618 } 3619 3620 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3621 { 3622 u32 hotplug; 3623 3624 hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 3625 hotplug &= ~(PORTA_HOTPLUG_ENABLE | 3626 PORTB_HOTPLUG_ENABLE | 3627 PORTC_HOTPLUG_ENABLE | 3628 BXT_DDIA_HPD_INVERT | 3629 BXT_DDIB_HPD_INVERT | 3630 BXT_DDIC_HPD_INVERT); 3631 hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables); 3632 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug); 3633 } 3634 3635 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3636 { 3637 u32 hotplug_irqs, enabled_irqs; 3638 3639 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3640 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3641 3642 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3643 3644 bxt_hpd_detection_setup(dev_priv); 3645 } 3646 3647 /* 3648 * SDEIER is also touched by the interrupt handler to work around missed PCH 3649 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3650 * instead we unconditionally enable all PCH interrupt sources here, but then 3651 * only unmask them as needed with SDEIMR. 3652 * 3653 * Note that we currently do this after installing the interrupt handler, 3654 * but before we enable the master interrupt. That should be sufficient 3655 * to avoid races with the irq handler, assuming we have MSI. Shared legacy 3656 * interrupts could still race. 3657 */ 3658 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv) 3659 { 3660 struct intel_uncore *uncore = &dev_priv->uncore; 3661 u32 mask; 3662 3663 if (HAS_PCH_NOP(dev_priv)) 3664 return; 3665 3666 if (HAS_PCH_IBX(dev_priv)) 3667 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3668 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3669 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3670 else 3671 mask = SDE_GMBUS_CPT; 3672 3673 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff); 3674 } 3675 3676 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv) 3677 { 3678 struct intel_uncore *uncore = &dev_priv->uncore; 3679 u32 display_mask, extra_mask; 3680 3681 if (GRAPHICS_VER(dev_priv) >= 7) { 3682 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3683 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3684 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3685 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3686 DE_PLANE_FLIP_DONE_IVB(PLANE_C) | 3687 DE_PLANE_FLIP_DONE_IVB(PLANE_B) | 3688 DE_PLANE_FLIP_DONE_IVB(PLANE_A) | 3689 DE_DP_A_HOTPLUG_IVB); 3690 } else { 3691 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3692 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3693 DE_PIPEA_CRC_DONE | DE_POISON); 3694 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | 3695 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3696 DE_PLANE_FLIP_DONE(PLANE_A) | 3697 DE_PLANE_FLIP_DONE(PLANE_B) | 3698 DE_DP_A_HOTPLUG); 3699 } 3700 3701 if (IS_HASWELL(dev_priv)) { 3702 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3703 display_mask |= DE_EDP_PSR_INT_HSW; 3704 } 3705 3706 if (IS_IRONLAKE_M(dev_priv)) 3707 extra_mask |= DE_PCU_EVENT; 3708 3709 dev_priv->irq_mask = ~display_mask; 3710 3711 ibx_irq_postinstall(dev_priv); 3712 3713 gen5_gt_irq_postinstall(to_gt(dev_priv)); 3714 3715 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 3716 display_mask | extra_mask); 3717 } 3718 3719 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3720 { 3721 lockdep_assert_held(&dev_priv->irq_lock); 3722 3723 if (dev_priv->display_irqs_enabled) 3724 return; 3725 3726 dev_priv->display_irqs_enabled = true; 3727 3728 if (intel_irqs_enabled(dev_priv)) { 3729 vlv_display_irq_reset(dev_priv); 3730 vlv_display_irq_postinstall(dev_priv); 3731 } 3732 } 3733 3734 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3735 { 3736 lockdep_assert_held(&dev_priv->irq_lock); 3737 3738 if (!dev_priv->display_irqs_enabled) 3739 return; 3740 3741 dev_priv->display_irqs_enabled = false; 3742 3743 if (intel_irqs_enabled(dev_priv)) 3744 vlv_display_irq_reset(dev_priv); 3745 } 3746 3747 3748 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) 3749 { 3750 gen5_gt_irq_postinstall(to_gt(dev_priv)); 3751 3752 spin_lock_irq(&dev_priv->irq_lock); 3753 if (dev_priv->display_irqs_enabled) 3754 vlv_display_irq_postinstall(dev_priv); 3755 spin_unlock_irq(&dev_priv->irq_lock); 3756 3757 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3758 intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER); 3759 } 3760 3761 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3762 { 3763 struct intel_uncore *uncore = &dev_priv->uncore; 3764 3765 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) | 3766 GEN8_PIPE_CDCLK_CRC_DONE; 3767 u32 de_pipe_enables; 3768 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv); 3769 u32 de_port_enables; 3770 u32 de_misc_masked = GEN8_DE_EDP_PSR; 3771 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3772 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3773 enum pipe pipe; 3774 3775 if (!HAS_DISPLAY(dev_priv)) 3776 return; 3777 3778 if (DISPLAY_VER(dev_priv) <= 10) 3779 de_misc_masked |= GEN8_DE_MISC_GSE; 3780 3781 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 3782 de_port_masked |= BXT_DE_PORT_GMBUS; 3783 3784 if (DISPLAY_VER(dev_priv) >= 11) { 3785 enum port port; 3786 3787 if (intel_bios_is_dsi_present(dev_priv, &port)) 3788 de_port_masked |= DSI0_TE | DSI1_TE; 3789 } 3790 3791 de_pipe_enables = de_pipe_masked | 3792 GEN8_PIPE_VBLANK | 3793 gen8_de_pipe_underrun_mask(dev_priv) | 3794 gen8_de_pipe_flip_done_mask(dev_priv); 3795 3796 de_port_enables = de_port_masked; 3797 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 3798 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3799 else if (IS_BROADWELL(dev_priv)) 3800 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK; 3801 3802 if (DISPLAY_VER(dev_priv) >= 12) { 3803 enum transcoder trans; 3804 3805 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3806 enum intel_display_power_domain domain; 3807 3808 domain = POWER_DOMAIN_TRANSCODER(trans); 3809 if (!intel_display_power_is_enabled(dev_priv, domain)) 3810 continue; 3811 3812 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans)); 3813 } 3814 } else { 3815 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3816 } 3817 3818 for_each_pipe(dev_priv, pipe) { 3819 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3820 3821 if (intel_display_power_is_enabled(dev_priv, 3822 POWER_DOMAIN_PIPE(pipe))) 3823 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3824 dev_priv->de_irq_mask[pipe], 3825 de_pipe_enables); 3826 } 3827 3828 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3829 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3830 3831 if (DISPLAY_VER(dev_priv) >= 11) { 3832 u32 de_hpd_masked = 0; 3833 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 3834 GEN11_DE_TBT_HOTPLUG_MASK; 3835 3836 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 3837 de_hpd_enables); 3838 } 3839 } 3840 3841 static void icp_irq_postinstall(struct drm_i915_private *dev_priv) 3842 { 3843 struct intel_uncore *uncore = &dev_priv->uncore; 3844 u32 mask = SDE_GMBUS_ICP; 3845 3846 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff); 3847 } 3848 3849 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) 3850 { 3851 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3852 icp_irq_postinstall(dev_priv); 3853 else if (HAS_PCH_SPLIT(dev_priv)) 3854 ibx_irq_postinstall(dev_priv); 3855 3856 gen8_gt_irq_postinstall(to_gt(dev_priv)); 3857 gen8_de_irq_postinstall(dev_priv); 3858 3859 gen8_master_intr_enable(dev_priv->uncore.regs); 3860 } 3861 3862 static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv) 3863 { 3864 if (!HAS_DISPLAY(dev_priv)) 3865 return; 3866 3867 gen8_de_irq_postinstall(dev_priv); 3868 3869 intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, 3870 GEN11_DISPLAY_IRQ_ENABLE); 3871 } 3872 3873 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) 3874 { 3875 struct intel_gt *gt = to_gt(dev_priv); 3876 struct intel_uncore *uncore = gt->uncore; 3877 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3878 3879 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3880 icp_irq_postinstall(dev_priv); 3881 3882 gen11_gt_irq_postinstall(gt); 3883 gen11_de_irq_postinstall(dev_priv); 3884 3885 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3886 3887 gen11_master_intr_enable(uncore->regs); 3888 intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ); 3889 } 3890 3891 static void dg1_irq_postinstall(struct drm_i915_private *dev_priv) 3892 { 3893 struct intel_gt *gt = to_gt(dev_priv); 3894 struct intel_uncore *uncore = gt->uncore; 3895 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3896 3897 gen11_gt_irq_postinstall(gt); 3898 3899 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3900 3901 if (HAS_DISPLAY(dev_priv)) { 3902 icp_irq_postinstall(dev_priv); 3903 gen8_de_irq_postinstall(dev_priv); 3904 intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, 3905 GEN11_DISPLAY_IRQ_ENABLE); 3906 } 3907 3908 dg1_master_intr_enable(uncore->regs); 3909 intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR); 3910 } 3911 3912 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) 3913 { 3914 gen8_gt_irq_postinstall(to_gt(dev_priv)); 3915 3916 spin_lock_irq(&dev_priv->irq_lock); 3917 if (dev_priv->display_irqs_enabled) 3918 vlv_display_irq_postinstall(dev_priv); 3919 spin_unlock_irq(&dev_priv->irq_lock); 3920 3921 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3922 intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ); 3923 } 3924 3925 static void i8xx_irq_reset(struct drm_i915_private *dev_priv) 3926 { 3927 struct intel_uncore *uncore = &dev_priv->uncore; 3928 3929 i9xx_pipestat_irq_reset(dev_priv); 3930 3931 GEN2_IRQ_RESET(uncore); 3932 dev_priv->irq_mask = ~0u; 3933 } 3934 3935 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) 3936 { 3937 struct intel_uncore *uncore = &dev_priv->uncore; 3938 u16 enable_mask; 3939 3940 intel_uncore_write16(uncore, 3941 EMR, 3942 ~(I915_ERROR_PAGE_TABLE | 3943 I915_ERROR_MEMORY_REFRESH)); 3944 3945 /* Unmask the interrupts that we always want on. */ 3946 dev_priv->irq_mask = 3947 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3948 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3949 I915_MASTER_ERROR_INTERRUPT); 3950 3951 enable_mask = 3952 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3953 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3954 I915_MASTER_ERROR_INTERRUPT | 3955 I915_USER_INTERRUPT; 3956 3957 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); 3958 3959 /* Interrupt setup is already guaranteed to be single-threaded, this is 3960 * just to make the assert_spin_locked check happy. */ 3961 spin_lock_irq(&dev_priv->irq_lock); 3962 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3963 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3964 spin_unlock_irq(&dev_priv->irq_lock); 3965 } 3966 3967 static void i8xx_error_irq_ack(struct drm_i915_private *i915, 3968 u16 *eir, u16 *eir_stuck) 3969 { 3970 struct intel_uncore *uncore = &i915->uncore; 3971 u16 emr; 3972 3973 *eir = intel_uncore_read16(uncore, EIR); 3974 3975 if (*eir) 3976 intel_uncore_write16(uncore, EIR, *eir); 3977 3978 *eir_stuck = intel_uncore_read16(uncore, EIR); 3979 if (*eir_stuck == 0) 3980 return; 3981 3982 /* 3983 * Toggle all EMR bits to make sure we get an edge 3984 * in the ISR master error bit if we don't clear 3985 * all the EIR bits. Otherwise the edge triggered 3986 * IIR on i965/g4x wouldn't notice that an interrupt 3987 * is still pending. Also some EIR bits can't be 3988 * cleared except by handling the underlying error 3989 * (or by a GPU reset) so we mask any bit that 3990 * remains set. 3991 */ 3992 emr = intel_uncore_read16(uncore, EMR); 3993 intel_uncore_write16(uncore, EMR, 0xffff); 3994 intel_uncore_write16(uncore, EMR, emr | *eir_stuck); 3995 } 3996 3997 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 3998 u16 eir, u16 eir_stuck) 3999 { 4000 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 4001 4002 if (eir_stuck) 4003 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n", 4004 eir_stuck); 4005 } 4006 4007 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 4008 u32 *eir, u32 *eir_stuck) 4009 { 4010 u32 emr; 4011 4012 *eir = intel_uncore_read(&dev_priv->uncore, EIR); 4013 4014 intel_uncore_write(&dev_priv->uncore, EIR, *eir); 4015 4016 *eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR); 4017 if (*eir_stuck == 0) 4018 return; 4019 4020 /* 4021 * Toggle all EMR bits to make sure we get an edge 4022 * in the ISR master error bit if we don't clear 4023 * all the EIR bits. Otherwise the edge triggered 4024 * IIR on i965/g4x wouldn't notice that an interrupt 4025 * is still pending. Also some EIR bits can't be 4026 * cleared except by handling the underlying error 4027 * (or by a GPU reset) so we mask any bit that 4028 * remains set. 4029 */ 4030 emr = intel_uncore_read(&dev_priv->uncore, EMR); 4031 intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff); 4032 intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck); 4033 } 4034 4035 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 4036 u32 eir, u32 eir_stuck) 4037 { 4038 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 4039 4040 if (eir_stuck) 4041 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n", 4042 eir_stuck); 4043 } 4044 4045 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 4046 { 4047 struct drm_i915_private *dev_priv = arg; 4048 irqreturn_t ret = IRQ_NONE; 4049 4050 if (!intel_irqs_enabled(dev_priv)) 4051 return IRQ_NONE; 4052 4053 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4054 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4055 4056 do { 4057 u32 pipe_stats[I915_MAX_PIPES] = {}; 4058 u16 eir = 0, eir_stuck = 0; 4059 u16 iir; 4060 4061 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); 4062 if (iir == 0) 4063 break; 4064 4065 ret = IRQ_HANDLED; 4066 4067 /* Call regardless, as some status bits might not be 4068 * signalled in iir */ 4069 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4070 4071 if (iir & I915_MASTER_ERROR_INTERRUPT) 4072 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4073 4074 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); 4075 4076 if (iir & I915_USER_INTERRUPT) 4077 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); 4078 4079 if (iir & I915_MASTER_ERROR_INTERRUPT) 4080 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 4081 4082 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4083 } while (0); 4084 4085 pmu_irq_stats(dev_priv, ret); 4086 4087 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4088 4089 return ret; 4090 } 4091 4092 static void i915_irq_reset(struct drm_i915_private *dev_priv) 4093 { 4094 struct intel_uncore *uncore = &dev_priv->uncore; 4095 4096 if (I915_HAS_HOTPLUG(dev_priv)) { 4097 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4098 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT)); 4099 } 4100 4101 i9xx_pipestat_irq_reset(dev_priv); 4102 4103 GEN3_IRQ_RESET(uncore, GEN2_); 4104 dev_priv->irq_mask = ~0u; 4105 } 4106 4107 static void i915_irq_postinstall(struct drm_i915_private *dev_priv) 4108 { 4109 struct intel_uncore *uncore = &dev_priv->uncore; 4110 u32 enable_mask; 4111 4112 intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE | 4113 I915_ERROR_MEMORY_REFRESH)); 4114 4115 /* Unmask the interrupts that we always want on. */ 4116 dev_priv->irq_mask = 4117 ~(I915_ASLE_INTERRUPT | 4118 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4119 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4120 I915_MASTER_ERROR_INTERRUPT); 4121 4122 enable_mask = 4123 I915_ASLE_INTERRUPT | 4124 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4125 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4126 I915_MASTER_ERROR_INTERRUPT | 4127 I915_USER_INTERRUPT; 4128 4129 if (I915_HAS_HOTPLUG(dev_priv)) { 4130 /* Enable in IER... */ 4131 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4132 /* and unmask in IMR */ 4133 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4134 } 4135 4136 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4137 4138 /* Interrupt setup is already guaranteed to be single-threaded, this is 4139 * just to make the assert_spin_locked check happy. */ 4140 spin_lock_irq(&dev_priv->irq_lock); 4141 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4142 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4143 spin_unlock_irq(&dev_priv->irq_lock); 4144 4145 i915_enable_asle_pipestat(dev_priv); 4146 } 4147 4148 static irqreturn_t i915_irq_handler(int irq, void *arg) 4149 { 4150 struct drm_i915_private *dev_priv = arg; 4151 irqreturn_t ret = IRQ_NONE; 4152 4153 if (!intel_irqs_enabled(dev_priv)) 4154 return IRQ_NONE; 4155 4156 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4157 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4158 4159 do { 4160 u32 pipe_stats[I915_MAX_PIPES] = {}; 4161 u32 eir = 0, eir_stuck = 0; 4162 u32 hotplug_status = 0; 4163 u32 iir; 4164 4165 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR); 4166 if (iir == 0) 4167 break; 4168 4169 ret = IRQ_HANDLED; 4170 4171 if (I915_HAS_HOTPLUG(dev_priv) && 4172 iir & I915_DISPLAY_PORT_INTERRUPT) 4173 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4174 4175 /* Call regardless, as some status bits might not be 4176 * signalled in iir */ 4177 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4178 4179 if (iir & I915_MASTER_ERROR_INTERRUPT) 4180 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4181 4182 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir); 4183 4184 if (iir & I915_USER_INTERRUPT) 4185 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); 4186 4187 if (iir & I915_MASTER_ERROR_INTERRUPT) 4188 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4189 4190 if (hotplug_status) 4191 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4192 4193 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4194 } while (0); 4195 4196 pmu_irq_stats(dev_priv, ret); 4197 4198 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4199 4200 return ret; 4201 } 4202 4203 static void i965_irq_reset(struct drm_i915_private *dev_priv) 4204 { 4205 struct intel_uncore *uncore = &dev_priv->uncore; 4206 4207 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4208 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT)); 4209 4210 i9xx_pipestat_irq_reset(dev_priv); 4211 4212 GEN3_IRQ_RESET(uncore, GEN2_); 4213 dev_priv->irq_mask = ~0u; 4214 } 4215 4216 static void i965_irq_postinstall(struct drm_i915_private *dev_priv) 4217 { 4218 struct intel_uncore *uncore = &dev_priv->uncore; 4219 u32 enable_mask; 4220 u32 error_mask; 4221 4222 /* 4223 * Enable some error detection, note the instruction error mask 4224 * bit is reserved, so we leave it masked. 4225 */ 4226 if (IS_G4X(dev_priv)) { 4227 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4228 GM45_ERROR_MEM_PRIV | 4229 GM45_ERROR_CP_PRIV | 4230 I915_ERROR_MEMORY_REFRESH); 4231 } else { 4232 error_mask = ~(I915_ERROR_PAGE_TABLE | 4233 I915_ERROR_MEMORY_REFRESH); 4234 } 4235 intel_uncore_write(&dev_priv->uncore, EMR, error_mask); 4236 4237 /* Unmask the interrupts that we always want on. */ 4238 dev_priv->irq_mask = 4239 ~(I915_ASLE_INTERRUPT | 4240 I915_DISPLAY_PORT_INTERRUPT | 4241 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4242 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4243 I915_MASTER_ERROR_INTERRUPT); 4244 4245 enable_mask = 4246 I915_ASLE_INTERRUPT | 4247 I915_DISPLAY_PORT_INTERRUPT | 4248 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4249 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4250 I915_MASTER_ERROR_INTERRUPT | 4251 I915_USER_INTERRUPT; 4252 4253 if (IS_G4X(dev_priv)) 4254 enable_mask |= I915_BSD_USER_INTERRUPT; 4255 4256 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4257 4258 /* Interrupt setup is already guaranteed to be single-threaded, this is 4259 * just to make the assert_spin_locked check happy. */ 4260 spin_lock_irq(&dev_priv->irq_lock); 4261 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4262 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4263 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4264 spin_unlock_irq(&dev_priv->irq_lock); 4265 4266 i915_enable_asle_pipestat(dev_priv); 4267 } 4268 4269 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4270 { 4271 u32 hotplug_en; 4272 4273 lockdep_assert_held(&dev_priv->irq_lock); 4274 4275 /* Note HDMI and DP share hotplug bits */ 4276 /* enable bits are the same for all generations */ 4277 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4278 /* Programming the CRT detection parameters tends 4279 to generate a spurious hotplug event about three 4280 seconds later. So just do it once. 4281 */ 4282 if (IS_G4X(dev_priv)) 4283 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4284 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4285 4286 /* Ignore TV since it's buggy */ 4287 i915_hotplug_interrupt_update_locked(dev_priv, 4288 HOTPLUG_INT_EN_MASK | 4289 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4290 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4291 hotplug_en); 4292 } 4293 4294 static irqreturn_t i965_irq_handler(int irq, void *arg) 4295 { 4296 struct drm_i915_private *dev_priv = arg; 4297 irqreturn_t ret = IRQ_NONE; 4298 4299 if (!intel_irqs_enabled(dev_priv)) 4300 return IRQ_NONE; 4301 4302 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4303 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4304 4305 do { 4306 u32 pipe_stats[I915_MAX_PIPES] = {}; 4307 u32 eir = 0, eir_stuck = 0; 4308 u32 hotplug_status = 0; 4309 u32 iir; 4310 4311 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR); 4312 if (iir == 0) 4313 break; 4314 4315 ret = IRQ_HANDLED; 4316 4317 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4318 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4319 4320 /* Call regardless, as some status bits might not be 4321 * signalled in iir */ 4322 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4323 4324 if (iir & I915_MASTER_ERROR_INTERRUPT) 4325 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4326 4327 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir); 4328 4329 if (iir & I915_USER_INTERRUPT) 4330 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], 4331 iir); 4332 4333 if (iir & I915_BSD_USER_INTERRUPT) 4334 intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0], 4335 iir >> 25); 4336 4337 if (iir & I915_MASTER_ERROR_INTERRUPT) 4338 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4339 4340 if (hotplug_status) 4341 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4342 4343 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4344 } while (0); 4345 4346 pmu_irq_stats(dev_priv, IRQ_HANDLED); 4347 4348 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4349 4350 return ret; 4351 } 4352 4353 struct intel_hotplug_funcs { 4354 void (*hpd_irq_setup)(struct drm_i915_private *i915); 4355 }; 4356 4357 #define HPD_FUNCS(platform) \ 4358 static const struct intel_hotplug_funcs platform##_hpd_funcs = { \ 4359 .hpd_irq_setup = platform##_hpd_irq_setup, \ 4360 } 4361 4362 HPD_FUNCS(i915); 4363 HPD_FUNCS(dg1); 4364 HPD_FUNCS(gen11); 4365 HPD_FUNCS(bxt); 4366 HPD_FUNCS(icp); 4367 HPD_FUNCS(spt); 4368 HPD_FUNCS(ilk); 4369 #undef HPD_FUNCS 4370 4371 void intel_hpd_irq_setup(struct drm_i915_private *i915) 4372 { 4373 if (i915->display_irqs_enabled && i915->hotplug_funcs) 4374 i915->hotplug_funcs->hpd_irq_setup(i915); 4375 } 4376 4377 /** 4378 * intel_irq_init - initializes irq support 4379 * @dev_priv: i915 device instance 4380 * 4381 * This function initializes all the irq support including work items, timers 4382 * and all the vtables. It does not setup the interrupt itself though. 4383 */ 4384 void intel_irq_init(struct drm_i915_private *dev_priv) 4385 { 4386 struct drm_device *dev = &dev_priv->drm; 4387 int i; 4388 4389 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work); 4390 for (i = 0; i < MAX_L3_SLICES; ++i) 4391 dev_priv->l3_parity.remap_info[i] = NULL; 4392 4393 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ 4394 if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11) 4395 to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16; 4396 4397 if (!HAS_DISPLAY(dev_priv)) 4398 return; 4399 4400 intel_hpd_init_pins(dev_priv); 4401 4402 intel_hpd_init_work(dev_priv); 4403 4404 dev->vblank_disable_immediate = true; 4405 4406 /* Most platforms treat the display irq block as an always-on 4407 * power domain. vlv/chv can disable it at runtime and need 4408 * special care to avoid writing any of the display block registers 4409 * outside of the power domain. We defer setting up the display irqs 4410 * in this case to the runtime pm. 4411 */ 4412 dev_priv->display_irqs_enabled = true; 4413 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4414 dev_priv->display_irqs_enabled = false; 4415 4416 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 4417 /* If we have MST support, we want to avoid doing short HPD IRQ storm 4418 * detection, as short HPD storms will occur as a natural part of 4419 * sideband messaging with MST. 4420 * On older platforms however, IRQ storms can occur with both long and 4421 * short pulses, as seen on some G4x systems. 4422 */ 4423 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); 4424 4425 if (HAS_GMCH(dev_priv)) { 4426 if (I915_HAS_HOTPLUG(dev_priv)) 4427 dev_priv->hotplug_funcs = &i915_hpd_funcs; 4428 } else { 4429 if (HAS_PCH_DG2(dev_priv)) 4430 dev_priv->hotplug_funcs = &icp_hpd_funcs; 4431 else if (HAS_PCH_DG1(dev_priv)) 4432 dev_priv->hotplug_funcs = &dg1_hpd_funcs; 4433 else if (DISPLAY_VER(dev_priv) >= 11) 4434 dev_priv->hotplug_funcs = &gen11_hpd_funcs; 4435 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 4436 dev_priv->hotplug_funcs = &bxt_hpd_funcs; 4437 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 4438 dev_priv->hotplug_funcs = &icp_hpd_funcs; 4439 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 4440 dev_priv->hotplug_funcs = &spt_hpd_funcs; 4441 else 4442 dev_priv->hotplug_funcs = &ilk_hpd_funcs; 4443 } 4444 } 4445 4446 /** 4447 * intel_irq_fini - deinitializes IRQ support 4448 * @i915: i915 device instance 4449 * 4450 * This function deinitializes all the IRQ support. 4451 */ 4452 void intel_irq_fini(struct drm_i915_private *i915) 4453 { 4454 int i; 4455 4456 for (i = 0; i < MAX_L3_SLICES; ++i) 4457 kfree(i915->l3_parity.remap_info[i]); 4458 } 4459 4460 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) 4461 { 4462 if (HAS_GMCH(dev_priv)) { 4463 if (IS_CHERRYVIEW(dev_priv)) 4464 return cherryview_irq_handler; 4465 else if (IS_VALLEYVIEW(dev_priv)) 4466 return valleyview_irq_handler; 4467 else if (GRAPHICS_VER(dev_priv) == 4) 4468 return i965_irq_handler; 4469 else if (GRAPHICS_VER(dev_priv) == 3) 4470 return i915_irq_handler; 4471 else 4472 return i8xx_irq_handler; 4473 } else { 4474 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) 4475 return dg1_irq_handler; 4476 else if (GRAPHICS_VER(dev_priv) >= 11) 4477 return gen11_irq_handler; 4478 else if (GRAPHICS_VER(dev_priv) >= 8) 4479 return gen8_irq_handler; 4480 else 4481 return ilk_irq_handler; 4482 } 4483 } 4484 4485 static void intel_irq_reset(struct drm_i915_private *dev_priv) 4486 { 4487 if (HAS_GMCH(dev_priv)) { 4488 if (IS_CHERRYVIEW(dev_priv)) 4489 cherryview_irq_reset(dev_priv); 4490 else if (IS_VALLEYVIEW(dev_priv)) 4491 valleyview_irq_reset(dev_priv); 4492 else if (GRAPHICS_VER(dev_priv) == 4) 4493 i965_irq_reset(dev_priv); 4494 else if (GRAPHICS_VER(dev_priv) == 3) 4495 i915_irq_reset(dev_priv); 4496 else 4497 i8xx_irq_reset(dev_priv); 4498 } else { 4499 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) 4500 dg1_irq_reset(dev_priv); 4501 else if (GRAPHICS_VER(dev_priv) >= 11) 4502 gen11_irq_reset(dev_priv); 4503 else if (GRAPHICS_VER(dev_priv) >= 8) 4504 gen8_irq_reset(dev_priv); 4505 else 4506 ilk_irq_reset(dev_priv); 4507 } 4508 } 4509 4510 static void intel_irq_postinstall(struct drm_i915_private *dev_priv) 4511 { 4512 if (HAS_GMCH(dev_priv)) { 4513 if (IS_CHERRYVIEW(dev_priv)) 4514 cherryview_irq_postinstall(dev_priv); 4515 else if (IS_VALLEYVIEW(dev_priv)) 4516 valleyview_irq_postinstall(dev_priv); 4517 else if (GRAPHICS_VER(dev_priv) == 4) 4518 i965_irq_postinstall(dev_priv); 4519 else if (GRAPHICS_VER(dev_priv) == 3) 4520 i915_irq_postinstall(dev_priv); 4521 else 4522 i8xx_irq_postinstall(dev_priv); 4523 } else { 4524 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) 4525 dg1_irq_postinstall(dev_priv); 4526 else if (GRAPHICS_VER(dev_priv) >= 11) 4527 gen11_irq_postinstall(dev_priv); 4528 else if (GRAPHICS_VER(dev_priv) >= 8) 4529 gen8_irq_postinstall(dev_priv); 4530 else 4531 ilk_irq_postinstall(dev_priv); 4532 } 4533 } 4534 4535 /** 4536 * intel_irq_install - enables the hardware interrupt 4537 * @dev_priv: i915 device instance 4538 * 4539 * This function enables the hardware interrupt handling, but leaves the hotplug 4540 * handling still disabled. It is called after intel_irq_init(). 4541 * 4542 * In the driver load and resume code we need working interrupts in a few places 4543 * but don't want to deal with the hassle of concurrent probe and hotplug 4544 * workers. Hence the split into this two-stage approach. 4545 */ 4546 int intel_irq_install(struct drm_i915_private *dev_priv) 4547 { 4548 int irq = to_pci_dev(dev_priv->drm.dev)->irq; 4549 int ret; 4550 4551 /* 4552 * We enable some interrupt sources in our postinstall hooks, so mark 4553 * interrupts as enabled _before_ actually enabling them to avoid 4554 * special cases in our ordering checks. 4555 */ 4556 dev_priv->runtime_pm.irqs_enabled = true; 4557 4558 dev_priv->irq_enabled = true; 4559 4560 intel_irq_reset(dev_priv); 4561 4562 ret = request_irq(irq, intel_irq_handler(dev_priv), 4563 IRQF_SHARED, DRIVER_NAME, dev_priv); 4564 if (ret < 0) { 4565 dev_priv->irq_enabled = false; 4566 return ret; 4567 } 4568 4569 intel_irq_postinstall(dev_priv); 4570 4571 return ret; 4572 } 4573 4574 /** 4575 * intel_irq_uninstall - finilizes all irq handling 4576 * @dev_priv: i915 device instance 4577 * 4578 * This stops interrupt and hotplug handling and unregisters and frees all 4579 * resources acquired in the init functions. 4580 */ 4581 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4582 { 4583 int irq = to_pci_dev(dev_priv->drm.dev)->irq; 4584 4585 /* 4586 * FIXME we can get called twice during driver probe 4587 * error handling as well as during driver remove due to 4588 * intel_modeset_driver_remove() calling us out of sequence. 4589 * Would be nice if it didn't do that... 4590 */ 4591 if (!dev_priv->irq_enabled) 4592 return; 4593 4594 dev_priv->irq_enabled = false; 4595 4596 intel_irq_reset(dev_priv); 4597 4598 free_irq(irq, dev_priv); 4599 4600 intel_hpd_cancel_work(dev_priv); 4601 dev_priv->runtime_pm.irqs_enabled = false; 4602 } 4603 4604 /** 4605 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4606 * @dev_priv: i915 device instance 4607 * 4608 * This function is used to disable interrupts at runtime, both in the runtime 4609 * pm and the system suspend/resume code. 4610 */ 4611 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4612 { 4613 intel_irq_reset(dev_priv); 4614 dev_priv->runtime_pm.irqs_enabled = false; 4615 intel_synchronize_irq(dev_priv); 4616 } 4617 4618 /** 4619 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4620 * @dev_priv: i915 device instance 4621 * 4622 * This function is used to enable interrupts at runtime, both in the runtime 4623 * pm and the system suspend/resume code. 4624 */ 4625 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4626 { 4627 dev_priv->runtime_pm.irqs_enabled = true; 4628 intel_irq_reset(dev_priv); 4629 intel_irq_postinstall(dev_priv); 4630 } 4631 4632 bool intel_irqs_enabled(struct drm_i915_private *dev_priv) 4633 { 4634 return dev_priv->runtime_pm.irqs_enabled; 4635 } 4636 4637 void intel_synchronize_irq(struct drm_i915_private *i915) 4638 { 4639 synchronize_irq(to_pci_dev(i915->drm.dev)->irq); 4640 } 4641 4642 void intel_synchronize_hardirq(struct drm_i915_private *i915) 4643 { 4644 synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq); 4645 } 4646