1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/cpuidle.h> 33 #include <linux/slab.h> 34 #include <linux/sysrq.h> 35 36 #include <drm/drm_drv.h> 37 #include <drm/drm_irq.h> 38 #include <drm/i915_drm.h> 39 40 #include "display/intel_fifo_underrun.h" 41 #include "display/intel_hotplug.h" 42 #include "display/intel_lpe_audio.h" 43 #include "display/intel_psr.h" 44 45 #include "i915_drv.h" 46 #include "i915_irq.h" 47 #include "i915_trace.h" 48 #include "intel_drv.h" 49 #include "intel_pm.h" 50 51 /** 52 * DOC: interrupt handling 53 * 54 * These functions provide the basic support for enabling and disabling the 55 * interrupt handling support. There's a lot more functionality in i915_irq.c 56 * and related files, but that will be described in separate chapters. 57 */ 58 59 static const u32 hpd_ilk[HPD_NUM_PINS] = { 60 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 61 }; 62 63 static const u32 hpd_ivb[HPD_NUM_PINS] = { 64 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 65 }; 66 67 static const u32 hpd_bdw[HPD_NUM_PINS] = { 68 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 69 }; 70 71 static const u32 hpd_ibx[HPD_NUM_PINS] = { 72 [HPD_CRT] = SDE_CRT_HOTPLUG, 73 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 74 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 75 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 76 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 77 }; 78 79 static const u32 hpd_cpt[HPD_NUM_PINS] = { 80 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 81 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 82 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 83 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 84 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 85 }; 86 87 static const u32 hpd_spt[HPD_NUM_PINS] = { 88 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 89 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 90 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 91 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 92 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT 93 }; 94 95 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 96 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 97 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 98 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 99 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 100 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 101 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 102 }; 103 104 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 105 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 106 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 107 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 108 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 109 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 110 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 111 }; 112 113 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 114 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 115 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 116 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 117 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 118 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 119 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 120 }; 121 122 /* BXT hpd list */ 123 static const u32 hpd_bxt[HPD_NUM_PINS] = { 124 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 125 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 126 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC 127 }; 128 129 static const u32 hpd_gen11[HPD_NUM_PINS] = { 130 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG, 131 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG, 132 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG, 133 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG 134 }; 135 136 static const u32 hpd_icp[HPD_NUM_PINS] = { 137 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP, 138 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP, 139 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP, 140 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP, 141 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP, 142 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP 143 }; 144 145 static const u32 hpd_mcc[HPD_NUM_PINS] = { 146 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP, 147 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP, 148 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP 149 }; 150 151 static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 152 i915_reg_t iir, i915_reg_t ier) 153 { 154 intel_uncore_write(uncore, imr, 0xffffffff); 155 intel_uncore_posting_read(uncore, imr); 156 157 intel_uncore_write(uncore, ier, 0); 158 159 /* IIR can theoretically queue up two events. Be paranoid. */ 160 intel_uncore_write(uncore, iir, 0xffffffff); 161 intel_uncore_posting_read(uncore, iir); 162 intel_uncore_write(uncore, iir, 0xffffffff); 163 intel_uncore_posting_read(uncore, iir); 164 } 165 166 static void gen2_irq_reset(struct intel_uncore *uncore) 167 { 168 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 169 intel_uncore_posting_read16(uncore, GEN2_IMR); 170 171 intel_uncore_write16(uncore, GEN2_IER, 0); 172 173 /* IIR can theoretically queue up two events. Be paranoid. */ 174 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 175 intel_uncore_posting_read16(uncore, GEN2_IIR); 176 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 177 intel_uncore_posting_read16(uncore, GEN2_IIR); 178 } 179 180 #define GEN8_IRQ_RESET_NDX(uncore, type, which) \ 181 ({ \ 182 unsigned int which_ = which; \ 183 gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \ 184 GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \ 185 }) 186 187 #define GEN3_IRQ_RESET(uncore, type) \ 188 gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER) 189 190 #define GEN2_IRQ_RESET(uncore) \ 191 gen2_irq_reset(uncore) 192 193 /* 194 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 195 */ 196 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 197 { 198 u32 val = intel_uncore_read(uncore, reg); 199 200 if (val == 0) 201 return; 202 203 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 204 i915_mmio_reg_offset(reg), val); 205 intel_uncore_write(uncore, reg, 0xffffffff); 206 intel_uncore_posting_read(uncore, reg); 207 intel_uncore_write(uncore, reg, 0xffffffff); 208 intel_uncore_posting_read(uncore, reg); 209 } 210 211 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 212 { 213 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 214 215 if (val == 0) 216 return; 217 218 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 219 i915_mmio_reg_offset(GEN2_IIR), val); 220 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 221 intel_uncore_posting_read16(uncore, GEN2_IIR); 222 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 223 intel_uncore_posting_read16(uncore, GEN2_IIR); 224 } 225 226 static void gen3_irq_init(struct intel_uncore *uncore, 227 i915_reg_t imr, u32 imr_val, 228 i915_reg_t ier, u32 ier_val, 229 i915_reg_t iir) 230 { 231 gen3_assert_iir_is_zero(uncore, iir); 232 233 intel_uncore_write(uncore, ier, ier_val); 234 intel_uncore_write(uncore, imr, imr_val); 235 intel_uncore_posting_read(uncore, imr); 236 } 237 238 static void gen2_irq_init(struct intel_uncore *uncore, 239 u32 imr_val, u32 ier_val) 240 { 241 gen2_assert_iir_is_zero(uncore); 242 243 intel_uncore_write16(uncore, GEN2_IER, ier_val); 244 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 245 intel_uncore_posting_read16(uncore, GEN2_IMR); 246 } 247 248 #define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \ 249 ({ \ 250 unsigned int which_ = which; \ 251 gen3_irq_init((uncore), \ 252 GEN8_##type##_IMR(which_), imr_val, \ 253 GEN8_##type##_IER(which_), ier_val, \ 254 GEN8_##type##_IIR(which_)); \ 255 }) 256 257 #define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \ 258 gen3_irq_init((uncore), \ 259 type##IMR, imr_val, \ 260 type##IER, ier_val, \ 261 type##IIR) 262 263 #define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \ 264 gen2_irq_init((uncore), imr_val, ier_val) 265 266 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 267 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 268 269 /* For display hotplug interrupt */ 270 static inline void 271 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 272 u32 mask, 273 u32 bits) 274 { 275 u32 val; 276 277 lockdep_assert_held(&dev_priv->irq_lock); 278 WARN_ON(bits & ~mask); 279 280 val = I915_READ(PORT_HOTPLUG_EN); 281 val &= ~mask; 282 val |= bits; 283 I915_WRITE(PORT_HOTPLUG_EN, val); 284 } 285 286 /** 287 * i915_hotplug_interrupt_update - update hotplug interrupt enable 288 * @dev_priv: driver private 289 * @mask: bits to update 290 * @bits: bits to enable 291 * NOTE: the HPD enable bits are modified both inside and outside 292 * of an interrupt context. To avoid that read-modify-write cycles 293 * interfer, these bits are protected by a spinlock. Since this 294 * function is usually not called from a context where the lock is 295 * held already, this function acquires the lock itself. A non-locking 296 * version is also available. 297 */ 298 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 299 u32 mask, 300 u32 bits) 301 { 302 spin_lock_irq(&dev_priv->irq_lock); 303 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 304 spin_unlock_irq(&dev_priv->irq_lock); 305 } 306 307 static u32 308 gen11_gt_engine_identity(struct drm_i915_private * const i915, 309 const unsigned int bank, const unsigned int bit); 310 311 static bool gen11_reset_one_iir(struct drm_i915_private * const i915, 312 const unsigned int bank, 313 const unsigned int bit) 314 { 315 void __iomem * const regs = i915->uncore.regs; 316 u32 dw; 317 318 lockdep_assert_held(&i915->irq_lock); 319 320 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 321 if (dw & BIT(bit)) { 322 /* 323 * According to the BSpec, DW_IIR bits cannot be cleared without 324 * first servicing the Selector & Shared IIR registers. 325 */ 326 gen11_gt_engine_identity(i915, bank, bit); 327 328 /* 329 * We locked GT INT DW by reading it. If we want to (try 330 * to) recover from this succesfully, we need to clear 331 * our bit, otherwise we are locking the register for 332 * everybody. 333 */ 334 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); 335 336 return true; 337 } 338 339 return false; 340 } 341 342 /** 343 * ilk_update_display_irq - update DEIMR 344 * @dev_priv: driver private 345 * @interrupt_mask: mask of interrupt bits to update 346 * @enabled_irq_mask: mask of interrupt bits to enable 347 */ 348 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 349 u32 interrupt_mask, 350 u32 enabled_irq_mask) 351 { 352 u32 new_val; 353 354 lockdep_assert_held(&dev_priv->irq_lock); 355 356 WARN_ON(enabled_irq_mask & ~interrupt_mask); 357 358 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 359 return; 360 361 new_val = dev_priv->irq_mask; 362 new_val &= ~interrupt_mask; 363 new_val |= (~enabled_irq_mask & interrupt_mask); 364 365 if (new_val != dev_priv->irq_mask) { 366 dev_priv->irq_mask = new_val; 367 I915_WRITE(DEIMR, dev_priv->irq_mask); 368 POSTING_READ(DEIMR); 369 } 370 } 371 372 /** 373 * ilk_update_gt_irq - update GTIMR 374 * @dev_priv: driver private 375 * @interrupt_mask: mask of interrupt bits to update 376 * @enabled_irq_mask: mask of interrupt bits to enable 377 */ 378 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 379 u32 interrupt_mask, 380 u32 enabled_irq_mask) 381 { 382 lockdep_assert_held(&dev_priv->irq_lock); 383 384 WARN_ON(enabled_irq_mask & ~interrupt_mask); 385 386 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 387 return; 388 389 dev_priv->gt_irq_mask &= ~interrupt_mask; 390 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 391 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 392 } 393 394 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask) 395 { 396 ilk_update_gt_irq(dev_priv, mask, mask); 397 intel_uncore_posting_read_fw(&dev_priv->uncore, GTIMR); 398 } 399 400 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask) 401 { 402 ilk_update_gt_irq(dev_priv, mask, 0); 403 } 404 405 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) 406 { 407 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11); 408 409 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; 410 } 411 412 static void write_pm_imr(struct drm_i915_private *dev_priv) 413 { 414 i915_reg_t reg; 415 u32 mask = dev_priv->pm_imr; 416 417 if (INTEL_GEN(dev_priv) >= 11) { 418 reg = GEN11_GPM_WGBOXPERF_INTR_MASK; 419 /* pm is in upper half */ 420 mask = mask << 16; 421 } else if (INTEL_GEN(dev_priv) >= 8) { 422 reg = GEN8_GT_IMR(2); 423 } else { 424 reg = GEN6_PMIMR; 425 } 426 427 I915_WRITE(reg, mask); 428 POSTING_READ(reg); 429 } 430 431 static void write_pm_ier(struct drm_i915_private *dev_priv) 432 { 433 i915_reg_t reg; 434 u32 mask = dev_priv->pm_ier; 435 436 if (INTEL_GEN(dev_priv) >= 11) { 437 reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE; 438 /* pm is in upper half */ 439 mask = mask << 16; 440 } else if (INTEL_GEN(dev_priv) >= 8) { 441 reg = GEN8_GT_IER(2); 442 } else { 443 reg = GEN6_PMIER; 444 } 445 446 I915_WRITE(reg, mask); 447 } 448 449 /** 450 * snb_update_pm_irq - update GEN6_PMIMR 451 * @dev_priv: driver private 452 * @interrupt_mask: mask of interrupt bits to update 453 * @enabled_irq_mask: mask of interrupt bits to enable 454 */ 455 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 456 u32 interrupt_mask, 457 u32 enabled_irq_mask) 458 { 459 u32 new_val; 460 461 WARN_ON(enabled_irq_mask & ~interrupt_mask); 462 463 lockdep_assert_held(&dev_priv->irq_lock); 464 465 new_val = dev_priv->pm_imr; 466 new_val &= ~interrupt_mask; 467 new_val |= (~enabled_irq_mask & interrupt_mask); 468 469 if (new_val != dev_priv->pm_imr) { 470 dev_priv->pm_imr = new_val; 471 write_pm_imr(dev_priv); 472 } 473 } 474 475 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 476 { 477 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 478 return; 479 480 snb_update_pm_irq(dev_priv, mask, mask); 481 } 482 483 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 484 { 485 snb_update_pm_irq(dev_priv, mask, 0); 486 } 487 488 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 489 { 490 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 491 return; 492 493 __gen6_mask_pm_irq(dev_priv, mask); 494 } 495 496 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) 497 { 498 i915_reg_t reg = gen6_pm_iir(dev_priv); 499 500 lockdep_assert_held(&dev_priv->irq_lock); 501 502 I915_WRITE(reg, reset_mask); 503 I915_WRITE(reg, reset_mask); 504 POSTING_READ(reg); 505 } 506 507 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) 508 { 509 lockdep_assert_held(&dev_priv->irq_lock); 510 511 dev_priv->pm_ier |= enable_mask; 512 write_pm_ier(dev_priv); 513 gen6_unmask_pm_irq(dev_priv, enable_mask); 514 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ 515 } 516 517 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) 518 { 519 lockdep_assert_held(&dev_priv->irq_lock); 520 521 dev_priv->pm_ier &= ~disable_mask; 522 __gen6_mask_pm_irq(dev_priv, disable_mask); 523 write_pm_ier(dev_priv); 524 /* though a barrier is missing here, but don't really need a one */ 525 } 526 527 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv) 528 { 529 spin_lock_irq(&dev_priv->irq_lock); 530 531 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)) 532 ; 533 534 dev_priv->gt_pm.rps.pm_iir = 0; 535 536 spin_unlock_irq(&dev_priv->irq_lock); 537 } 538 539 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) 540 { 541 spin_lock_irq(&dev_priv->irq_lock); 542 gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS); 543 dev_priv->gt_pm.rps.pm_iir = 0; 544 spin_unlock_irq(&dev_priv->irq_lock); 545 } 546 547 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) 548 { 549 struct intel_rps *rps = &dev_priv->gt_pm.rps; 550 551 if (READ_ONCE(rps->interrupts_enabled)) 552 return; 553 554 spin_lock_irq(&dev_priv->irq_lock); 555 WARN_ON_ONCE(rps->pm_iir); 556 557 if (INTEL_GEN(dev_priv) >= 11) 558 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)); 559 else 560 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); 561 562 rps->interrupts_enabled = true; 563 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 564 565 spin_unlock_irq(&dev_priv->irq_lock); 566 } 567 568 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) 569 { 570 struct intel_rps *rps = &dev_priv->gt_pm.rps; 571 572 if (!READ_ONCE(rps->interrupts_enabled)) 573 return; 574 575 spin_lock_irq(&dev_priv->irq_lock); 576 rps->interrupts_enabled = false; 577 578 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); 579 580 gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS); 581 582 spin_unlock_irq(&dev_priv->irq_lock); 583 synchronize_irq(dev_priv->drm.irq); 584 585 /* Now that we will not be generating any more work, flush any 586 * outstanding tasks. As we are called on the RPS idle path, 587 * we will reset the GPU to minimum frequencies, so the current 588 * state of the worker can be discarded. 589 */ 590 cancel_work_sync(&rps->work); 591 if (INTEL_GEN(dev_priv) >= 11) 592 gen11_reset_rps_interrupts(dev_priv); 593 else 594 gen6_reset_rps_interrupts(dev_priv); 595 } 596 597 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) 598 { 599 assert_rpm_wakelock_held(&dev_priv->runtime_pm); 600 601 spin_lock_irq(&dev_priv->irq_lock); 602 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); 603 spin_unlock_irq(&dev_priv->irq_lock); 604 } 605 606 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) 607 { 608 assert_rpm_wakelock_held(&dev_priv->runtime_pm); 609 610 spin_lock_irq(&dev_priv->irq_lock); 611 if (!dev_priv->guc.interrupts.enabled) { 612 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & 613 dev_priv->pm_guc_events); 614 dev_priv->guc.interrupts.enabled = true; 615 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); 616 } 617 spin_unlock_irq(&dev_priv->irq_lock); 618 } 619 620 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) 621 { 622 assert_rpm_wakelock_held(&dev_priv->runtime_pm); 623 624 spin_lock_irq(&dev_priv->irq_lock); 625 dev_priv->guc.interrupts.enabled = false; 626 627 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); 628 629 spin_unlock_irq(&dev_priv->irq_lock); 630 synchronize_irq(dev_priv->drm.irq); 631 632 gen9_reset_guc_interrupts(dev_priv); 633 } 634 635 void gen11_reset_guc_interrupts(struct drm_i915_private *i915) 636 { 637 spin_lock_irq(&i915->irq_lock); 638 gen11_reset_one_iir(i915, 0, GEN11_GUC); 639 spin_unlock_irq(&i915->irq_lock); 640 } 641 642 void gen11_enable_guc_interrupts(struct drm_i915_private *dev_priv) 643 { 644 spin_lock_irq(&dev_priv->irq_lock); 645 if (!dev_priv->guc.interrupts.enabled) { 646 u32 events = REG_FIELD_PREP(ENGINE1_MASK, 647 GEN11_GUC_INTR_GUC2HOST); 648 649 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GUC)); 650 I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, events); 651 I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~events); 652 dev_priv->guc.interrupts.enabled = true; 653 } 654 spin_unlock_irq(&dev_priv->irq_lock); 655 } 656 657 void gen11_disable_guc_interrupts(struct drm_i915_private *dev_priv) 658 { 659 spin_lock_irq(&dev_priv->irq_lock); 660 dev_priv->guc.interrupts.enabled = false; 661 662 I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~0); 663 I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0); 664 665 spin_unlock_irq(&dev_priv->irq_lock); 666 synchronize_irq(dev_priv->drm.irq); 667 668 gen11_reset_guc_interrupts(dev_priv); 669 } 670 671 /** 672 * bdw_update_port_irq - update DE port interrupt 673 * @dev_priv: driver private 674 * @interrupt_mask: mask of interrupt bits to update 675 * @enabled_irq_mask: mask of interrupt bits to enable 676 */ 677 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 678 u32 interrupt_mask, 679 u32 enabled_irq_mask) 680 { 681 u32 new_val; 682 u32 old_val; 683 684 lockdep_assert_held(&dev_priv->irq_lock); 685 686 WARN_ON(enabled_irq_mask & ~interrupt_mask); 687 688 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 689 return; 690 691 old_val = I915_READ(GEN8_DE_PORT_IMR); 692 693 new_val = old_val; 694 new_val &= ~interrupt_mask; 695 new_val |= (~enabled_irq_mask & interrupt_mask); 696 697 if (new_val != old_val) { 698 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 699 POSTING_READ(GEN8_DE_PORT_IMR); 700 } 701 } 702 703 /** 704 * bdw_update_pipe_irq - update DE pipe interrupt 705 * @dev_priv: driver private 706 * @pipe: pipe whose interrupt to update 707 * @interrupt_mask: mask of interrupt bits to update 708 * @enabled_irq_mask: mask of interrupt bits to enable 709 */ 710 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 711 enum pipe pipe, 712 u32 interrupt_mask, 713 u32 enabled_irq_mask) 714 { 715 u32 new_val; 716 717 lockdep_assert_held(&dev_priv->irq_lock); 718 719 WARN_ON(enabled_irq_mask & ~interrupt_mask); 720 721 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 722 return; 723 724 new_val = dev_priv->de_irq_mask[pipe]; 725 new_val &= ~interrupt_mask; 726 new_val |= (~enabled_irq_mask & interrupt_mask); 727 728 if (new_val != dev_priv->de_irq_mask[pipe]) { 729 dev_priv->de_irq_mask[pipe] = new_val; 730 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 731 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 732 } 733 } 734 735 /** 736 * ibx_display_interrupt_update - update SDEIMR 737 * @dev_priv: driver private 738 * @interrupt_mask: mask of interrupt bits to update 739 * @enabled_irq_mask: mask of interrupt bits to enable 740 */ 741 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 742 u32 interrupt_mask, 743 u32 enabled_irq_mask) 744 { 745 u32 sdeimr = I915_READ(SDEIMR); 746 sdeimr &= ~interrupt_mask; 747 sdeimr |= (~enabled_irq_mask & interrupt_mask); 748 749 WARN_ON(enabled_irq_mask & ~interrupt_mask); 750 751 lockdep_assert_held(&dev_priv->irq_lock); 752 753 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 754 return; 755 756 I915_WRITE(SDEIMR, sdeimr); 757 POSTING_READ(SDEIMR); 758 } 759 760 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 761 enum pipe pipe) 762 { 763 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 764 u32 enable_mask = status_mask << 16; 765 766 lockdep_assert_held(&dev_priv->irq_lock); 767 768 if (INTEL_GEN(dev_priv) < 5) 769 goto out; 770 771 /* 772 * On pipe A we don't support the PSR interrupt yet, 773 * on pipe B and C the same bit MBZ. 774 */ 775 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 776 return 0; 777 /* 778 * On pipe B and C we don't support the PSR interrupt yet, on pipe 779 * A the same bit is for perf counters which we don't use either. 780 */ 781 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 782 return 0; 783 784 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 785 SPRITE0_FLIP_DONE_INT_EN_VLV | 786 SPRITE1_FLIP_DONE_INT_EN_VLV); 787 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 788 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 789 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 790 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 791 792 out: 793 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 794 status_mask & ~PIPESTAT_INT_STATUS_MASK, 795 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 796 pipe_name(pipe), enable_mask, status_mask); 797 798 return enable_mask; 799 } 800 801 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 802 enum pipe pipe, u32 status_mask) 803 { 804 i915_reg_t reg = PIPESTAT(pipe); 805 u32 enable_mask; 806 807 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 808 "pipe %c: status_mask=0x%x\n", 809 pipe_name(pipe), status_mask); 810 811 lockdep_assert_held(&dev_priv->irq_lock); 812 WARN_ON(!intel_irqs_enabled(dev_priv)); 813 814 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 815 return; 816 817 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 818 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 819 820 I915_WRITE(reg, enable_mask | status_mask); 821 POSTING_READ(reg); 822 } 823 824 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 825 enum pipe pipe, u32 status_mask) 826 { 827 i915_reg_t reg = PIPESTAT(pipe); 828 u32 enable_mask; 829 830 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 831 "pipe %c: status_mask=0x%x\n", 832 pipe_name(pipe), status_mask); 833 834 lockdep_assert_held(&dev_priv->irq_lock); 835 WARN_ON(!intel_irqs_enabled(dev_priv)); 836 837 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 838 return; 839 840 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 841 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 842 843 I915_WRITE(reg, enable_mask | status_mask); 844 POSTING_READ(reg); 845 } 846 847 static bool i915_has_asle(struct drm_i915_private *dev_priv) 848 { 849 if (!dev_priv->opregion.asle) 850 return false; 851 852 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 853 } 854 855 /** 856 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 857 * @dev_priv: i915 device private 858 */ 859 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 860 { 861 if (!i915_has_asle(dev_priv)) 862 return; 863 864 spin_lock_irq(&dev_priv->irq_lock); 865 866 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 867 if (INTEL_GEN(dev_priv) >= 4) 868 i915_enable_pipestat(dev_priv, PIPE_A, 869 PIPE_LEGACY_BLC_EVENT_STATUS); 870 871 spin_unlock_irq(&dev_priv->irq_lock); 872 } 873 874 /* 875 * This timing diagram depicts the video signal in and 876 * around the vertical blanking period. 877 * 878 * Assumptions about the fictitious mode used in this example: 879 * vblank_start >= 3 880 * vsync_start = vblank_start + 1 881 * vsync_end = vblank_start + 2 882 * vtotal = vblank_start + 3 883 * 884 * start of vblank: 885 * latch double buffered registers 886 * increment frame counter (ctg+) 887 * generate start of vblank interrupt (gen4+) 888 * | 889 * | frame start: 890 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 891 * | may be shifted forward 1-3 extra lines via PIPECONF 892 * | | 893 * | | start of vsync: 894 * | | generate vsync interrupt 895 * | | | 896 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 897 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 898 * ----va---> <-----------------vb--------------------> <--------va------------- 899 * | | <----vs-----> | 900 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 901 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 902 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 903 * | | | 904 * last visible pixel first visible pixel 905 * | increment frame counter (gen3/4) 906 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 907 * 908 * x = horizontal active 909 * _ = horizontal blanking 910 * hs = horizontal sync 911 * va = vertical active 912 * vb = vertical blanking 913 * vs = vertical sync 914 * vbs = vblank_start (number) 915 * 916 * Summary: 917 * - most events happen at the start of horizontal sync 918 * - frame start happens at the start of horizontal blank, 1-4 lines 919 * (depending on PIPECONF settings) after the start of vblank 920 * - gen3/4 pixel and frame counter are synchronized with the start 921 * of horizontal active on the first line of vertical active 922 */ 923 924 /* Called from drm generic code, passed a 'crtc', which 925 * we use as a pipe index 926 */ 927 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 928 { 929 struct drm_i915_private *dev_priv = to_i915(dev); 930 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 931 const struct drm_display_mode *mode = &vblank->hwmode; 932 i915_reg_t high_frame, low_frame; 933 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 934 unsigned long irqflags; 935 936 /* 937 * On i965gm TV output the frame counter only works up to 938 * the point when we enable the TV encoder. After that the 939 * frame counter ceases to work and reads zero. We need a 940 * vblank wait before enabling the TV encoder and so we 941 * have to enable vblank interrupts while the frame counter 942 * is still in a working state. However the core vblank code 943 * does not like us returning non-zero frame counter values 944 * when we've told it that we don't have a working frame 945 * counter. Thus we must stop non-zero values leaking out. 946 */ 947 if (!vblank->max_vblank_count) 948 return 0; 949 950 htotal = mode->crtc_htotal; 951 hsync_start = mode->crtc_hsync_start; 952 vbl_start = mode->crtc_vblank_start; 953 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 954 vbl_start = DIV_ROUND_UP(vbl_start, 2); 955 956 /* Convert to pixel count */ 957 vbl_start *= htotal; 958 959 /* Start of vblank event occurs at start of hsync */ 960 vbl_start -= htotal - hsync_start; 961 962 high_frame = PIPEFRAME(pipe); 963 low_frame = PIPEFRAMEPIXEL(pipe); 964 965 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 966 967 /* 968 * High & low register fields aren't synchronized, so make sure 969 * we get a low value that's stable across two reads of the high 970 * register. 971 */ 972 do { 973 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 974 low = I915_READ_FW(low_frame); 975 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 976 } while (high1 != high2); 977 978 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 979 980 high1 >>= PIPE_FRAME_HIGH_SHIFT; 981 pixel = low & PIPE_PIXEL_MASK; 982 low >>= PIPE_FRAME_LOW_SHIFT; 983 984 /* 985 * The frame counter increments at beginning of active. 986 * Cook up a vblank counter by also checking the pixel 987 * counter against vblank start. 988 */ 989 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 990 } 991 992 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 993 { 994 struct drm_i915_private *dev_priv = to_i915(dev); 995 996 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 997 } 998 999 /* 1000 * On certain encoders on certain platforms, pipe 1001 * scanline register will not work to get the scanline, 1002 * since the timings are driven from the PORT or issues 1003 * with scanline register updates. 1004 * This function will use Framestamp and current 1005 * timestamp registers to calculate the scanline. 1006 */ 1007 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 1008 { 1009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1010 struct drm_vblank_crtc *vblank = 1011 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 1012 const struct drm_display_mode *mode = &vblank->hwmode; 1013 u32 vblank_start = mode->crtc_vblank_start; 1014 u32 vtotal = mode->crtc_vtotal; 1015 u32 htotal = mode->crtc_htotal; 1016 u32 clock = mode->crtc_clock; 1017 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 1018 1019 /* 1020 * To avoid the race condition where we might cross into the 1021 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 1022 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 1023 * during the same frame. 1024 */ 1025 do { 1026 /* 1027 * This field provides read back of the display 1028 * pipe frame time stamp. The time stamp value 1029 * is sampled at every start of vertical blank. 1030 */ 1031 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 1032 1033 /* 1034 * The TIMESTAMP_CTR register has the current 1035 * time stamp value. 1036 */ 1037 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR); 1038 1039 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 1040 } while (scan_post_time != scan_prev_time); 1041 1042 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 1043 clock), 1000 * htotal); 1044 scanline = min(scanline, vtotal - 1); 1045 scanline = (scanline + vblank_start) % vtotal; 1046 1047 return scanline; 1048 } 1049 1050 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ 1051 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 1052 { 1053 struct drm_device *dev = crtc->base.dev; 1054 struct drm_i915_private *dev_priv = to_i915(dev); 1055 const struct drm_display_mode *mode; 1056 struct drm_vblank_crtc *vblank; 1057 enum pipe pipe = crtc->pipe; 1058 int position, vtotal; 1059 1060 if (!crtc->active) 1061 return -1; 1062 1063 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 1064 mode = &vblank->hwmode; 1065 1066 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 1067 return __intel_get_crtc_scanline_from_timestamp(crtc); 1068 1069 vtotal = mode->crtc_vtotal; 1070 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1071 vtotal /= 2; 1072 1073 if (IS_GEN(dev_priv, 2)) 1074 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 1075 else 1076 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 1077 1078 /* 1079 * On HSW, the DSL reg (0x70000) appears to return 0 if we 1080 * read it just before the start of vblank. So try it again 1081 * so we don't accidentally end up spanning a vblank frame 1082 * increment, causing the pipe_update_end() code to squak at us. 1083 * 1084 * The nature of this problem means we can't simply check the ISR 1085 * bit and return the vblank start value; nor can we use the scanline 1086 * debug register in the transcoder as it appears to have the same 1087 * problem. We may need to extend this to include other platforms, 1088 * but so far testing only shows the problem on HSW. 1089 */ 1090 if (HAS_DDI(dev_priv) && !position) { 1091 int i, temp; 1092 1093 for (i = 0; i < 100; i++) { 1094 udelay(1); 1095 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 1096 if (temp != position) { 1097 position = temp; 1098 break; 1099 } 1100 } 1101 } 1102 1103 /* 1104 * See update_scanline_offset() for the details on the 1105 * scanline_offset adjustment. 1106 */ 1107 return (position + crtc->scanline_offset) % vtotal; 1108 } 1109 1110 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, 1111 bool in_vblank_irq, int *vpos, int *hpos, 1112 ktime_t *stime, ktime_t *etime, 1113 const struct drm_display_mode *mode) 1114 { 1115 struct drm_i915_private *dev_priv = to_i915(dev); 1116 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 1117 pipe); 1118 int position; 1119 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 1120 unsigned long irqflags; 1121 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 || 1122 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) || 1123 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1124 1125 if (WARN_ON(!mode->crtc_clock)) { 1126 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 1127 "pipe %c\n", pipe_name(pipe)); 1128 return false; 1129 } 1130 1131 htotal = mode->crtc_htotal; 1132 hsync_start = mode->crtc_hsync_start; 1133 vtotal = mode->crtc_vtotal; 1134 vbl_start = mode->crtc_vblank_start; 1135 vbl_end = mode->crtc_vblank_end; 1136 1137 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 1138 vbl_start = DIV_ROUND_UP(vbl_start, 2); 1139 vbl_end /= 2; 1140 vtotal /= 2; 1141 } 1142 1143 /* 1144 * Lock uncore.lock, as we will do multiple timing critical raw 1145 * register reads, potentially with preemption disabled, so the 1146 * following code must not block on uncore.lock. 1147 */ 1148 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1149 1150 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 1151 1152 /* Get optional system timestamp before query. */ 1153 if (stime) 1154 *stime = ktime_get(); 1155 1156 if (use_scanline_counter) { 1157 /* No obvious pixelcount register. Only query vertical 1158 * scanout position from Display scan line register. 1159 */ 1160 position = __intel_get_crtc_scanline(intel_crtc); 1161 } else { 1162 /* Have access to pixelcount since start of frame. 1163 * We can split this into vertical and horizontal 1164 * scanout position. 1165 */ 1166 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 1167 1168 /* convert to pixel counts */ 1169 vbl_start *= htotal; 1170 vbl_end *= htotal; 1171 vtotal *= htotal; 1172 1173 /* 1174 * In interlaced modes, the pixel counter counts all pixels, 1175 * so one field will have htotal more pixels. In order to avoid 1176 * the reported position from jumping backwards when the pixel 1177 * counter is beyond the length of the shorter field, just 1178 * clamp the position the length of the shorter field. This 1179 * matches how the scanline counter based position works since 1180 * the scanline counter doesn't count the two half lines. 1181 */ 1182 if (position >= vtotal) 1183 position = vtotal - 1; 1184 1185 /* 1186 * Start of vblank interrupt is triggered at start of hsync, 1187 * just prior to the first active line of vblank. However we 1188 * consider lines to start at the leading edge of horizontal 1189 * active. So, should we get here before we've crossed into 1190 * the horizontal active of the first line in vblank, we would 1191 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 1192 * always add htotal-hsync_start to the current pixel position. 1193 */ 1194 position = (position + htotal - hsync_start) % vtotal; 1195 } 1196 1197 /* Get optional system timestamp after query. */ 1198 if (etime) 1199 *etime = ktime_get(); 1200 1201 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 1202 1203 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1204 1205 /* 1206 * While in vblank, position will be negative 1207 * counting up towards 0 at vbl_end. And outside 1208 * vblank, position will be positive counting 1209 * up since vbl_end. 1210 */ 1211 if (position >= vbl_start) 1212 position -= vbl_end; 1213 else 1214 position += vtotal - vbl_end; 1215 1216 if (use_scanline_counter) { 1217 *vpos = position; 1218 *hpos = 0; 1219 } else { 1220 *vpos = position / htotal; 1221 *hpos = position - (*vpos * htotal); 1222 } 1223 1224 return true; 1225 } 1226 1227 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1228 { 1229 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1230 unsigned long irqflags; 1231 int position; 1232 1233 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1234 position = __intel_get_crtc_scanline(crtc); 1235 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1236 1237 return position; 1238 } 1239 1240 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) 1241 { 1242 struct intel_uncore *uncore = &dev_priv->uncore; 1243 u32 busy_up, busy_down, max_avg, min_avg; 1244 u8 new_delay; 1245 1246 spin_lock(&mchdev_lock); 1247 1248 intel_uncore_write16(uncore, 1249 MEMINTRSTS, 1250 intel_uncore_read(uncore, MEMINTRSTS)); 1251 1252 new_delay = dev_priv->ips.cur_delay; 1253 1254 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); 1255 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); 1256 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); 1257 max_avg = intel_uncore_read(uncore, RCBMAXAVG); 1258 min_avg = intel_uncore_read(uncore, RCBMINAVG); 1259 1260 /* Handle RCS change request from hw */ 1261 if (busy_up > max_avg) { 1262 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1263 new_delay = dev_priv->ips.cur_delay - 1; 1264 if (new_delay < dev_priv->ips.max_delay) 1265 new_delay = dev_priv->ips.max_delay; 1266 } else if (busy_down < min_avg) { 1267 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1268 new_delay = dev_priv->ips.cur_delay + 1; 1269 if (new_delay > dev_priv->ips.min_delay) 1270 new_delay = dev_priv->ips.min_delay; 1271 } 1272 1273 if (ironlake_set_drps(dev_priv, new_delay)) 1274 dev_priv->ips.cur_delay = new_delay; 1275 1276 spin_unlock(&mchdev_lock); 1277 1278 return; 1279 } 1280 1281 static void vlv_c0_read(struct drm_i915_private *dev_priv, 1282 struct intel_rps_ei *ei) 1283 { 1284 ei->ktime = ktime_get_raw(); 1285 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); 1286 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); 1287 } 1288 1289 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) 1290 { 1291 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei)); 1292 } 1293 1294 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) 1295 { 1296 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1297 const struct intel_rps_ei *prev = &rps->ei; 1298 struct intel_rps_ei now; 1299 u32 events = 0; 1300 1301 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) 1302 return 0; 1303 1304 vlv_c0_read(dev_priv, &now); 1305 1306 if (prev->ktime) { 1307 u64 time, c0; 1308 u32 render, media; 1309 1310 time = ktime_us_delta(now.ktime, prev->ktime); 1311 1312 time *= dev_priv->czclk_freq; 1313 1314 /* Workload can be split between render + media, 1315 * e.g. SwapBuffers being blitted in X after being rendered in 1316 * mesa. To account for this we need to combine both engines 1317 * into our activity counter. 1318 */ 1319 render = now.render_c0 - prev->render_c0; 1320 media = now.media_c0 - prev->media_c0; 1321 c0 = max(render, media); 1322 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ 1323 1324 if (c0 > time * rps->power.up_threshold) 1325 events = GEN6_PM_RP_UP_THRESHOLD; 1326 else if (c0 < time * rps->power.down_threshold) 1327 events = GEN6_PM_RP_DOWN_THRESHOLD; 1328 } 1329 1330 rps->ei = now; 1331 return events; 1332 } 1333 1334 static void gen6_pm_rps_work(struct work_struct *work) 1335 { 1336 struct drm_i915_private *dev_priv = 1337 container_of(work, struct drm_i915_private, gt_pm.rps.work); 1338 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1339 bool client_boost = false; 1340 int new_delay, adj, min, max; 1341 u32 pm_iir = 0; 1342 1343 spin_lock_irq(&dev_priv->irq_lock); 1344 if (rps->interrupts_enabled) { 1345 pm_iir = fetch_and_zero(&rps->pm_iir); 1346 client_boost = atomic_read(&rps->num_waiters); 1347 } 1348 spin_unlock_irq(&dev_priv->irq_lock); 1349 1350 /* Make sure we didn't queue anything we're not going to process. */ 1351 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1352 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) 1353 goto out; 1354 1355 mutex_lock(&rps->lock); 1356 1357 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); 1358 1359 adj = rps->last_adj; 1360 new_delay = rps->cur_freq; 1361 min = rps->min_freq_softlimit; 1362 max = rps->max_freq_softlimit; 1363 if (client_boost) 1364 max = rps->max_freq; 1365 if (client_boost && new_delay < rps->boost_freq) { 1366 new_delay = rps->boost_freq; 1367 adj = 0; 1368 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1369 if (adj > 0) 1370 adj *= 2; 1371 else /* CHV needs even encode values */ 1372 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; 1373 1374 if (new_delay >= rps->max_freq_softlimit) 1375 adj = 0; 1376 } else if (client_boost) { 1377 adj = 0; 1378 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1379 if (rps->cur_freq > rps->efficient_freq) 1380 new_delay = rps->efficient_freq; 1381 else if (rps->cur_freq > rps->min_freq_softlimit) 1382 new_delay = rps->min_freq_softlimit; 1383 adj = 0; 1384 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1385 if (adj < 0) 1386 adj *= 2; 1387 else /* CHV needs even encode values */ 1388 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; 1389 1390 if (new_delay <= rps->min_freq_softlimit) 1391 adj = 0; 1392 } else { /* unknown event */ 1393 adj = 0; 1394 } 1395 1396 rps->last_adj = adj; 1397 1398 /* 1399 * Limit deboosting and boosting to keep ourselves at the extremes 1400 * when in the respective power modes (i.e. slowly decrease frequencies 1401 * while in the HIGH_POWER zone and slowly increase frequencies while 1402 * in the LOW_POWER zone). On idle, we will hit the timeout and drop 1403 * to the next level quickly, and conversely if busy we expect to 1404 * hit a waitboost and rapidly switch into max power. 1405 */ 1406 if ((adj < 0 && rps->power.mode == HIGH_POWER) || 1407 (adj > 0 && rps->power.mode == LOW_POWER)) 1408 rps->last_adj = 0; 1409 1410 /* sysfs frequency interfaces may have snuck in while servicing the 1411 * interrupt 1412 */ 1413 new_delay += adj; 1414 new_delay = clamp_t(int, new_delay, min, max); 1415 1416 if (intel_set_rps(dev_priv, new_delay)) { 1417 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); 1418 rps->last_adj = 0; 1419 } 1420 1421 mutex_unlock(&rps->lock); 1422 1423 out: 1424 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ 1425 spin_lock_irq(&dev_priv->irq_lock); 1426 if (rps->interrupts_enabled) 1427 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); 1428 spin_unlock_irq(&dev_priv->irq_lock); 1429 } 1430 1431 1432 /** 1433 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1434 * occurred. 1435 * @work: workqueue struct 1436 * 1437 * Doesn't actually do anything except notify userspace. As a consequence of 1438 * this event, userspace should try to remap the bad rows since statistically 1439 * it is likely the same row is more likely to go bad again. 1440 */ 1441 static void ivybridge_parity_work(struct work_struct *work) 1442 { 1443 struct drm_i915_private *dev_priv = 1444 container_of(work, typeof(*dev_priv), l3_parity.error_work); 1445 u32 error_status, row, bank, subbank; 1446 char *parity_event[6]; 1447 u32 misccpctl; 1448 u8 slice = 0; 1449 1450 /* We must turn off DOP level clock gating to access the L3 registers. 1451 * In order to prevent a get/put style interface, acquire struct mutex 1452 * any time we access those registers. 1453 */ 1454 mutex_lock(&dev_priv->drm.struct_mutex); 1455 1456 /* If we've screwed up tracking, just let the interrupt fire again */ 1457 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1458 goto out; 1459 1460 misccpctl = I915_READ(GEN7_MISCCPCTL); 1461 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1462 POSTING_READ(GEN7_MISCCPCTL); 1463 1464 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1465 i915_reg_t reg; 1466 1467 slice--; 1468 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) 1469 break; 1470 1471 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1472 1473 reg = GEN7_L3CDERRST1(slice); 1474 1475 error_status = I915_READ(reg); 1476 row = GEN7_PARITY_ERROR_ROW(error_status); 1477 bank = GEN7_PARITY_ERROR_BANK(error_status); 1478 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1479 1480 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1481 POSTING_READ(reg); 1482 1483 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1484 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1485 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1486 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1487 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1488 parity_event[5] = NULL; 1489 1490 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1491 KOBJ_CHANGE, parity_event); 1492 1493 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1494 slice, row, bank, subbank); 1495 1496 kfree(parity_event[4]); 1497 kfree(parity_event[3]); 1498 kfree(parity_event[2]); 1499 kfree(parity_event[1]); 1500 } 1501 1502 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1503 1504 out: 1505 WARN_ON(dev_priv->l3_parity.which_slice); 1506 spin_lock_irq(&dev_priv->irq_lock); 1507 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1508 spin_unlock_irq(&dev_priv->irq_lock); 1509 1510 mutex_unlock(&dev_priv->drm.struct_mutex); 1511 } 1512 1513 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, 1514 u32 iir) 1515 { 1516 if (!HAS_L3_DPF(dev_priv)) 1517 return; 1518 1519 spin_lock(&dev_priv->irq_lock); 1520 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1521 spin_unlock(&dev_priv->irq_lock); 1522 1523 iir &= GT_PARITY_ERROR(dev_priv); 1524 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1525 dev_priv->l3_parity.which_slice |= 1 << 1; 1526 1527 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1528 dev_priv->l3_parity.which_slice |= 1 << 0; 1529 1530 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1531 } 1532 1533 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, 1534 u32 gt_iir) 1535 { 1536 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1537 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 1538 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1539 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); 1540 } 1541 1542 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, 1543 u32 gt_iir) 1544 { 1545 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1546 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 1547 if (gt_iir & GT_BSD_USER_INTERRUPT) 1548 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); 1549 if (gt_iir & GT_BLT_USER_INTERRUPT) 1550 intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]); 1551 1552 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1553 GT_BSD_CS_ERROR_INTERRUPT | 1554 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) 1555 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); 1556 1557 if (gt_iir & GT_PARITY_ERROR(dev_priv)) 1558 ivybridge_parity_error_irq_handler(dev_priv, gt_iir); 1559 } 1560 1561 static void 1562 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir) 1563 { 1564 bool tasklet = false; 1565 1566 if (iir & GT_CONTEXT_SWITCH_INTERRUPT) 1567 tasklet = true; 1568 1569 if (iir & GT_RENDER_USER_INTERRUPT) { 1570 intel_engine_breadcrumbs_irq(engine); 1571 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine); 1572 } 1573 1574 if (tasklet) 1575 tasklet_hi_schedule(&engine->execlists.tasklet); 1576 } 1577 1578 static void gen8_gt_irq_ack(struct drm_i915_private *i915, 1579 u32 master_ctl, u32 gt_iir[4]) 1580 { 1581 void __iomem * const regs = i915->uncore.regs; 1582 1583 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \ 1584 GEN8_GT_BCS_IRQ | \ 1585 GEN8_GT_VCS0_IRQ | \ 1586 GEN8_GT_VCS1_IRQ | \ 1587 GEN8_GT_VECS_IRQ | \ 1588 GEN8_GT_PM_IRQ | \ 1589 GEN8_GT_GUC_IRQ) 1590 1591 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1592 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0)); 1593 if (likely(gt_iir[0])) 1594 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]); 1595 } 1596 1597 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { 1598 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1)); 1599 if (likely(gt_iir[1])) 1600 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]); 1601 } 1602 1603 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1604 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2)); 1605 if (likely(gt_iir[2])) 1606 raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]); 1607 } 1608 1609 if (master_ctl & GEN8_GT_VECS_IRQ) { 1610 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3)); 1611 if (likely(gt_iir[3])) 1612 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]); 1613 } 1614 } 1615 1616 static void gen8_gt_irq_handler(struct drm_i915_private *i915, 1617 u32 master_ctl, u32 gt_iir[4]) 1618 { 1619 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1620 gen8_cs_irq_handler(i915->engine[RCS0], 1621 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT); 1622 gen8_cs_irq_handler(i915->engine[BCS0], 1623 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT); 1624 } 1625 1626 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { 1627 gen8_cs_irq_handler(i915->engine[VCS0], 1628 gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT); 1629 gen8_cs_irq_handler(i915->engine[VCS1], 1630 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT); 1631 } 1632 1633 if (master_ctl & GEN8_GT_VECS_IRQ) { 1634 gen8_cs_irq_handler(i915->engine[VECS0], 1635 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT); 1636 } 1637 1638 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1639 gen6_rps_irq_handler(i915, gt_iir[2]); 1640 gen9_guc_irq_handler(i915, gt_iir[2]); 1641 } 1642 } 1643 1644 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1645 { 1646 switch (pin) { 1647 case HPD_PORT_C: 1648 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); 1649 case HPD_PORT_D: 1650 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); 1651 case HPD_PORT_E: 1652 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); 1653 case HPD_PORT_F: 1654 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); 1655 default: 1656 return false; 1657 } 1658 } 1659 1660 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1661 { 1662 switch (pin) { 1663 case HPD_PORT_A: 1664 return val & PORTA_HOTPLUG_LONG_DETECT; 1665 case HPD_PORT_B: 1666 return val & PORTB_HOTPLUG_LONG_DETECT; 1667 case HPD_PORT_C: 1668 return val & PORTC_HOTPLUG_LONG_DETECT; 1669 default: 1670 return false; 1671 } 1672 } 1673 1674 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1675 { 1676 switch (pin) { 1677 case HPD_PORT_A: 1678 return val & ICP_DDIA_HPD_LONG_DETECT; 1679 case HPD_PORT_B: 1680 return val & ICP_DDIB_HPD_LONG_DETECT; 1681 default: 1682 return false; 1683 } 1684 } 1685 1686 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1687 { 1688 switch (pin) { 1689 case HPD_PORT_C: 1690 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); 1691 case HPD_PORT_D: 1692 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); 1693 case HPD_PORT_E: 1694 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); 1695 case HPD_PORT_F: 1696 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); 1697 default: 1698 return false; 1699 } 1700 } 1701 1702 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1703 { 1704 switch (pin) { 1705 case HPD_PORT_E: 1706 return val & PORTE_HOTPLUG_LONG_DETECT; 1707 default: 1708 return false; 1709 } 1710 } 1711 1712 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1713 { 1714 switch (pin) { 1715 case HPD_PORT_A: 1716 return val & PORTA_HOTPLUG_LONG_DETECT; 1717 case HPD_PORT_B: 1718 return val & PORTB_HOTPLUG_LONG_DETECT; 1719 case HPD_PORT_C: 1720 return val & PORTC_HOTPLUG_LONG_DETECT; 1721 case HPD_PORT_D: 1722 return val & PORTD_HOTPLUG_LONG_DETECT; 1723 default: 1724 return false; 1725 } 1726 } 1727 1728 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1729 { 1730 switch (pin) { 1731 case HPD_PORT_A: 1732 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1733 default: 1734 return false; 1735 } 1736 } 1737 1738 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1739 { 1740 switch (pin) { 1741 case HPD_PORT_B: 1742 return val & PORTB_HOTPLUG_LONG_DETECT; 1743 case HPD_PORT_C: 1744 return val & PORTC_HOTPLUG_LONG_DETECT; 1745 case HPD_PORT_D: 1746 return val & PORTD_HOTPLUG_LONG_DETECT; 1747 default: 1748 return false; 1749 } 1750 } 1751 1752 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1753 { 1754 switch (pin) { 1755 case HPD_PORT_B: 1756 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1757 case HPD_PORT_C: 1758 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1759 case HPD_PORT_D: 1760 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1761 default: 1762 return false; 1763 } 1764 } 1765 1766 /* 1767 * Get a bit mask of pins that have triggered, and which ones may be long. 1768 * This can be called multiple times with the same masks to accumulate 1769 * hotplug detection results from several registers. 1770 * 1771 * Note that the caller is expected to zero out the masks initially. 1772 */ 1773 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1774 u32 *pin_mask, u32 *long_mask, 1775 u32 hotplug_trigger, u32 dig_hotplug_reg, 1776 const u32 hpd[HPD_NUM_PINS], 1777 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1778 { 1779 enum hpd_pin pin; 1780 1781 for_each_hpd_pin(pin) { 1782 if ((hpd[pin] & hotplug_trigger) == 0) 1783 continue; 1784 1785 *pin_mask |= BIT(pin); 1786 1787 if (long_pulse_detect(pin, dig_hotplug_reg)) 1788 *long_mask |= BIT(pin); 1789 } 1790 1791 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1792 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1793 1794 } 1795 1796 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1797 { 1798 wake_up_all(&dev_priv->gmbus_wait_queue); 1799 } 1800 1801 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1802 { 1803 wake_up_all(&dev_priv->gmbus_wait_queue); 1804 } 1805 1806 #if defined(CONFIG_DEBUG_FS) 1807 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1808 enum pipe pipe, 1809 u32 crc0, u32 crc1, 1810 u32 crc2, u32 crc3, 1811 u32 crc4) 1812 { 1813 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1814 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1815 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1816 1817 trace_intel_pipe_crc(crtc, crcs); 1818 1819 spin_lock(&pipe_crc->lock); 1820 /* 1821 * For some not yet identified reason, the first CRC is 1822 * bonkers. So let's just wait for the next vblank and read 1823 * out the buggy result. 1824 * 1825 * On GEN8+ sometimes the second CRC is bonkers as well, so 1826 * don't trust that one either. 1827 */ 1828 if (pipe_crc->skipped <= 0 || 1829 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1830 pipe_crc->skipped++; 1831 spin_unlock(&pipe_crc->lock); 1832 return; 1833 } 1834 spin_unlock(&pipe_crc->lock); 1835 1836 drm_crtc_add_crc_entry(&crtc->base, true, 1837 drm_crtc_accurate_vblank_count(&crtc->base), 1838 crcs); 1839 } 1840 #else 1841 static inline void 1842 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1843 enum pipe pipe, 1844 u32 crc0, u32 crc1, 1845 u32 crc2, u32 crc3, 1846 u32 crc4) {} 1847 #endif 1848 1849 1850 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1851 enum pipe pipe) 1852 { 1853 display_pipe_crc_irq_handler(dev_priv, pipe, 1854 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1855 0, 0, 0, 0); 1856 } 1857 1858 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1859 enum pipe pipe) 1860 { 1861 display_pipe_crc_irq_handler(dev_priv, pipe, 1862 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1863 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1864 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1865 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1866 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1867 } 1868 1869 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1870 enum pipe pipe) 1871 { 1872 u32 res1, res2; 1873 1874 if (INTEL_GEN(dev_priv) >= 3) 1875 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1876 else 1877 res1 = 0; 1878 1879 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1880 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1881 else 1882 res2 = 0; 1883 1884 display_pipe_crc_irq_handler(dev_priv, pipe, 1885 I915_READ(PIPE_CRC_RES_RED(pipe)), 1886 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1887 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1888 res1, res2); 1889 } 1890 1891 /* The RPS events need forcewake, so we add them to a work queue and mask their 1892 * IMR bits until the work is done. Other interrupts can be processed without 1893 * the work queue. */ 1894 static void gen11_rps_irq_handler(struct drm_i915_private *i915, u32 pm_iir) 1895 { 1896 struct intel_rps *rps = &i915->gt_pm.rps; 1897 const u32 events = i915->pm_rps_events & pm_iir; 1898 1899 lockdep_assert_held(&i915->irq_lock); 1900 1901 if (unlikely(!events)) 1902 return; 1903 1904 gen6_mask_pm_irq(i915, events); 1905 1906 if (!rps->interrupts_enabled) 1907 return; 1908 1909 rps->pm_iir |= events; 1910 schedule_work(&rps->work); 1911 } 1912 1913 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1914 { 1915 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1916 1917 if (pm_iir & dev_priv->pm_rps_events) { 1918 spin_lock(&dev_priv->irq_lock); 1919 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1920 if (rps->interrupts_enabled) { 1921 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events; 1922 schedule_work(&rps->work); 1923 } 1924 spin_unlock(&dev_priv->irq_lock); 1925 } 1926 1927 if (INTEL_GEN(dev_priv) >= 8) 1928 return; 1929 1930 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1931 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]); 1932 1933 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1934 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1935 } 1936 1937 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) 1938 { 1939 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) 1940 intel_guc_to_host_event_handler(&dev_priv->guc); 1941 } 1942 1943 static void gen11_guc_irq_handler(struct drm_i915_private *i915, u16 iir) 1944 { 1945 if (iir & GEN11_GUC_INTR_GUC2HOST) 1946 intel_guc_to_host_event_handler(&i915->guc); 1947 } 1948 1949 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1950 { 1951 enum pipe pipe; 1952 1953 for_each_pipe(dev_priv, pipe) { 1954 I915_WRITE(PIPESTAT(pipe), 1955 PIPESTAT_INT_STATUS_MASK | 1956 PIPE_FIFO_UNDERRUN_STATUS); 1957 1958 dev_priv->pipestat_irq_mask[pipe] = 0; 1959 } 1960 } 1961 1962 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1963 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1964 { 1965 int pipe; 1966 1967 spin_lock(&dev_priv->irq_lock); 1968 1969 if (!dev_priv->display_irqs_enabled) { 1970 spin_unlock(&dev_priv->irq_lock); 1971 return; 1972 } 1973 1974 for_each_pipe(dev_priv, pipe) { 1975 i915_reg_t reg; 1976 u32 status_mask, enable_mask, iir_bit = 0; 1977 1978 /* 1979 * PIPESTAT bits get signalled even when the interrupt is 1980 * disabled with the mask bits, and some of the status bits do 1981 * not generate interrupts at all (like the underrun bit). Hence 1982 * we need to be careful that we only handle what we want to 1983 * handle. 1984 */ 1985 1986 /* fifo underruns are filterered in the underrun handler. */ 1987 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1988 1989 switch (pipe) { 1990 case PIPE_A: 1991 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1992 break; 1993 case PIPE_B: 1994 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1995 break; 1996 case PIPE_C: 1997 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1998 break; 1999 } 2000 if (iir & iir_bit) 2001 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 2002 2003 if (!status_mask) 2004 continue; 2005 2006 reg = PIPESTAT(pipe); 2007 pipe_stats[pipe] = I915_READ(reg) & status_mask; 2008 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 2009 2010 /* 2011 * Clear the PIPE*STAT regs before the IIR 2012 * 2013 * Toggle the enable bits to make sure we get an 2014 * edge in the ISR pipe event bit if we don't clear 2015 * all the enabled status bits. Otherwise the edge 2016 * triggered IIR on i965/g4x wouldn't notice that 2017 * an interrupt is still pending. 2018 */ 2019 if (pipe_stats[pipe]) { 2020 I915_WRITE(reg, pipe_stats[pipe]); 2021 I915_WRITE(reg, enable_mask); 2022 } 2023 } 2024 spin_unlock(&dev_priv->irq_lock); 2025 } 2026 2027 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 2028 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 2029 { 2030 enum pipe pipe; 2031 2032 for_each_pipe(dev_priv, pipe) { 2033 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 2034 drm_handle_vblank(&dev_priv->drm, pipe); 2035 2036 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2037 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2038 2039 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2040 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2041 } 2042 } 2043 2044 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 2045 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 2046 { 2047 bool blc_event = false; 2048 enum pipe pipe; 2049 2050 for_each_pipe(dev_priv, pipe) { 2051 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 2052 drm_handle_vblank(&dev_priv->drm, pipe); 2053 2054 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 2055 blc_event = true; 2056 2057 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2058 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2059 2060 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2061 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2062 } 2063 2064 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 2065 intel_opregion_asle_intr(dev_priv); 2066 } 2067 2068 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 2069 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 2070 { 2071 bool blc_event = false; 2072 enum pipe pipe; 2073 2074 for_each_pipe(dev_priv, pipe) { 2075 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 2076 drm_handle_vblank(&dev_priv->drm, pipe); 2077 2078 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 2079 blc_event = true; 2080 2081 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2082 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2083 2084 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2085 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2086 } 2087 2088 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 2089 intel_opregion_asle_intr(dev_priv); 2090 2091 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 2092 gmbus_irq_handler(dev_priv); 2093 } 2094 2095 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 2096 u32 pipe_stats[I915_MAX_PIPES]) 2097 { 2098 enum pipe pipe; 2099 2100 for_each_pipe(dev_priv, pipe) { 2101 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 2102 drm_handle_vblank(&dev_priv->drm, pipe); 2103 2104 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2105 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2106 2107 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2108 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2109 } 2110 2111 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 2112 gmbus_irq_handler(dev_priv); 2113 } 2114 2115 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 2116 { 2117 u32 hotplug_status = 0, hotplug_status_mask; 2118 int i; 2119 2120 if (IS_G4X(dev_priv) || 2121 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2122 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 2123 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 2124 else 2125 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 2126 2127 /* 2128 * We absolutely have to clear all the pending interrupt 2129 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 2130 * interrupt bit won't have an edge, and the i965/g4x 2131 * edge triggered IIR will not notice that an interrupt 2132 * is still pending. We can't use PORT_HOTPLUG_EN to 2133 * guarantee the edge as the act of toggling the enable 2134 * bits can itself generate a new hotplug interrupt :( 2135 */ 2136 for (i = 0; i < 10; i++) { 2137 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask; 2138 2139 if (tmp == 0) 2140 return hotplug_status; 2141 2142 hotplug_status |= tmp; 2143 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 2144 } 2145 2146 WARN_ONCE(1, 2147 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 2148 I915_READ(PORT_HOTPLUG_STAT)); 2149 2150 return hotplug_status; 2151 } 2152 2153 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2154 u32 hotplug_status) 2155 { 2156 u32 pin_mask = 0, long_mask = 0; 2157 2158 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 2159 IS_CHERRYVIEW(dev_priv)) { 2160 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 2161 2162 if (hotplug_trigger) { 2163 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2164 hotplug_trigger, hotplug_trigger, 2165 hpd_status_g4x, 2166 i9xx_port_hotplug_long_detect); 2167 2168 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2169 } 2170 2171 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 2172 dp_aux_irq_handler(dev_priv); 2173 } else { 2174 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 2175 2176 if (hotplug_trigger) { 2177 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2178 hotplug_trigger, hotplug_trigger, 2179 hpd_status_i915, 2180 i9xx_port_hotplug_long_detect); 2181 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2182 } 2183 } 2184 } 2185 2186 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 2187 { 2188 struct drm_device *dev = arg; 2189 struct drm_i915_private *dev_priv = to_i915(dev); 2190 irqreturn_t ret = IRQ_NONE; 2191 2192 if (!intel_irqs_enabled(dev_priv)) 2193 return IRQ_NONE; 2194 2195 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2196 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2197 2198 do { 2199 u32 iir, gt_iir, pm_iir; 2200 u32 pipe_stats[I915_MAX_PIPES] = {}; 2201 u32 hotplug_status = 0; 2202 u32 ier = 0; 2203 2204 gt_iir = I915_READ(GTIIR); 2205 pm_iir = I915_READ(GEN6_PMIIR); 2206 iir = I915_READ(VLV_IIR); 2207 2208 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 2209 break; 2210 2211 ret = IRQ_HANDLED; 2212 2213 /* 2214 * Theory on interrupt generation, based on empirical evidence: 2215 * 2216 * x = ((VLV_IIR & VLV_IER) || 2217 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 2218 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 2219 * 2220 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2221 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 2222 * guarantee the CPU interrupt will be raised again even if we 2223 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 2224 * bits this time around. 2225 */ 2226 I915_WRITE(VLV_MASTER_IER, 0); 2227 ier = I915_READ(VLV_IER); 2228 I915_WRITE(VLV_IER, 0); 2229 2230 if (gt_iir) 2231 I915_WRITE(GTIIR, gt_iir); 2232 if (pm_iir) 2233 I915_WRITE(GEN6_PMIIR, pm_iir); 2234 2235 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2236 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2237 2238 /* Call regardless, as some status bits might not be 2239 * signalled in iir */ 2240 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2241 2242 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2243 I915_LPE_PIPE_B_INTERRUPT)) 2244 intel_lpe_audio_irq_handler(dev_priv); 2245 2246 /* 2247 * VLV_IIR is single buffered, and reflects the level 2248 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2249 */ 2250 if (iir) 2251 I915_WRITE(VLV_IIR, iir); 2252 2253 I915_WRITE(VLV_IER, ier); 2254 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 2255 2256 if (gt_iir) 2257 snb_gt_irq_handler(dev_priv, gt_iir); 2258 if (pm_iir) 2259 gen6_rps_irq_handler(dev_priv, pm_iir); 2260 2261 if (hotplug_status) 2262 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2263 2264 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2265 } while (0); 2266 2267 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2268 2269 return ret; 2270 } 2271 2272 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 2273 { 2274 struct drm_device *dev = arg; 2275 struct drm_i915_private *dev_priv = to_i915(dev); 2276 irqreturn_t ret = IRQ_NONE; 2277 2278 if (!intel_irqs_enabled(dev_priv)) 2279 return IRQ_NONE; 2280 2281 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2282 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2283 2284 do { 2285 u32 master_ctl, iir; 2286 u32 pipe_stats[I915_MAX_PIPES] = {}; 2287 u32 hotplug_status = 0; 2288 u32 gt_iir[4]; 2289 u32 ier = 0; 2290 2291 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 2292 iir = I915_READ(VLV_IIR); 2293 2294 if (master_ctl == 0 && iir == 0) 2295 break; 2296 2297 ret = IRQ_HANDLED; 2298 2299 /* 2300 * Theory on interrupt generation, based on empirical evidence: 2301 * 2302 * x = ((VLV_IIR & VLV_IER) || 2303 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 2304 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 2305 * 2306 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2307 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 2308 * guarantee the CPU interrupt will be raised again even if we 2309 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 2310 * bits this time around. 2311 */ 2312 I915_WRITE(GEN8_MASTER_IRQ, 0); 2313 ier = I915_READ(VLV_IER); 2314 I915_WRITE(VLV_IER, 0); 2315 2316 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2317 2318 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2319 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2320 2321 /* Call regardless, as some status bits might not be 2322 * signalled in iir */ 2323 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2324 2325 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2326 I915_LPE_PIPE_B_INTERRUPT | 2327 I915_LPE_PIPE_C_INTERRUPT)) 2328 intel_lpe_audio_irq_handler(dev_priv); 2329 2330 /* 2331 * VLV_IIR is single buffered, and reflects the level 2332 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2333 */ 2334 if (iir) 2335 I915_WRITE(VLV_IIR, iir); 2336 2337 I915_WRITE(VLV_IER, ier); 2338 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2339 2340 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2341 2342 if (hotplug_status) 2343 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2344 2345 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2346 } while (0); 2347 2348 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2349 2350 return ret; 2351 } 2352 2353 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2354 u32 hotplug_trigger, 2355 const u32 hpd[HPD_NUM_PINS]) 2356 { 2357 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2358 2359 /* 2360 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 2361 * unless we touch the hotplug register, even if hotplug_trigger is 2362 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 2363 * errors. 2364 */ 2365 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2366 if (!hotplug_trigger) { 2367 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 2368 PORTD_HOTPLUG_STATUS_MASK | 2369 PORTC_HOTPLUG_STATUS_MASK | 2370 PORTB_HOTPLUG_STATUS_MASK; 2371 dig_hotplug_reg &= ~mask; 2372 } 2373 2374 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2375 if (!hotplug_trigger) 2376 return; 2377 2378 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2379 dig_hotplug_reg, hpd, 2380 pch_port_hotplug_long_detect); 2381 2382 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2383 } 2384 2385 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2386 { 2387 int pipe; 2388 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2389 2390 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 2391 2392 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2393 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2394 SDE_AUDIO_POWER_SHIFT); 2395 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2396 port_name(port)); 2397 } 2398 2399 if (pch_iir & SDE_AUX_MASK) 2400 dp_aux_irq_handler(dev_priv); 2401 2402 if (pch_iir & SDE_GMBUS) 2403 gmbus_irq_handler(dev_priv); 2404 2405 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2406 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2407 2408 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2409 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2410 2411 if (pch_iir & SDE_POISON) 2412 DRM_ERROR("PCH poison interrupt\n"); 2413 2414 if (pch_iir & SDE_FDI_MASK) 2415 for_each_pipe(dev_priv, pipe) 2416 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2417 pipe_name(pipe), 2418 I915_READ(FDI_RX_IIR(pipe))); 2419 2420 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2421 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2422 2423 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2424 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2425 2426 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2427 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 2428 2429 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2430 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 2431 } 2432 2433 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 2434 { 2435 u32 err_int = I915_READ(GEN7_ERR_INT); 2436 enum pipe pipe; 2437 2438 if (err_int & ERR_INT_POISON) 2439 DRM_ERROR("Poison interrupt\n"); 2440 2441 for_each_pipe(dev_priv, pipe) { 2442 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 2443 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2444 2445 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2446 if (IS_IVYBRIDGE(dev_priv)) 2447 ivb_pipe_crc_irq_handler(dev_priv, pipe); 2448 else 2449 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2450 } 2451 } 2452 2453 I915_WRITE(GEN7_ERR_INT, err_int); 2454 } 2455 2456 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 2457 { 2458 u32 serr_int = I915_READ(SERR_INT); 2459 enum pipe pipe; 2460 2461 if (serr_int & SERR_INT_POISON) 2462 DRM_ERROR("PCH poison interrupt\n"); 2463 2464 for_each_pipe(dev_priv, pipe) 2465 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 2466 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 2467 2468 I915_WRITE(SERR_INT, serr_int); 2469 } 2470 2471 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2472 { 2473 int pipe; 2474 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2475 2476 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 2477 2478 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2479 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2480 SDE_AUDIO_POWER_SHIFT_CPT); 2481 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2482 port_name(port)); 2483 } 2484 2485 if (pch_iir & SDE_AUX_MASK_CPT) 2486 dp_aux_irq_handler(dev_priv); 2487 2488 if (pch_iir & SDE_GMBUS_CPT) 2489 gmbus_irq_handler(dev_priv); 2490 2491 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2492 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2493 2494 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2495 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2496 2497 if (pch_iir & SDE_FDI_MASK_CPT) 2498 for_each_pipe(dev_priv, pipe) 2499 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2500 pipe_name(pipe), 2501 I915_READ(FDI_RX_IIR(pipe))); 2502 2503 if (pch_iir & SDE_ERROR_CPT) 2504 cpt_serr_int_handler(dev_priv); 2505 } 2506 2507 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir, 2508 const u32 *pins) 2509 { 2510 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; 2511 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP; 2512 u32 pin_mask = 0, long_mask = 0; 2513 2514 if (ddi_hotplug_trigger) { 2515 u32 dig_hotplug_reg; 2516 2517 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); 2518 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); 2519 2520 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2521 ddi_hotplug_trigger, 2522 dig_hotplug_reg, pins, 2523 icp_ddi_port_hotplug_long_detect); 2524 } 2525 2526 if (tc_hotplug_trigger) { 2527 u32 dig_hotplug_reg; 2528 2529 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); 2530 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); 2531 2532 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2533 tc_hotplug_trigger, 2534 dig_hotplug_reg, pins, 2535 icp_tc_port_hotplug_long_detect); 2536 } 2537 2538 if (pin_mask) 2539 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2540 2541 if (pch_iir & SDE_GMBUS_ICP) 2542 gmbus_irq_handler(dev_priv); 2543 } 2544 2545 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2546 { 2547 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2548 ~SDE_PORTE_HOTPLUG_SPT; 2549 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2550 u32 pin_mask = 0, long_mask = 0; 2551 2552 if (hotplug_trigger) { 2553 u32 dig_hotplug_reg; 2554 2555 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2556 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2557 2558 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2559 hotplug_trigger, dig_hotplug_reg, hpd_spt, 2560 spt_port_hotplug_long_detect); 2561 } 2562 2563 if (hotplug2_trigger) { 2564 u32 dig_hotplug_reg; 2565 2566 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 2567 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2568 2569 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2570 hotplug2_trigger, dig_hotplug_reg, hpd_spt, 2571 spt_port_hotplug2_long_detect); 2572 } 2573 2574 if (pin_mask) 2575 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2576 2577 if (pch_iir & SDE_GMBUS_CPT) 2578 gmbus_irq_handler(dev_priv); 2579 } 2580 2581 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2582 u32 hotplug_trigger, 2583 const u32 hpd[HPD_NUM_PINS]) 2584 { 2585 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2586 2587 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2588 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2589 2590 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2591 dig_hotplug_reg, hpd, 2592 ilk_port_hotplug_long_detect); 2593 2594 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2595 } 2596 2597 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2598 u32 de_iir) 2599 { 2600 enum pipe pipe; 2601 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2602 2603 if (hotplug_trigger) 2604 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 2605 2606 if (de_iir & DE_AUX_CHANNEL_A) 2607 dp_aux_irq_handler(dev_priv); 2608 2609 if (de_iir & DE_GSE) 2610 intel_opregion_asle_intr(dev_priv); 2611 2612 if (de_iir & DE_POISON) 2613 DRM_ERROR("Poison interrupt\n"); 2614 2615 for_each_pipe(dev_priv, pipe) { 2616 if (de_iir & DE_PIPE_VBLANK(pipe)) 2617 drm_handle_vblank(&dev_priv->drm, pipe); 2618 2619 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2620 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2621 2622 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2623 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2624 } 2625 2626 /* check event from PCH */ 2627 if (de_iir & DE_PCH_EVENT) { 2628 u32 pch_iir = I915_READ(SDEIIR); 2629 2630 if (HAS_PCH_CPT(dev_priv)) 2631 cpt_irq_handler(dev_priv, pch_iir); 2632 else 2633 ibx_irq_handler(dev_priv, pch_iir); 2634 2635 /* should clear PCH hotplug event before clear CPU irq */ 2636 I915_WRITE(SDEIIR, pch_iir); 2637 } 2638 2639 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT) 2640 ironlake_rps_change_irq_handler(dev_priv); 2641 } 2642 2643 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2644 u32 de_iir) 2645 { 2646 enum pipe pipe; 2647 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2648 2649 if (hotplug_trigger) 2650 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2651 2652 if (de_iir & DE_ERR_INT_IVB) 2653 ivb_err_int_handler(dev_priv); 2654 2655 if (de_iir & DE_EDP_PSR_INT_HSW) { 2656 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2657 2658 intel_psr_irq_handler(dev_priv, psr_iir); 2659 I915_WRITE(EDP_PSR_IIR, psr_iir); 2660 } 2661 2662 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2663 dp_aux_irq_handler(dev_priv); 2664 2665 if (de_iir & DE_GSE_IVB) 2666 intel_opregion_asle_intr(dev_priv); 2667 2668 for_each_pipe(dev_priv, pipe) { 2669 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2670 drm_handle_vblank(&dev_priv->drm, pipe); 2671 } 2672 2673 /* check event from PCH */ 2674 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2675 u32 pch_iir = I915_READ(SDEIIR); 2676 2677 cpt_irq_handler(dev_priv, pch_iir); 2678 2679 /* clear PCH hotplug event before clear CPU irq */ 2680 I915_WRITE(SDEIIR, pch_iir); 2681 } 2682 } 2683 2684 /* 2685 * To handle irqs with the minimum potential races with fresh interrupts, we: 2686 * 1 - Disable Master Interrupt Control. 2687 * 2 - Find the source(s) of the interrupt. 2688 * 3 - Clear the Interrupt Identity bits (IIR). 2689 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2690 * 5 - Re-enable Master Interrupt Control. 2691 */ 2692 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2693 { 2694 struct drm_device *dev = arg; 2695 struct drm_i915_private *dev_priv = to_i915(dev); 2696 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2697 irqreturn_t ret = IRQ_NONE; 2698 2699 if (!intel_irqs_enabled(dev_priv)) 2700 return IRQ_NONE; 2701 2702 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2703 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2704 2705 /* disable master interrupt before clearing iir */ 2706 de_ier = I915_READ(DEIER); 2707 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2708 2709 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2710 * interrupts will will be stored on its back queue, and then we'll be 2711 * able to process them after we restore SDEIER (as soon as we restore 2712 * it, we'll get an interrupt if SDEIIR still has something to process 2713 * due to its back queue). */ 2714 if (!HAS_PCH_NOP(dev_priv)) { 2715 sde_ier = I915_READ(SDEIER); 2716 I915_WRITE(SDEIER, 0); 2717 } 2718 2719 /* Find, clear, then process each source of interrupt */ 2720 2721 gt_iir = I915_READ(GTIIR); 2722 if (gt_iir) { 2723 I915_WRITE(GTIIR, gt_iir); 2724 ret = IRQ_HANDLED; 2725 if (INTEL_GEN(dev_priv) >= 6) 2726 snb_gt_irq_handler(dev_priv, gt_iir); 2727 else 2728 ilk_gt_irq_handler(dev_priv, gt_iir); 2729 } 2730 2731 de_iir = I915_READ(DEIIR); 2732 if (de_iir) { 2733 I915_WRITE(DEIIR, de_iir); 2734 ret = IRQ_HANDLED; 2735 if (INTEL_GEN(dev_priv) >= 7) 2736 ivb_display_irq_handler(dev_priv, de_iir); 2737 else 2738 ilk_display_irq_handler(dev_priv, de_iir); 2739 } 2740 2741 if (INTEL_GEN(dev_priv) >= 6) { 2742 u32 pm_iir = I915_READ(GEN6_PMIIR); 2743 if (pm_iir) { 2744 I915_WRITE(GEN6_PMIIR, pm_iir); 2745 ret = IRQ_HANDLED; 2746 gen6_rps_irq_handler(dev_priv, pm_iir); 2747 } 2748 } 2749 2750 I915_WRITE(DEIER, de_ier); 2751 if (!HAS_PCH_NOP(dev_priv)) 2752 I915_WRITE(SDEIER, sde_ier); 2753 2754 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2755 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2756 2757 return ret; 2758 } 2759 2760 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2761 u32 hotplug_trigger, 2762 const u32 hpd[HPD_NUM_PINS]) 2763 { 2764 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2765 2766 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2767 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2768 2769 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2770 dig_hotplug_reg, hpd, 2771 bxt_port_hotplug_long_detect); 2772 2773 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2774 } 2775 2776 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2777 { 2778 u32 pin_mask = 0, long_mask = 0; 2779 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2780 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2781 2782 if (trigger_tc) { 2783 u32 dig_hotplug_reg; 2784 2785 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL); 2786 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); 2787 2788 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc, 2789 dig_hotplug_reg, hpd_gen11, 2790 gen11_port_hotplug_long_detect); 2791 } 2792 2793 if (trigger_tbt) { 2794 u32 dig_hotplug_reg; 2795 2796 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL); 2797 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); 2798 2799 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt, 2800 dig_hotplug_reg, hpd_gen11, 2801 gen11_port_hotplug_long_detect); 2802 } 2803 2804 if (pin_mask) 2805 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2806 else 2807 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir); 2808 } 2809 2810 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2811 { 2812 u32 mask = GEN8_AUX_CHANNEL_A; 2813 2814 if (INTEL_GEN(dev_priv) >= 9) 2815 mask |= GEN9_AUX_CHANNEL_B | 2816 GEN9_AUX_CHANNEL_C | 2817 GEN9_AUX_CHANNEL_D; 2818 2819 if (IS_CNL_WITH_PORT_F(dev_priv)) 2820 mask |= CNL_AUX_CHANNEL_F; 2821 2822 if (INTEL_GEN(dev_priv) >= 11) 2823 mask |= ICL_AUX_CHANNEL_E | 2824 CNL_AUX_CHANNEL_F; 2825 2826 return mask; 2827 } 2828 2829 static irqreturn_t 2830 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2831 { 2832 irqreturn_t ret = IRQ_NONE; 2833 u32 iir; 2834 enum pipe pipe; 2835 2836 if (master_ctl & GEN8_DE_MISC_IRQ) { 2837 iir = I915_READ(GEN8_DE_MISC_IIR); 2838 if (iir) { 2839 bool found = false; 2840 2841 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2842 ret = IRQ_HANDLED; 2843 2844 if (iir & GEN8_DE_MISC_GSE) { 2845 intel_opregion_asle_intr(dev_priv); 2846 found = true; 2847 } 2848 2849 if (iir & GEN8_DE_EDP_PSR) { 2850 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2851 2852 intel_psr_irq_handler(dev_priv, psr_iir); 2853 I915_WRITE(EDP_PSR_IIR, psr_iir); 2854 found = true; 2855 } 2856 2857 if (!found) 2858 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2859 } 2860 else 2861 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2862 } 2863 2864 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2865 iir = I915_READ(GEN11_DE_HPD_IIR); 2866 if (iir) { 2867 I915_WRITE(GEN11_DE_HPD_IIR, iir); 2868 ret = IRQ_HANDLED; 2869 gen11_hpd_irq_handler(dev_priv, iir); 2870 } else { 2871 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n"); 2872 } 2873 } 2874 2875 if (master_ctl & GEN8_DE_PORT_IRQ) { 2876 iir = I915_READ(GEN8_DE_PORT_IIR); 2877 if (iir) { 2878 u32 tmp_mask; 2879 bool found = false; 2880 2881 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2882 ret = IRQ_HANDLED; 2883 2884 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2885 dp_aux_irq_handler(dev_priv); 2886 found = true; 2887 } 2888 2889 if (IS_GEN9_LP(dev_priv)) { 2890 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2891 if (tmp_mask) { 2892 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2893 hpd_bxt); 2894 found = true; 2895 } 2896 } else if (IS_BROADWELL(dev_priv)) { 2897 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2898 if (tmp_mask) { 2899 ilk_hpd_irq_handler(dev_priv, 2900 tmp_mask, hpd_bdw); 2901 found = true; 2902 } 2903 } 2904 2905 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2906 gmbus_irq_handler(dev_priv); 2907 found = true; 2908 } 2909 2910 if (!found) 2911 DRM_ERROR("Unexpected DE Port interrupt\n"); 2912 } 2913 else 2914 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2915 } 2916 2917 for_each_pipe(dev_priv, pipe) { 2918 u32 fault_errors; 2919 2920 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2921 continue; 2922 2923 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2924 if (!iir) { 2925 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2926 continue; 2927 } 2928 2929 ret = IRQ_HANDLED; 2930 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2931 2932 if (iir & GEN8_PIPE_VBLANK) 2933 drm_handle_vblank(&dev_priv->drm, pipe); 2934 2935 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2936 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2937 2938 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2939 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2940 2941 fault_errors = iir; 2942 if (INTEL_GEN(dev_priv) >= 9) 2943 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2944 else 2945 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2946 2947 if (fault_errors) 2948 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", 2949 pipe_name(pipe), 2950 fault_errors); 2951 } 2952 2953 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2954 master_ctl & GEN8_DE_PCH_IRQ) { 2955 /* 2956 * FIXME(BDW): Assume for now that the new interrupt handling 2957 * scheme also closed the SDE interrupt handling race we've seen 2958 * on older pch-split platforms. But this needs testing. 2959 */ 2960 iir = I915_READ(SDEIIR); 2961 if (iir) { 2962 I915_WRITE(SDEIIR, iir); 2963 ret = IRQ_HANDLED; 2964 2965 if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC) 2966 icp_irq_handler(dev_priv, iir, hpd_mcc); 2967 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2968 icp_irq_handler(dev_priv, iir, hpd_icp); 2969 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2970 spt_irq_handler(dev_priv, iir); 2971 else 2972 cpt_irq_handler(dev_priv, iir); 2973 } else { 2974 /* 2975 * Like on previous PCH there seems to be something 2976 * fishy going on with forwarding PCH interrupts. 2977 */ 2978 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); 2979 } 2980 } 2981 2982 return ret; 2983 } 2984 2985 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2986 { 2987 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2988 2989 /* 2990 * Now with master disabled, get a sample of level indications 2991 * for this interrupt. Indications will be cleared on related acks. 2992 * New indications can and will light up during processing, 2993 * and will generate new interrupt after enabling master. 2994 */ 2995 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2996 } 2997 2998 static inline void gen8_master_intr_enable(void __iomem * const regs) 2999 { 3000 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3001 } 3002 3003 static irqreturn_t gen8_irq_handler(int irq, void *arg) 3004 { 3005 struct drm_i915_private *dev_priv = to_i915(arg); 3006 void __iomem * const regs = dev_priv->uncore.regs; 3007 u32 master_ctl; 3008 u32 gt_iir[4]; 3009 3010 if (!intel_irqs_enabled(dev_priv)) 3011 return IRQ_NONE; 3012 3013 master_ctl = gen8_master_intr_disable(regs); 3014 if (!master_ctl) { 3015 gen8_master_intr_enable(regs); 3016 return IRQ_NONE; 3017 } 3018 3019 /* Find, clear, then process each source of interrupt */ 3020 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 3021 3022 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3023 if (master_ctl & ~GEN8_GT_IRQS) { 3024 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3025 gen8_de_irq_handler(dev_priv, master_ctl); 3026 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3027 } 3028 3029 gen8_master_intr_enable(regs); 3030 3031 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 3032 3033 return IRQ_HANDLED; 3034 } 3035 3036 static u32 3037 gen11_gt_engine_identity(struct drm_i915_private * const i915, 3038 const unsigned int bank, const unsigned int bit) 3039 { 3040 void __iomem * const regs = i915->uncore.regs; 3041 u32 timeout_ts; 3042 u32 ident; 3043 3044 lockdep_assert_held(&i915->irq_lock); 3045 3046 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); 3047 3048 /* 3049 * NB: Specs do not specify how long to spin wait, 3050 * so we do ~100us as an educated guess. 3051 */ 3052 timeout_ts = (local_clock() >> 10) + 100; 3053 do { 3054 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); 3055 } while (!(ident & GEN11_INTR_DATA_VALID) && 3056 !time_after32(local_clock() >> 10, timeout_ts)); 3057 3058 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { 3059 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", 3060 bank, bit, ident); 3061 return 0; 3062 } 3063 3064 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), 3065 GEN11_INTR_DATA_VALID); 3066 3067 return ident; 3068 } 3069 3070 static void 3071 gen11_other_irq_handler(struct drm_i915_private * const i915, 3072 const u8 instance, const u16 iir) 3073 { 3074 if (instance == OTHER_GUC_INSTANCE) 3075 return gen11_guc_irq_handler(i915, iir); 3076 3077 if (instance == OTHER_GTPM_INSTANCE) 3078 return gen11_rps_irq_handler(i915, iir); 3079 3080 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", 3081 instance, iir); 3082 } 3083 3084 static void 3085 gen11_engine_irq_handler(struct drm_i915_private * const i915, 3086 const u8 class, const u8 instance, const u16 iir) 3087 { 3088 struct intel_engine_cs *engine; 3089 3090 if (instance <= MAX_ENGINE_INSTANCE) 3091 engine = i915->engine_class[class][instance]; 3092 else 3093 engine = NULL; 3094 3095 if (likely(engine)) 3096 return gen8_cs_irq_handler(engine, iir); 3097 3098 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n", 3099 class, instance); 3100 } 3101 3102 static void 3103 gen11_gt_identity_handler(struct drm_i915_private * const i915, 3104 const u32 identity) 3105 { 3106 const u8 class = GEN11_INTR_ENGINE_CLASS(identity); 3107 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); 3108 const u16 intr = GEN11_INTR_ENGINE_INTR(identity); 3109 3110 if (unlikely(!intr)) 3111 return; 3112 3113 if (class <= COPY_ENGINE_CLASS) 3114 return gen11_engine_irq_handler(i915, class, instance, intr); 3115 3116 if (class == OTHER_CLASS) 3117 return gen11_other_irq_handler(i915, instance, intr); 3118 3119 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", 3120 class, instance, intr); 3121 } 3122 3123 static void 3124 gen11_gt_bank_handler(struct drm_i915_private * const i915, 3125 const unsigned int bank) 3126 { 3127 void __iomem * const regs = i915->uncore.regs; 3128 unsigned long intr_dw; 3129 unsigned int bit; 3130 3131 lockdep_assert_held(&i915->irq_lock); 3132 3133 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 3134 3135 for_each_set_bit(bit, &intr_dw, 32) { 3136 const u32 ident = gen11_gt_engine_identity(i915, bank, bit); 3137 3138 gen11_gt_identity_handler(i915, ident); 3139 } 3140 3141 /* Clear must be after shared has been served for engine */ 3142 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); 3143 } 3144 3145 static void 3146 gen11_gt_irq_handler(struct drm_i915_private * const i915, 3147 const u32 master_ctl) 3148 { 3149 unsigned int bank; 3150 3151 spin_lock(&i915->irq_lock); 3152 3153 for (bank = 0; bank < 2; bank++) { 3154 if (master_ctl & GEN11_GT_DW_IRQ(bank)) 3155 gen11_gt_bank_handler(i915, bank); 3156 } 3157 3158 spin_unlock(&i915->irq_lock); 3159 } 3160 3161 static u32 3162 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl) 3163 { 3164 void __iomem * const regs = dev_priv->uncore.regs; 3165 u32 iir; 3166 3167 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 3168 return 0; 3169 3170 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 3171 if (likely(iir)) 3172 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 3173 3174 return iir; 3175 } 3176 3177 static void 3178 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir) 3179 { 3180 if (iir & GEN11_GU_MISC_GSE) 3181 intel_opregion_asle_intr(dev_priv); 3182 } 3183 3184 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 3185 { 3186 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 3187 3188 /* 3189 * Now with master disabled, get a sample of level indications 3190 * for this interrupt. Indications will be cleared on related acks. 3191 * New indications can and will light up during processing, 3192 * and will generate new interrupt after enabling master. 3193 */ 3194 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 3195 } 3196 3197 static inline void gen11_master_intr_enable(void __iomem * const regs) 3198 { 3199 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 3200 } 3201 3202 static irqreturn_t gen11_irq_handler(int irq, void *arg) 3203 { 3204 struct drm_i915_private * const i915 = to_i915(arg); 3205 void __iomem * const regs = i915->uncore.regs; 3206 u32 master_ctl; 3207 u32 gu_misc_iir; 3208 3209 if (!intel_irqs_enabled(i915)) 3210 return IRQ_NONE; 3211 3212 master_ctl = gen11_master_intr_disable(regs); 3213 if (!master_ctl) { 3214 gen11_master_intr_enable(regs); 3215 return IRQ_NONE; 3216 } 3217 3218 /* Find, clear, then process each source of interrupt. */ 3219 gen11_gt_irq_handler(i915, master_ctl); 3220 3221 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3222 if (master_ctl & GEN11_DISPLAY_IRQ) { 3223 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 3224 3225 disable_rpm_wakeref_asserts(&i915->runtime_pm); 3226 /* 3227 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 3228 * for the display related bits. 3229 */ 3230 gen8_de_irq_handler(i915, disp_ctl); 3231 enable_rpm_wakeref_asserts(&i915->runtime_pm); 3232 } 3233 3234 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl); 3235 3236 gen11_master_intr_enable(regs); 3237 3238 gen11_gu_misc_irq_handler(i915, gu_misc_iir); 3239 3240 return IRQ_HANDLED; 3241 } 3242 3243 /* Called from drm generic code, passed 'crtc' which 3244 * we use as a pipe index 3245 */ 3246 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) 3247 { 3248 struct drm_i915_private *dev_priv = to_i915(dev); 3249 unsigned long irqflags; 3250 3251 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3252 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3253 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3254 3255 return 0; 3256 } 3257 3258 static int i945gm_enable_vblank(struct drm_device *dev, unsigned int pipe) 3259 { 3260 struct drm_i915_private *dev_priv = to_i915(dev); 3261 3262 if (dev_priv->i945gm_vblank.enabled++ == 0) 3263 schedule_work(&dev_priv->i945gm_vblank.work); 3264 3265 return i8xx_enable_vblank(dev, pipe); 3266 } 3267 3268 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) 3269 { 3270 struct drm_i915_private *dev_priv = to_i915(dev); 3271 unsigned long irqflags; 3272 3273 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3274 i915_enable_pipestat(dev_priv, pipe, 3275 PIPE_START_VBLANK_INTERRUPT_STATUS); 3276 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3277 3278 return 0; 3279 } 3280 3281 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) 3282 { 3283 struct drm_i915_private *dev_priv = to_i915(dev); 3284 unsigned long irqflags; 3285 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 3286 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3287 3288 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3289 ilk_enable_display_irq(dev_priv, bit); 3290 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3291 3292 /* Even though there is no DMC, frame counter can get stuck when 3293 * PSR is active as no frames are generated. 3294 */ 3295 if (HAS_PSR(dev_priv)) 3296 drm_vblank_restore(dev, pipe); 3297 3298 return 0; 3299 } 3300 3301 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) 3302 { 3303 struct drm_i915_private *dev_priv = to_i915(dev); 3304 unsigned long irqflags; 3305 3306 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3307 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3308 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3309 3310 /* Even if there is no DMC, frame counter can get stuck when 3311 * PSR is active as no frames are generated, so check only for PSR. 3312 */ 3313 if (HAS_PSR(dev_priv)) 3314 drm_vblank_restore(dev, pipe); 3315 3316 return 0; 3317 } 3318 3319 /* Called from drm generic code, passed 'crtc' which 3320 * we use as a pipe index 3321 */ 3322 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) 3323 { 3324 struct drm_i915_private *dev_priv = to_i915(dev); 3325 unsigned long irqflags; 3326 3327 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3328 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3329 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3330 } 3331 3332 static void i945gm_disable_vblank(struct drm_device *dev, unsigned int pipe) 3333 { 3334 struct drm_i915_private *dev_priv = to_i915(dev); 3335 3336 i8xx_disable_vblank(dev, pipe); 3337 3338 if (--dev_priv->i945gm_vblank.enabled == 0) 3339 schedule_work(&dev_priv->i945gm_vblank.work); 3340 } 3341 3342 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) 3343 { 3344 struct drm_i915_private *dev_priv = to_i915(dev); 3345 unsigned long irqflags; 3346 3347 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3348 i915_disable_pipestat(dev_priv, pipe, 3349 PIPE_START_VBLANK_INTERRUPT_STATUS); 3350 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3351 } 3352 3353 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) 3354 { 3355 struct drm_i915_private *dev_priv = to_i915(dev); 3356 unsigned long irqflags; 3357 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 3358 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3359 3360 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3361 ilk_disable_display_irq(dev_priv, bit); 3362 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3363 } 3364 3365 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) 3366 { 3367 struct drm_i915_private *dev_priv = to_i915(dev); 3368 unsigned long irqflags; 3369 3370 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3371 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3372 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3373 } 3374 3375 static void i945gm_vblank_work_func(struct work_struct *work) 3376 { 3377 struct drm_i915_private *dev_priv = 3378 container_of(work, struct drm_i915_private, i945gm_vblank.work); 3379 3380 /* 3381 * Vblank interrupts fail to wake up the device from C3, 3382 * hence we want to prevent C3 usage while vblank interrupts 3383 * are enabled. 3384 */ 3385 pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos, 3386 READ_ONCE(dev_priv->i945gm_vblank.enabled) ? 3387 dev_priv->i945gm_vblank.c3_disable_latency : 3388 PM_QOS_DEFAULT_VALUE); 3389 } 3390 3391 static int cstate_disable_latency(const char *name) 3392 { 3393 const struct cpuidle_driver *drv; 3394 int i; 3395 3396 drv = cpuidle_get_driver(); 3397 if (!drv) 3398 return 0; 3399 3400 for (i = 0; i < drv->state_count; i++) { 3401 const struct cpuidle_state *state = &drv->states[i]; 3402 3403 if (!strcmp(state->name, name)) 3404 return state->exit_latency ? 3405 state->exit_latency - 1 : 0; 3406 } 3407 3408 return 0; 3409 } 3410 3411 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv) 3412 { 3413 INIT_WORK(&dev_priv->i945gm_vblank.work, 3414 i945gm_vblank_work_func); 3415 3416 dev_priv->i945gm_vblank.c3_disable_latency = 3417 cstate_disable_latency("C3"); 3418 pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos, 3419 PM_QOS_CPU_DMA_LATENCY, 3420 PM_QOS_DEFAULT_VALUE); 3421 } 3422 3423 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv) 3424 { 3425 cancel_work_sync(&dev_priv->i945gm_vblank.work); 3426 pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos); 3427 } 3428 3429 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 3430 { 3431 struct intel_uncore *uncore = &dev_priv->uncore; 3432 3433 if (HAS_PCH_NOP(dev_priv)) 3434 return; 3435 3436 GEN3_IRQ_RESET(uncore, SDE); 3437 3438 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3439 I915_WRITE(SERR_INT, 0xffffffff); 3440 } 3441 3442 /* 3443 * SDEIER is also touched by the interrupt handler to work around missed PCH 3444 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3445 * instead we unconditionally enable all PCH interrupt sources here, but then 3446 * only unmask them as needed with SDEIMR. 3447 * 3448 * This function needs to be called before interrupts are enabled. 3449 */ 3450 static void ibx_irq_pre_postinstall(struct drm_device *dev) 3451 { 3452 struct drm_i915_private *dev_priv = to_i915(dev); 3453 3454 if (HAS_PCH_NOP(dev_priv)) 3455 return; 3456 3457 WARN_ON(I915_READ(SDEIER) != 0); 3458 I915_WRITE(SDEIER, 0xffffffff); 3459 POSTING_READ(SDEIER); 3460 } 3461 3462 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) 3463 { 3464 struct intel_uncore *uncore = &dev_priv->uncore; 3465 3466 GEN3_IRQ_RESET(uncore, GT); 3467 if (INTEL_GEN(dev_priv) >= 6) 3468 GEN3_IRQ_RESET(uncore, GEN6_PM); 3469 } 3470 3471 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 3472 { 3473 struct intel_uncore *uncore = &dev_priv->uncore; 3474 3475 if (IS_CHERRYVIEW(dev_priv)) 3476 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 3477 else 3478 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 3479 3480 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 3481 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3482 3483 i9xx_pipestat_irq_reset(dev_priv); 3484 3485 GEN3_IRQ_RESET(uncore, VLV_); 3486 dev_priv->irq_mask = ~0u; 3487 } 3488 3489 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 3490 { 3491 struct intel_uncore *uncore = &dev_priv->uncore; 3492 3493 u32 pipestat_mask; 3494 u32 enable_mask; 3495 enum pipe pipe; 3496 3497 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 3498 3499 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3500 for_each_pipe(dev_priv, pipe) 3501 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 3502 3503 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3504 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3505 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3506 I915_LPE_PIPE_A_INTERRUPT | 3507 I915_LPE_PIPE_B_INTERRUPT; 3508 3509 if (IS_CHERRYVIEW(dev_priv)) 3510 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 3511 I915_LPE_PIPE_C_INTERRUPT; 3512 3513 WARN_ON(dev_priv->irq_mask != ~0u); 3514 3515 dev_priv->irq_mask = ~enable_mask; 3516 3517 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 3518 } 3519 3520 /* drm_dma.h hooks 3521 */ 3522 static void ironlake_irq_reset(struct drm_device *dev) 3523 { 3524 struct drm_i915_private *dev_priv = to_i915(dev); 3525 struct intel_uncore *uncore = &dev_priv->uncore; 3526 3527 GEN3_IRQ_RESET(uncore, DE); 3528 if (IS_GEN(dev_priv, 7)) 3529 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 3530 3531 if (IS_HASWELL(dev_priv)) { 3532 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3533 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3534 } 3535 3536 gen5_gt_irq_reset(dev_priv); 3537 3538 ibx_irq_reset(dev_priv); 3539 } 3540 3541 static void valleyview_irq_reset(struct drm_device *dev) 3542 { 3543 struct drm_i915_private *dev_priv = to_i915(dev); 3544 3545 I915_WRITE(VLV_MASTER_IER, 0); 3546 POSTING_READ(VLV_MASTER_IER); 3547 3548 gen5_gt_irq_reset(dev_priv); 3549 3550 spin_lock_irq(&dev_priv->irq_lock); 3551 if (dev_priv->display_irqs_enabled) 3552 vlv_display_irq_reset(dev_priv); 3553 spin_unlock_irq(&dev_priv->irq_lock); 3554 } 3555 3556 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 3557 { 3558 struct intel_uncore *uncore = &dev_priv->uncore; 3559 3560 GEN8_IRQ_RESET_NDX(uncore, GT, 0); 3561 GEN8_IRQ_RESET_NDX(uncore, GT, 1); 3562 GEN8_IRQ_RESET_NDX(uncore, GT, 2); 3563 GEN8_IRQ_RESET_NDX(uncore, GT, 3); 3564 } 3565 3566 static void gen8_irq_reset(struct drm_device *dev) 3567 { 3568 struct drm_i915_private *dev_priv = to_i915(dev); 3569 struct intel_uncore *uncore = &dev_priv->uncore; 3570 int pipe; 3571 3572 gen8_master_intr_disable(dev_priv->uncore.regs); 3573 3574 gen8_gt_irq_reset(dev_priv); 3575 3576 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3577 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3578 3579 for_each_pipe(dev_priv, pipe) 3580 if (intel_display_power_is_enabled(dev_priv, 3581 POWER_DOMAIN_PIPE(pipe))) 3582 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3583 3584 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3585 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3586 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3587 3588 if (HAS_PCH_SPLIT(dev_priv)) 3589 ibx_irq_reset(dev_priv); 3590 } 3591 3592 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv) 3593 { 3594 /* Disable RCS, BCS, VCS and VECS class engines. */ 3595 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0); 3596 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0); 3597 3598 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ 3599 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0); 3600 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0); 3601 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0); 3602 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0); 3603 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0); 3604 3605 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 3606 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 3607 I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0); 3608 I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~0); 3609 } 3610 3611 static void gen11_irq_reset(struct drm_device *dev) 3612 { 3613 struct drm_i915_private *dev_priv = dev->dev_private; 3614 struct intel_uncore *uncore = &dev_priv->uncore; 3615 int pipe; 3616 3617 gen11_master_intr_disable(dev_priv->uncore.regs); 3618 3619 gen11_gt_irq_reset(dev_priv); 3620 3621 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0); 3622 3623 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3624 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3625 3626 for_each_pipe(dev_priv, pipe) 3627 if (intel_display_power_is_enabled(dev_priv, 3628 POWER_DOMAIN_PIPE(pipe))) 3629 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3630 3631 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3632 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3633 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 3634 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3635 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3636 3637 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3638 GEN3_IRQ_RESET(uncore, SDE); 3639 } 3640 3641 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3642 u8 pipe_mask) 3643 { 3644 struct intel_uncore *uncore = &dev_priv->uncore; 3645 3646 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3647 enum pipe pipe; 3648 3649 spin_lock_irq(&dev_priv->irq_lock); 3650 3651 if (!intel_irqs_enabled(dev_priv)) { 3652 spin_unlock_irq(&dev_priv->irq_lock); 3653 return; 3654 } 3655 3656 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3657 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3658 dev_priv->de_irq_mask[pipe], 3659 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3660 3661 spin_unlock_irq(&dev_priv->irq_lock); 3662 } 3663 3664 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3665 u8 pipe_mask) 3666 { 3667 struct intel_uncore *uncore = &dev_priv->uncore; 3668 enum pipe pipe; 3669 3670 spin_lock_irq(&dev_priv->irq_lock); 3671 3672 if (!intel_irqs_enabled(dev_priv)) { 3673 spin_unlock_irq(&dev_priv->irq_lock); 3674 return; 3675 } 3676 3677 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3678 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3679 3680 spin_unlock_irq(&dev_priv->irq_lock); 3681 3682 /* make sure we're done processing display irqs */ 3683 synchronize_irq(dev_priv->drm.irq); 3684 } 3685 3686 static void cherryview_irq_reset(struct drm_device *dev) 3687 { 3688 struct drm_i915_private *dev_priv = to_i915(dev); 3689 struct intel_uncore *uncore = &dev_priv->uncore; 3690 3691 I915_WRITE(GEN8_MASTER_IRQ, 0); 3692 POSTING_READ(GEN8_MASTER_IRQ); 3693 3694 gen8_gt_irq_reset(dev_priv); 3695 3696 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3697 3698 spin_lock_irq(&dev_priv->irq_lock); 3699 if (dev_priv->display_irqs_enabled) 3700 vlv_display_irq_reset(dev_priv); 3701 spin_unlock_irq(&dev_priv->irq_lock); 3702 } 3703 3704 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 3705 const u32 hpd[HPD_NUM_PINS]) 3706 { 3707 struct intel_encoder *encoder; 3708 u32 enabled_irqs = 0; 3709 3710 for_each_intel_encoder(&dev_priv->drm, encoder) 3711 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 3712 enabled_irqs |= hpd[encoder->hpd_pin]; 3713 3714 return enabled_irqs; 3715 } 3716 3717 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3718 { 3719 u32 hotplug; 3720 3721 /* 3722 * Enable digital hotplug on the PCH, and configure the DP short pulse 3723 * duration to 2ms (which is the minimum in the Display Port spec). 3724 * The pulse duration bits are reserved on LPT+. 3725 */ 3726 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3727 hotplug &= ~(PORTB_PULSE_DURATION_MASK | 3728 PORTC_PULSE_DURATION_MASK | 3729 PORTD_PULSE_DURATION_MASK); 3730 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3731 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3732 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3733 /* 3734 * When CPU and PCH are on the same package, port A 3735 * HPD must be enabled in both north and south. 3736 */ 3737 if (HAS_PCH_LPT_LP(dev_priv)) 3738 hotplug |= PORTA_HOTPLUG_ENABLE; 3739 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3740 } 3741 3742 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3743 { 3744 u32 hotplug_irqs, enabled_irqs; 3745 3746 if (HAS_PCH_IBX(dev_priv)) { 3747 hotplug_irqs = SDE_HOTPLUG_MASK; 3748 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 3749 } else { 3750 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3751 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 3752 } 3753 3754 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3755 3756 ibx_hpd_detection_setup(dev_priv); 3757 } 3758 3759 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv) 3760 { 3761 u32 hotplug; 3762 3763 hotplug = I915_READ(SHOTPLUG_CTL_DDI); 3764 hotplug |= ICP_DDIA_HPD_ENABLE | 3765 ICP_DDIB_HPD_ENABLE; 3766 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug); 3767 3768 hotplug = I915_READ(SHOTPLUG_CTL_TC); 3769 hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) | 3770 ICP_TC_HPD_ENABLE(PORT_TC2) | 3771 ICP_TC_HPD_ENABLE(PORT_TC3) | 3772 ICP_TC_HPD_ENABLE(PORT_TC4); 3773 I915_WRITE(SHOTPLUG_CTL_TC, hotplug); 3774 } 3775 3776 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3777 { 3778 u32 hotplug_irqs, enabled_irqs; 3779 3780 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP; 3781 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp); 3782 3783 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3784 3785 icp_hpd_detection_setup(dev_priv); 3786 } 3787 3788 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv) 3789 { 3790 u32 hotplug; 3791 3792 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL); 3793 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3794 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3795 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3796 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); 3797 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug); 3798 3799 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL); 3800 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3801 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3802 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3803 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); 3804 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug); 3805 } 3806 3807 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3808 { 3809 u32 hotplug_irqs, enabled_irqs; 3810 u32 val; 3811 3812 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11); 3813 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK; 3814 3815 val = I915_READ(GEN11_DE_HPD_IMR); 3816 val &= ~hotplug_irqs; 3817 I915_WRITE(GEN11_DE_HPD_IMR, val); 3818 POSTING_READ(GEN11_DE_HPD_IMR); 3819 3820 gen11_hpd_detection_setup(dev_priv); 3821 3822 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3823 icp_hpd_irq_setup(dev_priv); 3824 } 3825 3826 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3827 { 3828 u32 val, hotplug; 3829 3830 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3831 if (HAS_PCH_CNP(dev_priv)) { 3832 val = I915_READ(SOUTH_CHICKEN1); 3833 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3834 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3835 I915_WRITE(SOUTH_CHICKEN1, val); 3836 } 3837 3838 /* Enable digital hotplug on the PCH */ 3839 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3840 hotplug |= PORTA_HOTPLUG_ENABLE | 3841 PORTB_HOTPLUG_ENABLE | 3842 PORTC_HOTPLUG_ENABLE | 3843 PORTD_HOTPLUG_ENABLE; 3844 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3845 3846 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3847 hotplug |= PORTE_HOTPLUG_ENABLE; 3848 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3849 } 3850 3851 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3852 { 3853 u32 hotplug_irqs, enabled_irqs; 3854 3855 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3856 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3857 3858 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3859 3860 spt_hpd_detection_setup(dev_priv); 3861 } 3862 3863 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3864 { 3865 u32 hotplug; 3866 3867 /* 3868 * Enable digital hotplug on the CPU, and configure the DP short pulse 3869 * duration to 2ms (which is the minimum in the Display Port spec) 3870 * The pulse duration bits are reserved on HSW+. 3871 */ 3872 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3873 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3874 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | 3875 DIGITAL_PORTA_PULSE_DURATION_2ms; 3876 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3877 } 3878 3879 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3880 { 3881 u32 hotplug_irqs, enabled_irqs; 3882 3883 if (INTEL_GEN(dev_priv) >= 8) { 3884 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3885 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3886 3887 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3888 } else if (INTEL_GEN(dev_priv) >= 7) { 3889 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3890 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3891 3892 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3893 } else { 3894 hotplug_irqs = DE_DP_A_HOTPLUG; 3895 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3896 3897 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3898 } 3899 3900 ilk_hpd_detection_setup(dev_priv); 3901 3902 ibx_hpd_irq_setup(dev_priv); 3903 } 3904 3905 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, 3906 u32 enabled_irqs) 3907 { 3908 u32 hotplug; 3909 3910 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3911 hotplug |= PORTA_HOTPLUG_ENABLE | 3912 PORTB_HOTPLUG_ENABLE | 3913 PORTC_HOTPLUG_ENABLE; 3914 3915 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", 3916 hotplug, enabled_irqs); 3917 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3918 3919 /* 3920 * For BXT invert bit has to be set based on AOB design 3921 * for HPD detection logic, update it based on VBT fields. 3922 */ 3923 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3924 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3925 hotplug |= BXT_DDIA_HPD_INVERT; 3926 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3927 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3928 hotplug |= BXT_DDIB_HPD_INVERT; 3929 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3930 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3931 hotplug |= BXT_DDIC_HPD_INVERT; 3932 3933 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3934 } 3935 3936 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3937 { 3938 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); 3939 } 3940 3941 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3942 { 3943 u32 hotplug_irqs, enabled_irqs; 3944 3945 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3946 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3947 3948 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3949 3950 __bxt_hpd_detection_setup(dev_priv, enabled_irqs); 3951 } 3952 3953 static void ibx_irq_postinstall(struct drm_device *dev) 3954 { 3955 struct drm_i915_private *dev_priv = to_i915(dev); 3956 u32 mask; 3957 3958 if (HAS_PCH_NOP(dev_priv)) 3959 return; 3960 3961 if (HAS_PCH_IBX(dev_priv)) 3962 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3963 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3964 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3965 else 3966 mask = SDE_GMBUS_CPT; 3967 3968 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 3969 I915_WRITE(SDEIMR, ~mask); 3970 3971 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 3972 HAS_PCH_LPT(dev_priv)) 3973 ibx_hpd_detection_setup(dev_priv); 3974 else 3975 spt_hpd_detection_setup(dev_priv); 3976 } 3977 3978 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3979 { 3980 struct drm_i915_private *dev_priv = to_i915(dev); 3981 struct intel_uncore *uncore = &dev_priv->uncore; 3982 u32 pm_irqs, gt_irqs; 3983 3984 pm_irqs = gt_irqs = 0; 3985 3986 dev_priv->gt_irq_mask = ~0; 3987 if (HAS_L3_DPF(dev_priv)) { 3988 /* L3 parity interrupt is always unmasked. */ 3989 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); 3990 gt_irqs |= GT_PARITY_ERROR(dev_priv); 3991 } 3992 3993 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3994 if (IS_GEN(dev_priv, 5)) { 3995 gt_irqs |= ILK_BSD_USER_INTERRUPT; 3996 } else { 3997 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3998 } 3999 4000 GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs); 4001 4002 if (INTEL_GEN(dev_priv) >= 6) { 4003 /* 4004 * RPS interrupts will get enabled/disabled on demand when RPS 4005 * itself is enabled/disabled. 4006 */ 4007 if (HAS_ENGINE(dev_priv, VECS0)) { 4008 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 4009 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; 4010 } 4011 4012 dev_priv->pm_imr = 0xffffffff; 4013 GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->pm_imr, pm_irqs); 4014 } 4015 } 4016 4017 static int ironlake_irq_postinstall(struct drm_device *dev) 4018 { 4019 struct drm_i915_private *dev_priv = to_i915(dev); 4020 struct intel_uncore *uncore = &dev_priv->uncore; 4021 u32 display_mask, extra_mask; 4022 4023 if (INTEL_GEN(dev_priv) >= 7) { 4024 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 4025 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 4026 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 4027 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 4028 DE_DP_A_HOTPLUG_IVB); 4029 } else { 4030 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 4031 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 4032 DE_PIPEA_CRC_DONE | DE_POISON); 4033 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 4034 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 4035 DE_DP_A_HOTPLUG); 4036 } 4037 4038 if (IS_HASWELL(dev_priv)) { 4039 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 4040 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 4041 display_mask |= DE_EDP_PSR_INT_HSW; 4042 } 4043 4044 dev_priv->irq_mask = ~display_mask; 4045 4046 ibx_irq_pre_postinstall(dev); 4047 4048 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 4049 display_mask | extra_mask); 4050 4051 gen5_gt_irq_postinstall(dev); 4052 4053 ilk_hpd_detection_setup(dev_priv); 4054 4055 ibx_irq_postinstall(dev); 4056 4057 if (IS_IRONLAKE_M(dev_priv)) { 4058 /* Enable PCU event interrupts 4059 * 4060 * spinlocking not required here for correctness since interrupt 4061 * setup is guaranteed to run in single-threaded context. But we 4062 * need it to make the assert_spin_locked happy. */ 4063 spin_lock_irq(&dev_priv->irq_lock); 4064 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 4065 spin_unlock_irq(&dev_priv->irq_lock); 4066 } 4067 4068 return 0; 4069 } 4070 4071 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 4072 { 4073 lockdep_assert_held(&dev_priv->irq_lock); 4074 4075 if (dev_priv->display_irqs_enabled) 4076 return; 4077 4078 dev_priv->display_irqs_enabled = true; 4079 4080 if (intel_irqs_enabled(dev_priv)) { 4081 vlv_display_irq_reset(dev_priv); 4082 vlv_display_irq_postinstall(dev_priv); 4083 } 4084 } 4085 4086 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 4087 { 4088 lockdep_assert_held(&dev_priv->irq_lock); 4089 4090 if (!dev_priv->display_irqs_enabled) 4091 return; 4092 4093 dev_priv->display_irqs_enabled = false; 4094 4095 if (intel_irqs_enabled(dev_priv)) 4096 vlv_display_irq_reset(dev_priv); 4097 } 4098 4099 4100 static int valleyview_irq_postinstall(struct drm_device *dev) 4101 { 4102 struct drm_i915_private *dev_priv = to_i915(dev); 4103 4104 gen5_gt_irq_postinstall(dev); 4105 4106 spin_lock_irq(&dev_priv->irq_lock); 4107 if (dev_priv->display_irqs_enabled) 4108 vlv_display_irq_postinstall(dev_priv); 4109 spin_unlock_irq(&dev_priv->irq_lock); 4110 4111 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 4112 POSTING_READ(VLV_MASTER_IER); 4113 4114 return 0; 4115 } 4116 4117 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 4118 { 4119 struct intel_uncore *uncore = &dev_priv->uncore; 4120 4121 /* These are interrupts we'll toggle with the ring mask register */ 4122 u32 gt_interrupts[] = { 4123 (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 4124 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 4125 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 4126 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT), 4127 4128 (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT | 4129 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT | 4130 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 4131 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT), 4132 4133 0, 4134 4135 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 4136 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT) 4137 }; 4138 4139 dev_priv->pm_ier = 0x0; 4140 dev_priv->pm_imr = ~dev_priv->pm_ier; 4141 GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 4142 GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 4143 /* 4144 * RPS interrupts will get enabled/disabled on demand when RPS itself 4145 * is enabled/disabled. Same wil be the case for GuC interrupts. 4146 */ 4147 GEN8_IRQ_INIT_NDX(uncore, GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); 4148 GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 4149 } 4150 4151 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 4152 { 4153 struct intel_uncore *uncore = &dev_priv->uncore; 4154 4155 u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; 4156 u32 de_pipe_enables; 4157 u32 de_port_masked = GEN8_AUX_CHANNEL_A; 4158 u32 de_port_enables; 4159 u32 de_misc_masked = GEN8_DE_EDP_PSR; 4160 enum pipe pipe; 4161 4162 if (INTEL_GEN(dev_priv) <= 10) 4163 de_misc_masked |= GEN8_DE_MISC_GSE; 4164 4165 if (INTEL_GEN(dev_priv) >= 9) { 4166 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 4167 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | 4168 GEN9_AUX_CHANNEL_D; 4169 if (IS_GEN9_LP(dev_priv)) 4170 de_port_masked |= BXT_DE_PORT_GMBUS; 4171 } else { 4172 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 4173 } 4174 4175 if (INTEL_GEN(dev_priv) >= 11) 4176 de_port_masked |= ICL_AUX_CHANNEL_E; 4177 4178 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11) 4179 de_port_masked |= CNL_AUX_CHANNEL_F; 4180 4181 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 4182 GEN8_PIPE_FIFO_UNDERRUN; 4183 4184 de_port_enables = de_port_masked; 4185 if (IS_GEN9_LP(dev_priv)) 4186 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 4187 else if (IS_BROADWELL(dev_priv)) 4188 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 4189 4190 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 4191 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 4192 4193 for_each_pipe(dev_priv, pipe) { 4194 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 4195 4196 if (intel_display_power_is_enabled(dev_priv, 4197 POWER_DOMAIN_PIPE(pipe))) 4198 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 4199 dev_priv->de_irq_mask[pipe], 4200 de_pipe_enables); 4201 } 4202 4203 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 4204 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 4205 4206 if (INTEL_GEN(dev_priv) >= 11) { 4207 u32 de_hpd_masked = 0; 4208 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 4209 GEN11_DE_TBT_HOTPLUG_MASK; 4210 4211 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 4212 de_hpd_enables); 4213 gen11_hpd_detection_setup(dev_priv); 4214 } else if (IS_GEN9_LP(dev_priv)) { 4215 bxt_hpd_detection_setup(dev_priv); 4216 } else if (IS_BROADWELL(dev_priv)) { 4217 ilk_hpd_detection_setup(dev_priv); 4218 } 4219 } 4220 4221 static int gen8_irq_postinstall(struct drm_device *dev) 4222 { 4223 struct drm_i915_private *dev_priv = to_i915(dev); 4224 4225 if (HAS_PCH_SPLIT(dev_priv)) 4226 ibx_irq_pre_postinstall(dev); 4227 4228 gen8_gt_irq_postinstall(dev_priv); 4229 gen8_de_irq_postinstall(dev_priv); 4230 4231 if (HAS_PCH_SPLIT(dev_priv)) 4232 ibx_irq_postinstall(dev); 4233 4234 gen8_master_intr_enable(dev_priv->uncore.regs); 4235 4236 return 0; 4237 } 4238 4239 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv) 4240 { 4241 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT; 4242 4243 BUILD_BUG_ON(irqs & 0xffff0000); 4244 4245 /* Enable RCS, BCS, VCS and VECS class interrupts. */ 4246 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs); 4247 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs); 4248 4249 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ 4250 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16)); 4251 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16)); 4252 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16)); 4253 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16)); 4254 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16)); 4255 4256 /* 4257 * RPS interrupts will get enabled/disabled on demand when RPS itself 4258 * is enabled/disabled. 4259 */ 4260 dev_priv->pm_ier = 0x0; 4261 dev_priv->pm_imr = ~dev_priv->pm_ier; 4262 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 4263 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 4264 4265 /* Same thing for GuC interrupts */ 4266 I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0); 4267 I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~0); 4268 } 4269 4270 static void icp_irq_postinstall(struct drm_device *dev) 4271 { 4272 struct drm_i915_private *dev_priv = to_i915(dev); 4273 u32 mask = SDE_GMBUS_ICP; 4274 4275 WARN_ON(I915_READ(SDEIER) != 0); 4276 I915_WRITE(SDEIER, 0xffffffff); 4277 POSTING_READ(SDEIER); 4278 4279 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 4280 I915_WRITE(SDEIMR, ~mask); 4281 4282 icp_hpd_detection_setup(dev_priv); 4283 } 4284 4285 static int gen11_irq_postinstall(struct drm_device *dev) 4286 { 4287 struct drm_i915_private *dev_priv = dev->dev_private; 4288 struct intel_uncore *uncore = &dev_priv->uncore; 4289 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 4290 4291 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 4292 icp_irq_postinstall(dev); 4293 4294 gen11_gt_irq_postinstall(dev_priv); 4295 gen8_de_irq_postinstall(dev_priv); 4296 4297 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 4298 4299 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 4300 4301 gen11_master_intr_enable(dev_priv->uncore.regs); 4302 POSTING_READ(GEN11_GFX_MSTR_IRQ); 4303 4304 return 0; 4305 } 4306 4307 static int cherryview_irq_postinstall(struct drm_device *dev) 4308 { 4309 struct drm_i915_private *dev_priv = to_i915(dev); 4310 4311 gen8_gt_irq_postinstall(dev_priv); 4312 4313 spin_lock_irq(&dev_priv->irq_lock); 4314 if (dev_priv->display_irqs_enabled) 4315 vlv_display_irq_postinstall(dev_priv); 4316 spin_unlock_irq(&dev_priv->irq_lock); 4317 4318 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 4319 POSTING_READ(GEN8_MASTER_IRQ); 4320 4321 return 0; 4322 } 4323 4324 static void i8xx_irq_reset(struct drm_device *dev) 4325 { 4326 struct drm_i915_private *dev_priv = to_i915(dev); 4327 struct intel_uncore *uncore = &dev_priv->uncore; 4328 4329 i9xx_pipestat_irq_reset(dev_priv); 4330 4331 GEN2_IRQ_RESET(uncore); 4332 } 4333 4334 static int i8xx_irq_postinstall(struct drm_device *dev) 4335 { 4336 struct drm_i915_private *dev_priv = to_i915(dev); 4337 struct intel_uncore *uncore = &dev_priv->uncore; 4338 u16 enable_mask; 4339 4340 intel_uncore_write16(uncore, 4341 EMR, 4342 ~(I915_ERROR_PAGE_TABLE | 4343 I915_ERROR_MEMORY_REFRESH)); 4344 4345 /* Unmask the interrupts that we always want on. */ 4346 dev_priv->irq_mask = 4347 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4348 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4349 I915_MASTER_ERROR_INTERRUPT); 4350 4351 enable_mask = 4352 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4353 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4354 I915_MASTER_ERROR_INTERRUPT | 4355 I915_USER_INTERRUPT; 4356 4357 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); 4358 4359 /* Interrupt setup is already guaranteed to be single-threaded, this is 4360 * just to make the assert_spin_locked check happy. */ 4361 spin_lock_irq(&dev_priv->irq_lock); 4362 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4363 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4364 spin_unlock_irq(&dev_priv->irq_lock); 4365 4366 return 0; 4367 } 4368 4369 static void i8xx_error_irq_ack(struct drm_i915_private *i915, 4370 u16 *eir, u16 *eir_stuck) 4371 { 4372 struct intel_uncore *uncore = &i915->uncore; 4373 u16 emr; 4374 4375 *eir = intel_uncore_read16(uncore, EIR); 4376 4377 if (*eir) 4378 intel_uncore_write16(uncore, EIR, *eir); 4379 4380 *eir_stuck = intel_uncore_read16(uncore, EIR); 4381 if (*eir_stuck == 0) 4382 return; 4383 4384 /* 4385 * Toggle all EMR bits to make sure we get an edge 4386 * in the ISR master error bit if we don't clear 4387 * all the EIR bits. Otherwise the edge triggered 4388 * IIR on i965/g4x wouldn't notice that an interrupt 4389 * is still pending. Also some EIR bits can't be 4390 * cleared except by handling the underlying error 4391 * (or by a GPU reset) so we mask any bit that 4392 * remains set. 4393 */ 4394 emr = intel_uncore_read16(uncore, EMR); 4395 intel_uncore_write16(uncore, EMR, 0xffff); 4396 intel_uncore_write16(uncore, EMR, emr | *eir_stuck); 4397 } 4398 4399 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 4400 u16 eir, u16 eir_stuck) 4401 { 4402 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 4403 4404 if (eir_stuck) 4405 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck); 4406 } 4407 4408 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 4409 u32 *eir, u32 *eir_stuck) 4410 { 4411 u32 emr; 4412 4413 *eir = I915_READ(EIR); 4414 4415 I915_WRITE(EIR, *eir); 4416 4417 *eir_stuck = I915_READ(EIR); 4418 if (*eir_stuck == 0) 4419 return; 4420 4421 /* 4422 * Toggle all EMR bits to make sure we get an edge 4423 * in the ISR master error bit if we don't clear 4424 * all the EIR bits. Otherwise the edge triggered 4425 * IIR on i965/g4x wouldn't notice that an interrupt 4426 * is still pending. Also some EIR bits can't be 4427 * cleared except by handling the underlying error 4428 * (or by a GPU reset) so we mask any bit that 4429 * remains set. 4430 */ 4431 emr = I915_READ(EMR); 4432 I915_WRITE(EMR, 0xffffffff); 4433 I915_WRITE(EMR, emr | *eir_stuck); 4434 } 4435 4436 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 4437 u32 eir, u32 eir_stuck) 4438 { 4439 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 4440 4441 if (eir_stuck) 4442 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck); 4443 } 4444 4445 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 4446 { 4447 struct drm_device *dev = arg; 4448 struct drm_i915_private *dev_priv = to_i915(dev); 4449 irqreturn_t ret = IRQ_NONE; 4450 4451 if (!intel_irqs_enabled(dev_priv)) 4452 return IRQ_NONE; 4453 4454 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4455 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4456 4457 do { 4458 u32 pipe_stats[I915_MAX_PIPES] = {}; 4459 u16 eir = 0, eir_stuck = 0; 4460 u16 iir; 4461 4462 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); 4463 if (iir == 0) 4464 break; 4465 4466 ret = IRQ_HANDLED; 4467 4468 /* Call regardless, as some status bits might not be 4469 * signalled in iir */ 4470 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4471 4472 if (iir & I915_MASTER_ERROR_INTERRUPT) 4473 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4474 4475 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); 4476 4477 if (iir & I915_USER_INTERRUPT) 4478 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 4479 4480 if (iir & I915_MASTER_ERROR_INTERRUPT) 4481 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 4482 4483 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4484 } while (0); 4485 4486 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4487 4488 return ret; 4489 } 4490 4491 static void i915_irq_reset(struct drm_device *dev) 4492 { 4493 struct drm_i915_private *dev_priv = to_i915(dev); 4494 struct intel_uncore *uncore = &dev_priv->uncore; 4495 4496 if (I915_HAS_HOTPLUG(dev_priv)) { 4497 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4498 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4499 } 4500 4501 i9xx_pipestat_irq_reset(dev_priv); 4502 4503 GEN3_IRQ_RESET(uncore, GEN2_); 4504 } 4505 4506 static int i915_irq_postinstall(struct drm_device *dev) 4507 { 4508 struct drm_i915_private *dev_priv = to_i915(dev); 4509 struct intel_uncore *uncore = &dev_priv->uncore; 4510 u32 enable_mask; 4511 4512 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 4513 I915_ERROR_MEMORY_REFRESH)); 4514 4515 /* Unmask the interrupts that we always want on. */ 4516 dev_priv->irq_mask = 4517 ~(I915_ASLE_INTERRUPT | 4518 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4519 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4520 I915_MASTER_ERROR_INTERRUPT); 4521 4522 enable_mask = 4523 I915_ASLE_INTERRUPT | 4524 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4525 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4526 I915_MASTER_ERROR_INTERRUPT | 4527 I915_USER_INTERRUPT; 4528 4529 if (I915_HAS_HOTPLUG(dev_priv)) { 4530 /* Enable in IER... */ 4531 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4532 /* and unmask in IMR */ 4533 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4534 } 4535 4536 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4537 4538 /* Interrupt setup is already guaranteed to be single-threaded, this is 4539 * just to make the assert_spin_locked check happy. */ 4540 spin_lock_irq(&dev_priv->irq_lock); 4541 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4542 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4543 spin_unlock_irq(&dev_priv->irq_lock); 4544 4545 i915_enable_asle_pipestat(dev_priv); 4546 4547 return 0; 4548 } 4549 4550 static irqreturn_t i915_irq_handler(int irq, void *arg) 4551 { 4552 struct drm_device *dev = arg; 4553 struct drm_i915_private *dev_priv = to_i915(dev); 4554 irqreturn_t ret = IRQ_NONE; 4555 4556 if (!intel_irqs_enabled(dev_priv)) 4557 return IRQ_NONE; 4558 4559 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4560 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4561 4562 do { 4563 u32 pipe_stats[I915_MAX_PIPES] = {}; 4564 u32 eir = 0, eir_stuck = 0; 4565 u32 hotplug_status = 0; 4566 u32 iir; 4567 4568 iir = I915_READ(GEN2_IIR); 4569 if (iir == 0) 4570 break; 4571 4572 ret = IRQ_HANDLED; 4573 4574 if (I915_HAS_HOTPLUG(dev_priv) && 4575 iir & I915_DISPLAY_PORT_INTERRUPT) 4576 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4577 4578 /* Call regardless, as some status bits might not be 4579 * signalled in iir */ 4580 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4581 4582 if (iir & I915_MASTER_ERROR_INTERRUPT) 4583 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4584 4585 I915_WRITE(GEN2_IIR, iir); 4586 4587 if (iir & I915_USER_INTERRUPT) 4588 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 4589 4590 if (iir & I915_MASTER_ERROR_INTERRUPT) 4591 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4592 4593 if (hotplug_status) 4594 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4595 4596 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4597 } while (0); 4598 4599 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4600 4601 return ret; 4602 } 4603 4604 static void i965_irq_reset(struct drm_device *dev) 4605 { 4606 struct drm_i915_private *dev_priv = to_i915(dev); 4607 struct intel_uncore *uncore = &dev_priv->uncore; 4608 4609 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4610 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4611 4612 i9xx_pipestat_irq_reset(dev_priv); 4613 4614 GEN3_IRQ_RESET(uncore, GEN2_); 4615 } 4616 4617 static int i965_irq_postinstall(struct drm_device *dev) 4618 { 4619 struct drm_i915_private *dev_priv = to_i915(dev); 4620 struct intel_uncore *uncore = &dev_priv->uncore; 4621 u32 enable_mask; 4622 u32 error_mask; 4623 4624 /* 4625 * Enable some error detection, note the instruction error mask 4626 * bit is reserved, so we leave it masked. 4627 */ 4628 if (IS_G4X(dev_priv)) { 4629 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4630 GM45_ERROR_MEM_PRIV | 4631 GM45_ERROR_CP_PRIV | 4632 I915_ERROR_MEMORY_REFRESH); 4633 } else { 4634 error_mask = ~(I915_ERROR_PAGE_TABLE | 4635 I915_ERROR_MEMORY_REFRESH); 4636 } 4637 I915_WRITE(EMR, error_mask); 4638 4639 /* Unmask the interrupts that we always want on. */ 4640 dev_priv->irq_mask = 4641 ~(I915_ASLE_INTERRUPT | 4642 I915_DISPLAY_PORT_INTERRUPT | 4643 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4644 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4645 I915_MASTER_ERROR_INTERRUPT); 4646 4647 enable_mask = 4648 I915_ASLE_INTERRUPT | 4649 I915_DISPLAY_PORT_INTERRUPT | 4650 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4651 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4652 I915_MASTER_ERROR_INTERRUPT | 4653 I915_USER_INTERRUPT; 4654 4655 if (IS_G4X(dev_priv)) 4656 enable_mask |= I915_BSD_USER_INTERRUPT; 4657 4658 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4659 4660 /* Interrupt setup is already guaranteed to be single-threaded, this is 4661 * just to make the assert_spin_locked check happy. */ 4662 spin_lock_irq(&dev_priv->irq_lock); 4663 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4664 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4665 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4666 spin_unlock_irq(&dev_priv->irq_lock); 4667 4668 i915_enable_asle_pipestat(dev_priv); 4669 4670 return 0; 4671 } 4672 4673 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4674 { 4675 u32 hotplug_en; 4676 4677 lockdep_assert_held(&dev_priv->irq_lock); 4678 4679 /* Note HDMI and DP share hotplug bits */ 4680 /* enable bits are the same for all generations */ 4681 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4682 /* Programming the CRT detection parameters tends 4683 to generate a spurious hotplug event about three 4684 seconds later. So just do it once. 4685 */ 4686 if (IS_G4X(dev_priv)) 4687 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4688 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4689 4690 /* Ignore TV since it's buggy */ 4691 i915_hotplug_interrupt_update_locked(dev_priv, 4692 HOTPLUG_INT_EN_MASK | 4693 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4694 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4695 hotplug_en); 4696 } 4697 4698 static irqreturn_t i965_irq_handler(int irq, void *arg) 4699 { 4700 struct drm_device *dev = arg; 4701 struct drm_i915_private *dev_priv = to_i915(dev); 4702 irqreturn_t ret = IRQ_NONE; 4703 4704 if (!intel_irqs_enabled(dev_priv)) 4705 return IRQ_NONE; 4706 4707 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4708 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4709 4710 do { 4711 u32 pipe_stats[I915_MAX_PIPES] = {}; 4712 u32 eir = 0, eir_stuck = 0; 4713 u32 hotplug_status = 0; 4714 u32 iir; 4715 4716 iir = I915_READ(GEN2_IIR); 4717 if (iir == 0) 4718 break; 4719 4720 ret = IRQ_HANDLED; 4721 4722 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4723 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4724 4725 /* Call regardless, as some status bits might not be 4726 * signalled in iir */ 4727 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4728 4729 if (iir & I915_MASTER_ERROR_INTERRUPT) 4730 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4731 4732 I915_WRITE(GEN2_IIR, iir); 4733 4734 if (iir & I915_USER_INTERRUPT) 4735 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 4736 4737 if (iir & I915_BSD_USER_INTERRUPT) 4738 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); 4739 4740 if (iir & I915_MASTER_ERROR_INTERRUPT) 4741 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4742 4743 if (hotplug_status) 4744 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4745 4746 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4747 } while (0); 4748 4749 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4750 4751 return ret; 4752 } 4753 4754 /** 4755 * intel_irq_init - initializes irq support 4756 * @dev_priv: i915 device instance 4757 * 4758 * This function initializes all the irq support including work items, timers 4759 * and all the vtables. It does not setup the interrupt itself though. 4760 */ 4761 void intel_irq_init(struct drm_i915_private *dev_priv) 4762 { 4763 struct drm_device *dev = &dev_priv->drm; 4764 struct intel_rps *rps = &dev_priv->gt_pm.rps; 4765 int i; 4766 4767 if (IS_I945GM(dev_priv)) 4768 i945gm_vblank_work_init(dev_priv); 4769 4770 intel_hpd_init_work(dev_priv); 4771 4772 INIT_WORK(&rps->work, gen6_pm_rps_work); 4773 4774 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4775 for (i = 0; i < MAX_L3_SLICES; ++i) 4776 dev_priv->l3_parity.remap_info[i] = NULL; 4777 4778 if (HAS_GUC_SCHED(dev_priv) && INTEL_GEN(dev_priv) < 11) 4779 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; 4780 4781 /* Let's track the enabled rps events */ 4782 if (IS_VALLEYVIEW(dev_priv)) 4783 /* WaGsvRC0ResidencyMethod:vlv */ 4784 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; 4785 else 4786 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD | 4787 GEN6_PM_RP_DOWN_THRESHOLD | 4788 GEN6_PM_RP_DOWN_TIMEOUT); 4789 4790 /* We share the register with other engine */ 4791 if (INTEL_GEN(dev_priv) > 9) 4792 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000); 4793 4794 rps->pm_intrmsk_mbz = 0; 4795 4796 /* 4797 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer 4798 * if GEN6_PM_UP_EI_EXPIRED is masked. 4799 * 4800 * TODO: verify if this can be reproduced on VLV,CHV. 4801 */ 4802 if (INTEL_GEN(dev_priv) <= 7) 4803 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; 4804 4805 if (INTEL_GEN(dev_priv) >= 8) 4806 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 4807 4808 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4809 dev->driver->get_vblank_counter = g4x_get_vblank_counter; 4810 else if (INTEL_GEN(dev_priv) >= 3) 4811 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4812 4813 dev->vblank_disable_immediate = true; 4814 4815 /* Most platforms treat the display irq block as an always-on 4816 * power domain. vlv/chv can disable it at runtime and need 4817 * special care to avoid writing any of the display block registers 4818 * outside of the power domain. We defer setting up the display irqs 4819 * in this case to the runtime pm. 4820 */ 4821 dev_priv->display_irqs_enabled = true; 4822 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4823 dev_priv->display_irqs_enabled = false; 4824 4825 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 4826 /* If we have MST support, we want to avoid doing short HPD IRQ storm 4827 * detection, as short HPD storms will occur as a natural part of 4828 * sideband messaging with MST. 4829 * On older platforms however, IRQ storms can occur with both long and 4830 * short pulses, as seen on some G4x systems. 4831 */ 4832 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); 4833 4834 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos; 4835 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4836 4837 if (IS_CHERRYVIEW(dev_priv)) { 4838 dev->driver->irq_handler = cherryview_irq_handler; 4839 dev->driver->irq_preinstall = cherryview_irq_reset; 4840 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4841 dev->driver->irq_uninstall = cherryview_irq_reset; 4842 dev->driver->enable_vblank = i965_enable_vblank; 4843 dev->driver->disable_vblank = i965_disable_vblank; 4844 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4845 } else if (IS_VALLEYVIEW(dev_priv)) { 4846 dev->driver->irq_handler = valleyview_irq_handler; 4847 dev->driver->irq_preinstall = valleyview_irq_reset; 4848 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4849 dev->driver->irq_uninstall = valleyview_irq_reset; 4850 dev->driver->enable_vblank = i965_enable_vblank; 4851 dev->driver->disable_vblank = i965_disable_vblank; 4852 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4853 } else if (INTEL_GEN(dev_priv) >= 11) { 4854 dev->driver->irq_handler = gen11_irq_handler; 4855 dev->driver->irq_preinstall = gen11_irq_reset; 4856 dev->driver->irq_postinstall = gen11_irq_postinstall; 4857 dev->driver->irq_uninstall = gen11_irq_reset; 4858 dev->driver->enable_vblank = gen8_enable_vblank; 4859 dev->driver->disable_vblank = gen8_disable_vblank; 4860 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup; 4861 } else if (INTEL_GEN(dev_priv) >= 8) { 4862 dev->driver->irq_handler = gen8_irq_handler; 4863 dev->driver->irq_preinstall = gen8_irq_reset; 4864 dev->driver->irq_postinstall = gen8_irq_postinstall; 4865 dev->driver->irq_uninstall = gen8_irq_reset; 4866 dev->driver->enable_vblank = gen8_enable_vblank; 4867 dev->driver->disable_vblank = gen8_disable_vblank; 4868 if (IS_GEN9_LP(dev_priv)) 4869 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4870 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 4871 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4872 else 4873 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4874 } else if (HAS_PCH_SPLIT(dev_priv)) { 4875 dev->driver->irq_handler = ironlake_irq_handler; 4876 dev->driver->irq_preinstall = ironlake_irq_reset; 4877 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4878 dev->driver->irq_uninstall = ironlake_irq_reset; 4879 dev->driver->enable_vblank = ironlake_enable_vblank; 4880 dev->driver->disable_vblank = ironlake_disable_vblank; 4881 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4882 } else { 4883 if (IS_GEN(dev_priv, 2)) { 4884 dev->driver->irq_preinstall = i8xx_irq_reset; 4885 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4886 dev->driver->irq_handler = i8xx_irq_handler; 4887 dev->driver->irq_uninstall = i8xx_irq_reset; 4888 dev->driver->enable_vblank = i8xx_enable_vblank; 4889 dev->driver->disable_vblank = i8xx_disable_vblank; 4890 } else if (IS_I945GM(dev_priv)) { 4891 dev->driver->irq_preinstall = i915_irq_reset; 4892 dev->driver->irq_postinstall = i915_irq_postinstall; 4893 dev->driver->irq_uninstall = i915_irq_reset; 4894 dev->driver->irq_handler = i915_irq_handler; 4895 dev->driver->enable_vblank = i945gm_enable_vblank; 4896 dev->driver->disable_vblank = i945gm_disable_vblank; 4897 } else if (IS_GEN(dev_priv, 3)) { 4898 dev->driver->irq_preinstall = i915_irq_reset; 4899 dev->driver->irq_postinstall = i915_irq_postinstall; 4900 dev->driver->irq_uninstall = i915_irq_reset; 4901 dev->driver->irq_handler = i915_irq_handler; 4902 dev->driver->enable_vblank = i8xx_enable_vblank; 4903 dev->driver->disable_vblank = i8xx_disable_vblank; 4904 } else { 4905 dev->driver->irq_preinstall = i965_irq_reset; 4906 dev->driver->irq_postinstall = i965_irq_postinstall; 4907 dev->driver->irq_uninstall = i965_irq_reset; 4908 dev->driver->irq_handler = i965_irq_handler; 4909 dev->driver->enable_vblank = i965_enable_vblank; 4910 dev->driver->disable_vblank = i965_disable_vblank; 4911 } 4912 if (I915_HAS_HOTPLUG(dev_priv)) 4913 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4914 } 4915 } 4916 4917 /** 4918 * intel_irq_fini - deinitializes IRQ support 4919 * @i915: i915 device instance 4920 * 4921 * This function deinitializes all the IRQ support. 4922 */ 4923 void intel_irq_fini(struct drm_i915_private *i915) 4924 { 4925 int i; 4926 4927 if (IS_I945GM(i915)) 4928 i945gm_vblank_work_fini(i915); 4929 4930 for (i = 0; i < MAX_L3_SLICES; ++i) 4931 kfree(i915->l3_parity.remap_info[i]); 4932 } 4933 4934 /** 4935 * intel_irq_install - enables the hardware interrupt 4936 * @dev_priv: i915 device instance 4937 * 4938 * This function enables the hardware interrupt handling, but leaves the hotplug 4939 * handling still disabled. It is called after intel_irq_init(). 4940 * 4941 * In the driver load and resume code we need working interrupts in a few places 4942 * but don't want to deal with the hassle of concurrent probe and hotplug 4943 * workers. Hence the split into this two-stage approach. 4944 */ 4945 int intel_irq_install(struct drm_i915_private *dev_priv) 4946 { 4947 /* 4948 * We enable some interrupt sources in our postinstall hooks, so mark 4949 * interrupts as enabled _before_ actually enabling them to avoid 4950 * special cases in our ordering checks. 4951 */ 4952 dev_priv->runtime_pm.irqs_enabled = true; 4953 4954 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); 4955 } 4956 4957 /** 4958 * intel_irq_uninstall - finilizes all irq handling 4959 * @dev_priv: i915 device instance 4960 * 4961 * This stops interrupt and hotplug handling and unregisters and frees all 4962 * resources acquired in the init functions. 4963 */ 4964 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4965 { 4966 drm_irq_uninstall(&dev_priv->drm); 4967 intel_hpd_cancel_work(dev_priv); 4968 dev_priv->runtime_pm.irqs_enabled = false; 4969 } 4970 4971 /** 4972 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4973 * @dev_priv: i915 device instance 4974 * 4975 * This function is used to disable interrupts at runtime, both in the runtime 4976 * pm and the system suspend/resume code. 4977 */ 4978 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4979 { 4980 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); 4981 dev_priv->runtime_pm.irqs_enabled = false; 4982 synchronize_irq(dev_priv->drm.irq); 4983 } 4984 4985 /** 4986 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4987 * @dev_priv: i915 device instance 4988 * 4989 * This function is used to enable interrupts at runtime, both in the runtime 4990 * pm and the system suspend/resume code. 4991 */ 4992 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4993 { 4994 dev_priv->runtime_pm.irqs_enabled = true; 4995 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); 4996 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); 4997 } 4998