xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision afb46f79)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
86 {
87 	assert_spin_locked(&dev_priv->irq_lock);
88 
89 	if (dev_priv->pm.irqs_disabled) {
90 		WARN(1, "IRQs disabled\n");
91 		dev_priv->pm.regsave.deimr &= ~mask;
92 		return;
93 	}
94 
95 	if ((dev_priv->irq_mask & mask) != 0) {
96 		dev_priv->irq_mask &= ~mask;
97 		I915_WRITE(DEIMR, dev_priv->irq_mask);
98 		POSTING_READ(DEIMR);
99 	}
100 }
101 
102 static void
103 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
104 {
105 	assert_spin_locked(&dev_priv->irq_lock);
106 
107 	if (dev_priv->pm.irqs_disabled) {
108 		WARN(1, "IRQs disabled\n");
109 		dev_priv->pm.regsave.deimr |= mask;
110 		return;
111 	}
112 
113 	if ((dev_priv->irq_mask & mask) != mask) {
114 		dev_priv->irq_mask |= mask;
115 		I915_WRITE(DEIMR, dev_priv->irq_mask);
116 		POSTING_READ(DEIMR);
117 	}
118 }
119 
120 /**
121  * ilk_update_gt_irq - update GTIMR
122  * @dev_priv: driver private
123  * @interrupt_mask: mask of interrupt bits to update
124  * @enabled_irq_mask: mask of interrupt bits to enable
125  */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 			      uint32_t interrupt_mask,
128 			      uint32_t enabled_irq_mask)
129 {
130 	assert_spin_locked(&dev_priv->irq_lock);
131 
132 	if (dev_priv->pm.irqs_disabled) {
133 		WARN(1, "IRQs disabled\n");
134 		dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135 		dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136 						interrupt_mask);
137 		return;
138 	}
139 
140 	dev_priv->gt_irq_mask &= ~interrupt_mask;
141 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 	POSTING_READ(GTIMR);
144 }
145 
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 	ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150 
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 	ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155 
156 /**
157   * snb_update_pm_irq - update GEN6_PMIMR
158   * @dev_priv: driver private
159   * @interrupt_mask: mask of interrupt bits to update
160   * @enabled_irq_mask: mask of interrupt bits to enable
161   */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 			      uint32_t interrupt_mask,
164 			      uint32_t enabled_irq_mask)
165 {
166 	uint32_t new_val;
167 
168 	assert_spin_locked(&dev_priv->irq_lock);
169 
170 	if (dev_priv->pm.irqs_disabled) {
171 		WARN(1, "IRQs disabled\n");
172 		dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173 		dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 						     interrupt_mask);
175 		return;
176 	}
177 
178 	new_val = dev_priv->pm_irq_mask;
179 	new_val &= ~interrupt_mask;
180 	new_val |= (~enabled_irq_mask & interrupt_mask);
181 
182 	if (new_val != dev_priv->pm_irq_mask) {
183 		dev_priv->pm_irq_mask = new_val;
184 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 		POSTING_READ(GEN6_PMIMR);
186 	}
187 }
188 
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 	snb_update_pm_irq(dev_priv, mask, mask);
192 }
193 
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 	snb_update_pm_irq(dev_priv, mask, 0);
197 }
198 
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 	struct drm_i915_private *dev_priv = dev->dev_private;
202 	struct intel_crtc *crtc;
203 	enum pipe pipe;
204 
205 	assert_spin_locked(&dev_priv->irq_lock);
206 
207 	for_each_pipe(pipe) {
208 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209 
210 		if (crtc->cpu_fifo_underrun_disabled)
211 			return false;
212 	}
213 
214 	return true;
215 }
216 
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 	struct drm_i915_private *dev_priv = dev->dev_private;
220 	enum pipe pipe;
221 	struct intel_crtc *crtc;
222 
223 	assert_spin_locked(&dev_priv->irq_lock);
224 
225 	for_each_pipe(pipe) {
226 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227 
228 		if (crtc->pch_fifo_underrun_disabled)
229 			return false;
230 	}
231 
232 	return true;
233 }
234 
235 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236 {
237 	struct drm_i915_private *dev_priv = dev->dev_private;
238 	u32 reg = PIPESTAT(pipe);
239 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
240 
241 	assert_spin_locked(&dev_priv->irq_lock);
242 
243 	I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244 	POSTING_READ(reg);
245 }
246 
247 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248 						 enum pipe pipe, bool enable)
249 {
250 	struct drm_i915_private *dev_priv = dev->dev_private;
251 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252 					  DE_PIPEB_FIFO_UNDERRUN;
253 
254 	if (enable)
255 		ironlake_enable_display_irq(dev_priv, bit);
256 	else
257 		ironlake_disable_display_irq(dev_priv, bit);
258 }
259 
260 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261 						  enum pipe pipe, bool enable)
262 {
263 	struct drm_i915_private *dev_priv = dev->dev_private;
264 	if (enable) {
265 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266 
267 		if (!ivb_can_enable_err_int(dev))
268 			return;
269 
270 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271 	} else {
272 		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273 
274 		/* Change the state _after_ we've read out the current one. */
275 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276 
277 		if (!was_enabled &&
278 		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279 			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280 				      pipe_name(pipe));
281 		}
282 	}
283 }
284 
285 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286 						  enum pipe pipe, bool enable)
287 {
288 	struct drm_i915_private *dev_priv = dev->dev_private;
289 
290 	assert_spin_locked(&dev_priv->irq_lock);
291 
292 	if (enable)
293 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294 	else
295 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298 }
299 
300 /**
301  * ibx_display_interrupt_update - update SDEIMR
302  * @dev_priv: driver private
303  * @interrupt_mask: mask of interrupt bits to update
304  * @enabled_irq_mask: mask of interrupt bits to enable
305  */
306 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307 					 uint32_t interrupt_mask,
308 					 uint32_t enabled_irq_mask)
309 {
310 	uint32_t sdeimr = I915_READ(SDEIMR);
311 	sdeimr &= ~interrupt_mask;
312 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
313 
314 	assert_spin_locked(&dev_priv->irq_lock);
315 
316 	if (dev_priv->pm.irqs_disabled &&
317 	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318 		WARN(1, "IRQs disabled\n");
319 		dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320 		dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321 						 interrupt_mask);
322 		return;
323 	}
324 
325 	I915_WRITE(SDEIMR, sdeimr);
326 	POSTING_READ(SDEIMR);
327 }
328 #define ibx_enable_display_interrupt(dev_priv, bits) \
329 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
330 #define ibx_disable_display_interrupt(dev_priv, bits) \
331 	ibx_display_interrupt_update((dev_priv), (bits), 0)
332 
333 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334 					    enum transcoder pch_transcoder,
335 					    bool enable)
336 {
337 	struct drm_i915_private *dev_priv = dev->dev_private;
338 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340 
341 	if (enable)
342 		ibx_enable_display_interrupt(dev_priv, bit);
343 	else
344 		ibx_disable_display_interrupt(dev_priv, bit);
345 }
346 
347 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348 					    enum transcoder pch_transcoder,
349 					    bool enable)
350 {
351 	struct drm_i915_private *dev_priv = dev->dev_private;
352 
353 	if (enable) {
354 		I915_WRITE(SERR_INT,
355 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356 
357 		if (!cpt_can_enable_serr_int(dev))
358 			return;
359 
360 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361 	} else {
362 		uint32_t tmp = I915_READ(SERR_INT);
363 		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364 
365 		/* Change the state _after_ we've read out the current one. */
366 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367 
368 		if (!was_enabled &&
369 		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370 			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371 				      transcoder_name(pch_transcoder));
372 		}
373 	}
374 }
375 
376 /**
377  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378  * @dev: drm device
379  * @pipe: pipe
380  * @enable: true if we want to report FIFO underrun errors, false otherwise
381  *
382  * This function makes us disable or enable CPU fifo underruns for a specific
383  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384  * reporting for one pipe may also disable all the other CPU error interruts for
385  * the other pipes, due to the fact that there's just one interrupt mask/enable
386  * bit for all the pipes.
387  *
388  * Returns the previous state of underrun reporting.
389  */
390 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391 					     enum pipe pipe, bool enable)
392 {
393 	struct drm_i915_private *dev_priv = dev->dev_private;
394 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396 	bool ret;
397 
398 	assert_spin_locked(&dev_priv->irq_lock);
399 
400 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
401 
402 	if (enable == ret)
403 		goto done;
404 
405 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
406 
407 	if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408 		i9xx_clear_fifo_underrun(dev, pipe);
409 	else if (IS_GEN5(dev) || IS_GEN6(dev))
410 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411 	else if (IS_GEN7(dev))
412 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413 	else if (IS_GEN8(dev))
414 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415 
416 done:
417 	return ret;
418 }
419 
420 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421 					   enum pipe pipe, bool enable)
422 {
423 	struct drm_i915_private *dev_priv = dev->dev_private;
424 	unsigned long flags;
425 	bool ret;
426 
427 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
428 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430 
431 	return ret;
432 }
433 
434 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435 						  enum pipe pipe)
436 {
437 	struct drm_i915_private *dev_priv = dev->dev_private;
438 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440 
441 	return !intel_crtc->cpu_fifo_underrun_disabled;
442 }
443 
444 /**
445  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446  * @dev: drm device
447  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448  * @enable: true if we want to report FIFO underrun errors, false otherwise
449  *
450  * This function makes us disable or enable PCH fifo underruns for a specific
451  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452  * underrun reporting for one transcoder may also disable all the other PCH
453  * error interruts for the other transcoders, due to the fact that there's just
454  * one interrupt mask/enable bit for all the transcoders.
455  *
456  * Returns the previous state of underrun reporting.
457  */
458 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459 					   enum transcoder pch_transcoder,
460 					   bool enable)
461 {
462 	struct drm_i915_private *dev_priv = dev->dev_private;
463 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465 	unsigned long flags;
466 	bool ret;
467 
468 	/*
469 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470 	 * has only one pch transcoder A that all pipes can use. To avoid racy
471 	 * pch transcoder -> pipe lookups from interrupt code simply store the
472 	 * underrun statistics in crtc A. Since we never expose this anywhere
473 	 * nor use it outside of the fifo underrun code here using the "wrong"
474 	 * crtc on LPT won't cause issues.
475 	 */
476 
477 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
478 
479 	ret = !intel_crtc->pch_fifo_underrun_disabled;
480 
481 	if (enable == ret)
482 		goto done;
483 
484 	intel_crtc->pch_fifo_underrun_disabled = !enable;
485 
486 	if (HAS_PCH_IBX(dev))
487 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488 	else
489 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490 
491 done:
492 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493 	return ret;
494 }
495 
496 
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 		       u32 enable_mask, u32 status_mask)
500 {
501 	u32 reg = PIPESTAT(pipe);
502 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503 
504 	assert_spin_locked(&dev_priv->irq_lock);
505 
506 	if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507 	                 status_mask & ~PIPESTAT_INT_STATUS_MASK))
508 		return;
509 
510 	if ((pipestat & enable_mask) == enable_mask)
511 		return;
512 
513 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514 
515 	/* Enable the interrupt, clear any pending status */
516 	pipestat |= enable_mask | status_mask;
517 	I915_WRITE(reg, pipestat);
518 	POSTING_READ(reg);
519 }
520 
521 static void
522 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523 		        u32 enable_mask, u32 status_mask)
524 {
525 	u32 reg = PIPESTAT(pipe);
526 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527 
528 	assert_spin_locked(&dev_priv->irq_lock);
529 
530 	if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531 	                 status_mask & ~PIPESTAT_INT_STATUS_MASK))
532 		return;
533 
534 	if ((pipestat & enable_mask) == 0)
535 		return;
536 
537 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538 
539 	pipestat &= ~enable_mask;
540 	I915_WRITE(reg, pipestat);
541 	POSTING_READ(reg);
542 }
543 
544 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545 {
546 	u32 enable_mask = status_mask << 16;
547 
548 	/*
549 	 * On pipe A we don't support the PSR interrupt yet, on pipe B the
550 	 * same bit MBZ.
551 	 */
552 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553 		return 0;
554 
555 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
557 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
558 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562 
563 	return enable_mask;
564 }
565 
566 void
567 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568 		     u32 status_mask)
569 {
570 	u32 enable_mask;
571 
572 	if (IS_VALLEYVIEW(dev_priv->dev))
573 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574 							   status_mask);
575 	else
576 		enable_mask = status_mask << 16;
577 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578 }
579 
580 void
581 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582 		      u32 status_mask)
583 {
584 	u32 enable_mask;
585 
586 	if (IS_VALLEYVIEW(dev_priv->dev))
587 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588 							   status_mask);
589 	else
590 		enable_mask = status_mask << 16;
591 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592 }
593 
594 /**
595  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596  */
597 static void i915_enable_asle_pipestat(struct drm_device *dev)
598 {
599 	struct drm_i915_private *dev_priv = dev->dev_private;
600 	unsigned long irqflags;
601 
602 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603 		return;
604 
605 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606 
607 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608 	if (INTEL_INFO(dev)->gen >= 4)
609 		i915_enable_pipestat(dev_priv, PIPE_A,
610 				     PIPE_LEGACY_BLC_EVENT_STATUS);
611 
612 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613 }
614 
615 /**
616  * i915_pipe_enabled - check if a pipe is enabled
617  * @dev: DRM device
618  * @pipe: pipe to check
619  *
620  * Reading certain registers when the pipe is disabled can hang the chip.
621  * Use this routine to make sure the PLL is running and the pipe is active
622  * before reading such registers if unsure.
623  */
624 static int
625 i915_pipe_enabled(struct drm_device *dev, int pipe)
626 {
627 	struct drm_i915_private *dev_priv = dev->dev_private;
628 
629 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630 		/* Locking is horribly broken here, but whatever. */
631 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633 
634 		return intel_crtc->active;
635 	} else {
636 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637 	}
638 }
639 
640 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642 	/* Gen2 doesn't have a hardware frame counter */
643 	return 0;
644 }
645 
646 /* Called from drm generic code, passed a 'crtc', which
647  * we use as a pipe index
648  */
649 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650 {
651 	struct drm_i915_private *dev_priv = dev->dev_private;
652 	unsigned long high_frame;
653 	unsigned long low_frame;
654 	u32 high1, high2, low, pixel, vbl_start;
655 
656 	if (!i915_pipe_enabled(dev, pipe)) {
657 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658 				"pipe %c\n", pipe_name(pipe));
659 		return 0;
660 	}
661 
662 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663 		struct intel_crtc *intel_crtc =
664 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665 		const struct drm_display_mode *mode =
666 			&intel_crtc->config.adjusted_mode;
667 
668 		vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669 	} else {
670 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
671 		u32 htotal;
672 
673 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675 
676 		vbl_start *= htotal;
677 	}
678 
679 	high_frame = PIPEFRAME(pipe);
680 	low_frame = PIPEFRAMEPIXEL(pipe);
681 
682 	/*
683 	 * High & low register fields aren't synchronized, so make sure
684 	 * we get a low value that's stable across two reads of the high
685 	 * register.
686 	 */
687 	do {
688 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689 		low   = I915_READ(low_frame);
690 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691 	} while (high1 != high2);
692 
693 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
694 	pixel = low & PIPE_PIXEL_MASK;
695 	low >>= PIPE_FRAME_LOW_SHIFT;
696 
697 	/*
698 	 * The frame counter increments at beginning of active.
699 	 * Cook up a vblank counter by also checking the pixel
700 	 * counter against vblank start.
701 	 */
702 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703 }
704 
705 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706 {
707 	struct drm_i915_private *dev_priv = dev->dev_private;
708 	int reg = PIPE_FRMCOUNT_GM45(pipe);
709 
710 	if (!i915_pipe_enabled(dev, pipe)) {
711 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712 				 "pipe %c\n", pipe_name(pipe));
713 		return 0;
714 	}
715 
716 	return I915_READ(reg);
717 }
718 
719 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
720 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721 
722 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 	uint32_t status;
726 	int reg;
727 
728 	if (INTEL_INFO(dev)->gen >= 8) {
729 		status = GEN8_PIPE_VBLANK;
730 		reg = GEN8_DE_PIPE_ISR(pipe);
731 	} else if (INTEL_INFO(dev)->gen >= 7) {
732 		status = DE_PIPE_VBLANK_IVB(pipe);
733 		reg = DEISR;
734 	} else {
735 		status = DE_PIPE_VBLANK(pipe);
736 		reg = DEISR;
737 	}
738 
739 	return __raw_i915_read32(dev_priv, reg) & status;
740 }
741 
742 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
743 				    unsigned int flags, int *vpos, int *hpos,
744 				    ktime_t *stime, ktime_t *etime)
745 {
746 	struct drm_i915_private *dev_priv = dev->dev_private;
747 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
750 	int position;
751 	int vbl_start, vbl_end, htotal, vtotal;
752 	bool in_vbl = true;
753 	int ret = 0;
754 	unsigned long irqflags;
755 
756 	if (!intel_crtc->active) {
757 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
758 				 "pipe %c\n", pipe_name(pipe));
759 		return 0;
760 	}
761 
762 	htotal = mode->crtc_htotal;
763 	vtotal = mode->crtc_vtotal;
764 	vbl_start = mode->crtc_vblank_start;
765 	vbl_end = mode->crtc_vblank_end;
766 
767 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
768 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
769 		vbl_end /= 2;
770 		vtotal /= 2;
771 	}
772 
773 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
774 
775 	/*
776 	 * Lock uncore.lock, as we will do multiple timing critical raw
777 	 * register reads, potentially with preemption disabled, so the
778 	 * following code must not block on uncore.lock.
779 	 */
780 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
781 
782 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
783 
784 	/* Get optional system timestamp before query. */
785 	if (stime)
786 		*stime = ktime_get();
787 
788 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789 		/* No obvious pixelcount register. Only query vertical
790 		 * scanout position from Display scan line register.
791 		 */
792 		if (IS_GEN2(dev))
793 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
794 		else
795 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
796 
797 		if (HAS_DDI(dev)) {
798 			/*
799 			 * On HSW HDMI outputs there seems to be a 2 line
800 			 * difference, whereas eDP has the normal 1 line
801 			 * difference that earlier platforms have. External
802 			 * DP is unknown. For now just check for the 2 line
803 			 * difference case on all output types on HSW+.
804 			 *
805 			 * This might misinterpret the scanline counter being
806 			 * one line too far along on eDP, but that's less
807 			 * dangerous than the alternative since that would lead
808 			 * the vblank timestamp code astray when it sees a
809 			 * scanline count before vblank_start during a vblank
810 			 * interrupt.
811 			 */
812 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
813 			if ((in_vbl && (position == vbl_start - 2 ||
814 					position == vbl_start - 1)) ||
815 			    (!in_vbl && (position == vbl_end - 2 ||
816 					 position == vbl_end - 1)))
817 				position = (position + 2) % vtotal;
818 		} else if (HAS_PCH_SPLIT(dev)) {
819 			/*
820 			 * The scanline counter increments at the leading edge
821 			 * of hsync, ie. it completely misses the active portion
822 			 * of the line. Fix up the counter at both edges of vblank
823 			 * to get a more accurate picture whether we're in vblank
824 			 * or not.
825 			 */
826 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
827 			if ((in_vbl && position == vbl_start - 1) ||
828 			    (!in_vbl && position == vbl_end - 1))
829 				position = (position + 1) % vtotal;
830 		} else {
831 			/*
832 			 * ISR vblank status bits don't work the way we'd want
833 			 * them to work on non-PCH platforms (for
834 			 * ilk_pipe_in_vblank_locked()), and there doesn't
835 			 * appear any other way to determine if we're currently
836 			 * in vblank.
837 			 *
838 			 * Instead let's assume that we're already in vblank if
839 			 * we got called from the vblank interrupt and the
840 			 * scanline counter value indicates that we're on the
841 			 * line just prior to vblank start. This should result
842 			 * in the correct answer, unless the vblank interrupt
843 			 * delivery really got delayed for almost exactly one
844 			 * full frame/field.
845 			 */
846 			if (flags & DRM_CALLED_FROM_VBLIRQ &&
847 			    position == vbl_start - 1) {
848 				position = (position + 1) % vtotal;
849 
850 				/* Signal this correction as "applied". */
851 				ret |= 0x8;
852 			}
853 		}
854 	} else {
855 		/* Have access to pixelcount since start of frame.
856 		 * We can split this into vertical and horizontal
857 		 * scanout position.
858 		 */
859 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
860 
861 		/* convert to pixel counts */
862 		vbl_start *= htotal;
863 		vbl_end *= htotal;
864 		vtotal *= htotal;
865 	}
866 
867 	/* Get optional system timestamp after query. */
868 	if (etime)
869 		*etime = ktime_get();
870 
871 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
872 
873 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
874 
875 	in_vbl = position >= vbl_start && position < vbl_end;
876 
877 	/*
878 	 * While in vblank, position will be negative
879 	 * counting up towards 0 at vbl_end. And outside
880 	 * vblank, position will be positive counting
881 	 * up since vbl_end.
882 	 */
883 	if (position >= vbl_start)
884 		position -= vbl_end;
885 	else
886 		position += vtotal - vbl_end;
887 
888 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
889 		*vpos = position;
890 		*hpos = 0;
891 	} else {
892 		*vpos = position / htotal;
893 		*hpos = position - (*vpos * htotal);
894 	}
895 
896 	/* In vblank? */
897 	if (in_vbl)
898 		ret |= DRM_SCANOUTPOS_INVBL;
899 
900 	return ret;
901 }
902 
903 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
904 			      int *max_error,
905 			      struct timeval *vblank_time,
906 			      unsigned flags)
907 {
908 	struct drm_crtc *crtc;
909 
910 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
911 		DRM_ERROR("Invalid crtc %d\n", pipe);
912 		return -EINVAL;
913 	}
914 
915 	/* Get drm_crtc to timestamp: */
916 	crtc = intel_get_crtc_for_pipe(dev, pipe);
917 	if (crtc == NULL) {
918 		DRM_ERROR("Invalid crtc %d\n", pipe);
919 		return -EINVAL;
920 	}
921 
922 	if (!crtc->enabled) {
923 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
924 		return -EBUSY;
925 	}
926 
927 	/* Helper routine in DRM core does all the work: */
928 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
929 						     vblank_time, flags,
930 						     crtc,
931 						     &to_intel_crtc(crtc)->config.adjusted_mode);
932 }
933 
934 static bool intel_hpd_irq_event(struct drm_device *dev,
935 				struct drm_connector *connector)
936 {
937 	enum drm_connector_status old_status;
938 
939 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
940 	old_status = connector->status;
941 
942 	connector->status = connector->funcs->detect(connector, false);
943 	if (old_status == connector->status)
944 		return false;
945 
946 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
947 		      connector->base.id,
948 		      drm_get_connector_name(connector),
949 		      drm_get_connector_status_name(old_status),
950 		      drm_get_connector_status_name(connector->status));
951 
952 	return true;
953 }
954 
955 /*
956  * Handle hotplug events outside the interrupt handler proper.
957  */
958 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
959 
960 static void i915_hotplug_work_func(struct work_struct *work)
961 {
962 	struct drm_i915_private *dev_priv =
963 		container_of(work, struct drm_i915_private, hotplug_work);
964 	struct drm_device *dev = dev_priv->dev;
965 	struct drm_mode_config *mode_config = &dev->mode_config;
966 	struct intel_connector *intel_connector;
967 	struct intel_encoder *intel_encoder;
968 	struct drm_connector *connector;
969 	unsigned long irqflags;
970 	bool hpd_disabled = false;
971 	bool changed = false;
972 	u32 hpd_event_bits;
973 
974 	/* HPD irq before everything is fully set up. */
975 	if (!dev_priv->enable_hotplug_processing)
976 		return;
977 
978 	mutex_lock(&mode_config->mutex);
979 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
980 
981 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982 
983 	hpd_event_bits = dev_priv->hpd_event_bits;
984 	dev_priv->hpd_event_bits = 0;
985 	list_for_each_entry(connector, &mode_config->connector_list, head) {
986 		intel_connector = to_intel_connector(connector);
987 		intel_encoder = intel_connector->encoder;
988 		if (intel_encoder->hpd_pin > HPD_NONE &&
989 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
990 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
991 			DRM_INFO("HPD interrupt storm detected on connector %s: "
992 				 "switching from hotplug detection to polling\n",
993 				drm_get_connector_name(connector));
994 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
995 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
996 				| DRM_CONNECTOR_POLL_DISCONNECT;
997 			hpd_disabled = true;
998 		}
999 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002 		}
1003 	}
1004 	 /* if there were no outputs to poll, poll was disabled,
1005 	  * therefore make sure it's enabled when disabling HPD on
1006 	  * some connectors */
1007 	if (hpd_disabled) {
1008 		drm_kms_helper_poll_enable(dev);
1009 		mod_timer(&dev_priv->hotplug_reenable_timer,
1010 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011 	}
1012 
1013 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014 
1015 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1016 		intel_connector = to_intel_connector(connector);
1017 		intel_encoder = intel_connector->encoder;
1018 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019 			if (intel_encoder->hot_plug)
1020 				intel_encoder->hot_plug(intel_encoder);
1021 			if (intel_hpd_irq_event(dev, connector))
1022 				changed = true;
1023 		}
1024 	}
1025 	mutex_unlock(&mode_config->mutex);
1026 
1027 	if (changed)
1028 		drm_kms_helper_hotplug_event(dev);
1029 }
1030 
1031 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032 {
1033 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034 }
1035 
1036 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037 {
1038 	struct drm_i915_private *dev_priv = dev->dev_private;
1039 	u32 busy_up, busy_down, max_avg, min_avg;
1040 	u8 new_delay;
1041 
1042 	spin_lock(&mchdev_lock);
1043 
1044 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1045 
1046 	new_delay = dev_priv->ips.cur_delay;
1047 
1048 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1050 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1051 	max_avg = I915_READ(RCBMAXAVG);
1052 	min_avg = I915_READ(RCBMINAVG);
1053 
1054 	/* Handle RCS change request from hw */
1055 	if (busy_up > max_avg) {
1056 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057 			new_delay = dev_priv->ips.cur_delay - 1;
1058 		if (new_delay < dev_priv->ips.max_delay)
1059 			new_delay = dev_priv->ips.max_delay;
1060 	} else if (busy_down < min_avg) {
1061 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062 			new_delay = dev_priv->ips.cur_delay + 1;
1063 		if (new_delay > dev_priv->ips.min_delay)
1064 			new_delay = dev_priv->ips.min_delay;
1065 	}
1066 
1067 	if (ironlake_set_drps(dev, new_delay))
1068 		dev_priv->ips.cur_delay = new_delay;
1069 
1070 	spin_unlock(&mchdev_lock);
1071 
1072 	return;
1073 }
1074 
1075 static void notify_ring(struct drm_device *dev,
1076 			struct intel_ring_buffer *ring)
1077 {
1078 	if (ring->obj == NULL)
1079 		return;
1080 
1081 	trace_i915_gem_request_complete(ring);
1082 
1083 	wake_up_all(&ring->irq_queue);
1084 	i915_queue_hangcheck(dev);
1085 }
1086 
1087 static void gen6_pm_rps_work(struct work_struct *work)
1088 {
1089 	struct drm_i915_private *dev_priv =
1090 		container_of(work, struct drm_i915_private, rps.work);
1091 	u32 pm_iir;
1092 	int new_delay, adj;
1093 
1094 	spin_lock_irq(&dev_priv->irq_lock);
1095 	pm_iir = dev_priv->rps.pm_iir;
1096 	dev_priv->rps.pm_iir = 0;
1097 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098 	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099 	spin_unlock_irq(&dev_priv->irq_lock);
1100 
1101 	/* Make sure we didn't queue anything we're not going to process. */
1102 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103 
1104 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105 		return;
1106 
1107 	mutex_lock(&dev_priv->rps.hw_lock);
1108 
1109 	adj = dev_priv->rps.last_adj;
1110 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1111 		if (adj > 0)
1112 			adj *= 2;
1113 		else
1114 			adj = 1;
1115 		new_delay = dev_priv->rps.cur_freq + adj;
1116 
1117 		/*
1118 		 * For better performance, jump directly
1119 		 * to RPe if we're below it.
1120 		 */
1121 		if (new_delay < dev_priv->rps.efficient_freq)
1122 			new_delay = dev_priv->rps.efficient_freq;
1123 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125 			new_delay = dev_priv->rps.efficient_freq;
1126 		else
1127 			new_delay = dev_priv->rps.min_freq_softlimit;
1128 		adj = 0;
1129 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130 		if (adj < 0)
1131 			adj *= 2;
1132 		else
1133 			adj = -1;
1134 		new_delay = dev_priv->rps.cur_freq + adj;
1135 	} else { /* unknown event */
1136 		new_delay = dev_priv->rps.cur_freq;
1137 	}
1138 
1139 	/* sysfs frequency interfaces may have snuck in while servicing the
1140 	 * interrupt
1141 	 */
1142 	new_delay = clamp_t(int, new_delay,
1143 			    dev_priv->rps.min_freq_softlimit,
1144 			    dev_priv->rps.max_freq_softlimit);
1145 
1146 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1147 
1148 	if (IS_VALLEYVIEW(dev_priv->dev))
1149 		valleyview_set_rps(dev_priv->dev, new_delay);
1150 	else
1151 		gen6_set_rps(dev_priv->dev, new_delay);
1152 
1153 	mutex_unlock(&dev_priv->rps.hw_lock);
1154 }
1155 
1156 
1157 /**
1158  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159  * occurred.
1160  * @work: workqueue struct
1161  *
1162  * Doesn't actually do anything except notify userspace. As a consequence of
1163  * this event, userspace should try to remap the bad rows since statistically
1164  * it is likely the same row is more likely to go bad again.
1165  */
1166 static void ivybridge_parity_work(struct work_struct *work)
1167 {
1168 	struct drm_i915_private *dev_priv =
1169 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1170 	u32 error_status, row, bank, subbank;
1171 	char *parity_event[6];
1172 	uint32_t misccpctl;
1173 	unsigned long flags;
1174 	uint8_t slice = 0;
1175 
1176 	/* We must turn off DOP level clock gating to access the L3 registers.
1177 	 * In order to prevent a get/put style interface, acquire struct mutex
1178 	 * any time we access those registers.
1179 	 */
1180 	mutex_lock(&dev_priv->dev->struct_mutex);
1181 
1182 	/* If we've screwed up tracking, just let the interrupt fire again */
1183 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 		goto out;
1185 
1186 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 	POSTING_READ(GEN7_MISCCPCTL);
1189 
1190 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 		u32 reg;
1192 
1193 		slice--;
1194 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195 			break;
1196 
1197 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198 
1199 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200 
1201 		error_status = I915_READ(reg);
1202 		row = GEN7_PARITY_ERROR_ROW(error_status);
1203 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205 
1206 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 		POSTING_READ(reg);
1208 
1209 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 		parity_event[5] = NULL;
1215 
1216 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217 				   KOBJ_CHANGE, parity_event);
1218 
1219 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 			  slice, row, bank, subbank);
1221 
1222 		kfree(parity_event[4]);
1223 		kfree(parity_event[3]);
1224 		kfree(parity_event[2]);
1225 		kfree(parity_event[1]);
1226 	}
1227 
1228 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229 
1230 out:
1231 	WARN_ON(dev_priv->l3_parity.which_slice);
1232 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235 
1236 	mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238 
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241 	struct drm_i915_private *dev_priv = dev->dev_private;
1242 
1243 	if (!HAS_L3_DPF(dev))
1244 		return;
1245 
1246 	spin_lock(&dev_priv->irq_lock);
1247 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248 	spin_unlock(&dev_priv->irq_lock);
1249 
1250 	iir &= GT_PARITY_ERROR(dev);
1251 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252 		dev_priv->l3_parity.which_slice |= 1 << 1;
1253 
1254 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255 		dev_priv->l3_parity.which_slice |= 1 << 0;
1256 
1257 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259 
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261 			       struct drm_i915_private *dev_priv,
1262 			       u32 gt_iir)
1263 {
1264 	if (gt_iir &
1265 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 		notify_ring(dev, &dev_priv->ring[RCS]);
1267 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268 		notify_ring(dev, &dev_priv->ring[VCS]);
1269 }
1270 
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272 			       struct drm_i915_private *dev_priv,
1273 			       u32 gt_iir)
1274 {
1275 
1276 	if (gt_iir &
1277 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278 		notify_ring(dev, &dev_priv->ring[RCS]);
1279 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 		notify_ring(dev, &dev_priv->ring[VCS]);
1281 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 		notify_ring(dev, &dev_priv->ring[BCS]);
1283 
1284 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 		      GT_BSD_CS_ERROR_INTERRUPT |
1286 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288 				  gt_iir);
1289 	}
1290 
1291 	if (gt_iir & GT_PARITY_ERROR(dev))
1292 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1293 }
1294 
1295 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296 				       struct drm_i915_private *dev_priv,
1297 				       u32 master_ctl)
1298 {
1299 	u32 rcs, bcs, vcs;
1300 	uint32_t tmp = 0;
1301 	irqreturn_t ret = IRQ_NONE;
1302 
1303 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304 		tmp = I915_READ(GEN8_GT_IIR(0));
1305 		if (tmp) {
1306 			ret = IRQ_HANDLED;
1307 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309 			if (rcs & GT_RENDER_USER_INTERRUPT)
1310 				notify_ring(dev, &dev_priv->ring[RCS]);
1311 			if (bcs & GT_RENDER_USER_INTERRUPT)
1312 				notify_ring(dev, &dev_priv->ring[BCS]);
1313 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1314 		} else
1315 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316 	}
1317 
1318 	if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319 		tmp = I915_READ(GEN8_GT_IIR(1));
1320 		if (tmp) {
1321 			ret = IRQ_HANDLED;
1322 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323 			if (vcs & GT_RENDER_USER_INTERRUPT)
1324 				notify_ring(dev, &dev_priv->ring[VCS]);
1325 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1326 		} else
1327 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1328 	}
1329 
1330 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1331 		tmp = I915_READ(GEN8_GT_IIR(3));
1332 		if (tmp) {
1333 			ret = IRQ_HANDLED;
1334 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335 			if (vcs & GT_RENDER_USER_INTERRUPT)
1336 				notify_ring(dev, &dev_priv->ring[VECS]);
1337 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1338 		} else
1339 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1340 	}
1341 
1342 	return ret;
1343 }
1344 
1345 #define HPD_STORM_DETECT_PERIOD 1000
1346 #define HPD_STORM_THRESHOLD 5
1347 
1348 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349 					 u32 hotplug_trigger,
1350 					 const u32 *hpd)
1351 {
1352 	struct drm_i915_private *dev_priv = dev->dev_private;
1353 	int i;
1354 	bool storm_detected = false;
1355 
1356 	if (!hotplug_trigger)
1357 		return;
1358 
1359 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360 			  hotplug_trigger);
1361 
1362 	spin_lock(&dev_priv->irq_lock);
1363 	for (i = 1; i < HPD_NUM_PINS; i++) {
1364 
1365 		WARN_ONCE(hpd[i] & hotplug_trigger &&
1366 			  dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1367 			  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1368 			  hotplug_trigger, i, hpd[i]);
1369 
1370 		if (!(hpd[i] & hotplug_trigger) ||
1371 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1372 			continue;
1373 
1374 		dev_priv->hpd_event_bits |= (1 << i);
1375 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1376 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1377 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1378 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1379 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1380 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1381 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1382 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1383 			dev_priv->hpd_event_bits &= ~(1 << i);
1384 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1385 			storm_detected = true;
1386 		} else {
1387 			dev_priv->hpd_stats[i].hpd_cnt++;
1388 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1389 				      dev_priv->hpd_stats[i].hpd_cnt);
1390 		}
1391 	}
1392 
1393 	if (storm_detected)
1394 		dev_priv->display.hpd_irq_setup(dev);
1395 	spin_unlock(&dev_priv->irq_lock);
1396 
1397 	/*
1398 	 * Our hotplug handler can grab modeset locks (by calling down into the
1399 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1400 	 * queue for otherwise the flush_work in the pageflip code will
1401 	 * deadlock.
1402 	 */
1403 	schedule_work(&dev_priv->hotplug_work);
1404 }
1405 
1406 static void gmbus_irq_handler(struct drm_device *dev)
1407 {
1408 	struct drm_i915_private *dev_priv = dev->dev_private;
1409 
1410 	wake_up_all(&dev_priv->gmbus_wait_queue);
1411 }
1412 
1413 static void dp_aux_irq_handler(struct drm_device *dev)
1414 {
1415 	struct drm_i915_private *dev_priv = dev->dev_private;
1416 
1417 	wake_up_all(&dev_priv->gmbus_wait_queue);
1418 }
1419 
1420 #if defined(CONFIG_DEBUG_FS)
1421 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1422 					 uint32_t crc0, uint32_t crc1,
1423 					 uint32_t crc2, uint32_t crc3,
1424 					 uint32_t crc4)
1425 {
1426 	struct drm_i915_private *dev_priv = dev->dev_private;
1427 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1428 	struct intel_pipe_crc_entry *entry;
1429 	int head, tail;
1430 
1431 	spin_lock(&pipe_crc->lock);
1432 
1433 	if (!pipe_crc->entries) {
1434 		spin_unlock(&pipe_crc->lock);
1435 		DRM_ERROR("spurious interrupt\n");
1436 		return;
1437 	}
1438 
1439 	head = pipe_crc->head;
1440 	tail = pipe_crc->tail;
1441 
1442 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1443 		spin_unlock(&pipe_crc->lock);
1444 		DRM_ERROR("CRC buffer overflowing\n");
1445 		return;
1446 	}
1447 
1448 	entry = &pipe_crc->entries[head];
1449 
1450 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1451 	entry->crc[0] = crc0;
1452 	entry->crc[1] = crc1;
1453 	entry->crc[2] = crc2;
1454 	entry->crc[3] = crc3;
1455 	entry->crc[4] = crc4;
1456 
1457 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1458 	pipe_crc->head = head;
1459 
1460 	spin_unlock(&pipe_crc->lock);
1461 
1462 	wake_up_interruptible(&pipe_crc->wq);
1463 }
1464 #else
1465 static inline void
1466 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1467 			     uint32_t crc0, uint32_t crc1,
1468 			     uint32_t crc2, uint32_t crc3,
1469 			     uint32_t crc4) {}
1470 #endif
1471 
1472 
1473 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1474 {
1475 	struct drm_i915_private *dev_priv = dev->dev_private;
1476 
1477 	display_pipe_crc_irq_handler(dev, pipe,
1478 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1479 				     0, 0, 0, 0);
1480 }
1481 
1482 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1483 {
1484 	struct drm_i915_private *dev_priv = dev->dev_private;
1485 
1486 	display_pipe_crc_irq_handler(dev, pipe,
1487 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1488 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1489 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1490 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1491 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1492 }
1493 
1494 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1495 {
1496 	struct drm_i915_private *dev_priv = dev->dev_private;
1497 	uint32_t res1, res2;
1498 
1499 	if (INTEL_INFO(dev)->gen >= 3)
1500 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1501 	else
1502 		res1 = 0;
1503 
1504 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1505 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1506 	else
1507 		res2 = 0;
1508 
1509 	display_pipe_crc_irq_handler(dev, pipe,
1510 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1511 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1512 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1513 				     res1, res2);
1514 }
1515 
1516 /* The RPS events need forcewake, so we add them to a work queue and mask their
1517  * IMR bits until the work is done. Other interrupts can be processed without
1518  * the work queue. */
1519 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1520 {
1521 	if (pm_iir & dev_priv->pm_rps_events) {
1522 		spin_lock(&dev_priv->irq_lock);
1523 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1524 		snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1525 		spin_unlock(&dev_priv->irq_lock);
1526 
1527 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1528 	}
1529 
1530 	if (HAS_VEBOX(dev_priv->dev)) {
1531 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1532 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1533 
1534 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1535 			i915_handle_error(dev_priv->dev, false,
1536 					  "VEBOX CS error interrupt 0x%08x",
1537 					  pm_iir);
1538 		}
1539 	}
1540 }
1541 
1542 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1543 {
1544 	struct drm_i915_private *dev_priv = dev->dev_private;
1545 	u32 pipe_stats[I915_MAX_PIPES] = { };
1546 	int pipe;
1547 
1548 	spin_lock(&dev_priv->irq_lock);
1549 	for_each_pipe(pipe) {
1550 		int reg;
1551 		u32 mask, iir_bit = 0;
1552 
1553 		/*
1554 		 * PIPESTAT bits get signalled even when the interrupt is
1555 		 * disabled with the mask bits, and some of the status bits do
1556 		 * not generate interrupts at all (like the underrun bit). Hence
1557 		 * we need to be careful that we only handle what we want to
1558 		 * handle.
1559 		 */
1560 		mask = 0;
1561 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1562 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
1563 
1564 		switch (pipe) {
1565 		case PIPE_A:
1566 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1567 			break;
1568 		case PIPE_B:
1569 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1570 			break;
1571 		}
1572 		if (iir & iir_bit)
1573 			mask |= dev_priv->pipestat_irq_mask[pipe];
1574 
1575 		if (!mask)
1576 			continue;
1577 
1578 		reg = PIPESTAT(pipe);
1579 		mask |= PIPESTAT_INT_ENABLE_MASK;
1580 		pipe_stats[pipe] = I915_READ(reg) & mask;
1581 
1582 		/*
1583 		 * Clear the PIPE*STAT regs before the IIR
1584 		 */
1585 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1586 					PIPESTAT_INT_STATUS_MASK))
1587 			I915_WRITE(reg, pipe_stats[pipe]);
1588 	}
1589 	spin_unlock(&dev_priv->irq_lock);
1590 
1591 	for_each_pipe(pipe) {
1592 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1593 			drm_handle_vblank(dev, pipe);
1594 
1595 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1596 			intel_prepare_page_flip(dev, pipe);
1597 			intel_finish_page_flip(dev, pipe);
1598 		}
1599 
1600 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1601 			i9xx_pipe_crc_irq_handler(dev, pipe);
1602 
1603 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1604 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1605 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1606 	}
1607 
1608 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1609 		gmbus_irq_handler(dev);
1610 }
1611 
1612 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1613 {
1614 	struct drm_device *dev = (struct drm_device *) arg;
1615 	struct drm_i915_private *dev_priv = dev->dev_private;
1616 	u32 iir, gt_iir, pm_iir;
1617 	irqreturn_t ret = IRQ_NONE;
1618 
1619 	while (true) {
1620 		iir = I915_READ(VLV_IIR);
1621 		gt_iir = I915_READ(GTIIR);
1622 		pm_iir = I915_READ(GEN6_PMIIR);
1623 
1624 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1625 			goto out;
1626 
1627 		ret = IRQ_HANDLED;
1628 
1629 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1630 
1631 		valleyview_pipestat_irq_handler(dev, iir);
1632 
1633 		/* Consume port.  Then clear IIR or we'll miss events */
1634 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1635 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1636 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1637 
1638 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1639 
1640 			if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1641 				dp_aux_irq_handler(dev);
1642 
1643 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1644 			I915_READ(PORT_HOTPLUG_STAT);
1645 		}
1646 
1647 
1648 		if (pm_iir)
1649 			gen6_rps_irq_handler(dev_priv, pm_iir);
1650 
1651 		I915_WRITE(GTIIR, gt_iir);
1652 		I915_WRITE(GEN6_PMIIR, pm_iir);
1653 		I915_WRITE(VLV_IIR, iir);
1654 	}
1655 
1656 out:
1657 	return ret;
1658 }
1659 
1660 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1661 {
1662 	struct drm_i915_private *dev_priv = dev->dev_private;
1663 	int pipe;
1664 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1665 
1666 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1667 
1668 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1669 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1670 			       SDE_AUDIO_POWER_SHIFT);
1671 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1672 				 port_name(port));
1673 	}
1674 
1675 	if (pch_iir & SDE_AUX_MASK)
1676 		dp_aux_irq_handler(dev);
1677 
1678 	if (pch_iir & SDE_GMBUS)
1679 		gmbus_irq_handler(dev);
1680 
1681 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1682 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1683 
1684 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1685 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1686 
1687 	if (pch_iir & SDE_POISON)
1688 		DRM_ERROR("PCH poison interrupt\n");
1689 
1690 	if (pch_iir & SDE_FDI_MASK)
1691 		for_each_pipe(pipe)
1692 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1693 					 pipe_name(pipe),
1694 					 I915_READ(FDI_RX_IIR(pipe)));
1695 
1696 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1697 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1698 
1699 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1700 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1701 
1702 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1703 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1704 							  false))
1705 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1706 
1707 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1708 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1709 							  false))
1710 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1711 }
1712 
1713 static void ivb_err_int_handler(struct drm_device *dev)
1714 {
1715 	struct drm_i915_private *dev_priv = dev->dev_private;
1716 	u32 err_int = I915_READ(GEN7_ERR_INT);
1717 	enum pipe pipe;
1718 
1719 	if (err_int & ERR_INT_POISON)
1720 		DRM_ERROR("Poison interrupt\n");
1721 
1722 	for_each_pipe(pipe) {
1723 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1724 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1725 								  false))
1726 				DRM_ERROR("Pipe %c FIFO underrun\n",
1727 					  pipe_name(pipe));
1728 		}
1729 
1730 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1731 			if (IS_IVYBRIDGE(dev))
1732 				ivb_pipe_crc_irq_handler(dev, pipe);
1733 			else
1734 				hsw_pipe_crc_irq_handler(dev, pipe);
1735 		}
1736 	}
1737 
1738 	I915_WRITE(GEN7_ERR_INT, err_int);
1739 }
1740 
1741 static void cpt_serr_int_handler(struct drm_device *dev)
1742 {
1743 	struct drm_i915_private *dev_priv = dev->dev_private;
1744 	u32 serr_int = I915_READ(SERR_INT);
1745 
1746 	if (serr_int & SERR_INT_POISON)
1747 		DRM_ERROR("PCH poison interrupt\n");
1748 
1749 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1750 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1751 							  false))
1752 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1753 
1754 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1755 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1756 							  false))
1757 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1758 
1759 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1760 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1761 							  false))
1762 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
1763 
1764 	I915_WRITE(SERR_INT, serr_int);
1765 }
1766 
1767 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1768 {
1769 	struct drm_i915_private *dev_priv = dev->dev_private;
1770 	int pipe;
1771 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1772 
1773 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1774 
1775 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1776 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1777 			       SDE_AUDIO_POWER_SHIFT_CPT);
1778 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1779 				 port_name(port));
1780 	}
1781 
1782 	if (pch_iir & SDE_AUX_MASK_CPT)
1783 		dp_aux_irq_handler(dev);
1784 
1785 	if (pch_iir & SDE_GMBUS_CPT)
1786 		gmbus_irq_handler(dev);
1787 
1788 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1789 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1790 
1791 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1792 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1793 
1794 	if (pch_iir & SDE_FDI_MASK_CPT)
1795 		for_each_pipe(pipe)
1796 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1797 					 pipe_name(pipe),
1798 					 I915_READ(FDI_RX_IIR(pipe)));
1799 
1800 	if (pch_iir & SDE_ERROR_CPT)
1801 		cpt_serr_int_handler(dev);
1802 }
1803 
1804 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1805 {
1806 	struct drm_i915_private *dev_priv = dev->dev_private;
1807 	enum pipe pipe;
1808 
1809 	if (de_iir & DE_AUX_CHANNEL_A)
1810 		dp_aux_irq_handler(dev);
1811 
1812 	if (de_iir & DE_GSE)
1813 		intel_opregion_asle_intr(dev);
1814 
1815 	if (de_iir & DE_POISON)
1816 		DRM_ERROR("Poison interrupt\n");
1817 
1818 	for_each_pipe(pipe) {
1819 		if (de_iir & DE_PIPE_VBLANK(pipe))
1820 			drm_handle_vblank(dev, pipe);
1821 
1822 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1823 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1824 				DRM_ERROR("Pipe %c FIFO underrun\n",
1825 					  pipe_name(pipe));
1826 
1827 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1828 			i9xx_pipe_crc_irq_handler(dev, pipe);
1829 
1830 		/* plane/pipes map 1:1 on ilk+ */
1831 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1832 			intel_prepare_page_flip(dev, pipe);
1833 			intel_finish_page_flip_plane(dev, pipe);
1834 		}
1835 	}
1836 
1837 	/* check event from PCH */
1838 	if (de_iir & DE_PCH_EVENT) {
1839 		u32 pch_iir = I915_READ(SDEIIR);
1840 
1841 		if (HAS_PCH_CPT(dev))
1842 			cpt_irq_handler(dev, pch_iir);
1843 		else
1844 			ibx_irq_handler(dev, pch_iir);
1845 
1846 		/* should clear PCH hotplug event before clear CPU irq */
1847 		I915_WRITE(SDEIIR, pch_iir);
1848 	}
1849 
1850 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1851 		ironlake_rps_change_irq_handler(dev);
1852 }
1853 
1854 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1855 {
1856 	struct drm_i915_private *dev_priv = dev->dev_private;
1857 	enum pipe pipe;
1858 
1859 	if (de_iir & DE_ERR_INT_IVB)
1860 		ivb_err_int_handler(dev);
1861 
1862 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1863 		dp_aux_irq_handler(dev);
1864 
1865 	if (de_iir & DE_GSE_IVB)
1866 		intel_opregion_asle_intr(dev);
1867 
1868 	for_each_pipe(pipe) {
1869 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1870 			drm_handle_vblank(dev, pipe);
1871 
1872 		/* plane/pipes map 1:1 on ilk+ */
1873 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1874 			intel_prepare_page_flip(dev, pipe);
1875 			intel_finish_page_flip_plane(dev, pipe);
1876 		}
1877 	}
1878 
1879 	/* check event from PCH */
1880 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1881 		u32 pch_iir = I915_READ(SDEIIR);
1882 
1883 		cpt_irq_handler(dev, pch_iir);
1884 
1885 		/* clear PCH hotplug event before clear CPU irq */
1886 		I915_WRITE(SDEIIR, pch_iir);
1887 	}
1888 }
1889 
1890 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1891 {
1892 	struct drm_device *dev = (struct drm_device *) arg;
1893 	struct drm_i915_private *dev_priv = dev->dev_private;
1894 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1895 	irqreturn_t ret = IRQ_NONE;
1896 
1897 	/* We get interrupts on unclaimed registers, so check for this before we
1898 	 * do any I915_{READ,WRITE}. */
1899 	intel_uncore_check_errors(dev);
1900 
1901 	/* disable master interrupt before clearing iir  */
1902 	de_ier = I915_READ(DEIER);
1903 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1904 	POSTING_READ(DEIER);
1905 
1906 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1907 	 * interrupts will will be stored on its back queue, and then we'll be
1908 	 * able to process them after we restore SDEIER (as soon as we restore
1909 	 * it, we'll get an interrupt if SDEIIR still has something to process
1910 	 * due to its back queue). */
1911 	if (!HAS_PCH_NOP(dev)) {
1912 		sde_ier = I915_READ(SDEIER);
1913 		I915_WRITE(SDEIER, 0);
1914 		POSTING_READ(SDEIER);
1915 	}
1916 
1917 	gt_iir = I915_READ(GTIIR);
1918 	if (gt_iir) {
1919 		if (INTEL_INFO(dev)->gen >= 6)
1920 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1921 		else
1922 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1923 		I915_WRITE(GTIIR, gt_iir);
1924 		ret = IRQ_HANDLED;
1925 	}
1926 
1927 	de_iir = I915_READ(DEIIR);
1928 	if (de_iir) {
1929 		if (INTEL_INFO(dev)->gen >= 7)
1930 			ivb_display_irq_handler(dev, de_iir);
1931 		else
1932 			ilk_display_irq_handler(dev, de_iir);
1933 		I915_WRITE(DEIIR, de_iir);
1934 		ret = IRQ_HANDLED;
1935 	}
1936 
1937 	if (INTEL_INFO(dev)->gen >= 6) {
1938 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1939 		if (pm_iir) {
1940 			gen6_rps_irq_handler(dev_priv, pm_iir);
1941 			I915_WRITE(GEN6_PMIIR, pm_iir);
1942 			ret = IRQ_HANDLED;
1943 		}
1944 	}
1945 
1946 	I915_WRITE(DEIER, de_ier);
1947 	POSTING_READ(DEIER);
1948 	if (!HAS_PCH_NOP(dev)) {
1949 		I915_WRITE(SDEIER, sde_ier);
1950 		POSTING_READ(SDEIER);
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1957 {
1958 	struct drm_device *dev = arg;
1959 	struct drm_i915_private *dev_priv = dev->dev_private;
1960 	u32 master_ctl;
1961 	irqreturn_t ret = IRQ_NONE;
1962 	uint32_t tmp = 0;
1963 	enum pipe pipe;
1964 
1965 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
1966 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1967 	if (!master_ctl)
1968 		return IRQ_NONE;
1969 
1970 	I915_WRITE(GEN8_MASTER_IRQ, 0);
1971 	POSTING_READ(GEN8_MASTER_IRQ);
1972 
1973 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1974 
1975 	if (master_ctl & GEN8_DE_MISC_IRQ) {
1976 		tmp = I915_READ(GEN8_DE_MISC_IIR);
1977 		if (tmp & GEN8_DE_MISC_GSE)
1978 			intel_opregion_asle_intr(dev);
1979 		else if (tmp)
1980 			DRM_ERROR("Unexpected DE Misc interrupt\n");
1981 		else
1982 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1983 
1984 		if (tmp) {
1985 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1986 			ret = IRQ_HANDLED;
1987 		}
1988 	}
1989 
1990 	if (master_ctl & GEN8_DE_PORT_IRQ) {
1991 		tmp = I915_READ(GEN8_DE_PORT_IIR);
1992 		if (tmp & GEN8_AUX_CHANNEL_A)
1993 			dp_aux_irq_handler(dev);
1994 		else if (tmp)
1995 			DRM_ERROR("Unexpected DE Port interrupt\n");
1996 		else
1997 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1998 
1999 		if (tmp) {
2000 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2001 			ret = IRQ_HANDLED;
2002 		}
2003 	}
2004 
2005 	for_each_pipe(pipe) {
2006 		uint32_t pipe_iir;
2007 
2008 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2009 			continue;
2010 
2011 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2012 		if (pipe_iir & GEN8_PIPE_VBLANK)
2013 			drm_handle_vblank(dev, pipe);
2014 
2015 		if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2016 			intel_prepare_page_flip(dev, pipe);
2017 			intel_finish_page_flip_plane(dev, pipe);
2018 		}
2019 
2020 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2021 			hsw_pipe_crc_irq_handler(dev, pipe);
2022 
2023 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2024 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2025 								  false))
2026 				DRM_ERROR("Pipe %c FIFO underrun\n",
2027 					  pipe_name(pipe));
2028 		}
2029 
2030 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2031 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2032 				  pipe_name(pipe),
2033 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2034 		}
2035 
2036 		if (pipe_iir) {
2037 			ret = IRQ_HANDLED;
2038 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2039 		} else
2040 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2041 	}
2042 
2043 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2044 		/*
2045 		 * FIXME(BDW): Assume for now that the new interrupt handling
2046 		 * scheme also closed the SDE interrupt handling race we've seen
2047 		 * on older pch-split platforms. But this needs testing.
2048 		 */
2049 		u32 pch_iir = I915_READ(SDEIIR);
2050 
2051 		cpt_irq_handler(dev, pch_iir);
2052 
2053 		if (pch_iir) {
2054 			I915_WRITE(SDEIIR, pch_iir);
2055 			ret = IRQ_HANDLED;
2056 		}
2057 	}
2058 
2059 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2060 	POSTING_READ(GEN8_MASTER_IRQ);
2061 
2062 	return ret;
2063 }
2064 
2065 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2066 			       bool reset_completed)
2067 {
2068 	struct intel_ring_buffer *ring;
2069 	int i;
2070 
2071 	/*
2072 	 * Notify all waiters for GPU completion events that reset state has
2073 	 * been changed, and that they need to restart their wait after
2074 	 * checking for potential errors (and bail out to drop locks if there is
2075 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2076 	 */
2077 
2078 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2079 	for_each_ring(ring, dev_priv, i)
2080 		wake_up_all(&ring->irq_queue);
2081 
2082 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2083 	wake_up_all(&dev_priv->pending_flip_queue);
2084 
2085 	/*
2086 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2087 	 * reset state is cleared.
2088 	 */
2089 	if (reset_completed)
2090 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2091 }
2092 
2093 /**
2094  * i915_error_work_func - do process context error handling work
2095  * @work: work struct
2096  *
2097  * Fire an error uevent so userspace can see that a hang or error
2098  * was detected.
2099  */
2100 static void i915_error_work_func(struct work_struct *work)
2101 {
2102 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2103 						    work);
2104 	struct drm_i915_private *dev_priv =
2105 		container_of(error, struct drm_i915_private, gpu_error);
2106 	struct drm_device *dev = dev_priv->dev;
2107 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2108 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2109 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2110 	int ret;
2111 
2112 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2113 
2114 	/*
2115 	 * Note that there's only one work item which does gpu resets, so we
2116 	 * need not worry about concurrent gpu resets potentially incrementing
2117 	 * error->reset_counter twice. We only need to take care of another
2118 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2119 	 * quick check for that is good enough: schedule_work ensures the
2120 	 * correct ordering between hang detection and this work item, and since
2121 	 * the reset in-progress bit is only ever set by code outside of this
2122 	 * work we don't need to worry about any other races.
2123 	 */
2124 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2125 		DRM_DEBUG_DRIVER("resetting chip\n");
2126 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2127 				   reset_event);
2128 
2129 		/*
2130 		 * All state reset _must_ be completed before we update the
2131 		 * reset counter, for otherwise waiters might miss the reset
2132 		 * pending state and not properly drop locks, resulting in
2133 		 * deadlocks with the reset work.
2134 		 */
2135 		ret = i915_reset(dev);
2136 
2137 		intel_display_handle_reset(dev);
2138 
2139 		if (ret == 0) {
2140 			/*
2141 			 * After all the gem state is reset, increment the reset
2142 			 * counter and wake up everyone waiting for the reset to
2143 			 * complete.
2144 			 *
2145 			 * Since unlock operations are a one-sided barrier only,
2146 			 * we need to insert a barrier here to order any seqno
2147 			 * updates before
2148 			 * the counter increment.
2149 			 */
2150 			smp_mb__before_atomic_inc();
2151 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2152 
2153 			kobject_uevent_env(&dev->primary->kdev->kobj,
2154 					   KOBJ_CHANGE, reset_done_event);
2155 		} else {
2156 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2157 		}
2158 
2159 		/*
2160 		 * Note: The wake_up also serves as a memory barrier so that
2161 		 * waiters see the update value of the reset counter atomic_t.
2162 		 */
2163 		i915_error_wake_up(dev_priv, true);
2164 	}
2165 }
2166 
2167 static void i915_report_and_clear_eir(struct drm_device *dev)
2168 {
2169 	struct drm_i915_private *dev_priv = dev->dev_private;
2170 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2171 	u32 eir = I915_READ(EIR);
2172 	int pipe, i;
2173 
2174 	if (!eir)
2175 		return;
2176 
2177 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2178 
2179 	i915_get_extra_instdone(dev, instdone);
2180 
2181 	if (IS_G4X(dev)) {
2182 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2183 			u32 ipeir = I915_READ(IPEIR_I965);
2184 
2185 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2186 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2187 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2188 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2189 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2190 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2191 			I915_WRITE(IPEIR_I965, ipeir);
2192 			POSTING_READ(IPEIR_I965);
2193 		}
2194 		if (eir & GM45_ERROR_PAGE_TABLE) {
2195 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2196 			pr_err("page table error\n");
2197 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2198 			I915_WRITE(PGTBL_ER, pgtbl_err);
2199 			POSTING_READ(PGTBL_ER);
2200 		}
2201 	}
2202 
2203 	if (!IS_GEN2(dev)) {
2204 		if (eir & I915_ERROR_PAGE_TABLE) {
2205 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2206 			pr_err("page table error\n");
2207 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2208 			I915_WRITE(PGTBL_ER, pgtbl_err);
2209 			POSTING_READ(PGTBL_ER);
2210 		}
2211 	}
2212 
2213 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2214 		pr_err("memory refresh error:\n");
2215 		for_each_pipe(pipe)
2216 			pr_err("pipe %c stat: 0x%08x\n",
2217 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2218 		/* pipestat has already been acked */
2219 	}
2220 	if (eir & I915_ERROR_INSTRUCTION) {
2221 		pr_err("instruction error\n");
2222 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2223 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2224 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2225 		if (INTEL_INFO(dev)->gen < 4) {
2226 			u32 ipeir = I915_READ(IPEIR);
2227 
2228 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2229 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2230 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2231 			I915_WRITE(IPEIR, ipeir);
2232 			POSTING_READ(IPEIR);
2233 		} else {
2234 			u32 ipeir = I915_READ(IPEIR_I965);
2235 
2236 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2237 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2238 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2239 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2240 			I915_WRITE(IPEIR_I965, ipeir);
2241 			POSTING_READ(IPEIR_I965);
2242 		}
2243 	}
2244 
2245 	I915_WRITE(EIR, eir);
2246 	POSTING_READ(EIR);
2247 	eir = I915_READ(EIR);
2248 	if (eir) {
2249 		/*
2250 		 * some errors might have become stuck,
2251 		 * mask them.
2252 		 */
2253 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2254 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2255 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2256 	}
2257 }
2258 
2259 /**
2260  * i915_handle_error - handle an error interrupt
2261  * @dev: drm device
2262  *
2263  * Do some basic checking of regsiter state at error interrupt time and
2264  * dump it to the syslog.  Also call i915_capture_error_state() to make
2265  * sure we get a record and make it available in debugfs.  Fire a uevent
2266  * so userspace knows something bad happened (should trigger collection
2267  * of a ring dump etc.).
2268  */
2269 void i915_handle_error(struct drm_device *dev, bool wedged,
2270 		       const char *fmt, ...)
2271 {
2272 	struct drm_i915_private *dev_priv = dev->dev_private;
2273 	va_list args;
2274 	char error_msg[80];
2275 
2276 	va_start(args, fmt);
2277 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2278 	va_end(args);
2279 
2280 	i915_capture_error_state(dev, wedged, error_msg);
2281 	i915_report_and_clear_eir(dev);
2282 
2283 	if (wedged) {
2284 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2285 				&dev_priv->gpu_error.reset_counter);
2286 
2287 		/*
2288 		 * Wakeup waiting processes so that the reset work function
2289 		 * i915_error_work_func doesn't deadlock trying to grab various
2290 		 * locks. By bumping the reset counter first, the woken
2291 		 * processes will see a reset in progress and back off,
2292 		 * releasing their locks and then wait for the reset completion.
2293 		 * We must do this for _all_ gpu waiters that might hold locks
2294 		 * that the reset work needs to acquire.
2295 		 *
2296 		 * Note: The wake_up serves as the required memory barrier to
2297 		 * ensure that the waiters see the updated value of the reset
2298 		 * counter atomic_t.
2299 		 */
2300 		i915_error_wake_up(dev_priv, false);
2301 	}
2302 
2303 	/*
2304 	 * Our reset work can grab modeset locks (since it needs to reset the
2305 	 * state of outstanding pagelips). Hence it must not be run on our own
2306 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2307 	 * code will deadlock.
2308 	 */
2309 	schedule_work(&dev_priv->gpu_error.work);
2310 }
2311 
2312 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2313 {
2314 	struct drm_i915_private *dev_priv = dev->dev_private;
2315 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2316 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2317 	struct drm_i915_gem_object *obj;
2318 	struct intel_unpin_work *work;
2319 	unsigned long flags;
2320 	bool stall_detected;
2321 
2322 	/* Ignore early vblank irqs */
2323 	if (intel_crtc == NULL)
2324 		return;
2325 
2326 	spin_lock_irqsave(&dev->event_lock, flags);
2327 	work = intel_crtc->unpin_work;
2328 
2329 	if (work == NULL ||
2330 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2331 	    !work->enable_stall_check) {
2332 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2333 		spin_unlock_irqrestore(&dev->event_lock, flags);
2334 		return;
2335 	}
2336 
2337 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2338 	obj = work->pending_flip_obj;
2339 	if (INTEL_INFO(dev)->gen >= 4) {
2340 		int dspsurf = DSPSURF(intel_crtc->plane);
2341 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2342 					i915_gem_obj_ggtt_offset(obj);
2343 	} else {
2344 		int dspaddr = DSPADDR(intel_crtc->plane);
2345 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2346 							crtc->y * crtc->primary->fb->pitches[0] +
2347 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2348 	}
2349 
2350 	spin_unlock_irqrestore(&dev->event_lock, flags);
2351 
2352 	if (stall_detected) {
2353 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2354 		intel_prepare_page_flip(dev, intel_crtc->plane);
2355 	}
2356 }
2357 
2358 /* Called from drm generic code, passed 'crtc' which
2359  * we use as a pipe index
2360  */
2361 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2362 {
2363 	struct drm_i915_private *dev_priv = dev->dev_private;
2364 	unsigned long irqflags;
2365 
2366 	if (!i915_pipe_enabled(dev, pipe))
2367 		return -EINVAL;
2368 
2369 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2370 	if (INTEL_INFO(dev)->gen >= 4)
2371 		i915_enable_pipestat(dev_priv, pipe,
2372 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2373 	else
2374 		i915_enable_pipestat(dev_priv, pipe,
2375 				     PIPE_VBLANK_INTERRUPT_STATUS);
2376 
2377 	/* maintain vblank delivery even in deep C-states */
2378 	if (INTEL_INFO(dev)->gen == 3)
2379 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2380 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2381 
2382 	return 0;
2383 }
2384 
2385 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2386 {
2387 	struct drm_i915_private *dev_priv = dev->dev_private;
2388 	unsigned long irqflags;
2389 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2390 						     DE_PIPE_VBLANK(pipe);
2391 
2392 	if (!i915_pipe_enabled(dev, pipe))
2393 		return -EINVAL;
2394 
2395 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2396 	ironlake_enable_display_irq(dev_priv, bit);
2397 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2398 
2399 	return 0;
2400 }
2401 
2402 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2403 {
2404 	struct drm_i915_private *dev_priv = dev->dev_private;
2405 	unsigned long irqflags;
2406 
2407 	if (!i915_pipe_enabled(dev, pipe))
2408 		return -EINVAL;
2409 
2410 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2411 	i915_enable_pipestat(dev_priv, pipe,
2412 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2413 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2414 
2415 	return 0;
2416 }
2417 
2418 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2419 {
2420 	struct drm_i915_private *dev_priv = dev->dev_private;
2421 	unsigned long irqflags;
2422 
2423 	if (!i915_pipe_enabled(dev, pipe))
2424 		return -EINVAL;
2425 
2426 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2427 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2428 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2429 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2430 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2431 	return 0;
2432 }
2433 
2434 /* Called from drm generic code, passed 'crtc' which
2435  * we use as a pipe index
2436  */
2437 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2438 {
2439 	struct drm_i915_private *dev_priv = dev->dev_private;
2440 	unsigned long irqflags;
2441 
2442 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2443 	if (INTEL_INFO(dev)->gen == 3)
2444 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2445 
2446 	i915_disable_pipestat(dev_priv, pipe,
2447 			      PIPE_VBLANK_INTERRUPT_STATUS |
2448 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2449 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2450 }
2451 
2452 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2453 {
2454 	struct drm_i915_private *dev_priv = dev->dev_private;
2455 	unsigned long irqflags;
2456 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2457 						     DE_PIPE_VBLANK(pipe);
2458 
2459 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2460 	ironlake_disable_display_irq(dev_priv, bit);
2461 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2462 }
2463 
2464 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2465 {
2466 	struct drm_i915_private *dev_priv = dev->dev_private;
2467 	unsigned long irqflags;
2468 
2469 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470 	i915_disable_pipestat(dev_priv, pipe,
2471 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2472 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2473 }
2474 
2475 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2476 {
2477 	struct drm_i915_private *dev_priv = dev->dev_private;
2478 	unsigned long irqflags;
2479 
2480 	if (!i915_pipe_enabled(dev, pipe))
2481 		return;
2482 
2483 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2484 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2485 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2486 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2487 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2488 }
2489 
2490 static u32
2491 ring_last_seqno(struct intel_ring_buffer *ring)
2492 {
2493 	return list_entry(ring->request_list.prev,
2494 			  struct drm_i915_gem_request, list)->seqno;
2495 }
2496 
2497 static bool
2498 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2499 {
2500 	return (list_empty(&ring->request_list) ||
2501 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2502 }
2503 
2504 static struct intel_ring_buffer *
2505 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2506 {
2507 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2508 	u32 cmd, ipehr, head;
2509 	int i;
2510 
2511 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2512 	if ((ipehr & ~(0x3 << 16)) !=
2513 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2514 		return NULL;
2515 
2516 	/*
2517 	 * HEAD is likely pointing to the dword after the actual command,
2518 	 * so scan backwards until we find the MBOX. But limit it to just 3
2519 	 * dwords. Note that we don't care about ACTHD here since that might
2520 	 * point at at batch, and semaphores are always emitted into the
2521 	 * ringbuffer itself.
2522 	 */
2523 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2524 
2525 	for (i = 4; i; --i) {
2526 		/*
2527 		 * Be paranoid and presume the hw has gone off into the wild -
2528 		 * our ring is smaller than what the hardware (and hence
2529 		 * HEAD_ADDR) allows. Also handles wrap-around.
2530 		 */
2531 		head &= ring->size - 1;
2532 
2533 		/* This here seems to blow up */
2534 		cmd = ioread32(ring->virtual_start + head);
2535 		if (cmd == ipehr)
2536 			break;
2537 
2538 		head -= 4;
2539 	}
2540 
2541 	if (!i)
2542 		return NULL;
2543 
2544 	*seqno = ioread32(ring->virtual_start + head + 4) + 1;
2545 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2546 }
2547 
2548 static int semaphore_passed(struct intel_ring_buffer *ring)
2549 {
2550 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551 	struct intel_ring_buffer *signaller;
2552 	u32 seqno, ctl;
2553 
2554 	ring->hangcheck.deadlock = true;
2555 
2556 	signaller = semaphore_waits_for(ring, &seqno);
2557 	if (signaller == NULL || signaller->hangcheck.deadlock)
2558 		return -1;
2559 
2560 	/* cursory check for an unkickable deadlock */
2561 	ctl = I915_READ_CTL(signaller);
2562 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2563 		return -1;
2564 
2565 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2566 }
2567 
2568 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2569 {
2570 	struct intel_ring_buffer *ring;
2571 	int i;
2572 
2573 	for_each_ring(ring, dev_priv, i)
2574 		ring->hangcheck.deadlock = false;
2575 }
2576 
2577 static enum intel_ring_hangcheck_action
2578 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2579 {
2580 	struct drm_device *dev = ring->dev;
2581 	struct drm_i915_private *dev_priv = dev->dev_private;
2582 	u32 tmp;
2583 
2584 	if (ring->hangcheck.acthd != acthd)
2585 		return HANGCHECK_ACTIVE;
2586 
2587 	if (IS_GEN2(dev))
2588 		return HANGCHECK_HUNG;
2589 
2590 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2591 	 * If so we can simply poke the RB_WAIT bit
2592 	 * and break the hang. This should work on
2593 	 * all but the second generation chipsets.
2594 	 */
2595 	tmp = I915_READ_CTL(ring);
2596 	if (tmp & RING_WAIT) {
2597 		i915_handle_error(dev, false,
2598 				  "Kicking stuck wait on %s",
2599 				  ring->name);
2600 		I915_WRITE_CTL(ring, tmp);
2601 		return HANGCHECK_KICK;
2602 	}
2603 
2604 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2605 		switch (semaphore_passed(ring)) {
2606 		default:
2607 			return HANGCHECK_HUNG;
2608 		case 1:
2609 			i915_handle_error(dev, false,
2610 					  "Kicking stuck semaphore on %s",
2611 					  ring->name);
2612 			I915_WRITE_CTL(ring, tmp);
2613 			return HANGCHECK_KICK;
2614 		case 0:
2615 			return HANGCHECK_WAIT;
2616 		}
2617 	}
2618 
2619 	return HANGCHECK_HUNG;
2620 }
2621 
2622 /**
2623  * This is called when the chip hasn't reported back with completed
2624  * batchbuffers in a long time. We keep track per ring seqno progress and
2625  * if there are no progress, hangcheck score for that ring is increased.
2626  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2627  * we kick the ring. If we see no progress on three subsequent calls
2628  * we assume chip is wedged and try to fix it by resetting the chip.
2629  */
2630 static void i915_hangcheck_elapsed(unsigned long data)
2631 {
2632 	struct drm_device *dev = (struct drm_device *)data;
2633 	struct drm_i915_private *dev_priv = dev->dev_private;
2634 	struct intel_ring_buffer *ring;
2635 	int i;
2636 	int busy_count = 0, rings_hung = 0;
2637 	bool stuck[I915_NUM_RINGS] = { 0 };
2638 #define BUSY 1
2639 #define KICK 5
2640 #define HUNG 20
2641 
2642 	if (!i915.enable_hangcheck)
2643 		return;
2644 
2645 	for_each_ring(ring, dev_priv, i) {
2646 		u64 acthd;
2647 		u32 seqno;
2648 		bool busy = true;
2649 
2650 		semaphore_clear_deadlocks(dev_priv);
2651 
2652 		seqno = ring->get_seqno(ring, false);
2653 		acthd = intel_ring_get_active_head(ring);
2654 
2655 		if (ring->hangcheck.seqno == seqno) {
2656 			if (ring_idle(ring, seqno)) {
2657 				ring->hangcheck.action = HANGCHECK_IDLE;
2658 
2659 				if (waitqueue_active(&ring->irq_queue)) {
2660 					/* Issue a wake-up to catch stuck h/w. */
2661 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2662 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2663 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2664 								  ring->name);
2665 						else
2666 							DRM_INFO("Fake missed irq on %s\n",
2667 								 ring->name);
2668 						wake_up_all(&ring->irq_queue);
2669 					}
2670 					/* Safeguard against driver failure */
2671 					ring->hangcheck.score += BUSY;
2672 				} else
2673 					busy = false;
2674 			} else {
2675 				/* We always increment the hangcheck score
2676 				 * if the ring is busy and still processing
2677 				 * the same request, so that no single request
2678 				 * can run indefinitely (such as a chain of
2679 				 * batches). The only time we do not increment
2680 				 * the hangcheck score on this ring, if this
2681 				 * ring is in a legitimate wait for another
2682 				 * ring. In that case the waiting ring is a
2683 				 * victim and we want to be sure we catch the
2684 				 * right culprit. Then every time we do kick
2685 				 * the ring, add a small increment to the
2686 				 * score so that we can catch a batch that is
2687 				 * being repeatedly kicked and so responsible
2688 				 * for stalling the machine.
2689 				 */
2690 				ring->hangcheck.action = ring_stuck(ring,
2691 								    acthd);
2692 
2693 				switch (ring->hangcheck.action) {
2694 				case HANGCHECK_IDLE:
2695 				case HANGCHECK_WAIT:
2696 					break;
2697 				case HANGCHECK_ACTIVE:
2698 					ring->hangcheck.score += BUSY;
2699 					break;
2700 				case HANGCHECK_KICK:
2701 					ring->hangcheck.score += KICK;
2702 					break;
2703 				case HANGCHECK_HUNG:
2704 					ring->hangcheck.score += HUNG;
2705 					stuck[i] = true;
2706 					break;
2707 				}
2708 			}
2709 		} else {
2710 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2711 
2712 			/* Gradually reduce the count so that we catch DoS
2713 			 * attempts across multiple batches.
2714 			 */
2715 			if (ring->hangcheck.score > 0)
2716 				ring->hangcheck.score--;
2717 		}
2718 
2719 		ring->hangcheck.seqno = seqno;
2720 		ring->hangcheck.acthd = acthd;
2721 		busy_count += busy;
2722 	}
2723 
2724 	for_each_ring(ring, dev_priv, i) {
2725 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2726 			DRM_INFO("%s on %s\n",
2727 				 stuck[i] ? "stuck" : "no progress",
2728 				 ring->name);
2729 			rings_hung++;
2730 		}
2731 	}
2732 
2733 	if (rings_hung)
2734 		return i915_handle_error(dev, true, "Ring hung");
2735 
2736 	if (busy_count)
2737 		/* Reset timer case chip hangs without another request
2738 		 * being added */
2739 		i915_queue_hangcheck(dev);
2740 }
2741 
2742 void i915_queue_hangcheck(struct drm_device *dev)
2743 {
2744 	struct drm_i915_private *dev_priv = dev->dev_private;
2745 	if (!i915.enable_hangcheck)
2746 		return;
2747 
2748 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2749 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2750 }
2751 
2752 static void ibx_irq_preinstall(struct drm_device *dev)
2753 {
2754 	struct drm_i915_private *dev_priv = dev->dev_private;
2755 
2756 	if (HAS_PCH_NOP(dev))
2757 		return;
2758 
2759 	/* south display irq */
2760 	I915_WRITE(SDEIMR, 0xffffffff);
2761 	/*
2762 	 * SDEIER is also touched by the interrupt handler to work around missed
2763 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2764 	 * is enabled - instead we unconditionally enable all PCH interrupt
2765 	 * sources here, but then only unmask them as needed with SDEIMR.
2766 	 */
2767 	I915_WRITE(SDEIER, 0xffffffff);
2768 	POSTING_READ(SDEIER);
2769 }
2770 
2771 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2772 {
2773 	struct drm_i915_private *dev_priv = dev->dev_private;
2774 
2775 	/* and GT */
2776 	I915_WRITE(GTIMR, 0xffffffff);
2777 	I915_WRITE(GTIER, 0x0);
2778 	POSTING_READ(GTIER);
2779 
2780 	if (INTEL_INFO(dev)->gen >= 6) {
2781 		/* and PM */
2782 		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2783 		I915_WRITE(GEN6_PMIER, 0x0);
2784 		POSTING_READ(GEN6_PMIER);
2785 	}
2786 }
2787 
2788 /* drm_dma.h hooks
2789 */
2790 static void ironlake_irq_preinstall(struct drm_device *dev)
2791 {
2792 	struct drm_i915_private *dev_priv = dev->dev_private;
2793 
2794 	I915_WRITE(HWSTAM, 0xeffe);
2795 
2796 	I915_WRITE(DEIMR, 0xffffffff);
2797 	I915_WRITE(DEIER, 0x0);
2798 	POSTING_READ(DEIER);
2799 
2800 	gen5_gt_irq_preinstall(dev);
2801 
2802 	ibx_irq_preinstall(dev);
2803 }
2804 
2805 static void valleyview_irq_preinstall(struct drm_device *dev)
2806 {
2807 	struct drm_i915_private *dev_priv = dev->dev_private;
2808 	int pipe;
2809 
2810 	/* VLV magic */
2811 	I915_WRITE(VLV_IMR, 0);
2812 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2813 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2814 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2815 
2816 	/* and GT */
2817 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2818 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2819 
2820 	gen5_gt_irq_preinstall(dev);
2821 
2822 	I915_WRITE(DPINVGTT, 0xff);
2823 
2824 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2825 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2826 	for_each_pipe(pipe)
2827 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2828 	I915_WRITE(VLV_IIR, 0xffffffff);
2829 	I915_WRITE(VLV_IMR, 0xffffffff);
2830 	I915_WRITE(VLV_IER, 0x0);
2831 	POSTING_READ(VLV_IER);
2832 }
2833 
2834 static void gen8_irq_preinstall(struct drm_device *dev)
2835 {
2836 	struct drm_i915_private *dev_priv = dev->dev_private;
2837 	int pipe;
2838 
2839 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2840 	POSTING_READ(GEN8_MASTER_IRQ);
2841 
2842 	/* IIR can theoretically queue up two events. Be paranoid */
2843 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2844 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2845 		POSTING_READ(GEN8_##type##_IMR(which)); \
2846 		I915_WRITE(GEN8_##type##_IER(which), 0); \
2847 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2848 		POSTING_READ(GEN8_##type##_IIR(which)); \
2849 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2850 	} while (0)
2851 
2852 #define GEN8_IRQ_INIT(type) do { \
2853 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2854 		POSTING_READ(GEN8_##type##_IMR); \
2855 		I915_WRITE(GEN8_##type##_IER, 0); \
2856 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2857 		POSTING_READ(GEN8_##type##_IIR); \
2858 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2859 	} while (0)
2860 
2861 	GEN8_IRQ_INIT_NDX(GT, 0);
2862 	GEN8_IRQ_INIT_NDX(GT, 1);
2863 	GEN8_IRQ_INIT_NDX(GT, 2);
2864 	GEN8_IRQ_INIT_NDX(GT, 3);
2865 
2866 	for_each_pipe(pipe) {
2867 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2868 	}
2869 
2870 	GEN8_IRQ_INIT(DE_PORT);
2871 	GEN8_IRQ_INIT(DE_MISC);
2872 	GEN8_IRQ_INIT(PCU);
2873 #undef GEN8_IRQ_INIT
2874 #undef GEN8_IRQ_INIT_NDX
2875 
2876 	POSTING_READ(GEN8_PCU_IIR);
2877 
2878 	ibx_irq_preinstall(dev);
2879 }
2880 
2881 static void ibx_hpd_irq_setup(struct drm_device *dev)
2882 {
2883 	struct drm_i915_private *dev_priv = dev->dev_private;
2884 	struct drm_mode_config *mode_config = &dev->mode_config;
2885 	struct intel_encoder *intel_encoder;
2886 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2887 
2888 	if (HAS_PCH_IBX(dev)) {
2889 		hotplug_irqs = SDE_HOTPLUG_MASK;
2890 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2891 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2892 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2893 	} else {
2894 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2895 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2896 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2897 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2898 	}
2899 
2900 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2901 
2902 	/*
2903 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2904 	 * duration to 2ms (which is the minimum in the Display Port spec)
2905 	 *
2906 	 * This register is the same on all known PCH chips.
2907 	 */
2908 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2909 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2910 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2911 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2912 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2913 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2914 }
2915 
2916 static void ibx_irq_postinstall(struct drm_device *dev)
2917 {
2918 	struct drm_i915_private *dev_priv = dev->dev_private;
2919 	u32 mask;
2920 
2921 	if (HAS_PCH_NOP(dev))
2922 		return;
2923 
2924 	if (HAS_PCH_IBX(dev)) {
2925 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2926 	} else {
2927 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2928 
2929 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2930 	}
2931 
2932 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2933 	I915_WRITE(SDEIMR, ~mask);
2934 }
2935 
2936 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2937 {
2938 	struct drm_i915_private *dev_priv = dev->dev_private;
2939 	u32 pm_irqs, gt_irqs;
2940 
2941 	pm_irqs = gt_irqs = 0;
2942 
2943 	dev_priv->gt_irq_mask = ~0;
2944 	if (HAS_L3_DPF(dev)) {
2945 		/* L3 parity interrupt is always unmasked. */
2946 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2947 		gt_irqs |= GT_PARITY_ERROR(dev);
2948 	}
2949 
2950 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2951 	if (IS_GEN5(dev)) {
2952 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2953 			   ILK_BSD_USER_INTERRUPT;
2954 	} else {
2955 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2956 	}
2957 
2958 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2959 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2960 	I915_WRITE(GTIER, gt_irqs);
2961 	POSTING_READ(GTIER);
2962 
2963 	if (INTEL_INFO(dev)->gen >= 6) {
2964 		pm_irqs |= dev_priv->pm_rps_events;
2965 
2966 		if (HAS_VEBOX(dev))
2967 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2968 
2969 		dev_priv->pm_irq_mask = 0xffffffff;
2970 		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2971 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2972 		I915_WRITE(GEN6_PMIER, pm_irqs);
2973 		POSTING_READ(GEN6_PMIER);
2974 	}
2975 }
2976 
2977 static int ironlake_irq_postinstall(struct drm_device *dev)
2978 {
2979 	unsigned long irqflags;
2980 	struct drm_i915_private *dev_priv = dev->dev_private;
2981 	u32 display_mask, extra_mask;
2982 
2983 	if (INTEL_INFO(dev)->gen >= 7) {
2984 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2985 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2986 				DE_PLANEB_FLIP_DONE_IVB |
2987 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2988 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2989 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
2990 
2991 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2992 	} else {
2993 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2994 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2995 				DE_AUX_CHANNEL_A |
2996 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2997 				DE_POISON);
2998 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
2999 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3000 	}
3001 
3002 	dev_priv->irq_mask = ~display_mask;
3003 
3004 	/* should always can generate irq */
3005 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3006 	I915_WRITE(DEIMR, dev_priv->irq_mask);
3007 	I915_WRITE(DEIER, display_mask | extra_mask);
3008 	POSTING_READ(DEIER);
3009 
3010 	gen5_gt_irq_postinstall(dev);
3011 
3012 	ibx_irq_postinstall(dev);
3013 
3014 	if (IS_IRONLAKE_M(dev)) {
3015 		/* Enable PCU event interrupts
3016 		 *
3017 		 * spinlocking not required here for correctness since interrupt
3018 		 * setup is guaranteed to run in single-threaded context. But we
3019 		 * need it to make the assert_spin_locked happy. */
3020 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3021 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3022 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3029 {
3030 	u32 pipestat_mask;
3031 	u32 iir_mask;
3032 
3033 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3034 			PIPE_FIFO_UNDERRUN_STATUS;
3035 
3036 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3037 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3038 	POSTING_READ(PIPESTAT(PIPE_A));
3039 
3040 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3041 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3042 
3043 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3044 					       PIPE_GMBUS_INTERRUPT_STATUS);
3045 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3046 
3047 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3048 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3049 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3050 	dev_priv->irq_mask &= ~iir_mask;
3051 
3052 	I915_WRITE(VLV_IIR, iir_mask);
3053 	I915_WRITE(VLV_IIR, iir_mask);
3054 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3055 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3056 	POSTING_READ(VLV_IER);
3057 }
3058 
3059 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3060 {
3061 	u32 pipestat_mask;
3062 	u32 iir_mask;
3063 
3064 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3065 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3066 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3067 
3068 	dev_priv->irq_mask |= iir_mask;
3069 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3070 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3071 	I915_WRITE(VLV_IIR, iir_mask);
3072 	I915_WRITE(VLV_IIR, iir_mask);
3073 	POSTING_READ(VLV_IIR);
3074 
3075 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3076 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3077 
3078 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3079 					        PIPE_GMBUS_INTERRUPT_STATUS);
3080 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3081 
3082 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3083 			PIPE_FIFO_UNDERRUN_STATUS;
3084 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3085 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3086 	POSTING_READ(PIPESTAT(PIPE_A));
3087 }
3088 
3089 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3090 {
3091 	assert_spin_locked(&dev_priv->irq_lock);
3092 
3093 	if (dev_priv->display_irqs_enabled)
3094 		return;
3095 
3096 	dev_priv->display_irqs_enabled = true;
3097 
3098 	if (dev_priv->dev->irq_enabled)
3099 		valleyview_display_irqs_install(dev_priv);
3100 }
3101 
3102 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3103 {
3104 	assert_spin_locked(&dev_priv->irq_lock);
3105 
3106 	if (!dev_priv->display_irqs_enabled)
3107 		return;
3108 
3109 	dev_priv->display_irqs_enabled = false;
3110 
3111 	if (dev_priv->dev->irq_enabled)
3112 		valleyview_display_irqs_uninstall(dev_priv);
3113 }
3114 
3115 static int valleyview_irq_postinstall(struct drm_device *dev)
3116 {
3117 	struct drm_i915_private *dev_priv = dev->dev_private;
3118 	unsigned long irqflags;
3119 
3120 	dev_priv->irq_mask = ~0;
3121 
3122 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3123 	POSTING_READ(PORT_HOTPLUG_EN);
3124 
3125 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3126 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3127 	I915_WRITE(VLV_IIR, 0xffffffff);
3128 	POSTING_READ(VLV_IER);
3129 
3130 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3131 	 * just to make the assert_spin_locked check happy. */
3132 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3133 	if (dev_priv->display_irqs_enabled)
3134 		valleyview_display_irqs_install(dev_priv);
3135 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3136 
3137 	I915_WRITE(VLV_IIR, 0xffffffff);
3138 	I915_WRITE(VLV_IIR, 0xffffffff);
3139 
3140 	gen5_gt_irq_postinstall(dev);
3141 
3142 	/* ack & enable invalid PTE error interrupts */
3143 #if 0 /* FIXME: add support to irq handler for checking these bits */
3144 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3145 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3146 #endif
3147 
3148 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3149 
3150 	return 0;
3151 }
3152 
3153 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3154 {
3155 	int i;
3156 
3157 	/* These are interrupts we'll toggle with the ring mask register */
3158 	uint32_t gt_interrupts[] = {
3159 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3160 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3161 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3162 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3163 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3164 		0,
3165 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3166 		};
3167 
3168 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3169 		u32 tmp = I915_READ(GEN8_GT_IIR(i));
3170 		if (tmp)
3171 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3172 				  i, tmp);
3173 		I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3174 		I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3175 	}
3176 	POSTING_READ(GEN8_GT_IER(0));
3177 }
3178 
3179 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3180 {
3181 	struct drm_device *dev = dev_priv->dev;
3182 	uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3183 		GEN8_PIPE_CDCLK_CRC_DONE |
3184 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3185 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3186 		GEN8_PIPE_FIFO_UNDERRUN;
3187 	int pipe;
3188 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3189 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3190 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3191 
3192 	for_each_pipe(pipe) {
3193 		u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3194 		if (tmp)
3195 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3196 				  pipe, tmp);
3197 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3198 		I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3199 	}
3200 	POSTING_READ(GEN8_DE_PIPE_ISR(0));
3201 
3202 	I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3203 	I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3204 	POSTING_READ(GEN8_DE_PORT_IER);
3205 }
3206 
3207 static int gen8_irq_postinstall(struct drm_device *dev)
3208 {
3209 	struct drm_i915_private *dev_priv = dev->dev_private;
3210 
3211 	gen8_gt_irq_postinstall(dev_priv);
3212 	gen8_de_irq_postinstall(dev_priv);
3213 
3214 	ibx_irq_postinstall(dev);
3215 
3216 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3217 	POSTING_READ(GEN8_MASTER_IRQ);
3218 
3219 	return 0;
3220 }
3221 
3222 static void gen8_irq_uninstall(struct drm_device *dev)
3223 {
3224 	struct drm_i915_private *dev_priv = dev->dev_private;
3225 	int pipe;
3226 
3227 	if (!dev_priv)
3228 		return;
3229 
3230 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3231 
3232 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3233 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3234 		I915_WRITE(GEN8_##type##_IER(which), 0); \
3235 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3236 	} while (0)
3237 
3238 #define GEN8_IRQ_FINI(type) do { \
3239 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3240 		I915_WRITE(GEN8_##type##_IER, 0); \
3241 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3242 	} while (0)
3243 
3244 	GEN8_IRQ_FINI_NDX(GT, 0);
3245 	GEN8_IRQ_FINI_NDX(GT, 1);
3246 	GEN8_IRQ_FINI_NDX(GT, 2);
3247 	GEN8_IRQ_FINI_NDX(GT, 3);
3248 
3249 	for_each_pipe(pipe) {
3250 		GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3251 	}
3252 
3253 	GEN8_IRQ_FINI(DE_PORT);
3254 	GEN8_IRQ_FINI(DE_MISC);
3255 	GEN8_IRQ_FINI(PCU);
3256 #undef GEN8_IRQ_FINI
3257 #undef GEN8_IRQ_FINI_NDX
3258 
3259 	POSTING_READ(GEN8_PCU_IIR);
3260 }
3261 
3262 static void valleyview_irq_uninstall(struct drm_device *dev)
3263 {
3264 	struct drm_i915_private *dev_priv = dev->dev_private;
3265 	unsigned long irqflags;
3266 	int pipe;
3267 
3268 	if (!dev_priv)
3269 		return;
3270 
3271 	intel_hpd_irq_uninstall(dev_priv);
3272 
3273 	for_each_pipe(pipe)
3274 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3275 
3276 	I915_WRITE(HWSTAM, 0xffffffff);
3277 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3278 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3279 
3280 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3281 	if (dev_priv->display_irqs_enabled)
3282 		valleyview_display_irqs_uninstall(dev_priv);
3283 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3284 
3285 	dev_priv->irq_mask = 0;
3286 
3287 	I915_WRITE(VLV_IIR, 0xffffffff);
3288 	I915_WRITE(VLV_IMR, 0xffffffff);
3289 	I915_WRITE(VLV_IER, 0x0);
3290 	POSTING_READ(VLV_IER);
3291 }
3292 
3293 static void ironlake_irq_uninstall(struct drm_device *dev)
3294 {
3295 	struct drm_i915_private *dev_priv = dev->dev_private;
3296 
3297 	if (!dev_priv)
3298 		return;
3299 
3300 	intel_hpd_irq_uninstall(dev_priv);
3301 
3302 	I915_WRITE(HWSTAM, 0xffffffff);
3303 
3304 	I915_WRITE(DEIMR, 0xffffffff);
3305 	I915_WRITE(DEIER, 0x0);
3306 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3307 	if (IS_GEN7(dev))
3308 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3309 
3310 	I915_WRITE(GTIMR, 0xffffffff);
3311 	I915_WRITE(GTIER, 0x0);
3312 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3313 
3314 	if (HAS_PCH_NOP(dev))
3315 		return;
3316 
3317 	I915_WRITE(SDEIMR, 0xffffffff);
3318 	I915_WRITE(SDEIER, 0x0);
3319 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3320 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3321 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3322 }
3323 
3324 static void i8xx_irq_preinstall(struct drm_device * dev)
3325 {
3326 	struct drm_i915_private *dev_priv = dev->dev_private;
3327 	int pipe;
3328 
3329 	for_each_pipe(pipe)
3330 		I915_WRITE(PIPESTAT(pipe), 0);
3331 	I915_WRITE16(IMR, 0xffff);
3332 	I915_WRITE16(IER, 0x0);
3333 	POSTING_READ16(IER);
3334 }
3335 
3336 static int i8xx_irq_postinstall(struct drm_device *dev)
3337 {
3338 	struct drm_i915_private *dev_priv = dev->dev_private;
3339 	unsigned long irqflags;
3340 
3341 	I915_WRITE16(EMR,
3342 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3343 
3344 	/* Unmask the interrupts that we always want on. */
3345 	dev_priv->irq_mask =
3346 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3347 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3348 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3349 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3350 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3351 	I915_WRITE16(IMR, dev_priv->irq_mask);
3352 
3353 	I915_WRITE16(IER,
3354 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3355 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3356 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3357 		     I915_USER_INTERRUPT);
3358 	POSTING_READ16(IER);
3359 
3360 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3361 	 * just to make the assert_spin_locked check happy. */
3362 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3363 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3364 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3365 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3366 
3367 	return 0;
3368 }
3369 
3370 /*
3371  * Returns true when a page flip has completed.
3372  */
3373 static bool i8xx_handle_vblank(struct drm_device *dev,
3374 			       int plane, int pipe, u32 iir)
3375 {
3376 	struct drm_i915_private *dev_priv = dev->dev_private;
3377 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3378 
3379 	if (!drm_handle_vblank(dev, pipe))
3380 		return false;
3381 
3382 	if ((iir & flip_pending) == 0)
3383 		return false;
3384 
3385 	intel_prepare_page_flip(dev, plane);
3386 
3387 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3388 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3389 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3390 	 * the flip is completed (no longer pending). Since this doesn't raise
3391 	 * an interrupt per se, we watch for the change at vblank.
3392 	 */
3393 	if (I915_READ16(ISR) & flip_pending)
3394 		return false;
3395 
3396 	intel_finish_page_flip(dev, pipe);
3397 
3398 	return true;
3399 }
3400 
3401 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3402 {
3403 	struct drm_device *dev = (struct drm_device *) arg;
3404 	struct drm_i915_private *dev_priv = dev->dev_private;
3405 	u16 iir, new_iir;
3406 	u32 pipe_stats[2];
3407 	unsigned long irqflags;
3408 	int pipe;
3409 	u16 flip_mask =
3410 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3411 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3412 
3413 	iir = I915_READ16(IIR);
3414 	if (iir == 0)
3415 		return IRQ_NONE;
3416 
3417 	while (iir & ~flip_mask) {
3418 		/* Can't rely on pipestat interrupt bit in iir as it might
3419 		 * have been cleared after the pipestat interrupt was received.
3420 		 * It doesn't set the bit in iir again, but it still produces
3421 		 * interrupts (for non-MSI).
3422 		 */
3423 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3424 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3425 			i915_handle_error(dev, false,
3426 					  "Command parser error, iir 0x%08x",
3427 					  iir);
3428 
3429 		for_each_pipe(pipe) {
3430 			int reg = PIPESTAT(pipe);
3431 			pipe_stats[pipe] = I915_READ(reg);
3432 
3433 			/*
3434 			 * Clear the PIPE*STAT regs before the IIR
3435 			 */
3436 			if (pipe_stats[pipe] & 0x8000ffff)
3437 				I915_WRITE(reg, pipe_stats[pipe]);
3438 		}
3439 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3440 
3441 		I915_WRITE16(IIR, iir & ~flip_mask);
3442 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3443 
3444 		i915_update_dri1_breadcrumb(dev);
3445 
3446 		if (iir & I915_USER_INTERRUPT)
3447 			notify_ring(dev, &dev_priv->ring[RCS]);
3448 
3449 		for_each_pipe(pipe) {
3450 			int plane = pipe;
3451 			if (HAS_FBC(dev))
3452 				plane = !plane;
3453 
3454 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3455 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3456 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3457 
3458 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3459 				i9xx_pipe_crc_irq_handler(dev, pipe);
3460 
3461 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3462 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3463 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3464 		}
3465 
3466 		iir = new_iir;
3467 	}
3468 
3469 	return IRQ_HANDLED;
3470 }
3471 
3472 static void i8xx_irq_uninstall(struct drm_device * dev)
3473 {
3474 	struct drm_i915_private *dev_priv = dev->dev_private;
3475 	int pipe;
3476 
3477 	for_each_pipe(pipe) {
3478 		/* Clear enable bits; then clear status bits */
3479 		I915_WRITE(PIPESTAT(pipe), 0);
3480 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3481 	}
3482 	I915_WRITE16(IMR, 0xffff);
3483 	I915_WRITE16(IER, 0x0);
3484 	I915_WRITE16(IIR, I915_READ16(IIR));
3485 }
3486 
3487 static void i915_irq_preinstall(struct drm_device * dev)
3488 {
3489 	struct drm_i915_private *dev_priv = dev->dev_private;
3490 	int pipe;
3491 
3492 	if (I915_HAS_HOTPLUG(dev)) {
3493 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3494 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3495 	}
3496 
3497 	I915_WRITE16(HWSTAM, 0xeffe);
3498 	for_each_pipe(pipe)
3499 		I915_WRITE(PIPESTAT(pipe), 0);
3500 	I915_WRITE(IMR, 0xffffffff);
3501 	I915_WRITE(IER, 0x0);
3502 	POSTING_READ(IER);
3503 }
3504 
3505 static int i915_irq_postinstall(struct drm_device *dev)
3506 {
3507 	struct drm_i915_private *dev_priv = dev->dev_private;
3508 	u32 enable_mask;
3509 	unsigned long irqflags;
3510 
3511 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3512 
3513 	/* Unmask the interrupts that we always want on. */
3514 	dev_priv->irq_mask =
3515 		~(I915_ASLE_INTERRUPT |
3516 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3517 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3518 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3519 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3520 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3521 
3522 	enable_mask =
3523 		I915_ASLE_INTERRUPT |
3524 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3525 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3526 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3527 		I915_USER_INTERRUPT;
3528 
3529 	if (I915_HAS_HOTPLUG(dev)) {
3530 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3531 		POSTING_READ(PORT_HOTPLUG_EN);
3532 
3533 		/* Enable in IER... */
3534 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3535 		/* and unmask in IMR */
3536 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3537 	}
3538 
3539 	I915_WRITE(IMR, dev_priv->irq_mask);
3540 	I915_WRITE(IER, enable_mask);
3541 	POSTING_READ(IER);
3542 
3543 	i915_enable_asle_pipestat(dev);
3544 
3545 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3546 	 * just to make the assert_spin_locked check happy. */
3547 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3548 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3549 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3550 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3551 
3552 	return 0;
3553 }
3554 
3555 /*
3556  * Returns true when a page flip has completed.
3557  */
3558 static bool i915_handle_vblank(struct drm_device *dev,
3559 			       int plane, int pipe, u32 iir)
3560 {
3561 	struct drm_i915_private *dev_priv = dev->dev_private;
3562 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3563 
3564 	if (!drm_handle_vblank(dev, pipe))
3565 		return false;
3566 
3567 	if ((iir & flip_pending) == 0)
3568 		return false;
3569 
3570 	intel_prepare_page_flip(dev, plane);
3571 
3572 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3573 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3574 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3575 	 * the flip is completed (no longer pending). Since this doesn't raise
3576 	 * an interrupt per se, we watch for the change at vblank.
3577 	 */
3578 	if (I915_READ(ISR) & flip_pending)
3579 		return false;
3580 
3581 	intel_finish_page_flip(dev, pipe);
3582 
3583 	return true;
3584 }
3585 
3586 static irqreturn_t i915_irq_handler(int irq, void *arg)
3587 {
3588 	struct drm_device *dev = (struct drm_device *) arg;
3589 	struct drm_i915_private *dev_priv = dev->dev_private;
3590 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3591 	unsigned long irqflags;
3592 	u32 flip_mask =
3593 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3594 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3595 	int pipe, ret = IRQ_NONE;
3596 
3597 	iir = I915_READ(IIR);
3598 	do {
3599 		bool irq_received = (iir & ~flip_mask) != 0;
3600 		bool blc_event = false;
3601 
3602 		/* Can't rely on pipestat interrupt bit in iir as it might
3603 		 * have been cleared after the pipestat interrupt was received.
3604 		 * It doesn't set the bit in iir again, but it still produces
3605 		 * interrupts (for non-MSI).
3606 		 */
3607 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3608 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3609 			i915_handle_error(dev, false,
3610 					  "Command parser error, iir 0x%08x",
3611 					  iir);
3612 
3613 		for_each_pipe(pipe) {
3614 			int reg = PIPESTAT(pipe);
3615 			pipe_stats[pipe] = I915_READ(reg);
3616 
3617 			/* Clear the PIPE*STAT regs before the IIR */
3618 			if (pipe_stats[pipe] & 0x8000ffff) {
3619 				I915_WRITE(reg, pipe_stats[pipe]);
3620 				irq_received = true;
3621 			}
3622 		}
3623 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3624 
3625 		if (!irq_received)
3626 			break;
3627 
3628 		/* Consume port.  Then clear IIR or we'll miss events */
3629 		if ((I915_HAS_HOTPLUG(dev)) &&
3630 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3631 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3632 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3633 
3634 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3635 
3636 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3637 			POSTING_READ(PORT_HOTPLUG_STAT);
3638 		}
3639 
3640 		I915_WRITE(IIR, iir & ~flip_mask);
3641 		new_iir = I915_READ(IIR); /* Flush posted writes */
3642 
3643 		if (iir & I915_USER_INTERRUPT)
3644 			notify_ring(dev, &dev_priv->ring[RCS]);
3645 
3646 		for_each_pipe(pipe) {
3647 			int plane = pipe;
3648 			if (HAS_FBC(dev))
3649 				plane = !plane;
3650 
3651 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3652 			    i915_handle_vblank(dev, plane, pipe, iir))
3653 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3654 
3655 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3656 				blc_event = true;
3657 
3658 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3659 				i9xx_pipe_crc_irq_handler(dev, pipe);
3660 
3661 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3662 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3663 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3664 		}
3665 
3666 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3667 			intel_opregion_asle_intr(dev);
3668 
3669 		/* With MSI, interrupts are only generated when iir
3670 		 * transitions from zero to nonzero.  If another bit got
3671 		 * set while we were handling the existing iir bits, then
3672 		 * we would never get another interrupt.
3673 		 *
3674 		 * This is fine on non-MSI as well, as if we hit this path
3675 		 * we avoid exiting the interrupt handler only to generate
3676 		 * another one.
3677 		 *
3678 		 * Note that for MSI this could cause a stray interrupt report
3679 		 * if an interrupt landed in the time between writing IIR and
3680 		 * the posting read.  This should be rare enough to never
3681 		 * trigger the 99% of 100,000 interrupts test for disabling
3682 		 * stray interrupts.
3683 		 */
3684 		ret = IRQ_HANDLED;
3685 		iir = new_iir;
3686 	} while (iir & ~flip_mask);
3687 
3688 	i915_update_dri1_breadcrumb(dev);
3689 
3690 	return ret;
3691 }
3692 
3693 static void i915_irq_uninstall(struct drm_device * dev)
3694 {
3695 	struct drm_i915_private *dev_priv = dev->dev_private;
3696 	int pipe;
3697 
3698 	intel_hpd_irq_uninstall(dev_priv);
3699 
3700 	if (I915_HAS_HOTPLUG(dev)) {
3701 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3702 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3703 	}
3704 
3705 	I915_WRITE16(HWSTAM, 0xffff);
3706 	for_each_pipe(pipe) {
3707 		/* Clear enable bits; then clear status bits */
3708 		I915_WRITE(PIPESTAT(pipe), 0);
3709 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3710 	}
3711 	I915_WRITE(IMR, 0xffffffff);
3712 	I915_WRITE(IER, 0x0);
3713 
3714 	I915_WRITE(IIR, I915_READ(IIR));
3715 }
3716 
3717 static void i965_irq_preinstall(struct drm_device * dev)
3718 {
3719 	struct drm_i915_private *dev_priv = dev->dev_private;
3720 	int pipe;
3721 
3722 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3723 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3724 
3725 	I915_WRITE(HWSTAM, 0xeffe);
3726 	for_each_pipe(pipe)
3727 		I915_WRITE(PIPESTAT(pipe), 0);
3728 	I915_WRITE(IMR, 0xffffffff);
3729 	I915_WRITE(IER, 0x0);
3730 	POSTING_READ(IER);
3731 }
3732 
3733 static int i965_irq_postinstall(struct drm_device *dev)
3734 {
3735 	struct drm_i915_private *dev_priv = dev->dev_private;
3736 	u32 enable_mask;
3737 	u32 error_mask;
3738 	unsigned long irqflags;
3739 
3740 	/* Unmask the interrupts that we always want on. */
3741 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3742 			       I915_DISPLAY_PORT_INTERRUPT |
3743 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3744 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3745 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3746 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3747 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3748 
3749 	enable_mask = ~dev_priv->irq_mask;
3750 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3751 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3752 	enable_mask |= I915_USER_INTERRUPT;
3753 
3754 	if (IS_G4X(dev))
3755 		enable_mask |= I915_BSD_USER_INTERRUPT;
3756 
3757 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3758 	 * just to make the assert_spin_locked check happy. */
3759 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3760 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3761 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3762 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3763 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3764 
3765 	/*
3766 	 * Enable some error detection, note the instruction error mask
3767 	 * bit is reserved, so we leave it masked.
3768 	 */
3769 	if (IS_G4X(dev)) {
3770 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3771 			       GM45_ERROR_MEM_PRIV |
3772 			       GM45_ERROR_CP_PRIV |
3773 			       I915_ERROR_MEMORY_REFRESH);
3774 	} else {
3775 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3776 			       I915_ERROR_MEMORY_REFRESH);
3777 	}
3778 	I915_WRITE(EMR, error_mask);
3779 
3780 	I915_WRITE(IMR, dev_priv->irq_mask);
3781 	I915_WRITE(IER, enable_mask);
3782 	POSTING_READ(IER);
3783 
3784 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3785 	POSTING_READ(PORT_HOTPLUG_EN);
3786 
3787 	i915_enable_asle_pipestat(dev);
3788 
3789 	return 0;
3790 }
3791 
3792 static void i915_hpd_irq_setup(struct drm_device *dev)
3793 {
3794 	struct drm_i915_private *dev_priv = dev->dev_private;
3795 	struct drm_mode_config *mode_config = &dev->mode_config;
3796 	struct intel_encoder *intel_encoder;
3797 	u32 hotplug_en;
3798 
3799 	assert_spin_locked(&dev_priv->irq_lock);
3800 
3801 	if (I915_HAS_HOTPLUG(dev)) {
3802 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3803 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3804 		/* Note HDMI and DP share hotplug bits */
3805 		/* enable bits are the same for all generations */
3806 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3807 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3808 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3809 		/* Programming the CRT detection parameters tends
3810 		   to generate a spurious hotplug event about three
3811 		   seconds later.  So just do it once.
3812 		*/
3813 		if (IS_G4X(dev))
3814 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3815 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3816 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3817 
3818 		/* Ignore TV since it's buggy */
3819 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3820 	}
3821 }
3822 
3823 static irqreturn_t i965_irq_handler(int irq, void *arg)
3824 {
3825 	struct drm_device *dev = (struct drm_device *) arg;
3826 	struct drm_i915_private *dev_priv = dev->dev_private;
3827 	u32 iir, new_iir;
3828 	u32 pipe_stats[I915_MAX_PIPES];
3829 	unsigned long irqflags;
3830 	int ret = IRQ_NONE, pipe;
3831 	u32 flip_mask =
3832 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3833 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3834 
3835 	iir = I915_READ(IIR);
3836 
3837 	for (;;) {
3838 		bool irq_received = (iir & ~flip_mask) != 0;
3839 		bool blc_event = false;
3840 
3841 		/* Can't rely on pipestat interrupt bit in iir as it might
3842 		 * have been cleared after the pipestat interrupt was received.
3843 		 * It doesn't set the bit in iir again, but it still produces
3844 		 * interrupts (for non-MSI).
3845 		 */
3846 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3847 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3848 			i915_handle_error(dev, false,
3849 					  "Command parser error, iir 0x%08x",
3850 					  iir);
3851 
3852 		for_each_pipe(pipe) {
3853 			int reg = PIPESTAT(pipe);
3854 			pipe_stats[pipe] = I915_READ(reg);
3855 
3856 			/*
3857 			 * Clear the PIPE*STAT regs before the IIR
3858 			 */
3859 			if (pipe_stats[pipe] & 0x8000ffff) {
3860 				I915_WRITE(reg, pipe_stats[pipe]);
3861 				irq_received = true;
3862 			}
3863 		}
3864 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3865 
3866 		if (!irq_received)
3867 			break;
3868 
3869 		ret = IRQ_HANDLED;
3870 
3871 		/* Consume port.  Then clear IIR or we'll miss events */
3872 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3873 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3874 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3875 								  HOTPLUG_INT_STATUS_G4X :
3876 								  HOTPLUG_INT_STATUS_I915);
3877 
3878 			intel_hpd_irq_handler(dev, hotplug_trigger,
3879 					      IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3880 
3881 			if (IS_G4X(dev) &&
3882 			    (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3883 				dp_aux_irq_handler(dev);
3884 
3885 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3886 			I915_READ(PORT_HOTPLUG_STAT);
3887 		}
3888 
3889 		I915_WRITE(IIR, iir & ~flip_mask);
3890 		new_iir = I915_READ(IIR); /* Flush posted writes */
3891 
3892 		if (iir & I915_USER_INTERRUPT)
3893 			notify_ring(dev, &dev_priv->ring[RCS]);
3894 		if (iir & I915_BSD_USER_INTERRUPT)
3895 			notify_ring(dev, &dev_priv->ring[VCS]);
3896 
3897 		for_each_pipe(pipe) {
3898 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3899 			    i915_handle_vblank(dev, pipe, pipe, iir))
3900 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3901 
3902 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3903 				blc_event = true;
3904 
3905 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3906 				i9xx_pipe_crc_irq_handler(dev, pipe);
3907 
3908 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3909 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3910 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3911 		}
3912 
3913 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3914 			intel_opregion_asle_intr(dev);
3915 
3916 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3917 			gmbus_irq_handler(dev);
3918 
3919 		/* With MSI, interrupts are only generated when iir
3920 		 * transitions from zero to nonzero.  If another bit got
3921 		 * set while we were handling the existing iir bits, then
3922 		 * we would never get another interrupt.
3923 		 *
3924 		 * This is fine on non-MSI as well, as if we hit this path
3925 		 * we avoid exiting the interrupt handler only to generate
3926 		 * another one.
3927 		 *
3928 		 * Note that for MSI this could cause a stray interrupt report
3929 		 * if an interrupt landed in the time between writing IIR and
3930 		 * the posting read.  This should be rare enough to never
3931 		 * trigger the 99% of 100,000 interrupts test for disabling
3932 		 * stray interrupts.
3933 		 */
3934 		iir = new_iir;
3935 	}
3936 
3937 	i915_update_dri1_breadcrumb(dev);
3938 
3939 	return ret;
3940 }
3941 
3942 static void i965_irq_uninstall(struct drm_device * dev)
3943 {
3944 	struct drm_i915_private *dev_priv = dev->dev_private;
3945 	int pipe;
3946 
3947 	if (!dev_priv)
3948 		return;
3949 
3950 	intel_hpd_irq_uninstall(dev_priv);
3951 
3952 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3953 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3954 
3955 	I915_WRITE(HWSTAM, 0xffffffff);
3956 	for_each_pipe(pipe)
3957 		I915_WRITE(PIPESTAT(pipe), 0);
3958 	I915_WRITE(IMR, 0xffffffff);
3959 	I915_WRITE(IER, 0x0);
3960 
3961 	for_each_pipe(pipe)
3962 		I915_WRITE(PIPESTAT(pipe),
3963 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3964 	I915_WRITE(IIR, I915_READ(IIR));
3965 }
3966 
3967 static void intel_hpd_irq_reenable(unsigned long data)
3968 {
3969 	struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3970 	struct drm_device *dev = dev_priv->dev;
3971 	struct drm_mode_config *mode_config = &dev->mode_config;
3972 	unsigned long irqflags;
3973 	int i;
3974 
3975 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3976 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3977 		struct drm_connector *connector;
3978 
3979 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3980 			continue;
3981 
3982 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3983 
3984 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3985 			struct intel_connector *intel_connector = to_intel_connector(connector);
3986 
3987 			if (intel_connector->encoder->hpd_pin == i) {
3988 				if (connector->polled != intel_connector->polled)
3989 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3990 							 drm_get_connector_name(connector));
3991 				connector->polled = intel_connector->polled;
3992 				if (!connector->polled)
3993 					connector->polled = DRM_CONNECTOR_POLL_HPD;
3994 			}
3995 		}
3996 	}
3997 	if (dev_priv->display.hpd_irq_setup)
3998 		dev_priv->display.hpd_irq_setup(dev);
3999 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4000 }
4001 
4002 void intel_irq_init(struct drm_device *dev)
4003 {
4004 	struct drm_i915_private *dev_priv = dev->dev_private;
4005 
4006 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4007 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4008 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4009 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4010 
4011 	/* Let's track the enabled rps events */
4012 	dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4013 
4014 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4015 		    i915_hangcheck_elapsed,
4016 		    (unsigned long) dev);
4017 	setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4018 		    (unsigned long) dev_priv);
4019 
4020 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4021 
4022 	if (IS_GEN2(dev)) {
4023 		dev->max_vblank_count = 0;
4024 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4025 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4026 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4027 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4028 	} else {
4029 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4030 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4031 	}
4032 
4033 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4034 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4035 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4036 	}
4037 
4038 	if (IS_VALLEYVIEW(dev)) {
4039 		dev->driver->irq_handler = valleyview_irq_handler;
4040 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4041 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4042 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4043 		dev->driver->enable_vblank = valleyview_enable_vblank;
4044 		dev->driver->disable_vblank = valleyview_disable_vblank;
4045 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4046 	} else if (IS_GEN8(dev)) {
4047 		dev->driver->irq_handler = gen8_irq_handler;
4048 		dev->driver->irq_preinstall = gen8_irq_preinstall;
4049 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4050 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4051 		dev->driver->enable_vblank = gen8_enable_vblank;
4052 		dev->driver->disable_vblank = gen8_disable_vblank;
4053 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4054 	} else if (HAS_PCH_SPLIT(dev)) {
4055 		dev->driver->irq_handler = ironlake_irq_handler;
4056 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
4057 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4058 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4059 		dev->driver->enable_vblank = ironlake_enable_vblank;
4060 		dev->driver->disable_vblank = ironlake_disable_vblank;
4061 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4062 	} else {
4063 		if (INTEL_INFO(dev)->gen == 2) {
4064 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4065 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4066 			dev->driver->irq_handler = i8xx_irq_handler;
4067 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4068 		} else if (INTEL_INFO(dev)->gen == 3) {
4069 			dev->driver->irq_preinstall = i915_irq_preinstall;
4070 			dev->driver->irq_postinstall = i915_irq_postinstall;
4071 			dev->driver->irq_uninstall = i915_irq_uninstall;
4072 			dev->driver->irq_handler = i915_irq_handler;
4073 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4074 		} else {
4075 			dev->driver->irq_preinstall = i965_irq_preinstall;
4076 			dev->driver->irq_postinstall = i965_irq_postinstall;
4077 			dev->driver->irq_uninstall = i965_irq_uninstall;
4078 			dev->driver->irq_handler = i965_irq_handler;
4079 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4080 		}
4081 		dev->driver->enable_vblank = i915_enable_vblank;
4082 		dev->driver->disable_vblank = i915_disable_vblank;
4083 	}
4084 }
4085 
4086 void intel_hpd_init(struct drm_device *dev)
4087 {
4088 	struct drm_i915_private *dev_priv = dev->dev_private;
4089 	struct drm_mode_config *mode_config = &dev->mode_config;
4090 	struct drm_connector *connector;
4091 	unsigned long irqflags;
4092 	int i;
4093 
4094 	for (i = 1; i < HPD_NUM_PINS; i++) {
4095 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4096 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4097 	}
4098 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4099 		struct intel_connector *intel_connector = to_intel_connector(connector);
4100 		connector->polled = intel_connector->polled;
4101 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4102 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4103 	}
4104 
4105 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4106 	 * just to make the assert_spin_locked checks happy. */
4107 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4108 	if (dev_priv->display.hpd_irq_setup)
4109 		dev_priv->display.hpd_irq_setup(dev);
4110 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4111 }
4112 
4113 /* Disable interrupts so we can allow runtime PM. */
4114 void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4115 {
4116 	struct drm_i915_private *dev_priv = dev->dev_private;
4117 	unsigned long irqflags;
4118 
4119 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4120 
4121 	dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4122 	dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4123 	dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4124 	dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4125 	dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4126 
4127 	ironlake_disable_display_irq(dev_priv, 0xffffffff);
4128 	ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4129 	ilk_disable_gt_irq(dev_priv, 0xffffffff);
4130 	snb_disable_pm_irq(dev_priv, 0xffffffff);
4131 
4132 	dev_priv->pm.irqs_disabled = true;
4133 
4134 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4135 }
4136 
4137 /* Restore interrupts so we can recover from runtime PM. */
4138 void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4139 {
4140 	struct drm_i915_private *dev_priv = dev->dev_private;
4141 	unsigned long irqflags;
4142 	uint32_t val;
4143 
4144 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4145 
4146 	val = I915_READ(DEIMR);
4147 	WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4148 
4149 	val = I915_READ(SDEIMR);
4150 	WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4151 
4152 	val = I915_READ(GTIMR);
4153 	WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4154 
4155 	val = I915_READ(GEN6_PMIMR);
4156 	WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4157 
4158 	dev_priv->pm.irqs_disabled = false;
4159 
4160 	ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4161 	ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4162 	ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4163 	snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4164 	I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4165 
4166 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4167 }
4168