xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision a2fb4d78)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 	assert_spin_locked(&dev_priv->irq_lock);
88 
89 	if (dev_priv->pc8.irqs_disabled) {
90 		WARN(1, "IRQs disabled\n");
91 		dev_priv->pc8.regsave.deimr &= ~mask;
92 		return;
93 	}
94 
95 	if ((dev_priv->irq_mask & mask) != 0) {
96 		dev_priv->irq_mask &= ~mask;
97 		I915_WRITE(DEIMR, dev_priv->irq_mask);
98 		POSTING_READ(DEIMR);
99 	}
100 }
101 
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 	assert_spin_locked(&dev_priv->irq_lock);
106 
107 	if (dev_priv->pc8.irqs_disabled) {
108 		WARN(1, "IRQs disabled\n");
109 		dev_priv->pc8.regsave.deimr |= mask;
110 		return;
111 	}
112 
113 	if ((dev_priv->irq_mask & mask) != mask) {
114 		dev_priv->irq_mask |= mask;
115 		I915_WRITE(DEIMR, dev_priv->irq_mask);
116 		POSTING_READ(DEIMR);
117 	}
118 }
119 
120 /**
121  * ilk_update_gt_irq - update GTIMR
122  * @dev_priv: driver private
123  * @interrupt_mask: mask of interrupt bits to update
124  * @enabled_irq_mask: mask of interrupt bits to enable
125  */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 			      uint32_t interrupt_mask,
128 			      uint32_t enabled_irq_mask)
129 {
130 	assert_spin_locked(&dev_priv->irq_lock);
131 
132 	if (dev_priv->pc8.irqs_disabled) {
133 		WARN(1, "IRQs disabled\n");
134 		dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
135 		dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
136 						interrupt_mask);
137 		return;
138 	}
139 
140 	dev_priv->gt_irq_mask &= ~interrupt_mask;
141 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 	POSTING_READ(GTIMR);
144 }
145 
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 	ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150 
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 	ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155 
156 /**
157   * snb_update_pm_irq - update GEN6_PMIMR
158   * @dev_priv: driver private
159   * @interrupt_mask: mask of interrupt bits to update
160   * @enabled_irq_mask: mask of interrupt bits to enable
161   */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 			      uint32_t interrupt_mask,
164 			      uint32_t enabled_irq_mask)
165 {
166 	uint32_t new_val;
167 
168 	assert_spin_locked(&dev_priv->irq_lock);
169 
170 	if (dev_priv->pc8.irqs_disabled) {
171 		WARN(1, "IRQs disabled\n");
172 		dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
173 		dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 						     interrupt_mask);
175 		return;
176 	}
177 
178 	new_val = dev_priv->pm_irq_mask;
179 	new_val &= ~interrupt_mask;
180 	new_val |= (~enabled_irq_mask & interrupt_mask);
181 
182 	if (new_val != dev_priv->pm_irq_mask) {
183 		dev_priv->pm_irq_mask = new_val;
184 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 		POSTING_READ(GEN6_PMIMR);
186 	}
187 }
188 
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 	snb_update_pm_irq(dev_priv, mask, mask);
192 }
193 
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 	snb_update_pm_irq(dev_priv, mask, 0);
197 }
198 
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 	struct drm_i915_private *dev_priv = dev->dev_private;
202 	struct intel_crtc *crtc;
203 	enum pipe pipe;
204 
205 	assert_spin_locked(&dev_priv->irq_lock);
206 
207 	for_each_pipe(pipe) {
208 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209 
210 		if (crtc->cpu_fifo_underrun_disabled)
211 			return false;
212 	}
213 
214 	return true;
215 }
216 
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 	struct drm_i915_private *dev_priv = dev->dev_private;
220 	enum pipe pipe;
221 	struct intel_crtc *crtc;
222 
223 	assert_spin_locked(&dev_priv->irq_lock);
224 
225 	for_each_pipe(pipe) {
226 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227 
228 		if (crtc->pch_fifo_underrun_disabled)
229 			return false;
230 	}
231 
232 	return true;
233 }
234 
235 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
236 						 enum pipe pipe, bool enable)
237 {
238 	struct drm_i915_private *dev_priv = dev->dev_private;
239 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
240 					  DE_PIPEB_FIFO_UNDERRUN;
241 
242 	if (enable)
243 		ironlake_enable_display_irq(dev_priv, bit);
244 	else
245 		ironlake_disable_display_irq(dev_priv, bit);
246 }
247 
248 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
249 						  enum pipe pipe, bool enable)
250 {
251 	struct drm_i915_private *dev_priv = dev->dev_private;
252 	if (enable) {
253 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
254 
255 		if (!ivb_can_enable_err_int(dev))
256 			return;
257 
258 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 	} else {
260 		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
261 
262 		/* Change the state _after_ we've read out the current one. */
263 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
264 
265 		if (!was_enabled &&
266 		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
267 			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
268 				      pipe_name(pipe));
269 		}
270 	}
271 }
272 
273 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
274 						  enum pipe pipe, bool enable)
275 {
276 	struct drm_i915_private *dev_priv = dev->dev_private;
277 
278 	assert_spin_locked(&dev_priv->irq_lock);
279 
280 	if (enable)
281 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
282 	else
283 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
284 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
285 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
286 }
287 
288 /**
289  * ibx_display_interrupt_update - update SDEIMR
290  * @dev_priv: driver private
291  * @interrupt_mask: mask of interrupt bits to update
292  * @enabled_irq_mask: mask of interrupt bits to enable
293  */
294 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
295 					 uint32_t interrupt_mask,
296 					 uint32_t enabled_irq_mask)
297 {
298 	uint32_t sdeimr = I915_READ(SDEIMR);
299 	sdeimr &= ~interrupt_mask;
300 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
301 
302 	assert_spin_locked(&dev_priv->irq_lock);
303 
304 	if (dev_priv->pc8.irqs_disabled &&
305 	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
306 		WARN(1, "IRQs disabled\n");
307 		dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
308 		dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
309 						 interrupt_mask);
310 		return;
311 	}
312 
313 	I915_WRITE(SDEIMR, sdeimr);
314 	POSTING_READ(SDEIMR);
315 }
316 #define ibx_enable_display_interrupt(dev_priv, bits) \
317 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
318 #define ibx_disable_display_interrupt(dev_priv, bits) \
319 	ibx_display_interrupt_update((dev_priv), (bits), 0)
320 
321 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
322 					    enum transcoder pch_transcoder,
323 					    bool enable)
324 {
325 	struct drm_i915_private *dev_priv = dev->dev_private;
326 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
327 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
328 
329 	if (enable)
330 		ibx_enable_display_interrupt(dev_priv, bit);
331 	else
332 		ibx_disable_display_interrupt(dev_priv, bit);
333 }
334 
335 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
336 					    enum transcoder pch_transcoder,
337 					    bool enable)
338 {
339 	struct drm_i915_private *dev_priv = dev->dev_private;
340 
341 	if (enable) {
342 		I915_WRITE(SERR_INT,
343 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
344 
345 		if (!cpt_can_enable_serr_int(dev))
346 			return;
347 
348 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
349 	} else {
350 		uint32_t tmp = I915_READ(SERR_INT);
351 		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
352 
353 		/* Change the state _after_ we've read out the current one. */
354 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
355 
356 		if (!was_enabled &&
357 		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
358 			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
359 				      transcoder_name(pch_transcoder));
360 		}
361 	}
362 }
363 
364 /**
365  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
366  * @dev: drm device
367  * @pipe: pipe
368  * @enable: true if we want to report FIFO underrun errors, false otherwise
369  *
370  * This function makes us disable or enable CPU fifo underruns for a specific
371  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
372  * reporting for one pipe may also disable all the other CPU error interruts for
373  * the other pipes, due to the fact that there's just one interrupt mask/enable
374  * bit for all the pipes.
375  *
376  * Returns the previous state of underrun reporting.
377  */
378 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
379 					   enum pipe pipe, bool enable)
380 {
381 	struct drm_i915_private *dev_priv = dev->dev_private;
382 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
383 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
384 	unsigned long flags;
385 	bool ret;
386 
387 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
388 
389 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
390 
391 	if (enable == ret)
392 		goto done;
393 
394 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
395 
396 	if (IS_GEN5(dev) || IS_GEN6(dev))
397 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
398 	else if (IS_GEN7(dev))
399 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
400 	else if (IS_GEN8(dev))
401 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
402 
403 done:
404 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
405 	return ret;
406 }
407 
408 /**
409  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
410  * @dev: drm device
411  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
412  * @enable: true if we want to report FIFO underrun errors, false otherwise
413  *
414  * This function makes us disable or enable PCH fifo underruns for a specific
415  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
416  * underrun reporting for one transcoder may also disable all the other PCH
417  * error interruts for the other transcoders, due to the fact that there's just
418  * one interrupt mask/enable bit for all the transcoders.
419  *
420  * Returns the previous state of underrun reporting.
421  */
422 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
423 					   enum transcoder pch_transcoder,
424 					   bool enable)
425 {
426 	struct drm_i915_private *dev_priv = dev->dev_private;
427 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
428 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
429 	unsigned long flags;
430 	bool ret;
431 
432 	/*
433 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
434 	 * has only one pch transcoder A that all pipes can use. To avoid racy
435 	 * pch transcoder -> pipe lookups from interrupt code simply store the
436 	 * underrun statistics in crtc A. Since we never expose this anywhere
437 	 * nor use it outside of the fifo underrun code here using the "wrong"
438 	 * crtc on LPT won't cause issues.
439 	 */
440 
441 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
442 
443 	ret = !intel_crtc->pch_fifo_underrun_disabled;
444 
445 	if (enable == ret)
446 		goto done;
447 
448 	intel_crtc->pch_fifo_underrun_disabled = !enable;
449 
450 	if (HAS_PCH_IBX(dev))
451 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
452 	else
453 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
454 
455 done:
456 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
457 	return ret;
458 }
459 
460 
461 void
462 i915_enable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
463 {
464 	u32 reg = PIPESTAT(pipe);
465 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
466 
467 	assert_spin_locked(&dev_priv->irq_lock);
468 
469 	if ((pipestat & mask) == mask)
470 		return;
471 
472 	/* Enable the interrupt, clear any pending status */
473 	pipestat |= mask | (mask >> 16);
474 	I915_WRITE(reg, pipestat);
475 	POSTING_READ(reg);
476 }
477 
478 void
479 i915_disable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
480 {
481 	u32 reg = PIPESTAT(pipe);
482 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
483 
484 	assert_spin_locked(&dev_priv->irq_lock);
485 
486 	if ((pipestat & mask) == 0)
487 		return;
488 
489 	pipestat &= ~mask;
490 	I915_WRITE(reg, pipestat);
491 	POSTING_READ(reg);
492 }
493 
494 /**
495  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
496  */
497 static void i915_enable_asle_pipestat(struct drm_device *dev)
498 {
499 	drm_i915_private_t *dev_priv = dev->dev_private;
500 	unsigned long irqflags;
501 
502 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
503 		return;
504 
505 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
506 
507 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE);
508 	if (INTEL_INFO(dev)->gen >= 4)
509 		i915_enable_pipestat(dev_priv, PIPE_A,
510 				     PIPE_LEGACY_BLC_EVENT_ENABLE);
511 
512 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
513 }
514 
515 /**
516  * i915_pipe_enabled - check if a pipe is enabled
517  * @dev: DRM device
518  * @pipe: pipe to check
519  *
520  * Reading certain registers when the pipe is disabled can hang the chip.
521  * Use this routine to make sure the PLL is running and the pipe is active
522  * before reading such registers if unsure.
523  */
524 static int
525 i915_pipe_enabled(struct drm_device *dev, int pipe)
526 {
527 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
528 
529 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
530 		/* Locking is horribly broken here, but whatever. */
531 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
532 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
533 
534 		return intel_crtc->active;
535 	} else {
536 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
537 	}
538 }
539 
540 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
541 {
542 	/* Gen2 doesn't have a hardware frame counter */
543 	return 0;
544 }
545 
546 /* Called from drm generic code, passed a 'crtc', which
547  * we use as a pipe index
548  */
549 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
550 {
551 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
552 	unsigned long high_frame;
553 	unsigned long low_frame;
554 	u32 high1, high2, low, pixel, vbl_start;
555 
556 	if (!i915_pipe_enabled(dev, pipe)) {
557 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
558 				"pipe %c\n", pipe_name(pipe));
559 		return 0;
560 	}
561 
562 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
563 		struct intel_crtc *intel_crtc =
564 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
565 		const struct drm_display_mode *mode =
566 			&intel_crtc->config.adjusted_mode;
567 
568 		vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
569 	} else {
570 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
571 		u32 htotal;
572 
573 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
574 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
575 
576 		vbl_start *= htotal;
577 	}
578 
579 	high_frame = PIPEFRAME(pipe);
580 	low_frame = PIPEFRAMEPIXEL(pipe);
581 
582 	/*
583 	 * High & low register fields aren't synchronized, so make sure
584 	 * we get a low value that's stable across two reads of the high
585 	 * register.
586 	 */
587 	do {
588 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
589 		low   = I915_READ(low_frame);
590 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
591 	} while (high1 != high2);
592 
593 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
594 	pixel = low & PIPE_PIXEL_MASK;
595 	low >>= PIPE_FRAME_LOW_SHIFT;
596 
597 	/*
598 	 * The frame counter increments at beginning of active.
599 	 * Cook up a vblank counter by also checking the pixel
600 	 * counter against vblank start.
601 	 */
602 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
603 }
604 
605 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
606 {
607 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
608 	int reg = PIPE_FRMCOUNT_GM45(pipe);
609 
610 	if (!i915_pipe_enabled(dev, pipe)) {
611 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
612 				 "pipe %c\n", pipe_name(pipe));
613 		return 0;
614 	}
615 
616 	return I915_READ(reg);
617 }
618 
619 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
620 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
621 
622 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
623 {
624 	struct drm_i915_private *dev_priv = dev->dev_private;
625 	uint32_t status;
626 	int reg;
627 
628 	if (INTEL_INFO(dev)->gen >= 8) {
629 		status = GEN8_PIPE_VBLANK;
630 		reg = GEN8_DE_PIPE_ISR(pipe);
631 	} else if (INTEL_INFO(dev)->gen >= 7) {
632 		status = DE_PIPE_VBLANK_IVB(pipe);
633 		reg = DEISR;
634 	} else {
635 		status = DE_PIPE_VBLANK(pipe);
636 		reg = DEISR;
637 	}
638 
639 	return __raw_i915_read32(dev_priv, reg) & status;
640 }
641 
642 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
643 				    unsigned int flags, int *vpos, int *hpos,
644 				    ktime_t *stime, ktime_t *etime)
645 {
646 	struct drm_i915_private *dev_priv = dev->dev_private;
647 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
648 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
649 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
650 	int position;
651 	int vbl_start, vbl_end, htotal, vtotal;
652 	bool in_vbl = true;
653 	int ret = 0;
654 	unsigned long irqflags;
655 
656 	if (!intel_crtc->active) {
657 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
658 				 "pipe %c\n", pipe_name(pipe));
659 		return 0;
660 	}
661 
662 	htotal = mode->crtc_htotal;
663 	vtotal = mode->crtc_vtotal;
664 	vbl_start = mode->crtc_vblank_start;
665 	vbl_end = mode->crtc_vblank_end;
666 
667 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
668 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
669 		vbl_end /= 2;
670 		vtotal /= 2;
671 	}
672 
673 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
674 
675 	/*
676 	 * Lock uncore.lock, as we will do multiple timing critical raw
677 	 * register reads, potentially with preemption disabled, so the
678 	 * following code must not block on uncore.lock.
679 	 */
680 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
681 
682 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
683 
684 	/* Get optional system timestamp before query. */
685 	if (stime)
686 		*stime = ktime_get();
687 
688 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
689 		/* No obvious pixelcount register. Only query vertical
690 		 * scanout position from Display scan line register.
691 		 */
692 		if (IS_GEN2(dev))
693 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
694 		else
695 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
696 
697 		if (HAS_DDI(dev)) {
698 			/*
699 			 * On HSW HDMI outputs there seems to be a 2 line
700 			 * difference, whereas eDP has the normal 1 line
701 			 * difference that earlier platforms have. External
702 			 * DP is unknown. For now just check for the 2 line
703 			 * difference case on all output types on HSW+.
704 			 *
705 			 * This might misinterpret the scanline counter being
706 			 * one line too far along on eDP, but that's less
707 			 * dangerous than the alternative since that would lead
708 			 * the vblank timestamp code astray when it sees a
709 			 * scanline count before vblank_start during a vblank
710 			 * interrupt.
711 			 */
712 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
713 			if ((in_vbl && (position == vbl_start - 2 ||
714 					position == vbl_start - 1)) ||
715 			    (!in_vbl && (position == vbl_end - 2 ||
716 					 position == vbl_end - 1)))
717 				position = (position + 2) % vtotal;
718 		} else if (HAS_PCH_SPLIT(dev)) {
719 			/*
720 			 * The scanline counter increments at the leading edge
721 			 * of hsync, ie. it completely misses the active portion
722 			 * of the line. Fix up the counter at both edges of vblank
723 			 * to get a more accurate picture whether we're in vblank
724 			 * or not.
725 			 */
726 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
727 			if ((in_vbl && position == vbl_start - 1) ||
728 			    (!in_vbl && position == vbl_end - 1))
729 				position = (position + 1) % vtotal;
730 		} else {
731 			/*
732 			 * ISR vblank status bits don't work the way we'd want
733 			 * them to work on non-PCH platforms (for
734 			 * ilk_pipe_in_vblank_locked()), and there doesn't
735 			 * appear any other way to determine if we're currently
736 			 * in vblank.
737 			 *
738 			 * Instead let's assume that we're already in vblank if
739 			 * we got called from the vblank interrupt and the
740 			 * scanline counter value indicates that we're on the
741 			 * line just prior to vblank start. This should result
742 			 * in the correct answer, unless the vblank interrupt
743 			 * delivery really got delayed for almost exactly one
744 			 * full frame/field.
745 			 */
746 			if (flags & DRM_CALLED_FROM_VBLIRQ &&
747 			    position == vbl_start - 1) {
748 				position = (position + 1) % vtotal;
749 
750 				/* Signal this correction as "applied". */
751 				ret |= 0x8;
752 			}
753 		}
754 	} else {
755 		/* Have access to pixelcount since start of frame.
756 		 * We can split this into vertical and horizontal
757 		 * scanout position.
758 		 */
759 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
760 
761 		/* convert to pixel counts */
762 		vbl_start *= htotal;
763 		vbl_end *= htotal;
764 		vtotal *= htotal;
765 	}
766 
767 	/* Get optional system timestamp after query. */
768 	if (etime)
769 		*etime = ktime_get();
770 
771 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
772 
773 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
774 
775 	in_vbl = position >= vbl_start && position < vbl_end;
776 
777 	/*
778 	 * While in vblank, position will be negative
779 	 * counting up towards 0 at vbl_end. And outside
780 	 * vblank, position will be positive counting
781 	 * up since vbl_end.
782 	 */
783 	if (position >= vbl_start)
784 		position -= vbl_end;
785 	else
786 		position += vtotal - vbl_end;
787 
788 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789 		*vpos = position;
790 		*hpos = 0;
791 	} else {
792 		*vpos = position / htotal;
793 		*hpos = position - (*vpos * htotal);
794 	}
795 
796 	/* In vblank? */
797 	if (in_vbl)
798 		ret |= DRM_SCANOUTPOS_INVBL;
799 
800 	return ret;
801 }
802 
803 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
804 			      int *max_error,
805 			      struct timeval *vblank_time,
806 			      unsigned flags)
807 {
808 	struct drm_crtc *crtc;
809 
810 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
811 		DRM_ERROR("Invalid crtc %d\n", pipe);
812 		return -EINVAL;
813 	}
814 
815 	/* Get drm_crtc to timestamp: */
816 	crtc = intel_get_crtc_for_pipe(dev, pipe);
817 	if (crtc == NULL) {
818 		DRM_ERROR("Invalid crtc %d\n", pipe);
819 		return -EINVAL;
820 	}
821 
822 	if (!crtc->enabled) {
823 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
824 		return -EBUSY;
825 	}
826 
827 	/* Helper routine in DRM core does all the work: */
828 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
829 						     vblank_time, flags,
830 						     crtc,
831 						     &to_intel_crtc(crtc)->config.adjusted_mode);
832 }
833 
834 static bool intel_hpd_irq_event(struct drm_device *dev,
835 				struct drm_connector *connector)
836 {
837 	enum drm_connector_status old_status;
838 
839 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
840 	old_status = connector->status;
841 
842 	connector->status = connector->funcs->detect(connector, false);
843 	if (old_status == connector->status)
844 		return false;
845 
846 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
847 		      connector->base.id,
848 		      drm_get_connector_name(connector),
849 		      drm_get_connector_status_name(old_status),
850 		      drm_get_connector_status_name(connector->status));
851 
852 	return true;
853 }
854 
855 /*
856  * Handle hotplug events outside the interrupt handler proper.
857  */
858 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
859 
860 static void i915_hotplug_work_func(struct work_struct *work)
861 {
862 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
863 						    hotplug_work);
864 	struct drm_device *dev = dev_priv->dev;
865 	struct drm_mode_config *mode_config = &dev->mode_config;
866 	struct intel_connector *intel_connector;
867 	struct intel_encoder *intel_encoder;
868 	struct drm_connector *connector;
869 	unsigned long irqflags;
870 	bool hpd_disabled = false;
871 	bool changed = false;
872 	u32 hpd_event_bits;
873 
874 	/* HPD irq before everything is fully set up. */
875 	if (!dev_priv->enable_hotplug_processing)
876 		return;
877 
878 	mutex_lock(&mode_config->mutex);
879 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
880 
881 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
882 
883 	hpd_event_bits = dev_priv->hpd_event_bits;
884 	dev_priv->hpd_event_bits = 0;
885 	list_for_each_entry(connector, &mode_config->connector_list, head) {
886 		intel_connector = to_intel_connector(connector);
887 		intel_encoder = intel_connector->encoder;
888 		if (intel_encoder->hpd_pin > HPD_NONE &&
889 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
890 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
891 			DRM_INFO("HPD interrupt storm detected on connector %s: "
892 				 "switching from hotplug detection to polling\n",
893 				drm_get_connector_name(connector));
894 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
895 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
896 				| DRM_CONNECTOR_POLL_DISCONNECT;
897 			hpd_disabled = true;
898 		}
899 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
900 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
901 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
902 		}
903 	}
904 	 /* if there were no outputs to poll, poll was disabled,
905 	  * therefore make sure it's enabled when disabling HPD on
906 	  * some connectors */
907 	if (hpd_disabled) {
908 		drm_kms_helper_poll_enable(dev);
909 		mod_timer(&dev_priv->hotplug_reenable_timer,
910 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
911 	}
912 
913 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
914 
915 	list_for_each_entry(connector, &mode_config->connector_list, head) {
916 		intel_connector = to_intel_connector(connector);
917 		intel_encoder = intel_connector->encoder;
918 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
919 			if (intel_encoder->hot_plug)
920 				intel_encoder->hot_plug(intel_encoder);
921 			if (intel_hpd_irq_event(dev, connector))
922 				changed = true;
923 		}
924 	}
925 	mutex_unlock(&mode_config->mutex);
926 
927 	if (changed)
928 		drm_kms_helper_hotplug_event(dev);
929 }
930 
931 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
932 {
933 	drm_i915_private_t *dev_priv = dev->dev_private;
934 	u32 busy_up, busy_down, max_avg, min_avg;
935 	u8 new_delay;
936 
937 	spin_lock(&mchdev_lock);
938 
939 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
940 
941 	new_delay = dev_priv->ips.cur_delay;
942 
943 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
944 	busy_up = I915_READ(RCPREVBSYTUPAVG);
945 	busy_down = I915_READ(RCPREVBSYTDNAVG);
946 	max_avg = I915_READ(RCBMAXAVG);
947 	min_avg = I915_READ(RCBMINAVG);
948 
949 	/* Handle RCS change request from hw */
950 	if (busy_up > max_avg) {
951 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
952 			new_delay = dev_priv->ips.cur_delay - 1;
953 		if (new_delay < dev_priv->ips.max_delay)
954 			new_delay = dev_priv->ips.max_delay;
955 	} else if (busy_down < min_avg) {
956 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
957 			new_delay = dev_priv->ips.cur_delay + 1;
958 		if (new_delay > dev_priv->ips.min_delay)
959 			new_delay = dev_priv->ips.min_delay;
960 	}
961 
962 	if (ironlake_set_drps(dev, new_delay))
963 		dev_priv->ips.cur_delay = new_delay;
964 
965 	spin_unlock(&mchdev_lock);
966 
967 	return;
968 }
969 
970 static void notify_ring(struct drm_device *dev,
971 			struct intel_ring_buffer *ring)
972 {
973 	if (ring->obj == NULL)
974 		return;
975 
976 	trace_i915_gem_request_complete(ring);
977 
978 	wake_up_all(&ring->irq_queue);
979 	i915_queue_hangcheck(dev);
980 }
981 
982 static void gen6_pm_rps_work(struct work_struct *work)
983 {
984 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
985 						    rps.work);
986 	u32 pm_iir;
987 	int new_delay, adj;
988 
989 	spin_lock_irq(&dev_priv->irq_lock);
990 	pm_iir = dev_priv->rps.pm_iir;
991 	dev_priv->rps.pm_iir = 0;
992 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
993 	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
994 	spin_unlock_irq(&dev_priv->irq_lock);
995 
996 	/* Make sure we didn't queue anything we're not going to process. */
997 	WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
998 
999 	if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
1000 		return;
1001 
1002 	mutex_lock(&dev_priv->rps.hw_lock);
1003 
1004 	adj = dev_priv->rps.last_adj;
1005 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1006 		if (adj > 0)
1007 			adj *= 2;
1008 		else
1009 			adj = 1;
1010 		new_delay = dev_priv->rps.cur_delay + adj;
1011 
1012 		/*
1013 		 * For better performance, jump directly
1014 		 * to RPe if we're below it.
1015 		 */
1016 		if (new_delay < dev_priv->rps.rpe_delay)
1017 			new_delay = dev_priv->rps.rpe_delay;
1018 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1019 		if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
1020 			new_delay = dev_priv->rps.rpe_delay;
1021 		else
1022 			new_delay = dev_priv->rps.min_delay;
1023 		adj = 0;
1024 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1025 		if (adj < 0)
1026 			adj *= 2;
1027 		else
1028 			adj = -1;
1029 		new_delay = dev_priv->rps.cur_delay + adj;
1030 	} else { /* unknown event */
1031 		new_delay = dev_priv->rps.cur_delay;
1032 	}
1033 
1034 	/* sysfs frequency interfaces may have snuck in while servicing the
1035 	 * interrupt
1036 	 */
1037 	new_delay = clamp_t(int, new_delay,
1038 			    dev_priv->rps.min_delay, dev_priv->rps.max_delay);
1039 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
1040 
1041 	if (IS_VALLEYVIEW(dev_priv->dev))
1042 		valleyview_set_rps(dev_priv->dev, new_delay);
1043 	else
1044 		gen6_set_rps(dev_priv->dev, new_delay);
1045 
1046 	mutex_unlock(&dev_priv->rps.hw_lock);
1047 }
1048 
1049 
1050 /**
1051  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1052  * occurred.
1053  * @work: workqueue struct
1054  *
1055  * Doesn't actually do anything except notify userspace. As a consequence of
1056  * this event, userspace should try to remap the bad rows since statistically
1057  * it is likely the same row is more likely to go bad again.
1058  */
1059 static void ivybridge_parity_work(struct work_struct *work)
1060 {
1061 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1062 						    l3_parity.error_work);
1063 	u32 error_status, row, bank, subbank;
1064 	char *parity_event[6];
1065 	uint32_t misccpctl;
1066 	unsigned long flags;
1067 	uint8_t slice = 0;
1068 
1069 	/* We must turn off DOP level clock gating to access the L3 registers.
1070 	 * In order to prevent a get/put style interface, acquire struct mutex
1071 	 * any time we access those registers.
1072 	 */
1073 	mutex_lock(&dev_priv->dev->struct_mutex);
1074 
1075 	/* If we've screwed up tracking, just let the interrupt fire again */
1076 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1077 		goto out;
1078 
1079 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1080 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1081 	POSTING_READ(GEN7_MISCCPCTL);
1082 
1083 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1084 		u32 reg;
1085 
1086 		slice--;
1087 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1088 			break;
1089 
1090 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1091 
1092 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1093 
1094 		error_status = I915_READ(reg);
1095 		row = GEN7_PARITY_ERROR_ROW(error_status);
1096 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1097 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1098 
1099 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1100 		POSTING_READ(reg);
1101 
1102 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1103 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1104 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1105 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1106 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1107 		parity_event[5] = NULL;
1108 
1109 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1110 				   KOBJ_CHANGE, parity_event);
1111 
1112 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1113 			  slice, row, bank, subbank);
1114 
1115 		kfree(parity_event[4]);
1116 		kfree(parity_event[3]);
1117 		kfree(parity_event[2]);
1118 		kfree(parity_event[1]);
1119 	}
1120 
1121 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1122 
1123 out:
1124 	WARN_ON(dev_priv->l3_parity.which_slice);
1125 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1126 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1127 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1128 
1129 	mutex_unlock(&dev_priv->dev->struct_mutex);
1130 }
1131 
1132 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1133 {
1134 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1135 
1136 	if (!HAS_L3_DPF(dev))
1137 		return;
1138 
1139 	spin_lock(&dev_priv->irq_lock);
1140 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1141 	spin_unlock(&dev_priv->irq_lock);
1142 
1143 	iir &= GT_PARITY_ERROR(dev);
1144 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1145 		dev_priv->l3_parity.which_slice |= 1 << 1;
1146 
1147 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1148 		dev_priv->l3_parity.which_slice |= 1 << 0;
1149 
1150 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1151 }
1152 
1153 static void ilk_gt_irq_handler(struct drm_device *dev,
1154 			       struct drm_i915_private *dev_priv,
1155 			       u32 gt_iir)
1156 {
1157 	if (gt_iir &
1158 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1159 		notify_ring(dev, &dev_priv->ring[RCS]);
1160 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1161 		notify_ring(dev, &dev_priv->ring[VCS]);
1162 }
1163 
1164 static void snb_gt_irq_handler(struct drm_device *dev,
1165 			       struct drm_i915_private *dev_priv,
1166 			       u32 gt_iir)
1167 {
1168 
1169 	if (gt_iir &
1170 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1171 		notify_ring(dev, &dev_priv->ring[RCS]);
1172 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1173 		notify_ring(dev, &dev_priv->ring[VCS]);
1174 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1175 		notify_ring(dev, &dev_priv->ring[BCS]);
1176 
1177 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1178 		      GT_BSD_CS_ERROR_INTERRUPT |
1179 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1180 		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1181 		i915_handle_error(dev, false);
1182 	}
1183 
1184 	if (gt_iir & GT_PARITY_ERROR(dev))
1185 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1186 }
1187 
1188 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1189 				       struct drm_i915_private *dev_priv,
1190 				       u32 master_ctl)
1191 {
1192 	u32 rcs, bcs, vcs;
1193 	uint32_t tmp = 0;
1194 	irqreturn_t ret = IRQ_NONE;
1195 
1196 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1197 		tmp = I915_READ(GEN8_GT_IIR(0));
1198 		if (tmp) {
1199 			ret = IRQ_HANDLED;
1200 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1201 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1202 			if (rcs & GT_RENDER_USER_INTERRUPT)
1203 				notify_ring(dev, &dev_priv->ring[RCS]);
1204 			if (bcs & GT_RENDER_USER_INTERRUPT)
1205 				notify_ring(dev, &dev_priv->ring[BCS]);
1206 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1207 		} else
1208 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1209 	}
1210 
1211 	if (master_ctl & GEN8_GT_VCS1_IRQ) {
1212 		tmp = I915_READ(GEN8_GT_IIR(1));
1213 		if (tmp) {
1214 			ret = IRQ_HANDLED;
1215 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1216 			if (vcs & GT_RENDER_USER_INTERRUPT)
1217 				notify_ring(dev, &dev_priv->ring[VCS]);
1218 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1219 		} else
1220 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1221 	}
1222 
1223 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1224 		tmp = I915_READ(GEN8_GT_IIR(3));
1225 		if (tmp) {
1226 			ret = IRQ_HANDLED;
1227 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1228 			if (vcs & GT_RENDER_USER_INTERRUPT)
1229 				notify_ring(dev, &dev_priv->ring[VECS]);
1230 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1231 		} else
1232 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1233 	}
1234 
1235 	return ret;
1236 }
1237 
1238 #define HPD_STORM_DETECT_PERIOD 1000
1239 #define HPD_STORM_THRESHOLD 5
1240 
1241 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1242 					 u32 hotplug_trigger,
1243 					 const u32 *hpd)
1244 {
1245 	drm_i915_private_t *dev_priv = dev->dev_private;
1246 	int i;
1247 	bool storm_detected = false;
1248 
1249 	if (!hotplug_trigger)
1250 		return;
1251 
1252 	spin_lock(&dev_priv->irq_lock);
1253 	for (i = 1; i < HPD_NUM_PINS; i++) {
1254 
1255 		WARN_ONCE(hpd[i] & hotplug_trigger &&
1256 			  dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1257 			  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1258 			  hotplug_trigger, i, hpd[i]);
1259 
1260 		if (!(hpd[i] & hotplug_trigger) ||
1261 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1262 			continue;
1263 
1264 		dev_priv->hpd_event_bits |= (1 << i);
1265 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1266 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1267 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1268 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1269 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1270 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1271 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1272 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1273 			dev_priv->hpd_event_bits &= ~(1 << i);
1274 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1275 			storm_detected = true;
1276 		} else {
1277 			dev_priv->hpd_stats[i].hpd_cnt++;
1278 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1279 				      dev_priv->hpd_stats[i].hpd_cnt);
1280 		}
1281 	}
1282 
1283 	if (storm_detected)
1284 		dev_priv->display.hpd_irq_setup(dev);
1285 	spin_unlock(&dev_priv->irq_lock);
1286 
1287 	/*
1288 	 * Our hotplug handler can grab modeset locks (by calling down into the
1289 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1290 	 * queue for otherwise the flush_work in the pageflip code will
1291 	 * deadlock.
1292 	 */
1293 	schedule_work(&dev_priv->hotplug_work);
1294 }
1295 
1296 static void gmbus_irq_handler(struct drm_device *dev)
1297 {
1298 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1299 
1300 	wake_up_all(&dev_priv->gmbus_wait_queue);
1301 }
1302 
1303 static void dp_aux_irq_handler(struct drm_device *dev)
1304 {
1305 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1306 
1307 	wake_up_all(&dev_priv->gmbus_wait_queue);
1308 }
1309 
1310 #if defined(CONFIG_DEBUG_FS)
1311 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1312 					 uint32_t crc0, uint32_t crc1,
1313 					 uint32_t crc2, uint32_t crc3,
1314 					 uint32_t crc4)
1315 {
1316 	struct drm_i915_private *dev_priv = dev->dev_private;
1317 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1318 	struct intel_pipe_crc_entry *entry;
1319 	int head, tail;
1320 
1321 	spin_lock(&pipe_crc->lock);
1322 
1323 	if (!pipe_crc->entries) {
1324 		spin_unlock(&pipe_crc->lock);
1325 		DRM_ERROR("spurious interrupt\n");
1326 		return;
1327 	}
1328 
1329 	head = pipe_crc->head;
1330 	tail = pipe_crc->tail;
1331 
1332 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1333 		spin_unlock(&pipe_crc->lock);
1334 		DRM_ERROR("CRC buffer overflowing\n");
1335 		return;
1336 	}
1337 
1338 	entry = &pipe_crc->entries[head];
1339 
1340 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1341 	entry->crc[0] = crc0;
1342 	entry->crc[1] = crc1;
1343 	entry->crc[2] = crc2;
1344 	entry->crc[3] = crc3;
1345 	entry->crc[4] = crc4;
1346 
1347 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1348 	pipe_crc->head = head;
1349 
1350 	spin_unlock(&pipe_crc->lock);
1351 
1352 	wake_up_interruptible(&pipe_crc->wq);
1353 }
1354 #else
1355 static inline void
1356 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1357 			     uint32_t crc0, uint32_t crc1,
1358 			     uint32_t crc2, uint32_t crc3,
1359 			     uint32_t crc4) {}
1360 #endif
1361 
1362 
1363 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1364 {
1365 	struct drm_i915_private *dev_priv = dev->dev_private;
1366 
1367 	display_pipe_crc_irq_handler(dev, pipe,
1368 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1369 				     0, 0, 0, 0);
1370 }
1371 
1372 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1373 {
1374 	struct drm_i915_private *dev_priv = dev->dev_private;
1375 
1376 	display_pipe_crc_irq_handler(dev, pipe,
1377 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1378 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1379 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1380 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1381 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1382 }
1383 
1384 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1385 {
1386 	struct drm_i915_private *dev_priv = dev->dev_private;
1387 	uint32_t res1, res2;
1388 
1389 	if (INTEL_INFO(dev)->gen >= 3)
1390 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1391 	else
1392 		res1 = 0;
1393 
1394 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1395 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1396 	else
1397 		res2 = 0;
1398 
1399 	display_pipe_crc_irq_handler(dev, pipe,
1400 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1401 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1402 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1403 				     res1, res2);
1404 }
1405 
1406 /* The RPS events need forcewake, so we add them to a work queue and mask their
1407  * IMR bits until the work is done. Other interrupts can be processed without
1408  * the work queue. */
1409 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1410 {
1411 	if (pm_iir & GEN6_PM_RPS_EVENTS) {
1412 		spin_lock(&dev_priv->irq_lock);
1413 		dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1414 		snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1415 		spin_unlock(&dev_priv->irq_lock);
1416 
1417 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1418 	}
1419 
1420 	if (HAS_VEBOX(dev_priv->dev)) {
1421 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1422 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1423 
1424 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1425 			DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1426 			i915_handle_error(dev_priv->dev, false);
1427 		}
1428 	}
1429 }
1430 
1431 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1432 {
1433 	struct drm_device *dev = (struct drm_device *) arg;
1434 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1435 	u32 iir, gt_iir, pm_iir;
1436 	irqreturn_t ret = IRQ_NONE;
1437 	unsigned long irqflags;
1438 	int pipe;
1439 	u32 pipe_stats[I915_MAX_PIPES];
1440 
1441 	atomic_inc(&dev_priv->irq_received);
1442 
1443 	while (true) {
1444 		iir = I915_READ(VLV_IIR);
1445 		gt_iir = I915_READ(GTIIR);
1446 		pm_iir = I915_READ(GEN6_PMIIR);
1447 
1448 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1449 			goto out;
1450 
1451 		ret = IRQ_HANDLED;
1452 
1453 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1454 
1455 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1456 		for_each_pipe(pipe) {
1457 			int reg = PIPESTAT(pipe);
1458 			pipe_stats[pipe] = I915_READ(reg);
1459 
1460 			/*
1461 			 * Clear the PIPE*STAT regs before the IIR
1462 			 */
1463 			if (pipe_stats[pipe] & 0x8000ffff) {
1464 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1465 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1466 							 pipe_name(pipe));
1467 				I915_WRITE(reg, pipe_stats[pipe]);
1468 			}
1469 		}
1470 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1471 
1472 		for_each_pipe(pipe) {
1473 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1474 				drm_handle_vblank(dev, pipe);
1475 
1476 			if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1477 				intel_prepare_page_flip(dev, pipe);
1478 				intel_finish_page_flip(dev, pipe);
1479 			}
1480 
1481 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1482 				i9xx_pipe_crc_irq_handler(dev, pipe);
1483 		}
1484 
1485 		/* Consume port.  Then clear IIR or we'll miss events */
1486 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1487 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1488 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1489 
1490 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1491 					 hotplug_status);
1492 
1493 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1494 
1495 			if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1496 				dp_aux_irq_handler(dev);
1497 
1498 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1499 			I915_READ(PORT_HOTPLUG_STAT);
1500 		}
1501 
1502 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1503 			gmbus_irq_handler(dev);
1504 
1505 		if (pm_iir)
1506 			gen6_rps_irq_handler(dev_priv, pm_iir);
1507 
1508 		I915_WRITE(GTIIR, gt_iir);
1509 		I915_WRITE(GEN6_PMIIR, pm_iir);
1510 		I915_WRITE(VLV_IIR, iir);
1511 	}
1512 
1513 out:
1514 	return ret;
1515 }
1516 
1517 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1518 {
1519 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1520 	int pipe;
1521 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1522 
1523 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1524 
1525 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1526 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1527 			       SDE_AUDIO_POWER_SHIFT);
1528 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1529 				 port_name(port));
1530 	}
1531 
1532 	if (pch_iir & SDE_AUX_MASK)
1533 		dp_aux_irq_handler(dev);
1534 
1535 	if (pch_iir & SDE_GMBUS)
1536 		gmbus_irq_handler(dev);
1537 
1538 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1539 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1540 
1541 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1542 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1543 
1544 	if (pch_iir & SDE_POISON)
1545 		DRM_ERROR("PCH poison interrupt\n");
1546 
1547 	if (pch_iir & SDE_FDI_MASK)
1548 		for_each_pipe(pipe)
1549 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1550 					 pipe_name(pipe),
1551 					 I915_READ(FDI_RX_IIR(pipe)));
1552 
1553 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1554 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1555 
1556 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1557 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1558 
1559 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1560 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1561 							  false))
1562 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1563 
1564 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1565 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1566 							  false))
1567 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1568 }
1569 
1570 static void ivb_err_int_handler(struct drm_device *dev)
1571 {
1572 	struct drm_i915_private *dev_priv = dev->dev_private;
1573 	u32 err_int = I915_READ(GEN7_ERR_INT);
1574 	enum pipe pipe;
1575 
1576 	if (err_int & ERR_INT_POISON)
1577 		DRM_ERROR("Poison interrupt\n");
1578 
1579 	for_each_pipe(pipe) {
1580 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1581 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1582 								  false))
1583 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1584 						 pipe_name(pipe));
1585 		}
1586 
1587 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1588 			if (IS_IVYBRIDGE(dev))
1589 				ivb_pipe_crc_irq_handler(dev, pipe);
1590 			else
1591 				hsw_pipe_crc_irq_handler(dev, pipe);
1592 		}
1593 	}
1594 
1595 	I915_WRITE(GEN7_ERR_INT, err_int);
1596 }
1597 
1598 static void cpt_serr_int_handler(struct drm_device *dev)
1599 {
1600 	struct drm_i915_private *dev_priv = dev->dev_private;
1601 	u32 serr_int = I915_READ(SERR_INT);
1602 
1603 	if (serr_int & SERR_INT_POISON)
1604 		DRM_ERROR("PCH poison interrupt\n");
1605 
1606 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1607 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1608 							  false))
1609 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1610 
1611 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1612 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1613 							  false))
1614 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1615 
1616 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1617 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1618 							  false))
1619 			DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1620 
1621 	I915_WRITE(SERR_INT, serr_int);
1622 }
1623 
1624 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1625 {
1626 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1627 	int pipe;
1628 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1629 
1630 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1631 
1632 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1633 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1634 			       SDE_AUDIO_POWER_SHIFT_CPT);
1635 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1636 				 port_name(port));
1637 	}
1638 
1639 	if (pch_iir & SDE_AUX_MASK_CPT)
1640 		dp_aux_irq_handler(dev);
1641 
1642 	if (pch_iir & SDE_GMBUS_CPT)
1643 		gmbus_irq_handler(dev);
1644 
1645 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1646 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1647 
1648 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1649 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1650 
1651 	if (pch_iir & SDE_FDI_MASK_CPT)
1652 		for_each_pipe(pipe)
1653 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1654 					 pipe_name(pipe),
1655 					 I915_READ(FDI_RX_IIR(pipe)));
1656 
1657 	if (pch_iir & SDE_ERROR_CPT)
1658 		cpt_serr_int_handler(dev);
1659 }
1660 
1661 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1662 {
1663 	struct drm_i915_private *dev_priv = dev->dev_private;
1664 	enum pipe pipe;
1665 
1666 	if (de_iir & DE_AUX_CHANNEL_A)
1667 		dp_aux_irq_handler(dev);
1668 
1669 	if (de_iir & DE_GSE)
1670 		intel_opregion_asle_intr(dev);
1671 
1672 	if (de_iir & DE_POISON)
1673 		DRM_ERROR("Poison interrupt\n");
1674 
1675 	for_each_pipe(pipe) {
1676 		if (de_iir & DE_PIPE_VBLANK(pipe))
1677 			drm_handle_vblank(dev, pipe);
1678 
1679 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1680 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1681 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1682 						 pipe_name(pipe));
1683 
1684 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1685 			i9xx_pipe_crc_irq_handler(dev, pipe);
1686 
1687 		/* plane/pipes map 1:1 on ilk+ */
1688 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1689 			intel_prepare_page_flip(dev, pipe);
1690 			intel_finish_page_flip_plane(dev, pipe);
1691 		}
1692 	}
1693 
1694 	/* check event from PCH */
1695 	if (de_iir & DE_PCH_EVENT) {
1696 		u32 pch_iir = I915_READ(SDEIIR);
1697 
1698 		if (HAS_PCH_CPT(dev))
1699 			cpt_irq_handler(dev, pch_iir);
1700 		else
1701 			ibx_irq_handler(dev, pch_iir);
1702 
1703 		/* should clear PCH hotplug event before clear CPU irq */
1704 		I915_WRITE(SDEIIR, pch_iir);
1705 	}
1706 
1707 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1708 		ironlake_rps_change_irq_handler(dev);
1709 }
1710 
1711 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1712 {
1713 	struct drm_i915_private *dev_priv = dev->dev_private;
1714 	enum pipe i;
1715 
1716 	if (de_iir & DE_ERR_INT_IVB)
1717 		ivb_err_int_handler(dev);
1718 
1719 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1720 		dp_aux_irq_handler(dev);
1721 
1722 	if (de_iir & DE_GSE_IVB)
1723 		intel_opregion_asle_intr(dev);
1724 
1725 	for_each_pipe(i) {
1726 		if (de_iir & (DE_PIPE_VBLANK_IVB(i)))
1727 			drm_handle_vblank(dev, i);
1728 
1729 		/* plane/pipes map 1:1 on ilk+ */
1730 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(i)) {
1731 			intel_prepare_page_flip(dev, i);
1732 			intel_finish_page_flip_plane(dev, i);
1733 		}
1734 	}
1735 
1736 	/* check event from PCH */
1737 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1738 		u32 pch_iir = I915_READ(SDEIIR);
1739 
1740 		cpt_irq_handler(dev, pch_iir);
1741 
1742 		/* clear PCH hotplug event before clear CPU irq */
1743 		I915_WRITE(SDEIIR, pch_iir);
1744 	}
1745 }
1746 
1747 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1748 {
1749 	struct drm_device *dev = (struct drm_device *) arg;
1750 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1751 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1752 	irqreturn_t ret = IRQ_NONE;
1753 
1754 	atomic_inc(&dev_priv->irq_received);
1755 
1756 	/* We get interrupts on unclaimed registers, so check for this before we
1757 	 * do any I915_{READ,WRITE}. */
1758 	intel_uncore_check_errors(dev);
1759 
1760 	/* disable master interrupt before clearing iir  */
1761 	de_ier = I915_READ(DEIER);
1762 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1763 	POSTING_READ(DEIER);
1764 
1765 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1766 	 * interrupts will will be stored on its back queue, and then we'll be
1767 	 * able to process them after we restore SDEIER (as soon as we restore
1768 	 * it, we'll get an interrupt if SDEIIR still has something to process
1769 	 * due to its back queue). */
1770 	if (!HAS_PCH_NOP(dev)) {
1771 		sde_ier = I915_READ(SDEIER);
1772 		I915_WRITE(SDEIER, 0);
1773 		POSTING_READ(SDEIER);
1774 	}
1775 
1776 	gt_iir = I915_READ(GTIIR);
1777 	if (gt_iir) {
1778 		if (INTEL_INFO(dev)->gen >= 6)
1779 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1780 		else
1781 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1782 		I915_WRITE(GTIIR, gt_iir);
1783 		ret = IRQ_HANDLED;
1784 	}
1785 
1786 	de_iir = I915_READ(DEIIR);
1787 	if (de_iir) {
1788 		if (INTEL_INFO(dev)->gen >= 7)
1789 			ivb_display_irq_handler(dev, de_iir);
1790 		else
1791 			ilk_display_irq_handler(dev, de_iir);
1792 		I915_WRITE(DEIIR, de_iir);
1793 		ret = IRQ_HANDLED;
1794 	}
1795 
1796 	if (INTEL_INFO(dev)->gen >= 6) {
1797 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1798 		if (pm_iir) {
1799 			gen6_rps_irq_handler(dev_priv, pm_iir);
1800 			I915_WRITE(GEN6_PMIIR, pm_iir);
1801 			ret = IRQ_HANDLED;
1802 		}
1803 	}
1804 
1805 	I915_WRITE(DEIER, de_ier);
1806 	POSTING_READ(DEIER);
1807 	if (!HAS_PCH_NOP(dev)) {
1808 		I915_WRITE(SDEIER, sde_ier);
1809 		POSTING_READ(SDEIER);
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1816 {
1817 	struct drm_device *dev = arg;
1818 	struct drm_i915_private *dev_priv = dev->dev_private;
1819 	u32 master_ctl;
1820 	irqreturn_t ret = IRQ_NONE;
1821 	uint32_t tmp = 0;
1822 	enum pipe pipe;
1823 
1824 	atomic_inc(&dev_priv->irq_received);
1825 
1826 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
1827 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1828 	if (!master_ctl)
1829 		return IRQ_NONE;
1830 
1831 	I915_WRITE(GEN8_MASTER_IRQ, 0);
1832 	POSTING_READ(GEN8_MASTER_IRQ);
1833 
1834 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1835 
1836 	if (master_ctl & GEN8_DE_MISC_IRQ) {
1837 		tmp = I915_READ(GEN8_DE_MISC_IIR);
1838 		if (tmp & GEN8_DE_MISC_GSE)
1839 			intel_opregion_asle_intr(dev);
1840 		else if (tmp)
1841 			DRM_ERROR("Unexpected DE Misc interrupt\n");
1842 		else
1843 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1844 
1845 		if (tmp) {
1846 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1847 			ret = IRQ_HANDLED;
1848 		}
1849 	}
1850 
1851 	if (master_ctl & GEN8_DE_PORT_IRQ) {
1852 		tmp = I915_READ(GEN8_DE_PORT_IIR);
1853 		if (tmp & GEN8_AUX_CHANNEL_A)
1854 			dp_aux_irq_handler(dev);
1855 		else if (tmp)
1856 			DRM_ERROR("Unexpected DE Port interrupt\n");
1857 		else
1858 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1859 
1860 		if (tmp) {
1861 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
1862 			ret = IRQ_HANDLED;
1863 		}
1864 	}
1865 
1866 	for_each_pipe(pipe) {
1867 		uint32_t pipe_iir;
1868 
1869 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
1870 			continue;
1871 
1872 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
1873 		if (pipe_iir & GEN8_PIPE_VBLANK)
1874 			drm_handle_vblank(dev, pipe);
1875 
1876 		if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
1877 			intel_prepare_page_flip(dev, pipe);
1878 			intel_finish_page_flip_plane(dev, pipe);
1879 		}
1880 
1881 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
1882 			hsw_pipe_crc_irq_handler(dev, pipe);
1883 
1884 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
1885 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1886 								  false))
1887 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1888 						 pipe_name(pipe));
1889 		}
1890 
1891 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
1892 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
1893 				  pipe_name(pipe),
1894 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
1895 		}
1896 
1897 		if (pipe_iir) {
1898 			ret = IRQ_HANDLED;
1899 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
1900 		} else
1901 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
1902 	}
1903 
1904 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
1905 		/*
1906 		 * FIXME(BDW): Assume for now that the new interrupt handling
1907 		 * scheme also closed the SDE interrupt handling race we've seen
1908 		 * on older pch-split platforms. But this needs testing.
1909 		 */
1910 		u32 pch_iir = I915_READ(SDEIIR);
1911 
1912 		cpt_irq_handler(dev, pch_iir);
1913 
1914 		if (pch_iir) {
1915 			I915_WRITE(SDEIIR, pch_iir);
1916 			ret = IRQ_HANDLED;
1917 		}
1918 	}
1919 
1920 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1921 	POSTING_READ(GEN8_MASTER_IRQ);
1922 
1923 	return ret;
1924 }
1925 
1926 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1927 			       bool reset_completed)
1928 {
1929 	struct intel_ring_buffer *ring;
1930 	int i;
1931 
1932 	/*
1933 	 * Notify all waiters for GPU completion events that reset state has
1934 	 * been changed, and that they need to restart their wait after
1935 	 * checking for potential errors (and bail out to drop locks if there is
1936 	 * a gpu reset pending so that i915_error_work_func can acquire them).
1937 	 */
1938 
1939 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1940 	for_each_ring(ring, dev_priv, i)
1941 		wake_up_all(&ring->irq_queue);
1942 
1943 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1944 	wake_up_all(&dev_priv->pending_flip_queue);
1945 
1946 	/*
1947 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1948 	 * reset state is cleared.
1949 	 */
1950 	if (reset_completed)
1951 		wake_up_all(&dev_priv->gpu_error.reset_queue);
1952 }
1953 
1954 /**
1955  * i915_error_work_func - do process context error handling work
1956  * @work: work struct
1957  *
1958  * Fire an error uevent so userspace can see that a hang or error
1959  * was detected.
1960  */
1961 static void i915_error_work_func(struct work_struct *work)
1962 {
1963 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1964 						    work);
1965 	drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1966 						    gpu_error);
1967 	struct drm_device *dev = dev_priv->dev;
1968 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1969 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1970 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1971 	int ret;
1972 
1973 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
1974 
1975 	/*
1976 	 * Note that there's only one work item which does gpu resets, so we
1977 	 * need not worry about concurrent gpu resets potentially incrementing
1978 	 * error->reset_counter twice. We only need to take care of another
1979 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
1980 	 * quick check for that is good enough: schedule_work ensures the
1981 	 * correct ordering between hang detection and this work item, and since
1982 	 * the reset in-progress bit is only ever set by code outside of this
1983 	 * work we don't need to worry about any other races.
1984 	 */
1985 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1986 		DRM_DEBUG_DRIVER("resetting chip\n");
1987 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
1988 				   reset_event);
1989 
1990 		/*
1991 		 * All state reset _must_ be completed before we update the
1992 		 * reset counter, for otherwise waiters might miss the reset
1993 		 * pending state and not properly drop locks, resulting in
1994 		 * deadlocks with the reset work.
1995 		 */
1996 		ret = i915_reset(dev);
1997 
1998 		intel_display_handle_reset(dev);
1999 
2000 		if (ret == 0) {
2001 			/*
2002 			 * After all the gem state is reset, increment the reset
2003 			 * counter and wake up everyone waiting for the reset to
2004 			 * complete.
2005 			 *
2006 			 * Since unlock operations are a one-sided barrier only,
2007 			 * we need to insert a barrier here to order any seqno
2008 			 * updates before
2009 			 * the counter increment.
2010 			 */
2011 			smp_mb__before_atomic_inc();
2012 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2013 
2014 			kobject_uevent_env(&dev->primary->kdev->kobj,
2015 					   KOBJ_CHANGE, reset_done_event);
2016 		} else {
2017 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2018 		}
2019 
2020 		/*
2021 		 * Note: The wake_up also serves as a memory barrier so that
2022 		 * waiters see the update value of the reset counter atomic_t.
2023 		 */
2024 		i915_error_wake_up(dev_priv, true);
2025 	}
2026 }
2027 
2028 static void i915_report_and_clear_eir(struct drm_device *dev)
2029 {
2030 	struct drm_i915_private *dev_priv = dev->dev_private;
2031 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2032 	u32 eir = I915_READ(EIR);
2033 	int pipe, i;
2034 
2035 	if (!eir)
2036 		return;
2037 
2038 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2039 
2040 	i915_get_extra_instdone(dev, instdone);
2041 
2042 	if (IS_G4X(dev)) {
2043 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2044 			u32 ipeir = I915_READ(IPEIR_I965);
2045 
2046 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2047 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2048 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2049 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2050 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2051 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2052 			I915_WRITE(IPEIR_I965, ipeir);
2053 			POSTING_READ(IPEIR_I965);
2054 		}
2055 		if (eir & GM45_ERROR_PAGE_TABLE) {
2056 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2057 			pr_err("page table error\n");
2058 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2059 			I915_WRITE(PGTBL_ER, pgtbl_err);
2060 			POSTING_READ(PGTBL_ER);
2061 		}
2062 	}
2063 
2064 	if (!IS_GEN2(dev)) {
2065 		if (eir & I915_ERROR_PAGE_TABLE) {
2066 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2067 			pr_err("page table error\n");
2068 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2069 			I915_WRITE(PGTBL_ER, pgtbl_err);
2070 			POSTING_READ(PGTBL_ER);
2071 		}
2072 	}
2073 
2074 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2075 		pr_err("memory refresh error:\n");
2076 		for_each_pipe(pipe)
2077 			pr_err("pipe %c stat: 0x%08x\n",
2078 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2079 		/* pipestat has already been acked */
2080 	}
2081 	if (eir & I915_ERROR_INSTRUCTION) {
2082 		pr_err("instruction error\n");
2083 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2084 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2085 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2086 		if (INTEL_INFO(dev)->gen < 4) {
2087 			u32 ipeir = I915_READ(IPEIR);
2088 
2089 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2090 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2091 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2092 			I915_WRITE(IPEIR, ipeir);
2093 			POSTING_READ(IPEIR);
2094 		} else {
2095 			u32 ipeir = I915_READ(IPEIR_I965);
2096 
2097 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2098 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2099 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2100 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2101 			I915_WRITE(IPEIR_I965, ipeir);
2102 			POSTING_READ(IPEIR_I965);
2103 		}
2104 	}
2105 
2106 	I915_WRITE(EIR, eir);
2107 	POSTING_READ(EIR);
2108 	eir = I915_READ(EIR);
2109 	if (eir) {
2110 		/*
2111 		 * some errors might have become stuck,
2112 		 * mask them.
2113 		 */
2114 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2115 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2116 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2117 	}
2118 }
2119 
2120 /**
2121  * i915_handle_error - handle an error interrupt
2122  * @dev: drm device
2123  *
2124  * Do some basic checking of regsiter state at error interrupt time and
2125  * dump it to the syslog.  Also call i915_capture_error_state() to make
2126  * sure we get a record and make it available in debugfs.  Fire a uevent
2127  * so userspace knows something bad happened (should trigger collection
2128  * of a ring dump etc.).
2129  */
2130 void i915_handle_error(struct drm_device *dev, bool wedged)
2131 {
2132 	struct drm_i915_private *dev_priv = dev->dev_private;
2133 
2134 	i915_capture_error_state(dev);
2135 	i915_report_and_clear_eir(dev);
2136 
2137 	if (wedged) {
2138 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2139 				&dev_priv->gpu_error.reset_counter);
2140 
2141 		/*
2142 		 * Wakeup waiting processes so that the reset work function
2143 		 * i915_error_work_func doesn't deadlock trying to grab various
2144 		 * locks. By bumping the reset counter first, the woken
2145 		 * processes will see a reset in progress and back off,
2146 		 * releasing their locks and then wait for the reset completion.
2147 		 * We must do this for _all_ gpu waiters that might hold locks
2148 		 * that the reset work needs to acquire.
2149 		 *
2150 		 * Note: The wake_up serves as the required memory barrier to
2151 		 * ensure that the waiters see the updated value of the reset
2152 		 * counter atomic_t.
2153 		 */
2154 		i915_error_wake_up(dev_priv, false);
2155 	}
2156 
2157 	/*
2158 	 * Our reset work can grab modeset locks (since it needs to reset the
2159 	 * state of outstanding pagelips). Hence it must not be run on our own
2160 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2161 	 * code will deadlock.
2162 	 */
2163 	schedule_work(&dev_priv->gpu_error.work);
2164 }
2165 
2166 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2167 {
2168 	drm_i915_private_t *dev_priv = dev->dev_private;
2169 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2170 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2171 	struct drm_i915_gem_object *obj;
2172 	struct intel_unpin_work *work;
2173 	unsigned long flags;
2174 	bool stall_detected;
2175 
2176 	/* Ignore early vblank irqs */
2177 	if (intel_crtc == NULL)
2178 		return;
2179 
2180 	spin_lock_irqsave(&dev->event_lock, flags);
2181 	work = intel_crtc->unpin_work;
2182 
2183 	if (work == NULL ||
2184 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2185 	    !work->enable_stall_check) {
2186 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2187 		spin_unlock_irqrestore(&dev->event_lock, flags);
2188 		return;
2189 	}
2190 
2191 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2192 	obj = work->pending_flip_obj;
2193 	if (INTEL_INFO(dev)->gen >= 4) {
2194 		int dspsurf = DSPSURF(intel_crtc->plane);
2195 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2196 					i915_gem_obj_ggtt_offset(obj);
2197 	} else {
2198 		int dspaddr = DSPADDR(intel_crtc->plane);
2199 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2200 							crtc->y * crtc->fb->pitches[0] +
2201 							crtc->x * crtc->fb->bits_per_pixel/8);
2202 	}
2203 
2204 	spin_unlock_irqrestore(&dev->event_lock, flags);
2205 
2206 	if (stall_detected) {
2207 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2208 		intel_prepare_page_flip(dev, intel_crtc->plane);
2209 	}
2210 }
2211 
2212 /* Called from drm generic code, passed 'crtc' which
2213  * we use as a pipe index
2214  */
2215 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2216 {
2217 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2218 	unsigned long irqflags;
2219 
2220 	if (!i915_pipe_enabled(dev, pipe))
2221 		return -EINVAL;
2222 
2223 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2224 	if (INTEL_INFO(dev)->gen >= 4)
2225 		i915_enable_pipestat(dev_priv, pipe,
2226 				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2227 	else
2228 		i915_enable_pipestat(dev_priv, pipe,
2229 				     PIPE_VBLANK_INTERRUPT_ENABLE);
2230 
2231 	/* maintain vblank delivery even in deep C-states */
2232 	if (dev_priv->info->gen == 3)
2233 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2234 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2235 
2236 	return 0;
2237 }
2238 
2239 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2240 {
2241 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2242 	unsigned long irqflags;
2243 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2244 						     DE_PIPE_VBLANK(pipe);
2245 
2246 	if (!i915_pipe_enabled(dev, pipe))
2247 		return -EINVAL;
2248 
2249 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2250 	ironlake_enable_display_irq(dev_priv, bit);
2251 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2252 
2253 	return 0;
2254 }
2255 
2256 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2257 {
2258 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2259 	unsigned long irqflags;
2260 	u32 imr;
2261 
2262 	if (!i915_pipe_enabled(dev, pipe))
2263 		return -EINVAL;
2264 
2265 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2266 	imr = I915_READ(VLV_IMR);
2267 	if (pipe == PIPE_A)
2268 		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2269 	else
2270 		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2271 	I915_WRITE(VLV_IMR, imr);
2272 	i915_enable_pipestat(dev_priv, pipe,
2273 			     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2274 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2275 
2276 	return 0;
2277 }
2278 
2279 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2280 {
2281 	struct drm_i915_private *dev_priv = dev->dev_private;
2282 	unsigned long irqflags;
2283 
2284 	if (!i915_pipe_enabled(dev, pipe))
2285 		return -EINVAL;
2286 
2287 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2288 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2289 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2290 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2291 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2292 	return 0;
2293 }
2294 
2295 /* Called from drm generic code, passed 'crtc' which
2296  * we use as a pipe index
2297  */
2298 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2299 {
2300 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2301 	unsigned long irqflags;
2302 
2303 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2304 	if (dev_priv->info->gen == 3)
2305 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2306 
2307 	i915_disable_pipestat(dev_priv, pipe,
2308 			      PIPE_VBLANK_INTERRUPT_ENABLE |
2309 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2310 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2311 }
2312 
2313 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2314 {
2315 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2316 	unsigned long irqflags;
2317 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2318 						     DE_PIPE_VBLANK(pipe);
2319 
2320 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2321 	ironlake_disable_display_irq(dev_priv, bit);
2322 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2323 }
2324 
2325 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2326 {
2327 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2328 	unsigned long irqflags;
2329 	u32 imr;
2330 
2331 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2332 	i915_disable_pipestat(dev_priv, pipe,
2333 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2334 	imr = I915_READ(VLV_IMR);
2335 	if (pipe == PIPE_A)
2336 		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2337 	else
2338 		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2339 	I915_WRITE(VLV_IMR, imr);
2340 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2341 }
2342 
2343 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2344 {
2345 	struct drm_i915_private *dev_priv = dev->dev_private;
2346 	unsigned long irqflags;
2347 
2348 	if (!i915_pipe_enabled(dev, pipe))
2349 		return;
2350 
2351 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2352 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2353 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2354 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2355 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2356 }
2357 
2358 static u32
2359 ring_last_seqno(struct intel_ring_buffer *ring)
2360 {
2361 	return list_entry(ring->request_list.prev,
2362 			  struct drm_i915_gem_request, list)->seqno;
2363 }
2364 
2365 static bool
2366 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2367 {
2368 	return (list_empty(&ring->request_list) ||
2369 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2370 }
2371 
2372 static struct intel_ring_buffer *
2373 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2374 {
2375 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2376 	u32 cmd, ipehr, acthd, acthd_min;
2377 
2378 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2379 	if ((ipehr & ~(0x3 << 16)) !=
2380 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2381 		return NULL;
2382 
2383 	/* ACTHD is likely pointing to the dword after the actual command,
2384 	 * so scan backwards until we find the MBOX.
2385 	 */
2386 	acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2387 	acthd_min = max((int)acthd - 3 * 4, 0);
2388 	do {
2389 		cmd = ioread32(ring->virtual_start + acthd);
2390 		if (cmd == ipehr)
2391 			break;
2392 
2393 		acthd -= 4;
2394 		if (acthd < acthd_min)
2395 			return NULL;
2396 	} while (1);
2397 
2398 	*seqno = ioread32(ring->virtual_start+acthd+4)+1;
2399 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2400 }
2401 
2402 static int semaphore_passed(struct intel_ring_buffer *ring)
2403 {
2404 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2405 	struct intel_ring_buffer *signaller;
2406 	u32 seqno, ctl;
2407 
2408 	ring->hangcheck.deadlock = true;
2409 
2410 	signaller = semaphore_waits_for(ring, &seqno);
2411 	if (signaller == NULL || signaller->hangcheck.deadlock)
2412 		return -1;
2413 
2414 	/* cursory check for an unkickable deadlock */
2415 	ctl = I915_READ_CTL(signaller);
2416 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2417 		return -1;
2418 
2419 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2420 }
2421 
2422 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2423 {
2424 	struct intel_ring_buffer *ring;
2425 	int i;
2426 
2427 	for_each_ring(ring, dev_priv, i)
2428 		ring->hangcheck.deadlock = false;
2429 }
2430 
2431 static enum intel_ring_hangcheck_action
2432 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2433 {
2434 	struct drm_device *dev = ring->dev;
2435 	struct drm_i915_private *dev_priv = dev->dev_private;
2436 	u32 tmp;
2437 
2438 	if (ring->hangcheck.acthd != acthd)
2439 		return HANGCHECK_ACTIVE;
2440 
2441 	if (IS_GEN2(dev))
2442 		return HANGCHECK_HUNG;
2443 
2444 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2445 	 * If so we can simply poke the RB_WAIT bit
2446 	 * and break the hang. This should work on
2447 	 * all but the second generation chipsets.
2448 	 */
2449 	tmp = I915_READ_CTL(ring);
2450 	if (tmp & RING_WAIT) {
2451 		DRM_ERROR("Kicking stuck wait on %s\n",
2452 			  ring->name);
2453 		i915_handle_error(dev, false);
2454 		I915_WRITE_CTL(ring, tmp);
2455 		return HANGCHECK_KICK;
2456 	}
2457 
2458 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2459 		switch (semaphore_passed(ring)) {
2460 		default:
2461 			return HANGCHECK_HUNG;
2462 		case 1:
2463 			DRM_ERROR("Kicking stuck semaphore on %s\n",
2464 				  ring->name);
2465 			i915_handle_error(dev, false);
2466 			I915_WRITE_CTL(ring, tmp);
2467 			return HANGCHECK_KICK;
2468 		case 0:
2469 			return HANGCHECK_WAIT;
2470 		}
2471 	}
2472 
2473 	return HANGCHECK_HUNG;
2474 }
2475 
2476 /**
2477  * This is called when the chip hasn't reported back with completed
2478  * batchbuffers in a long time. We keep track per ring seqno progress and
2479  * if there are no progress, hangcheck score for that ring is increased.
2480  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2481  * we kick the ring. If we see no progress on three subsequent calls
2482  * we assume chip is wedged and try to fix it by resetting the chip.
2483  */
2484 static void i915_hangcheck_elapsed(unsigned long data)
2485 {
2486 	struct drm_device *dev = (struct drm_device *)data;
2487 	drm_i915_private_t *dev_priv = dev->dev_private;
2488 	struct intel_ring_buffer *ring;
2489 	int i;
2490 	int busy_count = 0, rings_hung = 0;
2491 	bool stuck[I915_NUM_RINGS] = { 0 };
2492 #define BUSY 1
2493 #define KICK 5
2494 #define HUNG 20
2495 #define FIRE 30
2496 
2497 	if (!i915_enable_hangcheck)
2498 		return;
2499 
2500 	for_each_ring(ring, dev_priv, i) {
2501 		u32 seqno, acthd;
2502 		bool busy = true;
2503 
2504 		semaphore_clear_deadlocks(dev_priv);
2505 
2506 		seqno = ring->get_seqno(ring, false);
2507 		acthd = intel_ring_get_active_head(ring);
2508 
2509 		if (ring->hangcheck.seqno == seqno) {
2510 			if (ring_idle(ring, seqno)) {
2511 				ring->hangcheck.action = HANGCHECK_IDLE;
2512 
2513 				if (waitqueue_active(&ring->irq_queue)) {
2514 					/* Issue a wake-up to catch stuck h/w. */
2515 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2516 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2517 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2518 								  ring->name);
2519 						else
2520 							DRM_INFO("Fake missed irq on %s\n",
2521 								 ring->name);
2522 						wake_up_all(&ring->irq_queue);
2523 					}
2524 					/* Safeguard against driver failure */
2525 					ring->hangcheck.score += BUSY;
2526 				} else
2527 					busy = false;
2528 			} else {
2529 				/* We always increment the hangcheck score
2530 				 * if the ring is busy and still processing
2531 				 * the same request, so that no single request
2532 				 * can run indefinitely (such as a chain of
2533 				 * batches). The only time we do not increment
2534 				 * the hangcheck score on this ring, if this
2535 				 * ring is in a legitimate wait for another
2536 				 * ring. In that case the waiting ring is a
2537 				 * victim and we want to be sure we catch the
2538 				 * right culprit. Then every time we do kick
2539 				 * the ring, add a small increment to the
2540 				 * score so that we can catch a batch that is
2541 				 * being repeatedly kicked and so responsible
2542 				 * for stalling the machine.
2543 				 */
2544 				ring->hangcheck.action = ring_stuck(ring,
2545 								    acthd);
2546 
2547 				switch (ring->hangcheck.action) {
2548 				case HANGCHECK_IDLE:
2549 				case HANGCHECK_WAIT:
2550 					break;
2551 				case HANGCHECK_ACTIVE:
2552 					ring->hangcheck.score += BUSY;
2553 					break;
2554 				case HANGCHECK_KICK:
2555 					ring->hangcheck.score += KICK;
2556 					break;
2557 				case HANGCHECK_HUNG:
2558 					ring->hangcheck.score += HUNG;
2559 					stuck[i] = true;
2560 					break;
2561 				}
2562 			}
2563 		} else {
2564 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2565 
2566 			/* Gradually reduce the count so that we catch DoS
2567 			 * attempts across multiple batches.
2568 			 */
2569 			if (ring->hangcheck.score > 0)
2570 				ring->hangcheck.score--;
2571 		}
2572 
2573 		ring->hangcheck.seqno = seqno;
2574 		ring->hangcheck.acthd = acthd;
2575 		busy_count += busy;
2576 	}
2577 
2578 	for_each_ring(ring, dev_priv, i) {
2579 		if (ring->hangcheck.score > FIRE) {
2580 			DRM_INFO("%s on %s\n",
2581 				 stuck[i] ? "stuck" : "no progress",
2582 				 ring->name);
2583 			rings_hung++;
2584 		}
2585 	}
2586 
2587 	if (rings_hung)
2588 		return i915_handle_error(dev, true);
2589 
2590 	if (busy_count)
2591 		/* Reset timer case chip hangs without another request
2592 		 * being added */
2593 		i915_queue_hangcheck(dev);
2594 }
2595 
2596 void i915_queue_hangcheck(struct drm_device *dev)
2597 {
2598 	struct drm_i915_private *dev_priv = dev->dev_private;
2599 	if (!i915_enable_hangcheck)
2600 		return;
2601 
2602 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2603 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2604 }
2605 
2606 static void ibx_irq_preinstall(struct drm_device *dev)
2607 {
2608 	struct drm_i915_private *dev_priv = dev->dev_private;
2609 
2610 	if (HAS_PCH_NOP(dev))
2611 		return;
2612 
2613 	/* south display irq */
2614 	I915_WRITE(SDEIMR, 0xffffffff);
2615 	/*
2616 	 * SDEIER is also touched by the interrupt handler to work around missed
2617 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2618 	 * is enabled - instead we unconditionally enable all PCH interrupt
2619 	 * sources here, but then only unmask them as needed with SDEIMR.
2620 	 */
2621 	I915_WRITE(SDEIER, 0xffffffff);
2622 	POSTING_READ(SDEIER);
2623 }
2624 
2625 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2626 {
2627 	struct drm_i915_private *dev_priv = dev->dev_private;
2628 
2629 	/* and GT */
2630 	I915_WRITE(GTIMR, 0xffffffff);
2631 	I915_WRITE(GTIER, 0x0);
2632 	POSTING_READ(GTIER);
2633 
2634 	if (INTEL_INFO(dev)->gen >= 6) {
2635 		/* and PM */
2636 		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2637 		I915_WRITE(GEN6_PMIER, 0x0);
2638 		POSTING_READ(GEN6_PMIER);
2639 	}
2640 }
2641 
2642 /* drm_dma.h hooks
2643 */
2644 static void ironlake_irq_preinstall(struct drm_device *dev)
2645 {
2646 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2647 
2648 	atomic_set(&dev_priv->irq_received, 0);
2649 
2650 	I915_WRITE(HWSTAM, 0xeffe);
2651 
2652 	I915_WRITE(DEIMR, 0xffffffff);
2653 	I915_WRITE(DEIER, 0x0);
2654 	POSTING_READ(DEIER);
2655 
2656 	gen5_gt_irq_preinstall(dev);
2657 
2658 	ibx_irq_preinstall(dev);
2659 }
2660 
2661 static void valleyview_irq_preinstall(struct drm_device *dev)
2662 {
2663 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2664 	int pipe;
2665 
2666 	atomic_set(&dev_priv->irq_received, 0);
2667 
2668 	/* VLV magic */
2669 	I915_WRITE(VLV_IMR, 0);
2670 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2671 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2672 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2673 
2674 	/* and GT */
2675 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2676 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2677 
2678 	gen5_gt_irq_preinstall(dev);
2679 
2680 	I915_WRITE(DPINVGTT, 0xff);
2681 
2682 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2683 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2684 	for_each_pipe(pipe)
2685 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2686 	I915_WRITE(VLV_IIR, 0xffffffff);
2687 	I915_WRITE(VLV_IMR, 0xffffffff);
2688 	I915_WRITE(VLV_IER, 0x0);
2689 	POSTING_READ(VLV_IER);
2690 }
2691 
2692 static void gen8_irq_preinstall(struct drm_device *dev)
2693 {
2694 	struct drm_i915_private *dev_priv = dev->dev_private;
2695 	int pipe;
2696 
2697 	atomic_set(&dev_priv->irq_received, 0);
2698 
2699 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2700 	POSTING_READ(GEN8_MASTER_IRQ);
2701 
2702 	/* IIR can theoretically queue up two events. Be paranoid */
2703 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2704 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2705 		POSTING_READ(GEN8_##type##_IMR(which)); \
2706 		I915_WRITE(GEN8_##type##_IER(which), 0); \
2707 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2708 		POSTING_READ(GEN8_##type##_IIR(which)); \
2709 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2710 	} while (0)
2711 
2712 #define GEN8_IRQ_INIT(type) do { \
2713 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2714 		POSTING_READ(GEN8_##type##_IMR); \
2715 		I915_WRITE(GEN8_##type##_IER, 0); \
2716 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2717 		POSTING_READ(GEN8_##type##_IIR); \
2718 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2719 	} while (0)
2720 
2721 	GEN8_IRQ_INIT_NDX(GT, 0);
2722 	GEN8_IRQ_INIT_NDX(GT, 1);
2723 	GEN8_IRQ_INIT_NDX(GT, 2);
2724 	GEN8_IRQ_INIT_NDX(GT, 3);
2725 
2726 	for_each_pipe(pipe) {
2727 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2728 	}
2729 
2730 	GEN8_IRQ_INIT(DE_PORT);
2731 	GEN8_IRQ_INIT(DE_MISC);
2732 	GEN8_IRQ_INIT(PCU);
2733 #undef GEN8_IRQ_INIT
2734 #undef GEN8_IRQ_INIT_NDX
2735 
2736 	POSTING_READ(GEN8_PCU_IIR);
2737 
2738 	ibx_irq_preinstall(dev);
2739 }
2740 
2741 static void ibx_hpd_irq_setup(struct drm_device *dev)
2742 {
2743 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2744 	struct drm_mode_config *mode_config = &dev->mode_config;
2745 	struct intel_encoder *intel_encoder;
2746 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2747 
2748 	if (HAS_PCH_IBX(dev)) {
2749 		hotplug_irqs = SDE_HOTPLUG_MASK;
2750 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2751 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2752 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2753 	} else {
2754 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2755 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2756 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2757 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2758 	}
2759 
2760 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2761 
2762 	/*
2763 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2764 	 * duration to 2ms (which is the minimum in the Display Port spec)
2765 	 *
2766 	 * This register is the same on all known PCH chips.
2767 	 */
2768 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2769 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2770 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2771 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2772 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2773 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2774 }
2775 
2776 static void ibx_irq_postinstall(struct drm_device *dev)
2777 {
2778 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2779 	u32 mask;
2780 
2781 	if (HAS_PCH_NOP(dev))
2782 		return;
2783 
2784 	if (HAS_PCH_IBX(dev)) {
2785 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2786 	} else {
2787 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2788 
2789 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2790 	}
2791 
2792 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2793 	I915_WRITE(SDEIMR, ~mask);
2794 }
2795 
2796 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2797 {
2798 	struct drm_i915_private *dev_priv = dev->dev_private;
2799 	u32 pm_irqs, gt_irqs;
2800 
2801 	pm_irqs = gt_irqs = 0;
2802 
2803 	dev_priv->gt_irq_mask = ~0;
2804 	if (HAS_L3_DPF(dev)) {
2805 		/* L3 parity interrupt is always unmasked. */
2806 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2807 		gt_irqs |= GT_PARITY_ERROR(dev);
2808 	}
2809 
2810 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2811 	if (IS_GEN5(dev)) {
2812 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2813 			   ILK_BSD_USER_INTERRUPT;
2814 	} else {
2815 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2816 	}
2817 
2818 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2819 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2820 	I915_WRITE(GTIER, gt_irqs);
2821 	POSTING_READ(GTIER);
2822 
2823 	if (INTEL_INFO(dev)->gen >= 6) {
2824 		pm_irqs |= GEN6_PM_RPS_EVENTS;
2825 
2826 		if (HAS_VEBOX(dev))
2827 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2828 
2829 		dev_priv->pm_irq_mask = 0xffffffff;
2830 		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2831 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2832 		I915_WRITE(GEN6_PMIER, pm_irqs);
2833 		POSTING_READ(GEN6_PMIER);
2834 	}
2835 }
2836 
2837 static int ironlake_irq_postinstall(struct drm_device *dev)
2838 {
2839 	unsigned long irqflags;
2840 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2841 	u32 display_mask, extra_mask;
2842 
2843 	if (INTEL_INFO(dev)->gen >= 7) {
2844 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2845 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2846 				DE_PLANEB_FLIP_DONE_IVB |
2847 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2848 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2849 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
2850 
2851 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2852 	} else {
2853 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2854 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2855 				DE_AUX_CHANNEL_A |
2856 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2857 				DE_POISON);
2858 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
2859 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
2860 	}
2861 
2862 	dev_priv->irq_mask = ~display_mask;
2863 
2864 	/* should always can generate irq */
2865 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2866 	I915_WRITE(DEIMR, dev_priv->irq_mask);
2867 	I915_WRITE(DEIER, display_mask | extra_mask);
2868 	POSTING_READ(DEIER);
2869 
2870 	gen5_gt_irq_postinstall(dev);
2871 
2872 	ibx_irq_postinstall(dev);
2873 
2874 	if (IS_IRONLAKE_M(dev)) {
2875 		/* Enable PCU event interrupts
2876 		 *
2877 		 * spinlocking not required here for correctness since interrupt
2878 		 * setup is guaranteed to run in single-threaded context. But we
2879 		 * need it to make the assert_spin_locked happy. */
2880 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2881 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2882 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 static int valleyview_irq_postinstall(struct drm_device *dev)
2889 {
2890 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2891 	u32 enable_mask;
2892 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV |
2893 		PIPE_CRC_DONE_ENABLE;
2894 	unsigned long irqflags;
2895 
2896 	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2897 	enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2898 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2899 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2900 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2901 
2902 	/*
2903 	 *Leave vblank interrupts masked initially.  enable/disable will
2904 	 * toggle them based on usage.
2905 	 */
2906 	dev_priv->irq_mask = (~enable_mask) |
2907 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2908 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2909 
2910 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2911 	POSTING_READ(PORT_HOTPLUG_EN);
2912 
2913 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2914 	I915_WRITE(VLV_IER, enable_mask);
2915 	I915_WRITE(VLV_IIR, 0xffffffff);
2916 	I915_WRITE(PIPESTAT(0), 0xffff);
2917 	I915_WRITE(PIPESTAT(1), 0xffff);
2918 	POSTING_READ(VLV_IER);
2919 
2920 	/* Interrupt setup is already guaranteed to be single-threaded, this is
2921 	 * just to make the assert_spin_locked check happy. */
2922 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2923 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable);
2924 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
2925 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable);
2926 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2927 
2928 	I915_WRITE(VLV_IIR, 0xffffffff);
2929 	I915_WRITE(VLV_IIR, 0xffffffff);
2930 
2931 	gen5_gt_irq_postinstall(dev);
2932 
2933 	/* ack & enable invalid PTE error interrupts */
2934 #if 0 /* FIXME: add support to irq handler for checking these bits */
2935 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2936 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2937 #endif
2938 
2939 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2940 
2941 	return 0;
2942 }
2943 
2944 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
2945 {
2946 	int i;
2947 
2948 	/* These are interrupts we'll toggle with the ring mask register */
2949 	uint32_t gt_interrupts[] = {
2950 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
2951 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
2952 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
2953 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
2954 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
2955 		0,
2956 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
2957 		};
2958 
2959 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
2960 		u32 tmp = I915_READ(GEN8_GT_IIR(i));
2961 		if (tmp)
2962 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2963 				  i, tmp);
2964 		I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
2965 		I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
2966 	}
2967 	POSTING_READ(GEN8_GT_IER(0));
2968 }
2969 
2970 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
2971 {
2972 	struct drm_device *dev = dev_priv->dev;
2973 	uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
2974 		GEN8_PIPE_CDCLK_CRC_DONE |
2975 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2976 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
2977 		GEN8_PIPE_FIFO_UNDERRUN;
2978 	int pipe;
2979 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
2980 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
2981 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
2982 
2983 	for_each_pipe(pipe) {
2984 		u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2985 		if (tmp)
2986 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2987 				  pipe, tmp);
2988 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2989 		I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
2990 	}
2991 	POSTING_READ(GEN8_DE_PIPE_ISR(0));
2992 
2993 	I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
2994 	I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
2995 	POSTING_READ(GEN8_DE_PORT_IER);
2996 }
2997 
2998 static int gen8_irq_postinstall(struct drm_device *dev)
2999 {
3000 	struct drm_i915_private *dev_priv = dev->dev_private;
3001 
3002 	gen8_gt_irq_postinstall(dev_priv);
3003 	gen8_de_irq_postinstall(dev_priv);
3004 
3005 	ibx_irq_postinstall(dev);
3006 
3007 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3008 	POSTING_READ(GEN8_MASTER_IRQ);
3009 
3010 	return 0;
3011 }
3012 
3013 static void gen8_irq_uninstall(struct drm_device *dev)
3014 {
3015 	struct drm_i915_private *dev_priv = dev->dev_private;
3016 	int pipe;
3017 
3018 	if (!dev_priv)
3019 		return;
3020 
3021 	atomic_set(&dev_priv->irq_received, 0);
3022 
3023 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3024 
3025 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3026 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3027 		I915_WRITE(GEN8_##type##_IER(which), 0); \
3028 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3029 	} while (0)
3030 
3031 #define GEN8_IRQ_FINI(type) do { \
3032 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3033 		I915_WRITE(GEN8_##type##_IER, 0); \
3034 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3035 	} while (0)
3036 
3037 	GEN8_IRQ_FINI_NDX(GT, 0);
3038 	GEN8_IRQ_FINI_NDX(GT, 1);
3039 	GEN8_IRQ_FINI_NDX(GT, 2);
3040 	GEN8_IRQ_FINI_NDX(GT, 3);
3041 
3042 	for_each_pipe(pipe) {
3043 		GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3044 	}
3045 
3046 	GEN8_IRQ_FINI(DE_PORT);
3047 	GEN8_IRQ_FINI(DE_MISC);
3048 	GEN8_IRQ_FINI(PCU);
3049 #undef GEN8_IRQ_FINI
3050 #undef GEN8_IRQ_FINI_NDX
3051 
3052 	POSTING_READ(GEN8_PCU_IIR);
3053 }
3054 
3055 static void valleyview_irq_uninstall(struct drm_device *dev)
3056 {
3057 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3058 	int pipe;
3059 
3060 	if (!dev_priv)
3061 		return;
3062 
3063 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3064 
3065 	for_each_pipe(pipe)
3066 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3067 
3068 	I915_WRITE(HWSTAM, 0xffffffff);
3069 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3070 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3071 	for_each_pipe(pipe)
3072 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3073 	I915_WRITE(VLV_IIR, 0xffffffff);
3074 	I915_WRITE(VLV_IMR, 0xffffffff);
3075 	I915_WRITE(VLV_IER, 0x0);
3076 	POSTING_READ(VLV_IER);
3077 }
3078 
3079 static void ironlake_irq_uninstall(struct drm_device *dev)
3080 {
3081 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3082 
3083 	if (!dev_priv)
3084 		return;
3085 
3086 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3087 
3088 	I915_WRITE(HWSTAM, 0xffffffff);
3089 
3090 	I915_WRITE(DEIMR, 0xffffffff);
3091 	I915_WRITE(DEIER, 0x0);
3092 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3093 	if (IS_GEN7(dev))
3094 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3095 
3096 	I915_WRITE(GTIMR, 0xffffffff);
3097 	I915_WRITE(GTIER, 0x0);
3098 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3099 
3100 	if (HAS_PCH_NOP(dev))
3101 		return;
3102 
3103 	I915_WRITE(SDEIMR, 0xffffffff);
3104 	I915_WRITE(SDEIER, 0x0);
3105 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3106 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3107 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3108 }
3109 
3110 static void i8xx_irq_preinstall(struct drm_device * dev)
3111 {
3112 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3113 	int pipe;
3114 
3115 	atomic_set(&dev_priv->irq_received, 0);
3116 
3117 	for_each_pipe(pipe)
3118 		I915_WRITE(PIPESTAT(pipe), 0);
3119 	I915_WRITE16(IMR, 0xffff);
3120 	I915_WRITE16(IER, 0x0);
3121 	POSTING_READ16(IER);
3122 }
3123 
3124 static int i8xx_irq_postinstall(struct drm_device *dev)
3125 {
3126 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3127 	unsigned long irqflags;
3128 
3129 	I915_WRITE16(EMR,
3130 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3131 
3132 	/* Unmask the interrupts that we always want on. */
3133 	dev_priv->irq_mask =
3134 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3135 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3136 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3137 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3138 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3139 	I915_WRITE16(IMR, dev_priv->irq_mask);
3140 
3141 	I915_WRITE16(IER,
3142 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3143 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3144 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3145 		     I915_USER_INTERRUPT);
3146 	POSTING_READ16(IER);
3147 
3148 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3149 	 * just to make the assert_spin_locked check happy. */
3150 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3151 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3152 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3153 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  * Returns true when a page flip has completed.
3160  */
3161 static bool i8xx_handle_vblank(struct drm_device *dev,
3162 			       int plane, int pipe, u32 iir)
3163 {
3164 	drm_i915_private_t *dev_priv = dev->dev_private;
3165 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3166 
3167 	if (!drm_handle_vblank(dev, pipe))
3168 		return false;
3169 
3170 	if ((iir & flip_pending) == 0)
3171 		return false;
3172 
3173 	intel_prepare_page_flip(dev, plane);
3174 
3175 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3176 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3177 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3178 	 * the flip is completed (no longer pending). Since this doesn't raise
3179 	 * an interrupt per se, we watch for the change at vblank.
3180 	 */
3181 	if (I915_READ16(ISR) & flip_pending)
3182 		return false;
3183 
3184 	intel_finish_page_flip(dev, pipe);
3185 
3186 	return true;
3187 }
3188 
3189 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3190 {
3191 	struct drm_device *dev = (struct drm_device *) arg;
3192 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3193 	u16 iir, new_iir;
3194 	u32 pipe_stats[2];
3195 	unsigned long irqflags;
3196 	int pipe;
3197 	u16 flip_mask =
3198 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3199 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3200 
3201 	atomic_inc(&dev_priv->irq_received);
3202 
3203 	iir = I915_READ16(IIR);
3204 	if (iir == 0)
3205 		return IRQ_NONE;
3206 
3207 	while (iir & ~flip_mask) {
3208 		/* Can't rely on pipestat interrupt bit in iir as it might
3209 		 * have been cleared after the pipestat interrupt was received.
3210 		 * It doesn't set the bit in iir again, but it still produces
3211 		 * interrupts (for non-MSI).
3212 		 */
3213 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3214 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3215 			i915_handle_error(dev, false);
3216 
3217 		for_each_pipe(pipe) {
3218 			int reg = PIPESTAT(pipe);
3219 			pipe_stats[pipe] = I915_READ(reg);
3220 
3221 			/*
3222 			 * Clear the PIPE*STAT regs before the IIR
3223 			 */
3224 			if (pipe_stats[pipe] & 0x8000ffff) {
3225 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3226 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3227 							 pipe_name(pipe));
3228 				I915_WRITE(reg, pipe_stats[pipe]);
3229 			}
3230 		}
3231 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3232 
3233 		I915_WRITE16(IIR, iir & ~flip_mask);
3234 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3235 
3236 		i915_update_dri1_breadcrumb(dev);
3237 
3238 		if (iir & I915_USER_INTERRUPT)
3239 			notify_ring(dev, &dev_priv->ring[RCS]);
3240 
3241 		for_each_pipe(pipe) {
3242 			int plane = pipe;
3243 			if (HAS_FBC(dev))
3244 				plane = !plane;
3245 
3246 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3247 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3248 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3249 
3250 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3251 				i9xx_pipe_crc_irq_handler(dev, pipe);
3252 		}
3253 
3254 		iir = new_iir;
3255 	}
3256 
3257 	return IRQ_HANDLED;
3258 }
3259 
3260 static void i8xx_irq_uninstall(struct drm_device * dev)
3261 {
3262 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3263 	int pipe;
3264 
3265 	for_each_pipe(pipe) {
3266 		/* Clear enable bits; then clear status bits */
3267 		I915_WRITE(PIPESTAT(pipe), 0);
3268 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3269 	}
3270 	I915_WRITE16(IMR, 0xffff);
3271 	I915_WRITE16(IER, 0x0);
3272 	I915_WRITE16(IIR, I915_READ16(IIR));
3273 }
3274 
3275 static void i915_irq_preinstall(struct drm_device * dev)
3276 {
3277 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3278 	int pipe;
3279 
3280 	atomic_set(&dev_priv->irq_received, 0);
3281 
3282 	if (I915_HAS_HOTPLUG(dev)) {
3283 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3284 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3285 	}
3286 
3287 	I915_WRITE16(HWSTAM, 0xeffe);
3288 	for_each_pipe(pipe)
3289 		I915_WRITE(PIPESTAT(pipe), 0);
3290 	I915_WRITE(IMR, 0xffffffff);
3291 	I915_WRITE(IER, 0x0);
3292 	POSTING_READ(IER);
3293 }
3294 
3295 static int i915_irq_postinstall(struct drm_device *dev)
3296 {
3297 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3298 	u32 enable_mask;
3299 	unsigned long irqflags;
3300 
3301 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3302 
3303 	/* Unmask the interrupts that we always want on. */
3304 	dev_priv->irq_mask =
3305 		~(I915_ASLE_INTERRUPT |
3306 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3307 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3308 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3309 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3310 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3311 
3312 	enable_mask =
3313 		I915_ASLE_INTERRUPT |
3314 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3315 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3316 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3317 		I915_USER_INTERRUPT;
3318 
3319 	if (I915_HAS_HOTPLUG(dev)) {
3320 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3321 		POSTING_READ(PORT_HOTPLUG_EN);
3322 
3323 		/* Enable in IER... */
3324 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3325 		/* and unmask in IMR */
3326 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3327 	}
3328 
3329 	I915_WRITE(IMR, dev_priv->irq_mask);
3330 	I915_WRITE(IER, enable_mask);
3331 	POSTING_READ(IER);
3332 
3333 	i915_enable_asle_pipestat(dev);
3334 
3335 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3336 	 * just to make the assert_spin_locked check happy. */
3337 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3338 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3339 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3340 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3341 
3342 	return 0;
3343 }
3344 
3345 /*
3346  * Returns true when a page flip has completed.
3347  */
3348 static bool i915_handle_vblank(struct drm_device *dev,
3349 			       int plane, int pipe, u32 iir)
3350 {
3351 	drm_i915_private_t *dev_priv = dev->dev_private;
3352 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3353 
3354 	if (!drm_handle_vblank(dev, pipe))
3355 		return false;
3356 
3357 	if ((iir & flip_pending) == 0)
3358 		return false;
3359 
3360 	intel_prepare_page_flip(dev, plane);
3361 
3362 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3363 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3364 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3365 	 * the flip is completed (no longer pending). Since this doesn't raise
3366 	 * an interrupt per se, we watch for the change at vblank.
3367 	 */
3368 	if (I915_READ(ISR) & flip_pending)
3369 		return false;
3370 
3371 	intel_finish_page_flip(dev, pipe);
3372 
3373 	return true;
3374 }
3375 
3376 static irqreturn_t i915_irq_handler(int irq, void *arg)
3377 {
3378 	struct drm_device *dev = (struct drm_device *) arg;
3379 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3380 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3381 	unsigned long irqflags;
3382 	u32 flip_mask =
3383 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3384 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3385 	int pipe, ret = IRQ_NONE;
3386 
3387 	atomic_inc(&dev_priv->irq_received);
3388 
3389 	iir = I915_READ(IIR);
3390 	do {
3391 		bool irq_received = (iir & ~flip_mask) != 0;
3392 		bool blc_event = false;
3393 
3394 		/* Can't rely on pipestat interrupt bit in iir as it might
3395 		 * have been cleared after the pipestat interrupt was received.
3396 		 * It doesn't set the bit in iir again, but it still produces
3397 		 * interrupts (for non-MSI).
3398 		 */
3399 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3400 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3401 			i915_handle_error(dev, false);
3402 
3403 		for_each_pipe(pipe) {
3404 			int reg = PIPESTAT(pipe);
3405 			pipe_stats[pipe] = I915_READ(reg);
3406 
3407 			/* Clear the PIPE*STAT regs before the IIR */
3408 			if (pipe_stats[pipe] & 0x8000ffff) {
3409 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3410 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3411 							 pipe_name(pipe));
3412 				I915_WRITE(reg, pipe_stats[pipe]);
3413 				irq_received = true;
3414 			}
3415 		}
3416 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3417 
3418 		if (!irq_received)
3419 			break;
3420 
3421 		/* Consume port.  Then clear IIR or we'll miss events */
3422 		if ((I915_HAS_HOTPLUG(dev)) &&
3423 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3424 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3425 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3426 
3427 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3428 				  hotplug_status);
3429 
3430 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3431 
3432 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3433 			POSTING_READ(PORT_HOTPLUG_STAT);
3434 		}
3435 
3436 		I915_WRITE(IIR, iir & ~flip_mask);
3437 		new_iir = I915_READ(IIR); /* Flush posted writes */
3438 
3439 		if (iir & I915_USER_INTERRUPT)
3440 			notify_ring(dev, &dev_priv->ring[RCS]);
3441 
3442 		for_each_pipe(pipe) {
3443 			int plane = pipe;
3444 			if (HAS_FBC(dev))
3445 				plane = !plane;
3446 
3447 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3448 			    i915_handle_vblank(dev, plane, pipe, iir))
3449 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3450 
3451 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3452 				blc_event = true;
3453 
3454 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3455 				i9xx_pipe_crc_irq_handler(dev, pipe);
3456 		}
3457 
3458 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3459 			intel_opregion_asle_intr(dev);
3460 
3461 		/* With MSI, interrupts are only generated when iir
3462 		 * transitions from zero to nonzero.  If another bit got
3463 		 * set while we were handling the existing iir bits, then
3464 		 * we would never get another interrupt.
3465 		 *
3466 		 * This is fine on non-MSI as well, as if we hit this path
3467 		 * we avoid exiting the interrupt handler only to generate
3468 		 * another one.
3469 		 *
3470 		 * Note that for MSI this could cause a stray interrupt report
3471 		 * if an interrupt landed in the time between writing IIR and
3472 		 * the posting read.  This should be rare enough to never
3473 		 * trigger the 99% of 100,000 interrupts test for disabling
3474 		 * stray interrupts.
3475 		 */
3476 		ret = IRQ_HANDLED;
3477 		iir = new_iir;
3478 	} while (iir & ~flip_mask);
3479 
3480 	i915_update_dri1_breadcrumb(dev);
3481 
3482 	return ret;
3483 }
3484 
3485 static void i915_irq_uninstall(struct drm_device * dev)
3486 {
3487 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3488 	int pipe;
3489 
3490 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3491 
3492 	if (I915_HAS_HOTPLUG(dev)) {
3493 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3494 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3495 	}
3496 
3497 	I915_WRITE16(HWSTAM, 0xffff);
3498 	for_each_pipe(pipe) {
3499 		/* Clear enable bits; then clear status bits */
3500 		I915_WRITE(PIPESTAT(pipe), 0);
3501 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3502 	}
3503 	I915_WRITE(IMR, 0xffffffff);
3504 	I915_WRITE(IER, 0x0);
3505 
3506 	I915_WRITE(IIR, I915_READ(IIR));
3507 }
3508 
3509 static void i965_irq_preinstall(struct drm_device * dev)
3510 {
3511 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3512 	int pipe;
3513 
3514 	atomic_set(&dev_priv->irq_received, 0);
3515 
3516 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3517 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3518 
3519 	I915_WRITE(HWSTAM, 0xeffe);
3520 	for_each_pipe(pipe)
3521 		I915_WRITE(PIPESTAT(pipe), 0);
3522 	I915_WRITE(IMR, 0xffffffff);
3523 	I915_WRITE(IER, 0x0);
3524 	POSTING_READ(IER);
3525 }
3526 
3527 static int i965_irq_postinstall(struct drm_device *dev)
3528 {
3529 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3530 	u32 enable_mask;
3531 	u32 error_mask;
3532 	unsigned long irqflags;
3533 
3534 	/* Unmask the interrupts that we always want on. */
3535 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3536 			       I915_DISPLAY_PORT_INTERRUPT |
3537 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3538 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3539 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3540 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3541 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3542 
3543 	enable_mask = ~dev_priv->irq_mask;
3544 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3545 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3546 	enable_mask |= I915_USER_INTERRUPT;
3547 
3548 	if (IS_G4X(dev))
3549 		enable_mask |= I915_BSD_USER_INTERRUPT;
3550 
3551 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3552 	 * just to make the assert_spin_locked check happy. */
3553 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3554 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
3555 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3556 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3557 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3558 
3559 	/*
3560 	 * Enable some error detection, note the instruction error mask
3561 	 * bit is reserved, so we leave it masked.
3562 	 */
3563 	if (IS_G4X(dev)) {
3564 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3565 			       GM45_ERROR_MEM_PRIV |
3566 			       GM45_ERROR_CP_PRIV |
3567 			       I915_ERROR_MEMORY_REFRESH);
3568 	} else {
3569 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3570 			       I915_ERROR_MEMORY_REFRESH);
3571 	}
3572 	I915_WRITE(EMR, error_mask);
3573 
3574 	I915_WRITE(IMR, dev_priv->irq_mask);
3575 	I915_WRITE(IER, enable_mask);
3576 	POSTING_READ(IER);
3577 
3578 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3579 	POSTING_READ(PORT_HOTPLUG_EN);
3580 
3581 	i915_enable_asle_pipestat(dev);
3582 
3583 	return 0;
3584 }
3585 
3586 static void i915_hpd_irq_setup(struct drm_device *dev)
3587 {
3588 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3589 	struct drm_mode_config *mode_config = &dev->mode_config;
3590 	struct intel_encoder *intel_encoder;
3591 	u32 hotplug_en;
3592 
3593 	assert_spin_locked(&dev_priv->irq_lock);
3594 
3595 	if (I915_HAS_HOTPLUG(dev)) {
3596 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3597 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3598 		/* Note HDMI and DP share hotplug bits */
3599 		/* enable bits are the same for all generations */
3600 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3601 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3602 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3603 		/* Programming the CRT detection parameters tends
3604 		   to generate a spurious hotplug event about three
3605 		   seconds later.  So just do it once.
3606 		*/
3607 		if (IS_G4X(dev))
3608 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3609 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3610 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3611 
3612 		/* Ignore TV since it's buggy */
3613 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3614 	}
3615 }
3616 
3617 static irqreturn_t i965_irq_handler(int irq, void *arg)
3618 {
3619 	struct drm_device *dev = (struct drm_device *) arg;
3620 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3621 	u32 iir, new_iir;
3622 	u32 pipe_stats[I915_MAX_PIPES];
3623 	unsigned long irqflags;
3624 	int irq_received;
3625 	int ret = IRQ_NONE, pipe;
3626 	u32 flip_mask =
3627 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3628 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3629 
3630 	atomic_inc(&dev_priv->irq_received);
3631 
3632 	iir = I915_READ(IIR);
3633 
3634 	for (;;) {
3635 		bool blc_event = false;
3636 
3637 		irq_received = (iir & ~flip_mask) != 0;
3638 
3639 		/* Can't rely on pipestat interrupt bit in iir as it might
3640 		 * have been cleared after the pipestat interrupt was received.
3641 		 * It doesn't set the bit in iir again, but it still produces
3642 		 * interrupts (for non-MSI).
3643 		 */
3644 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3645 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3646 			i915_handle_error(dev, false);
3647 
3648 		for_each_pipe(pipe) {
3649 			int reg = PIPESTAT(pipe);
3650 			pipe_stats[pipe] = I915_READ(reg);
3651 
3652 			/*
3653 			 * Clear the PIPE*STAT regs before the IIR
3654 			 */
3655 			if (pipe_stats[pipe] & 0x8000ffff) {
3656 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3657 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3658 							 pipe_name(pipe));
3659 				I915_WRITE(reg, pipe_stats[pipe]);
3660 				irq_received = 1;
3661 			}
3662 		}
3663 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3664 
3665 		if (!irq_received)
3666 			break;
3667 
3668 		ret = IRQ_HANDLED;
3669 
3670 		/* Consume port.  Then clear IIR or we'll miss events */
3671 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3672 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3673 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3674 								  HOTPLUG_INT_STATUS_G4X :
3675 								  HOTPLUG_INT_STATUS_I915);
3676 
3677 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3678 				  hotplug_status);
3679 
3680 			intel_hpd_irq_handler(dev, hotplug_trigger,
3681 					      IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3682 
3683 			if (IS_G4X(dev) &&
3684 			    (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3685 				dp_aux_irq_handler(dev);
3686 
3687 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3688 			I915_READ(PORT_HOTPLUG_STAT);
3689 		}
3690 
3691 		I915_WRITE(IIR, iir & ~flip_mask);
3692 		new_iir = I915_READ(IIR); /* Flush posted writes */
3693 
3694 		if (iir & I915_USER_INTERRUPT)
3695 			notify_ring(dev, &dev_priv->ring[RCS]);
3696 		if (iir & I915_BSD_USER_INTERRUPT)
3697 			notify_ring(dev, &dev_priv->ring[VCS]);
3698 
3699 		for_each_pipe(pipe) {
3700 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3701 			    i915_handle_vblank(dev, pipe, pipe, iir))
3702 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3703 
3704 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3705 				blc_event = true;
3706 
3707 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3708 				i9xx_pipe_crc_irq_handler(dev, pipe);
3709 		}
3710 
3711 
3712 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3713 			intel_opregion_asle_intr(dev);
3714 
3715 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3716 			gmbus_irq_handler(dev);
3717 
3718 		/* With MSI, interrupts are only generated when iir
3719 		 * transitions from zero to nonzero.  If another bit got
3720 		 * set while we were handling the existing iir bits, then
3721 		 * we would never get another interrupt.
3722 		 *
3723 		 * This is fine on non-MSI as well, as if we hit this path
3724 		 * we avoid exiting the interrupt handler only to generate
3725 		 * another one.
3726 		 *
3727 		 * Note that for MSI this could cause a stray interrupt report
3728 		 * if an interrupt landed in the time between writing IIR and
3729 		 * the posting read.  This should be rare enough to never
3730 		 * trigger the 99% of 100,000 interrupts test for disabling
3731 		 * stray interrupts.
3732 		 */
3733 		iir = new_iir;
3734 	}
3735 
3736 	i915_update_dri1_breadcrumb(dev);
3737 
3738 	return ret;
3739 }
3740 
3741 static void i965_irq_uninstall(struct drm_device * dev)
3742 {
3743 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3744 	int pipe;
3745 
3746 	if (!dev_priv)
3747 		return;
3748 
3749 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3750 
3751 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3752 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3753 
3754 	I915_WRITE(HWSTAM, 0xffffffff);
3755 	for_each_pipe(pipe)
3756 		I915_WRITE(PIPESTAT(pipe), 0);
3757 	I915_WRITE(IMR, 0xffffffff);
3758 	I915_WRITE(IER, 0x0);
3759 
3760 	for_each_pipe(pipe)
3761 		I915_WRITE(PIPESTAT(pipe),
3762 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3763 	I915_WRITE(IIR, I915_READ(IIR));
3764 }
3765 
3766 static void i915_reenable_hotplug_timer_func(unsigned long data)
3767 {
3768 	drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3769 	struct drm_device *dev = dev_priv->dev;
3770 	struct drm_mode_config *mode_config = &dev->mode_config;
3771 	unsigned long irqflags;
3772 	int i;
3773 
3774 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3775 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3776 		struct drm_connector *connector;
3777 
3778 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3779 			continue;
3780 
3781 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3782 
3783 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3784 			struct intel_connector *intel_connector = to_intel_connector(connector);
3785 
3786 			if (intel_connector->encoder->hpd_pin == i) {
3787 				if (connector->polled != intel_connector->polled)
3788 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3789 							 drm_get_connector_name(connector));
3790 				connector->polled = intel_connector->polled;
3791 				if (!connector->polled)
3792 					connector->polled = DRM_CONNECTOR_POLL_HPD;
3793 			}
3794 		}
3795 	}
3796 	if (dev_priv->display.hpd_irq_setup)
3797 		dev_priv->display.hpd_irq_setup(dev);
3798 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3799 }
3800 
3801 void intel_irq_init(struct drm_device *dev)
3802 {
3803 	struct drm_i915_private *dev_priv = dev->dev_private;
3804 
3805 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3806 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3807 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3808 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3809 
3810 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3811 		    i915_hangcheck_elapsed,
3812 		    (unsigned long) dev);
3813 	setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3814 		    (unsigned long) dev_priv);
3815 
3816 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3817 
3818 	if (IS_GEN2(dev)) {
3819 		dev->max_vblank_count = 0;
3820 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3821 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3822 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3823 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3824 	} else {
3825 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
3826 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3827 	}
3828 
3829 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3830 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3831 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3832 	}
3833 
3834 	if (IS_VALLEYVIEW(dev)) {
3835 		dev->driver->irq_handler = valleyview_irq_handler;
3836 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
3837 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
3838 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
3839 		dev->driver->enable_vblank = valleyview_enable_vblank;
3840 		dev->driver->disable_vblank = valleyview_disable_vblank;
3841 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3842 	} else if (IS_GEN8(dev)) {
3843 		dev->driver->irq_handler = gen8_irq_handler;
3844 		dev->driver->irq_preinstall = gen8_irq_preinstall;
3845 		dev->driver->irq_postinstall = gen8_irq_postinstall;
3846 		dev->driver->irq_uninstall = gen8_irq_uninstall;
3847 		dev->driver->enable_vblank = gen8_enable_vblank;
3848 		dev->driver->disable_vblank = gen8_disable_vblank;
3849 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3850 	} else if (HAS_PCH_SPLIT(dev)) {
3851 		dev->driver->irq_handler = ironlake_irq_handler;
3852 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
3853 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
3854 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
3855 		dev->driver->enable_vblank = ironlake_enable_vblank;
3856 		dev->driver->disable_vblank = ironlake_disable_vblank;
3857 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3858 	} else {
3859 		if (INTEL_INFO(dev)->gen == 2) {
3860 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
3861 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
3862 			dev->driver->irq_handler = i8xx_irq_handler;
3863 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
3864 		} else if (INTEL_INFO(dev)->gen == 3) {
3865 			dev->driver->irq_preinstall = i915_irq_preinstall;
3866 			dev->driver->irq_postinstall = i915_irq_postinstall;
3867 			dev->driver->irq_uninstall = i915_irq_uninstall;
3868 			dev->driver->irq_handler = i915_irq_handler;
3869 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3870 		} else {
3871 			dev->driver->irq_preinstall = i965_irq_preinstall;
3872 			dev->driver->irq_postinstall = i965_irq_postinstall;
3873 			dev->driver->irq_uninstall = i965_irq_uninstall;
3874 			dev->driver->irq_handler = i965_irq_handler;
3875 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3876 		}
3877 		dev->driver->enable_vblank = i915_enable_vblank;
3878 		dev->driver->disable_vblank = i915_disable_vblank;
3879 	}
3880 }
3881 
3882 void intel_hpd_init(struct drm_device *dev)
3883 {
3884 	struct drm_i915_private *dev_priv = dev->dev_private;
3885 	struct drm_mode_config *mode_config = &dev->mode_config;
3886 	struct drm_connector *connector;
3887 	unsigned long irqflags;
3888 	int i;
3889 
3890 	for (i = 1; i < HPD_NUM_PINS; i++) {
3891 		dev_priv->hpd_stats[i].hpd_cnt = 0;
3892 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3893 	}
3894 	list_for_each_entry(connector, &mode_config->connector_list, head) {
3895 		struct intel_connector *intel_connector = to_intel_connector(connector);
3896 		connector->polled = intel_connector->polled;
3897 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3898 			connector->polled = DRM_CONNECTOR_POLL_HPD;
3899 	}
3900 
3901 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3902 	 * just to make the assert_spin_locked checks happy. */
3903 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3904 	if (dev_priv->display.hpd_irq_setup)
3905 		dev_priv->display.hpd_irq_setup(dev);
3906 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3907 }
3908 
3909 /* Disable interrupts so we can allow Package C8+. */
3910 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3911 {
3912 	struct drm_i915_private *dev_priv = dev->dev_private;
3913 	unsigned long irqflags;
3914 
3915 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3916 
3917 	dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3918 	dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3919 	dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3920 	dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3921 	dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3922 
3923 	ironlake_disable_display_irq(dev_priv, 0xffffffff);
3924 	ibx_disable_display_interrupt(dev_priv, 0xffffffff);
3925 	ilk_disable_gt_irq(dev_priv, 0xffffffff);
3926 	snb_disable_pm_irq(dev_priv, 0xffffffff);
3927 
3928 	dev_priv->pc8.irqs_disabled = true;
3929 
3930 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3931 }
3932 
3933 /* Restore interrupts so we can recover from Package C8+. */
3934 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3935 {
3936 	struct drm_i915_private *dev_priv = dev->dev_private;
3937 	unsigned long irqflags;
3938 	uint32_t val;
3939 
3940 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3941 
3942 	val = I915_READ(DEIMR);
3943 	WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
3944 
3945 	val = I915_READ(SDEIMR);
3946 	WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
3947 
3948 	val = I915_READ(GTIMR);
3949 	WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
3950 
3951 	val = I915_READ(GEN6_PMIMR);
3952 	WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
3953 
3954 	dev_priv->pc8.irqs_disabled = false;
3955 
3956 	ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3957 	ibx_enable_display_interrupt(dev_priv, ~dev_priv->pc8.regsave.sdeimr);
3958 	ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3959 	snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3960 	I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3961 
3962 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3963 }
3964