xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision a2cce7a9)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55 
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63 
64 static const u32 hpd_spt[HPD_NUM_PINS] = {
65 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
66 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
67 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
68 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
69 };
70 
71 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
72 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
73 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
74 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
75 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
76 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
77 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
78 };
79 
80 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
81 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
82 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
83 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
84 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
85 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
86 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
87 };
88 
89 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
90 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
91 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
92 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
93 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
94 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
95 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
96 };
97 
98 /* BXT hpd list */
99 static const u32 hpd_bxt[HPD_NUM_PINS] = {
100 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
101 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
102 };
103 
104 /* IIR can theoretically queue up two events. Be paranoid. */
105 #define GEN8_IRQ_RESET_NDX(type, which) do { \
106 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
107 	POSTING_READ(GEN8_##type##_IMR(which)); \
108 	I915_WRITE(GEN8_##type##_IER(which), 0); \
109 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
110 	POSTING_READ(GEN8_##type##_IIR(which)); \
111 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
112 	POSTING_READ(GEN8_##type##_IIR(which)); \
113 } while (0)
114 
115 #define GEN5_IRQ_RESET(type) do { \
116 	I915_WRITE(type##IMR, 0xffffffff); \
117 	POSTING_READ(type##IMR); \
118 	I915_WRITE(type##IER, 0); \
119 	I915_WRITE(type##IIR, 0xffffffff); \
120 	POSTING_READ(type##IIR); \
121 	I915_WRITE(type##IIR, 0xffffffff); \
122 	POSTING_READ(type##IIR); \
123 } while (0)
124 
125 /*
126  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
127  */
128 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
129 	u32 val = I915_READ(reg); \
130 	if (val) { \
131 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
132 		     (reg), val); \
133 		I915_WRITE((reg), 0xffffffff); \
134 		POSTING_READ(reg); \
135 		I915_WRITE((reg), 0xffffffff); \
136 		POSTING_READ(reg); \
137 	} \
138 } while (0)
139 
140 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
141 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
142 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
143 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
144 	POSTING_READ(GEN8_##type##_IMR(which)); \
145 } while (0)
146 
147 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
148 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
149 	I915_WRITE(type##IER, (ier_val)); \
150 	I915_WRITE(type##IMR, (imr_val)); \
151 	POSTING_READ(type##IMR); \
152 } while (0)
153 
154 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
155 
156 /* For display hotplug interrupt */
157 void
158 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
159 {
160 	assert_spin_locked(&dev_priv->irq_lock);
161 
162 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
163 		return;
164 
165 	if ((dev_priv->irq_mask & mask) != 0) {
166 		dev_priv->irq_mask &= ~mask;
167 		I915_WRITE(DEIMR, dev_priv->irq_mask);
168 		POSTING_READ(DEIMR);
169 	}
170 }
171 
172 void
173 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
174 {
175 	assert_spin_locked(&dev_priv->irq_lock);
176 
177 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
178 		return;
179 
180 	if ((dev_priv->irq_mask & mask) != mask) {
181 		dev_priv->irq_mask |= mask;
182 		I915_WRITE(DEIMR, dev_priv->irq_mask);
183 		POSTING_READ(DEIMR);
184 	}
185 }
186 
187 /**
188  * ilk_update_gt_irq - update GTIMR
189  * @dev_priv: driver private
190  * @interrupt_mask: mask of interrupt bits to update
191  * @enabled_irq_mask: mask of interrupt bits to enable
192  */
193 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
194 			      uint32_t interrupt_mask,
195 			      uint32_t enabled_irq_mask)
196 {
197 	assert_spin_locked(&dev_priv->irq_lock);
198 
199 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
200 
201 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
202 		return;
203 
204 	dev_priv->gt_irq_mask &= ~interrupt_mask;
205 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
206 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
207 	POSTING_READ(GTIMR);
208 }
209 
210 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
211 {
212 	ilk_update_gt_irq(dev_priv, mask, mask);
213 }
214 
215 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
216 {
217 	ilk_update_gt_irq(dev_priv, mask, 0);
218 }
219 
220 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
221 {
222 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
223 }
224 
225 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
226 {
227 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
228 }
229 
230 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
231 {
232 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
233 }
234 
235 /**
236   * snb_update_pm_irq - update GEN6_PMIMR
237   * @dev_priv: driver private
238   * @interrupt_mask: mask of interrupt bits to update
239   * @enabled_irq_mask: mask of interrupt bits to enable
240   */
241 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
242 			      uint32_t interrupt_mask,
243 			      uint32_t enabled_irq_mask)
244 {
245 	uint32_t new_val;
246 
247 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
248 
249 	assert_spin_locked(&dev_priv->irq_lock);
250 
251 	new_val = dev_priv->pm_irq_mask;
252 	new_val &= ~interrupt_mask;
253 	new_val |= (~enabled_irq_mask & interrupt_mask);
254 
255 	if (new_val != dev_priv->pm_irq_mask) {
256 		dev_priv->pm_irq_mask = new_val;
257 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
258 		POSTING_READ(gen6_pm_imr(dev_priv));
259 	}
260 }
261 
262 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
263 {
264 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
265 		return;
266 
267 	snb_update_pm_irq(dev_priv, mask, mask);
268 }
269 
270 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
271 				  uint32_t mask)
272 {
273 	snb_update_pm_irq(dev_priv, mask, 0);
274 }
275 
276 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
279 		return;
280 
281 	__gen6_disable_pm_irq(dev_priv, mask);
282 }
283 
284 void gen6_reset_rps_interrupts(struct drm_device *dev)
285 {
286 	struct drm_i915_private *dev_priv = dev->dev_private;
287 	uint32_t reg = gen6_pm_iir(dev_priv);
288 
289 	spin_lock_irq(&dev_priv->irq_lock);
290 	I915_WRITE(reg, dev_priv->pm_rps_events);
291 	I915_WRITE(reg, dev_priv->pm_rps_events);
292 	POSTING_READ(reg);
293 	dev_priv->rps.pm_iir = 0;
294 	spin_unlock_irq(&dev_priv->irq_lock);
295 }
296 
297 void gen6_enable_rps_interrupts(struct drm_device *dev)
298 {
299 	struct drm_i915_private *dev_priv = dev->dev_private;
300 
301 	spin_lock_irq(&dev_priv->irq_lock);
302 
303 	WARN_ON(dev_priv->rps.pm_iir);
304 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
305 	dev_priv->rps.interrupts_enabled = true;
306 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
307 				dev_priv->pm_rps_events);
308 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
309 
310 	spin_unlock_irq(&dev_priv->irq_lock);
311 }
312 
313 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
314 {
315 	/*
316 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
317 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
318 	 *
319 	 * TODO: verify if this can be reproduced on VLV,CHV.
320 	 */
321 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
322 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
323 
324 	if (INTEL_INFO(dev_priv)->gen >= 8)
325 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
326 
327 	return mask;
328 }
329 
330 void gen6_disable_rps_interrupts(struct drm_device *dev)
331 {
332 	struct drm_i915_private *dev_priv = dev->dev_private;
333 
334 	spin_lock_irq(&dev_priv->irq_lock);
335 	dev_priv->rps.interrupts_enabled = false;
336 	spin_unlock_irq(&dev_priv->irq_lock);
337 
338 	cancel_work_sync(&dev_priv->rps.work);
339 
340 	spin_lock_irq(&dev_priv->irq_lock);
341 
342 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
343 
344 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
345 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
346 				~dev_priv->pm_rps_events);
347 
348 	spin_unlock_irq(&dev_priv->irq_lock);
349 
350 	synchronize_irq(dev->irq);
351 }
352 
353 /**
354  * ibx_display_interrupt_update - update SDEIMR
355  * @dev_priv: driver private
356  * @interrupt_mask: mask of interrupt bits to update
357  * @enabled_irq_mask: mask of interrupt bits to enable
358  */
359 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
360 				  uint32_t interrupt_mask,
361 				  uint32_t enabled_irq_mask)
362 {
363 	uint32_t sdeimr = I915_READ(SDEIMR);
364 	sdeimr &= ~interrupt_mask;
365 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
366 
367 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
368 
369 	assert_spin_locked(&dev_priv->irq_lock);
370 
371 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
372 		return;
373 
374 	I915_WRITE(SDEIMR, sdeimr);
375 	POSTING_READ(SDEIMR);
376 }
377 
378 static void
379 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
380 		       u32 enable_mask, u32 status_mask)
381 {
382 	u32 reg = PIPESTAT(pipe);
383 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
384 
385 	assert_spin_locked(&dev_priv->irq_lock);
386 	WARN_ON(!intel_irqs_enabled(dev_priv));
387 
388 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
389 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
390 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
391 		      pipe_name(pipe), enable_mask, status_mask))
392 		return;
393 
394 	if ((pipestat & enable_mask) == enable_mask)
395 		return;
396 
397 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
398 
399 	/* Enable the interrupt, clear any pending status */
400 	pipestat |= enable_mask | status_mask;
401 	I915_WRITE(reg, pipestat);
402 	POSTING_READ(reg);
403 }
404 
405 static void
406 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
407 		        u32 enable_mask, u32 status_mask)
408 {
409 	u32 reg = PIPESTAT(pipe);
410 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
411 
412 	assert_spin_locked(&dev_priv->irq_lock);
413 	WARN_ON(!intel_irqs_enabled(dev_priv));
414 
415 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
416 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
417 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
418 		      pipe_name(pipe), enable_mask, status_mask))
419 		return;
420 
421 	if ((pipestat & enable_mask) == 0)
422 		return;
423 
424 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
425 
426 	pipestat &= ~enable_mask;
427 	I915_WRITE(reg, pipestat);
428 	POSTING_READ(reg);
429 }
430 
431 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
432 {
433 	u32 enable_mask = status_mask << 16;
434 
435 	/*
436 	 * On pipe A we don't support the PSR interrupt yet,
437 	 * on pipe B and C the same bit MBZ.
438 	 */
439 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
440 		return 0;
441 	/*
442 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
443 	 * A the same bit is for perf counters which we don't use either.
444 	 */
445 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
446 		return 0;
447 
448 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
450 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
451 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455 
456 	return enable_mask;
457 }
458 
459 void
460 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
461 		     u32 status_mask)
462 {
463 	u32 enable_mask;
464 
465 	if (IS_VALLEYVIEW(dev_priv->dev))
466 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
467 							   status_mask);
468 	else
469 		enable_mask = status_mask << 16;
470 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
471 }
472 
473 void
474 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
475 		      u32 status_mask)
476 {
477 	u32 enable_mask;
478 
479 	if (IS_VALLEYVIEW(dev_priv->dev))
480 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
481 							   status_mask);
482 	else
483 		enable_mask = status_mask << 16;
484 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
485 }
486 
487 /**
488  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
489  */
490 static void i915_enable_asle_pipestat(struct drm_device *dev)
491 {
492 	struct drm_i915_private *dev_priv = dev->dev_private;
493 
494 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
495 		return;
496 
497 	spin_lock_irq(&dev_priv->irq_lock);
498 
499 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
500 	if (INTEL_INFO(dev)->gen >= 4)
501 		i915_enable_pipestat(dev_priv, PIPE_A,
502 				     PIPE_LEGACY_BLC_EVENT_STATUS);
503 
504 	spin_unlock_irq(&dev_priv->irq_lock);
505 }
506 
507 /*
508  * This timing diagram depicts the video signal in and
509  * around the vertical blanking period.
510  *
511  * Assumptions about the fictitious mode used in this example:
512  *  vblank_start >= 3
513  *  vsync_start = vblank_start + 1
514  *  vsync_end = vblank_start + 2
515  *  vtotal = vblank_start + 3
516  *
517  *           start of vblank:
518  *           latch double buffered registers
519  *           increment frame counter (ctg+)
520  *           generate start of vblank interrupt (gen4+)
521  *           |
522  *           |          frame start:
523  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
524  *           |          may be shifted forward 1-3 extra lines via PIPECONF
525  *           |          |
526  *           |          |  start of vsync:
527  *           |          |  generate vsync interrupt
528  *           |          |  |
529  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
530  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
531  * ----va---> <-----------------vb--------------------> <--------va-------------
532  *       |          |       <----vs----->                     |
533  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
534  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
535  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
536  *       |          |                                         |
537  *       last visible pixel                                   first visible pixel
538  *                  |                                         increment frame counter (gen3/4)
539  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
540  *
541  * x  = horizontal active
542  * _  = horizontal blanking
543  * hs = horizontal sync
544  * va = vertical active
545  * vb = vertical blanking
546  * vs = vertical sync
547  * vbs = vblank_start (number)
548  *
549  * Summary:
550  * - most events happen at the start of horizontal sync
551  * - frame start happens at the start of horizontal blank, 1-4 lines
552  *   (depending on PIPECONF settings) after the start of vblank
553  * - gen3/4 pixel and frame counter are synchronized with the start
554  *   of horizontal active on the first line of vertical active
555  */
556 
557 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559 	/* Gen2 doesn't have a hardware frame counter */
560 	return 0;
561 }
562 
563 /* Called from drm generic code, passed a 'crtc', which
564  * we use as a pipe index
565  */
566 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
567 {
568 	struct drm_i915_private *dev_priv = dev->dev_private;
569 	unsigned long high_frame;
570 	unsigned long low_frame;
571 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
572 	struct intel_crtc *intel_crtc =
573 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
574 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
575 
576 	htotal = mode->crtc_htotal;
577 	hsync_start = mode->crtc_hsync_start;
578 	vbl_start = mode->crtc_vblank_start;
579 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
580 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
581 
582 	/* Convert to pixel count */
583 	vbl_start *= htotal;
584 
585 	/* Start of vblank event occurs at start of hsync */
586 	vbl_start -= htotal - hsync_start;
587 
588 	high_frame = PIPEFRAME(pipe);
589 	low_frame = PIPEFRAMEPIXEL(pipe);
590 
591 	/*
592 	 * High & low register fields aren't synchronized, so make sure
593 	 * we get a low value that's stable across two reads of the high
594 	 * register.
595 	 */
596 	do {
597 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
598 		low   = I915_READ(low_frame);
599 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
600 	} while (high1 != high2);
601 
602 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
603 	pixel = low & PIPE_PIXEL_MASK;
604 	low >>= PIPE_FRAME_LOW_SHIFT;
605 
606 	/*
607 	 * The frame counter increments at beginning of active.
608 	 * Cook up a vblank counter by also checking the pixel
609 	 * counter against vblank start.
610 	 */
611 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
612 }
613 
614 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
615 {
616 	struct drm_i915_private *dev_priv = dev->dev_private;
617 	int reg = PIPE_FRMCOUNT_GM45(pipe);
618 
619 	return I915_READ(reg);
620 }
621 
622 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
623 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
624 
625 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
626 {
627 	struct drm_device *dev = crtc->base.dev;
628 	struct drm_i915_private *dev_priv = dev->dev_private;
629 	const struct drm_display_mode *mode = &crtc->base.hwmode;
630 	enum pipe pipe = crtc->pipe;
631 	int position, vtotal;
632 
633 	vtotal = mode->crtc_vtotal;
634 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
635 		vtotal /= 2;
636 
637 	if (IS_GEN2(dev))
638 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
639 	else
640 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
641 
642 	/*
643 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
644 	 * read it just before the start of vblank.  So try it again
645 	 * so we don't accidentally end up spanning a vblank frame
646 	 * increment, causing the pipe_update_end() code to squak at us.
647 	 *
648 	 * The nature of this problem means we can't simply check the ISR
649 	 * bit and return the vblank start value; nor can we use the scanline
650 	 * debug register in the transcoder as it appears to have the same
651 	 * problem.  We may need to extend this to include other platforms,
652 	 * but so far testing only shows the problem on HSW.
653 	 */
654 	if (IS_HASWELL(dev) && !position) {
655 		int i, temp;
656 
657 		for (i = 0; i < 100; i++) {
658 			udelay(1);
659 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
660 				DSL_LINEMASK_GEN3;
661 			if (temp != position) {
662 				position = temp;
663 				break;
664 			}
665 		}
666 	}
667 
668 	/*
669 	 * See update_scanline_offset() for the details on the
670 	 * scanline_offset adjustment.
671 	 */
672 	return (position + crtc->scanline_offset) % vtotal;
673 }
674 
675 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
676 				    unsigned int flags, int *vpos, int *hpos,
677 				    ktime_t *stime, ktime_t *etime)
678 {
679 	struct drm_i915_private *dev_priv = dev->dev_private;
680 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
681 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
682 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
683 	int position;
684 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
685 	bool in_vbl = true;
686 	int ret = 0;
687 	unsigned long irqflags;
688 
689 	if (WARN_ON(!mode->crtc_clock)) {
690 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
691 				 "pipe %c\n", pipe_name(pipe));
692 		return 0;
693 	}
694 
695 	htotal = mode->crtc_htotal;
696 	hsync_start = mode->crtc_hsync_start;
697 	vtotal = mode->crtc_vtotal;
698 	vbl_start = mode->crtc_vblank_start;
699 	vbl_end = mode->crtc_vblank_end;
700 
701 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
702 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
703 		vbl_end /= 2;
704 		vtotal /= 2;
705 	}
706 
707 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
708 
709 	/*
710 	 * Lock uncore.lock, as we will do multiple timing critical raw
711 	 * register reads, potentially with preemption disabled, so the
712 	 * following code must not block on uncore.lock.
713 	 */
714 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
715 
716 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
717 
718 	/* Get optional system timestamp before query. */
719 	if (stime)
720 		*stime = ktime_get();
721 
722 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
723 		/* No obvious pixelcount register. Only query vertical
724 		 * scanout position from Display scan line register.
725 		 */
726 		position = __intel_get_crtc_scanline(intel_crtc);
727 	} else {
728 		/* Have access to pixelcount since start of frame.
729 		 * We can split this into vertical and horizontal
730 		 * scanout position.
731 		 */
732 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
733 
734 		/* convert to pixel counts */
735 		vbl_start *= htotal;
736 		vbl_end *= htotal;
737 		vtotal *= htotal;
738 
739 		/*
740 		 * In interlaced modes, the pixel counter counts all pixels,
741 		 * so one field will have htotal more pixels. In order to avoid
742 		 * the reported position from jumping backwards when the pixel
743 		 * counter is beyond the length of the shorter field, just
744 		 * clamp the position the length of the shorter field. This
745 		 * matches how the scanline counter based position works since
746 		 * the scanline counter doesn't count the two half lines.
747 		 */
748 		if (position >= vtotal)
749 			position = vtotal - 1;
750 
751 		/*
752 		 * Start of vblank interrupt is triggered at start of hsync,
753 		 * just prior to the first active line of vblank. However we
754 		 * consider lines to start at the leading edge of horizontal
755 		 * active. So, should we get here before we've crossed into
756 		 * the horizontal active of the first line in vblank, we would
757 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
758 		 * always add htotal-hsync_start to the current pixel position.
759 		 */
760 		position = (position + htotal - hsync_start) % vtotal;
761 	}
762 
763 	/* Get optional system timestamp after query. */
764 	if (etime)
765 		*etime = ktime_get();
766 
767 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
768 
769 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770 
771 	in_vbl = position >= vbl_start && position < vbl_end;
772 
773 	/*
774 	 * While in vblank, position will be negative
775 	 * counting up towards 0 at vbl_end. And outside
776 	 * vblank, position will be positive counting
777 	 * up since vbl_end.
778 	 */
779 	if (position >= vbl_start)
780 		position -= vbl_end;
781 	else
782 		position += vtotal - vbl_end;
783 
784 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785 		*vpos = position;
786 		*hpos = 0;
787 	} else {
788 		*vpos = position / htotal;
789 		*hpos = position - (*vpos * htotal);
790 	}
791 
792 	/* In vblank? */
793 	if (in_vbl)
794 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
795 
796 	return ret;
797 }
798 
799 int intel_get_crtc_scanline(struct intel_crtc *crtc)
800 {
801 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
802 	unsigned long irqflags;
803 	int position;
804 
805 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
806 	position = __intel_get_crtc_scanline(crtc);
807 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
808 
809 	return position;
810 }
811 
812 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
813 			      int *max_error,
814 			      struct timeval *vblank_time,
815 			      unsigned flags)
816 {
817 	struct drm_crtc *crtc;
818 
819 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
820 		DRM_ERROR("Invalid crtc %d\n", pipe);
821 		return -EINVAL;
822 	}
823 
824 	/* Get drm_crtc to timestamp: */
825 	crtc = intel_get_crtc_for_pipe(dev, pipe);
826 	if (crtc == NULL) {
827 		DRM_ERROR("Invalid crtc %d\n", pipe);
828 		return -EINVAL;
829 	}
830 
831 	if (!crtc->hwmode.crtc_clock) {
832 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
833 		return -EBUSY;
834 	}
835 
836 	/* Helper routine in DRM core does all the work: */
837 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
838 						     vblank_time, flags,
839 						     crtc,
840 						     &crtc->hwmode);
841 }
842 
843 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
844 {
845 	struct drm_i915_private *dev_priv = dev->dev_private;
846 	u32 busy_up, busy_down, max_avg, min_avg;
847 	u8 new_delay;
848 
849 	spin_lock(&mchdev_lock);
850 
851 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
852 
853 	new_delay = dev_priv->ips.cur_delay;
854 
855 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
856 	busy_up = I915_READ(RCPREVBSYTUPAVG);
857 	busy_down = I915_READ(RCPREVBSYTDNAVG);
858 	max_avg = I915_READ(RCBMAXAVG);
859 	min_avg = I915_READ(RCBMINAVG);
860 
861 	/* Handle RCS change request from hw */
862 	if (busy_up > max_avg) {
863 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
864 			new_delay = dev_priv->ips.cur_delay - 1;
865 		if (new_delay < dev_priv->ips.max_delay)
866 			new_delay = dev_priv->ips.max_delay;
867 	} else if (busy_down < min_avg) {
868 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
869 			new_delay = dev_priv->ips.cur_delay + 1;
870 		if (new_delay > dev_priv->ips.min_delay)
871 			new_delay = dev_priv->ips.min_delay;
872 	}
873 
874 	if (ironlake_set_drps(dev, new_delay))
875 		dev_priv->ips.cur_delay = new_delay;
876 
877 	spin_unlock(&mchdev_lock);
878 
879 	return;
880 }
881 
882 static void notify_ring(struct intel_engine_cs *ring)
883 {
884 	if (!intel_ring_initialized(ring))
885 		return;
886 
887 	trace_i915_gem_request_notify(ring);
888 
889 	wake_up_all(&ring->irq_queue);
890 }
891 
892 static void vlv_c0_read(struct drm_i915_private *dev_priv,
893 			struct intel_rps_ei *ei)
894 {
895 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
896 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
897 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
898 }
899 
900 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
901 			 const struct intel_rps_ei *old,
902 			 const struct intel_rps_ei *now,
903 			 int threshold)
904 {
905 	u64 time, c0;
906 
907 	if (old->cz_clock == 0)
908 		return false;
909 
910 	time = now->cz_clock - old->cz_clock;
911 	time *= threshold * dev_priv->mem_freq;
912 
913 	/* Workload can be split between render + media, e.g. SwapBuffers
914 	 * being blitted in X after being rendered in mesa. To account for
915 	 * this we need to combine both engines into our activity counter.
916 	 */
917 	c0 = now->render_c0 - old->render_c0;
918 	c0 += now->media_c0 - old->media_c0;
919 	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
920 
921 	return c0 >= time;
922 }
923 
924 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
925 {
926 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
927 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
928 }
929 
930 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
931 {
932 	struct intel_rps_ei now;
933 	u32 events = 0;
934 
935 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
936 		return 0;
937 
938 	vlv_c0_read(dev_priv, &now);
939 	if (now.cz_clock == 0)
940 		return 0;
941 
942 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
943 		if (!vlv_c0_above(dev_priv,
944 				  &dev_priv->rps.down_ei, &now,
945 				  dev_priv->rps.down_threshold))
946 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
947 		dev_priv->rps.down_ei = now;
948 	}
949 
950 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
951 		if (vlv_c0_above(dev_priv,
952 				 &dev_priv->rps.up_ei, &now,
953 				 dev_priv->rps.up_threshold))
954 			events |= GEN6_PM_RP_UP_THRESHOLD;
955 		dev_priv->rps.up_ei = now;
956 	}
957 
958 	return events;
959 }
960 
961 static bool any_waiters(struct drm_i915_private *dev_priv)
962 {
963 	struct intel_engine_cs *ring;
964 	int i;
965 
966 	for_each_ring(ring, dev_priv, i)
967 		if (ring->irq_refcount)
968 			return true;
969 
970 	return false;
971 }
972 
973 static void gen6_pm_rps_work(struct work_struct *work)
974 {
975 	struct drm_i915_private *dev_priv =
976 		container_of(work, struct drm_i915_private, rps.work);
977 	bool client_boost;
978 	int new_delay, adj, min, max;
979 	u32 pm_iir;
980 
981 	spin_lock_irq(&dev_priv->irq_lock);
982 	/* Speed up work cancelation during disabling rps interrupts. */
983 	if (!dev_priv->rps.interrupts_enabled) {
984 		spin_unlock_irq(&dev_priv->irq_lock);
985 		return;
986 	}
987 	pm_iir = dev_priv->rps.pm_iir;
988 	dev_priv->rps.pm_iir = 0;
989 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
990 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
991 	client_boost = dev_priv->rps.client_boost;
992 	dev_priv->rps.client_boost = false;
993 	spin_unlock_irq(&dev_priv->irq_lock);
994 
995 	/* Make sure we didn't queue anything we're not going to process. */
996 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
997 
998 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
999 		return;
1000 
1001 	mutex_lock(&dev_priv->rps.hw_lock);
1002 
1003 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1004 
1005 	adj = dev_priv->rps.last_adj;
1006 	new_delay = dev_priv->rps.cur_freq;
1007 	min = dev_priv->rps.min_freq_softlimit;
1008 	max = dev_priv->rps.max_freq_softlimit;
1009 
1010 	if (client_boost) {
1011 		new_delay = dev_priv->rps.max_freq_softlimit;
1012 		adj = 0;
1013 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1014 		if (adj > 0)
1015 			adj *= 2;
1016 		else /* CHV needs even encode values */
1017 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1018 		/*
1019 		 * For better performance, jump directly
1020 		 * to RPe if we're below it.
1021 		 */
1022 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1023 			new_delay = dev_priv->rps.efficient_freq;
1024 			adj = 0;
1025 		}
1026 	} else if (any_waiters(dev_priv)) {
1027 		adj = 0;
1028 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1029 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1030 			new_delay = dev_priv->rps.efficient_freq;
1031 		else
1032 			new_delay = dev_priv->rps.min_freq_softlimit;
1033 		adj = 0;
1034 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1035 		if (adj < 0)
1036 			adj *= 2;
1037 		else /* CHV needs even encode values */
1038 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1039 	} else { /* unknown event */
1040 		adj = 0;
1041 	}
1042 
1043 	dev_priv->rps.last_adj = adj;
1044 
1045 	/* sysfs frequency interfaces may have snuck in while servicing the
1046 	 * interrupt
1047 	 */
1048 	new_delay += adj;
1049 	new_delay = clamp_t(int, new_delay, min, max);
1050 
1051 	intel_set_rps(dev_priv->dev, new_delay);
1052 
1053 	mutex_unlock(&dev_priv->rps.hw_lock);
1054 }
1055 
1056 
1057 /**
1058  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1059  * occurred.
1060  * @work: workqueue struct
1061  *
1062  * Doesn't actually do anything except notify userspace. As a consequence of
1063  * this event, userspace should try to remap the bad rows since statistically
1064  * it is likely the same row is more likely to go bad again.
1065  */
1066 static void ivybridge_parity_work(struct work_struct *work)
1067 {
1068 	struct drm_i915_private *dev_priv =
1069 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1070 	u32 error_status, row, bank, subbank;
1071 	char *parity_event[6];
1072 	uint32_t misccpctl;
1073 	uint8_t slice = 0;
1074 
1075 	/* We must turn off DOP level clock gating to access the L3 registers.
1076 	 * In order to prevent a get/put style interface, acquire struct mutex
1077 	 * any time we access those registers.
1078 	 */
1079 	mutex_lock(&dev_priv->dev->struct_mutex);
1080 
1081 	/* If we've screwed up tracking, just let the interrupt fire again */
1082 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1083 		goto out;
1084 
1085 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1086 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1087 	POSTING_READ(GEN7_MISCCPCTL);
1088 
1089 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1090 		u32 reg;
1091 
1092 		slice--;
1093 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1094 			break;
1095 
1096 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1097 
1098 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1099 
1100 		error_status = I915_READ(reg);
1101 		row = GEN7_PARITY_ERROR_ROW(error_status);
1102 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1103 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1104 
1105 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1106 		POSTING_READ(reg);
1107 
1108 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1109 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1110 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1111 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1112 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1113 		parity_event[5] = NULL;
1114 
1115 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1116 				   KOBJ_CHANGE, parity_event);
1117 
1118 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1119 			  slice, row, bank, subbank);
1120 
1121 		kfree(parity_event[4]);
1122 		kfree(parity_event[3]);
1123 		kfree(parity_event[2]);
1124 		kfree(parity_event[1]);
1125 	}
1126 
1127 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1128 
1129 out:
1130 	WARN_ON(dev_priv->l3_parity.which_slice);
1131 	spin_lock_irq(&dev_priv->irq_lock);
1132 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1133 	spin_unlock_irq(&dev_priv->irq_lock);
1134 
1135 	mutex_unlock(&dev_priv->dev->struct_mutex);
1136 }
1137 
1138 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1139 {
1140 	struct drm_i915_private *dev_priv = dev->dev_private;
1141 
1142 	if (!HAS_L3_DPF(dev))
1143 		return;
1144 
1145 	spin_lock(&dev_priv->irq_lock);
1146 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1147 	spin_unlock(&dev_priv->irq_lock);
1148 
1149 	iir &= GT_PARITY_ERROR(dev);
1150 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1151 		dev_priv->l3_parity.which_slice |= 1 << 1;
1152 
1153 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1154 		dev_priv->l3_parity.which_slice |= 1 << 0;
1155 
1156 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1157 }
1158 
1159 static void ilk_gt_irq_handler(struct drm_device *dev,
1160 			       struct drm_i915_private *dev_priv,
1161 			       u32 gt_iir)
1162 {
1163 	if (gt_iir &
1164 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1165 		notify_ring(&dev_priv->ring[RCS]);
1166 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1167 		notify_ring(&dev_priv->ring[VCS]);
1168 }
1169 
1170 static void snb_gt_irq_handler(struct drm_device *dev,
1171 			       struct drm_i915_private *dev_priv,
1172 			       u32 gt_iir)
1173 {
1174 
1175 	if (gt_iir &
1176 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1177 		notify_ring(&dev_priv->ring[RCS]);
1178 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1179 		notify_ring(&dev_priv->ring[VCS]);
1180 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1181 		notify_ring(&dev_priv->ring[BCS]);
1182 
1183 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1184 		      GT_BSD_CS_ERROR_INTERRUPT |
1185 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1186 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1187 
1188 	if (gt_iir & GT_PARITY_ERROR(dev))
1189 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1190 }
1191 
1192 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1193 				       u32 master_ctl)
1194 {
1195 	irqreturn_t ret = IRQ_NONE;
1196 
1197 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1198 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1199 		if (tmp) {
1200 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1201 			ret = IRQ_HANDLED;
1202 
1203 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1204 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1205 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1206 				notify_ring(&dev_priv->ring[RCS]);
1207 
1208 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1209 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1210 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1211 				notify_ring(&dev_priv->ring[BCS]);
1212 		} else
1213 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1214 	}
1215 
1216 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1217 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1218 		if (tmp) {
1219 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1220 			ret = IRQ_HANDLED;
1221 
1222 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1223 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1224 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1225 				notify_ring(&dev_priv->ring[VCS]);
1226 
1227 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1228 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1229 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1230 				notify_ring(&dev_priv->ring[VCS2]);
1231 		} else
1232 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1233 	}
1234 
1235 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1236 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1237 		if (tmp) {
1238 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1239 			ret = IRQ_HANDLED;
1240 
1241 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1242 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1243 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1244 				notify_ring(&dev_priv->ring[VECS]);
1245 		} else
1246 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1247 	}
1248 
1249 	if (master_ctl & GEN8_GT_PM_IRQ) {
1250 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1251 		if (tmp & dev_priv->pm_rps_events) {
1252 			I915_WRITE_FW(GEN8_GT_IIR(2),
1253 				      tmp & dev_priv->pm_rps_events);
1254 			ret = IRQ_HANDLED;
1255 			gen6_rps_irq_handler(dev_priv, tmp);
1256 		} else
1257 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1258 	}
1259 
1260 	return ret;
1261 }
1262 
1263 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1264 {
1265 	switch (port) {
1266 	case PORT_A:
1267 		return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1268 	case PORT_B:
1269 		return val & PORTB_HOTPLUG_LONG_DETECT;
1270 	case PORT_C:
1271 		return val & PORTC_HOTPLUG_LONG_DETECT;
1272 	case PORT_D:
1273 		return val & PORTD_HOTPLUG_LONG_DETECT;
1274 	default:
1275 		return false;
1276 	}
1277 }
1278 
1279 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1280 {
1281 	switch (port) {
1282 	case PORT_B:
1283 		return val & PORTB_HOTPLUG_LONG_DETECT;
1284 	case PORT_C:
1285 		return val & PORTC_HOTPLUG_LONG_DETECT;
1286 	case PORT_D:
1287 		return val & PORTD_HOTPLUG_LONG_DETECT;
1288 	case PORT_E:
1289 		return val & PORTE_HOTPLUG_LONG_DETECT;
1290 	default:
1291 		return false;
1292 	}
1293 }
1294 
1295 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1296 {
1297 	switch (port) {
1298 	case PORT_B:
1299 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1300 	case PORT_C:
1301 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1302 	case PORT_D:
1303 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1304 	default:
1305 		return false;
1306 	}
1307 }
1308 
1309 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1310 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1311 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1312 			     const u32 hpd[HPD_NUM_PINS],
1313 			     bool long_pulse_detect(enum port port, u32 val))
1314 {
1315 	enum port port;
1316 	int i;
1317 
1318 	*pin_mask = 0;
1319 	*long_mask = 0;
1320 
1321 	for_each_hpd_pin(i) {
1322 		if ((hpd[i] & hotplug_trigger) == 0)
1323 			continue;
1324 
1325 		*pin_mask |= BIT(i);
1326 
1327 		if (!intel_hpd_pin_to_port(i, &port))
1328 			continue;
1329 
1330 		if (long_pulse_detect(port, dig_hotplug_reg))
1331 			*long_mask |= BIT(i);
1332 	}
1333 
1334 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1335 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1336 
1337 }
1338 
1339 static void gmbus_irq_handler(struct drm_device *dev)
1340 {
1341 	struct drm_i915_private *dev_priv = dev->dev_private;
1342 
1343 	wake_up_all(&dev_priv->gmbus_wait_queue);
1344 }
1345 
1346 static void dp_aux_irq_handler(struct drm_device *dev)
1347 {
1348 	struct drm_i915_private *dev_priv = dev->dev_private;
1349 
1350 	wake_up_all(&dev_priv->gmbus_wait_queue);
1351 }
1352 
1353 #if defined(CONFIG_DEBUG_FS)
1354 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1355 					 uint32_t crc0, uint32_t crc1,
1356 					 uint32_t crc2, uint32_t crc3,
1357 					 uint32_t crc4)
1358 {
1359 	struct drm_i915_private *dev_priv = dev->dev_private;
1360 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1361 	struct intel_pipe_crc_entry *entry;
1362 	int head, tail;
1363 
1364 	spin_lock(&pipe_crc->lock);
1365 
1366 	if (!pipe_crc->entries) {
1367 		spin_unlock(&pipe_crc->lock);
1368 		DRM_DEBUG_KMS("spurious interrupt\n");
1369 		return;
1370 	}
1371 
1372 	head = pipe_crc->head;
1373 	tail = pipe_crc->tail;
1374 
1375 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1376 		spin_unlock(&pipe_crc->lock);
1377 		DRM_ERROR("CRC buffer overflowing\n");
1378 		return;
1379 	}
1380 
1381 	entry = &pipe_crc->entries[head];
1382 
1383 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1384 	entry->crc[0] = crc0;
1385 	entry->crc[1] = crc1;
1386 	entry->crc[2] = crc2;
1387 	entry->crc[3] = crc3;
1388 	entry->crc[4] = crc4;
1389 
1390 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1391 	pipe_crc->head = head;
1392 
1393 	spin_unlock(&pipe_crc->lock);
1394 
1395 	wake_up_interruptible(&pipe_crc->wq);
1396 }
1397 #else
1398 static inline void
1399 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1400 			     uint32_t crc0, uint32_t crc1,
1401 			     uint32_t crc2, uint32_t crc3,
1402 			     uint32_t crc4) {}
1403 #endif
1404 
1405 
1406 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1407 {
1408 	struct drm_i915_private *dev_priv = dev->dev_private;
1409 
1410 	display_pipe_crc_irq_handler(dev, pipe,
1411 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1412 				     0, 0, 0, 0);
1413 }
1414 
1415 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1416 {
1417 	struct drm_i915_private *dev_priv = dev->dev_private;
1418 
1419 	display_pipe_crc_irq_handler(dev, pipe,
1420 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1421 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1422 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1423 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1424 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1425 }
1426 
1427 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1428 {
1429 	struct drm_i915_private *dev_priv = dev->dev_private;
1430 	uint32_t res1, res2;
1431 
1432 	if (INTEL_INFO(dev)->gen >= 3)
1433 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1434 	else
1435 		res1 = 0;
1436 
1437 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1438 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1439 	else
1440 		res2 = 0;
1441 
1442 	display_pipe_crc_irq_handler(dev, pipe,
1443 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1444 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1445 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1446 				     res1, res2);
1447 }
1448 
1449 /* The RPS events need forcewake, so we add them to a work queue and mask their
1450  * IMR bits until the work is done. Other interrupts can be processed without
1451  * the work queue. */
1452 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1453 {
1454 	if (pm_iir & dev_priv->pm_rps_events) {
1455 		spin_lock(&dev_priv->irq_lock);
1456 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1457 		if (dev_priv->rps.interrupts_enabled) {
1458 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1459 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1460 		}
1461 		spin_unlock(&dev_priv->irq_lock);
1462 	}
1463 
1464 	if (INTEL_INFO(dev_priv)->gen >= 8)
1465 		return;
1466 
1467 	if (HAS_VEBOX(dev_priv->dev)) {
1468 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1469 			notify_ring(&dev_priv->ring[VECS]);
1470 
1471 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1472 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1473 	}
1474 }
1475 
1476 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1477 {
1478 	if (!drm_handle_vblank(dev, pipe))
1479 		return false;
1480 
1481 	return true;
1482 }
1483 
1484 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1485 {
1486 	struct drm_i915_private *dev_priv = dev->dev_private;
1487 	u32 pipe_stats[I915_MAX_PIPES] = { };
1488 	int pipe;
1489 
1490 	spin_lock(&dev_priv->irq_lock);
1491 	for_each_pipe(dev_priv, pipe) {
1492 		int reg;
1493 		u32 mask, iir_bit = 0;
1494 
1495 		/*
1496 		 * PIPESTAT bits get signalled even when the interrupt is
1497 		 * disabled with the mask bits, and some of the status bits do
1498 		 * not generate interrupts at all (like the underrun bit). Hence
1499 		 * we need to be careful that we only handle what we want to
1500 		 * handle.
1501 		 */
1502 
1503 		/* fifo underruns are filterered in the underrun handler. */
1504 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1505 
1506 		switch (pipe) {
1507 		case PIPE_A:
1508 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1509 			break;
1510 		case PIPE_B:
1511 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1512 			break;
1513 		case PIPE_C:
1514 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1515 			break;
1516 		}
1517 		if (iir & iir_bit)
1518 			mask |= dev_priv->pipestat_irq_mask[pipe];
1519 
1520 		if (!mask)
1521 			continue;
1522 
1523 		reg = PIPESTAT(pipe);
1524 		mask |= PIPESTAT_INT_ENABLE_MASK;
1525 		pipe_stats[pipe] = I915_READ(reg) & mask;
1526 
1527 		/*
1528 		 * Clear the PIPE*STAT regs before the IIR
1529 		 */
1530 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1531 					PIPESTAT_INT_STATUS_MASK))
1532 			I915_WRITE(reg, pipe_stats[pipe]);
1533 	}
1534 	spin_unlock(&dev_priv->irq_lock);
1535 
1536 	for_each_pipe(dev_priv, pipe) {
1537 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1538 		    intel_pipe_handle_vblank(dev, pipe))
1539 			intel_check_page_flip(dev, pipe);
1540 
1541 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1542 			intel_prepare_page_flip(dev, pipe);
1543 			intel_finish_page_flip(dev, pipe);
1544 		}
1545 
1546 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1547 			i9xx_pipe_crc_irq_handler(dev, pipe);
1548 
1549 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1550 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1551 	}
1552 
1553 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1554 		gmbus_irq_handler(dev);
1555 }
1556 
1557 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1558 {
1559 	struct drm_i915_private *dev_priv = dev->dev_private;
1560 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1561 	u32 pin_mask, long_mask;
1562 
1563 	if (!hotplug_status)
1564 		return;
1565 
1566 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1567 	/*
1568 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1569 	 * may miss hotplug events.
1570 	 */
1571 	POSTING_READ(PORT_HOTPLUG_STAT);
1572 
1573 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1574 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1575 
1576 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1577 				   hotplug_trigger, hpd_status_g4x,
1578 				   i9xx_port_hotplug_long_detect);
1579 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1580 
1581 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1582 			dp_aux_irq_handler(dev);
1583 	} else {
1584 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1585 
1586 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1587 				   hotplug_trigger, hpd_status_i915,
1588 				   i9xx_port_hotplug_long_detect);
1589 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1590 	}
1591 }
1592 
1593 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1594 {
1595 	struct drm_device *dev = arg;
1596 	struct drm_i915_private *dev_priv = dev->dev_private;
1597 	u32 iir, gt_iir, pm_iir;
1598 	irqreturn_t ret = IRQ_NONE;
1599 
1600 	if (!intel_irqs_enabled(dev_priv))
1601 		return IRQ_NONE;
1602 
1603 	while (true) {
1604 		/* Find, clear, then process each source of interrupt */
1605 
1606 		gt_iir = I915_READ(GTIIR);
1607 		if (gt_iir)
1608 			I915_WRITE(GTIIR, gt_iir);
1609 
1610 		pm_iir = I915_READ(GEN6_PMIIR);
1611 		if (pm_iir)
1612 			I915_WRITE(GEN6_PMIIR, pm_iir);
1613 
1614 		iir = I915_READ(VLV_IIR);
1615 		if (iir) {
1616 			/* Consume port before clearing IIR or we'll miss events */
1617 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1618 				i9xx_hpd_irq_handler(dev);
1619 			I915_WRITE(VLV_IIR, iir);
1620 		}
1621 
1622 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1623 			goto out;
1624 
1625 		ret = IRQ_HANDLED;
1626 
1627 		if (gt_iir)
1628 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1629 		if (pm_iir)
1630 			gen6_rps_irq_handler(dev_priv, pm_iir);
1631 		/* Call regardless, as some status bits might not be
1632 		 * signalled in iir */
1633 		valleyview_pipestat_irq_handler(dev, iir);
1634 	}
1635 
1636 out:
1637 	return ret;
1638 }
1639 
1640 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1641 {
1642 	struct drm_device *dev = arg;
1643 	struct drm_i915_private *dev_priv = dev->dev_private;
1644 	u32 master_ctl, iir;
1645 	irqreturn_t ret = IRQ_NONE;
1646 
1647 	if (!intel_irqs_enabled(dev_priv))
1648 		return IRQ_NONE;
1649 
1650 	for (;;) {
1651 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1652 		iir = I915_READ(VLV_IIR);
1653 
1654 		if (master_ctl == 0 && iir == 0)
1655 			break;
1656 
1657 		ret = IRQ_HANDLED;
1658 
1659 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1660 
1661 		/* Find, clear, then process each source of interrupt */
1662 
1663 		if (iir) {
1664 			/* Consume port before clearing IIR or we'll miss events */
1665 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1666 				i9xx_hpd_irq_handler(dev);
1667 			I915_WRITE(VLV_IIR, iir);
1668 		}
1669 
1670 		gen8_gt_irq_handler(dev_priv, master_ctl);
1671 
1672 		/* Call regardless, as some status bits might not be
1673 		 * signalled in iir */
1674 		valleyview_pipestat_irq_handler(dev, iir);
1675 
1676 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1677 		POSTING_READ(GEN8_MASTER_IRQ);
1678 	}
1679 
1680 	return ret;
1681 }
1682 
1683 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1684 {
1685 	struct drm_i915_private *dev_priv = dev->dev_private;
1686 	int pipe;
1687 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1688 
1689 	if (hotplug_trigger) {
1690 		u32 dig_hotplug_reg, pin_mask, long_mask;
1691 
1692 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1693 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1694 
1695 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1696 				   dig_hotplug_reg, hpd_ibx,
1697 				   pch_port_hotplug_long_detect);
1698 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1699 	}
1700 
1701 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1702 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1703 			       SDE_AUDIO_POWER_SHIFT);
1704 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1705 				 port_name(port));
1706 	}
1707 
1708 	if (pch_iir & SDE_AUX_MASK)
1709 		dp_aux_irq_handler(dev);
1710 
1711 	if (pch_iir & SDE_GMBUS)
1712 		gmbus_irq_handler(dev);
1713 
1714 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1715 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1716 
1717 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1718 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1719 
1720 	if (pch_iir & SDE_POISON)
1721 		DRM_ERROR("PCH poison interrupt\n");
1722 
1723 	if (pch_iir & SDE_FDI_MASK)
1724 		for_each_pipe(dev_priv, pipe)
1725 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1726 					 pipe_name(pipe),
1727 					 I915_READ(FDI_RX_IIR(pipe)));
1728 
1729 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1730 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1731 
1732 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1733 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1734 
1735 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1736 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1737 
1738 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1739 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1740 }
1741 
1742 static void ivb_err_int_handler(struct drm_device *dev)
1743 {
1744 	struct drm_i915_private *dev_priv = dev->dev_private;
1745 	u32 err_int = I915_READ(GEN7_ERR_INT);
1746 	enum pipe pipe;
1747 
1748 	if (err_int & ERR_INT_POISON)
1749 		DRM_ERROR("Poison interrupt\n");
1750 
1751 	for_each_pipe(dev_priv, pipe) {
1752 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1753 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1754 
1755 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1756 			if (IS_IVYBRIDGE(dev))
1757 				ivb_pipe_crc_irq_handler(dev, pipe);
1758 			else
1759 				hsw_pipe_crc_irq_handler(dev, pipe);
1760 		}
1761 	}
1762 
1763 	I915_WRITE(GEN7_ERR_INT, err_int);
1764 }
1765 
1766 static void cpt_serr_int_handler(struct drm_device *dev)
1767 {
1768 	struct drm_i915_private *dev_priv = dev->dev_private;
1769 	u32 serr_int = I915_READ(SERR_INT);
1770 
1771 	if (serr_int & SERR_INT_POISON)
1772 		DRM_ERROR("PCH poison interrupt\n");
1773 
1774 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1775 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1776 
1777 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1778 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1779 
1780 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1781 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1782 
1783 	I915_WRITE(SERR_INT, serr_int);
1784 }
1785 
1786 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1787 {
1788 	struct drm_i915_private *dev_priv = dev->dev_private;
1789 	int pipe;
1790 	u32 hotplug_trigger;
1791 
1792 	if (HAS_PCH_SPT(dev))
1793 		hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
1794 	else
1795 		hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1796 
1797 	if (hotplug_trigger) {
1798 		u32 dig_hotplug_reg, pin_mask, long_mask;
1799 
1800 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1801 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1802 
1803 		if (HAS_PCH_SPT(dev)) {
1804 			intel_get_hpd_pins(&pin_mask, &long_mask,
1805 					   hotplug_trigger,
1806 					   dig_hotplug_reg, hpd_spt,
1807 					   pch_port_hotplug_long_detect);
1808 
1809 			/* detect PORTE HP event */
1810 			dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1811 			if (pch_port_hotplug_long_detect(PORT_E,
1812 							 dig_hotplug_reg))
1813 				long_mask |= 1 << HPD_PORT_E;
1814 		} else
1815 			intel_get_hpd_pins(&pin_mask, &long_mask,
1816 					   hotplug_trigger,
1817 					   dig_hotplug_reg, hpd_cpt,
1818 					   pch_port_hotplug_long_detect);
1819 
1820 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1821 	}
1822 
1823 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1824 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1825 			       SDE_AUDIO_POWER_SHIFT_CPT);
1826 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1827 				 port_name(port));
1828 	}
1829 
1830 	if (pch_iir & SDE_AUX_MASK_CPT)
1831 		dp_aux_irq_handler(dev);
1832 
1833 	if (pch_iir & SDE_GMBUS_CPT)
1834 		gmbus_irq_handler(dev);
1835 
1836 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1837 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1838 
1839 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1840 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1841 
1842 	if (pch_iir & SDE_FDI_MASK_CPT)
1843 		for_each_pipe(dev_priv, pipe)
1844 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1845 					 pipe_name(pipe),
1846 					 I915_READ(FDI_RX_IIR(pipe)));
1847 
1848 	if (pch_iir & SDE_ERROR_CPT)
1849 		cpt_serr_int_handler(dev);
1850 }
1851 
1852 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1853 {
1854 	struct drm_i915_private *dev_priv = dev->dev_private;
1855 	enum pipe pipe;
1856 
1857 	if (de_iir & DE_AUX_CHANNEL_A)
1858 		dp_aux_irq_handler(dev);
1859 
1860 	if (de_iir & DE_GSE)
1861 		intel_opregion_asle_intr(dev);
1862 
1863 	if (de_iir & DE_POISON)
1864 		DRM_ERROR("Poison interrupt\n");
1865 
1866 	for_each_pipe(dev_priv, pipe) {
1867 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
1868 		    intel_pipe_handle_vblank(dev, pipe))
1869 			intel_check_page_flip(dev, pipe);
1870 
1871 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1872 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1873 
1874 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1875 			i9xx_pipe_crc_irq_handler(dev, pipe);
1876 
1877 		/* plane/pipes map 1:1 on ilk+ */
1878 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1879 			intel_prepare_page_flip(dev, pipe);
1880 			intel_finish_page_flip_plane(dev, pipe);
1881 		}
1882 	}
1883 
1884 	/* check event from PCH */
1885 	if (de_iir & DE_PCH_EVENT) {
1886 		u32 pch_iir = I915_READ(SDEIIR);
1887 
1888 		if (HAS_PCH_CPT(dev))
1889 			cpt_irq_handler(dev, pch_iir);
1890 		else
1891 			ibx_irq_handler(dev, pch_iir);
1892 
1893 		/* should clear PCH hotplug event before clear CPU irq */
1894 		I915_WRITE(SDEIIR, pch_iir);
1895 	}
1896 
1897 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1898 		ironlake_rps_change_irq_handler(dev);
1899 }
1900 
1901 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1902 {
1903 	struct drm_i915_private *dev_priv = dev->dev_private;
1904 	enum pipe pipe;
1905 
1906 	if (de_iir & DE_ERR_INT_IVB)
1907 		ivb_err_int_handler(dev);
1908 
1909 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1910 		dp_aux_irq_handler(dev);
1911 
1912 	if (de_iir & DE_GSE_IVB)
1913 		intel_opregion_asle_intr(dev);
1914 
1915 	for_each_pipe(dev_priv, pipe) {
1916 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1917 		    intel_pipe_handle_vblank(dev, pipe))
1918 			intel_check_page_flip(dev, pipe);
1919 
1920 		/* plane/pipes map 1:1 on ilk+ */
1921 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1922 			intel_prepare_page_flip(dev, pipe);
1923 			intel_finish_page_flip_plane(dev, pipe);
1924 		}
1925 	}
1926 
1927 	/* check event from PCH */
1928 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1929 		u32 pch_iir = I915_READ(SDEIIR);
1930 
1931 		cpt_irq_handler(dev, pch_iir);
1932 
1933 		/* clear PCH hotplug event before clear CPU irq */
1934 		I915_WRITE(SDEIIR, pch_iir);
1935 	}
1936 }
1937 
1938 /*
1939  * To handle irqs with the minimum potential races with fresh interrupts, we:
1940  * 1 - Disable Master Interrupt Control.
1941  * 2 - Find the source(s) of the interrupt.
1942  * 3 - Clear the Interrupt Identity bits (IIR).
1943  * 4 - Process the interrupt(s) that had bits set in the IIRs.
1944  * 5 - Re-enable Master Interrupt Control.
1945  */
1946 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1947 {
1948 	struct drm_device *dev = arg;
1949 	struct drm_i915_private *dev_priv = dev->dev_private;
1950 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1951 	irqreturn_t ret = IRQ_NONE;
1952 
1953 	if (!intel_irqs_enabled(dev_priv))
1954 		return IRQ_NONE;
1955 
1956 	/* We get interrupts on unclaimed registers, so check for this before we
1957 	 * do any I915_{READ,WRITE}. */
1958 	intel_uncore_check_errors(dev);
1959 
1960 	/* disable master interrupt before clearing iir  */
1961 	de_ier = I915_READ(DEIER);
1962 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1963 	POSTING_READ(DEIER);
1964 
1965 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1966 	 * interrupts will will be stored on its back queue, and then we'll be
1967 	 * able to process them after we restore SDEIER (as soon as we restore
1968 	 * it, we'll get an interrupt if SDEIIR still has something to process
1969 	 * due to its back queue). */
1970 	if (!HAS_PCH_NOP(dev)) {
1971 		sde_ier = I915_READ(SDEIER);
1972 		I915_WRITE(SDEIER, 0);
1973 		POSTING_READ(SDEIER);
1974 	}
1975 
1976 	/* Find, clear, then process each source of interrupt */
1977 
1978 	gt_iir = I915_READ(GTIIR);
1979 	if (gt_iir) {
1980 		I915_WRITE(GTIIR, gt_iir);
1981 		ret = IRQ_HANDLED;
1982 		if (INTEL_INFO(dev)->gen >= 6)
1983 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1984 		else
1985 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1986 	}
1987 
1988 	de_iir = I915_READ(DEIIR);
1989 	if (de_iir) {
1990 		I915_WRITE(DEIIR, de_iir);
1991 		ret = IRQ_HANDLED;
1992 		if (INTEL_INFO(dev)->gen >= 7)
1993 			ivb_display_irq_handler(dev, de_iir);
1994 		else
1995 			ilk_display_irq_handler(dev, de_iir);
1996 	}
1997 
1998 	if (INTEL_INFO(dev)->gen >= 6) {
1999 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2000 		if (pm_iir) {
2001 			I915_WRITE(GEN6_PMIIR, pm_iir);
2002 			ret = IRQ_HANDLED;
2003 			gen6_rps_irq_handler(dev_priv, pm_iir);
2004 		}
2005 	}
2006 
2007 	I915_WRITE(DEIER, de_ier);
2008 	POSTING_READ(DEIER);
2009 	if (!HAS_PCH_NOP(dev)) {
2010 		I915_WRITE(SDEIER, sde_ier);
2011 		POSTING_READ(SDEIER);
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2018 {
2019 	struct drm_i915_private *dev_priv = dev->dev_private;
2020 	u32 hp_control, hp_trigger;
2021 	u32 pin_mask, long_mask;
2022 
2023 	/* Get the status */
2024 	hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2025 	hp_control = I915_READ(BXT_HOTPLUG_CTL);
2026 
2027 	/* Hotplug not enabled ? */
2028 	if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2029 		DRM_ERROR("Interrupt when HPD disabled\n");
2030 		return;
2031 	}
2032 
2033 	/* Clear sticky bits in hpd status */
2034 	I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2035 
2036 	intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
2037 			   hpd_bxt, bxt_port_hotplug_long_detect);
2038 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2039 }
2040 
2041 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2042 {
2043 	struct drm_device *dev = arg;
2044 	struct drm_i915_private *dev_priv = dev->dev_private;
2045 	u32 master_ctl;
2046 	irqreturn_t ret = IRQ_NONE;
2047 	uint32_t tmp = 0;
2048 	enum pipe pipe;
2049 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2050 
2051 	if (!intel_irqs_enabled(dev_priv))
2052 		return IRQ_NONE;
2053 
2054 	if (IS_GEN9(dev))
2055 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2056 			GEN9_AUX_CHANNEL_D;
2057 
2058 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2059 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2060 	if (!master_ctl)
2061 		return IRQ_NONE;
2062 
2063 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2064 
2065 	/* Find, clear, then process each source of interrupt */
2066 
2067 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2068 
2069 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2070 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2071 		if (tmp) {
2072 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2073 			ret = IRQ_HANDLED;
2074 			if (tmp & GEN8_DE_MISC_GSE)
2075 				intel_opregion_asle_intr(dev);
2076 			else
2077 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2078 		}
2079 		else
2080 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2081 	}
2082 
2083 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2084 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2085 		if (tmp) {
2086 			bool found = false;
2087 
2088 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2089 			ret = IRQ_HANDLED;
2090 
2091 			if (tmp & aux_mask) {
2092 				dp_aux_irq_handler(dev);
2093 				found = true;
2094 			}
2095 
2096 			if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2097 				bxt_hpd_handler(dev, tmp);
2098 				found = true;
2099 			}
2100 
2101 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2102 				gmbus_irq_handler(dev);
2103 				found = true;
2104 			}
2105 
2106 			if (!found)
2107 				DRM_ERROR("Unexpected DE Port interrupt\n");
2108 		}
2109 		else
2110 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2111 	}
2112 
2113 	for_each_pipe(dev_priv, pipe) {
2114 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2115 
2116 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2117 			continue;
2118 
2119 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2120 		if (pipe_iir) {
2121 			ret = IRQ_HANDLED;
2122 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2123 
2124 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2125 			    intel_pipe_handle_vblank(dev, pipe))
2126 				intel_check_page_flip(dev, pipe);
2127 
2128 			if (IS_GEN9(dev))
2129 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2130 			else
2131 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2132 
2133 			if (flip_done) {
2134 				intel_prepare_page_flip(dev, pipe);
2135 				intel_finish_page_flip_plane(dev, pipe);
2136 			}
2137 
2138 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2139 				hsw_pipe_crc_irq_handler(dev, pipe);
2140 
2141 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2142 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2143 								    pipe);
2144 
2145 
2146 			if (IS_GEN9(dev))
2147 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2148 			else
2149 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2150 
2151 			if (fault_errors)
2152 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2153 					  pipe_name(pipe),
2154 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2155 		} else
2156 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2157 	}
2158 
2159 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2160 	    master_ctl & GEN8_DE_PCH_IRQ) {
2161 		/*
2162 		 * FIXME(BDW): Assume for now that the new interrupt handling
2163 		 * scheme also closed the SDE interrupt handling race we've seen
2164 		 * on older pch-split platforms. But this needs testing.
2165 		 */
2166 		u32 pch_iir = I915_READ(SDEIIR);
2167 		if (pch_iir) {
2168 			I915_WRITE(SDEIIR, pch_iir);
2169 			ret = IRQ_HANDLED;
2170 			cpt_irq_handler(dev, pch_iir);
2171 		} else
2172 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2173 
2174 	}
2175 
2176 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2177 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2178 
2179 	return ret;
2180 }
2181 
2182 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2183 			       bool reset_completed)
2184 {
2185 	struct intel_engine_cs *ring;
2186 	int i;
2187 
2188 	/*
2189 	 * Notify all waiters for GPU completion events that reset state has
2190 	 * been changed, and that they need to restart their wait after
2191 	 * checking for potential errors (and bail out to drop locks if there is
2192 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2193 	 */
2194 
2195 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2196 	for_each_ring(ring, dev_priv, i)
2197 		wake_up_all(&ring->irq_queue);
2198 
2199 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2200 	wake_up_all(&dev_priv->pending_flip_queue);
2201 
2202 	/*
2203 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2204 	 * reset state is cleared.
2205 	 */
2206 	if (reset_completed)
2207 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2208 }
2209 
2210 /**
2211  * i915_reset_and_wakeup - do process context error handling work
2212  *
2213  * Fire an error uevent so userspace can see that a hang or error
2214  * was detected.
2215  */
2216 static void i915_reset_and_wakeup(struct drm_device *dev)
2217 {
2218 	struct drm_i915_private *dev_priv = to_i915(dev);
2219 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2220 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2221 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2222 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2223 	int ret;
2224 
2225 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2226 
2227 	/*
2228 	 * Note that there's only one work item which does gpu resets, so we
2229 	 * need not worry about concurrent gpu resets potentially incrementing
2230 	 * error->reset_counter twice. We only need to take care of another
2231 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2232 	 * quick check for that is good enough: schedule_work ensures the
2233 	 * correct ordering between hang detection and this work item, and since
2234 	 * the reset in-progress bit is only ever set by code outside of this
2235 	 * work we don't need to worry about any other races.
2236 	 */
2237 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2238 		DRM_DEBUG_DRIVER("resetting chip\n");
2239 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2240 				   reset_event);
2241 
2242 		/*
2243 		 * In most cases it's guaranteed that we get here with an RPM
2244 		 * reference held, for example because there is a pending GPU
2245 		 * request that won't finish until the reset is done. This
2246 		 * isn't the case at least when we get here by doing a
2247 		 * simulated reset via debugs, so get an RPM reference.
2248 		 */
2249 		intel_runtime_pm_get(dev_priv);
2250 
2251 		intel_prepare_reset(dev);
2252 
2253 		/*
2254 		 * All state reset _must_ be completed before we update the
2255 		 * reset counter, for otherwise waiters might miss the reset
2256 		 * pending state and not properly drop locks, resulting in
2257 		 * deadlocks with the reset work.
2258 		 */
2259 		ret = i915_reset(dev);
2260 
2261 		intel_finish_reset(dev);
2262 
2263 		intel_runtime_pm_put(dev_priv);
2264 
2265 		if (ret == 0) {
2266 			/*
2267 			 * After all the gem state is reset, increment the reset
2268 			 * counter and wake up everyone waiting for the reset to
2269 			 * complete.
2270 			 *
2271 			 * Since unlock operations are a one-sided barrier only,
2272 			 * we need to insert a barrier here to order any seqno
2273 			 * updates before
2274 			 * the counter increment.
2275 			 */
2276 			smp_mb__before_atomic();
2277 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2278 
2279 			kobject_uevent_env(&dev->primary->kdev->kobj,
2280 					   KOBJ_CHANGE, reset_done_event);
2281 		} else {
2282 			atomic_or(I915_WEDGED, &error->reset_counter);
2283 		}
2284 
2285 		/*
2286 		 * Note: The wake_up also serves as a memory barrier so that
2287 		 * waiters see the update value of the reset counter atomic_t.
2288 		 */
2289 		i915_error_wake_up(dev_priv, true);
2290 	}
2291 }
2292 
2293 static void i915_report_and_clear_eir(struct drm_device *dev)
2294 {
2295 	struct drm_i915_private *dev_priv = dev->dev_private;
2296 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2297 	u32 eir = I915_READ(EIR);
2298 	int pipe, i;
2299 
2300 	if (!eir)
2301 		return;
2302 
2303 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2304 
2305 	i915_get_extra_instdone(dev, instdone);
2306 
2307 	if (IS_G4X(dev)) {
2308 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2309 			u32 ipeir = I915_READ(IPEIR_I965);
2310 
2311 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2312 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2313 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2314 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2315 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2316 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2317 			I915_WRITE(IPEIR_I965, ipeir);
2318 			POSTING_READ(IPEIR_I965);
2319 		}
2320 		if (eir & GM45_ERROR_PAGE_TABLE) {
2321 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2322 			pr_err("page table error\n");
2323 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2324 			I915_WRITE(PGTBL_ER, pgtbl_err);
2325 			POSTING_READ(PGTBL_ER);
2326 		}
2327 	}
2328 
2329 	if (!IS_GEN2(dev)) {
2330 		if (eir & I915_ERROR_PAGE_TABLE) {
2331 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2332 			pr_err("page table error\n");
2333 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2334 			I915_WRITE(PGTBL_ER, pgtbl_err);
2335 			POSTING_READ(PGTBL_ER);
2336 		}
2337 	}
2338 
2339 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2340 		pr_err("memory refresh error:\n");
2341 		for_each_pipe(dev_priv, pipe)
2342 			pr_err("pipe %c stat: 0x%08x\n",
2343 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2344 		/* pipestat has already been acked */
2345 	}
2346 	if (eir & I915_ERROR_INSTRUCTION) {
2347 		pr_err("instruction error\n");
2348 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2349 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2350 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2351 		if (INTEL_INFO(dev)->gen < 4) {
2352 			u32 ipeir = I915_READ(IPEIR);
2353 
2354 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2355 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2356 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2357 			I915_WRITE(IPEIR, ipeir);
2358 			POSTING_READ(IPEIR);
2359 		} else {
2360 			u32 ipeir = I915_READ(IPEIR_I965);
2361 
2362 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2363 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2364 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2365 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2366 			I915_WRITE(IPEIR_I965, ipeir);
2367 			POSTING_READ(IPEIR_I965);
2368 		}
2369 	}
2370 
2371 	I915_WRITE(EIR, eir);
2372 	POSTING_READ(EIR);
2373 	eir = I915_READ(EIR);
2374 	if (eir) {
2375 		/*
2376 		 * some errors might have become stuck,
2377 		 * mask them.
2378 		 */
2379 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2380 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2381 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2382 	}
2383 }
2384 
2385 /**
2386  * i915_handle_error - handle a gpu error
2387  * @dev: drm device
2388  *
2389  * Do some basic checking of regsiter state at error time and
2390  * dump it to the syslog.  Also call i915_capture_error_state() to make
2391  * sure we get a record and make it available in debugfs.  Fire a uevent
2392  * so userspace knows something bad happened (should trigger collection
2393  * of a ring dump etc.).
2394  */
2395 void i915_handle_error(struct drm_device *dev, bool wedged,
2396 		       const char *fmt, ...)
2397 {
2398 	struct drm_i915_private *dev_priv = dev->dev_private;
2399 	va_list args;
2400 	char error_msg[80];
2401 
2402 	va_start(args, fmt);
2403 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2404 	va_end(args);
2405 
2406 	i915_capture_error_state(dev, wedged, error_msg);
2407 	i915_report_and_clear_eir(dev);
2408 
2409 	if (wedged) {
2410 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2411 				&dev_priv->gpu_error.reset_counter);
2412 
2413 		/*
2414 		 * Wakeup waiting processes so that the reset function
2415 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2416 		 * various locks. By bumping the reset counter first, the woken
2417 		 * processes will see a reset in progress and back off,
2418 		 * releasing their locks and then wait for the reset completion.
2419 		 * We must do this for _all_ gpu waiters that might hold locks
2420 		 * that the reset work needs to acquire.
2421 		 *
2422 		 * Note: The wake_up serves as the required memory barrier to
2423 		 * ensure that the waiters see the updated value of the reset
2424 		 * counter atomic_t.
2425 		 */
2426 		i915_error_wake_up(dev_priv, false);
2427 	}
2428 
2429 	i915_reset_and_wakeup(dev);
2430 }
2431 
2432 /* Called from drm generic code, passed 'crtc' which
2433  * we use as a pipe index
2434  */
2435 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2436 {
2437 	struct drm_i915_private *dev_priv = dev->dev_private;
2438 	unsigned long irqflags;
2439 
2440 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2441 	if (INTEL_INFO(dev)->gen >= 4)
2442 		i915_enable_pipestat(dev_priv, pipe,
2443 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2444 	else
2445 		i915_enable_pipestat(dev_priv, pipe,
2446 				     PIPE_VBLANK_INTERRUPT_STATUS);
2447 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2448 
2449 	return 0;
2450 }
2451 
2452 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2453 {
2454 	struct drm_i915_private *dev_priv = dev->dev_private;
2455 	unsigned long irqflags;
2456 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2457 						     DE_PIPE_VBLANK(pipe);
2458 
2459 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2460 	ironlake_enable_display_irq(dev_priv, bit);
2461 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2462 
2463 	return 0;
2464 }
2465 
2466 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2467 {
2468 	struct drm_i915_private *dev_priv = dev->dev_private;
2469 	unsigned long irqflags;
2470 
2471 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2472 	i915_enable_pipestat(dev_priv, pipe,
2473 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2474 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2475 
2476 	return 0;
2477 }
2478 
2479 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2480 {
2481 	struct drm_i915_private *dev_priv = dev->dev_private;
2482 	unsigned long irqflags;
2483 
2484 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2485 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2486 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2487 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2488 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2489 	return 0;
2490 }
2491 
2492 /* Called from drm generic code, passed 'crtc' which
2493  * we use as a pipe index
2494  */
2495 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2496 {
2497 	struct drm_i915_private *dev_priv = dev->dev_private;
2498 	unsigned long irqflags;
2499 
2500 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2501 	i915_disable_pipestat(dev_priv, pipe,
2502 			      PIPE_VBLANK_INTERRUPT_STATUS |
2503 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2504 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2505 }
2506 
2507 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2508 {
2509 	struct drm_i915_private *dev_priv = dev->dev_private;
2510 	unsigned long irqflags;
2511 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2512 						     DE_PIPE_VBLANK(pipe);
2513 
2514 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2515 	ironlake_disable_display_irq(dev_priv, bit);
2516 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2517 }
2518 
2519 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2520 {
2521 	struct drm_i915_private *dev_priv = dev->dev_private;
2522 	unsigned long irqflags;
2523 
2524 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2525 	i915_disable_pipestat(dev_priv, pipe,
2526 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2527 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2528 }
2529 
2530 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2531 {
2532 	struct drm_i915_private *dev_priv = dev->dev_private;
2533 	unsigned long irqflags;
2534 
2535 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2536 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2537 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2538 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2539 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2540 }
2541 
2542 static bool
2543 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2544 {
2545 	return (list_empty(&ring->request_list) ||
2546 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2547 }
2548 
2549 static bool
2550 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2551 {
2552 	if (INTEL_INFO(dev)->gen >= 8) {
2553 		return (ipehr >> 23) == 0x1c;
2554 	} else {
2555 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2556 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2557 				 MI_SEMAPHORE_REGISTER);
2558 	}
2559 }
2560 
2561 static struct intel_engine_cs *
2562 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2563 {
2564 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2565 	struct intel_engine_cs *signaller;
2566 	int i;
2567 
2568 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2569 		for_each_ring(signaller, dev_priv, i) {
2570 			if (ring == signaller)
2571 				continue;
2572 
2573 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2574 				return signaller;
2575 		}
2576 	} else {
2577 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2578 
2579 		for_each_ring(signaller, dev_priv, i) {
2580 			if(ring == signaller)
2581 				continue;
2582 
2583 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2584 				return signaller;
2585 		}
2586 	}
2587 
2588 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2589 		  ring->id, ipehr, offset);
2590 
2591 	return NULL;
2592 }
2593 
2594 static struct intel_engine_cs *
2595 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2596 {
2597 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2598 	u32 cmd, ipehr, head;
2599 	u64 offset = 0;
2600 	int i, backwards;
2601 
2602 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2603 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2604 		return NULL;
2605 
2606 	/*
2607 	 * HEAD is likely pointing to the dword after the actual command,
2608 	 * so scan backwards until we find the MBOX. But limit it to just 3
2609 	 * or 4 dwords depending on the semaphore wait command size.
2610 	 * Note that we don't care about ACTHD here since that might
2611 	 * point at at batch, and semaphores are always emitted into the
2612 	 * ringbuffer itself.
2613 	 */
2614 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2615 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2616 
2617 	for (i = backwards; i; --i) {
2618 		/*
2619 		 * Be paranoid and presume the hw has gone off into the wild -
2620 		 * our ring is smaller than what the hardware (and hence
2621 		 * HEAD_ADDR) allows. Also handles wrap-around.
2622 		 */
2623 		head &= ring->buffer->size - 1;
2624 
2625 		/* This here seems to blow up */
2626 		cmd = ioread32(ring->buffer->virtual_start + head);
2627 		if (cmd == ipehr)
2628 			break;
2629 
2630 		head -= 4;
2631 	}
2632 
2633 	if (!i)
2634 		return NULL;
2635 
2636 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2637 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2638 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2639 		offset <<= 32;
2640 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2641 	}
2642 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2643 }
2644 
2645 static int semaphore_passed(struct intel_engine_cs *ring)
2646 {
2647 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2648 	struct intel_engine_cs *signaller;
2649 	u32 seqno;
2650 
2651 	ring->hangcheck.deadlock++;
2652 
2653 	signaller = semaphore_waits_for(ring, &seqno);
2654 	if (signaller == NULL)
2655 		return -1;
2656 
2657 	/* Prevent pathological recursion due to driver bugs */
2658 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2659 		return -1;
2660 
2661 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2662 		return 1;
2663 
2664 	/* cursory check for an unkickable deadlock */
2665 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2666 	    semaphore_passed(signaller) < 0)
2667 		return -1;
2668 
2669 	return 0;
2670 }
2671 
2672 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2673 {
2674 	struct intel_engine_cs *ring;
2675 	int i;
2676 
2677 	for_each_ring(ring, dev_priv, i)
2678 		ring->hangcheck.deadlock = 0;
2679 }
2680 
2681 static enum intel_ring_hangcheck_action
2682 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2683 {
2684 	struct drm_device *dev = ring->dev;
2685 	struct drm_i915_private *dev_priv = dev->dev_private;
2686 	u32 tmp;
2687 
2688 	if (acthd != ring->hangcheck.acthd) {
2689 		if (acthd > ring->hangcheck.max_acthd) {
2690 			ring->hangcheck.max_acthd = acthd;
2691 			return HANGCHECK_ACTIVE;
2692 		}
2693 
2694 		return HANGCHECK_ACTIVE_LOOP;
2695 	}
2696 
2697 	if (IS_GEN2(dev))
2698 		return HANGCHECK_HUNG;
2699 
2700 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2701 	 * If so we can simply poke the RB_WAIT bit
2702 	 * and break the hang. This should work on
2703 	 * all but the second generation chipsets.
2704 	 */
2705 	tmp = I915_READ_CTL(ring);
2706 	if (tmp & RING_WAIT) {
2707 		i915_handle_error(dev, false,
2708 				  "Kicking stuck wait on %s",
2709 				  ring->name);
2710 		I915_WRITE_CTL(ring, tmp);
2711 		return HANGCHECK_KICK;
2712 	}
2713 
2714 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2715 		switch (semaphore_passed(ring)) {
2716 		default:
2717 			return HANGCHECK_HUNG;
2718 		case 1:
2719 			i915_handle_error(dev, false,
2720 					  "Kicking stuck semaphore on %s",
2721 					  ring->name);
2722 			I915_WRITE_CTL(ring, tmp);
2723 			return HANGCHECK_KICK;
2724 		case 0:
2725 			return HANGCHECK_WAIT;
2726 		}
2727 	}
2728 
2729 	return HANGCHECK_HUNG;
2730 }
2731 
2732 /*
2733  * This is called when the chip hasn't reported back with completed
2734  * batchbuffers in a long time. We keep track per ring seqno progress and
2735  * if there are no progress, hangcheck score for that ring is increased.
2736  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2737  * we kick the ring. If we see no progress on three subsequent calls
2738  * we assume chip is wedged and try to fix it by resetting the chip.
2739  */
2740 static void i915_hangcheck_elapsed(struct work_struct *work)
2741 {
2742 	struct drm_i915_private *dev_priv =
2743 		container_of(work, typeof(*dev_priv),
2744 			     gpu_error.hangcheck_work.work);
2745 	struct drm_device *dev = dev_priv->dev;
2746 	struct intel_engine_cs *ring;
2747 	int i;
2748 	int busy_count = 0, rings_hung = 0;
2749 	bool stuck[I915_NUM_RINGS] = { 0 };
2750 #define BUSY 1
2751 #define KICK 5
2752 #define HUNG 20
2753 
2754 	if (!i915.enable_hangcheck)
2755 		return;
2756 
2757 	for_each_ring(ring, dev_priv, i) {
2758 		u64 acthd;
2759 		u32 seqno;
2760 		bool busy = true;
2761 
2762 		semaphore_clear_deadlocks(dev_priv);
2763 
2764 		seqno = ring->get_seqno(ring, false);
2765 		acthd = intel_ring_get_active_head(ring);
2766 
2767 		if (ring->hangcheck.seqno == seqno) {
2768 			if (ring_idle(ring, seqno)) {
2769 				ring->hangcheck.action = HANGCHECK_IDLE;
2770 
2771 				if (waitqueue_active(&ring->irq_queue)) {
2772 					/* Issue a wake-up to catch stuck h/w. */
2773 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2774 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2775 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2776 								  ring->name);
2777 						else
2778 							DRM_INFO("Fake missed irq on %s\n",
2779 								 ring->name);
2780 						wake_up_all(&ring->irq_queue);
2781 					}
2782 					/* Safeguard against driver failure */
2783 					ring->hangcheck.score += BUSY;
2784 				} else
2785 					busy = false;
2786 			} else {
2787 				/* We always increment the hangcheck score
2788 				 * if the ring is busy and still processing
2789 				 * the same request, so that no single request
2790 				 * can run indefinitely (such as a chain of
2791 				 * batches). The only time we do not increment
2792 				 * the hangcheck score on this ring, if this
2793 				 * ring is in a legitimate wait for another
2794 				 * ring. In that case the waiting ring is a
2795 				 * victim and we want to be sure we catch the
2796 				 * right culprit. Then every time we do kick
2797 				 * the ring, add a small increment to the
2798 				 * score so that we can catch a batch that is
2799 				 * being repeatedly kicked and so responsible
2800 				 * for stalling the machine.
2801 				 */
2802 				ring->hangcheck.action = ring_stuck(ring,
2803 								    acthd);
2804 
2805 				switch (ring->hangcheck.action) {
2806 				case HANGCHECK_IDLE:
2807 				case HANGCHECK_WAIT:
2808 				case HANGCHECK_ACTIVE:
2809 					break;
2810 				case HANGCHECK_ACTIVE_LOOP:
2811 					ring->hangcheck.score += BUSY;
2812 					break;
2813 				case HANGCHECK_KICK:
2814 					ring->hangcheck.score += KICK;
2815 					break;
2816 				case HANGCHECK_HUNG:
2817 					ring->hangcheck.score += HUNG;
2818 					stuck[i] = true;
2819 					break;
2820 				}
2821 			}
2822 		} else {
2823 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2824 
2825 			/* Gradually reduce the count so that we catch DoS
2826 			 * attempts across multiple batches.
2827 			 */
2828 			if (ring->hangcheck.score > 0)
2829 				ring->hangcheck.score--;
2830 
2831 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2832 		}
2833 
2834 		ring->hangcheck.seqno = seqno;
2835 		ring->hangcheck.acthd = acthd;
2836 		busy_count += busy;
2837 	}
2838 
2839 	for_each_ring(ring, dev_priv, i) {
2840 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2841 			DRM_INFO("%s on %s\n",
2842 				 stuck[i] ? "stuck" : "no progress",
2843 				 ring->name);
2844 			rings_hung++;
2845 		}
2846 	}
2847 
2848 	if (rings_hung)
2849 		return i915_handle_error(dev, true, "Ring hung");
2850 
2851 	if (busy_count)
2852 		/* Reset timer case chip hangs without another request
2853 		 * being added */
2854 		i915_queue_hangcheck(dev);
2855 }
2856 
2857 void i915_queue_hangcheck(struct drm_device *dev)
2858 {
2859 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2860 
2861 	if (!i915.enable_hangcheck)
2862 		return;
2863 
2864 	/* Don't continually defer the hangcheck so that it is always run at
2865 	 * least once after work has been scheduled on any ring. Otherwise,
2866 	 * we will ignore a hung ring if a second ring is kept busy.
2867 	 */
2868 
2869 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2870 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2871 }
2872 
2873 static void ibx_irq_reset(struct drm_device *dev)
2874 {
2875 	struct drm_i915_private *dev_priv = dev->dev_private;
2876 
2877 	if (HAS_PCH_NOP(dev))
2878 		return;
2879 
2880 	GEN5_IRQ_RESET(SDE);
2881 
2882 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2883 		I915_WRITE(SERR_INT, 0xffffffff);
2884 }
2885 
2886 /*
2887  * SDEIER is also touched by the interrupt handler to work around missed PCH
2888  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2889  * instead we unconditionally enable all PCH interrupt sources here, but then
2890  * only unmask them as needed with SDEIMR.
2891  *
2892  * This function needs to be called before interrupts are enabled.
2893  */
2894 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2895 {
2896 	struct drm_i915_private *dev_priv = dev->dev_private;
2897 
2898 	if (HAS_PCH_NOP(dev))
2899 		return;
2900 
2901 	WARN_ON(I915_READ(SDEIER) != 0);
2902 	I915_WRITE(SDEIER, 0xffffffff);
2903 	POSTING_READ(SDEIER);
2904 }
2905 
2906 static void gen5_gt_irq_reset(struct drm_device *dev)
2907 {
2908 	struct drm_i915_private *dev_priv = dev->dev_private;
2909 
2910 	GEN5_IRQ_RESET(GT);
2911 	if (INTEL_INFO(dev)->gen >= 6)
2912 		GEN5_IRQ_RESET(GEN6_PM);
2913 }
2914 
2915 /* drm_dma.h hooks
2916 */
2917 static void ironlake_irq_reset(struct drm_device *dev)
2918 {
2919 	struct drm_i915_private *dev_priv = dev->dev_private;
2920 
2921 	I915_WRITE(HWSTAM, 0xffffffff);
2922 
2923 	GEN5_IRQ_RESET(DE);
2924 	if (IS_GEN7(dev))
2925 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2926 
2927 	gen5_gt_irq_reset(dev);
2928 
2929 	ibx_irq_reset(dev);
2930 }
2931 
2932 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2933 {
2934 	enum pipe pipe;
2935 
2936 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2937 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2938 
2939 	for_each_pipe(dev_priv, pipe)
2940 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2941 
2942 	GEN5_IRQ_RESET(VLV_);
2943 }
2944 
2945 static void valleyview_irq_preinstall(struct drm_device *dev)
2946 {
2947 	struct drm_i915_private *dev_priv = dev->dev_private;
2948 
2949 	/* VLV magic */
2950 	I915_WRITE(VLV_IMR, 0);
2951 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2952 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2953 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2954 
2955 	gen5_gt_irq_reset(dev);
2956 
2957 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2958 
2959 	vlv_display_irq_reset(dev_priv);
2960 }
2961 
2962 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2963 {
2964 	GEN8_IRQ_RESET_NDX(GT, 0);
2965 	GEN8_IRQ_RESET_NDX(GT, 1);
2966 	GEN8_IRQ_RESET_NDX(GT, 2);
2967 	GEN8_IRQ_RESET_NDX(GT, 3);
2968 }
2969 
2970 static void gen8_irq_reset(struct drm_device *dev)
2971 {
2972 	struct drm_i915_private *dev_priv = dev->dev_private;
2973 	int pipe;
2974 
2975 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2976 	POSTING_READ(GEN8_MASTER_IRQ);
2977 
2978 	gen8_gt_irq_reset(dev_priv);
2979 
2980 	for_each_pipe(dev_priv, pipe)
2981 		if (intel_display_power_is_enabled(dev_priv,
2982 						   POWER_DOMAIN_PIPE(pipe)))
2983 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2984 
2985 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
2986 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
2987 	GEN5_IRQ_RESET(GEN8_PCU_);
2988 
2989 	if (HAS_PCH_SPLIT(dev))
2990 		ibx_irq_reset(dev);
2991 }
2992 
2993 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2994 				     unsigned int pipe_mask)
2995 {
2996 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2997 
2998 	spin_lock_irq(&dev_priv->irq_lock);
2999 	if (pipe_mask & 1 << PIPE_A)
3000 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3001 				  dev_priv->de_irq_mask[PIPE_A],
3002 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3003 	if (pipe_mask & 1 << PIPE_B)
3004 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3005 				  dev_priv->de_irq_mask[PIPE_B],
3006 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3007 	if (pipe_mask & 1 << PIPE_C)
3008 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3009 				  dev_priv->de_irq_mask[PIPE_C],
3010 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3011 	spin_unlock_irq(&dev_priv->irq_lock);
3012 }
3013 
3014 static void cherryview_irq_preinstall(struct drm_device *dev)
3015 {
3016 	struct drm_i915_private *dev_priv = dev->dev_private;
3017 
3018 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3019 	POSTING_READ(GEN8_MASTER_IRQ);
3020 
3021 	gen8_gt_irq_reset(dev_priv);
3022 
3023 	GEN5_IRQ_RESET(GEN8_PCU_);
3024 
3025 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3026 
3027 	vlv_display_irq_reset(dev_priv);
3028 }
3029 
3030 static void ibx_hpd_irq_setup(struct drm_device *dev)
3031 {
3032 	struct drm_i915_private *dev_priv = dev->dev_private;
3033 	struct intel_encoder *intel_encoder;
3034 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3035 
3036 	if (HAS_PCH_IBX(dev)) {
3037 		hotplug_irqs = SDE_HOTPLUG_MASK;
3038 		for_each_intel_encoder(dev, intel_encoder)
3039 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3040 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3041 	} else if (HAS_PCH_SPT(dev)) {
3042 		hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3043 		for_each_intel_encoder(dev, intel_encoder)
3044 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3045 				enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
3046 	} else {
3047 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3048 		for_each_intel_encoder(dev, intel_encoder)
3049 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3050 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3051 	}
3052 
3053 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3054 
3055 	/*
3056 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3057 	 * duration to 2ms (which is the minimum in the Display Port spec)
3058 	 *
3059 	 * This register is the same on all known PCH chips.
3060 	 */
3061 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3062 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3063 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3064 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3066 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3067 
3068 	/* enable SPT PORTE hot plug */
3069 	if (HAS_PCH_SPT(dev)) {
3070 		hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3071 		hotplug |= PORTE_HOTPLUG_ENABLE;
3072 		I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3073 	}
3074 }
3075 
3076 static void bxt_hpd_irq_setup(struct drm_device *dev)
3077 {
3078 	struct drm_i915_private *dev_priv = dev->dev_private;
3079 	struct intel_encoder *intel_encoder;
3080 	u32 hotplug_port = 0;
3081 	u32 hotplug_ctrl;
3082 
3083 	/* Now, enable HPD */
3084 	for_each_intel_encoder(dev, intel_encoder) {
3085 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3086 				== HPD_ENABLED)
3087 			hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3088 	}
3089 
3090 	/* Mask all HPD control bits */
3091 	hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3092 
3093 	/* Enable requested port in hotplug control */
3094 	/* TODO: implement (short) HPD support on port A */
3095 	WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3096 	if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3097 		hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3098 	if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3099 		hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3100 	I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3101 
3102 	/* Unmask DDI hotplug in IMR */
3103 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3104 	I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3105 
3106 	/* Enable DDI hotplug in IER */
3107 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3108 	I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3109 	POSTING_READ(GEN8_DE_PORT_IER);
3110 }
3111 
3112 static void ibx_irq_postinstall(struct drm_device *dev)
3113 {
3114 	struct drm_i915_private *dev_priv = dev->dev_private;
3115 	u32 mask;
3116 
3117 	if (HAS_PCH_NOP(dev))
3118 		return;
3119 
3120 	if (HAS_PCH_IBX(dev))
3121 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3122 	else
3123 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3124 
3125 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3126 	I915_WRITE(SDEIMR, ~mask);
3127 }
3128 
3129 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3130 {
3131 	struct drm_i915_private *dev_priv = dev->dev_private;
3132 	u32 pm_irqs, gt_irqs;
3133 
3134 	pm_irqs = gt_irqs = 0;
3135 
3136 	dev_priv->gt_irq_mask = ~0;
3137 	if (HAS_L3_DPF(dev)) {
3138 		/* L3 parity interrupt is always unmasked. */
3139 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3140 		gt_irqs |= GT_PARITY_ERROR(dev);
3141 	}
3142 
3143 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3144 	if (IS_GEN5(dev)) {
3145 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3146 			   ILK_BSD_USER_INTERRUPT;
3147 	} else {
3148 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3149 	}
3150 
3151 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3152 
3153 	if (INTEL_INFO(dev)->gen >= 6) {
3154 		/*
3155 		 * RPS interrupts will get enabled/disabled on demand when RPS
3156 		 * itself is enabled/disabled.
3157 		 */
3158 		if (HAS_VEBOX(dev))
3159 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3160 
3161 		dev_priv->pm_irq_mask = 0xffffffff;
3162 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3163 	}
3164 }
3165 
3166 static int ironlake_irq_postinstall(struct drm_device *dev)
3167 {
3168 	struct drm_i915_private *dev_priv = dev->dev_private;
3169 	u32 display_mask, extra_mask;
3170 
3171 	if (INTEL_INFO(dev)->gen >= 7) {
3172 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3173 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3174 				DE_PLANEB_FLIP_DONE_IVB |
3175 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3176 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3177 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3178 	} else {
3179 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3180 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3181 				DE_AUX_CHANNEL_A |
3182 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3183 				DE_POISON);
3184 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3185 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3186 	}
3187 
3188 	dev_priv->irq_mask = ~display_mask;
3189 
3190 	I915_WRITE(HWSTAM, 0xeffe);
3191 
3192 	ibx_irq_pre_postinstall(dev);
3193 
3194 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3195 
3196 	gen5_gt_irq_postinstall(dev);
3197 
3198 	ibx_irq_postinstall(dev);
3199 
3200 	if (IS_IRONLAKE_M(dev)) {
3201 		/* Enable PCU event interrupts
3202 		 *
3203 		 * spinlocking not required here for correctness since interrupt
3204 		 * setup is guaranteed to run in single-threaded context. But we
3205 		 * need it to make the assert_spin_locked happy. */
3206 		spin_lock_irq(&dev_priv->irq_lock);
3207 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3208 		spin_unlock_irq(&dev_priv->irq_lock);
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3215 {
3216 	u32 pipestat_mask;
3217 	u32 iir_mask;
3218 	enum pipe pipe;
3219 
3220 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3221 			PIPE_FIFO_UNDERRUN_STATUS;
3222 
3223 	for_each_pipe(dev_priv, pipe)
3224 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3225 	POSTING_READ(PIPESTAT(PIPE_A));
3226 
3227 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3228 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3229 
3230 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3231 	for_each_pipe(dev_priv, pipe)
3232 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3233 
3234 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3235 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3236 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3237 	if (IS_CHERRYVIEW(dev_priv))
3238 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3239 	dev_priv->irq_mask &= ~iir_mask;
3240 
3241 	I915_WRITE(VLV_IIR, iir_mask);
3242 	I915_WRITE(VLV_IIR, iir_mask);
3243 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3244 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3245 	POSTING_READ(VLV_IMR);
3246 }
3247 
3248 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3249 {
3250 	u32 pipestat_mask;
3251 	u32 iir_mask;
3252 	enum pipe pipe;
3253 
3254 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3255 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3256 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3257 	if (IS_CHERRYVIEW(dev_priv))
3258 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3259 
3260 	dev_priv->irq_mask |= iir_mask;
3261 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3262 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3263 	I915_WRITE(VLV_IIR, iir_mask);
3264 	I915_WRITE(VLV_IIR, iir_mask);
3265 	POSTING_READ(VLV_IIR);
3266 
3267 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3268 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3269 
3270 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3271 	for_each_pipe(dev_priv, pipe)
3272 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3273 
3274 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3275 			PIPE_FIFO_UNDERRUN_STATUS;
3276 
3277 	for_each_pipe(dev_priv, pipe)
3278 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3279 	POSTING_READ(PIPESTAT(PIPE_A));
3280 }
3281 
3282 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3283 {
3284 	assert_spin_locked(&dev_priv->irq_lock);
3285 
3286 	if (dev_priv->display_irqs_enabled)
3287 		return;
3288 
3289 	dev_priv->display_irqs_enabled = true;
3290 
3291 	if (intel_irqs_enabled(dev_priv))
3292 		valleyview_display_irqs_install(dev_priv);
3293 }
3294 
3295 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3296 {
3297 	assert_spin_locked(&dev_priv->irq_lock);
3298 
3299 	if (!dev_priv->display_irqs_enabled)
3300 		return;
3301 
3302 	dev_priv->display_irqs_enabled = false;
3303 
3304 	if (intel_irqs_enabled(dev_priv))
3305 		valleyview_display_irqs_uninstall(dev_priv);
3306 }
3307 
3308 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3309 {
3310 	dev_priv->irq_mask = ~0;
3311 
3312 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3313 	POSTING_READ(PORT_HOTPLUG_EN);
3314 
3315 	I915_WRITE(VLV_IIR, 0xffffffff);
3316 	I915_WRITE(VLV_IIR, 0xffffffff);
3317 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3318 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3319 	POSTING_READ(VLV_IMR);
3320 
3321 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3322 	 * just to make the assert_spin_locked check happy. */
3323 	spin_lock_irq(&dev_priv->irq_lock);
3324 	if (dev_priv->display_irqs_enabled)
3325 		valleyview_display_irqs_install(dev_priv);
3326 	spin_unlock_irq(&dev_priv->irq_lock);
3327 }
3328 
3329 static int valleyview_irq_postinstall(struct drm_device *dev)
3330 {
3331 	struct drm_i915_private *dev_priv = dev->dev_private;
3332 
3333 	vlv_display_irq_postinstall(dev_priv);
3334 
3335 	gen5_gt_irq_postinstall(dev);
3336 
3337 	/* ack & enable invalid PTE error interrupts */
3338 #if 0 /* FIXME: add support to irq handler for checking these bits */
3339 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3340 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3341 #endif
3342 
3343 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3344 
3345 	return 0;
3346 }
3347 
3348 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3349 {
3350 	/* These are interrupts we'll toggle with the ring mask register */
3351 	uint32_t gt_interrupts[] = {
3352 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3353 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3354 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3355 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3356 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3357 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3358 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3359 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3360 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3361 		0,
3362 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3363 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3364 		};
3365 
3366 	dev_priv->pm_irq_mask = 0xffffffff;
3367 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3368 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3369 	/*
3370 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3371 	 * is enabled/disabled.
3372 	 */
3373 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3374 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3375 }
3376 
3377 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3378 {
3379 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3380 	uint32_t de_pipe_enables;
3381 	int pipe;
3382 	u32 de_port_en = GEN8_AUX_CHANNEL_A;
3383 
3384 	if (IS_GEN9(dev_priv)) {
3385 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3386 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3387 		de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3388 			GEN9_AUX_CHANNEL_D;
3389 
3390 		if (IS_BROXTON(dev_priv))
3391 			de_port_en |= BXT_DE_PORT_GMBUS;
3392 	} else
3393 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3394 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3395 
3396 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3397 					   GEN8_PIPE_FIFO_UNDERRUN;
3398 
3399 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3400 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3401 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3402 
3403 	for_each_pipe(dev_priv, pipe)
3404 		if (intel_display_power_is_enabled(dev_priv,
3405 				POWER_DOMAIN_PIPE(pipe)))
3406 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3407 					  dev_priv->de_irq_mask[pipe],
3408 					  de_pipe_enables);
3409 
3410 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3411 }
3412 
3413 static int gen8_irq_postinstall(struct drm_device *dev)
3414 {
3415 	struct drm_i915_private *dev_priv = dev->dev_private;
3416 
3417 	if (HAS_PCH_SPLIT(dev))
3418 		ibx_irq_pre_postinstall(dev);
3419 
3420 	gen8_gt_irq_postinstall(dev_priv);
3421 	gen8_de_irq_postinstall(dev_priv);
3422 
3423 	if (HAS_PCH_SPLIT(dev))
3424 		ibx_irq_postinstall(dev);
3425 
3426 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3427 	POSTING_READ(GEN8_MASTER_IRQ);
3428 
3429 	return 0;
3430 }
3431 
3432 static int cherryview_irq_postinstall(struct drm_device *dev)
3433 {
3434 	struct drm_i915_private *dev_priv = dev->dev_private;
3435 
3436 	vlv_display_irq_postinstall(dev_priv);
3437 
3438 	gen8_gt_irq_postinstall(dev_priv);
3439 
3440 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3441 	POSTING_READ(GEN8_MASTER_IRQ);
3442 
3443 	return 0;
3444 }
3445 
3446 static void gen8_irq_uninstall(struct drm_device *dev)
3447 {
3448 	struct drm_i915_private *dev_priv = dev->dev_private;
3449 
3450 	if (!dev_priv)
3451 		return;
3452 
3453 	gen8_irq_reset(dev);
3454 }
3455 
3456 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3457 {
3458 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3459 	 * just to make the assert_spin_locked check happy. */
3460 	spin_lock_irq(&dev_priv->irq_lock);
3461 	if (dev_priv->display_irqs_enabled)
3462 		valleyview_display_irqs_uninstall(dev_priv);
3463 	spin_unlock_irq(&dev_priv->irq_lock);
3464 
3465 	vlv_display_irq_reset(dev_priv);
3466 
3467 	dev_priv->irq_mask = ~0;
3468 }
3469 
3470 static void valleyview_irq_uninstall(struct drm_device *dev)
3471 {
3472 	struct drm_i915_private *dev_priv = dev->dev_private;
3473 
3474 	if (!dev_priv)
3475 		return;
3476 
3477 	I915_WRITE(VLV_MASTER_IER, 0);
3478 
3479 	gen5_gt_irq_reset(dev);
3480 
3481 	I915_WRITE(HWSTAM, 0xffffffff);
3482 
3483 	vlv_display_irq_uninstall(dev_priv);
3484 }
3485 
3486 static void cherryview_irq_uninstall(struct drm_device *dev)
3487 {
3488 	struct drm_i915_private *dev_priv = dev->dev_private;
3489 
3490 	if (!dev_priv)
3491 		return;
3492 
3493 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3494 	POSTING_READ(GEN8_MASTER_IRQ);
3495 
3496 	gen8_gt_irq_reset(dev_priv);
3497 
3498 	GEN5_IRQ_RESET(GEN8_PCU_);
3499 
3500 	vlv_display_irq_uninstall(dev_priv);
3501 }
3502 
3503 static void ironlake_irq_uninstall(struct drm_device *dev)
3504 {
3505 	struct drm_i915_private *dev_priv = dev->dev_private;
3506 
3507 	if (!dev_priv)
3508 		return;
3509 
3510 	ironlake_irq_reset(dev);
3511 }
3512 
3513 static void i8xx_irq_preinstall(struct drm_device * dev)
3514 {
3515 	struct drm_i915_private *dev_priv = dev->dev_private;
3516 	int pipe;
3517 
3518 	for_each_pipe(dev_priv, pipe)
3519 		I915_WRITE(PIPESTAT(pipe), 0);
3520 	I915_WRITE16(IMR, 0xffff);
3521 	I915_WRITE16(IER, 0x0);
3522 	POSTING_READ16(IER);
3523 }
3524 
3525 static int i8xx_irq_postinstall(struct drm_device *dev)
3526 {
3527 	struct drm_i915_private *dev_priv = dev->dev_private;
3528 
3529 	I915_WRITE16(EMR,
3530 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3531 
3532 	/* Unmask the interrupts that we always want on. */
3533 	dev_priv->irq_mask =
3534 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3537 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3538 	I915_WRITE16(IMR, dev_priv->irq_mask);
3539 
3540 	I915_WRITE16(IER,
3541 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3542 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3543 		     I915_USER_INTERRUPT);
3544 	POSTING_READ16(IER);
3545 
3546 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3547 	 * just to make the assert_spin_locked check happy. */
3548 	spin_lock_irq(&dev_priv->irq_lock);
3549 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3550 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3551 	spin_unlock_irq(&dev_priv->irq_lock);
3552 
3553 	return 0;
3554 }
3555 
3556 /*
3557  * Returns true when a page flip has completed.
3558  */
3559 static bool i8xx_handle_vblank(struct drm_device *dev,
3560 			       int plane, int pipe, u32 iir)
3561 {
3562 	struct drm_i915_private *dev_priv = dev->dev_private;
3563 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3564 
3565 	if (!intel_pipe_handle_vblank(dev, pipe))
3566 		return false;
3567 
3568 	if ((iir & flip_pending) == 0)
3569 		goto check_page_flip;
3570 
3571 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3572 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3573 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3574 	 * the flip is completed (no longer pending). Since this doesn't raise
3575 	 * an interrupt per se, we watch for the change at vblank.
3576 	 */
3577 	if (I915_READ16(ISR) & flip_pending)
3578 		goto check_page_flip;
3579 
3580 	intel_prepare_page_flip(dev, plane);
3581 	intel_finish_page_flip(dev, pipe);
3582 	return true;
3583 
3584 check_page_flip:
3585 	intel_check_page_flip(dev, pipe);
3586 	return false;
3587 }
3588 
3589 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3590 {
3591 	struct drm_device *dev = arg;
3592 	struct drm_i915_private *dev_priv = dev->dev_private;
3593 	u16 iir, new_iir;
3594 	u32 pipe_stats[2];
3595 	int pipe;
3596 	u16 flip_mask =
3597 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3598 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3599 
3600 	if (!intel_irqs_enabled(dev_priv))
3601 		return IRQ_NONE;
3602 
3603 	iir = I915_READ16(IIR);
3604 	if (iir == 0)
3605 		return IRQ_NONE;
3606 
3607 	while (iir & ~flip_mask) {
3608 		/* Can't rely on pipestat interrupt bit in iir as it might
3609 		 * have been cleared after the pipestat interrupt was received.
3610 		 * It doesn't set the bit in iir again, but it still produces
3611 		 * interrupts (for non-MSI).
3612 		 */
3613 		spin_lock(&dev_priv->irq_lock);
3614 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3615 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3616 
3617 		for_each_pipe(dev_priv, pipe) {
3618 			int reg = PIPESTAT(pipe);
3619 			pipe_stats[pipe] = I915_READ(reg);
3620 
3621 			/*
3622 			 * Clear the PIPE*STAT regs before the IIR
3623 			 */
3624 			if (pipe_stats[pipe] & 0x8000ffff)
3625 				I915_WRITE(reg, pipe_stats[pipe]);
3626 		}
3627 		spin_unlock(&dev_priv->irq_lock);
3628 
3629 		I915_WRITE16(IIR, iir & ~flip_mask);
3630 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3631 
3632 		if (iir & I915_USER_INTERRUPT)
3633 			notify_ring(&dev_priv->ring[RCS]);
3634 
3635 		for_each_pipe(dev_priv, pipe) {
3636 			int plane = pipe;
3637 			if (HAS_FBC(dev))
3638 				plane = !plane;
3639 
3640 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3641 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3642 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3643 
3644 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3645 				i9xx_pipe_crc_irq_handler(dev, pipe);
3646 
3647 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3648 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3649 								    pipe);
3650 		}
3651 
3652 		iir = new_iir;
3653 	}
3654 
3655 	return IRQ_HANDLED;
3656 }
3657 
3658 static void i8xx_irq_uninstall(struct drm_device * dev)
3659 {
3660 	struct drm_i915_private *dev_priv = dev->dev_private;
3661 	int pipe;
3662 
3663 	for_each_pipe(dev_priv, pipe) {
3664 		/* Clear enable bits; then clear status bits */
3665 		I915_WRITE(PIPESTAT(pipe), 0);
3666 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3667 	}
3668 	I915_WRITE16(IMR, 0xffff);
3669 	I915_WRITE16(IER, 0x0);
3670 	I915_WRITE16(IIR, I915_READ16(IIR));
3671 }
3672 
3673 static void i915_irq_preinstall(struct drm_device * dev)
3674 {
3675 	struct drm_i915_private *dev_priv = dev->dev_private;
3676 	int pipe;
3677 
3678 	if (I915_HAS_HOTPLUG(dev)) {
3679 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3680 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3681 	}
3682 
3683 	I915_WRITE16(HWSTAM, 0xeffe);
3684 	for_each_pipe(dev_priv, pipe)
3685 		I915_WRITE(PIPESTAT(pipe), 0);
3686 	I915_WRITE(IMR, 0xffffffff);
3687 	I915_WRITE(IER, 0x0);
3688 	POSTING_READ(IER);
3689 }
3690 
3691 static int i915_irq_postinstall(struct drm_device *dev)
3692 {
3693 	struct drm_i915_private *dev_priv = dev->dev_private;
3694 	u32 enable_mask;
3695 
3696 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3697 
3698 	/* Unmask the interrupts that we always want on. */
3699 	dev_priv->irq_mask =
3700 		~(I915_ASLE_INTERRUPT |
3701 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3702 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3703 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3704 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3705 
3706 	enable_mask =
3707 		I915_ASLE_INTERRUPT |
3708 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3709 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3710 		I915_USER_INTERRUPT;
3711 
3712 	if (I915_HAS_HOTPLUG(dev)) {
3713 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3714 		POSTING_READ(PORT_HOTPLUG_EN);
3715 
3716 		/* Enable in IER... */
3717 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3718 		/* and unmask in IMR */
3719 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3720 	}
3721 
3722 	I915_WRITE(IMR, dev_priv->irq_mask);
3723 	I915_WRITE(IER, enable_mask);
3724 	POSTING_READ(IER);
3725 
3726 	i915_enable_asle_pipestat(dev);
3727 
3728 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3729 	 * just to make the assert_spin_locked check happy. */
3730 	spin_lock_irq(&dev_priv->irq_lock);
3731 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3732 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3733 	spin_unlock_irq(&dev_priv->irq_lock);
3734 
3735 	return 0;
3736 }
3737 
3738 /*
3739  * Returns true when a page flip has completed.
3740  */
3741 static bool i915_handle_vblank(struct drm_device *dev,
3742 			       int plane, int pipe, u32 iir)
3743 {
3744 	struct drm_i915_private *dev_priv = dev->dev_private;
3745 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3746 
3747 	if (!intel_pipe_handle_vblank(dev, pipe))
3748 		return false;
3749 
3750 	if ((iir & flip_pending) == 0)
3751 		goto check_page_flip;
3752 
3753 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3754 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3755 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3756 	 * the flip is completed (no longer pending). Since this doesn't raise
3757 	 * an interrupt per se, we watch for the change at vblank.
3758 	 */
3759 	if (I915_READ(ISR) & flip_pending)
3760 		goto check_page_flip;
3761 
3762 	intel_prepare_page_flip(dev, plane);
3763 	intel_finish_page_flip(dev, pipe);
3764 	return true;
3765 
3766 check_page_flip:
3767 	intel_check_page_flip(dev, pipe);
3768 	return false;
3769 }
3770 
3771 static irqreturn_t i915_irq_handler(int irq, void *arg)
3772 {
3773 	struct drm_device *dev = arg;
3774 	struct drm_i915_private *dev_priv = dev->dev_private;
3775 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3776 	u32 flip_mask =
3777 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3778 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3779 	int pipe, ret = IRQ_NONE;
3780 
3781 	if (!intel_irqs_enabled(dev_priv))
3782 		return IRQ_NONE;
3783 
3784 	iir = I915_READ(IIR);
3785 	do {
3786 		bool irq_received = (iir & ~flip_mask) != 0;
3787 		bool blc_event = false;
3788 
3789 		/* Can't rely on pipestat interrupt bit in iir as it might
3790 		 * have been cleared after the pipestat interrupt was received.
3791 		 * It doesn't set the bit in iir again, but it still produces
3792 		 * interrupts (for non-MSI).
3793 		 */
3794 		spin_lock(&dev_priv->irq_lock);
3795 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3796 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3797 
3798 		for_each_pipe(dev_priv, pipe) {
3799 			int reg = PIPESTAT(pipe);
3800 			pipe_stats[pipe] = I915_READ(reg);
3801 
3802 			/* Clear the PIPE*STAT regs before the IIR */
3803 			if (pipe_stats[pipe] & 0x8000ffff) {
3804 				I915_WRITE(reg, pipe_stats[pipe]);
3805 				irq_received = true;
3806 			}
3807 		}
3808 		spin_unlock(&dev_priv->irq_lock);
3809 
3810 		if (!irq_received)
3811 			break;
3812 
3813 		/* Consume port.  Then clear IIR or we'll miss events */
3814 		if (I915_HAS_HOTPLUG(dev) &&
3815 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3816 			i9xx_hpd_irq_handler(dev);
3817 
3818 		I915_WRITE(IIR, iir & ~flip_mask);
3819 		new_iir = I915_READ(IIR); /* Flush posted writes */
3820 
3821 		if (iir & I915_USER_INTERRUPT)
3822 			notify_ring(&dev_priv->ring[RCS]);
3823 
3824 		for_each_pipe(dev_priv, pipe) {
3825 			int plane = pipe;
3826 			if (HAS_FBC(dev))
3827 				plane = !plane;
3828 
3829 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3830 			    i915_handle_vblank(dev, plane, pipe, iir))
3831 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3832 
3833 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3834 				blc_event = true;
3835 
3836 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3837 				i9xx_pipe_crc_irq_handler(dev, pipe);
3838 
3839 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3840 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3841 								    pipe);
3842 		}
3843 
3844 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3845 			intel_opregion_asle_intr(dev);
3846 
3847 		/* With MSI, interrupts are only generated when iir
3848 		 * transitions from zero to nonzero.  If another bit got
3849 		 * set while we were handling the existing iir bits, then
3850 		 * we would never get another interrupt.
3851 		 *
3852 		 * This is fine on non-MSI as well, as if we hit this path
3853 		 * we avoid exiting the interrupt handler only to generate
3854 		 * another one.
3855 		 *
3856 		 * Note that for MSI this could cause a stray interrupt report
3857 		 * if an interrupt landed in the time between writing IIR and
3858 		 * the posting read.  This should be rare enough to never
3859 		 * trigger the 99% of 100,000 interrupts test for disabling
3860 		 * stray interrupts.
3861 		 */
3862 		ret = IRQ_HANDLED;
3863 		iir = new_iir;
3864 	} while (iir & ~flip_mask);
3865 
3866 	return ret;
3867 }
3868 
3869 static void i915_irq_uninstall(struct drm_device * dev)
3870 {
3871 	struct drm_i915_private *dev_priv = dev->dev_private;
3872 	int pipe;
3873 
3874 	if (I915_HAS_HOTPLUG(dev)) {
3875 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3876 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3877 	}
3878 
3879 	I915_WRITE16(HWSTAM, 0xffff);
3880 	for_each_pipe(dev_priv, pipe) {
3881 		/* Clear enable bits; then clear status bits */
3882 		I915_WRITE(PIPESTAT(pipe), 0);
3883 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3884 	}
3885 	I915_WRITE(IMR, 0xffffffff);
3886 	I915_WRITE(IER, 0x0);
3887 
3888 	I915_WRITE(IIR, I915_READ(IIR));
3889 }
3890 
3891 static void i965_irq_preinstall(struct drm_device * dev)
3892 {
3893 	struct drm_i915_private *dev_priv = dev->dev_private;
3894 	int pipe;
3895 
3896 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3897 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3898 
3899 	I915_WRITE(HWSTAM, 0xeffe);
3900 	for_each_pipe(dev_priv, pipe)
3901 		I915_WRITE(PIPESTAT(pipe), 0);
3902 	I915_WRITE(IMR, 0xffffffff);
3903 	I915_WRITE(IER, 0x0);
3904 	POSTING_READ(IER);
3905 }
3906 
3907 static int i965_irq_postinstall(struct drm_device *dev)
3908 {
3909 	struct drm_i915_private *dev_priv = dev->dev_private;
3910 	u32 enable_mask;
3911 	u32 error_mask;
3912 
3913 	/* Unmask the interrupts that we always want on. */
3914 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3915 			       I915_DISPLAY_PORT_INTERRUPT |
3916 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3919 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3920 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3921 
3922 	enable_mask = ~dev_priv->irq_mask;
3923 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3924 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3925 	enable_mask |= I915_USER_INTERRUPT;
3926 
3927 	if (IS_G4X(dev))
3928 		enable_mask |= I915_BSD_USER_INTERRUPT;
3929 
3930 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3931 	 * just to make the assert_spin_locked check happy. */
3932 	spin_lock_irq(&dev_priv->irq_lock);
3933 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3934 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3935 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3936 	spin_unlock_irq(&dev_priv->irq_lock);
3937 
3938 	/*
3939 	 * Enable some error detection, note the instruction error mask
3940 	 * bit is reserved, so we leave it masked.
3941 	 */
3942 	if (IS_G4X(dev)) {
3943 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3944 			       GM45_ERROR_MEM_PRIV |
3945 			       GM45_ERROR_CP_PRIV |
3946 			       I915_ERROR_MEMORY_REFRESH);
3947 	} else {
3948 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3949 			       I915_ERROR_MEMORY_REFRESH);
3950 	}
3951 	I915_WRITE(EMR, error_mask);
3952 
3953 	I915_WRITE(IMR, dev_priv->irq_mask);
3954 	I915_WRITE(IER, enable_mask);
3955 	POSTING_READ(IER);
3956 
3957 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3958 	POSTING_READ(PORT_HOTPLUG_EN);
3959 
3960 	i915_enable_asle_pipestat(dev);
3961 
3962 	return 0;
3963 }
3964 
3965 static void i915_hpd_irq_setup(struct drm_device *dev)
3966 {
3967 	struct drm_i915_private *dev_priv = dev->dev_private;
3968 	struct intel_encoder *intel_encoder;
3969 	u32 hotplug_en;
3970 
3971 	assert_spin_locked(&dev_priv->irq_lock);
3972 
3973 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3974 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3975 	/* Note HDMI and DP share hotplug bits */
3976 	/* enable bits are the same for all generations */
3977 	for_each_intel_encoder(dev, intel_encoder)
3978 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3979 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3980 	/* Programming the CRT detection parameters tends
3981 	   to generate a spurious hotplug event about three
3982 	   seconds later.  So just do it once.
3983 	*/
3984 	if (IS_G4X(dev))
3985 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3986 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3987 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3988 
3989 	/* Ignore TV since it's buggy */
3990 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3991 }
3992 
3993 static irqreturn_t i965_irq_handler(int irq, void *arg)
3994 {
3995 	struct drm_device *dev = arg;
3996 	struct drm_i915_private *dev_priv = dev->dev_private;
3997 	u32 iir, new_iir;
3998 	u32 pipe_stats[I915_MAX_PIPES];
3999 	int ret = IRQ_NONE, pipe;
4000 	u32 flip_mask =
4001 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4002 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4003 
4004 	if (!intel_irqs_enabled(dev_priv))
4005 		return IRQ_NONE;
4006 
4007 	iir = I915_READ(IIR);
4008 
4009 	for (;;) {
4010 		bool irq_received = (iir & ~flip_mask) != 0;
4011 		bool blc_event = false;
4012 
4013 		/* Can't rely on pipestat interrupt bit in iir as it might
4014 		 * have been cleared after the pipestat interrupt was received.
4015 		 * It doesn't set the bit in iir again, but it still produces
4016 		 * interrupts (for non-MSI).
4017 		 */
4018 		spin_lock(&dev_priv->irq_lock);
4019 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4020 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4021 
4022 		for_each_pipe(dev_priv, pipe) {
4023 			int reg = PIPESTAT(pipe);
4024 			pipe_stats[pipe] = I915_READ(reg);
4025 
4026 			/*
4027 			 * Clear the PIPE*STAT regs before the IIR
4028 			 */
4029 			if (pipe_stats[pipe] & 0x8000ffff) {
4030 				I915_WRITE(reg, pipe_stats[pipe]);
4031 				irq_received = true;
4032 			}
4033 		}
4034 		spin_unlock(&dev_priv->irq_lock);
4035 
4036 		if (!irq_received)
4037 			break;
4038 
4039 		ret = IRQ_HANDLED;
4040 
4041 		/* Consume port.  Then clear IIR or we'll miss events */
4042 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4043 			i9xx_hpd_irq_handler(dev);
4044 
4045 		I915_WRITE(IIR, iir & ~flip_mask);
4046 		new_iir = I915_READ(IIR); /* Flush posted writes */
4047 
4048 		if (iir & I915_USER_INTERRUPT)
4049 			notify_ring(&dev_priv->ring[RCS]);
4050 		if (iir & I915_BSD_USER_INTERRUPT)
4051 			notify_ring(&dev_priv->ring[VCS]);
4052 
4053 		for_each_pipe(dev_priv, pipe) {
4054 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4055 			    i915_handle_vblank(dev, pipe, pipe, iir))
4056 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4057 
4058 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4059 				blc_event = true;
4060 
4061 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4062 				i9xx_pipe_crc_irq_handler(dev, pipe);
4063 
4064 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4065 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4066 		}
4067 
4068 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4069 			intel_opregion_asle_intr(dev);
4070 
4071 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4072 			gmbus_irq_handler(dev);
4073 
4074 		/* With MSI, interrupts are only generated when iir
4075 		 * transitions from zero to nonzero.  If another bit got
4076 		 * set while we were handling the existing iir bits, then
4077 		 * we would never get another interrupt.
4078 		 *
4079 		 * This is fine on non-MSI as well, as if we hit this path
4080 		 * we avoid exiting the interrupt handler only to generate
4081 		 * another one.
4082 		 *
4083 		 * Note that for MSI this could cause a stray interrupt report
4084 		 * if an interrupt landed in the time between writing IIR and
4085 		 * the posting read.  This should be rare enough to never
4086 		 * trigger the 99% of 100,000 interrupts test for disabling
4087 		 * stray interrupts.
4088 		 */
4089 		iir = new_iir;
4090 	}
4091 
4092 	return ret;
4093 }
4094 
4095 static void i965_irq_uninstall(struct drm_device * dev)
4096 {
4097 	struct drm_i915_private *dev_priv = dev->dev_private;
4098 	int pipe;
4099 
4100 	if (!dev_priv)
4101 		return;
4102 
4103 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4104 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4105 
4106 	I915_WRITE(HWSTAM, 0xffffffff);
4107 	for_each_pipe(dev_priv, pipe)
4108 		I915_WRITE(PIPESTAT(pipe), 0);
4109 	I915_WRITE(IMR, 0xffffffff);
4110 	I915_WRITE(IER, 0x0);
4111 
4112 	for_each_pipe(dev_priv, pipe)
4113 		I915_WRITE(PIPESTAT(pipe),
4114 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4115 	I915_WRITE(IIR, I915_READ(IIR));
4116 }
4117 
4118 /**
4119  * intel_irq_init - initializes irq support
4120  * @dev_priv: i915 device instance
4121  *
4122  * This function initializes all the irq support including work items, timers
4123  * and all the vtables. It does not setup the interrupt itself though.
4124  */
4125 void intel_irq_init(struct drm_i915_private *dev_priv)
4126 {
4127 	struct drm_device *dev = dev_priv->dev;
4128 
4129 	intel_hpd_init_work(dev_priv);
4130 
4131 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4132 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4133 
4134 	/* Let's track the enabled rps events */
4135 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4136 		/* WaGsvRC0ResidencyMethod:vlv */
4137 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4138 	else
4139 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4140 
4141 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4142 			  i915_hangcheck_elapsed);
4143 
4144 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4145 
4146 	if (IS_GEN2(dev_priv)) {
4147 		dev->max_vblank_count = 0;
4148 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4149 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4150 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4151 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4152 	} else {
4153 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4154 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4155 	}
4156 
4157 	/*
4158 	 * Opt out of the vblank disable timer on everything except gen2.
4159 	 * Gen2 doesn't have a hardware frame counter and so depends on
4160 	 * vblank interrupts to produce sane vblank seuquence numbers.
4161 	 */
4162 	if (!IS_GEN2(dev_priv))
4163 		dev->vblank_disable_immediate = true;
4164 
4165 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4166 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4167 
4168 	if (IS_CHERRYVIEW(dev_priv)) {
4169 		dev->driver->irq_handler = cherryview_irq_handler;
4170 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4171 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4172 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4173 		dev->driver->enable_vblank = valleyview_enable_vblank;
4174 		dev->driver->disable_vblank = valleyview_disable_vblank;
4175 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4176 	} else if (IS_VALLEYVIEW(dev_priv)) {
4177 		dev->driver->irq_handler = valleyview_irq_handler;
4178 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4179 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4180 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4181 		dev->driver->enable_vblank = valleyview_enable_vblank;
4182 		dev->driver->disable_vblank = valleyview_disable_vblank;
4183 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4184 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4185 		dev->driver->irq_handler = gen8_irq_handler;
4186 		dev->driver->irq_preinstall = gen8_irq_reset;
4187 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4188 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4189 		dev->driver->enable_vblank = gen8_enable_vblank;
4190 		dev->driver->disable_vblank = gen8_disable_vblank;
4191 		if (HAS_PCH_SPLIT(dev))
4192 			dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4193 		else
4194 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4195 	} else if (HAS_PCH_SPLIT(dev)) {
4196 		dev->driver->irq_handler = ironlake_irq_handler;
4197 		dev->driver->irq_preinstall = ironlake_irq_reset;
4198 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4199 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4200 		dev->driver->enable_vblank = ironlake_enable_vblank;
4201 		dev->driver->disable_vblank = ironlake_disable_vblank;
4202 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4203 	} else {
4204 		if (INTEL_INFO(dev_priv)->gen == 2) {
4205 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4206 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4207 			dev->driver->irq_handler = i8xx_irq_handler;
4208 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4209 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4210 			dev->driver->irq_preinstall = i915_irq_preinstall;
4211 			dev->driver->irq_postinstall = i915_irq_postinstall;
4212 			dev->driver->irq_uninstall = i915_irq_uninstall;
4213 			dev->driver->irq_handler = i915_irq_handler;
4214 		} else {
4215 			dev->driver->irq_preinstall = i965_irq_preinstall;
4216 			dev->driver->irq_postinstall = i965_irq_postinstall;
4217 			dev->driver->irq_uninstall = i965_irq_uninstall;
4218 			dev->driver->irq_handler = i965_irq_handler;
4219 		}
4220 		if (I915_HAS_HOTPLUG(dev_priv))
4221 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4222 		dev->driver->enable_vblank = i915_enable_vblank;
4223 		dev->driver->disable_vblank = i915_disable_vblank;
4224 	}
4225 }
4226 
4227 /**
4228  * intel_irq_install - enables the hardware interrupt
4229  * @dev_priv: i915 device instance
4230  *
4231  * This function enables the hardware interrupt handling, but leaves the hotplug
4232  * handling still disabled. It is called after intel_irq_init().
4233  *
4234  * In the driver load and resume code we need working interrupts in a few places
4235  * but don't want to deal with the hassle of concurrent probe and hotplug
4236  * workers. Hence the split into this two-stage approach.
4237  */
4238 int intel_irq_install(struct drm_i915_private *dev_priv)
4239 {
4240 	/*
4241 	 * We enable some interrupt sources in our postinstall hooks, so mark
4242 	 * interrupts as enabled _before_ actually enabling them to avoid
4243 	 * special cases in our ordering checks.
4244 	 */
4245 	dev_priv->pm.irqs_enabled = true;
4246 
4247 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4248 }
4249 
4250 /**
4251  * intel_irq_uninstall - finilizes all irq handling
4252  * @dev_priv: i915 device instance
4253  *
4254  * This stops interrupt and hotplug handling and unregisters and frees all
4255  * resources acquired in the init functions.
4256  */
4257 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4258 {
4259 	drm_irq_uninstall(dev_priv->dev);
4260 	intel_hpd_cancel_work(dev_priv);
4261 	dev_priv->pm.irqs_enabled = false;
4262 }
4263 
4264 /**
4265  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4266  * @dev_priv: i915 device instance
4267  *
4268  * This function is used to disable interrupts at runtime, both in the runtime
4269  * pm and the system suspend/resume code.
4270  */
4271 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4272 {
4273 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4274 	dev_priv->pm.irqs_enabled = false;
4275 	synchronize_irq(dev_priv->dev->irq);
4276 }
4277 
4278 /**
4279  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4280  * @dev_priv: i915 device instance
4281  *
4282  * This function is used to enable interrupts at runtime, both in the runtime
4283  * pm and the system suspend/resume code.
4284  */
4285 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4286 {
4287 	dev_priv->pm.irqs_enabled = true;
4288 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4289 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4290 }
4291