xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49 
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54 
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62 
63 /*
64  * Interrupt statistic for PMU. Increments the counter only if the
65  * interrupt originated from the the GPU so interrupts from a device which
66  * shares the interrupt line are not accounted.
67  */
68 static inline void pmu_irq_stats(struct drm_i915_private *i915,
69 				 irqreturn_t res)
70 {
71 	if (unlikely(res != IRQ_HANDLED))
72 		return;
73 
74 	/*
75 	 * A clever compiler translates that into INC. A not so clever one
76 	 * should at least prevent store tearing.
77 	 */
78 	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
79 }
80 
81 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
82 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
83 				    enum hpd_pin pin);
84 
85 static const u32 hpd_ilk[HPD_NUM_PINS] = {
86 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
87 };
88 
89 static const u32 hpd_ivb[HPD_NUM_PINS] = {
90 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
91 };
92 
93 static const u32 hpd_bdw[HPD_NUM_PINS] = {
94 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
95 };
96 
97 static const u32 hpd_ibx[HPD_NUM_PINS] = {
98 	[HPD_CRT] = SDE_CRT_HOTPLUG,
99 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
100 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
101 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
102 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
103 };
104 
105 static const u32 hpd_cpt[HPD_NUM_PINS] = {
106 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
107 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
108 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
109 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
110 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
111 };
112 
113 static const u32 hpd_spt[HPD_NUM_PINS] = {
114 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
115 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
116 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
117 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
118 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
119 };
120 
121 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
122 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
123 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
124 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
125 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
126 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
127 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
128 };
129 
130 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
131 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
132 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
133 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
134 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
135 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
136 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
137 };
138 
139 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
140 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
141 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
142 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
143 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
144 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
145 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
146 };
147 
148 static const u32 hpd_bxt[HPD_NUM_PINS] = {
149 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
150 	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
151 	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
152 };
153 
154 static const u32 hpd_gen11[HPD_NUM_PINS] = {
155 	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
156 	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
157 	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
158 	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
159 	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
160 	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
161 };
162 
163 static const u32 hpd_icp[HPD_NUM_PINS] = {
164 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
165 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
166 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
167 	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
168 	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
169 	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
170 	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
171 	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
172 	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
173 };
174 
175 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
176 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
177 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
178 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
179 	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
180 };
181 
182 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
183 {
184 	struct i915_hotplug *hpd = &dev_priv->hotplug;
185 
186 	if (HAS_GMCH(dev_priv)) {
187 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
188 		    IS_CHERRYVIEW(dev_priv))
189 			hpd->hpd = hpd_status_g4x;
190 		else
191 			hpd->hpd = hpd_status_i915;
192 		return;
193 	}
194 
195 	if (DISPLAY_VER(dev_priv) >= 11)
196 		hpd->hpd = hpd_gen11;
197 	else if (IS_GEN9_LP(dev_priv))
198 		hpd->hpd = hpd_bxt;
199 	else if (DISPLAY_VER(dev_priv) >= 8)
200 		hpd->hpd = hpd_bdw;
201 	else if (DISPLAY_VER(dev_priv) >= 7)
202 		hpd->hpd = hpd_ivb;
203 	else
204 		hpd->hpd = hpd_ilk;
205 
206 	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
207 	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
208 		return;
209 
210 	if (HAS_PCH_DG1(dev_priv))
211 		hpd->pch_hpd = hpd_sde_dg1;
212 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
213 		hpd->pch_hpd = hpd_icp;
214 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
215 		hpd->pch_hpd = hpd_spt;
216 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
217 		hpd->pch_hpd = hpd_cpt;
218 	else if (HAS_PCH_IBX(dev_priv))
219 		hpd->pch_hpd = hpd_ibx;
220 	else
221 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
222 }
223 
224 static void
225 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
226 {
227 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
228 
229 	drm_crtc_handle_vblank(&crtc->base);
230 }
231 
232 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
233 		    i915_reg_t iir, i915_reg_t ier)
234 {
235 	intel_uncore_write(uncore, imr, 0xffffffff);
236 	intel_uncore_posting_read(uncore, imr);
237 
238 	intel_uncore_write(uncore, ier, 0);
239 
240 	/* IIR can theoretically queue up two events. Be paranoid. */
241 	intel_uncore_write(uncore, iir, 0xffffffff);
242 	intel_uncore_posting_read(uncore, iir);
243 	intel_uncore_write(uncore, iir, 0xffffffff);
244 	intel_uncore_posting_read(uncore, iir);
245 }
246 
247 void gen2_irq_reset(struct intel_uncore *uncore)
248 {
249 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
250 	intel_uncore_posting_read16(uncore, GEN2_IMR);
251 
252 	intel_uncore_write16(uncore, GEN2_IER, 0);
253 
254 	/* IIR can theoretically queue up two events. Be paranoid. */
255 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
256 	intel_uncore_posting_read16(uncore, GEN2_IIR);
257 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
258 	intel_uncore_posting_read16(uncore, GEN2_IIR);
259 }
260 
261 /*
262  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
263  */
264 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
265 {
266 	u32 val = intel_uncore_read(uncore, reg);
267 
268 	if (val == 0)
269 		return;
270 
271 	drm_WARN(&uncore->i915->drm, 1,
272 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
273 		 i915_mmio_reg_offset(reg), val);
274 	intel_uncore_write(uncore, reg, 0xffffffff);
275 	intel_uncore_posting_read(uncore, reg);
276 	intel_uncore_write(uncore, reg, 0xffffffff);
277 	intel_uncore_posting_read(uncore, reg);
278 }
279 
280 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
281 {
282 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
283 
284 	if (val == 0)
285 		return;
286 
287 	drm_WARN(&uncore->i915->drm, 1,
288 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
289 		 i915_mmio_reg_offset(GEN2_IIR), val);
290 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
291 	intel_uncore_posting_read16(uncore, GEN2_IIR);
292 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
293 	intel_uncore_posting_read16(uncore, GEN2_IIR);
294 }
295 
296 void gen3_irq_init(struct intel_uncore *uncore,
297 		   i915_reg_t imr, u32 imr_val,
298 		   i915_reg_t ier, u32 ier_val,
299 		   i915_reg_t iir)
300 {
301 	gen3_assert_iir_is_zero(uncore, iir);
302 
303 	intel_uncore_write(uncore, ier, ier_val);
304 	intel_uncore_write(uncore, imr, imr_val);
305 	intel_uncore_posting_read(uncore, imr);
306 }
307 
308 void gen2_irq_init(struct intel_uncore *uncore,
309 		   u32 imr_val, u32 ier_val)
310 {
311 	gen2_assert_iir_is_zero(uncore);
312 
313 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
314 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
315 	intel_uncore_posting_read16(uncore, GEN2_IMR);
316 }
317 
318 /* For display hotplug interrupt */
319 static inline void
320 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
321 				     u32 mask,
322 				     u32 bits)
323 {
324 	u32 val;
325 
326 	lockdep_assert_held(&dev_priv->irq_lock);
327 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
328 
329 	val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN);
330 	val &= ~mask;
331 	val |= bits;
332 	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val);
333 }
334 
335 /**
336  * i915_hotplug_interrupt_update - update hotplug interrupt enable
337  * @dev_priv: driver private
338  * @mask: bits to update
339  * @bits: bits to enable
340  * NOTE: the HPD enable bits are modified both inside and outside
341  * of an interrupt context. To avoid that read-modify-write cycles
342  * interfer, these bits are protected by a spinlock. Since this
343  * function is usually not called from a context where the lock is
344  * held already, this function acquires the lock itself. A non-locking
345  * version is also available.
346  */
347 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
348 				   u32 mask,
349 				   u32 bits)
350 {
351 	spin_lock_irq(&dev_priv->irq_lock);
352 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
353 	spin_unlock_irq(&dev_priv->irq_lock);
354 }
355 
356 /**
357  * ilk_update_display_irq - update DEIMR
358  * @dev_priv: driver private
359  * @interrupt_mask: mask of interrupt bits to update
360  * @enabled_irq_mask: mask of interrupt bits to enable
361  */
362 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
363 			    u32 interrupt_mask,
364 			    u32 enabled_irq_mask)
365 {
366 	u32 new_val;
367 
368 	lockdep_assert_held(&dev_priv->irq_lock);
369 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
370 
371 	new_val = dev_priv->irq_mask;
372 	new_val &= ~interrupt_mask;
373 	new_val |= (~enabled_irq_mask & interrupt_mask);
374 
375 	if (new_val != dev_priv->irq_mask &&
376 	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
377 		dev_priv->irq_mask = new_val;
378 		intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
379 		intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
380 	}
381 }
382 
383 /**
384  * bdw_update_port_irq - update DE port interrupt
385  * @dev_priv: driver private
386  * @interrupt_mask: mask of interrupt bits to update
387  * @enabled_irq_mask: mask of interrupt bits to enable
388  */
389 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
390 				u32 interrupt_mask,
391 				u32 enabled_irq_mask)
392 {
393 	u32 new_val;
394 	u32 old_val;
395 
396 	lockdep_assert_held(&dev_priv->irq_lock);
397 
398 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
399 
400 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
401 		return;
402 
403 	old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
404 
405 	new_val = old_val;
406 	new_val &= ~interrupt_mask;
407 	new_val |= (~enabled_irq_mask & interrupt_mask);
408 
409 	if (new_val != old_val) {
410 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
411 		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
412 	}
413 }
414 
415 /**
416  * bdw_update_pipe_irq - update DE pipe interrupt
417  * @dev_priv: driver private
418  * @pipe: pipe whose interrupt to update
419  * @interrupt_mask: mask of interrupt bits to update
420  * @enabled_irq_mask: mask of interrupt bits to enable
421  */
422 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
423 			 enum pipe pipe,
424 			 u32 interrupt_mask,
425 			 u32 enabled_irq_mask)
426 {
427 	u32 new_val;
428 
429 	lockdep_assert_held(&dev_priv->irq_lock);
430 
431 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
432 
433 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
434 		return;
435 
436 	new_val = dev_priv->de_irq_mask[pipe];
437 	new_val &= ~interrupt_mask;
438 	new_val |= (~enabled_irq_mask & interrupt_mask);
439 
440 	if (new_val != dev_priv->de_irq_mask[pipe]) {
441 		dev_priv->de_irq_mask[pipe] = new_val;
442 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
443 		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
444 	}
445 }
446 
447 /**
448  * ibx_display_interrupt_update - update SDEIMR
449  * @dev_priv: driver private
450  * @interrupt_mask: mask of interrupt bits to update
451  * @enabled_irq_mask: mask of interrupt bits to enable
452  */
453 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
454 				  u32 interrupt_mask,
455 				  u32 enabled_irq_mask)
456 {
457 	u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
458 	sdeimr &= ~interrupt_mask;
459 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
460 
461 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
462 
463 	lockdep_assert_held(&dev_priv->irq_lock);
464 
465 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
466 		return;
467 
468 	intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
469 	intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
470 }
471 
472 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
473 			      enum pipe pipe)
474 {
475 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
476 	u32 enable_mask = status_mask << 16;
477 
478 	lockdep_assert_held(&dev_priv->irq_lock);
479 
480 	if (DISPLAY_VER(dev_priv) < 5)
481 		goto out;
482 
483 	/*
484 	 * On pipe A we don't support the PSR interrupt yet,
485 	 * on pipe B and C the same bit MBZ.
486 	 */
487 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
488 			     status_mask & PIPE_A_PSR_STATUS_VLV))
489 		return 0;
490 	/*
491 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
492 	 * A the same bit is for perf counters which we don't use either.
493 	 */
494 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
495 			     status_mask & PIPE_B_PSR_STATUS_VLV))
496 		return 0;
497 
498 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
499 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
500 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
501 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
502 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
503 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
504 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
505 
506 out:
507 	drm_WARN_ONCE(&dev_priv->drm,
508 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
509 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
510 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
511 		      pipe_name(pipe), enable_mask, status_mask);
512 
513 	return enable_mask;
514 }
515 
516 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
517 			  enum pipe pipe, u32 status_mask)
518 {
519 	i915_reg_t reg = PIPESTAT(pipe);
520 	u32 enable_mask;
521 
522 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
523 		      "pipe %c: status_mask=0x%x\n",
524 		      pipe_name(pipe), status_mask);
525 
526 	lockdep_assert_held(&dev_priv->irq_lock);
527 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
528 
529 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
530 		return;
531 
532 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
533 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
534 
535 	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
536 	intel_uncore_posting_read(&dev_priv->uncore, reg);
537 }
538 
539 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
540 			   enum pipe pipe, u32 status_mask)
541 {
542 	i915_reg_t reg = PIPESTAT(pipe);
543 	u32 enable_mask;
544 
545 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
546 		      "pipe %c: status_mask=0x%x\n",
547 		      pipe_name(pipe), status_mask);
548 
549 	lockdep_assert_held(&dev_priv->irq_lock);
550 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
551 
552 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
553 		return;
554 
555 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
556 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
557 
558 	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
559 	intel_uncore_posting_read(&dev_priv->uncore, reg);
560 }
561 
562 static bool i915_has_asle(struct drm_i915_private *dev_priv)
563 {
564 	if (!dev_priv->opregion.asle)
565 		return false;
566 
567 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
568 }
569 
570 /**
571  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
572  * @dev_priv: i915 device private
573  */
574 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
575 {
576 	if (!i915_has_asle(dev_priv))
577 		return;
578 
579 	spin_lock_irq(&dev_priv->irq_lock);
580 
581 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
582 	if (DISPLAY_VER(dev_priv) >= 4)
583 		i915_enable_pipestat(dev_priv, PIPE_A,
584 				     PIPE_LEGACY_BLC_EVENT_STATUS);
585 
586 	spin_unlock_irq(&dev_priv->irq_lock);
587 }
588 
589 /*
590  * This timing diagram depicts the video signal in and
591  * around the vertical blanking period.
592  *
593  * Assumptions about the fictitious mode used in this example:
594  *  vblank_start >= 3
595  *  vsync_start = vblank_start + 1
596  *  vsync_end = vblank_start + 2
597  *  vtotal = vblank_start + 3
598  *
599  *           start of vblank:
600  *           latch double buffered registers
601  *           increment frame counter (ctg+)
602  *           generate start of vblank interrupt (gen4+)
603  *           |
604  *           |          frame start:
605  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
606  *           |          may be shifted forward 1-3 extra lines via PIPECONF
607  *           |          |
608  *           |          |  start of vsync:
609  *           |          |  generate vsync interrupt
610  *           |          |  |
611  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
612  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
613  * ----va---> <-----------------vb--------------------> <--------va-------------
614  *       |          |       <----vs----->                     |
615  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
616  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
617  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
618  *       |          |                                         |
619  *       last visible pixel                                   first visible pixel
620  *                  |                                         increment frame counter (gen3/4)
621  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
622  *
623  * x  = horizontal active
624  * _  = horizontal blanking
625  * hs = horizontal sync
626  * va = vertical active
627  * vb = vertical blanking
628  * vs = vertical sync
629  * vbs = vblank_start (number)
630  *
631  * Summary:
632  * - most events happen at the start of horizontal sync
633  * - frame start happens at the start of horizontal blank, 1-4 lines
634  *   (depending on PIPECONF settings) after the start of vblank
635  * - gen3/4 pixel and frame counter are synchronized with the start
636  *   of horizontal active on the first line of vertical active
637  */
638 
639 /* Called from drm generic code, passed a 'crtc', which
640  * we use as a pipe index
641  */
642 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
643 {
644 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
645 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
646 	const struct drm_display_mode *mode = &vblank->hwmode;
647 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
648 	i915_reg_t high_frame, low_frame;
649 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
650 	unsigned long irqflags;
651 
652 	/*
653 	 * On i965gm TV output the frame counter only works up to
654 	 * the point when we enable the TV encoder. After that the
655 	 * frame counter ceases to work and reads zero. We need a
656 	 * vblank wait before enabling the TV encoder and so we
657 	 * have to enable vblank interrupts while the frame counter
658 	 * is still in a working state. However the core vblank code
659 	 * does not like us returning non-zero frame counter values
660 	 * when we've told it that we don't have a working frame
661 	 * counter. Thus we must stop non-zero values leaking out.
662 	 */
663 	if (!vblank->max_vblank_count)
664 		return 0;
665 
666 	htotal = mode->crtc_htotal;
667 	hsync_start = mode->crtc_hsync_start;
668 	vbl_start = mode->crtc_vblank_start;
669 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
670 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
671 
672 	/* Convert to pixel count */
673 	vbl_start *= htotal;
674 
675 	/* Start of vblank event occurs at start of hsync */
676 	vbl_start -= htotal - hsync_start;
677 
678 	high_frame = PIPEFRAME(pipe);
679 	low_frame = PIPEFRAMEPIXEL(pipe);
680 
681 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
682 
683 	/*
684 	 * High & low register fields aren't synchronized, so make sure
685 	 * we get a low value that's stable across two reads of the high
686 	 * register.
687 	 */
688 	do {
689 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
690 		low   = intel_de_read_fw(dev_priv, low_frame);
691 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
692 	} while (high1 != high2);
693 
694 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
695 
696 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
697 	pixel = low & PIPE_PIXEL_MASK;
698 	low >>= PIPE_FRAME_LOW_SHIFT;
699 
700 	/*
701 	 * The frame counter increments at beginning of active.
702 	 * Cook up a vblank counter by also checking the pixel
703 	 * counter against vblank start.
704 	 */
705 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
706 }
707 
708 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
709 {
710 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
711 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
712 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
713 
714 	if (!vblank->max_vblank_count)
715 		return 0;
716 
717 	return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
718 }
719 
720 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
721 {
722 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
723 	struct drm_vblank_crtc *vblank =
724 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
725 	const struct drm_display_mode *mode = &vblank->hwmode;
726 	u32 htotal = mode->crtc_htotal;
727 	u32 clock = mode->crtc_clock;
728 	u32 scan_prev_time, scan_curr_time, scan_post_time;
729 
730 	/*
731 	 * To avoid the race condition where we might cross into the
732 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
733 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
734 	 * during the same frame.
735 	 */
736 	do {
737 		/*
738 		 * This field provides read back of the display
739 		 * pipe frame time stamp. The time stamp value
740 		 * is sampled at every start of vertical blank.
741 		 */
742 		scan_prev_time = intel_de_read_fw(dev_priv,
743 						  PIPE_FRMTMSTMP(crtc->pipe));
744 
745 		/*
746 		 * The TIMESTAMP_CTR register has the current
747 		 * time stamp value.
748 		 */
749 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
750 
751 		scan_post_time = intel_de_read_fw(dev_priv,
752 						  PIPE_FRMTMSTMP(crtc->pipe));
753 	} while (scan_post_time != scan_prev_time);
754 
755 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
756 				   clock), 1000 * htotal);
757 }
758 
759 /*
760  * On certain encoders on certain platforms, pipe
761  * scanline register will not work to get the scanline,
762  * since the timings are driven from the PORT or issues
763  * with scanline register updates.
764  * This function will use Framestamp and current
765  * timestamp registers to calculate the scanline.
766  */
767 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
768 {
769 	struct drm_vblank_crtc *vblank =
770 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
771 	const struct drm_display_mode *mode = &vblank->hwmode;
772 	u32 vblank_start = mode->crtc_vblank_start;
773 	u32 vtotal = mode->crtc_vtotal;
774 	u32 scanline;
775 
776 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
777 	scanline = min(scanline, vtotal - 1);
778 	scanline = (scanline + vblank_start) % vtotal;
779 
780 	return scanline;
781 }
782 
783 /*
784  * intel_de_read_fw(), only for fast reads of display block, no need for
785  * forcewake etc.
786  */
787 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
788 {
789 	struct drm_device *dev = crtc->base.dev;
790 	struct drm_i915_private *dev_priv = to_i915(dev);
791 	const struct drm_display_mode *mode;
792 	struct drm_vblank_crtc *vblank;
793 	enum pipe pipe = crtc->pipe;
794 	int position, vtotal;
795 
796 	if (!crtc->active)
797 		return 0;
798 
799 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
800 	mode = &vblank->hwmode;
801 
802 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
803 		return __intel_get_crtc_scanline_from_timestamp(crtc);
804 
805 	vtotal = mode->crtc_vtotal;
806 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
807 		vtotal /= 2;
808 
809 	if (IS_DISPLAY_VER(dev_priv, 2))
810 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
811 	else
812 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
813 
814 	/*
815 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
816 	 * read it just before the start of vblank.  So try it again
817 	 * so we don't accidentally end up spanning a vblank frame
818 	 * increment, causing the pipe_update_end() code to squak at us.
819 	 *
820 	 * The nature of this problem means we can't simply check the ISR
821 	 * bit and return the vblank start value; nor can we use the scanline
822 	 * debug register in the transcoder as it appears to have the same
823 	 * problem.  We may need to extend this to include other platforms,
824 	 * but so far testing only shows the problem on HSW.
825 	 */
826 	if (HAS_DDI(dev_priv) && !position) {
827 		int i, temp;
828 
829 		for (i = 0; i < 100; i++) {
830 			udelay(1);
831 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
832 			if (temp != position) {
833 				position = temp;
834 				break;
835 			}
836 		}
837 	}
838 
839 	/*
840 	 * See update_scanline_offset() for the details on the
841 	 * scanline_offset adjustment.
842 	 */
843 	return (position + crtc->scanline_offset) % vtotal;
844 }
845 
846 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
847 				     bool in_vblank_irq,
848 				     int *vpos, int *hpos,
849 				     ktime_t *stime, ktime_t *etime,
850 				     const struct drm_display_mode *mode)
851 {
852 	struct drm_device *dev = _crtc->dev;
853 	struct drm_i915_private *dev_priv = to_i915(dev);
854 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
855 	enum pipe pipe = crtc->pipe;
856 	int position;
857 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
858 	unsigned long irqflags;
859 	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
860 		IS_G4X(dev_priv) || IS_DISPLAY_VER(dev_priv, 2) ||
861 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
862 
863 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
864 		drm_dbg(&dev_priv->drm,
865 			"trying to get scanoutpos for disabled "
866 			"pipe %c\n", pipe_name(pipe));
867 		return false;
868 	}
869 
870 	htotal = mode->crtc_htotal;
871 	hsync_start = mode->crtc_hsync_start;
872 	vtotal = mode->crtc_vtotal;
873 	vbl_start = mode->crtc_vblank_start;
874 	vbl_end = mode->crtc_vblank_end;
875 
876 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
877 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
878 		vbl_end /= 2;
879 		vtotal /= 2;
880 	}
881 
882 	/*
883 	 * Lock uncore.lock, as we will do multiple timing critical raw
884 	 * register reads, potentially with preemption disabled, so the
885 	 * following code must not block on uncore.lock.
886 	 */
887 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
888 
889 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
890 
891 	/* Get optional system timestamp before query. */
892 	if (stime)
893 		*stime = ktime_get();
894 
895 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
896 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
897 
898 		position = __intel_get_crtc_scanline(crtc);
899 
900 		/*
901 		 * Already exiting vblank? If so, shift our position
902 		 * so it looks like we're already apporaching the full
903 		 * vblank end. This should make the generated timestamp
904 		 * more or less match when the active portion will start.
905 		 */
906 		if (position >= vbl_start && scanlines < position)
907 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
908 	} else if (use_scanline_counter) {
909 		/* No obvious pixelcount register. Only query vertical
910 		 * scanout position from Display scan line register.
911 		 */
912 		position = __intel_get_crtc_scanline(crtc);
913 	} else {
914 		/* Have access to pixelcount since start of frame.
915 		 * We can split this into vertical and horizontal
916 		 * scanout position.
917 		 */
918 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
919 
920 		/* convert to pixel counts */
921 		vbl_start *= htotal;
922 		vbl_end *= htotal;
923 		vtotal *= htotal;
924 
925 		/*
926 		 * In interlaced modes, the pixel counter counts all pixels,
927 		 * so one field will have htotal more pixels. In order to avoid
928 		 * the reported position from jumping backwards when the pixel
929 		 * counter is beyond the length of the shorter field, just
930 		 * clamp the position the length of the shorter field. This
931 		 * matches how the scanline counter based position works since
932 		 * the scanline counter doesn't count the two half lines.
933 		 */
934 		if (position >= vtotal)
935 			position = vtotal - 1;
936 
937 		/*
938 		 * Start of vblank interrupt is triggered at start of hsync,
939 		 * just prior to the first active line of vblank. However we
940 		 * consider lines to start at the leading edge of horizontal
941 		 * active. So, should we get here before we've crossed into
942 		 * the horizontal active of the first line in vblank, we would
943 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
944 		 * always add htotal-hsync_start to the current pixel position.
945 		 */
946 		position = (position + htotal - hsync_start) % vtotal;
947 	}
948 
949 	/* Get optional system timestamp after query. */
950 	if (etime)
951 		*etime = ktime_get();
952 
953 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
954 
955 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
956 
957 	/*
958 	 * While in vblank, position will be negative
959 	 * counting up towards 0 at vbl_end. And outside
960 	 * vblank, position will be positive counting
961 	 * up since vbl_end.
962 	 */
963 	if (position >= vbl_start)
964 		position -= vbl_end;
965 	else
966 		position += vtotal - vbl_end;
967 
968 	if (use_scanline_counter) {
969 		*vpos = position;
970 		*hpos = 0;
971 	} else {
972 		*vpos = position / htotal;
973 		*hpos = position - (*vpos * htotal);
974 	}
975 
976 	return true;
977 }
978 
979 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
980 				     ktime_t *vblank_time, bool in_vblank_irq)
981 {
982 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
983 		crtc, max_error, vblank_time, in_vblank_irq,
984 		i915_get_crtc_scanoutpos);
985 }
986 
987 int intel_get_crtc_scanline(struct intel_crtc *crtc)
988 {
989 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
990 	unsigned long irqflags;
991 	int position;
992 
993 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
994 	position = __intel_get_crtc_scanline(crtc);
995 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
996 
997 	return position;
998 }
999 
1000 /**
1001  * ivb_parity_work - Workqueue called when a parity error interrupt
1002  * occurred.
1003  * @work: workqueue struct
1004  *
1005  * Doesn't actually do anything except notify userspace. As a consequence of
1006  * this event, userspace should try to remap the bad rows since statistically
1007  * it is likely the same row is more likely to go bad again.
1008  */
1009 static void ivb_parity_work(struct work_struct *work)
1010 {
1011 	struct drm_i915_private *dev_priv =
1012 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1013 	struct intel_gt *gt = &dev_priv->gt;
1014 	u32 error_status, row, bank, subbank;
1015 	char *parity_event[6];
1016 	u32 misccpctl;
1017 	u8 slice = 0;
1018 
1019 	/* We must turn off DOP level clock gating to access the L3 registers.
1020 	 * In order to prevent a get/put style interface, acquire struct mutex
1021 	 * any time we access those registers.
1022 	 */
1023 	mutex_lock(&dev_priv->drm.struct_mutex);
1024 
1025 	/* If we've screwed up tracking, just let the interrupt fire again */
1026 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1027 		goto out;
1028 
1029 	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1030 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1031 	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1032 
1033 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1034 		i915_reg_t reg;
1035 
1036 		slice--;
1037 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1038 				     slice >= NUM_L3_SLICES(dev_priv)))
1039 			break;
1040 
1041 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1042 
1043 		reg = GEN7_L3CDERRST1(slice);
1044 
1045 		error_status = intel_uncore_read(&dev_priv->uncore, reg);
1046 		row = GEN7_PARITY_ERROR_ROW(error_status);
1047 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1048 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1049 
1050 		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1051 		intel_uncore_posting_read(&dev_priv->uncore, reg);
1052 
1053 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1054 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1055 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1056 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1057 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1058 		parity_event[5] = NULL;
1059 
1060 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1061 				   KOBJ_CHANGE, parity_event);
1062 
1063 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1064 			  slice, row, bank, subbank);
1065 
1066 		kfree(parity_event[4]);
1067 		kfree(parity_event[3]);
1068 		kfree(parity_event[2]);
1069 		kfree(parity_event[1]);
1070 	}
1071 
1072 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1073 
1074 out:
1075 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1076 	spin_lock_irq(&gt->irq_lock);
1077 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1078 	spin_unlock_irq(&gt->irq_lock);
1079 
1080 	mutex_unlock(&dev_priv->drm.struct_mutex);
1081 }
1082 
1083 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1084 {
1085 	switch (pin) {
1086 	case HPD_PORT_TC1:
1087 	case HPD_PORT_TC2:
1088 	case HPD_PORT_TC3:
1089 	case HPD_PORT_TC4:
1090 	case HPD_PORT_TC5:
1091 	case HPD_PORT_TC6:
1092 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1093 	default:
1094 		return false;
1095 	}
1096 }
1097 
1098 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100 	switch (pin) {
1101 	case HPD_PORT_A:
1102 		return val & PORTA_HOTPLUG_LONG_DETECT;
1103 	case HPD_PORT_B:
1104 		return val & PORTB_HOTPLUG_LONG_DETECT;
1105 	case HPD_PORT_C:
1106 		return val & PORTC_HOTPLUG_LONG_DETECT;
1107 	default:
1108 		return false;
1109 	}
1110 }
1111 
1112 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113 {
1114 	switch (pin) {
1115 	case HPD_PORT_A:
1116 	case HPD_PORT_B:
1117 	case HPD_PORT_C:
1118 	case HPD_PORT_D:
1119 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1120 	default:
1121 		return false;
1122 	}
1123 }
1124 
1125 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1126 {
1127 	switch (pin) {
1128 	case HPD_PORT_TC1:
1129 	case HPD_PORT_TC2:
1130 	case HPD_PORT_TC3:
1131 	case HPD_PORT_TC4:
1132 	case HPD_PORT_TC5:
1133 	case HPD_PORT_TC6:
1134 		return val & ICP_TC_HPD_LONG_DETECT(pin);
1135 	default:
1136 		return false;
1137 	}
1138 }
1139 
1140 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1141 {
1142 	switch (pin) {
1143 	case HPD_PORT_E:
1144 		return val & PORTE_HOTPLUG_LONG_DETECT;
1145 	default:
1146 		return false;
1147 	}
1148 }
1149 
1150 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1151 {
1152 	switch (pin) {
1153 	case HPD_PORT_A:
1154 		return val & PORTA_HOTPLUG_LONG_DETECT;
1155 	case HPD_PORT_B:
1156 		return val & PORTB_HOTPLUG_LONG_DETECT;
1157 	case HPD_PORT_C:
1158 		return val & PORTC_HOTPLUG_LONG_DETECT;
1159 	case HPD_PORT_D:
1160 		return val & PORTD_HOTPLUG_LONG_DETECT;
1161 	default:
1162 		return false;
1163 	}
1164 }
1165 
1166 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1167 {
1168 	switch (pin) {
1169 	case HPD_PORT_A:
1170 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1171 	default:
1172 		return false;
1173 	}
1174 }
1175 
1176 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1177 {
1178 	switch (pin) {
1179 	case HPD_PORT_B:
1180 		return val & PORTB_HOTPLUG_LONG_DETECT;
1181 	case HPD_PORT_C:
1182 		return val & PORTC_HOTPLUG_LONG_DETECT;
1183 	case HPD_PORT_D:
1184 		return val & PORTD_HOTPLUG_LONG_DETECT;
1185 	default:
1186 		return false;
1187 	}
1188 }
1189 
1190 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1191 {
1192 	switch (pin) {
1193 	case HPD_PORT_B:
1194 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1195 	case HPD_PORT_C:
1196 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1197 	case HPD_PORT_D:
1198 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1199 	default:
1200 		return false;
1201 	}
1202 }
1203 
1204 /*
1205  * Get a bit mask of pins that have triggered, and which ones may be long.
1206  * This can be called multiple times with the same masks to accumulate
1207  * hotplug detection results from several registers.
1208  *
1209  * Note that the caller is expected to zero out the masks initially.
1210  */
1211 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1212 			       u32 *pin_mask, u32 *long_mask,
1213 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1214 			       const u32 hpd[HPD_NUM_PINS],
1215 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1216 {
1217 	enum hpd_pin pin;
1218 
1219 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1220 
1221 	for_each_hpd_pin(pin) {
1222 		if ((hpd[pin] & hotplug_trigger) == 0)
1223 			continue;
1224 
1225 		*pin_mask |= BIT(pin);
1226 
1227 		if (long_pulse_detect(pin, dig_hotplug_reg))
1228 			*long_mask |= BIT(pin);
1229 	}
1230 
1231 	drm_dbg(&dev_priv->drm,
1232 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1233 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1234 
1235 }
1236 
1237 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1238 				  const u32 hpd[HPD_NUM_PINS])
1239 {
1240 	struct intel_encoder *encoder;
1241 	u32 enabled_irqs = 0;
1242 
1243 	for_each_intel_encoder(&dev_priv->drm, encoder)
1244 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1245 			enabled_irqs |= hpd[encoder->hpd_pin];
1246 
1247 	return enabled_irqs;
1248 }
1249 
1250 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1251 				  const u32 hpd[HPD_NUM_PINS])
1252 {
1253 	struct intel_encoder *encoder;
1254 	u32 hotplug_irqs = 0;
1255 
1256 	for_each_intel_encoder(&dev_priv->drm, encoder)
1257 		hotplug_irqs |= hpd[encoder->hpd_pin];
1258 
1259 	return hotplug_irqs;
1260 }
1261 
1262 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1263 				     hotplug_enables_func hotplug_enables)
1264 {
1265 	struct intel_encoder *encoder;
1266 	u32 hotplug = 0;
1267 
1268 	for_each_intel_encoder(&i915->drm, encoder)
1269 		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1270 
1271 	return hotplug;
1272 }
1273 
1274 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1275 {
1276 	wake_up_all(&dev_priv->gmbus_wait_queue);
1277 }
1278 
1279 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1280 {
1281 	wake_up_all(&dev_priv->gmbus_wait_queue);
1282 }
1283 
1284 #if defined(CONFIG_DEBUG_FS)
1285 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1286 					 enum pipe pipe,
1287 					 u32 crc0, u32 crc1,
1288 					 u32 crc2, u32 crc3,
1289 					 u32 crc4)
1290 {
1291 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1292 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1293 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1294 
1295 	trace_intel_pipe_crc(crtc, crcs);
1296 
1297 	spin_lock(&pipe_crc->lock);
1298 	/*
1299 	 * For some not yet identified reason, the first CRC is
1300 	 * bonkers. So let's just wait for the next vblank and read
1301 	 * out the buggy result.
1302 	 *
1303 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1304 	 * don't trust that one either.
1305 	 */
1306 	if (pipe_crc->skipped <= 0 ||
1307 	    (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1308 		pipe_crc->skipped++;
1309 		spin_unlock(&pipe_crc->lock);
1310 		return;
1311 	}
1312 	spin_unlock(&pipe_crc->lock);
1313 
1314 	drm_crtc_add_crc_entry(&crtc->base, true,
1315 				drm_crtc_accurate_vblank_count(&crtc->base),
1316 				crcs);
1317 }
1318 #else
1319 static inline void
1320 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1321 			     enum pipe pipe,
1322 			     u32 crc0, u32 crc1,
1323 			     u32 crc2, u32 crc3,
1324 			     u32 crc4) {}
1325 #endif
1326 
1327 static void flip_done_handler(struct drm_i915_private *i915,
1328 			      enum pipe pipe)
1329 {
1330 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1331 	struct drm_crtc_state *crtc_state = crtc->base.state;
1332 	struct drm_pending_vblank_event *e = crtc_state->event;
1333 	struct drm_device *dev = &i915->drm;
1334 	unsigned long irqflags;
1335 
1336 	spin_lock_irqsave(&dev->event_lock, irqflags);
1337 
1338 	crtc_state->event = NULL;
1339 
1340 	drm_crtc_send_vblank_event(&crtc->base, e);
1341 
1342 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1343 }
1344 
1345 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1346 				     enum pipe pipe)
1347 {
1348 	display_pipe_crc_irq_handler(dev_priv, pipe,
1349 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1350 				     0, 0, 0, 0);
1351 }
1352 
1353 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1354 				     enum pipe pipe)
1355 {
1356 	display_pipe_crc_irq_handler(dev_priv, pipe,
1357 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1358 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1359 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1360 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1361 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1362 }
1363 
1364 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1365 				      enum pipe pipe)
1366 {
1367 	u32 res1, res2;
1368 
1369 	if (DISPLAY_VER(dev_priv) >= 3)
1370 		res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1371 	else
1372 		res1 = 0;
1373 
1374 	if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
1375 		res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1376 	else
1377 		res2 = 0;
1378 
1379 	display_pipe_crc_irq_handler(dev_priv, pipe,
1380 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1381 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1382 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1383 				     res1, res2);
1384 }
1385 
1386 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1387 {
1388 	enum pipe pipe;
1389 
1390 	for_each_pipe(dev_priv, pipe) {
1391 		intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1392 			   PIPESTAT_INT_STATUS_MASK |
1393 			   PIPE_FIFO_UNDERRUN_STATUS);
1394 
1395 		dev_priv->pipestat_irq_mask[pipe] = 0;
1396 	}
1397 }
1398 
1399 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1400 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1401 {
1402 	enum pipe pipe;
1403 
1404 	spin_lock(&dev_priv->irq_lock);
1405 
1406 	if (!dev_priv->display_irqs_enabled) {
1407 		spin_unlock(&dev_priv->irq_lock);
1408 		return;
1409 	}
1410 
1411 	for_each_pipe(dev_priv, pipe) {
1412 		i915_reg_t reg;
1413 		u32 status_mask, enable_mask, iir_bit = 0;
1414 
1415 		/*
1416 		 * PIPESTAT bits get signalled even when the interrupt is
1417 		 * disabled with the mask bits, and some of the status bits do
1418 		 * not generate interrupts at all (like the underrun bit). Hence
1419 		 * we need to be careful that we only handle what we want to
1420 		 * handle.
1421 		 */
1422 
1423 		/* fifo underruns are filterered in the underrun handler. */
1424 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1425 
1426 		switch (pipe) {
1427 		default:
1428 		case PIPE_A:
1429 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1430 			break;
1431 		case PIPE_B:
1432 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1433 			break;
1434 		case PIPE_C:
1435 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1436 			break;
1437 		}
1438 		if (iir & iir_bit)
1439 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1440 
1441 		if (!status_mask)
1442 			continue;
1443 
1444 		reg = PIPESTAT(pipe);
1445 		pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1446 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1447 
1448 		/*
1449 		 * Clear the PIPE*STAT regs before the IIR
1450 		 *
1451 		 * Toggle the enable bits to make sure we get an
1452 		 * edge in the ISR pipe event bit if we don't clear
1453 		 * all the enabled status bits. Otherwise the edge
1454 		 * triggered IIR on i965/g4x wouldn't notice that
1455 		 * an interrupt is still pending.
1456 		 */
1457 		if (pipe_stats[pipe]) {
1458 			intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1459 			intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1460 		}
1461 	}
1462 	spin_unlock(&dev_priv->irq_lock);
1463 }
1464 
1465 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1466 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1467 {
1468 	enum pipe pipe;
1469 
1470 	for_each_pipe(dev_priv, pipe) {
1471 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1472 			intel_handle_vblank(dev_priv, pipe);
1473 
1474 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1475 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1476 
1477 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1478 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1479 	}
1480 }
1481 
1482 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1483 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1484 {
1485 	bool blc_event = false;
1486 	enum pipe pipe;
1487 
1488 	for_each_pipe(dev_priv, pipe) {
1489 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1490 			intel_handle_vblank(dev_priv, pipe);
1491 
1492 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1493 			blc_event = true;
1494 
1495 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1496 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1497 
1498 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1499 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1500 	}
1501 
1502 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1503 		intel_opregion_asle_intr(dev_priv);
1504 }
1505 
1506 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1507 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1508 {
1509 	bool blc_event = false;
1510 	enum pipe pipe;
1511 
1512 	for_each_pipe(dev_priv, pipe) {
1513 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1514 			intel_handle_vblank(dev_priv, pipe);
1515 
1516 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1517 			blc_event = true;
1518 
1519 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1520 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1521 
1522 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1523 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1524 	}
1525 
1526 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1527 		intel_opregion_asle_intr(dev_priv);
1528 
1529 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1530 		gmbus_irq_handler(dev_priv);
1531 }
1532 
1533 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1534 					    u32 pipe_stats[I915_MAX_PIPES])
1535 {
1536 	enum pipe pipe;
1537 
1538 	for_each_pipe(dev_priv, pipe) {
1539 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1540 			intel_handle_vblank(dev_priv, pipe);
1541 
1542 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1543 			flip_done_handler(dev_priv, pipe);
1544 
1545 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1546 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1547 
1548 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1549 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1550 	}
1551 
1552 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1553 		gmbus_irq_handler(dev_priv);
1554 }
1555 
1556 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1557 {
1558 	u32 hotplug_status = 0, hotplug_status_mask;
1559 	int i;
1560 
1561 	if (IS_G4X(dev_priv) ||
1562 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1563 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1564 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1565 	else
1566 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1567 
1568 	/*
1569 	 * We absolutely have to clear all the pending interrupt
1570 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1571 	 * interrupt bit won't have an edge, and the i965/g4x
1572 	 * edge triggered IIR will not notice that an interrupt
1573 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1574 	 * guarantee the edge as the act of toggling the enable
1575 	 * bits can itself generate a new hotplug interrupt :(
1576 	 */
1577 	for (i = 0; i < 10; i++) {
1578 		u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1579 
1580 		if (tmp == 0)
1581 			return hotplug_status;
1582 
1583 		hotplug_status |= tmp;
1584 		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1585 	}
1586 
1587 	drm_WARN_ONCE(&dev_priv->drm, 1,
1588 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1589 		      intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1590 
1591 	return hotplug_status;
1592 }
1593 
1594 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1595 				 u32 hotplug_status)
1596 {
1597 	u32 pin_mask = 0, long_mask = 0;
1598 	u32 hotplug_trigger;
1599 
1600 	if (IS_G4X(dev_priv) ||
1601 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1602 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1603 	else
1604 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1605 
1606 	if (hotplug_trigger) {
1607 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1608 				   hotplug_trigger, hotplug_trigger,
1609 				   dev_priv->hotplug.hpd,
1610 				   i9xx_port_hotplug_long_detect);
1611 
1612 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1613 	}
1614 
1615 	if ((IS_G4X(dev_priv) ||
1616 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1617 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1618 		dp_aux_irq_handler(dev_priv);
1619 }
1620 
1621 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1622 {
1623 	struct drm_i915_private *dev_priv = arg;
1624 	irqreturn_t ret = IRQ_NONE;
1625 
1626 	if (!intel_irqs_enabled(dev_priv))
1627 		return IRQ_NONE;
1628 
1629 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1630 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1631 
1632 	do {
1633 		u32 iir, gt_iir, pm_iir;
1634 		u32 pipe_stats[I915_MAX_PIPES] = {};
1635 		u32 hotplug_status = 0;
1636 		u32 ier = 0;
1637 
1638 		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1639 		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1640 		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1641 
1642 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1643 			break;
1644 
1645 		ret = IRQ_HANDLED;
1646 
1647 		/*
1648 		 * Theory on interrupt generation, based on empirical evidence:
1649 		 *
1650 		 * x = ((VLV_IIR & VLV_IER) ||
1651 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1652 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1653 		 *
1654 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1655 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1656 		 * guarantee the CPU interrupt will be raised again even if we
1657 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1658 		 * bits this time around.
1659 		 */
1660 		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1661 		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1662 		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1663 
1664 		if (gt_iir)
1665 			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1666 		if (pm_iir)
1667 			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1668 
1669 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1670 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1671 
1672 		/* Call regardless, as some status bits might not be
1673 		 * signalled in iir */
1674 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1675 
1676 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1677 			   I915_LPE_PIPE_B_INTERRUPT))
1678 			intel_lpe_audio_irq_handler(dev_priv);
1679 
1680 		/*
1681 		 * VLV_IIR is single buffered, and reflects the level
1682 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1683 		 */
1684 		if (iir)
1685 			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1686 
1687 		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1688 		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1689 
1690 		if (gt_iir)
1691 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1692 		if (pm_iir)
1693 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1694 
1695 		if (hotplug_status)
1696 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1697 
1698 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1699 	} while (0);
1700 
1701 	pmu_irq_stats(dev_priv, ret);
1702 
1703 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1704 
1705 	return ret;
1706 }
1707 
1708 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1709 {
1710 	struct drm_i915_private *dev_priv = arg;
1711 	irqreturn_t ret = IRQ_NONE;
1712 
1713 	if (!intel_irqs_enabled(dev_priv))
1714 		return IRQ_NONE;
1715 
1716 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1717 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1718 
1719 	do {
1720 		u32 master_ctl, iir;
1721 		u32 pipe_stats[I915_MAX_PIPES] = {};
1722 		u32 hotplug_status = 0;
1723 		u32 ier = 0;
1724 
1725 		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1726 		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1727 
1728 		if (master_ctl == 0 && iir == 0)
1729 			break;
1730 
1731 		ret = IRQ_HANDLED;
1732 
1733 		/*
1734 		 * Theory on interrupt generation, based on empirical evidence:
1735 		 *
1736 		 * x = ((VLV_IIR & VLV_IER) ||
1737 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1738 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1739 		 *
1740 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1741 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1742 		 * guarantee the CPU interrupt will be raised again even if we
1743 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1744 		 * bits this time around.
1745 		 */
1746 		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1747 		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1748 		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1749 
1750 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1751 
1752 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1753 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1754 
1755 		/* Call regardless, as some status bits might not be
1756 		 * signalled in iir */
1757 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1758 
1759 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1760 			   I915_LPE_PIPE_B_INTERRUPT |
1761 			   I915_LPE_PIPE_C_INTERRUPT))
1762 			intel_lpe_audio_irq_handler(dev_priv);
1763 
1764 		/*
1765 		 * VLV_IIR is single buffered, and reflects the level
1766 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1767 		 */
1768 		if (iir)
1769 			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1770 
1771 		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1772 		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1773 
1774 		if (hotplug_status)
1775 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1776 
1777 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1778 	} while (0);
1779 
1780 	pmu_irq_stats(dev_priv, ret);
1781 
1782 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1783 
1784 	return ret;
1785 }
1786 
1787 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1788 				u32 hotplug_trigger)
1789 {
1790 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1791 
1792 	/*
1793 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1794 	 * unless we touch the hotplug register, even if hotplug_trigger is
1795 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1796 	 * errors.
1797 	 */
1798 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1799 	if (!hotplug_trigger) {
1800 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1801 			PORTD_HOTPLUG_STATUS_MASK |
1802 			PORTC_HOTPLUG_STATUS_MASK |
1803 			PORTB_HOTPLUG_STATUS_MASK;
1804 		dig_hotplug_reg &= ~mask;
1805 	}
1806 
1807 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1808 	if (!hotplug_trigger)
1809 		return;
1810 
1811 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1812 			   hotplug_trigger, dig_hotplug_reg,
1813 			   dev_priv->hotplug.pch_hpd,
1814 			   pch_port_hotplug_long_detect);
1815 
1816 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1817 }
1818 
1819 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1820 {
1821 	enum pipe pipe;
1822 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1823 
1824 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1825 
1826 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1827 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1828 			       SDE_AUDIO_POWER_SHIFT);
1829 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1830 			port_name(port));
1831 	}
1832 
1833 	if (pch_iir & SDE_AUX_MASK)
1834 		dp_aux_irq_handler(dev_priv);
1835 
1836 	if (pch_iir & SDE_GMBUS)
1837 		gmbus_irq_handler(dev_priv);
1838 
1839 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1840 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1841 
1842 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1843 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1844 
1845 	if (pch_iir & SDE_POISON)
1846 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1847 
1848 	if (pch_iir & SDE_FDI_MASK) {
1849 		for_each_pipe(dev_priv, pipe)
1850 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1851 				pipe_name(pipe),
1852 				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1853 	}
1854 
1855 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1856 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1857 
1858 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1859 		drm_dbg(&dev_priv->drm,
1860 			"PCH transcoder CRC error interrupt\n");
1861 
1862 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1863 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1864 
1865 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1866 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1867 }
1868 
1869 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1870 {
1871 	u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
1872 	enum pipe pipe;
1873 
1874 	if (err_int & ERR_INT_POISON)
1875 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1876 
1877 	for_each_pipe(dev_priv, pipe) {
1878 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1879 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1880 
1881 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1882 			if (IS_IVYBRIDGE(dev_priv))
1883 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1884 			else
1885 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1886 		}
1887 	}
1888 
1889 	intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1890 }
1891 
1892 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1893 {
1894 	u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1895 	enum pipe pipe;
1896 
1897 	if (serr_int & SERR_INT_POISON)
1898 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1899 
1900 	for_each_pipe(dev_priv, pipe)
1901 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1902 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1903 
1904 	intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1905 }
1906 
1907 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1908 {
1909 	enum pipe pipe;
1910 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1911 
1912 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1913 
1914 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1915 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1916 			       SDE_AUDIO_POWER_SHIFT_CPT);
1917 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1918 			port_name(port));
1919 	}
1920 
1921 	if (pch_iir & SDE_AUX_MASK_CPT)
1922 		dp_aux_irq_handler(dev_priv);
1923 
1924 	if (pch_iir & SDE_GMBUS_CPT)
1925 		gmbus_irq_handler(dev_priv);
1926 
1927 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1928 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1929 
1930 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1931 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1932 
1933 	if (pch_iir & SDE_FDI_MASK_CPT) {
1934 		for_each_pipe(dev_priv, pipe)
1935 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1936 				pipe_name(pipe),
1937 				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1938 	}
1939 
1940 	if (pch_iir & SDE_ERROR_CPT)
1941 		cpt_serr_int_handler(dev_priv);
1942 }
1943 
1944 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1945 {
1946 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1947 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1948 	u32 pin_mask = 0, long_mask = 0;
1949 
1950 	if (ddi_hotplug_trigger) {
1951 		u32 dig_hotplug_reg;
1952 
1953 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
1954 		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1955 
1956 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1957 				   ddi_hotplug_trigger, dig_hotplug_reg,
1958 				   dev_priv->hotplug.pch_hpd,
1959 				   icp_ddi_port_hotplug_long_detect);
1960 	}
1961 
1962 	if (tc_hotplug_trigger) {
1963 		u32 dig_hotplug_reg;
1964 
1965 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
1966 		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg);
1967 
1968 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1969 				   tc_hotplug_trigger, dig_hotplug_reg,
1970 				   dev_priv->hotplug.pch_hpd,
1971 				   icp_tc_port_hotplug_long_detect);
1972 	}
1973 
1974 	if (pin_mask)
1975 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1976 
1977 	if (pch_iir & SDE_GMBUS_ICP)
1978 		gmbus_irq_handler(dev_priv);
1979 }
1980 
1981 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1982 {
1983 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1984 		~SDE_PORTE_HOTPLUG_SPT;
1985 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1986 	u32 pin_mask = 0, long_mask = 0;
1987 
1988 	if (hotplug_trigger) {
1989 		u32 dig_hotplug_reg;
1990 
1991 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1992 		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1993 
1994 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1995 				   hotplug_trigger, dig_hotplug_reg,
1996 				   dev_priv->hotplug.pch_hpd,
1997 				   spt_port_hotplug_long_detect);
1998 	}
1999 
2000 	if (hotplug2_trigger) {
2001 		u32 dig_hotplug_reg;
2002 
2003 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
2004 		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2005 
2006 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2007 				   hotplug2_trigger, dig_hotplug_reg,
2008 				   dev_priv->hotplug.pch_hpd,
2009 				   spt_port_hotplug2_long_detect);
2010 	}
2011 
2012 	if (pin_mask)
2013 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2014 
2015 	if (pch_iir & SDE_GMBUS_CPT)
2016 		gmbus_irq_handler(dev_priv);
2017 }
2018 
2019 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2020 				u32 hotplug_trigger)
2021 {
2022 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2023 
2024 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
2025 	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2026 
2027 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2028 			   hotplug_trigger, dig_hotplug_reg,
2029 			   dev_priv->hotplug.hpd,
2030 			   ilk_port_hotplug_long_detect);
2031 
2032 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2033 }
2034 
2035 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2036 				    u32 de_iir)
2037 {
2038 	enum pipe pipe;
2039 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2040 
2041 	if (hotplug_trigger)
2042 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2043 
2044 	if (de_iir & DE_AUX_CHANNEL_A)
2045 		dp_aux_irq_handler(dev_priv);
2046 
2047 	if (de_iir & DE_GSE)
2048 		intel_opregion_asle_intr(dev_priv);
2049 
2050 	if (de_iir & DE_POISON)
2051 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2052 
2053 	for_each_pipe(dev_priv, pipe) {
2054 		if (de_iir & DE_PIPE_VBLANK(pipe))
2055 			intel_handle_vblank(dev_priv, pipe);
2056 
2057 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2058 			flip_done_handler(dev_priv, pipe);
2059 
2060 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2061 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2062 
2063 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2064 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2065 	}
2066 
2067 	/* check event from PCH */
2068 	if (de_iir & DE_PCH_EVENT) {
2069 		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2070 
2071 		if (HAS_PCH_CPT(dev_priv))
2072 			cpt_irq_handler(dev_priv, pch_iir);
2073 		else
2074 			ibx_irq_handler(dev_priv, pch_iir);
2075 
2076 		/* should clear PCH hotplug event before clear CPU irq */
2077 		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2078 	}
2079 
2080 	if (IS_DISPLAY_VER(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2081 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2082 }
2083 
2084 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2085 				    u32 de_iir)
2086 {
2087 	enum pipe pipe;
2088 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2089 
2090 	if (hotplug_trigger)
2091 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2092 
2093 	if (de_iir & DE_ERR_INT_IVB)
2094 		ivb_err_int_handler(dev_priv);
2095 
2096 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2097 		struct intel_encoder *encoder;
2098 
2099 		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2100 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2101 
2102 			u32 psr_iir = intel_uncore_read(&dev_priv->uncore,
2103 							EDP_PSR_IIR);
2104 
2105 			intel_psr_irq_handler(intel_dp, psr_iir);
2106 			intel_uncore_write(&dev_priv->uncore,
2107 					   EDP_PSR_IIR, psr_iir);
2108 			break;
2109 		}
2110 	}
2111 
2112 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2113 		dp_aux_irq_handler(dev_priv);
2114 
2115 	if (de_iir & DE_GSE_IVB)
2116 		intel_opregion_asle_intr(dev_priv);
2117 
2118 	for_each_pipe(dev_priv, pipe) {
2119 		if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2120 			intel_handle_vblank(dev_priv, pipe);
2121 
2122 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2123 			flip_done_handler(dev_priv, pipe);
2124 	}
2125 
2126 	/* check event from PCH */
2127 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2128 		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2129 
2130 		cpt_irq_handler(dev_priv, pch_iir);
2131 
2132 		/* clear PCH hotplug event before clear CPU irq */
2133 		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2134 	}
2135 }
2136 
2137 /*
2138  * To handle irqs with the minimum potential races with fresh interrupts, we:
2139  * 1 - Disable Master Interrupt Control.
2140  * 2 - Find the source(s) of the interrupt.
2141  * 3 - Clear the Interrupt Identity bits (IIR).
2142  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2143  * 5 - Re-enable Master Interrupt Control.
2144  */
2145 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2146 {
2147 	struct drm_i915_private *i915 = arg;
2148 	void __iomem * const regs = i915->uncore.regs;
2149 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2150 	irqreturn_t ret = IRQ_NONE;
2151 
2152 	if (unlikely(!intel_irqs_enabled(i915)))
2153 		return IRQ_NONE;
2154 
2155 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2156 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2157 
2158 	/* disable master interrupt before clearing iir  */
2159 	de_ier = raw_reg_read(regs, DEIER);
2160 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2161 
2162 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2163 	 * interrupts will will be stored on its back queue, and then we'll be
2164 	 * able to process them after we restore SDEIER (as soon as we restore
2165 	 * it, we'll get an interrupt if SDEIIR still has something to process
2166 	 * due to its back queue). */
2167 	if (!HAS_PCH_NOP(i915)) {
2168 		sde_ier = raw_reg_read(regs, SDEIER);
2169 		raw_reg_write(regs, SDEIER, 0);
2170 	}
2171 
2172 	/* Find, clear, then process each source of interrupt */
2173 
2174 	gt_iir = raw_reg_read(regs, GTIIR);
2175 	if (gt_iir) {
2176 		raw_reg_write(regs, GTIIR, gt_iir);
2177 		if (INTEL_GEN(i915) >= 6)
2178 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2179 		else
2180 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2181 		ret = IRQ_HANDLED;
2182 	}
2183 
2184 	de_iir = raw_reg_read(regs, DEIIR);
2185 	if (de_iir) {
2186 		raw_reg_write(regs, DEIIR, de_iir);
2187 		if (DISPLAY_VER(i915) >= 7)
2188 			ivb_display_irq_handler(i915, de_iir);
2189 		else
2190 			ilk_display_irq_handler(i915, de_iir);
2191 		ret = IRQ_HANDLED;
2192 	}
2193 
2194 	if (INTEL_GEN(i915) >= 6) {
2195 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2196 		if (pm_iir) {
2197 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2198 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2199 			ret = IRQ_HANDLED;
2200 		}
2201 	}
2202 
2203 	raw_reg_write(regs, DEIER, de_ier);
2204 	if (sde_ier)
2205 		raw_reg_write(regs, SDEIER, sde_ier);
2206 
2207 	pmu_irq_stats(i915, ret);
2208 
2209 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2210 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2211 
2212 	return ret;
2213 }
2214 
2215 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2216 				u32 hotplug_trigger)
2217 {
2218 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2219 
2220 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
2221 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
2222 
2223 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2224 			   hotplug_trigger, dig_hotplug_reg,
2225 			   dev_priv->hotplug.hpd,
2226 			   bxt_port_hotplug_long_detect);
2227 
2228 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2229 }
2230 
2231 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2232 {
2233 	u32 pin_mask = 0, long_mask = 0;
2234 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2235 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2236 
2237 	if (trigger_tc) {
2238 		u32 dig_hotplug_reg;
2239 
2240 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
2241 		intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2242 
2243 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2244 				   trigger_tc, dig_hotplug_reg,
2245 				   dev_priv->hotplug.hpd,
2246 				   gen11_port_hotplug_long_detect);
2247 	}
2248 
2249 	if (trigger_tbt) {
2250 		u32 dig_hotplug_reg;
2251 
2252 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
2253 		intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2254 
2255 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2256 				   trigger_tbt, dig_hotplug_reg,
2257 				   dev_priv->hotplug.hpd,
2258 				   gen11_port_hotplug_long_detect);
2259 	}
2260 
2261 	if (pin_mask)
2262 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2263 	else
2264 		drm_err(&dev_priv->drm,
2265 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2266 }
2267 
2268 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2269 {
2270 	u32 mask;
2271 
2272 	if (DISPLAY_VER(dev_priv) >= 12)
2273 		return TGL_DE_PORT_AUX_DDIA |
2274 			TGL_DE_PORT_AUX_DDIB |
2275 			TGL_DE_PORT_AUX_DDIC |
2276 			TGL_DE_PORT_AUX_USBC1 |
2277 			TGL_DE_PORT_AUX_USBC2 |
2278 			TGL_DE_PORT_AUX_USBC3 |
2279 			TGL_DE_PORT_AUX_USBC4 |
2280 			TGL_DE_PORT_AUX_USBC5 |
2281 			TGL_DE_PORT_AUX_USBC6;
2282 
2283 
2284 	mask = GEN8_AUX_CHANNEL_A;
2285 	if (DISPLAY_VER(dev_priv) >= 9)
2286 		mask |= GEN9_AUX_CHANNEL_B |
2287 			GEN9_AUX_CHANNEL_C |
2288 			GEN9_AUX_CHANNEL_D;
2289 
2290 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_DISPLAY_VER(dev_priv, 11))
2291 		mask |= CNL_AUX_CHANNEL_F;
2292 
2293 	if (IS_DISPLAY_VER(dev_priv, 11))
2294 		mask |= ICL_AUX_CHANNEL_E;
2295 
2296 	return mask;
2297 }
2298 
2299 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2300 {
2301 	if (HAS_D12_PLANE_MINIMIZATION(dev_priv))
2302 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2303 	else if (DISPLAY_VER(dev_priv) >= 11)
2304 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2305 	else if (DISPLAY_VER(dev_priv) >= 9)
2306 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2307 	else
2308 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2309 }
2310 
2311 static void
2312 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2313 {
2314 	bool found = false;
2315 
2316 	if (iir & GEN8_DE_MISC_GSE) {
2317 		intel_opregion_asle_intr(dev_priv);
2318 		found = true;
2319 	}
2320 
2321 	if (iir & GEN8_DE_EDP_PSR) {
2322 		struct intel_encoder *encoder;
2323 		u32 psr_iir;
2324 		i915_reg_t iir_reg;
2325 
2326 		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2327 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2328 
2329 			if (DISPLAY_VER(dev_priv) >= 12)
2330 				iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder);
2331 			else
2332 				iir_reg = EDP_PSR_IIR;
2333 
2334 			psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg);
2335 			intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir);
2336 
2337 			if (psr_iir)
2338 				found = true;
2339 
2340 			intel_psr_irq_handler(intel_dp, psr_iir);
2341 
2342 			/* prior GEN12 only have one EDP PSR */
2343 			if (DISPLAY_VER(dev_priv) < 12)
2344 				break;
2345 		}
2346 	}
2347 
2348 	if (!found)
2349 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2350 }
2351 
2352 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2353 					   u32 te_trigger)
2354 {
2355 	enum pipe pipe = INVALID_PIPE;
2356 	enum transcoder dsi_trans;
2357 	enum port port;
2358 	u32 val, tmp;
2359 
2360 	/*
2361 	 * Incase of dual link, TE comes from DSI_1
2362 	 * this is to check if dual link is enabled
2363 	 */
2364 	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2365 	val &= PORT_SYNC_MODE_ENABLE;
2366 
2367 	/*
2368 	 * if dual link is enabled, then read DSI_0
2369 	 * transcoder registers
2370 	 */
2371 	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2372 						  PORT_A : PORT_B;
2373 	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2374 
2375 	/* Check if DSI configured in command mode */
2376 	val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2377 	val = val & OP_MODE_MASK;
2378 
2379 	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2380 		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2381 		return;
2382 	}
2383 
2384 	/* Get PIPE for handling VBLANK event */
2385 	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2386 	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2387 	case TRANS_DDI_EDP_INPUT_A_ON:
2388 		pipe = PIPE_A;
2389 		break;
2390 	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2391 		pipe = PIPE_B;
2392 		break;
2393 	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2394 		pipe = PIPE_C;
2395 		break;
2396 	default:
2397 		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2398 		return;
2399 	}
2400 
2401 	intel_handle_vblank(dev_priv, pipe);
2402 
2403 	/* clear TE in dsi IIR */
2404 	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2405 	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2406 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2407 }
2408 
2409 static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2410 {
2411 	if (DISPLAY_VER(i915) >= 9)
2412 		return GEN9_PIPE_PLANE1_FLIP_DONE;
2413 	else
2414 		return GEN8_PIPE_PRIMARY_FLIP_DONE;
2415 }
2416 
2417 static irqreturn_t
2418 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2419 {
2420 	irqreturn_t ret = IRQ_NONE;
2421 	u32 iir;
2422 	enum pipe pipe;
2423 
2424 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2425 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2426 		if (iir) {
2427 			intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2428 			ret = IRQ_HANDLED;
2429 			gen8_de_misc_irq_handler(dev_priv, iir);
2430 		} else {
2431 			drm_err(&dev_priv->drm,
2432 				"The master control interrupt lied (DE MISC)!\n");
2433 		}
2434 	}
2435 
2436 	if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2437 		iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2438 		if (iir) {
2439 			intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2440 			ret = IRQ_HANDLED;
2441 			gen11_hpd_irq_handler(dev_priv, iir);
2442 		} else {
2443 			drm_err(&dev_priv->drm,
2444 				"The master control interrupt lied, (DE HPD)!\n");
2445 		}
2446 	}
2447 
2448 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2449 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2450 		if (iir) {
2451 			bool found = false;
2452 
2453 			intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2454 			ret = IRQ_HANDLED;
2455 
2456 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2457 				dp_aux_irq_handler(dev_priv);
2458 				found = true;
2459 			}
2460 
2461 			if (IS_GEN9_LP(dev_priv)) {
2462 				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2463 
2464 				if (hotplug_trigger) {
2465 					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2466 					found = true;
2467 				}
2468 			} else if (IS_BROADWELL(dev_priv)) {
2469 				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2470 
2471 				if (hotplug_trigger) {
2472 					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2473 					found = true;
2474 				}
2475 			}
2476 
2477 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2478 				gmbus_irq_handler(dev_priv);
2479 				found = true;
2480 			}
2481 
2482 			if (DISPLAY_VER(dev_priv) >= 11) {
2483 				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2484 
2485 				if (te_trigger) {
2486 					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2487 					found = true;
2488 				}
2489 			}
2490 
2491 			if (!found)
2492 				drm_err(&dev_priv->drm,
2493 					"Unexpected DE Port interrupt\n");
2494 		}
2495 		else
2496 			drm_err(&dev_priv->drm,
2497 				"The master control interrupt lied (DE PORT)!\n");
2498 	}
2499 
2500 	for_each_pipe(dev_priv, pipe) {
2501 		u32 fault_errors;
2502 
2503 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2504 			continue;
2505 
2506 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2507 		if (!iir) {
2508 			drm_err(&dev_priv->drm,
2509 				"The master control interrupt lied (DE PIPE)!\n");
2510 			continue;
2511 		}
2512 
2513 		ret = IRQ_HANDLED;
2514 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2515 
2516 		if (iir & GEN8_PIPE_VBLANK)
2517 			intel_handle_vblank(dev_priv, pipe);
2518 
2519 		if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2520 			flip_done_handler(dev_priv, pipe);
2521 
2522 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2523 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2524 
2525 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2526 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2527 
2528 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2529 		if (fault_errors)
2530 			drm_err(&dev_priv->drm,
2531 				"Fault errors on pipe %c: 0x%08x\n",
2532 				pipe_name(pipe),
2533 				fault_errors);
2534 	}
2535 
2536 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2537 	    master_ctl & GEN8_DE_PCH_IRQ) {
2538 		/*
2539 		 * FIXME(BDW): Assume for now that the new interrupt handling
2540 		 * scheme also closed the SDE interrupt handling race we've seen
2541 		 * on older pch-split platforms. But this needs testing.
2542 		 */
2543 		iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2544 		if (iir) {
2545 			intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2546 			ret = IRQ_HANDLED;
2547 
2548 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2549 				icp_irq_handler(dev_priv, iir);
2550 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2551 				spt_irq_handler(dev_priv, iir);
2552 			else
2553 				cpt_irq_handler(dev_priv, iir);
2554 		} else {
2555 			/*
2556 			 * Like on previous PCH there seems to be something
2557 			 * fishy going on with forwarding PCH interrupts.
2558 			 */
2559 			drm_dbg(&dev_priv->drm,
2560 				"The master control interrupt lied (SDE)!\n");
2561 		}
2562 	}
2563 
2564 	return ret;
2565 }
2566 
2567 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2568 {
2569 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2570 
2571 	/*
2572 	 * Now with master disabled, get a sample of level indications
2573 	 * for this interrupt. Indications will be cleared on related acks.
2574 	 * New indications can and will light up during processing,
2575 	 * and will generate new interrupt after enabling master.
2576 	 */
2577 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2578 }
2579 
2580 static inline void gen8_master_intr_enable(void __iomem * const regs)
2581 {
2582 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2583 }
2584 
2585 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2586 {
2587 	struct drm_i915_private *dev_priv = arg;
2588 	void __iomem * const regs = dev_priv->uncore.regs;
2589 	u32 master_ctl;
2590 
2591 	if (!intel_irqs_enabled(dev_priv))
2592 		return IRQ_NONE;
2593 
2594 	master_ctl = gen8_master_intr_disable(regs);
2595 	if (!master_ctl) {
2596 		gen8_master_intr_enable(regs);
2597 		return IRQ_NONE;
2598 	}
2599 
2600 	/* Find, queue (onto bottom-halves), then clear each source */
2601 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2602 
2603 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2604 	if (master_ctl & ~GEN8_GT_IRQS) {
2605 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2606 		gen8_de_irq_handler(dev_priv, master_ctl);
2607 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2608 	}
2609 
2610 	gen8_master_intr_enable(regs);
2611 
2612 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
2613 
2614 	return IRQ_HANDLED;
2615 }
2616 
2617 static u32
2618 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2619 {
2620 	void __iomem * const regs = gt->uncore->regs;
2621 	u32 iir;
2622 
2623 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2624 		return 0;
2625 
2626 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2627 	if (likely(iir))
2628 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2629 
2630 	return iir;
2631 }
2632 
2633 static void
2634 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2635 {
2636 	if (iir & GEN11_GU_MISC_GSE)
2637 		intel_opregion_asle_intr(gt->i915);
2638 }
2639 
2640 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2641 {
2642 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2643 
2644 	/*
2645 	 * Now with master disabled, get a sample of level indications
2646 	 * for this interrupt. Indications will be cleared on related acks.
2647 	 * New indications can and will light up during processing,
2648 	 * and will generate new interrupt after enabling master.
2649 	 */
2650 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2651 }
2652 
2653 static inline void gen11_master_intr_enable(void __iomem * const regs)
2654 {
2655 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2656 }
2657 
2658 static void
2659 gen11_display_irq_handler(struct drm_i915_private *i915)
2660 {
2661 	void __iomem * const regs = i915->uncore.regs;
2662 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2663 
2664 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2665 	/*
2666 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2667 	 * for the display related bits.
2668 	 */
2669 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2670 	gen8_de_irq_handler(i915, disp_ctl);
2671 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2672 		      GEN11_DISPLAY_IRQ_ENABLE);
2673 
2674 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2675 }
2676 
2677 static __always_inline irqreturn_t
2678 __gen11_irq_handler(struct drm_i915_private * const i915,
2679 		    u32 (*intr_disable)(void __iomem * const regs),
2680 		    void (*intr_enable)(void __iomem * const regs))
2681 {
2682 	void __iomem * const regs = i915->uncore.regs;
2683 	struct intel_gt *gt = &i915->gt;
2684 	u32 master_ctl;
2685 	u32 gu_misc_iir;
2686 
2687 	if (!intel_irqs_enabled(i915))
2688 		return IRQ_NONE;
2689 
2690 	master_ctl = intr_disable(regs);
2691 	if (!master_ctl) {
2692 		intr_enable(regs);
2693 		return IRQ_NONE;
2694 	}
2695 
2696 	/* Find, queue (onto bottom-halves), then clear each source */
2697 	gen11_gt_irq_handler(gt, master_ctl);
2698 
2699 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2700 	if (master_ctl & GEN11_DISPLAY_IRQ)
2701 		gen11_display_irq_handler(i915);
2702 
2703 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2704 
2705 	intr_enable(regs);
2706 
2707 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2708 
2709 	pmu_irq_stats(i915, IRQ_HANDLED);
2710 
2711 	return IRQ_HANDLED;
2712 }
2713 
2714 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2715 {
2716 	return __gen11_irq_handler(arg,
2717 				   gen11_master_intr_disable,
2718 				   gen11_master_intr_enable);
2719 }
2720 
2721 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2722 {
2723 	u32 val;
2724 
2725 	/* First disable interrupts */
2726 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2727 
2728 	/* Get the indication levels and ack the master unit */
2729 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2730 	if (unlikely(!val))
2731 		return 0;
2732 
2733 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2734 
2735 	/*
2736 	 * Now with master disabled, get a sample of level indications
2737 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2738 	 * out as this bit doesn't exist anymore for DG1
2739 	 */
2740 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2741 	if (unlikely(!val))
2742 		return 0;
2743 
2744 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2745 
2746 	return val;
2747 }
2748 
2749 static inline void dg1_master_intr_enable(void __iomem * const regs)
2750 {
2751 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2752 }
2753 
2754 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2755 {
2756 	return __gen11_irq_handler(arg,
2757 				   dg1_master_intr_disable_and_ack,
2758 				   dg1_master_intr_enable);
2759 }
2760 
2761 /* Called from drm generic code, passed 'crtc' which
2762  * we use as a pipe index
2763  */
2764 int i8xx_enable_vblank(struct drm_crtc *crtc)
2765 {
2766 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2767 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2768 	unsigned long irqflags;
2769 
2770 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2771 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2772 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2773 
2774 	return 0;
2775 }
2776 
2777 int i915gm_enable_vblank(struct drm_crtc *crtc)
2778 {
2779 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2780 
2781 	/*
2782 	 * Vblank interrupts fail to wake the device up from C2+.
2783 	 * Disabling render clock gating during C-states avoids
2784 	 * the problem. There is a small power cost so we do this
2785 	 * only when vblank interrupts are actually enabled.
2786 	 */
2787 	if (dev_priv->vblank_enabled++ == 0)
2788 		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2789 
2790 	return i8xx_enable_vblank(crtc);
2791 }
2792 
2793 int i965_enable_vblank(struct drm_crtc *crtc)
2794 {
2795 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2796 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2797 	unsigned long irqflags;
2798 
2799 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2800 	i915_enable_pipestat(dev_priv, pipe,
2801 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2802 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2803 
2804 	return 0;
2805 }
2806 
2807 int ilk_enable_vblank(struct drm_crtc *crtc)
2808 {
2809 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2810 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2811 	unsigned long irqflags;
2812 	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2813 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2814 
2815 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2816 	ilk_enable_display_irq(dev_priv, bit);
2817 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2818 
2819 	/* Even though there is no DMC, frame counter can get stuck when
2820 	 * PSR is active as no frames are generated.
2821 	 */
2822 	if (HAS_PSR(dev_priv))
2823 		drm_crtc_vblank_restore(crtc);
2824 
2825 	return 0;
2826 }
2827 
2828 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2829 				   bool enable)
2830 {
2831 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2832 	enum port port;
2833 	u32 tmp;
2834 
2835 	if (!(intel_crtc->mode_flags &
2836 	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2837 		return false;
2838 
2839 	/* for dual link cases we consider TE from slave */
2840 	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2841 		port = PORT_B;
2842 	else
2843 		port = PORT_A;
2844 
2845 	tmp =  intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port));
2846 	if (enable)
2847 		tmp &= ~DSI_TE_EVENT;
2848 	else
2849 		tmp |= DSI_TE_EVENT;
2850 
2851 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp);
2852 
2853 	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2854 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2855 
2856 	return true;
2857 }
2858 
2859 int bdw_enable_vblank(struct drm_crtc *crtc)
2860 {
2861 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2862 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2863 	enum pipe pipe = intel_crtc->pipe;
2864 	unsigned long irqflags;
2865 
2866 	if (gen11_dsi_configure_te(intel_crtc, true))
2867 		return 0;
2868 
2869 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2870 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2871 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2872 
2873 	/* Even if there is no DMC, frame counter can get stuck when
2874 	 * PSR is active as no frames are generated, so check only for PSR.
2875 	 */
2876 	if (HAS_PSR(dev_priv))
2877 		drm_crtc_vblank_restore(crtc);
2878 
2879 	return 0;
2880 }
2881 
2882 /* Called from drm generic code, passed 'crtc' which
2883  * we use as a pipe index
2884  */
2885 void i8xx_disable_vblank(struct drm_crtc *crtc)
2886 {
2887 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2888 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2889 	unsigned long irqflags;
2890 
2891 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2892 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2893 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2894 }
2895 
2896 void i915gm_disable_vblank(struct drm_crtc *crtc)
2897 {
2898 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2899 
2900 	i8xx_disable_vblank(crtc);
2901 
2902 	if (--dev_priv->vblank_enabled == 0)
2903 		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2904 }
2905 
2906 void i965_disable_vblank(struct drm_crtc *crtc)
2907 {
2908 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2909 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2910 	unsigned long irqflags;
2911 
2912 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2913 	i915_disable_pipestat(dev_priv, pipe,
2914 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2915 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2916 }
2917 
2918 void ilk_disable_vblank(struct drm_crtc *crtc)
2919 {
2920 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2921 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2922 	unsigned long irqflags;
2923 	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2924 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2925 
2926 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2927 	ilk_disable_display_irq(dev_priv, bit);
2928 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2929 }
2930 
2931 void bdw_disable_vblank(struct drm_crtc *crtc)
2932 {
2933 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2934 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2935 	enum pipe pipe = intel_crtc->pipe;
2936 	unsigned long irqflags;
2937 
2938 	if (gen11_dsi_configure_te(intel_crtc, false))
2939 		return;
2940 
2941 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2942 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2943 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2944 }
2945 
2946 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2947 {
2948 	struct intel_uncore *uncore = &dev_priv->uncore;
2949 
2950 	if (HAS_PCH_NOP(dev_priv))
2951 		return;
2952 
2953 	GEN3_IRQ_RESET(uncore, SDE);
2954 
2955 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2956 		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2957 }
2958 
2959 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2960 {
2961 	struct intel_uncore *uncore = &dev_priv->uncore;
2962 
2963 	if (IS_CHERRYVIEW(dev_priv))
2964 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2965 	else
2966 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2967 
2968 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2969 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
2970 
2971 	i9xx_pipestat_irq_reset(dev_priv);
2972 
2973 	GEN3_IRQ_RESET(uncore, VLV_);
2974 	dev_priv->irq_mask = ~0u;
2975 }
2976 
2977 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2978 {
2979 	struct intel_uncore *uncore = &dev_priv->uncore;
2980 
2981 	u32 pipestat_mask;
2982 	u32 enable_mask;
2983 	enum pipe pipe;
2984 
2985 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2986 
2987 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2988 	for_each_pipe(dev_priv, pipe)
2989 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2990 
2991 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2992 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2993 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2994 		I915_LPE_PIPE_A_INTERRUPT |
2995 		I915_LPE_PIPE_B_INTERRUPT;
2996 
2997 	if (IS_CHERRYVIEW(dev_priv))
2998 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2999 			I915_LPE_PIPE_C_INTERRUPT;
3000 
3001 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
3002 
3003 	dev_priv->irq_mask = ~enable_mask;
3004 
3005 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3006 }
3007 
3008 /* drm_dma.h hooks
3009 */
3010 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
3011 {
3012 	struct intel_uncore *uncore = &dev_priv->uncore;
3013 
3014 	GEN3_IRQ_RESET(uncore, DE);
3015 	dev_priv->irq_mask = ~0u;
3016 
3017 	if (IS_GEN(dev_priv, 7))
3018 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3019 
3020 	if (IS_HASWELL(dev_priv)) {
3021 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3022 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3023 	}
3024 
3025 	gen5_gt_irq_reset(&dev_priv->gt);
3026 
3027 	ibx_irq_reset(dev_priv);
3028 }
3029 
3030 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3031 {
3032 	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3033 	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3034 
3035 	gen5_gt_irq_reset(&dev_priv->gt);
3036 
3037 	spin_lock_irq(&dev_priv->irq_lock);
3038 	if (dev_priv->display_irqs_enabled)
3039 		vlv_display_irq_reset(dev_priv);
3040 	spin_unlock_irq(&dev_priv->irq_lock);
3041 }
3042 
3043 static void cnp_display_clock_wa(struct drm_i915_private *dev_priv)
3044 {
3045 	struct intel_uncore *uncore = &dev_priv->uncore;
3046 
3047 	/*
3048 	 * Wa_14010685332:cnp/cmp,tgp,adp
3049 	 * TODO: Clarify which platforms this applies to
3050 	 * TODO: Figure out if this workaround can be applied in the s0ix suspend/resume handlers as
3051 	 * on earlier platforms and whether the workaround is also needed for runtime suspend/resume
3052 	 */
3053 	if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
3054 	    (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
3055 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS,
3056 				 SBCLK_RUN_REFCLK_DIS);
3057 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
3058 	}
3059 }
3060 
3061 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3062 {
3063 	struct intel_uncore *uncore = &dev_priv->uncore;
3064 	enum pipe pipe;
3065 
3066 	gen8_master_intr_disable(dev_priv->uncore.regs);
3067 
3068 	gen8_gt_irq_reset(&dev_priv->gt);
3069 
3070 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3071 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3072 
3073 	for_each_pipe(dev_priv, pipe)
3074 		if (intel_display_power_is_enabled(dev_priv,
3075 						   POWER_DOMAIN_PIPE(pipe)))
3076 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3077 
3078 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3079 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3080 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3081 
3082 	if (HAS_PCH_SPLIT(dev_priv))
3083 		ibx_irq_reset(dev_priv);
3084 
3085 	cnp_display_clock_wa(dev_priv);
3086 }
3087 
3088 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3089 {
3090 	struct intel_uncore *uncore = &dev_priv->uncore;
3091 	enum pipe pipe;
3092 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3093 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3094 
3095 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3096 
3097 	if (DISPLAY_VER(dev_priv) >= 12) {
3098 		enum transcoder trans;
3099 
3100 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3101 			enum intel_display_power_domain domain;
3102 
3103 			domain = POWER_DOMAIN_TRANSCODER(trans);
3104 			if (!intel_display_power_is_enabled(dev_priv, domain))
3105 				continue;
3106 
3107 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3108 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3109 		}
3110 	} else {
3111 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3112 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3113 	}
3114 
3115 	for_each_pipe(dev_priv, pipe)
3116 		if (intel_display_power_is_enabled(dev_priv,
3117 						   POWER_DOMAIN_PIPE(pipe)))
3118 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3119 
3120 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3121 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3122 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3123 
3124 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3125 		GEN3_IRQ_RESET(uncore, SDE);
3126 
3127 	cnp_display_clock_wa(dev_priv);
3128 }
3129 
3130 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3131 {
3132 	struct intel_uncore *uncore = &dev_priv->uncore;
3133 
3134 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
3135 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3136 	else
3137 		gen11_master_intr_disable(dev_priv->uncore.regs);
3138 
3139 	gen11_gt_irq_reset(&dev_priv->gt);
3140 	gen11_display_irq_reset(dev_priv);
3141 
3142 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3143 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3144 }
3145 
3146 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3147 				     u8 pipe_mask)
3148 {
3149 	struct intel_uncore *uncore = &dev_priv->uncore;
3150 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3151 		gen8_de_pipe_flip_done_mask(dev_priv);
3152 	enum pipe pipe;
3153 
3154 	spin_lock_irq(&dev_priv->irq_lock);
3155 
3156 	if (!intel_irqs_enabled(dev_priv)) {
3157 		spin_unlock_irq(&dev_priv->irq_lock);
3158 		return;
3159 	}
3160 
3161 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3162 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3163 				  dev_priv->de_irq_mask[pipe],
3164 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3165 
3166 	spin_unlock_irq(&dev_priv->irq_lock);
3167 }
3168 
3169 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3170 				     u8 pipe_mask)
3171 {
3172 	struct intel_uncore *uncore = &dev_priv->uncore;
3173 	enum pipe pipe;
3174 
3175 	spin_lock_irq(&dev_priv->irq_lock);
3176 
3177 	if (!intel_irqs_enabled(dev_priv)) {
3178 		spin_unlock_irq(&dev_priv->irq_lock);
3179 		return;
3180 	}
3181 
3182 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3183 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3184 
3185 	spin_unlock_irq(&dev_priv->irq_lock);
3186 
3187 	/* make sure we're done processing display irqs */
3188 	intel_synchronize_irq(dev_priv);
3189 }
3190 
3191 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3192 {
3193 	struct intel_uncore *uncore = &dev_priv->uncore;
3194 
3195 	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
3196 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3197 
3198 	gen8_gt_irq_reset(&dev_priv->gt);
3199 
3200 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3201 
3202 	spin_lock_irq(&dev_priv->irq_lock);
3203 	if (dev_priv->display_irqs_enabled)
3204 		vlv_display_irq_reset(dev_priv);
3205 	spin_unlock_irq(&dev_priv->irq_lock);
3206 }
3207 
3208 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3209 			       enum hpd_pin pin)
3210 {
3211 	switch (pin) {
3212 	case HPD_PORT_A:
3213 		/*
3214 		 * When CPU and PCH are on the same package, port A
3215 		 * HPD must be enabled in both north and south.
3216 		 */
3217 		return HAS_PCH_LPT_LP(i915) ?
3218 			PORTA_HOTPLUG_ENABLE : 0;
3219 	case HPD_PORT_B:
3220 		return PORTB_HOTPLUG_ENABLE |
3221 			PORTB_PULSE_DURATION_2ms;
3222 	case HPD_PORT_C:
3223 		return PORTC_HOTPLUG_ENABLE |
3224 			PORTC_PULSE_DURATION_2ms;
3225 	case HPD_PORT_D:
3226 		return PORTD_HOTPLUG_ENABLE |
3227 			PORTD_PULSE_DURATION_2ms;
3228 	default:
3229 		return 0;
3230 	}
3231 }
3232 
3233 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3234 {
3235 	u32 hotplug;
3236 
3237 	/*
3238 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3239 	 * duration to 2ms (which is the minimum in the Display Port spec).
3240 	 * The pulse duration bits are reserved on LPT+.
3241 	 */
3242 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3243 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3244 		     PORTB_HOTPLUG_ENABLE |
3245 		     PORTC_HOTPLUG_ENABLE |
3246 		     PORTD_HOTPLUG_ENABLE |
3247 		     PORTB_PULSE_DURATION_MASK |
3248 		     PORTC_PULSE_DURATION_MASK |
3249 		     PORTD_PULSE_DURATION_MASK);
3250 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3251 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3252 }
3253 
3254 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3255 {
3256 	u32 hotplug_irqs, enabled_irqs;
3257 
3258 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3259 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3260 
3261 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3262 
3263 	ibx_hpd_detection_setup(dev_priv);
3264 }
3265 
3266 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3267 				   enum hpd_pin pin)
3268 {
3269 	switch (pin) {
3270 	case HPD_PORT_A:
3271 	case HPD_PORT_B:
3272 	case HPD_PORT_C:
3273 	case HPD_PORT_D:
3274 		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3275 	default:
3276 		return 0;
3277 	}
3278 }
3279 
3280 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3281 				  enum hpd_pin pin)
3282 {
3283 	switch (pin) {
3284 	case HPD_PORT_TC1:
3285 	case HPD_PORT_TC2:
3286 	case HPD_PORT_TC3:
3287 	case HPD_PORT_TC4:
3288 	case HPD_PORT_TC5:
3289 	case HPD_PORT_TC6:
3290 		return ICP_TC_HPD_ENABLE(pin);
3291 	default:
3292 		return 0;
3293 	}
3294 }
3295 
3296 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3297 {
3298 	u32 hotplug;
3299 
3300 	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
3301 	hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3302 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3303 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3304 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3305 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3306 	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug);
3307 }
3308 
3309 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3310 {
3311 	u32 hotplug;
3312 
3313 	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
3314 	hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3315 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3316 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3317 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3318 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3319 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3320 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3321 	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug);
3322 }
3323 
3324 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3325 {
3326 	u32 hotplug_irqs, enabled_irqs;
3327 
3328 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3329 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3330 
3331 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3332 		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3333 
3334 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3335 
3336 	icp_ddi_hpd_detection_setup(dev_priv);
3337 	icp_tc_hpd_detection_setup(dev_priv);
3338 }
3339 
3340 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3341 				 enum hpd_pin pin)
3342 {
3343 	switch (pin) {
3344 	case HPD_PORT_TC1:
3345 	case HPD_PORT_TC2:
3346 	case HPD_PORT_TC3:
3347 	case HPD_PORT_TC4:
3348 	case HPD_PORT_TC5:
3349 	case HPD_PORT_TC6:
3350 		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3351 	default:
3352 		return 0;
3353 	}
3354 }
3355 
3356 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3357 {
3358 	u32 val;
3359 
3360 	val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3361 	val |= (INVERT_DDIA_HPD |
3362 		INVERT_DDIB_HPD |
3363 		INVERT_DDIC_HPD |
3364 		INVERT_DDID_HPD);
3365 	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3366 
3367 	icp_hpd_irq_setup(dev_priv);
3368 }
3369 
3370 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3371 {
3372 	u32 hotplug;
3373 
3374 	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
3375 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3376 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3377 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3378 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3379 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3380 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3381 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3382 	intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug);
3383 }
3384 
3385 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3386 {
3387 	u32 hotplug;
3388 
3389 	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
3390 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3391 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3392 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3393 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3394 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3395 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3396 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3397 	intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug);
3398 }
3399 
3400 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401 {
3402 	u32 hotplug_irqs, enabled_irqs;
3403 	u32 val;
3404 
3405 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3406 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3407 
3408 	val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3409 	val &= ~hotplug_irqs;
3410 	val |= ~enabled_irqs & hotplug_irqs;
3411 	intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val);
3412 	intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3413 
3414 	gen11_tc_hpd_detection_setup(dev_priv);
3415 	gen11_tbt_hpd_detection_setup(dev_priv);
3416 
3417 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3418 		icp_hpd_irq_setup(dev_priv);
3419 }
3420 
3421 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3422 			       enum hpd_pin pin)
3423 {
3424 	switch (pin) {
3425 	case HPD_PORT_A:
3426 		return PORTA_HOTPLUG_ENABLE;
3427 	case HPD_PORT_B:
3428 		return PORTB_HOTPLUG_ENABLE;
3429 	case HPD_PORT_C:
3430 		return PORTC_HOTPLUG_ENABLE;
3431 	case HPD_PORT_D:
3432 		return PORTD_HOTPLUG_ENABLE;
3433 	default:
3434 		return 0;
3435 	}
3436 }
3437 
3438 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3439 				enum hpd_pin pin)
3440 {
3441 	switch (pin) {
3442 	case HPD_PORT_E:
3443 		return PORTE_HOTPLUG_ENABLE;
3444 	default:
3445 		return 0;
3446 	}
3447 }
3448 
3449 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3450 {
3451 	u32 val, hotplug;
3452 
3453 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3454 	if (HAS_PCH_CNP(dev_priv)) {
3455 		val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3456 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3457 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3458 		intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3459 	}
3460 
3461 	/* Enable digital hotplug on the PCH */
3462 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3463 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3464 		     PORTB_HOTPLUG_ENABLE |
3465 		     PORTC_HOTPLUG_ENABLE |
3466 		     PORTD_HOTPLUG_ENABLE);
3467 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3468 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3469 
3470 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
3471 	hotplug &= ~PORTE_HOTPLUG_ENABLE;
3472 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3473 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug);
3474 }
3475 
3476 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3477 {
3478 	u32 hotplug_irqs, enabled_irqs;
3479 
3480 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3481 		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3482 
3483 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3484 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3485 
3486 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3487 
3488 	spt_hpd_detection_setup(dev_priv);
3489 }
3490 
3491 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3492 			       enum hpd_pin pin)
3493 {
3494 	switch (pin) {
3495 	case HPD_PORT_A:
3496 		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3497 			DIGITAL_PORTA_PULSE_DURATION_2ms;
3498 	default:
3499 		return 0;
3500 	}
3501 }
3502 
3503 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3504 {
3505 	u32 hotplug;
3506 
3507 	/*
3508 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3509 	 * duration to 2ms (which is the minimum in the Display Port spec)
3510 	 * The pulse duration bits are reserved on HSW+.
3511 	 */
3512 	hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
3513 	hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3514 		     DIGITAL_PORTA_PULSE_DURATION_MASK);
3515 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3516 	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3517 }
3518 
3519 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3520 {
3521 	u32 hotplug_irqs, enabled_irqs;
3522 
3523 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3524 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3525 
3526 	if (DISPLAY_VER(dev_priv) >= 8)
3527 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3528 	else
3529 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3530 
3531 	ilk_hpd_detection_setup(dev_priv);
3532 
3533 	ibx_hpd_irq_setup(dev_priv);
3534 }
3535 
3536 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3537 			       enum hpd_pin pin)
3538 {
3539 	u32 hotplug;
3540 
3541 	switch (pin) {
3542 	case HPD_PORT_A:
3543 		hotplug = PORTA_HOTPLUG_ENABLE;
3544 		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3545 			hotplug |= BXT_DDIA_HPD_INVERT;
3546 		return hotplug;
3547 	case HPD_PORT_B:
3548 		hotplug = PORTB_HOTPLUG_ENABLE;
3549 		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3550 			hotplug |= BXT_DDIB_HPD_INVERT;
3551 		return hotplug;
3552 	case HPD_PORT_C:
3553 		hotplug = PORTC_HOTPLUG_ENABLE;
3554 		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3555 			hotplug |= BXT_DDIC_HPD_INVERT;
3556 		return hotplug;
3557 	default:
3558 		return 0;
3559 	}
3560 }
3561 
3562 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3563 {
3564 	u32 hotplug;
3565 
3566 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3567 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3568 		     PORTB_HOTPLUG_ENABLE |
3569 		     PORTC_HOTPLUG_ENABLE |
3570 		     BXT_DDIA_HPD_INVERT |
3571 		     BXT_DDIB_HPD_INVERT |
3572 		     BXT_DDIC_HPD_INVERT);
3573 	hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3574 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3575 }
3576 
3577 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3578 {
3579 	u32 hotplug_irqs, enabled_irqs;
3580 
3581 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3582 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3583 
3584 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3585 
3586 	bxt_hpd_detection_setup(dev_priv);
3587 }
3588 
3589 /*
3590  * SDEIER is also touched by the interrupt handler to work around missed PCH
3591  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3592  * instead we unconditionally enable all PCH interrupt sources here, but then
3593  * only unmask them as needed with SDEIMR.
3594  *
3595  * Note that we currently do this after installing the interrupt handler,
3596  * but before we enable the master interrupt. That should be sufficient
3597  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3598  * interrupts could still race.
3599  */
3600 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3601 {
3602 	struct intel_uncore *uncore = &dev_priv->uncore;
3603 	u32 mask;
3604 
3605 	if (HAS_PCH_NOP(dev_priv))
3606 		return;
3607 
3608 	if (HAS_PCH_IBX(dev_priv))
3609 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3610 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3611 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3612 	else
3613 		mask = SDE_GMBUS_CPT;
3614 
3615 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3616 }
3617 
3618 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3619 {
3620 	struct intel_uncore *uncore = &dev_priv->uncore;
3621 	u32 display_mask, extra_mask;
3622 
3623 	if (INTEL_GEN(dev_priv) >= 7) {
3624 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3625 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3626 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3627 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3628 			      DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3629 			      DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3630 			      DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3631 			      DE_DP_A_HOTPLUG_IVB);
3632 	} else {
3633 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3634 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3635 				DE_PIPEA_CRC_DONE | DE_POISON);
3636 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3637 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3638 			      DE_PLANE_FLIP_DONE(PLANE_A) |
3639 			      DE_PLANE_FLIP_DONE(PLANE_B) |
3640 			      DE_DP_A_HOTPLUG);
3641 	}
3642 
3643 	if (IS_HASWELL(dev_priv)) {
3644 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3645 		display_mask |= DE_EDP_PSR_INT_HSW;
3646 	}
3647 
3648 	if (IS_IRONLAKE_M(dev_priv))
3649 		extra_mask |= DE_PCU_EVENT;
3650 
3651 	dev_priv->irq_mask = ~display_mask;
3652 
3653 	ibx_irq_postinstall(dev_priv);
3654 
3655 	gen5_gt_irq_postinstall(&dev_priv->gt);
3656 
3657 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3658 		      display_mask | extra_mask);
3659 }
3660 
3661 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3662 {
3663 	lockdep_assert_held(&dev_priv->irq_lock);
3664 
3665 	if (dev_priv->display_irqs_enabled)
3666 		return;
3667 
3668 	dev_priv->display_irqs_enabled = true;
3669 
3670 	if (intel_irqs_enabled(dev_priv)) {
3671 		vlv_display_irq_reset(dev_priv);
3672 		vlv_display_irq_postinstall(dev_priv);
3673 	}
3674 }
3675 
3676 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3677 {
3678 	lockdep_assert_held(&dev_priv->irq_lock);
3679 
3680 	if (!dev_priv->display_irqs_enabled)
3681 		return;
3682 
3683 	dev_priv->display_irqs_enabled = false;
3684 
3685 	if (intel_irqs_enabled(dev_priv))
3686 		vlv_display_irq_reset(dev_priv);
3687 }
3688 
3689 
3690 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3691 {
3692 	gen5_gt_irq_postinstall(&dev_priv->gt);
3693 
3694 	spin_lock_irq(&dev_priv->irq_lock);
3695 	if (dev_priv->display_irqs_enabled)
3696 		vlv_display_irq_postinstall(dev_priv);
3697 	spin_unlock_irq(&dev_priv->irq_lock);
3698 
3699 	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3700 	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3701 }
3702 
3703 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3704 {
3705 	struct intel_uncore *uncore = &dev_priv->uncore;
3706 
3707 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3708 		GEN8_PIPE_CDCLK_CRC_DONE;
3709 	u32 de_pipe_enables;
3710 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3711 	u32 de_port_enables;
3712 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3713 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3714 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3715 	enum pipe pipe;
3716 
3717 	if (DISPLAY_VER(dev_priv) <= 10)
3718 		de_misc_masked |= GEN8_DE_MISC_GSE;
3719 
3720 	if (IS_GEN9_LP(dev_priv))
3721 		de_port_masked |= BXT_DE_PORT_GMBUS;
3722 
3723 	if (DISPLAY_VER(dev_priv) >= 11) {
3724 		enum port port;
3725 
3726 		if (intel_bios_is_dsi_present(dev_priv, &port))
3727 			de_port_masked |= DSI0_TE | DSI1_TE;
3728 	}
3729 
3730 	de_pipe_enables = de_pipe_masked |
3731 		GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3732 		gen8_de_pipe_flip_done_mask(dev_priv);
3733 
3734 	de_port_enables = de_port_masked;
3735 	if (IS_GEN9_LP(dev_priv))
3736 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3737 	else if (IS_BROADWELL(dev_priv))
3738 		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3739 
3740 	if (DISPLAY_VER(dev_priv) >= 12) {
3741 		enum transcoder trans;
3742 
3743 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3744 			enum intel_display_power_domain domain;
3745 
3746 			domain = POWER_DOMAIN_TRANSCODER(trans);
3747 			if (!intel_display_power_is_enabled(dev_priv, domain))
3748 				continue;
3749 
3750 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3751 		}
3752 	} else {
3753 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3754 	}
3755 
3756 	for_each_pipe(dev_priv, pipe) {
3757 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3758 
3759 		if (intel_display_power_is_enabled(dev_priv,
3760 				POWER_DOMAIN_PIPE(pipe)))
3761 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3762 					  dev_priv->de_irq_mask[pipe],
3763 					  de_pipe_enables);
3764 	}
3765 
3766 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3767 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3768 
3769 	if (DISPLAY_VER(dev_priv) >= 11) {
3770 		u32 de_hpd_masked = 0;
3771 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3772 				     GEN11_DE_TBT_HOTPLUG_MASK;
3773 
3774 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3775 			      de_hpd_enables);
3776 	}
3777 }
3778 
3779 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3780 {
3781 	struct intel_uncore *uncore = &dev_priv->uncore;
3782 	u32 mask = SDE_GMBUS_ICP;
3783 
3784 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3785 }
3786 
3787 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3788 {
3789 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3790 		icp_irq_postinstall(dev_priv);
3791 	else if (HAS_PCH_SPLIT(dev_priv))
3792 		ibx_irq_postinstall(dev_priv);
3793 
3794 	gen8_gt_irq_postinstall(&dev_priv->gt);
3795 	gen8_de_irq_postinstall(dev_priv);
3796 
3797 	gen8_master_intr_enable(dev_priv->uncore.regs);
3798 }
3799 
3800 
3801 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3802 {
3803 	struct intel_uncore *uncore = &dev_priv->uncore;
3804 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3805 
3806 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3807 		icp_irq_postinstall(dev_priv);
3808 
3809 	gen11_gt_irq_postinstall(&dev_priv->gt);
3810 	gen8_de_irq_postinstall(dev_priv);
3811 
3812 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3813 
3814 	intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3815 
3816 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3817 		dg1_master_intr_enable(uncore->regs);
3818 		intel_uncore_posting_read(&dev_priv->uncore, DG1_MSTR_UNIT_INTR);
3819 	} else {
3820 		gen11_master_intr_enable(uncore->regs);
3821 		intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
3822 	}
3823 }
3824 
3825 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3826 {
3827 	gen8_gt_irq_postinstall(&dev_priv->gt);
3828 
3829 	spin_lock_irq(&dev_priv->irq_lock);
3830 	if (dev_priv->display_irqs_enabled)
3831 		vlv_display_irq_postinstall(dev_priv);
3832 	spin_unlock_irq(&dev_priv->irq_lock);
3833 
3834 	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3835 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3836 }
3837 
3838 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3839 {
3840 	struct intel_uncore *uncore = &dev_priv->uncore;
3841 
3842 	i9xx_pipestat_irq_reset(dev_priv);
3843 
3844 	GEN2_IRQ_RESET(uncore);
3845 	dev_priv->irq_mask = ~0u;
3846 }
3847 
3848 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3849 {
3850 	struct intel_uncore *uncore = &dev_priv->uncore;
3851 	u16 enable_mask;
3852 
3853 	intel_uncore_write16(uncore,
3854 			     EMR,
3855 			     ~(I915_ERROR_PAGE_TABLE |
3856 			       I915_ERROR_MEMORY_REFRESH));
3857 
3858 	/* Unmask the interrupts that we always want on. */
3859 	dev_priv->irq_mask =
3860 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3861 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3862 		  I915_MASTER_ERROR_INTERRUPT);
3863 
3864 	enable_mask =
3865 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3866 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3867 		I915_MASTER_ERROR_INTERRUPT |
3868 		I915_USER_INTERRUPT;
3869 
3870 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3871 
3872 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3873 	 * just to make the assert_spin_locked check happy. */
3874 	spin_lock_irq(&dev_priv->irq_lock);
3875 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3876 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3877 	spin_unlock_irq(&dev_priv->irq_lock);
3878 }
3879 
3880 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3881 			       u16 *eir, u16 *eir_stuck)
3882 {
3883 	struct intel_uncore *uncore = &i915->uncore;
3884 	u16 emr;
3885 
3886 	*eir = intel_uncore_read16(uncore, EIR);
3887 
3888 	if (*eir)
3889 		intel_uncore_write16(uncore, EIR, *eir);
3890 
3891 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3892 	if (*eir_stuck == 0)
3893 		return;
3894 
3895 	/*
3896 	 * Toggle all EMR bits to make sure we get an edge
3897 	 * in the ISR master error bit if we don't clear
3898 	 * all the EIR bits. Otherwise the edge triggered
3899 	 * IIR on i965/g4x wouldn't notice that an interrupt
3900 	 * is still pending. Also some EIR bits can't be
3901 	 * cleared except by handling the underlying error
3902 	 * (or by a GPU reset) so we mask any bit that
3903 	 * remains set.
3904 	 */
3905 	emr = intel_uncore_read16(uncore, EMR);
3906 	intel_uncore_write16(uncore, EMR, 0xffff);
3907 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3908 }
3909 
3910 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3911 				   u16 eir, u16 eir_stuck)
3912 {
3913 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3914 
3915 	if (eir_stuck)
3916 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3917 			eir_stuck);
3918 }
3919 
3920 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3921 			       u32 *eir, u32 *eir_stuck)
3922 {
3923 	u32 emr;
3924 
3925 	*eir = intel_uncore_read(&dev_priv->uncore, EIR);
3926 
3927 	intel_uncore_write(&dev_priv->uncore, EIR, *eir);
3928 
3929 	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3930 	if (*eir_stuck == 0)
3931 		return;
3932 
3933 	/*
3934 	 * Toggle all EMR bits to make sure we get an edge
3935 	 * in the ISR master error bit if we don't clear
3936 	 * all the EIR bits. Otherwise the edge triggered
3937 	 * IIR on i965/g4x wouldn't notice that an interrupt
3938 	 * is still pending. Also some EIR bits can't be
3939 	 * cleared except by handling the underlying error
3940 	 * (or by a GPU reset) so we mask any bit that
3941 	 * remains set.
3942 	 */
3943 	emr = intel_uncore_read(&dev_priv->uncore, EMR);
3944 	intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
3945 	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3946 }
3947 
3948 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3949 				   u32 eir, u32 eir_stuck)
3950 {
3951 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3952 
3953 	if (eir_stuck)
3954 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3955 			eir_stuck);
3956 }
3957 
3958 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3959 {
3960 	struct drm_i915_private *dev_priv = arg;
3961 	irqreturn_t ret = IRQ_NONE;
3962 
3963 	if (!intel_irqs_enabled(dev_priv))
3964 		return IRQ_NONE;
3965 
3966 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3967 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3968 
3969 	do {
3970 		u32 pipe_stats[I915_MAX_PIPES] = {};
3971 		u16 eir = 0, eir_stuck = 0;
3972 		u16 iir;
3973 
3974 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3975 		if (iir == 0)
3976 			break;
3977 
3978 		ret = IRQ_HANDLED;
3979 
3980 		/* Call regardless, as some status bits might not be
3981 		 * signalled in iir */
3982 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3983 
3984 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3985 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3986 
3987 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3988 
3989 		if (iir & I915_USER_INTERRUPT)
3990 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3991 
3992 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3993 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3994 
3995 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3996 	} while (0);
3997 
3998 	pmu_irq_stats(dev_priv, ret);
3999 
4000 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4001 
4002 	return ret;
4003 }
4004 
4005 static void i915_irq_reset(struct drm_i915_private *dev_priv)
4006 {
4007 	struct intel_uncore *uncore = &dev_priv->uncore;
4008 
4009 	if (I915_HAS_HOTPLUG(dev_priv)) {
4010 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4011 		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4012 	}
4013 
4014 	i9xx_pipestat_irq_reset(dev_priv);
4015 
4016 	GEN3_IRQ_RESET(uncore, GEN2_);
4017 	dev_priv->irq_mask = ~0u;
4018 }
4019 
4020 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4021 {
4022 	struct intel_uncore *uncore = &dev_priv->uncore;
4023 	u32 enable_mask;
4024 
4025 	intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
4026 			  I915_ERROR_MEMORY_REFRESH));
4027 
4028 	/* Unmask the interrupts that we always want on. */
4029 	dev_priv->irq_mask =
4030 		~(I915_ASLE_INTERRUPT |
4031 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4032 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4033 		  I915_MASTER_ERROR_INTERRUPT);
4034 
4035 	enable_mask =
4036 		I915_ASLE_INTERRUPT |
4037 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4038 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4039 		I915_MASTER_ERROR_INTERRUPT |
4040 		I915_USER_INTERRUPT;
4041 
4042 	if (I915_HAS_HOTPLUG(dev_priv)) {
4043 		/* Enable in IER... */
4044 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4045 		/* and unmask in IMR */
4046 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4047 	}
4048 
4049 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4050 
4051 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4052 	 * just to make the assert_spin_locked check happy. */
4053 	spin_lock_irq(&dev_priv->irq_lock);
4054 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4055 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4056 	spin_unlock_irq(&dev_priv->irq_lock);
4057 
4058 	i915_enable_asle_pipestat(dev_priv);
4059 }
4060 
4061 static irqreturn_t i915_irq_handler(int irq, void *arg)
4062 {
4063 	struct drm_i915_private *dev_priv = arg;
4064 	irqreturn_t ret = IRQ_NONE;
4065 
4066 	if (!intel_irqs_enabled(dev_priv))
4067 		return IRQ_NONE;
4068 
4069 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4070 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4071 
4072 	do {
4073 		u32 pipe_stats[I915_MAX_PIPES] = {};
4074 		u32 eir = 0, eir_stuck = 0;
4075 		u32 hotplug_status = 0;
4076 		u32 iir;
4077 
4078 		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4079 		if (iir == 0)
4080 			break;
4081 
4082 		ret = IRQ_HANDLED;
4083 
4084 		if (I915_HAS_HOTPLUG(dev_priv) &&
4085 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4086 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4087 
4088 		/* Call regardless, as some status bits might not be
4089 		 * signalled in iir */
4090 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4091 
4092 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4093 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4094 
4095 		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4096 
4097 		if (iir & I915_USER_INTERRUPT)
4098 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4099 
4100 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4101 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4102 
4103 		if (hotplug_status)
4104 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4105 
4106 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4107 	} while (0);
4108 
4109 	pmu_irq_stats(dev_priv, ret);
4110 
4111 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4112 
4113 	return ret;
4114 }
4115 
4116 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4117 {
4118 	struct intel_uncore *uncore = &dev_priv->uncore;
4119 
4120 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4121 	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4122 
4123 	i9xx_pipestat_irq_reset(dev_priv);
4124 
4125 	GEN3_IRQ_RESET(uncore, GEN2_);
4126 	dev_priv->irq_mask = ~0u;
4127 }
4128 
4129 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4130 {
4131 	struct intel_uncore *uncore = &dev_priv->uncore;
4132 	u32 enable_mask;
4133 	u32 error_mask;
4134 
4135 	/*
4136 	 * Enable some error detection, note the instruction error mask
4137 	 * bit is reserved, so we leave it masked.
4138 	 */
4139 	if (IS_G4X(dev_priv)) {
4140 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4141 			       GM45_ERROR_MEM_PRIV |
4142 			       GM45_ERROR_CP_PRIV |
4143 			       I915_ERROR_MEMORY_REFRESH);
4144 	} else {
4145 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4146 			       I915_ERROR_MEMORY_REFRESH);
4147 	}
4148 	intel_uncore_write(&dev_priv->uncore, EMR, error_mask);
4149 
4150 	/* Unmask the interrupts that we always want on. */
4151 	dev_priv->irq_mask =
4152 		~(I915_ASLE_INTERRUPT |
4153 		  I915_DISPLAY_PORT_INTERRUPT |
4154 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4155 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4156 		  I915_MASTER_ERROR_INTERRUPT);
4157 
4158 	enable_mask =
4159 		I915_ASLE_INTERRUPT |
4160 		I915_DISPLAY_PORT_INTERRUPT |
4161 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4162 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4163 		I915_MASTER_ERROR_INTERRUPT |
4164 		I915_USER_INTERRUPT;
4165 
4166 	if (IS_G4X(dev_priv))
4167 		enable_mask |= I915_BSD_USER_INTERRUPT;
4168 
4169 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4170 
4171 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4172 	 * just to make the assert_spin_locked check happy. */
4173 	spin_lock_irq(&dev_priv->irq_lock);
4174 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4175 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4176 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4177 	spin_unlock_irq(&dev_priv->irq_lock);
4178 
4179 	i915_enable_asle_pipestat(dev_priv);
4180 }
4181 
4182 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4183 {
4184 	u32 hotplug_en;
4185 
4186 	lockdep_assert_held(&dev_priv->irq_lock);
4187 
4188 	/* Note HDMI and DP share hotplug bits */
4189 	/* enable bits are the same for all generations */
4190 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4191 	/* Programming the CRT detection parameters tends
4192 	   to generate a spurious hotplug event about three
4193 	   seconds later.  So just do it once.
4194 	*/
4195 	if (IS_G4X(dev_priv))
4196 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4197 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4198 
4199 	/* Ignore TV since it's buggy */
4200 	i915_hotplug_interrupt_update_locked(dev_priv,
4201 					     HOTPLUG_INT_EN_MASK |
4202 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4203 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4204 					     hotplug_en);
4205 }
4206 
4207 static irqreturn_t i965_irq_handler(int irq, void *arg)
4208 {
4209 	struct drm_i915_private *dev_priv = arg;
4210 	irqreturn_t ret = IRQ_NONE;
4211 
4212 	if (!intel_irqs_enabled(dev_priv))
4213 		return IRQ_NONE;
4214 
4215 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4216 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4217 
4218 	do {
4219 		u32 pipe_stats[I915_MAX_PIPES] = {};
4220 		u32 eir = 0, eir_stuck = 0;
4221 		u32 hotplug_status = 0;
4222 		u32 iir;
4223 
4224 		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4225 		if (iir == 0)
4226 			break;
4227 
4228 		ret = IRQ_HANDLED;
4229 
4230 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4231 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4232 
4233 		/* Call regardless, as some status bits might not be
4234 		 * signalled in iir */
4235 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4236 
4237 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4238 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4239 
4240 		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4241 
4242 		if (iir & I915_USER_INTERRUPT)
4243 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4244 
4245 		if (iir & I915_BSD_USER_INTERRUPT)
4246 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4247 
4248 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4249 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4250 
4251 		if (hotplug_status)
4252 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4253 
4254 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4255 	} while (0);
4256 
4257 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
4258 
4259 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4260 
4261 	return ret;
4262 }
4263 
4264 /**
4265  * intel_irq_init - initializes irq support
4266  * @dev_priv: i915 device instance
4267  *
4268  * This function initializes all the irq support including work items, timers
4269  * and all the vtables. It does not setup the interrupt itself though.
4270  */
4271 void intel_irq_init(struct drm_i915_private *dev_priv)
4272 {
4273 	struct drm_device *dev = &dev_priv->drm;
4274 	int i;
4275 
4276 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4277 	for (i = 0; i < MAX_L3_SLICES; ++i)
4278 		dev_priv->l3_parity.remap_info[i] = NULL;
4279 
4280 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4281 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4282 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4283 
4284 	if (!HAS_DISPLAY(dev_priv))
4285 		return;
4286 
4287 	intel_hpd_init_pins(dev_priv);
4288 
4289 	intel_hpd_init_work(dev_priv);
4290 
4291 	dev->vblank_disable_immediate = true;
4292 
4293 	/* Most platforms treat the display irq block as an always-on
4294 	 * power domain. vlv/chv can disable it at runtime and need
4295 	 * special care to avoid writing any of the display block registers
4296 	 * outside of the power domain. We defer setting up the display irqs
4297 	 * in this case to the runtime pm.
4298 	 */
4299 	dev_priv->display_irqs_enabled = true;
4300 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4301 		dev_priv->display_irqs_enabled = false;
4302 
4303 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4304 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4305 	 * detection, as short HPD storms will occur as a natural part of
4306 	 * sideband messaging with MST.
4307 	 * On older platforms however, IRQ storms can occur with both long and
4308 	 * short pulses, as seen on some G4x systems.
4309 	 */
4310 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4311 
4312 	if (HAS_GMCH(dev_priv)) {
4313 		if (I915_HAS_HOTPLUG(dev_priv))
4314 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4315 	} else {
4316 		if (HAS_PCH_DG1(dev_priv))
4317 			dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4318 		else if (DISPLAY_VER(dev_priv) >= 11)
4319 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4320 		else if (IS_GEN9_LP(dev_priv))
4321 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4322 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4323 			dev_priv->display.hpd_irq_setup = icp_hpd_irq_setup;
4324 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4325 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4326 		else
4327 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4328 	}
4329 }
4330 
4331 /**
4332  * intel_irq_fini - deinitializes IRQ support
4333  * @i915: i915 device instance
4334  *
4335  * This function deinitializes all the IRQ support.
4336  */
4337 void intel_irq_fini(struct drm_i915_private *i915)
4338 {
4339 	int i;
4340 
4341 	for (i = 0; i < MAX_L3_SLICES; ++i)
4342 		kfree(i915->l3_parity.remap_info[i]);
4343 }
4344 
4345 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4346 {
4347 	if (HAS_GMCH(dev_priv)) {
4348 		if (IS_CHERRYVIEW(dev_priv))
4349 			return cherryview_irq_handler;
4350 		else if (IS_VALLEYVIEW(dev_priv))
4351 			return valleyview_irq_handler;
4352 		else if (IS_GEN(dev_priv, 4))
4353 			return i965_irq_handler;
4354 		else if (IS_GEN(dev_priv, 3))
4355 			return i915_irq_handler;
4356 		else
4357 			return i8xx_irq_handler;
4358 	} else {
4359 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4360 			return dg1_irq_handler;
4361 		if (INTEL_GEN(dev_priv) >= 11)
4362 			return gen11_irq_handler;
4363 		else if (INTEL_GEN(dev_priv) >= 8)
4364 			return gen8_irq_handler;
4365 		else
4366 			return ilk_irq_handler;
4367 	}
4368 }
4369 
4370 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4371 {
4372 	if (HAS_GMCH(dev_priv)) {
4373 		if (IS_CHERRYVIEW(dev_priv))
4374 			cherryview_irq_reset(dev_priv);
4375 		else if (IS_VALLEYVIEW(dev_priv))
4376 			valleyview_irq_reset(dev_priv);
4377 		else if (IS_GEN(dev_priv, 4))
4378 			i965_irq_reset(dev_priv);
4379 		else if (IS_GEN(dev_priv, 3))
4380 			i915_irq_reset(dev_priv);
4381 		else
4382 			i8xx_irq_reset(dev_priv);
4383 	} else {
4384 		if (INTEL_GEN(dev_priv) >= 11)
4385 			gen11_irq_reset(dev_priv);
4386 		else if (INTEL_GEN(dev_priv) >= 8)
4387 			gen8_irq_reset(dev_priv);
4388 		else
4389 			ilk_irq_reset(dev_priv);
4390 	}
4391 }
4392 
4393 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4394 {
4395 	if (HAS_GMCH(dev_priv)) {
4396 		if (IS_CHERRYVIEW(dev_priv))
4397 			cherryview_irq_postinstall(dev_priv);
4398 		else if (IS_VALLEYVIEW(dev_priv))
4399 			valleyview_irq_postinstall(dev_priv);
4400 		else if (IS_GEN(dev_priv, 4))
4401 			i965_irq_postinstall(dev_priv);
4402 		else if (IS_GEN(dev_priv, 3))
4403 			i915_irq_postinstall(dev_priv);
4404 		else
4405 			i8xx_irq_postinstall(dev_priv);
4406 	} else {
4407 		if (INTEL_GEN(dev_priv) >= 11)
4408 			gen11_irq_postinstall(dev_priv);
4409 		else if (INTEL_GEN(dev_priv) >= 8)
4410 			gen8_irq_postinstall(dev_priv);
4411 		else
4412 			ilk_irq_postinstall(dev_priv);
4413 	}
4414 }
4415 
4416 /**
4417  * intel_irq_install - enables the hardware interrupt
4418  * @dev_priv: i915 device instance
4419  *
4420  * This function enables the hardware interrupt handling, but leaves the hotplug
4421  * handling still disabled. It is called after intel_irq_init().
4422  *
4423  * In the driver load and resume code we need working interrupts in a few places
4424  * but don't want to deal with the hassle of concurrent probe and hotplug
4425  * workers. Hence the split into this two-stage approach.
4426  */
4427 int intel_irq_install(struct drm_i915_private *dev_priv)
4428 {
4429 	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4430 	int ret;
4431 
4432 	/*
4433 	 * We enable some interrupt sources in our postinstall hooks, so mark
4434 	 * interrupts as enabled _before_ actually enabling them to avoid
4435 	 * special cases in our ordering checks.
4436 	 */
4437 	dev_priv->runtime_pm.irqs_enabled = true;
4438 
4439 	dev_priv->drm.irq_enabled = true;
4440 
4441 	intel_irq_reset(dev_priv);
4442 
4443 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4444 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4445 	if (ret < 0) {
4446 		dev_priv->drm.irq_enabled = false;
4447 		return ret;
4448 	}
4449 
4450 	intel_irq_postinstall(dev_priv);
4451 
4452 	return ret;
4453 }
4454 
4455 /**
4456  * intel_irq_uninstall - finilizes all irq handling
4457  * @dev_priv: i915 device instance
4458  *
4459  * This stops interrupt and hotplug handling and unregisters and frees all
4460  * resources acquired in the init functions.
4461  */
4462 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4463 {
4464 	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4465 
4466 	/*
4467 	 * FIXME we can get called twice during driver probe
4468 	 * error handling as well as during driver remove due to
4469 	 * intel_modeset_driver_remove() calling us out of sequence.
4470 	 * Would be nice if it didn't do that...
4471 	 */
4472 	if (!dev_priv->drm.irq_enabled)
4473 		return;
4474 
4475 	dev_priv->drm.irq_enabled = false;
4476 
4477 	intel_irq_reset(dev_priv);
4478 
4479 	free_irq(irq, dev_priv);
4480 
4481 	intel_hpd_cancel_work(dev_priv);
4482 	dev_priv->runtime_pm.irqs_enabled = false;
4483 }
4484 
4485 /**
4486  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4487  * @dev_priv: i915 device instance
4488  *
4489  * This function is used to disable interrupts at runtime, both in the runtime
4490  * pm and the system suspend/resume code.
4491  */
4492 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4493 {
4494 	intel_irq_reset(dev_priv);
4495 	dev_priv->runtime_pm.irqs_enabled = false;
4496 	intel_synchronize_irq(dev_priv);
4497 }
4498 
4499 /**
4500  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4501  * @dev_priv: i915 device instance
4502  *
4503  * This function is used to enable interrupts at runtime, both in the runtime
4504  * pm and the system suspend/resume code.
4505  */
4506 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4507 {
4508 	dev_priv->runtime_pm.irqs_enabled = true;
4509 	intel_irq_reset(dev_priv);
4510 	intel_irq_postinstall(dev_priv);
4511 }
4512 
4513 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4514 {
4515 	/*
4516 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4517 	 * this is the only thing we need to check.
4518 	 */
4519 	return dev_priv->runtime_pm.irqs_enabled;
4520 }
4521 
4522 void intel_synchronize_irq(struct drm_i915_private *i915)
4523 {
4524 	synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
4525 }
4526