1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/sysrq.h> 32 #include <linux/slab.h> 33 #include <linux/circ_buf.h> 34 #include <drm/drmP.h> 35 #include <drm/i915_drm.h> 36 #include "i915_drv.h" 37 #include "i915_trace.h" 38 #include "intel_drv.h" 39 40 /** 41 * DOC: interrupt handling 42 * 43 * These functions provide the basic support for enabling and disabling the 44 * interrupt handling support. There's a lot more functionality in i915_irq.c 45 * and related files, but that will be described in separate chapters. 46 */ 47 48 static const u32 hpd_ilk[HPD_NUM_PINS] = { 49 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 50 }; 51 52 static const u32 hpd_ivb[HPD_NUM_PINS] = { 53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 54 }; 55 56 static const u32 hpd_bdw[HPD_NUM_PINS] = { 57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 58 }; 59 60 static const u32 hpd_ibx[HPD_NUM_PINS] = { 61 [HPD_CRT] = SDE_CRT_HOTPLUG, 62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 66 }; 67 68 static const u32 hpd_cpt[HPD_NUM_PINS] = { 69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 74 }; 75 76 static const u32 hpd_spt[HPD_NUM_PINS] = { 77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT 82 }; 83 84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 85 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 91 }; 92 93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 100 }; 101 102 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 109 }; 110 111 /* BXT hpd list */ 112 static const u32 hpd_bxt[HPD_NUM_PINS] = { 113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC 116 }; 117 118 /* IIR can theoretically queue up two events. Be paranoid. */ 119 #define GEN8_IRQ_RESET_NDX(type, which) do { \ 120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ 121 POSTING_READ(GEN8_##type##_IMR(which)); \ 122 I915_WRITE(GEN8_##type##_IER(which), 0); \ 123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 124 POSTING_READ(GEN8_##type##_IIR(which)); \ 125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 126 POSTING_READ(GEN8_##type##_IIR(which)); \ 127 } while (0) 128 129 #define GEN3_IRQ_RESET(type) do { \ 130 I915_WRITE(type##IMR, 0xffffffff); \ 131 POSTING_READ(type##IMR); \ 132 I915_WRITE(type##IER, 0); \ 133 I915_WRITE(type##IIR, 0xffffffff); \ 134 POSTING_READ(type##IIR); \ 135 I915_WRITE(type##IIR, 0xffffffff); \ 136 POSTING_READ(type##IIR); \ 137 } while (0) 138 139 #define GEN2_IRQ_RESET(type) do { \ 140 I915_WRITE16(type##IMR, 0xffff); \ 141 POSTING_READ16(type##IMR); \ 142 I915_WRITE16(type##IER, 0); \ 143 I915_WRITE16(type##IIR, 0xffff); \ 144 POSTING_READ16(type##IIR); \ 145 I915_WRITE16(type##IIR, 0xffff); \ 146 POSTING_READ16(type##IIR); \ 147 } while (0) 148 149 /* 150 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 151 */ 152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv, 153 i915_reg_t reg) 154 { 155 u32 val = I915_READ(reg); 156 157 if (val == 0) 158 return; 159 160 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 161 i915_mmio_reg_offset(reg), val); 162 I915_WRITE(reg, 0xffffffff); 163 POSTING_READ(reg); 164 I915_WRITE(reg, 0xffffffff); 165 POSTING_READ(reg); 166 } 167 168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv, 169 i915_reg_t reg) 170 { 171 u16 val = I915_READ16(reg); 172 173 if (val == 0) 174 return; 175 176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 177 i915_mmio_reg_offset(reg), val); 178 I915_WRITE16(reg, 0xffff); 179 POSTING_READ16(reg); 180 I915_WRITE16(reg, 0xffff); 181 POSTING_READ16(reg); 182 } 183 184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ 185 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \ 186 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ 187 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ 188 POSTING_READ(GEN8_##type##_IMR(which)); \ 189 } while (0) 190 191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \ 192 gen3_assert_iir_is_zero(dev_priv, type##IIR); \ 193 I915_WRITE(type##IER, (ier_val)); \ 194 I915_WRITE(type##IMR, (imr_val)); \ 195 POSTING_READ(type##IMR); \ 196 } while (0) 197 198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \ 199 gen2_assert_iir_is_zero(dev_priv, type##IIR); \ 200 I915_WRITE16(type##IER, (ier_val)); \ 201 I915_WRITE16(type##IMR, (imr_val)); \ 202 POSTING_READ16(type##IMR); \ 203 } while (0) 204 205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 207 208 /* For display hotplug interrupt */ 209 static inline void 210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 211 uint32_t mask, 212 uint32_t bits) 213 { 214 uint32_t val; 215 216 lockdep_assert_held(&dev_priv->irq_lock); 217 WARN_ON(bits & ~mask); 218 219 val = I915_READ(PORT_HOTPLUG_EN); 220 val &= ~mask; 221 val |= bits; 222 I915_WRITE(PORT_HOTPLUG_EN, val); 223 } 224 225 /** 226 * i915_hotplug_interrupt_update - update hotplug interrupt enable 227 * @dev_priv: driver private 228 * @mask: bits to update 229 * @bits: bits to enable 230 * NOTE: the HPD enable bits are modified both inside and outside 231 * of an interrupt context. To avoid that read-modify-write cycles 232 * interfer, these bits are protected by a spinlock. Since this 233 * function is usually not called from a context where the lock is 234 * held already, this function acquires the lock itself. A non-locking 235 * version is also available. 236 */ 237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 238 uint32_t mask, 239 uint32_t bits) 240 { 241 spin_lock_irq(&dev_priv->irq_lock); 242 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 243 spin_unlock_irq(&dev_priv->irq_lock); 244 } 245 246 static u32 247 gen11_gt_engine_identity(struct drm_i915_private * const i915, 248 const unsigned int bank, const unsigned int bit); 249 250 bool gen11_reset_one_iir(struct drm_i915_private * const i915, 251 const unsigned int bank, 252 const unsigned int bit) 253 { 254 void __iomem * const regs = i915->regs; 255 u32 dw; 256 257 lockdep_assert_held(&i915->irq_lock); 258 259 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 260 if (dw & BIT(bit)) { 261 /* 262 * According to the BSpec, DW_IIR bits cannot be cleared without 263 * first servicing the Selector & Shared IIR registers. 264 */ 265 gen11_gt_engine_identity(i915, bank, bit); 266 267 /* 268 * We locked GT INT DW by reading it. If we want to (try 269 * to) recover from this succesfully, we need to clear 270 * our bit, otherwise we are locking the register for 271 * everybody. 272 */ 273 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); 274 275 return true; 276 } 277 278 return false; 279 } 280 281 /** 282 * ilk_update_display_irq - update DEIMR 283 * @dev_priv: driver private 284 * @interrupt_mask: mask of interrupt bits to update 285 * @enabled_irq_mask: mask of interrupt bits to enable 286 */ 287 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 288 uint32_t interrupt_mask, 289 uint32_t enabled_irq_mask) 290 { 291 uint32_t new_val; 292 293 lockdep_assert_held(&dev_priv->irq_lock); 294 295 WARN_ON(enabled_irq_mask & ~interrupt_mask); 296 297 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 298 return; 299 300 new_val = dev_priv->irq_mask; 301 new_val &= ~interrupt_mask; 302 new_val |= (~enabled_irq_mask & interrupt_mask); 303 304 if (new_val != dev_priv->irq_mask) { 305 dev_priv->irq_mask = new_val; 306 I915_WRITE(DEIMR, dev_priv->irq_mask); 307 POSTING_READ(DEIMR); 308 } 309 } 310 311 /** 312 * ilk_update_gt_irq - update GTIMR 313 * @dev_priv: driver private 314 * @interrupt_mask: mask of interrupt bits to update 315 * @enabled_irq_mask: mask of interrupt bits to enable 316 */ 317 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 318 uint32_t interrupt_mask, 319 uint32_t enabled_irq_mask) 320 { 321 lockdep_assert_held(&dev_priv->irq_lock); 322 323 WARN_ON(enabled_irq_mask & ~interrupt_mask); 324 325 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 326 return; 327 328 dev_priv->gt_irq_mask &= ~interrupt_mask; 329 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 330 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 331 } 332 333 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 334 { 335 ilk_update_gt_irq(dev_priv, mask, mask); 336 POSTING_READ_FW(GTIMR); 337 } 338 339 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 340 { 341 ilk_update_gt_irq(dev_priv, mask, 0); 342 } 343 344 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) 345 { 346 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11); 347 348 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; 349 } 350 351 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv) 352 { 353 if (INTEL_GEN(dev_priv) >= 11) 354 return GEN11_GPM_WGBOXPERF_INTR_MASK; 355 else if (INTEL_GEN(dev_priv) >= 8) 356 return GEN8_GT_IMR(2); 357 else 358 return GEN6_PMIMR; 359 } 360 361 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv) 362 { 363 if (INTEL_GEN(dev_priv) >= 11) 364 return GEN11_GPM_WGBOXPERF_INTR_ENABLE; 365 else if (INTEL_GEN(dev_priv) >= 8) 366 return GEN8_GT_IER(2); 367 else 368 return GEN6_PMIER; 369 } 370 371 /** 372 * snb_update_pm_irq - update GEN6_PMIMR 373 * @dev_priv: driver private 374 * @interrupt_mask: mask of interrupt bits to update 375 * @enabled_irq_mask: mask of interrupt bits to enable 376 */ 377 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 378 uint32_t interrupt_mask, 379 uint32_t enabled_irq_mask) 380 { 381 uint32_t new_val; 382 383 WARN_ON(enabled_irq_mask & ~interrupt_mask); 384 385 lockdep_assert_held(&dev_priv->irq_lock); 386 387 new_val = dev_priv->pm_imr; 388 new_val &= ~interrupt_mask; 389 new_val |= (~enabled_irq_mask & interrupt_mask); 390 391 if (new_val != dev_priv->pm_imr) { 392 dev_priv->pm_imr = new_val; 393 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr); 394 POSTING_READ(gen6_pm_imr(dev_priv)); 395 } 396 } 397 398 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 399 { 400 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 401 return; 402 403 snb_update_pm_irq(dev_priv, mask, mask); 404 } 405 406 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 407 { 408 snb_update_pm_irq(dev_priv, mask, 0); 409 } 410 411 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 412 { 413 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 414 return; 415 416 __gen6_mask_pm_irq(dev_priv, mask); 417 } 418 419 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) 420 { 421 i915_reg_t reg = gen6_pm_iir(dev_priv); 422 423 lockdep_assert_held(&dev_priv->irq_lock); 424 425 I915_WRITE(reg, reset_mask); 426 I915_WRITE(reg, reset_mask); 427 POSTING_READ(reg); 428 } 429 430 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) 431 { 432 lockdep_assert_held(&dev_priv->irq_lock); 433 434 dev_priv->pm_ier |= enable_mask; 435 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 436 gen6_unmask_pm_irq(dev_priv, enable_mask); 437 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ 438 } 439 440 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) 441 { 442 lockdep_assert_held(&dev_priv->irq_lock); 443 444 dev_priv->pm_ier &= ~disable_mask; 445 __gen6_mask_pm_irq(dev_priv, disable_mask); 446 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 447 /* though a barrier is missing here, but don't really need a one */ 448 } 449 450 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv) 451 { 452 spin_lock_irq(&dev_priv->irq_lock); 453 454 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)) 455 ; 456 457 dev_priv->gt_pm.rps.pm_iir = 0; 458 459 spin_unlock_irq(&dev_priv->irq_lock); 460 } 461 462 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) 463 { 464 spin_lock_irq(&dev_priv->irq_lock); 465 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events); 466 dev_priv->gt_pm.rps.pm_iir = 0; 467 spin_unlock_irq(&dev_priv->irq_lock); 468 } 469 470 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) 471 { 472 struct intel_rps *rps = &dev_priv->gt_pm.rps; 473 474 if (READ_ONCE(rps->interrupts_enabled)) 475 return; 476 477 spin_lock_irq(&dev_priv->irq_lock); 478 WARN_ON_ONCE(rps->pm_iir); 479 480 if (INTEL_GEN(dev_priv) >= 11) 481 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)); 482 else 483 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); 484 485 rps->interrupts_enabled = true; 486 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 487 488 spin_unlock_irq(&dev_priv->irq_lock); 489 } 490 491 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) 492 { 493 struct intel_rps *rps = &dev_priv->gt_pm.rps; 494 495 if (!READ_ONCE(rps->interrupts_enabled)) 496 return; 497 498 spin_lock_irq(&dev_priv->irq_lock); 499 rps->interrupts_enabled = false; 500 501 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); 502 503 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events); 504 505 spin_unlock_irq(&dev_priv->irq_lock); 506 synchronize_irq(dev_priv->drm.irq); 507 508 /* Now that we will not be generating any more work, flush any 509 * outstanding tasks. As we are called on the RPS idle path, 510 * we will reset the GPU to minimum frequencies, so the current 511 * state of the worker can be discarded. 512 */ 513 cancel_work_sync(&rps->work); 514 if (INTEL_GEN(dev_priv) >= 11) 515 gen11_reset_rps_interrupts(dev_priv); 516 else 517 gen6_reset_rps_interrupts(dev_priv); 518 } 519 520 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) 521 { 522 assert_rpm_wakelock_held(dev_priv); 523 524 spin_lock_irq(&dev_priv->irq_lock); 525 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); 526 spin_unlock_irq(&dev_priv->irq_lock); 527 } 528 529 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) 530 { 531 assert_rpm_wakelock_held(dev_priv); 532 533 spin_lock_irq(&dev_priv->irq_lock); 534 if (!dev_priv->guc.interrupts_enabled) { 535 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & 536 dev_priv->pm_guc_events); 537 dev_priv->guc.interrupts_enabled = true; 538 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); 539 } 540 spin_unlock_irq(&dev_priv->irq_lock); 541 } 542 543 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) 544 { 545 assert_rpm_wakelock_held(dev_priv); 546 547 spin_lock_irq(&dev_priv->irq_lock); 548 dev_priv->guc.interrupts_enabled = false; 549 550 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); 551 552 spin_unlock_irq(&dev_priv->irq_lock); 553 synchronize_irq(dev_priv->drm.irq); 554 555 gen9_reset_guc_interrupts(dev_priv); 556 } 557 558 /** 559 * bdw_update_port_irq - update DE port interrupt 560 * @dev_priv: driver private 561 * @interrupt_mask: mask of interrupt bits to update 562 * @enabled_irq_mask: mask of interrupt bits to enable 563 */ 564 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 565 uint32_t interrupt_mask, 566 uint32_t enabled_irq_mask) 567 { 568 uint32_t new_val; 569 uint32_t old_val; 570 571 lockdep_assert_held(&dev_priv->irq_lock); 572 573 WARN_ON(enabled_irq_mask & ~interrupt_mask); 574 575 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 576 return; 577 578 old_val = I915_READ(GEN8_DE_PORT_IMR); 579 580 new_val = old_val; 581 new_val &= ~interrupt_mask; 582 new_val |= (~enabled_irq_mask & interrupt_mask); 583 584 if (new_val != old_val) { 585 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 586 POSTING_READ(GEN8_DE_PORT_IMR); 587 } 588 } 589 590 /** 591 * bdw_update_pipe_irq - update DE pipe interrupt 592 * @dev_priv: driver private 593 * @pipe: pipe whose interrupt to update 594 * @interrupt_mask: mask of interrupt bits to update 595 * @enabled_irq_mask: mask of interrupt bits to enable 596 */ 597 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 598 enum pipe pipe, 599 uint32_t interrupt_mask, 600 uint32_t enabled_irq_mask) 601 { 602 uint32_t new_val; 603 604 lockdep_assert_held(&dev_priv->irq_lock); 605 606 WARN_ON(enabled_irq_mask & ~interrupt_mask); 607 608 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 609 return; 610 611 new_val = dev_priv->de_irq_mask[pipe]; 612 new_val &= ~interrupt_mask; 613 new_val |= (~enabled_irq_mask & interrupt_mask); 614 615 if (new_val != dev_priv->de_irq_mask[pipe]) { 616 dev_priv->de_irq_mask[pipe] = new_val; 617 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 618 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 619 } 620 } 621 622 /** 623 * ibx_display_interrupt_update - update SDEIMR 624 * @dev_priv: driver private 625 * @interrupt_mask: mask of interrupt bits to update 626 * @enabled_irq_mask: mask of interrupt bits to enable 627 */ 628 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 629 uint32_t interrupt_mask, 630 uint32_t enabled_irq_mask) 631 { 632 uint32_t sdeimr = I915_READ(SDEIMR); 633 sdeimr &= ~interrupt_mask; 634 sdeimr |= (~enabled_irq_mask & interrupt_mask); 635 636 WARN_ON(enabled_irq_mask & ~interrupt_mask); 637 638 lockdep_assert_held(&dev_priv->irq_lock); 639 640 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 641 return; 642 643 I915_WRITE(SDEIMR, sdeimr); 644 POSTING_READ(SDEIMR); 645 } 646 647 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 648 enum pipe pipe) 649 { 650 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 651 u32 enable_mask = status_mask << 16; 652 653 lockdep_assert_held(&dev_priv->irq_lock); 654 655 if (INTEL_GEN(dev_priv) < 5) 656 goto out; 657 658 /* 659 * On pipe A we don't support the PSR interrupt yet, 660 * on pipe B and C the same bit MBZ. 661 */ 662 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 663 return 0; 664 /* 665 * On pipe B and C we don't support the PSR interrupt yet, on pipe 666 * A the same bit is for perf counters which we don't use either. 667 */ 668 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 669 return 0; 670 671 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 672 SPRITE0_FLIP_DONE_INT_EN_VLV | 673 SPRITE1_FLIP_DONE_INT_EN_VLV); 674 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 675 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 676 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 677 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 678 679 out: 680 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 681 status_mask & ~PIPESTAT_INT_STATUS_MASK, 682 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 683 pipe_name(pipe), enable_mask, status_mask); 684 685 return enable_mask; 686 } 687 688 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 689 enum pipe pipe, u32 status_mask) 690 { 691 i915_reg_t reg = PIPESTAT(pipe); 692 u32 enable_mask; 693 694 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 695 "pipe %c: status_mask=0x%x\n", 696 pipe_name(pipe), status_mask); 697 698 lockdep_assert_held(&dev_priv->irq_lock); 699 WARN_ON(!intel_irqs_enabled(dev_priv)); 700 701 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 702 return; 703 704 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 705 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 706 707 I915_WRITE(reg, enable_mask | status_mask); 708 POSTING_READ(reg); 709 } 710 711 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 712 enum pipe pipe, u32 status_mask) 713 { 714 i915_reg_t reg = PIPESTAT(pipe); 715 u32 enable_mask; 716 717 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 718 "pipe %c: status_mask=0x%x\n", 719 pipe_name(pipe), status_mask); 720 721 lockdep_assert_held(&dev_priv->irq_lock); 722 WARN_ON(!intel_irqs_enabled(dev_priv)); 723 724 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 725 return; 726 727 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 728 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 729 730 I915_WRITE(reg, enable_mask | status_mask); 731 POSTING_READ(reg); 732 } 733 734 /** 735 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 736 * @dev_priv: i915 device private 737 */ 738 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 739 { 740 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv)) 741 return; 742 743 spin_lock_irq(&dev_priv->irq_lock); 744 745 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 746 if (INTEL_GEN(dev_priv) >= 4) 747 i915_enable_pipestat(dev_priv, PIPE_A, 748 PIPE_LEGACY_BLC_EVENT_STATUS); 749 750 spin_unlock_irq(&dev_priv->irq_lock); 751 } 752 753 /* 754 * This timing diagram depicts the video signal in and 755 * around the vertical blanking period. 756 * 757 * Assumptions about the fictitious mode used in this example: 758 * vblank_start >= 3 759 * vsync_start = vblank_start + 1 760 * vsync_end = vblank_start + 2 761 * vtotal = vblank_start + 3 762 * 763 * start of vblank: 764 * latch double buffered registers 765 * increment frame counter (ctg+) 766 * generate start of vblank interrupt (gen4+) 767 * | 768 * | frame start: 769 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 770 * | may be shifted forward 1-3 extra lines via PIPECONF 771 * | | 772 * | | start of vsync: 773 * | | generate vsync interrupt 774 * | | | 775 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 776 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 777 * ----va---> <-----------------vb--------------------> <--------va------------- 778 * | | <----vs-----> | 779 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 780 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 781 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 782 * | | | 783 * last visible pixel first visible pixel 784 * | increment frame counter (gen3/4) 785 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 786 * 787 * x = horizontal active 788 * _ = horizontal blanking 789 * hs = horizontal sync 790 * va = vertical active 791 * vb = vertical blanking 792 * vs = vertical sync 793 * vbs = vblank_start (number) 794 * 795 * Summary: 796 * - most events happen at the start of horizontal sync 797 * - frame start happens at the start of horizontal blank, 1-4 lines 798 * (depending on PIPECONF settings) after the start of vblank 799 * - gen3/4 pixel and frame counter are synchronized with the start 800 * of horizontal active on the first line of vertical active 801 */ 802 803 /* Called from drm generic code, passed a 'crtc', which 804 * we use as a pipe index 805 */ 806 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 807 { 808 struct drm_i915_private *dev_priv = to_i915(dev); 809 i915_reg_t high_frame, low_frame; 810 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 811 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode; 812 unsigned long irqflags; 813 814 htotal = mode->crtc_htotal; 815 hsync_start = mode->crtc_hsync_start; 816 vbl_start = mode->crtc_vblank_start; 817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 818 vbl_start = DIV_ROUND_UP(vbl_start, 2); 819 820 /* Convert to pixel count */ 821 vbl_start *= htotal; 822 823 /* Start of vblank event occurs at start of hsync */ 824 vbl_start -= htotal - hsync_start; 825 826 high_frame = PIPEFRAME(pipe); 827 low_frame = PIPEFRAMEPIXEL(pipe); 828 829 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 830 831 /* 832 * High & low register fields aren't synchronized, so make sure 833 * we get a low value that's stable across two reads of the high 834 * register. 835 */ 836 do { 837 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 838 low = I915_READ_FW(low_frame); 839 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 840 } while (high1 != high2); 841 842 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 843 844 high1 >>= PIPE_FRAME_HIGH_SHIFT; 845 pixel = low & PIPE_PIXEL_MASK; 846 low >>= PIPE_FRAME_LOW_SHIFT; 847 848 /* 849 * The frame counter increments at beginning of active. 850 * Cook up a vblank counter by also checking the pixel 851 * counter against vblank start. 852 */ 853 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 854 } 855 856 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 857 { 858 struct drm_i915_private *dev_priv = to_i915(dev); 859 860 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 861 } 862 863 /* 864 * On certain encoders on certain platforms, pipe 865 * scanline register will not work to get the scanline, 866 * since the timings are driven from the PORT or issues 867 * with scanline register updates. 868 * This function will use Framestamp and current 869 * timestamp registers to calculate the scanline. 870 */ 871 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 872 { 873 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 874 struct drm_vblank_crtc *vblank = 875 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 876 const struct drm_display_mode *mode = &vblank->hwmode; 877 u32 vblank_start = mode->crtc_vblank_start; 878 u32 vtotal = mode->crtc_vtotal; 879 u32 htotal = mode->crtc_htotal; 880 u32 clock = mode->crtc_clock; 881 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 882 883 /* 884 * To avoid the race condition where we might cross into the 885 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 886 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 887 * during the same frame. 888 */ 889 do { 890 /* 891 * This field provides read back of the display 892 * pipe frame time stamp. The time stamp value 893 * is sampled at every start of vertical blank. 894 */ 895 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 896 897 /* 898 * The TIMESTAMP_CTR register has the current 899 * time stamp value. 900 */ 901 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR); 902 903 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 904 } while (scan_post_time != scan_prev_time); 905 906 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 907 clock), 1000 * htotal); 908 scanline = min(scanline, vtotal - 1); 909 scanline = (scanline + vblank_start) % vtotal; 910 911 return scanline; 912 } 913 914 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ 915 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 916 { 917 struct drm_device *dev = crtc->base.dev; 918 struct drm_i915_private *dev_priv = to_i915(dev); 919 const struct drm_display_mode *mode; 920 struct drm_vblank_crtc *vblank; 921 enum pipe pipe = crtc->pipe; 922 int position, vtotal; 923 924 if (!crtc->active) 925 return -1; 926 927 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 928 mode = &vblank->hwmode; 929 930 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 931 return __intel_get_crtc_scanline_from_timestamp(crtc); 932 933 vtotal = mode->crtc_vtotal; 934 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 935 vtotal /= 2; 936 937 if (IS_GEN2(dev_priv)) 938 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 939 else 940 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 941 942 /* 943 * On HSW, the DSL reg (0x70000) appears to return 0 if we 944 * read it just before the start of vblank. So try it again 945 * so we don't accidentally end up spanning a vblank frame 946 * increment, causing the pipe_update_end() code to squak at us. 947 * 948 * The nature of this problem means we can't simply check the ISR 949 * bit and return the vblank start value; nor can we use the scanline 950 * debug register in the transcoder as it appears to have the same 951 * problem. We may need to extend this to include other platforms, 952 * but so far testing only shows the problem on HSW. 953 */ 954 if (HAS_DDI(dev_priv) && !position) { 955 int i, temp; 956 957 for (i = 0; i < 100; i++) { 958 udelay(1); 959 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 960 if (temp != position) { 961 position = temp; 962 break; 963 } 964 } 965 } 966 967 /* 968 * See update_scanline_offset() for the details on the 969 * scanline_offset adjustment. 970 */ 971 return (position + crtc->scanline_offset) % vtotal; 972 } 973 974 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, 975 bool in_vblank_irq, int *vpos, int *hpos, 976 ktime_t *stime, ktime_t *etime, 977 const struct drm_display_mode *mode) 978 { 979 struct drm_i915_private *dev_priv = to_i915(dev); 980 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 981 pipe); 982 int position; 983 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 984 unsigned long irqflags; 985 986 if (WARN_ON(!mode->crtc_clock)) { 987 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 988 "pipe %c\n", pipe_name(pipe)); 989 return false; 990 } 991 992 htotal = mode->crtc_htotal; 993 hsync_start = mode->crtc_hsync_start; 994 vtotal = mode->crtc_vtotal; 995 vbl_start = mode->crtc_vblank_start; 996 vbl_end = mode->crtc_vblank_end; 997 998 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 999 vbl_start = DIV_ROUND_UP(vbl_start, 2); 1000 vbl_end /= 2; 1001 vtotal /= 2; 1002 } 1003 1004 /* 1005 * Lock uncore.lock, as we will do multiple timing critical raw 1006 * register reads, potentially with preemption disabled, so the 1007 * following code must not block on uncore.lock. 1008 */ 1009 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1010 1011 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 1012 1013 /* Get optional system timestamp before query. */ 1014 if (stime) 1015 *stime = ktime_get(); 1016 1017 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 1018 /* No obvious pixelcount register. Only query vertical 1019 * scanout position from Display scan line register. 1020 */ 1021 position = __intel_get_crtc_scanline(intel_crtc); 1022 } else { 1023 /* Have access to pixelcount since start of frame. 1024 * We can split this into vertical and horizontal 1025 * scanout position. 1026 */ 1027 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 1028 1029 /* convert to pixel counts */ 1030 vbl_start *= htotal; 1031 vbl_end *= htotal; 1032 vtotal *= htotal; 1033 1034 /* 1035 * In interlaced modes, the pixel counter counts all pixels, 1036 * so one field will have htotal more pixels. In order to avoid 1037 * the reported position from jumping backwards when the pixel 1038 * counter is beyond the length of the shorter field, just 1039 * clamp the position the length of the shorter field. This 1040 * matches how the scanline counter based position works since 1041 * the scanline counter doesn't count the two half lines. 1042 */ 1043 if (position >= vtotal) 1044 position = vtotal - 1; 1045 1046 /* 1047 * Start of vblank interrupt is triggered at start of hsync, 1048 * just prior to the first active line of vblank. However we 1049 * consider lines to start at the leading edge of horizontal 1050 * active. So, should we get here before we've crossed into 1051 * the horizontal active of the first line in vblank, we would 1052 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 1053 * always add htotal-hsync_start to the current pixel position. 1054 */ 1055 position = (position + htotal - hsync_start) % vtotal; 1056 } 1057 1058 /* Get optional system timestamp after query. */ 1059 if (etime) 1060 *etime = ktime_get(); 1061 1062 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 1063 1064 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1065 1066 /* 1067 * While in vblank, position will be negative 1068 * counting up towards 0 at vbl_end. And outside 1069 * vblank, position will be positive counting 1070 * up since vbl_end. 1071 */ 1072 if (position >= vbl_start) 1073 position -= vbl_end; 1074 else 1075 position += vtotal - vbl_end; 1076 1077 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 1078 *vpos = position; 1079 *hpos = 0; 1080 } else { 1081 *vpos = position / htotal; 1082 *hpos = position - (*vpos * htotal); 1083 } 1084 1085 return true; 1086 } 1087 1088 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1089 { 1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1091 unsigned long irqflags; 1092 int position; 1093 1094 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1095 position = __intel_get_crtc_scanline(crtc); 1096 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1097 1098 return position; 1099 } 1100 1101 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) 1102 { 1103 u32 busy_up, busy_down, max_avg, min_avg; 1104 u8 new_delay; 1105 1106 spin_lock(&mchdev_lock); 1107 1108 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); 1109 1110 new_delay = dev_priv->ips.cur_delay; 1111 1112 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); 1113 busy_up = I915_READ(RCPREVBSYTUPAVG); 1114 busy_down = I915_READ(RCPREVBSYTDNAVG); 1115 max_avg = I915_READ(RCBMAXAVG); 1116 min_avg = I915_READ(RCBMINAVG); 1117 1118 /* Handle RCS change request from hw */ 1119 if (busy_up > max_avg) { 1120 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1121 new_delay = dev_priv->ips.cur_delay - 1; 1122 if (new_delay < dev_priv->ips.max_delay) 1123 new_delay = dev_priv->ips.max_delay; 1124 } else if (busy_down < min_avg) { 1125 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1126 new_delay = dev_priv->ips.cur_delay + 1; 1127 if (new_delay > dev_priv->ips.min_delay) 1128 new_delay = dev_priv->ips.min_delay; 1129 } 1130 1131 if (ironlake_set_drps(dev_priv, new_delay)) 1132 dev_priv->ips.cur_delay = new_delay; 1133 1134 spin_unlock(&mchdev_lock); 1135 1136 return; 1137 } 1138 1139 static void notify_ring(struct intel_engine_cs *engine) 1140 { 1141 struct i915_request *rq = NULL; 1142 struct intel_wait *wait; 1143 1144 if (!engine->breadcrumbs.irq_armed) 1145 return; 1146 1147 atomic_inc(&engine->irq_count); 1148 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted); 1149 1150 spin_lock(&engine->breadcrumbs.irq_lock); 1151 wait = engine->breadcrumbs.irq_wait; 1152 if (wait) { 1153 bool wakeup = engine->irq_seqno_barrier; 1154 1155 /* We use a callback from the dma-fence to submit 1156 * requests after waiting on our own requests. To 1157 * ensure minimum delay in queuing the next request to 1158 * hardware, signal the fence now rather than wait for 1159 * the signaler to be woken up. We still wake up the 1160 * waiter in order to handle the irq-seqno coherency 1161 * issues (we may receive the interrupt before the 1162 * seqno is written, see __i915_request_irq_complete()) 1163 * and to handle coalescing of multiple seqno updates 1164 * and many waiters. 1165 */ 1166 if (i915_seqno_passed(intel_engine_get_seqno(engine), 1167 wait->seqno)) { 1168 struct i915_request *waiter = wait->request; 1169 1170 wakeup = true; 1171 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1172 &waiter->fence.flags) && 1173 intel_wait_check_request(wait, waiter)) 1174 rq = i915_request_get(waiter); 1175 } 1176 1177 if (wakeup) 1178 wake_up_process(wait->tsk); 1179 } else { 1180 if (engine->breadcrumbs.irq_armed) 1181 __intel_engine_disarm_breadcrumbs(engine); 1182 } 1183 spin_unlock(&engine->breadcrumbs.irq_lock); 1184 1185 if (rq) { 1186 dma_fence_signal(&rq->fence); 1187 GEM_BUG_ON(!i915_request_completed(rq)); 1188 i915_request_put(rq); 1189 } 1190 1191 trace_intel_engine_notify(engine, wait); 1192 } 1193 1194 static void vlv_c0_read(struct drm_i915_private *dev_priv, 1195 struct intel_rps_ei *ei) 1196 { 1197 ei->ktime = ktime_get_raw(); 1198 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); 1199 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); 1200 } 1201 1202 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) 1203 { 1204 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei)); 1205 } 1206 1207 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) 1208 { 1209 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1210 const struct intel_rps_ei *prev = &rps->ei; 1211 struct intel_rps_ei now; 1212 u32 events = 0; 1213 1214 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) 1215 return 0; 1216 1217 vlv_c0_read(dev_priv, &now); 1218 1219 if (prev->ktime) { 1220 u64 time, c0; 1221 u32 render, media; 1222 1223 time = ktime_us_delta(now.ktime, prev->ktime); 1224 1225 time *= dev_priv->czclk_freq; 1226 1227 /* Workload can be split between render + media, 1228 * e.g. SwapBuffers being blitted in X after being rendered in 1229 * mesa. To account for this we need to combine both engines 1230 * into our activity counter. 1231 */ 1232 render = now.render_c0 - prev->render_c0; 1233 media = now.media_c0 - prev->media_c0; 1234 c0 = max(render, media); 1235 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ 1236 1237 if (c0 > time * rps->up_threshold) 1238 events = GEN6_PM_RP_UP_THRESHOLD; 1239 else if (c0 < time * rps->down_threshold) 1240 events = GEN6_PM_RP_DOWN_THRESHOLD; 1241 } 1242 1243 rps->ei = now; 1244 return events; 1245 } 1246 1247 static void gen6_pm_rps_work(struct work_struct *work) 1248 { 1249 struct drm_i915_private *dev_priv = 1250 container_of(work, struct drm_i915_private, gt_pm.rps.work); 1251 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1252 bool client_boost = false; 1253 int new_delay, adj, min, max; 1254 u32 pm_iir = 0; 1255 1256 spin_lock_irq(&dev_priv->irq_lock); 1257 if (rps->interrupts_enabled) { 1258 pm_iir = fetch_and_zero(&rps->pm_iir); 1259 client_boost = atomic_read(&rps->num_waiters); 1260 } 1261 spin_unlock_irq(&dev_priv->irq_lock); 1262 1263 /* Make sure we didn't queue anything we're not going to process. */ 1264 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1265 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) 1266 goto out; 1267 1268 mutex_lock(&dev_priv->pcu_lock); 1269 1270 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); 1271 1272 adj = rps->last_adj; 1273 new_delay = rps->cur_freq; 1274 min = rps->min_freq_softlimit; 1275 max = rps->max_freq_softlimit; 1276 if (client_boost) 1277 max = rps->max_freq; 1278 if (client_boost && new_delay < rps->boost_freq) { 1279 new_delay = rps->boost_freq; 1280 adj = 0; 1281 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1282 if (adj > 0) 1283 adj *= 2; 1284 else /* CHV needs even encode values */ 1285 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; 1286 1287 if (new_delay >= rps->max_freq_softlimit) 1288 adj = 0; 1289 } else if (client_boost) { 1290 adj = 0; 1291 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1292 if (rps->cur_freq > rps->efficient_freq) 1293 new_delay = rps->efficient_freq; 1294 else if (rps->cur_freq > rps->min_freq_softlimit) 1295 new_delay = rps->min_freq_softlimit; 1296 adj = 0; 1297 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1298 if (adj < 0) 1299 adj *= 2; 1300 else /* CHV needs even encode values */ 1301 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; 1302 1303 if (new_delay <= rps->min_freq_softlimit) 1304 adj = 0; 1305 } else { /* unknown event */ 1306 adj = 0; 1307 } 1308 1309 rps->last_adj = adj; 1310 1311 /* sysfs frequency interfaces may have snuck in while servicing the 1312 * interrupt 1313 */ 1314 new_delay += adj; 1315 new_delay = clamp_t(int, new_delay, min, max); 1316 1317 if (intel_set_rps(dev_priv, new_delay)) { 1318 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); 1319 rps->last_adj = 0; 1320 } 1321 1322 mutex_unlock(&dev_priv->pcu_lock); 1323 1324 out: 1325 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ 1326 spin_lock_irq(&dev_priv->irq_lock); 1327 if (rps->interrupts_enabled) 1328 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); 1329 spin_unlock_irq(&dev_priv->irq_lock); 1330 } 1331 1332 1333 /** 1334 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1335 * occurred. 1336 * @work: workqueue struct 1337 * 1338 * Doesn't actually do anything except notify userspace. As a consequence of 1339 * this event, userspace should try to remap the bad rows since statistically 1340 * it is likely the same row is more likely to go bad again. 1341 */ 1342 static void ivybridge_parity_work(struct work_struct *work) 1343 { 1344 struct drm_i915_private *dev_priv = 1345 container_of(work, typeof(*dev_priv), l3_parity.error_work); 1346 u32 error_status, row, bank, subbank; 1347 char *parity_event[6]; 1348 uint32_t misccpctl; 1349 uint8_t slice = 0; 1350 1351 /* We must turn off DOP level clock gating to access the L3 registers. 1352 * In order to prevent a get/put style interface, acquire struct mutex 1353 * any time we access those registers. 1354 */ 1355 mutex_lock(&dev_priv->drm.struct_mutex); 1356 1357 /* If we've screwed up tracking, just let the interrupt fire again */ 1358 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1359 goto out; 1360 1361 misccpctl = I915_READ(GEN7_MISCCPCTL); 1362 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1363 POSTING_READ(GEN7_MISCCPCTL); 1364 1365 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1366 i915_reg_t reg; 1367 1368 slice--; 1369 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) 1370 break; 1371 1372 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1373 1374 reg = GEN7_L3CDERRST1(slice); 1375 1376 error_status = I915_READ(reg); 1377 row = GEN7_PARITY_ERROR_ROW(error_status); 1378 bank = GEN7_PARITY_ERROR_BANK(error_status); 1379 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1380 1381 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1382 POSTING_READ(reg); 1383 1384 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1385 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1386 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1387 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1388 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1389 parity_event[5] = NULL; 1390 1391 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1392 KOBJ_CHANGE, parity_event); 1393 1394 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1395 slice, row, bank, subbank); 1396 1397 kfree(parity_event[4]); 1398 kfree(parity_event[3]); 1399 kfree(parity_event[2]); 1400 kfree(parity_event[1]); 1401 } 1402 1403 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1404 1405 out: 1406 WARN_ON(dev_priv->l3_parity.which_slice); 1407 spin_lock_irq(&dev_priv->irq_lock); 1408 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1409 spin_unlock_irq(&dev_priv->irq_lock); 1410 1411 mutex_unlock(&dev_priv->drm.struct_mutex); 1412 } 1413 1414 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, 1415 u32 iir) 1416 { 1417 if (!HAS_L3_DPF(dev_priv)) 1418 return; 1419 1420 spin_lock(&dev_priv->irq_lock); 1421 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1422 spin_unlock(&dev_priv->irq_lock); 1423 1424 iir &= GT_PARITY_ERROR(dev_priv); 1425 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1426 dev_priv->l3_parity.which_slice |= 1 << 1; 1427 1428 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1429 dev_priv->l3_parity.which_slice |= 1 << 0; 1430 1431 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1432 } 1433 1434 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, 1435 u32 gt_iir) 1436 { 1437 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1438 notify_ring(dev_priv->engine[RCS]); 1439 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1440 notify_ring(dev_priv->engine[VCS]); 1441 } 1442 1443 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, 1444 u32 gt_iir) 1445 { 1446 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1447 notify_ring(dev_priv->engine[RCS]); 1448 if (gt_iir & GT_BSD_USER_INTERRUPT) 1449 notify_ring(dev_priv->engine[VCS]); 1450 if (gt_iir & GT_BLT_USER_INTERRUPT) 1451 notify_ring(dev_priv->engine[BCS]); 1452 1453 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1454 GT_BSD_CS_ERROR_INTERRUPT | 1455 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) 1456 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); 1457 1458 if (gt_iir & GT_PARITY_ERROR(dev_priv)) 1459 ivybridge_parity_error_irq_handler(dev_priv, gt_iir); 1460 } 1461 1462 static void 1463 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir) 1464 { 1465 struct intel_engine_execlists * const execlists = &engine->execlists; 1466 bool tasklet = false; 1467 1468 if (iir & GT_CONTEXT_SWITCH_INTERRUPT) { 1469 if (READ_ONCE(engine->execlists.active)) 1470 tasklet = !test_and_set_bit(ENGINE_IRQ_EXECLIST, 1471 &engine->irq_posted); 1472 } 1473 1474 if (iir & GT_RENDER_USER_INTERRUPT) { 1475 notify_ring(engine); 1476 tasklet |= USES_GUC_SUBMISSION(engine->i915); 1477 } 1478 1479 if (tasklet) 1480 tasklet_hi_schedule(&execlists->tasklet); 1481 } 1482 1483 static void gen8_gt_irq_ack(struct drm_i915_private *i915, 1484 u32 master_ctl, u32 gt_iir[4]) 1485 { 1486 void __iomem * const regs = i915->regs; 1487 1488 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \ 1489 GEN8_GT_BCS_IRQ | \ 1490 GEN8_GT_VCS1_IRQ | \ 1491 GEN8_GT_VCS2_IRQ | \ 1492 GEN8_GT_VECS_IRQ | \ 1493 GEN8_GT_PM_IRQ | \ 1494 GEN8_GT_GUC_IRQ) 1495 1496 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1497 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0)); 1498 if (likely(gt_iir[0])) 1499 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]); 1500 } 1501 1502 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1503 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1)); 1504 if (likely(gt_iir[1])) 1505 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]); 1506 } 1507 1508 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1509 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2)); 1510 if (likely(gt_iir[2] & (i915->pm_rps_events | 1511 i915->pm_guc_events))) 1512 raw_reg_write(regs, GEN8_GT_IIR(2), 1513 gt_iir[2] & (i915->pm_rps_events | 1514 i915->pm_guc_events)); 1515 } 1516 1517 if (master_ctl & GEN8_GT_VECS_IRQ) { 1518 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3)); 1519 if (likely(gt_iir[3])) 1520 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]); 1521 } 1522 } 1523 1524 static void gen8_gt_irq_handler(struct drm_i915_private *i915, 1525 u32 master_ctl, u32 gt_iir[4]) 1526 { 1527 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1528 gen8_cs_irq_handler(i915->engine[RCS], 1529 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT); 1530 gen8_cs_irq_handler(i915->engine[BCS], 1531 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT); 1532 } 1533 1534 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1535 gen8_cs_irq_handler(i915->engine[VCS], 1536 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT); 1537 gen8_cs_irq_handler(i915->engine[VCS2], 1538 gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT); 1539 } 1540 1541 if (master_ctl & GEN8_GT_VECS_IRQ) { 1542 gen8_cs_irq_handler(i915->engine[VECS], 1543 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT); 1544 } 1545 1546 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1547 gen6_rps_irq_handler(i915, gt_iir[2]); 1548 gen9_guc_irq_handler(i915, gt_iir[2]); 1549 } 1550 } 1551 1552 static bool bxt_port_hotplug_long_detect(enum port port, u32 val) 1553 { 1554 switch (port) { 1555 case PORT_A: 1556 return val & PORTA_HOTPLUG_LONG_DETECT; 1557 case PORT_B: 1558 return val & PORTB_HOTPLUG_LONG_DETECT; 1559 case PORT_C: 1560 return val & PORTC_HOTPLUG_LONG_DETECT; 1561 default: 1562 return false; 1563 } 1564 } 1565 1566 static bool spt_port_hotplug2_long_detect(enum port port, u32 val) 1567 { 1568 switch (port) { 1569 case PORT_E: 1570 return val & PORTE_HOTPLUG_LONG_DETECT; 1571 default: 1572 return false; 1573 } 1574 } 1575 1576 static bool spt_port_hotplug_long_detect(enum port port, u32 val) 1577 { 1578 switch (port) { 1579 case PORT_A: 1580 return val & PORTA_HOTPLUG_LONG_DETECT; 1581 case PORT_B: 1582 return val & PORTB_HOTPLUG_LONG_DETECT; 1583 case PORT_C: 1584 return val & PORTC_HOTPLUG_LONG_DETECT; 1585 case PORT_D: 1586 return val & PORTD_HOTPLUG_LONG_DETECT; 1587 default: 1588 return false; 1589 } 1590 } 1591 1592 static bool ilk_port_hotplug_long_detect(enum port port, u32 val) 1593 { 1594 switch (port) { 1595 case PORT_A: 1596 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1597 default: 1598 return false; 1599 } 1600 } 1601 1602 static bool pch_port_hotplug_long_detect(enum port port, u32 val) 1603 { 1604 switch (port) { 1605 case PORT_B: 1606 return val & PORTB_HOTPLUG_LONG_DETECT; 1607 case PORT_C: 1608 return val & PORTC_HOTPLUG_LONG_DETECT; 1609 case PORT_D: 1610 return val & PORTD_HOTPLUG_LONG_DETECT; 1611 default: 1612 return false; 1613 } 1614 } 1615 1616 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val) 1617 { 1618 switch (port) { 1619 case PORT_B: 1620 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1621 case PORT_C: 1622 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1623 case PORT_D: 1624 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1625 default: 1626 return false; 1627 } 1628 } 1629 1630 /* 1631 * Get a bit mask of pins that have triggered, and which ones may be long. 1632 * This can be called multiple times with the same masks to accumulate 1633 * hotplug detection results from several registers. 1634 * 1635 * Note that the caller is expected to zero out the masks initially. 1636 */ 1637 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1638 u32 *pin_mask, u32 *long_mask, 1639 u32 hotplug_trigger, u32 dig_hotplug_reg, 1640 const u32 hpd[HPD_NUM_PINS], 1641 bool long_pulse_detect(enum port port, u32 val)) 1642 { 1643 enum port port; 1644 int i; 1645 1646 for_each_hpd_pin(i) { 1647 if ((hpd[i] & hotplug_trigger) == 0) 1648 continue; 1649 1650 *pin_mask |= BIT(i); 1651 1652 port = intel_hpd_pin_to_port(dev_priv, i); 1653 if (port == PORT_NONE) 1654 continue; 1655 1656 if (long_pulse_detect(port, dig_hotplug_reg)) 1657 *long_mask |= BIT(i); 1658 } 1659 1660 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n", 1661 hotplug_trigger, dig_hotplug_reg, *pin_mask); 1662 1663 } 1664 1665 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1666 { 1667 wake_up_all(&dev_priv->gmbus_wait_queue); 1668 } 1669 1670 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1671 { 1672 wake_up_all(&dev_priv->gmbus_wait_queue); 1673 } 1674 1675 #if defined(CONFIG_DEBUG_FS) 1676 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1677 enum pipe pipe, 1678 uint32_t crc0, uint32_t crc1, 1679 uint32_t crc2, uint32_t crc3, 1680 uint32_t crc4) 1681 { 1682 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1683 struct intel_pipe_crc_entry *entry; 1684 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1685 struct drm_driver *driver = dev_priv->drm.driver; 1686 uint32_t crcs[5]; 1687 int head, tail; 1688 1689 spin_lock(&pipe_crc->lock); 1690 if (pipe_crc->source && !crtc->base.crc.opened) { 1691 if (!pipe_crc->entries) { 1692 spin_unlock(&pipe_crc->lock); 1693 DRM_DEBUG_KMS("spurious interrupt\n"); 1694 return; 1695 } 1696 1697 head = pipe_crc->head; 1698 tail = pipe_crc->tail; 1699 1700 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { 1701 spin_unlock(&pipe_crc->lock); 1702 DRM_ERROR("CRC buffer overflowing\n"); 1703 return; 1704 } 1705 1706 entry = &pipe_crc->entries[head]; 1707 1708 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe); 1709 entry->crc[0] = crc0; 1710 entry->crc[1] = crc1; 1711 entry->crc[2] = crc2; 1712 entry->crc[3] = crc3; 1713 entry->crc[4] = crc4; 1714 1715 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 1716 pipe_crc->head = head; 1717 1718 spin_unlock(&pipe_crc->lock); 1719 1720 wake_up_interruptible(&pipe_crc->wq); 1721 } else { 1722 /* 1723 * For some not yet identified reason, the first CRC is 1724 * bonkers. So let's just wait for the next vblank and read 1725 * out the buggy result. 1726 * 1727 * On GEN8+ sometimes the second CRC is bonkers as well, so 1728 * don't trust that one either. 1729 */ 1730 if (pipe_crc->skipped <= 0 || 1731 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1732 pipe_crc->skipped++; 1733 spin_unlock(&pipe_crc->lock); 1734 return; 1735 } 1736 spin_unlock(&pipe_crc->lock); 1737 crcs[0] = crc0; 1738 crcs[1] = crc1; 1739 crcs[2] = crc2; 1740 crcs[3] = crc3; 1741 crcs[4] = crc4; 1742 drm_crtc_add_crc_entry(&crtc->base, true, 1743 drm_crtc_accurate_vblank_count(&crtc->base), 1744 crcs); 1745 } 1746 } 1747 #else 1748 static inline void 1749 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1750 enum pipe pipe, 1751 uint32_t crc0, uint32_t crc1, 1752 uint32_t crc2, uint32_t crc3, 1753 uint32_t crc4) {} 1754 #endif 1755 1756 1757 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1758 enum pipe pipe) 1759 { 1760 display_pipe_crc_irq_handler(dev_priv, pipe, 1761 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1762 0, 0, 0, 0); 1763 } 1764 1765 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1766 enum pipe pipe) 1767 { 1768 display_pipe_crc_irq_handler(dev_priv, pipe, 1769 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1770 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1771 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1772 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1773 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1774 } 1775 1776 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1777 enum pipe pipe) 1778 { 1779 uint32_t res1, res2; 1780 1781 if (INTEL_GEN(dev_priv) >= 3) 1782 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1783 else 1784 res1 = 0; 1785 1786 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1787 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1788 else 1789 res2 = 0; 1790 1791 display_pipe_crc_irq_handler(dev_priv, pipe, 1792 I915_READ(PIPE_CRC_RES_RED(pipe)), 1793 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1794 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1795 res1, res2); 1796 } 1797 1798 /* The RPS events need forcewake, so we add them to a work queue and mask their 1799 * IMR bits until the work is done. Other interrupts can be processed without 1800 * the work queue. */ 1801 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1802 { 1803 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1804 1805 if (pm_iir & dev_priv->pm_rps_events) { 1806 spin_lock(&dev_priv->irq_lock); 1807 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1808 if (rps->interrupts_enabled) { 1809 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events; 1810 schedule_work(&rps->work); 1811 } 1812 spin_unlock(&dev_priv->irq_lock); 1813 } 1814 1815 if (INTEL_GEN(dev_priv) >= 8) 1816 return; 1817 1818 if (HAS_VEBOX(dev_priv)) { 1819 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1820 notify_ring(dev_priv->engine[VECS]); 1821 1822 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1823 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1824 } 1825 } 1826 1827 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) 1828 { 1829 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) 1830 intel_guc_to_host_event_handler(&dev_priv->guc); 1831 } 1832 1833 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1834 { 1835 enum pipe pipe; 1836 1837 for_each_pipe(dev_priv, pipe) { 1838 I915_WRITE(PIPESTAT(pipe), 1839 PIPESTAT_INT_STATUS_MASK | 1840 PIPE_FIFO_UNDERRUN_STATUS); 1841 1842 dev_priv->pipestat_irq_mask[pipe] = 0; 1843 } 1844 } 1845 1846 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1847 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1848 { 1849 int pipe; 1850 1851 spin_lock(&dev_priv->irq_lock); 1852 1853 if (!dev_priv->display_irqs_enabled) { 1854 spin_unlock(&dev_priv->irq_lock); 1855 return; 1856 } 1857 1858 for_each_pipe(dev_priv, pipe) { 1859 i915_reg_t reg; 1860 u32 status_mask, enable_mask, iir_bit = 0; 1861 1862 /* 1863 * PIPESTAT bits get signalled even when the interrupt is 1864 * disabled with the mask bits, and some of the status bits do 1865 * not generate interrupts at all (like the underrun bit). Hence 1866 * we need to be careful that we only handle what we want to 1867 * handle. 1868 */ 1869 1870 /* fifo underruns are filterered in the underrun handler. */ 1871 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1872 1873 switch (pipe) { 1874 case PIPE_A: 1875 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1876 break; 1877 case PIPE_B: 1878 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1879 break; 1880 case PIPE_C: 1881 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1882 break; 1883 } 1884 if (iir & iir_bit) 1885 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1886 1887 if (!status_mask) 1888 continue; 1889 1890 reg = PIPESTAT(pipe); 1891 pipe_stats[pipe] = I915_READ(reg) & status_mask; 1892 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1893 1894 /* 1895 * Clear the PIPE*STAT regs before the IIR 1896 * 1897 * Toggle the enable bits to make sure we get an 1898 * edge in the ISR pipe event bit if we don't clear 1899 * all the enabled status bits. Otherwise the edge 1900 * triggered IIR on i965/g4x wouldn't notice that 1901 * an interrupt is still pending. 1902 */ 1903 if (pipe_stats[pipe]) { 1904 I915_WRITE(reg, pipe_stats[pipe]); 1905 I915_WRITE(reg, enable_mask); 1906 } 1907 } 1908 spin_unlock(&dev_priv->irq_lock); 1909 } 1910 1911 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1912 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1913 { 1914 enum pipe pipe; 1915 1916 for_each_pipe(dev_priv, pipe) { 1917 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1918 drm_handle_vblank(&dev_priv->drm, pipe); 1919 1920 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1921 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1922 1923 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1924 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1925 } 1926 } 1927 1928 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1929 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1930 { 1931 bool blc_event = false; 1932 enum pipe pipe; 1933 1934 for_each_pipe(dev_priv, pipe) { 1935 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1936 drm_handle_vblank(&dev_priv->drm, pipe); 1937 1938 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1939 blc_event = true; 1940 1941 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1942 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1943 1944 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1945 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1946 } 1947 1948 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1949 intel_opregion_asle_intr(dev_priv); 1950 } 1951 1952 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1953 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1954 { 1955 bool blc_event = false; 1956 enum pipe pipe; 1957 1958 for_each_pipe(dev_priv, pipe) { 1959 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1960 drm_handle_vblank(&dev_priv->drm, pipe); 1961 1962 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1963 blc_event = true; 1964 1965 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1966 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1967 1968 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1969 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1970 } 1971 1972 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1973 intel_opregion_asle_intr(dev_priv); 1974 1975 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1976 gmbus_irq_handler(dev_priv); 1977 } 1978 1979 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1980 u32 pipe_stats[I915_MAX_PIPES]) 1981 { 1982 enum pipe pipe; 1983 1984 for_each_pipe(dev_priv, pipe) { 1985 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1986 drm_handle_vblank(&dev_priv->drm, pipe); 1987 1988 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1989 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1990 1991 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1992 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1993 } 1994 1995 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1996 gmbus_irq_handler(dev_priv); 1997 } 1998 1999 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 2000 { 2001 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); 2002 2003 if (hotplug_status) 2004 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 2005 2006 return hotplug_status; 2007 } 2008 2009 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2010 u32 hotplug_status) 2011 { 2012 u32 pin_mask = 0, long_mask = 0; 2013 2014 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 2015 IS_CHERRYVIEW(dev_priv)) { 2016 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 2017 2018 if (hotplug_trigger) { 2019 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2020 hotplug_trigger, hotplug_trigger, 2021 hpd_status_g4x, 2022 i9xx_port_hotplug_long_detect); 2023 2024 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2025 } 2026 2027 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 2028 dp_aux_irq_handler(dev_priv); 2029 } else { 2030 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 2031 2032 if (hotplug_trigger) { 2033 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2034 hotplug_trigger, hotplug_trigger, 2035 hpd_status_i915, 2036 i9xx_port_hotplug_long_detect); 2037 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2038 } 2039 } 2040 } 2041 2042 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 2043 { 2044 struct drm_device *dev = arg; 2045 struct drm_i915_private *dev_priv = to_i915(dev); 2046 irqreturn_t ret = IRQ_NONE; 2047 2048 if (!intel_irqs_enabled(dev_priv)) 2049 return IRQ_NONE; 2050 2051 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2052 disable_rpm_wakeref_asserts(dev_priv); 2053 2054 do { 2055 u32 iir, gt_iir, pm_iir; 2056 u32 pipe_stats[I915_MAX_PIPES] = {}; 2057 u32 hotplug_status = 0; 2058 u32 ier = 0; 2059 2060 gt_iir = I915_READ(GTIIR); 2061 pm_iir = I915_READ(GEN6_PMIIR); 2062 iir = I915_READ(VLV_IIR); 2063 2064 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 2065 break; 2066 2067 ret = IRQ_HANDLED; 2068 2069 /* 2070 * Theory on interrupt generation, based on empirical evidence: 2071 * 2072 * x = ((VLV_IIR & VLV_IER) || 2073 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 2074 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 2075 * 2076 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2077 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 2078 * guarantee the CPU interrupt will be raised again even if we 2079 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 2080 * bits this time around. 2081 */ 2082 I915_WRITE(VLV_MASTER_IER, 0); 2083 ier = I915_READ(VLV_IER); 2084 I915_WRITE(VLV_IER, 0); 2085 2086 if (gt_iir) 2087 I915_WRITE(GTIIR, gt_iir); 2088 if (pm_iir) 2089 I915_WRITE(GEN6_PMIIR, pm_iir); 2090 2091 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2092 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2093 2094 /* Call regardless, as some status bits might not be 2095 * signalled in iir */ 2096 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2097 2098 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2099 I915_LPE_PIPE_B_INTERRUPT)) 2100 intel_lpe_audio_irq_handler(dev_priv); 2101 2102 /* 2103 * VLV_IIR is single buffered, and reflects the level 2104 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2105 */ 2106 if (iir) 2107 I915_WRITE(VLV_IIR, iir); 2108 2109 I915_WRITE(VLV_IER, ier); 2110 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 2111 POSTING_READ(VLV_MASTER_IER); 2112 2113 if (gt_iir) 2114 snb_gt_irq_handler(dev_priv, gt_iir); 2115 if (pm_iir) 2116 gen6_rps_irq_handler(dev_priv, pm_iir); 2117 2118 if (hotplug_status) 2119 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2120 2121 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2122 } while (0); 2123 2124 enable_rpm_wakeref_asserts(dev_priv); 2125 2126 return ret; 2127 } 2128 2129 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 2130 { 2131 struct drm_device *dev = arg; 2132 struct drm_i915_private *dev_priv = to_i915(dev); 2133 irqreturn_t ret = IRQ_NONE; 2134 2135 if (!intel_irqs_enabled(dev_priv)) 2136 return IRQ_NONE; 2137 2138 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2139 disable_rpm_wakeref_asserts(dev_priv); 2140 2141 do { 2142 u32 master_ctl, iir; 2143 u32 pipe_stats[I915_MAX_PIPES] = {}; 2144 u32 hotplug_status = 0; 2145 u32 gt_iir[4]; 2146 u32 ier = 0; 2147 2148 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 2149 iir = I915_READ(VLV_IIR); 2150 2151 if (master_ctl == 0 && iir == 0) 2152 break; 2153 2154 ret = IRQ_HANDLED; 2155 2156 /* 2157 * Theory on interrupt generation, based on empirical evidence: 2158 * 2159 * x = ((VLV_IIR & VLV_IER) || 2160 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 2161 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 2162 * 2163 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2164 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 2165 * guarantee the CPU interrupt will be raised again even if we 2166 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 2167 * bits this time around. 2168 */ 2169 I915_WRITE(GEN8_MASTER_IRQ, 0); 2170 ier = I915_READ(VLV_IER); 2171 I915_WRITE(VLV_IER, 0); 2172 2173 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2174 2175 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2176 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2177 2178 /* Call regardless, as some status bits might not be 2179 * signalled in iir */ 2180 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2181 2182 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2183 I915_LPE_PIPE_B_INTERRUPT | 2184 I915_LPE_PIPE_C_INTERRUPT)) 2185 intel_lpe_audio_irq_handler(dev_priv); 2186 2187 /* 2188 * VLV_IIR is single buffered, and reflects the level 2189 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2190 */ 2191 if (iir) 2192 I915_WRITE(VLV_IIR, iir); 2193 2194 I915_WRITE(VLV_IER, ier); 2195 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2196 POSTING_READ(GEN8_MASTER_IRQ); 2197 2198 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2199 2200 if (hotplug_status) 2201 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2202 2203 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2204 } while (0); 2205 2206 enable_rpm_wakeref_asserts(dev_priv); 2207 2208 return ret; 2209 } 2210 2211 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2212 u32 hotplug_trigger, 2213 const u32 hpd[HPD_NUM_PINS]) 2214 { 2215 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2216 2217 /* 2218 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 2219 * unless we touch the hotplug register, even if hotplug_trigger is 2220 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 2221 * errors. 2222 */ 2223 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2224 if (!hotplug_trigger) { 2225 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 2226 PORTD_HOTPLUG_STATUS_MASK | 2227 PORTC_HOTPLUG_STATUS_MASK | 2228 PORTB_HOTPLUG_STATUS_MASK; 2229 dig_hotplug_reg &= ~mask; 2230 } 2231 2232 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2233 if (!hotplug_trigger) 2234 return; 2235 2236 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2237 dig_hotplug_reg, hpd, 2238 pch_port_hotplug_long_detect); 2239 2240 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2241 } 2242 2243 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2244 { 2245 int pipe; 2246 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2247 2248 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 2249 2250 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2251 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2252 SDE_AUDIO_POWER_SHIFT); 2253 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2254 port_name(port)); 2255 } 2256 2257 if (pch_iir & SDE_AUX_MASK) 2258 dp_aux_irq_handler(dev_priv); 2259 2260 if (pch_iir & SDE_GMBUS) 2261 gmbus_irq_handler(dev_priv); 2262 2263 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2264 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2265 2266 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2267 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2268 2269 if (pch_iir & SDE_POISON) 2270 DRM_ERROR("PCH poison interrupt\n"); 2271 2272 if (pch_iir & SDE_FDI_MASK) 2273 for_each_pipe(dev_priv, pipe) 2274 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2275 pipe_name(pipe), 2276 I915_READ(FDI_RX_IIR(pipe))); 2277 2278 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2279 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2280 2281 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2282 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2283 2284 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2285 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 2286 2287 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2288 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 2289 } 2290 2291 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 2292 { 2293 u32 err_int = I915_READ(GEN7_ERR_INT); 2294 enum pipe pipe; 2295 2296 if (err_int & ERR_INT_POISON) 2297 DRM_ERROR("Poison interrupt\n"); 2298 2299 for_each_pipe(dev_priv, pipe) { 2300 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 2301 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2302 2303 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2304 if (IS_IVYBRIDGE(dev_priv)) 2305 ivb_pipe_crc_irq_handler(dev_priv, pipe); 2306 else 2307 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2308 } 2309 } 2310 2311 I915_WRITE(GEN7_ERR_INT, err_int); 2312 } 2313 2314 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 2315 { 2316 u32 serr_int = I915_READ(SERR_INT); 2317 enum pipe pipe; 2318 2319 if (serr_int & SERR_INT_POISON) 2320 DRM_ERROR("PCH poison interrupt\n"); 2321 2322 for_each_pipe(dev_priv, pipe) 2323 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 2324 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 2325 2326 I915_WRITE(SERR_INT, serr_int); 2327 } 2328 2329 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2330 { 2331 int pipe; 2332 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2333 2334 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 2335 2336 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2337 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2338 SDE_AUDIO_POWER_SHIFT_CPT); 2339 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2340 port_name(port)); 2341 } 2342 2343 if (pch_iir & SDE_AUX_MASK_CPT) 2344 dp_aux_irq_handler(dev_priv); 2345 2346 if (pch_iir & SDE_GMBUS_CPT) 2347 gmbus_irq_handler(dev_priv); 2348 2349 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2350 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2351 2352 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2353 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2354 2355 if (pch_iir & SDE_FDI_MASK_CPT) 2356 for_each_pipe(dev_priv, pipe) 2357 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2358 pipe_name(pipe), 2359 I915_READ(FDI_RX_IIR(pipe))); 2360 2361 if (pch_iir & SDE_ERROR_CPT) 2362 cpt_serr_int_handler(dev_priv); 2363 } 2364 2365 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2366 { 2367 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2368 ~SDE_PORTE_HOTPLUG_SPT; 2369 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2370 u32 pin_mask = 0, long_mask = 0; 2371 2372 if (hotplug_trigger) { 2373 u32 dig_hotplug_reg; 2374 2375 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2376 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2377 2378 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2379 hotplug_trigger, dig_hotplug_reg, hpd_spt, 2380 spt_port_hotplug_long_detect); 2381 } 2382 2383 if (hotplug2_trigger) { 2384 u32 dig_hotplug_reg; 2385 2386 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 2387 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2388 2389 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2390 hotplug2_trigger, dig_hotplug_reg, hpd_spt, 2391 spt_port_hotplug2_long_detect); 2392 } 2393 2394 if (pin_mask) 2395 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2396 2397 if (pch_iir & SDE_GMBUS_CPT) 2398 gmbus_irq_handler(dev_priv); 2399 } 2400 2401 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2402 u32 hotplug_trigger, 2403 const u32 hpd[HPD_NUM_PINS]) 2404 { 2405 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2406 2407 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2408 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2409 2410 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2411 dig_hotplug_reg, hpd, 2412 ilk_port_hotplug_long_detect); 2413 2414 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2415 } 2416 2417 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2418 u32 de_iir) 2419 { 2420 enum pipe pipe; 2421 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2422 2423 if (hotplug_trigger) 2424 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 2425 2426 if (de_iir & DE_AUX_CHANNEL_A) 2427 dp_aux_irq_handler(dev_priv); 2428 2429 if (de_iir & DE_GSE) 2430 intel_opregion_asle_intr(dev_priv); 2431 2432 if (de_iir & DE_POISON) 2433 DRM_ERROR("Poison interrupt\n"); 2434 2435 for_each_pipe(dev_priv, pipe) { 2436 if (de_iir & DE_PIPE_VBLANK(pipe)) 2437 drm_handle_vblank(&dev_priv->drm, pipe); 2438 2439 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2440 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2441 2442 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2443 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2444 } 2445 2446 /* check event from PCH */ 2447 if (de_iir & DE_PCH_EVENT) { 2448 u32 pch_iir = I915_READ(SDEIIR); 2449 2450 if (HAS_PCH_CPT(dev_priv)) 2451 cpt_irq_handler(dev_priv, pch_iir); 2452 else 2453 ibx_irq_handler(dev_priv, pch_iir); 2454 2455 /* should clear PCH hotplug event before clear CPU irq */ 2456 I915_WRITE(SDEIIR, pch_iir); 2457 } 2458 2459 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT) 2460 ironlake_rps_change_irq_handler(dev_priv); 2461 } 2462 2463 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2464 u32 de_iir) 2465 { 2466 enum pipe pipe; 2467 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2468 2469 if (hotplug_trigger) 2470 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2471 2472 if (de_iir & DE_ERR_INT_IVB) 2473 ivb_err_int_handler(dev_priv); 2474 2475 if (de_iir & DE_EDP_PSR_INT_HSW) { 2476 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2477 2478 intel_psr_irq_handler(dev_priv, psr_iir); 2479 I915_WRITE(EDP_PSR_IIR, psr_iir); 2480 } 2481 2482 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2483 dp_aux_irq_handler(dev_priv); 2484 2485 if (de_iir & DE_GSE_IVB) 2486 intel_opregion_asle_intr(dev_priv); 2487 2488 for_each_pipe(dev_priv, pipe) { 2489 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2490 drm_handle_vblank(&dev_priv->drm, pipe); 2491 } 2492 2493 /* check event from PCH */ 2494 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2495 u32 pch_iir = I915_READ(SDEIIR); 2496 2497 cpt_irq_handler(dev_priv, pch_iir); 2498 2499 /* clear PCH hotplug event before clear CPU irq */ 2500 I915_WRITE(SDEIIR, pch_iir); 2501 } 2502 } 2503 2504 /* 2505 * To handle irqs with the minimum potential races with fresh interrupts, we: 2506 * 1 - Disable Master Interrupt Control. 2507 * 2 - Find the source(s) of the interrupt. 2508 * 3 - Clear the Interrupt Identity bits (IIR). 2509 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2510 * 5 - Re-enable Master Interrupt Control. 2511 */ 2512 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2513 { 2514 struct drm_device *dev = arg; 2515 struct drm_i915_private *dev_priv = to_i915(dev); 2516 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2517 irqreturn_t ret = IRQ_NONE; 2518 2519 if (!intel_irqs_enabled(dev_priv)) 2520 return IRQ_NONE; 2521 2522 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2523 disable_rpm_wakeref_asserts(dev_priv); 2524 2525 /* disable master interrupt before clearing iir */ 2526 de_ier = I915_READ(DEIER); 2527 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2528 POSTING_READ(DEIER); 2529 2530 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2531 * interrupts will will be stored on its back queue, and then we'll be 2532 * able to process them after we restore SDEIER (as soon as we restore 2533 * it, we'll get an interrupt if SDEIIR still has something to process 2534 * due to its back queue). */ 2535 if (!HAS_PCH_NOP(dev_priv)) { 2536 sde_ier = I915_READ(SDEIER); 2537 I915_WRITE(SDEIER, 0); 2538 POSTING_READ(SDEIER); 2539 } 2540 2541 /* Find, clear, then process each source of interrupt */ 2542 2543 gt_iir = I915_READ(GTIIR); 2544 if (gt_iir) { 2545 I915_WRITE(GTIIR, gt_iir); 2546 ret = IRQ_HANDLED; 2547 if (INTEL_GEN(dev_priv) >= 6) 2548 snb_gt_irq_handler(dev_priv, gt_iir); 2549 else 2550 ilk_gt_irq_handler(dev_priv, gt_iir); 2551 } 2552 2553 de_iir = I915_READ(DEIIR); 2554 if (de_iir) { 2555 I915_WRITE(DEIIR, de_iir); 2556 ret = IRQ_HANDLED; 2557 if (INTEL_GEN(dev_priv) >= 7) 2558 ivb_display_irq_handler(dev_priv, de_iir); 2559 else 2560 ilk_display_irq_handler(dev_priv, de_iir); 2561 } 2562 2563 if (INTEL_GEN(dev_priv) >= 6) { 2564 u32 pm_iir = I915_READ(GEN6_PMIIR); 2565 if (pm_iir) { 2566 I915_WRITE(GEN6_PMIIR, pm_iir); 2567 ret = IRQ_HANDLED; 2568 gen6_rps_irq_handler(dev_priv, pm_iir); 2569 } 2570 } 2571 2572 I915_WRITE(DEIER, de_ier); 2573 POSTING_READ(DEIER); 2574 if (!HAS_PCH_NOP(dev_priv)) { 2575 I915_WRITE(SDEIER, sde_ier); 2576 POSTING_READ(SDEIER); 2577 } 2578 2579 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2580 enable_rpm_wakeref_asserts(dev_priv); 2581 2582 return ret; 2583 } 2584 2585 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2586 u32 hotplug_trigger, 2587 const u32 hpd[HPD_NUM_PINS]) 2588 { 2589 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2590 2591 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2592 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2593 2594 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2595 dig_hotplug_reg, hpd, 2596 bxt_port_hotplug_long_detect); 2597 2598 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2599 } 2600 2601 static irqreturn_t 2602 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2603 { 2604 irqreturn_t ret = IRQ_NONE; 2605 u32 iir; 2606 enum pipe pipe; 2607 2608 if (master_ctl & GEN8_DE_MISC_IRQ) { 2609 iir = I915_READ(GEN8_DE_MISC_IIR); 2610 if (iir) { 2611 bool found = false; 2612 2613 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2614 ret = IRQ_HANDLED; 2615 2616 if (iir & GEN8_DE_MISC_GSE) { 2617 intel_opregion_asle_intr(dev_priv); 2618 found = true; 2619 } 2620 2621 if (iir & GEN8_DE_EDP_PSR) { 2622 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2623 2624 intel_psr_irq_handler(dev_priv, psr_iir); 2625 I915_WRITE(EDP_PSR_IIR, psr_iir); 2626 found = true; 2627 } 2628 2629 if (!found) 2630 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2631 } 2632 else 2633 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2634 } 2635 2636 if (master_ctl & GEN8_DE_PORT_IRQ) { 2637 iir = I915_READ(GEN8_DE_PORT_IIR); 2638 if (iir) { 2639 u32 tmp_mask; 2640 bool found = false; 2641 2642 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2643 ret = IRQ_HANDLED; 2644 2645 tmp_mask = GEN8_AUX_CHANNEL_A; 2646 if (INTEL_GEN(dev_priv) >= 9) 2647 tmp_mask |= GEN9_AUX_CHANNEL_B | 2648 GEN9_AUX_CHANNEL_C | 2649 GEN9_AUX_CHANNEL_D; 2650 2651 if (IS_CNL_WITH_PORT_F(dev_priv)) 2652 tmp_mask |= CNL_AUX_CHANNEL_F; 2653 2654 if (iir & tmp_mask) { 2655 dp_aux_irq_handler(dev_priv); 2656 found = true; 2657 } 2658 2659 if (IS_GEN9_LP(dev_priv)) { 2660 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2661 if (tmp_mask) { 2662 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2663 hpd_bxt); 2664 found = true; 2665 } 2666 } else if (IS_BROADWELL(dev_priv)) { 2667 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2668 if (tmp_mask) { 2669 ilk_hpd_irq_handler(dev_priv, 2670 tmp_mask, hpd_bdw); 2671 found = true; 2672 } 2673 } 2674 2675 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2676 gmbus_irq_handler(dev_priv); 2677 found = true; 2678 } 2679 2680 if (!found) 2681 DRM_ERROR("Unexpected DE Port interrupt\n"); 2682 } 2683 else 2684 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2685 } 2686 2687 for_each_pipe(dev_priv, pipe) { 2688 u32 fault_errors; 2689 2690 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2691 continue; 2692 2693 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2694 if (!iir) { 2695 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2696 continue; 2697 } 2698 2699 ret = IRQ_HANDLED; 2700 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2701 2702 if (iir & GEN8_PIPE_VBLANK) 2703 drm_handle_vblank(&dev_priv->drm, pipe); 2704 2705 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2706 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2707 2708 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2709 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2710 2711 fault_errors = iir; 2712 if (INTEL_GEN(dev_priv) >= 9) 2713 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2714 else 2715 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2716 2717 if (fault_errors) 2718 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", 2719 pipe_name(pipe), 2720 fault_errors); 2721 } 2722 2723 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2724 master_ctl & GEN8_DE_PCH_IRQ) { 2725 /* 2726 * FIXME(BDW): Assume for now that the new interrupt handling 2727 * scheme also closed the SDE interrupt handling race we've seen 2728 * on older pch-split platforms. But this needs testing. 2729 */ 2730 iir = I915_READ(SDEIIR); 2731 if (iir) { 2732 I915_WRITE(SDEIIR, iir); 2733 ret = IRQ_HANDLED; 2734 2735 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) || 2736 HAS_PCH_CNP(dev_priv)) 2737 spt_irq_handler(dev_priv, iir); 2738 else 2739 cpt_irq_handler(dev_priv, iir); 2740 } else { 2741 /* 2742 * Like on previous PCH there seems to be something 2743 * fishy going on with forwarding PCH interrupts. 2744 */ 2745 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); 2746 } 2747 } 2748 2749 return ret; 2750 } 2751 2752 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2753 { 2754 struct drm_i915_private *dev_priv = to_i915(arg); 2755 u32 master_ctl; 2756 u32 gt_iir[4]; 2757 2758 if (!intel_irqs_enabled(dev_priv)) 2759 return IRQ_NONE; 2760 2761 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ); 2762 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; 2763 if (!master_ctl) 2764 return IRQ_NONE; 2765 2766 I915_WRITE_FW(GEN8_MASTER_IRQ, 0); 2767 2768 /* Find, clear, then process each source of interrupt */ 2769 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2770 2771 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2772 if (master_ctl & ~GEN8_GT_IRQS) { 2773 disable_rpm_wakeref_asserts(dev_priv); 2774 gen8_de_irq_handler(dev_priv, master_ctl); 2775 enable_rpm_wakeref_asserts(dev_priv); 2776 } 2777 2778 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2779 2780 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2781 2782 return IRQ_HANDLED; 2783 } 2784 2785 struct wedge_me { 2786 struct delayed_work work; 2787 struct drm_i915_private *i915; 2788 const char *name; 2789 }; 2790 2791 static void wedge_me(struct work_struct *work) 2792 { 2793 struct wedge_me *w = container_of(work, typeof(*w), work.work); 2794 2795 dev_err(w->i915->drm.dev, 2796 "%s timed out, cancelling all in-flight rendering.\n", 2797 w->name); 2798 i915_gem_set_wedged(w->i915); 2799 } 2800 2801 static void __init_wedge(struct wedge_me *w, 2802 struct drm_i915_private *i915, 2803 long timeout, 2804 const char *name) 2805 { 2806 w->i915 = i915; 2807 w->name = name; 2808 2809 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me); 2810 schedule_delayed_work(&w->work, timeout); 2811 } 2812 2813 static void __fini_wedge(struct wedge_me *w) 2814 { 2815 cancel_delayed_work_sync(&w->work); 2816 destroy_delayed_work_on_stack(&w->work); 2817 w->i915 = NULL; 2818 } 2819 2820 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \ 2821 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \ 2822 (W)->i915; \ 2823 __fini_wedge((W))) 2824 2825 static u32 2826 gen11_gt_engine_identity(struct drm_i915_private * const i915, 2827 const unsigned int bank, const unsigned int bit) 2828 { 2829 void __iomem * const regs = i915->regs; 2830 u32 timeout_ts; 2831 u32 ident; 2832 2833 lockdep_assert_held(&i915->irq_lock); 2834 2835 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); 2836 2837 /* 2838 * NB: Specs do not specify how long to spin wait, 2839 * so we do ~100us as an educated guess. 2840 */ 2841 timeout_ts = (local_clock() >> 10) + 100; 2842 do { 2843 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); 2844 } while (!(ident & GEN11_INTR_DATA_VALID) && 2845 !time_after32(local_clock() >> 10, timeout_ts)); 2846 2847 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { 2848 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", 2849 bank, bit, ident); 2850 return 0; 2851 } 2852 2853 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), 2854 GEN11_INTR_DATA_VALID); 2855 2856 return ident; 2857 } 2858 2859 static void 2860 gen11_other_irq_handler(struct drm_i915_private * const i915, 2861 const u8 instance, const u16 iir) 2862 { 2863 if (instance == OTHER_GTPM_INSTANCE) 2864 return gen6_rps_irq_handler(i915, iir); 2865 2866 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", 2867 instance, iir); 2868 } 2869 2870 static void 2871 gen11_engine_irq_handler(struct drm_i915_private * const i915, 2872 const u8 class, const u8 instance, const u16 iir) 2873 { 2874 struct intel_engine_cs *engine; 2875 2876 if (instance <= MAX_ENGINE_INSTANCE) 2877 engine = i915->engine_class[class][instance]; 2878 else 2879 engine = NULL; 2880 2881 if (likely(engine)) 2882 return gen8_cs_irq_handler(engine, iir); 2883 2884 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n", 2885 class, instance); 2886 } 2887 2888 static void 2889 gen11_gt_identity_handler(struct drm_i915_private * const i915, 2890 const u32 identity) 2891 { 2892 const u8 class = GEN11_INTR_ENGINE_CLASS(identity); 2893 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); 2894 const u16 intr = GEN11_INTR_ENGINE_INTR(identity); 2895 2896 if (unlikely(!intr)) 2897 return; 2898 2899 if (class <= COPY_ENGINE_CLASS) 2900 return gen11_engine_irq_handler(i915, class, instance, intr); 2901 2902 if (class == OTHER_CLASS) 2903 return gen11_other_irq_handler(i915, instance, intr); 2904 2905 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", 2906 class, instance, intr); 2907 } 2908 2909 static void 2910 gen11_gt_bank_handler(struct drm_i915_private * const i915, 2911 const unsigned int bank) 2912 { 2913 void __iomem * const regs = i915->regs; 2914 unsigned long intr_dw; 2915 unsigned int bit; 2916 2917 lockdep_assert_held(&i915->irq_lock); 2918 2919 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 2920 2921 if (unlikely(!intr_dw)) { 2922 DRM_ERROR("GT_INTR_DW%u blank!\n", bank); 2923 return; 2924 } 2925 2926 for_each_set_bit(bit, &intr_dw, 32) { 2927 const u32 ident = gen11_gt_engine_identity(i915, 2928 bank, bit); 2929 2930 gen11_gt_identity_handler(i915, ident); 2931 } 2932 2933 /* Clear must be after shared has been served for engine */ 2934 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); 2935 } 2936 2937 static void 2938 gen11_gt_irq_handler(struct drm_i915_private * const i915, 2939 const u32 master_ctl) 2940 { 2941 unsigned int bank; 2942 2943 spin_lock(&i915->irq_lock); 2944 2945 for (bank = 0; bank < 2; bank++) { 2946 if (master_ctl & GEN11_GT_DW_IRQ(bank)) 2947 gen11_gt_bank_handler(i915, bank); 2948 } 2949 2950 spin_unlock(&i915->irq_lock); 2951 } 2952 2953 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2954 { 2955 struct drm_i915_private * const i915 = to_i915(arg); 2956 void __iomem * const regs = i915->regs; 2957 u32 master_ctl; 2958 2959 if (!intel_irqs_enabled(i915)) 2960 return IRQ_NONE; 2961 2962 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2963 master_ctl &= ~GEN11_MASTER_IRQ; 2964 if (!master_ctl) 2965 return IRQ_NONE; 2966 2967 /* Disable interrupts. */ 2968 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2969 2970 /* Find, clear, then process each source of interrupt. */ 2971 gen11_gt_irq_handler(i915, master_ctl); 2972 2973 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2974 if (master_ctl & GEN11_DISPLAY_IRQ) { 2975 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2976 2977 disable_rpm_wakeref_asserts(i915); 2978 /* 2979 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2980 * for the display related bits. 2981 */ 2982 gen8_de_irq_handler(i915, disp_ctl); 2983 enable_rpm_wakeref_asserts(i915); 2984 } 2985 2986 /* Acknowledge and enable interrupts. */ 2987 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl); 2988 2989 return IRQ_HANDLED; 2990 } 2991 2992 static void i915_reset_device(struct drm_i915_private *dev_priv, 2993 u32 engine_mask, 2994 const char *reason) 2995 { 2996 struct i915_gpu_error *error = &dev_priv->gpu_error; 2997 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj; 2998 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 2999 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 3000 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 3001 struct wedge_me w; 3002 3003 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 3004 3005 DRM_DEBUG_DRIVER("resetting chip\n"); 3006 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 3007 3008 /* Use a watchdog to ensure that our reset completes */ 3009 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) { 3010 intel_prepare_reset(dev_priv); 3011 3012 error->reason = reason; 3013 error->stalled_mask = engine_mask; 3014 3015 /* Signal that locked waiters should reset the GPU */ 3016 smp_mb__before_atomic(); 3017 set_bit(I915_RESET_HANDOFF, &error->flags); 3018 wake_up_all(&error->wait_queue); 3019 3020 /* Wait for anyone holding the lock to wakeup, without 3021 * blocking indefinitely on struct_mutex. 3022 */ 3023 do { 3024 if (mutex_trylock(&dev_priv->drm.struct_mutex)) { 3025 i915_reset(dev_priv, engine_mask, reason); 3026 mutex_unlock(&dev_priv->drm.struct_mutex); 3027 } 3028 } while (wait_on_bit_timeout(&error->flags, 3029 I915_RESET_HANDOFF, 3030 TASK_UNINTERRUPTIBLE, 3031 1)); 3032 3033 error->stalled_mask = 0; 3034 error->reason = NULL; 3035 3036 intel_finish_reset(dev_priv); 3037 } 3038 3039 if (!test_bit(I915_WEDGED, &error->flags)) 3040 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 3041 } 3042 3043 static void i915_clear_error_registers(struct drm_i915_private *dev_priv) 3044 { 3045 u32 eir; 3046 3047 if (!IS_GEN2(dev_priv)) 3048 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER)); 3049 3050 if (INTEL_GEN(dev_priv) < 4) 3051 I915_WRITE(IPEIR, I915_READ(IPEIR)); 3052 else 3053 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965)); 3054 3055 I915_WRITE(EIR, I915_READ(EIR)); 3056 eir = I915_READ(EIR); 3057 if (eir) { 3058 /* 3059 * some errors might have become stuck, 3060 * mask them. 3061 */ 3062 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 3063 I915_WRITE(EMR, I915_READ(EMR) | eir); 3064 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 3065 } 3066 } 3067 3068 /** 3069 * i915_handle_error - handle a gpu error 3070 * @dev_priv: i915 device private 3071 * @engine_mask: mask representing engines that are hung 3072 * @flags: control flags 3073 * @fmt: Error message format string 3074 * 3075 * Do some basic checking of register state at error time and 3076 * dump it to the syslog. Also call i915_capture_error_state() to make 3077 * sure we get a record and make it available in debugfs. Fire a uevent 3078 * so userspace knows something bad happened (should trigger collection 3079 * of a ring dump etc.). 3080 */ 3081 void i915_handle_error(struct drm_i915_private *dev_priv, 3082 u32 engine_mask, 3083 unsigned long flags, 3084 const char *fmt, ...) 3085 { 3086 struct intel_engine_cs *engine; 3087 unsigned int tmp; 3088 char error_msg[80]; 3089 char *msg = NULL; 3090 3091 if (fmt) { 3092 va_list args; 3093 3094 va_start(args, fmt); 3095 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 3096 va_end(args); 3097 3098 msg = error_msg; 3099 } 3100 3101 /* 3102 * In most cases it's guaranteed that we get here with an RPM 3103 * reference held, for example because there is a pending GPU 3104 * request that won't finish until the reset is done. This 3105 * isn't the case at least when we get here by doing a 3106 * simulated reset via debugfs, so get an RPM reference. 3107 */ 3108 intel_runtime_pm_get(dev_priv); 3109 3110 engine_mask &= INTEL_INFO(dev_priv)->ring_mask; 3111 3112 if (flags & I915_ERROR_CAPTURE) { 3113 i915_capture_error_state(dev_priv, engine_mask, msg); 3114 i915_clear_error_registers(dev_priv); 3115 } 3116 3117 /* 3118 * Try engine reset when available. We fall back to full reset if 3119 * single reset fails. 3120 */ 3121 if (intel_has_reset_engine(dev_priv)) { 3122 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 3123 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 3124 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 3125 &dev_priv->gpu_error.flags)) 3126 continue; 3127 3128 if (i915_reset_engine(engine, msg) == 0) 3129 engine_mask &= ~intel_engine_flag(engine); 3130 3131 clear_bit(I915_RESET_ENGINE + engine->id, 3132 &dev_priv->gpu_error.flags); 3133 wake_up_bit(&dev_priv->gpu_error.flags, 3134 I915_RESET_ENGINE + engine->id); 3135 } 3136 } 3137 3138 if (!engine_mask) 3139 goto out; 3140 3141 /* Full reset needs the mutex, stop any other user trying to do so. */ 3142 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) { 3143 wait_event(dev_priv->gpu_error.reset_queue, 3144 !test_bit(I915_RESET_BACKOFF, 3145 &dev_priv->gpu_error.flags)); 3146 goto out; 3147 } 3148 3149 /* Prevent any other reset-engine attempt. */ 3150 for_each_engine(engine, dev_priv, tmp) { 3151 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 3152 &dev_priv->gpu_error.flags)) 3153 wait_on_bit(&dev_priv->gpu_error.flags, 3154 I915_RESET_ENGINE + engine->id, 3155 TASK_UNINTERRUPTIBLE); 3156 } 3157 3158 i915_reset_device(dev_priv, engine_mask, msg); 3159 3160 for_each_engine(engine, dev_priv, tmp) { 3161 clear_bit(I915_RESET_ENGINE + engine->id, 3162 &dev_priv->gpu_error.flags); 3163 } 3164 3165 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags); 3166 wake_up_all(&dev_priv->gpu_error.reset_queue); 3167 3168 out: 3169 intel_runtime_pm_put(dev_priv); 3170 } 3171 3172 /* Called from drm generic code, passed 'crtc' which 3173 * we use as a pipe index 3174 */ 3175 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) 3176 { 3177 struct drm_i915_private *dev_priv = to_i915(dev); 3178 unsigned long irqflags; 3179 3180 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3181 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3182 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3183 3184 return 0; 3185 } 3186 3187 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) 3188 { 3189 struct drm_i915_private *dev_priv = to_i915(dev); 3190 unsigned long irqflags; 3191 3192 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3193 i915_enable_pipestat(dev_priv, pipe, 3194 PIPE_START_VBLANK_INTERRUPT_STATUS); 3195 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3196 3197 return 0; 3198 } 3199 3200 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) 3201 { 3202 struct drm_i915_private *dev_priv = to_i915(dev); 3203 unsigned long irqflags; 3204 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 3205 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3206 3207 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3208 ilk_enable_display_irq(dev_priv, bit); 3209 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3210 3211 /* Even though there is no DMC, frame counter can get stuck when 3212 * PSR is active as no frames are generated. 3213 */ 3214 if (HAS_PSR(dev_priv)) 3215 drm_vblank_restore(dev, pipe); 3216 3217 return 0; 3218 } 3219 3220 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) 3221 { 3222 struct drm_i915_private *dev_priv = to_i915(dev); 3223 unsigned long irqflags; 3224 3225 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3226 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3227 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3228 3229 /* Even if there is no DMC, frame counter can get stuck when 3230 * PSR is active as no frames are generated, so check only for PSR. 3231 */ 3232 if (HAS_PSR(dev_priv)) 3233 drm_vblank_restore(dev, pipe); 3234 3235 return 0; 3236 } 3237 3238 /* Called from drm generic code, passed 'crtc' which 3239 * we use as a pipe index 3240 */ 3241 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) 3242 { 3243 struct drm_i915_private *dev_priv = to_i915(dev); 3244 unsigned long irqflags; 3245 3246 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3247 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3248 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3249 } 3250 3251 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) 3252 { 3253 struct drm_i915_private *dev_priv = to_i915(dev); 3254 unsigned long irqflags; 3255 3256 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3257 i915_disable_pipestat(dev_priv, pipe, 3258 PIPE_START_VBLANK_INTERRUPT_STATUS); 3259 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3260 } 3261 3262 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) 3263 { 3264 struct drm_i915_private *dev_priv = to_i915(dev); 3265 unsigned long irqflags; 3266 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 3267 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3268 3269 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3270 ilk_disable_display_irq(dev_priv, bit); 3271 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3272 } 3273 3274 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) 3275 { 3276 struct drm_i915_private *dev_priv = to_i915(dev); 3277 unsigned long irqflags; 3278 3279 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3280 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3281 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3282 } 3283 3284 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 3285 { 3286 if (HAS_PCH_NOP(dev_priv)) 3287 return; 3288 3289 GEN3_IRQ_RESET(SDE); 3290 3291 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3292 I915_WRITE(SERR_INT, 0xffffffff); 3293 } 3294 3295 /* 3296 * SDEIER is also touched by the interrupt handler to work around missed PCH 3297 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3298 * instead we unconditionally enable all PCH interrupt sources here, but then 3299 * only unmask them as needed with SDEIMR. 3300 * 3301 * This function needs to be called before interrupts are enabled. 3302 */ 3303 static void ibx_irq_pre_postinstall(struct drm_device *dev) 3304 { 3305 struct drm_i915_private *dev_priv = to_i915(dev); 3306 3307 if (HAS_PCH_NOP(dev_priv)) 3308 return; 3309 3310 WARN_ON(I915_READ(SDEIER) != 0); 3311 I915_WRITE(SDEIER, 0xffffffff); 3312 POSTING_READ(SDEIER); 3313 } 3314 3315 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) 3316 { 3317 GEN3_IRQ_RESET(GT); 3318 if (INTEL_GEN(dev_priv) >= 6) 3319 GEN3_IRQ_RESET(GEN6_PM); 3320 } 3321 3322 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 3323 { 3324 if (IS_CHERRYVIEW(dev_priv)) 3325 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 3326 else 3327 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 3328 3329 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 3330 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3331 3332 i9xx_pipestat_irq_reset(dev_priv); 3333 3334 GEN3_IRQ_RESET(VLV_); 3335 dev_priv->irq_mask = ~0u; 3336 } 3337 3338 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 3339 { 3340 u32 pipestat_mask; 3341 u32 enable_mask; 3342 enum pipe pipe; 3343 3344 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 3345 3346 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3347 for_each_pipe(dev_priv, pipe) 3348 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 3349 3350 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3351 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3352 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3353 I915_LPE_PIPE_A_INTERRUPT | 3354 I915_LPE_PIPE_B_INTERRUPT; 3355 3356 if (IS_CHERRYVIEW(dev_priv)) 3357 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 3358 I915_LPE_PIPE_C_INTERRUPT; 3359 3360 WARN_ON(dev_priv->irq_mask != ~0u); 3361 3362 dev_priv->irq_mask = ~enable_mask; 3363 3364 GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask); 3365 } 3366 3367 /* drm_dma.h hooks 3368 */ 3369 static void ironlake_irq_reset(struct drm_device *dev) 3370 { 3371 struct drm_i915_private *dev_priv = to_i915(dev); 3372 3373 if (IS_GEN5(dev_priv)) 3374 I915_WRITE(HWSTAM, 0xffffffff); 3375 3376 GEN3_IRQ_RESET(DE); 3377 if (IS_GEN7(dev_priv)) 3378 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 3379 3380 if (IS_HASWELL(dev_priv)) { 3381 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3382 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3383 } 3384 3385 gen5_gt_irq_reset(dev_priv); 3386 3387 ibx_irq_reset(dev_priv); 3388 } 3389 3390 static void valleyview_irq_reset(struct drm_device *dev) 3391 { 3392 struct drm_i915_private *dev_priv = to_i915(dev); 3393 3394 I915_WRITE(VLV_MASTER_IER, 0); 3395 POSTING_READ(VLV_MASTER_IER); 3396 3397 gen5_gt_irq_reset(dev_priv); 3398 3399 spin_lock_irq(&dev_priv->irq_lock); 3400 if (dev_priv->display_irqs_enabled) 3401 vlv_display_irq_reset(dev_priv); 3402 spin_unlock_irq(&dev_priv->irq_lock); 3403 } 3404 3405 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 3406 { 3407 GEN8_IRQ_RESET_NDX(GT, 0); 3408 GEN8_IRQ_RESET_NDX(GT, 1); 3409 GEN8_IRQ_RESET_NDX(GT, 2); 3410 GEN8_IRQ_RESET_NDX(GT, 3); 3411 } 3412 3413 static void gen8_irq_reset(struct drm_device *dev) 3414 { 3415 struct drm_i915_private *dev_priv = to_i915(dev); 3416 int pipe; 3417 3418 I915_WRITE(GEN8_MASTER_IRQ, 0); 3419 POSTING_READ(GEN8_MASTER_IRQ); 3420 3421 gen8_gt_irq_reset(dev_priv); 3422 3423 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3424 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3425 3426 for_each_pipe(dev_priv, pipe) 3427 if (intel_display_power_is_enabled(dev_priv, 3428 POWER_DOMAIN_PIPE(pipe))) 3429 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3430 3431 GEN3_IRQ_RESET(GEN8_DE_PORT_); 3432 GEN3_IRQ_RESET(GEN8_DE_MISC_); 3433 GEN3_IRQ_RESET(GEN8_PCU_); 3434 3435 if (HAS_PCH_SPLIT(dev_priv)) 3436 ibx_irq_reset(dev_priv); 3437 } 3438 3439 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv) 3440 { 3441 /* Disable RCS, BCS, VCS and VECS class engines. */ 3442 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0); 3443 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0); 3444 3445 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ 3446 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0); 3447 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0); 3448 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0); 3449 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0); 3450 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0); 3451 3452 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 3453 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 3454 } 3455 3456 static void gen11_irq_reset(struct drm_device *dev) 3457 { 3458 struct drm_i915_private *dev_priv = dev->dev_private; 3459 int pipe; 3460 3461 I915_WRITE(GEN11_GFX_MSTR_IRQ, 0); 3462 POSTING_READ(GEN11_GFX_MSTR_IRQ); 3463 3464 gen11_gt_irq_reset(dev_priv); 3465 3466 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0); 3467 3468 for_each_pipe(dev_priv, pipe) 3469 if (intel_display_power_is_enabled(dev_priv, 3470 POWER_DOMAIN_PIPE(pipe))) 3471 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3472 3473 GEN3_IRQ_RESET(GEN8_DE_PORT_); 3474 GEN3_IRQ_RESET(GEN8_DE_MISC_); 3475 GEN3_IRQ_RESET(GEN8_PCU_); 3476 } 3477 3478 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3479 u8 pipe_mask) 3480 { 3481 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3482 enum pipe pipe; 3483 3484 spin_lock_irq(&dev_priv->irq_lock); 3485 3486 if (!intel_irqs_enabled(dev_priv)) { 3487 spin_unlock_irq(&dev_priv->irq_lock); 3488 return; 3489 } 3490 3491 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3492 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3493 dev_priv->de_irq_mask[pipe], 3494 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3495 3496 spin_unlock_irq(&dev_priv->irq_lock); 3497 } 3498 3499 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3500 u8 pipe_mask) 3501 { 3502 enum pipe pipe; 3503 3504 spin_lock_irq(&dev_priv->irq_lock); 3505 3506 if (!intel_irqs_enabled(dev_priv)) { 3507 spin_unlock_irq(&dev_priv->irq_lock); 3508 return; 3509 } 3510 3511 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3512 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3513 3514 spin_unlock_irq(&dev_priv->irq_lock); 3515 3516 /* make sure we're done processing display irqs */ 3517 synchronize_irq(dev_priv->drm.irq); 3518 } 3519 3520 static void cherryview_irq_reset(struct drm_device *dev) 3521 { 3522 struct drm_i915_private *dev_priv = to_i915(dev); 3523 3524 I915_WRITE(GEN8_MASTER_IRQ, 0); 3525 POSTING_READ(GEN8_MASTER_IRQ); 3526 3527 gen8_gt_irq_reset(dev_priv); 3528 3529 GEN3_IRQ_RESET(GEN8_PCU_); 3530 3531 spin_lock_irq(&dev_priv->irq_lock); 3532 if (dev_priv->display_irqs_enabled) 3533 vlv_display_irq_reset(dev_priv); 3534 spin_unlock_irq(&dev_priv->irq_lock); 3535 } 3536 3537 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 3538 const u32 hpd[HPD_NUM_PINS]) 3539 { 3540 struct intel_encoder *encoder; 3541 u32 enabled_irqs = 0; 3542 3543 for_each_intel_encoder(&dev_priv->drm, encoder) 3544 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 3545 enabled_irqs |= hpd[encoder->hpd_pin]; 3546 3547 return enabled_irqs; 3548 } 3549 3550 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3551 { 3552 u32 hotplug; 3553 3554 /* 3555 * Enable digital hotplug on the PCH, and configure the DP short pulse 3556 * duration to 2ms (which is the minimum in the Display Port spec). 3557 * The pulse duration bits are reserved on LPT+. 3558 */ 3559 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3560 hotplug &= ~(PORTB_PULSE_DURATION_MASK | 3561 PORTC_PULSE_DURATION_MASK | 3562 PORTD_PULSE_DURATION_MASK); 3563 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3564 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3565 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3566 /* 3567 * When CPU and PCH are on the same package, port A 3568 * HPD must be enabled in both north and south. 3569 */ 3570 if (HAS_PCH_LPT_LP(dev_priv)) 3571 hotplug |= PORTA_HOTPLUG_ENABLE; 3572 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3573 } 3574 3575 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3576 { 3577 u32 hotplug_irqs, enabled_irqs; 3578 3579 if (HAS_PCH_IBX(dev_priv)) { 3580 hotplug_irqs = SDE_HOTPLUG_MASK; 3581 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 3582 } else { 3583 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3584 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 3585 } 3586 3587 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3588 3589 ibx_hpd_detection_setup(dev_priv); 3590 } 3591 3592 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3593 { 3594 u32 val, hotplug; 3595 3596 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3597 if (HAS_PCH_CNP(dev_priv)) { 3598 val = I915_READ(SOUTH_CHICKEN1); 3599 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3600 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3601 I915_WRITE(SOUTH_CHICKEN1, val); 3602 } 3603 3604 /* Enable digital hotplug on the PCH */ 3605 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3606 hotplug |= PORTA_HOTPLUG_ENABLE | 3607 PORTB_HOTPLUG_ENABLE | 3608 PORTC_HOTPLUG_ENABLE | 3609 PORTD_HOTPLUG_ENABLE; 3610 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3611 3612 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3613 hotplug |= PORTE_HOTPLUG_ENABLE; 3614 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3615 } 3616 3617 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3618 { 3619 u32 hotplug_irqs, enabled_irqs; 3620 3621 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3622 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3623 3624 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3625 3626 spt_hpd_detection_setup(dev_priv); 3627 } 3628 3629 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3630 { 3631 u32 hotplug; 3632 3633 /* 3634 * Enable digital hotplug on the CPU, and configure the DP short pulse 3635 * duration to 2ms (which is the minimum in the Display Port spec) 3636 * The pulse duration bits are reserved on HSW+. 3637 */ 3638 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3639 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3640 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | 3641 DIGITAL_PORTA_PULSE_DURATION_2ms; 3642 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3643 } 3644 3645 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3646 { 3647 u32 hotplug_irqs, enabled_irqs; 3648 3649 if (INTEL_GEN(dev_priv) >= 8) { 3650 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3651 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3652 3653 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3654 } else if (INTEL_GEN(dev_priv) >= 7) { 3655 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3656 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3657 3658 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3659 } else { 3660 hotplug_irqs = DE_DP_A_HOTPLUG; 3661 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3662 3663 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3664 } 3665 3666 ilk_hpd_detection_setup(dev_priv); 3667 3668 ibx_hpd_irq_setup(dev_priv); 3669 } 3670 3671 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, 3672 u32 enabled_irqs) 3673 { 3674 u32 hotplug; 3675 3676 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3677 hotplug |= PORTA_HOTPLUG_ENABLE | 3678 PORTB_HOTPLUG_ENABLE | 3679 PORTC_HOTPLUG_ENABLE; 3680 3681 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", 3682 hotplug, enabled_irqs); 3683 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3684 3685 /* 3686 * For BXT invert bit has to be set based on AOB design 3687 * for HPD detection logic, update it based on VBT fields. 3688 */ 3689 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3690 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3691 hotplug |= BXT_DDIA_HPD_INVERT; 3692 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3693 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3694 hotplug |= BXT_DDIB_HPD_INVERT; 3695 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3696 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3697 hotplug |= BXT_DDIC_HPD_INVERT; 3698 3699 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3700 } 3701 3702 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3703 { 3704 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); 3705 } 3706 3707 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3708 { 3709 u32 hotplug_irqs, enabled_irqs; 3710 3711 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3712 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3713 3714 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3715 3716 __bxt_hpd_detection_setup(dev_priv, enabled_irqs); 3717 } 3718 3719 static void ibx_irq_postinstall(struct drm_device *dev) 3720 { 3721 struct drm_i915_private *dev_priv = to_i915(dev); 3722 u32 mask; 3723 3724 if (HAS_PCH_NOP(dev_priv)) 3725 return; 3726 3727 if (HAS_PCH_IBX(dev_priv)) 3728 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3729 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3730 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3731 else 3732 mask = SDE_GMBUS_CPT; 3733 3734 gen3_assert_iir_is_zero(dev_priv, SDEIIR); 3735 I915_WRITE(SDEIMR, ~mask); 3736 3737 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 3738 HAS_PCH_LPT(dev_priv)) 3739 ibx_hpd_detection_setup(dev_priv); 3740 else 3741 spt_hpd_detection_setup(dev_priv); 3742 } 3743 3744 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3745 { 3746 struct drm_i915_private *dev_priv = to_i915(dev); 3747 u32 pm_irqs, gt_irqs; 3748 3749 pm_irqs = gt_irqs = 0; 3750 3751 dev_priv->gt_irq_mask = ~0; 3752 if (HAS_L3_DPF(dev_priv)) { 3753 /* L3 parity interrupt is always unmasked. */ 3754 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); 3755 gt_irqs |= GT_PARITY_ERROR(dev_priv); 3756 } 3757 3758 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3759 if (IS_GEN5(dev_priv)) { 3760 gt_irqs |= ILK_BSD_USER_INTERRUPT; 3761 } else { 3762 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3763 } 3764 3765 GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); 3766 3767 if (INTEL_GEN(dev_priv) >= 6) { 3768 /* 3769 * RPS interrupts will get enabled/disabled on demand when RPS 3770 * itself is enabled/disabled. 3771 */ 3772 if (HAS_VEBOX(dev_priv)) { 3773 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 3774 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; 3775 } 3776 3777 dev_priv->pm_imr = 0xffffffff; 3778 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs); 3779 } 3780 } 3781 3782 static int ironlake_irq_postinstall(struct drm_device *dev) 3783 { 3784 struct drm_i915_private *dev_priv = to_i915(dev); 3785 u32 display_mask, extra_mask; 3786 3787 if (INTEL_GEN(dev_priv) >= 7) { 3788 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3789 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3790 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3791 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3792 DE_DP_A_HOTPLUG_IVB); 3793 } else { 3794 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3795 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3796 DE_PIPEA_CRC_DONE | DE_POISON); 3797 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3798 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3799 DE_DP_A_HOTPLUG); 3800 } 3801 3802 if (IS_HASWELL(dev_priv)) { 3803 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR); 3804 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 3805 display_mask |= DE_EDP_PSR_INT_HSW; 3806 } 3807 3808 dev_priv->irq_mask = ~display_mask; 3809 3810 ibx_irq_pre_postinstall(dev); 3811 3812 GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); 3813 3814 gen5_gt_irq_postinstall(dev); 3815 3816 ilk_hpd_detection_setup(dev_priv); 3817 3818 ibx_irq_postinstall(dev); 3819 3820 if (IS_IRONLAKE_M(dev_priv)) { 3821 /* Enable PCU event interrupts 3822 * 3823 * spinlocking not required here for correctness since interrupt 3824 * setup is guaranteed to run in single-threaded context. But we 3825 * need it to make the assert_spin_locked happy. */ 3826 spin_lock_irq(&dev_priv->irq_lock); 3827 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 3828 spin_unlock_irq(&dev_priv->irq_lock); 3829 } 3830 3831 return 0; 3832 } 3833 3834 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3835 { 3836 lockdep_assert_held(&dev_priv->irq_lock); 3837 3838 if (dev_priv->display_irqs_enabled) 3839 return; 3840 3841 dev_priv->display_irqs_enabled = true; 3842 3843 if (intel_irqs_enabled(dev_priv)) { 3844 vlv_display_irq_reset(dev_priv); 3845 vlv_display_irq_postinstall(dev_priv); 3846 } 3847 } 3848 3849 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3850 { 3851 lockdep_assert_held(&dev_priv->irq_lock); 3852 3853 if (!dev_priv->display_irqs_enabled) 3854 return; 3855 3856 dev_priv->display_irqs_enabled = false; 3857 3858 if (intel_irqs_enabled(dev_priv)) 3859 vlv_display_irq_reset(dev_priv); 3860 } 3861 3862 3863 static int valleyview_irq_postinstall(struct drm_device *dev) 3864 { 3865 struct drm_i915_private *dev_priv = to_i915(dev); 3866 3867 gen5_gt_irq_postinstall(dev); 3868 3869 spin_lock_irq(&dev_priv->irq_lock); 3870 if (dev_priv->display_irqs_enabled) 3871 vlv_display_irq_postinstall(dev_priv); 3872 spin_unlock_irq(&dev_priv->irq_lock); 3873 3874 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3875 POSTING_READ(VLV_MASTER_IER); 3876 3877 return 0; 3878 } 3879 3880 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3881 { 3882 /* These are interrupts we'll toggle with the ring mask register */ 3883 uint32_t gt_interrupts[] = { 3884 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3885 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3886 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 3887 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, 3888 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3889 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3890 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | 3891 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 3892 0, 3893 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 3894 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT 3895 }; 3896 3897 if (HAS_L3_DPF(dev_priv)) 3898 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; 3899 3900 dev_priv->pm_ier = 0x0; 3901 dev_priv->pm_imr = ~dev_priv->pm_ier; 3902 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 3903 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 3904 /* 3905 * RPS interrupts will get enabled/disabled on demand when RPS itself 3906 * is enabled/disabled. Same wil be the case for GuC interrupts. 3907 */ 3908 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); 3909 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 3910 } 3911 3912 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3913 { 3914 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; 3915 uint32_t de_pipe_enables; 3916 u32 de_port_masked = GEN8_AUX_CHANNEL_A; 3917 u32 de_port_enables; 3918 u32 de_misc_masked = GEN8_DE_MISC_GSE | GEN8_DE_EDP_PSR; 3919 enum pipe pipe; 3920 3921 if (INTEL_GEN(dev_priv) >= 9) { 3922 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 3923 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | 3924 GEN9_AUX_CHANNEL_D; 3925 if (IS_GEN9_LP(dev_priv)) 3926 de_port_masked |= BXT_DE_PORT_GMBUS; 3927 } else { 3928 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 3929 } 3930 3931 if (IS_CNL_WITH_PORT_F(dev_priv)) 3932 de_port_masked |= CNL_AUX_CHANNEL_F; 3933 3934 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3935 GEN8_PIPE_FIFO_UNDERRUN; 3936 3937 de_port_enables = de_port_masked; 3938 if (IS_GEN9_LP(dev_priv)) 3939 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3940 else if (IS_BROADWELL(dev_priv)) 3941 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 3942 3943 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR); 3944 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 3945 3946 for_each_pipe(dev_priv, pipe) { 3947 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3948 3949 if (intel_display_power_is_enabled(dev_priv, 3950 POWER_DOMAIN_PIPE(pipe))) 3951 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3952 dev_priv->de_irq_mask[pipe], 3953 de_pipe_enables); 3954 } 3955 3956 GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3957 GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3958 3959 if (IS_GEN9_LP(dev_priv)) 3960 bxt_hpd_detection_setup(dev_priv); 3961 else if (IS_BROADWELL(dev_priv)) 3962 ilk_hpd_detection_setup(dev_priv); 3963 } 3964 3965 static int gen8_irq_postinstall(struct drm_device *dev) 3966 { 3967 struct drm_i915_private *dev_priv = to_i915(dev); 3968 3969 if (HAS_PCH_SPLIT(dev_priv)) 3970 ibx_irq_pre_postinstall(dev); 3971 3972 gen8_gt_irq_postinstall(dev_priv); 3973 gen8_de_irq_postinstall(dev_priv); 3974 3975 if (HAS_PCH_SPLIT(dev_priv)) 3976 ibx_irq_postinstall(dev); 3977 3978 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3979 POSTING_READ(GEN8_MASTER_IRQ); 3980 3981 return 0; 3982 } 3983 3984 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3985 { 3986 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT; 3987 3988 BUILD_BUG_ON(irqs & 0xffff0000); 3989 3990 /* Enable RCS, BCS, VCS and VECS class interrupts. */ 3991 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs); 3992 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs); 3993 3994 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ 3995 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16)); 3996 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16)); 3997 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16)); 3998 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16)); 3999 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16)); 4000 4001 /* 4002 * RPS interrupts will get enabled/disabled on demand when RPS itself 4003 * is enabled/disabled. 4004 */ 4005 dev_priv->pm_ier = 0x0; 4006 dev_priv->pm_imr = ~dev_priv->pm_ier; 4007 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 4008 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 4009 } 4010 4011 static int gen11_irq_postinstall(struct drm_device *dev) 4012 { 4013 struct drm_i915_private *dev_priv = dev->dev_private; 4014 4015 gen11_gt_irq_postinstall(dev_priv); 4016 gen8_de_irq_postinstall(dev_priv); 4017 4018 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 4019 4020 I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 4021 POSTING_READ(GEN11_GFX_MSTR_IRQ); 4022 4023 return 0; 4024 } 4025 4026 static int cherryview_irq_postinstall(struct drm_device *dev) 4027 { 4028 struct drm_i915_private *dev_priv = to_i915(dev); 4029 4030 gen8_gt_irq_postinstall(dev_priv); 4031 4032 spin_lock_irq(&dev_priv->irq_lock); 4033 if (dev_priv->display_irqs_enabled) 4034 vlv_display_irq_postinstall(dev_priv); 4035 spin_unlock_irq(&dev_priv->irq_lock); 4036 4037 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 4038 POSTING_READ(GEN8_MASTER_IRQ); 4039 4040 return 0; 4041 } 4042 4043 static void i8xx_irq_reset(struct drm_device *dev) 4044 { 4045 struct drm_i915_private *dev_priv = to_i915(dev); 4046 4047 i9xx_pipestat_irq_reset(dev_priv); 4048 4049 I915_WRITE16(HWSTAM, 0xffff); 4050 4051 GEN2_IRQ_RESET(); 4052 } 4053 4054 static int i8xx_irq_postinstall(struct drm_device *dev) 4055 { 4056 struct drm_i915_private *dev_priv = to_i915(dev); 4057 u16 enable_mask; 4058 4059 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | 4060 I915_ERROR_MEMORY_REFRESH)); 4061 4062 /* Unmask the interrupts that we always want on. */ 4063 dev_priv->irq_mask = 4064 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4065 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT); 4066 4067 enable_mask = 4068 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4069 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4070 I915_USER_INTERRUPT; 4071 4072 GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask); 4073 4074 /* Interrupt setup is already guaranteed to be single-threaded, this is 4075 * just to make the assert_spin_locked check happy. */ 4076 spin_lock_irq(&dev_priv->irq_lock); 4077 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4078 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4079 spin_unlock_irq(&dev_priv->irq_lock); 4080 4081 return 0; 4082 } 4083 4084 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 4085 { 4086 struct drm_device *dev = arg; 4087 struct drm_i915_private *dev_priv = to_i915(dev); 4088 irqreturn_t ret = IRQ_NONE; 4089 4090 if (!intel_irqs_enabled(dev_priv)) 4091 return IRQ_NONE; 4092 4093 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4094 disable_rpm_wakeref_asserts(dev_priv); 4095 4096 do { 4097 u32 pipe_stats[I915_MAX_PIPES] = {}; 4098 u16 iir; 4099 4100 iir = I915_READ16(IIR); 4101 if (iir == 0) 4102 break; 4103 4104 ret = IRQ_HANDLED; 4105 4106 /* Call regardless, as some status bits might not be 4107 * signalled in iir */ 4108 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4109 4110 I915_WRITE16(IIR, iir); 4111 4112 if (iir & I915_USER_INTERRUPT) 4113 notify_ring(dev_priv->engine[RCS]); 4114 4115 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4116 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4117 4118 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4119 } while (0); 4120 4121 enable_rpm_wakeref_asserts(dev_priv); 4122 4123 return ret; 4124 } 4125 4126 static void i915_irq_reset(struct drm_device *dev) 4127 { 4128 struct drm_i915_private *dev_priv = to_i915(dev); 4129 4130 if (I915_HAS_HOTPLUG(dev_priv)) { 4131 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4132 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4133 } 4134 4135 i9xx_pipestat_irq_reset(dev_priv); 4136 4137 I915_WRITE(HWSTAM, 0xffffffff); 4138 4139 GEN3_IRQ_RESET(); 4140 } 4141 4142 static int i915_irq_postinstall(struct drm_device *dev) 4143 { 4144 struct drm_i915_private *dev_priv = to_i915(dev); 4145 u32 enable_mask; 4146 4147 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 4148 I915_ERROR_MEMORY_REFRESH)); 4149 4150 /* Unmask the interrupts that we always want on. */ 4151 dev_priv->irq_mask = 4152 ~(I915_ASLE_INTERRUPT | 4153 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4154 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT); 4155 4156 enable_mask = 4157 I915_ASLE_INTERRUPT | 4158 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4159 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4160 I915_USER_INTERRUPT; 4161 4162 if (I915_HAS_HOTPLUG(dev_priv)) { 4163 /* Enable in IER... */ 4164 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4165 /* and unmask in IMR */ 4166 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4167 } 4168 4169 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask); 4170 4171 /* Interrupt setup is already guaranteed to be single-threaded, this is 4172 * just to make the assert_spin_locked check happy. */ 4173 spin_lock_irq(&dev_priv->irq_lock); 4174 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4175 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4176 spin_unlock_irq(&dev_priv->irq_lock); 4177 4178 i915_enable_asle_pipestat(dev_priv); 4179 4180 return 0; 4181 } 4182 4183 static irqreturn_t i915_irq_handler(int irq, void *arg) 4184 { 4185 struct drm_device *dev = arg; 4186 struct drm_i915_private *dev_priv = to_i915(dev); 4187 irqreturn_t ret = IRQ_NONE; 4188 4189 if (!intel_irqs_enabled(dev_priv)) 4190 return IRQ_NONE; 4191 4192 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4193 disable_rpm_wakeref_asserts(dev_priv); 4194 4195 do { 4196 u32 pipe_stats[I915_MAX_PIPES] = {}; 4197 u32 hotplug_status = 0; 4198 u32 iir; 4199 4200 iir = I915_READ(IIR); 4201 if (iir == 0) 4202 break; 4203 4204 ret = IRQ_HANDLED; 4205 4206 if (I915_HAS_HOTPLUG(dev_priv) && 4207 iir & I915_DISPLAY_PORT_INTERRUPT) 4208 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4209 4210 /* Call regardless, as some status bits might not be 4211 * signalled in iir */ 4212 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4213 4214 I915_WRITE(IIR, iir); 4215 4216 if (iir & I915_USER_INTERRUPT) 4217 notify_ring(dev_priv->engine[RCS]); 4218 4219 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4220 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4221 4222 if (hotplug_status) 4223 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4224 4225 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4226 } while (0); 4227 4228 enable_rpm_wakeref_asserts(dev_priv); 4229 4230 return ret; 4231 } 4232 4233 static void i965_irq_reset(struct drm_device *dev) 4234 { 4235 struct drm_i915_private *dev_priv = to_i915(dev); 4236 4237 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4238 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4239 4240 i9xx_pipestat_irq_reset(dev_priv); 4241 4242 I915_WRITE(HWSTAM, 0xffffffff); 4243 4244 GEN3_IRQ_RESET(); 4245 } 4246 4247 static int i965_irq_postinstall(struct drm_device *dev) 4248 { 4249 struct drm_i915_private *dev_priv = to_i915(dev); 4250 u32 enable_mask; 4251 u32 error_mask; 4252 4253 /* 4254 * Enable some error detection, note the instruction error mask 4255 * bit is reserved, so we leave it masked. 4256 */ 4257 if (IS_G4X(dev_priv)) { 4258 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4259 GM45_ERROR_MEM_PRIV | 4260 GM45_ERROR_CP_PRIV | 4261 I915_ERROR_MEMORY_REFRESH); 4262 } else { 4263 error_mask = ~(I915_ERROR_PAGE_TABLE | 4264 I915_ERROR_MEMORY_REFRESH); 4265 } 4266 I915_WRITE(EMR, error_mask); 4267 4268 /* Unmask the interrupts that we always want on. */ 4269 dev_priv->irq_mask = 4270 ~(I915_ASLE_INTERRUPT | 4271 I915_DISPLAY_PORT_INTERRUPT | 4272 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4273 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4274 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 4275 4276 enable_mask = 4277 I915_ASLE_INTERRUPT | 4278 I915_DISPLAY_PORT_INTERRUPT | 4279 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4280 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4281 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | 4282 I915_USER_INTERRUPT; 4283 4284 if (IS_G4X(dev_priv)) 4285 enable_mask |= I915_BSD_USER_INTERRUPT; 4286 4287 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask); 4288 4289 /* Interrupt setup is already guaranteed to be single-threaded, this is 4290 * just to make the assert_spin_locked check happy. */ 4291 spin_lock_irq(&dev_priv->irq_lock); 4292 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4293 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4294 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4295 spin_unlock_irq(&dev_priv->irq_lock); 4296 4297 i915_enable_asle_pipestat(dev_priv); 4298 4299 return 0; 4300 } 4301 4302 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4303 { 4304 u32 hotplug_en; 4305 4306 lockdep_assert_held(&dev_priv->irq_lock); 4307 4308 /* Note HDMI and DP share hotplug bits */ 4309 /* enable bits are the same for all generations */ 4310 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4311 /* Programming the CRT detection parameters tends 4312 to generate a spurious hotplug event about three 4313 seconds later. So just do it once. 4314 */ 4315 if (IS_G4X(dev_priv)) 4316 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4317 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4318 4319 /* Ignore TV since it's buggy */ 4320 i915_hotplug_interrupt_update_locked(dev_priv, 4321 HOTPLUG_INT_EN_MASK | 4322 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4323 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4324 hotplug_en); 4325 } 4326 4327 static irqreturn_t i965_irq_handler(int irq, void *arg) 4328 { 4329 struct drm_device *dev = arg; 4330 struct drm_i915_private *dev_priv = to_i915(dev); 4331 irqreturn_t ret = IRQ_NONE; 4332 4333 if (!intel_irqs_enabled(dev_priv)) 4334 return IRQ_NONE; 4335 4336 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4337 disable_rpm_wakeref_asserts(dev_priv); 4338 4339 do { 4340 u32 pipe_stats[I915_MAX_PIPES] = {}; 4341 u32 hotplug_status = 0; 4342 u32 iir; 4343 4344 iir = I915_READ(IIR); 4345 if (iir == 0) 4346 break; 4347 4348 ret = IRQ_HANDLED; 4349 4350 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4351 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4352 4353 /* Call regardless, as some status bits might not be 4354 * signalled in iir */ 4355 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4356 4357 I915_WRITE(IIR, iir); 4358 4359 if (iir & I915_USER_INTERRUPT) 4360 notify_ring(dev_priv->engine[RCS]); 4361 4362 if (iir & I915_BSD_USER_INTERRUPT) 4363 notify_ring(dev_priv->engine[VCS]); 4364 4365 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4366 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4367 4368 if (hotplug_status) 4369 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4370 4371 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4372 } while (0); 4373 4374 enable_rpm_wakeref_asserts(dev_priv); 4375 4376 return ret; 4377 } 4378 4379 /** 4380 * intel_irq_init - initializes irq support 4381 * @dev_priv: i915 device instance 4382 * 4383 * This function initializes all the irq support including work items, timers 4384 * and all the vtables. It does not setup the interrupt itself though. 4385 */ 4386 void intel_irq_init(struct drm_i915_private *dev_priv) 4387 { 4388 struct drm_device *dev = &dev_priv->drm; 4389 struct intel_rps *rps = &dev_priv->gt_pm.rps; 4390 int i; 4391 4392 intel_hpd_init_work(dev_priv); 4393 4394 INIT_WORK(&rps->work, gen6_pm_rps_work); 4395 4396 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4397 for (i = 0; i < MAX_L3_SLICES; ++i) 4398 dev_priv->l3_parity.remap_info[i] = NULL; 4399 4400 if (HAS_GUC_SCHED(dev_priv)) 4401 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; 4402 4403 /* Let's track the enabled rps events */ 4404 if (IS_VALLEYVIEW(dev_priv)) 4405 /* WaGsvRC0ResidencyMethod:vlv */ 4406 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; 4407 else 4408 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; 4409 4410 rps->pm_intrmsk_mbz = 0; 4411 4412 /* 4413 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer 4414 * if GEN6_PM_UP_EI_EXPIRED is masked. 4415 * 4416 * TODO: verify if this can be reproduced on VLV,CHV. 4417 */ 4418 if (INTEL_GEN(dev_priv) <= 7) 4419 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; 4420 4421 if (INTEL_GEN(dev_priv) >= 8) 4422 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 4423 4424 if (IS_GEN2(dev_priv)) { 4425 /* Gen2 doesn't have a hardware frame counter */ 4426 dev->max_vblank_count = 0; 4427 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 4428 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ 4429 dev->driver->get_vblank_counter = g4x_get_vblank_counter; 4430 } else { 4431 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4432 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ 4433 } 4434 4435 /* 4436 * Opt out of the vblank disable timer on everything except gen2. 4437 * Gen2 doesn't have a hardware frame counter and so depends on 4438 * vblank interrupts to produce sane vblank seuquence numbers. 4439 */ 4440 if (!IS_GEN2(dev_priv)) 4441 dev->vblank_disable_immediate = true; 4442 4443 /* Most platforms treat the display irq block as an always-on 4444 * power domain. vlv/chv can disable it at runtime and need 4445 * special care to avoid writing any of the display block registers 4446 * outside of the power domain. We defer setting up the display irqs 4447 * in this case to the runtime pm. 4448 */ 4449 dev_priv->display_irqs_enabled = true; 4450 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4451 dev_priv->display_irqs_enabled = false; 4452 4453 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 4454 4455 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos; 4456 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4457 4458 if (IS_CHERRYVIEW(dev_priv)) { 4459 dev->driver->irq_handler = cherryview_irq_handler; 4460 dev->driver->irq_preinstall = cherryview_irq_reset; 4461 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4462 dev->driver->irq_uninstall = cherryview_irq_reset; 4463 dev->driver->enable_vblank = i965_enable_vblank; 4464 dev->driver->disable_vblank = i965_disable_vblank; 4465 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4466 } else if (IS_VALLEYVIEW(dev_priv)) { 4467 dev->driver->irq_handler = valleyview_irq_handler; 4468 dev->driver->irq_preinstall = valleyview_irq_reset; 4469 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4470 dev->driver->irq_uninstall = valleyview_irq_reset; 4471 dev->driver->enable_vblank = i965_enable_vblank; 4472 dev->driver->disable_vblank = i965_disable_vblank; 4473 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4474 } else if (INTEL_GEN(dev_priv) >= 11) { 4475 dev->driver->irq_handler = gen11_irq_handler; 4476 dev->driver->irq_preinstall = gen11_irq_reset; 4477 dev->driver->irq_postinstall = gen11_irq_postinstall; 4478 dev->driver->irq_uninstall = gen11_irq_reset; 4479 dev->driver->enable_vblank = gen8_enable_vblank; 4480 dev->driver->disable_vblank = gen8_disable_vblank; 4481 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4482 } else if (INTEL_GEN(dev_priv) >= 8) { 4483 dev->driver->irq_handler = gen8_irq_handler; 4484 dev->driver->irq_preinstall = gen8_irq_reset; 4485 dev->driver->irq_postinstall = gen8_irq_postinstall; 4486 dev->driver->irq_uninstall = gen8_irq_reset; 4487 dev->driver->enable_vblank = gen8_enable_vblank; 4488 dev->driver->disable_vblank = gen8_disable_vblank; 4489 if (IS_GEN9_LP(dev_priv)) 4490 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4491 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) || 4492 HAS_PCH_CNP(dev_priv)) 4493 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4494 else 4495 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4496 } else if (HAS_PCH_SPLIT(dev_priv)) { 4497 dev->driver->irq_handler = ironlake_irq_handler; 4498 dev->driver->irq_preinstall = ironlake_irq_reset; 4499 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4500 dev->driver->irq_uninstall = ironlake_irq_reset; 4501 dev->driver->enable_vblank = ironlake_enable_vblank; 4502 dev->driver->disable_vblank = ironlake_disable_vblank; 4503 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4504 } else { 4505 if (IS_GEN2(dev_priv)) { 4506 dev->driver->irq_preinstall = i8xx_irq_reset; 4507 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4508 dev->driver->irq_handler = i8xx_irq_handler; 4509 dev->driver->irq_uninstall = i8xx_irq_reset; 4510 dev->driver->enable_vblank = i8xx_enable_vblank; 4511 dev->driver->disable_vblank = i8xx_disable_vblank; 4512 } else if (IS_GEN3(dev_priv)) { 4513 dev->driver->irq_preinstall = i915_irq_reset; 4514 dev->driver->irq_postinstall = i915_irq_postinstall; 4515 dev->driver->irq_uninstall = i915_irq_reset; 4516 dev->driver->irq_handler = i915_irq_handler; 4517 dev->driver->enable_vblank = i8xx_enable_vblank; 4518 dev->driver->disable_vblank = i8xx_disable_vblank; 4519 } else { 4520 dev->driver->irq_preinstall = i965_irq_reset; 4521 dev->driver->irq_postinstall = i965_irq_postinstall; 4522 dev->driver->irq_uninstall = i965_irq_reset; 4523 dev->driver->irq_handler = i965_irq_handler; 4524 dev->driver->enable_vblank = i965_enable_vblank; 4525 dev->driver->disable_vblank = i965_disable_vblank; 4526 } 4527 if (I915_HAS_HOTPLUG(dev_priv)) 4528 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4529 } 4530 } 4531 4532 /** 4533 * intel_irq_fini - deinitializes IRQ support 4534 * @i915: i915 device instance 4535 * 4536 * This function deinitializes all the IRQ support. 4537 */ 4538 void intel_irq_fini(struct drm_i915_private *i915) 4539 { 4540 int i; 4541 4542 for (i = 0; i < MAX_L3_SLICES; ++i) 4543 kfree(i915->l3_parity.remap_info[i]); 4544 } 4545 4546 /** 4547 * intel_irq_install - enables the hardware interrupt 4548 * @dev_priv: i915 device instance 4549 * 4550 * This function enables the hardware interrupt handling, but leaves the hotplug 4551 * handling still disabled. It is called after intel_irq_init(). 4552 * 4553 * In the driver load and resume code we need working interrupts in a few places 4554 * but don't want to deal with the hassle of concurrent probe and hotplug 4555 * workers. Hence the split into this two-stage approach. 4556 */ 4557 int intel_irq_install(struct drm_i915_private *dev_priv) 4558 { 4559 /* 4560 * We enable some interrupt sources in our postinstall hooks, so mark 4561 * interrupts as enabled _before_ actually enabling them to avoid 4562 * special cases in our ordering checks. 4563 */ 4564 dev_priv->runtime_pm.irqs_enabled = true; 4565 4566 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); 4567 } 4568 4569 /** 4570 * intel_irq_uninstall - finilizes all irq handling 4571 * @dev_priv: i915 device instance 4572 * 4573 * This stops interrupt and hotplug handling and unregisters and frees all 4574 * resources acquired in the init functions. 4575 */ 4576 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4577 { 4578 drm_irq_uninstall(&dev_priv->drm); 4579 intel_hpd_cancel_work(dev_priv); 4580 dev_priv->runtime_pm.irqs_enabled = false; 4581 } 4582 4583 /** 4584 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4585 * @dev_priv: i915 device instance 4586 * 4587 * This function is used to disable interrupts at runtime, both in the runtime 4588 * pm and the system suspend/resume code. 4589 */ 4590 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4591 { 4592 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); 4593 dev_priv->runtime_pm.irqs_enabled = false; 4594 synchronize_irq(dev_priv->drm.irq); 4595 } 4596 4597 /** 4598 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4599 * @dev_priv: i915 device instance 4600 * 4601 * This function is used to enable interrupts at runtime, both in the runtime 4602 * pm and the system suspend/resume code. 4603 */ 4604 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4605 { 4606 dev_priv->runtime_pm.irqs_enabled = true; 4607 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); 4608 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); 4609 } 4610