xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 981ab3f1)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174 
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 				     uint32_t mask,
179 				     uint32_t bits)
180 {
181 	uint32_t val;
182 
183 	lockdep_assert_held(&dev_priv->irq_lock);
184 	WARN_ON(bits & ~mask);
185 
186 	val = I915_READ(PORT_HOTPLUG_EN);
187 	val &= ~mask;
188 	val |= bits;
189 	I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191 
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 				   uint32_t mask,
206 				   uint32_t bits)
207 {
208 	spin_lock_irq(&dev_priv->irq_lock);
209 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 	spin_unlock_irq(&dev_priv->irq_lock);
211 }
212 
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 			    uint32_t interrupt_mask,
221 			    uint32_t enabled_irq_mask)
222 {
223 	uint32_t new_val;
224 
225 	lockdep_assert_held(&dev_priv->irq_lock);
226 
227 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
228 
229 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 		return;
231 
232 	new_val = dev_priv->irq_mask;
233 	new_val &= ~interrupt_mask;
234 	new_val |= (~enabled_irq_mask & interrupt_mask);
235 
236 	if (new_val != dev_priv->irq_mask) {
237 		dev_priv->irq_mask = new_val;
238 		I915_WRITE(DEIMR, dev_priv->irq_mask);
239 		POSTING_READ(DEIMR);
240 	}
241 }
242 
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 			      uint32_t interrupt_mask,
251 			      uint32_t enabled_irq_mask)
252 {
253 	lockdep_assert_held(&dev_priv->irq_lock);
254 
255 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
256 
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	dev_priv->gt_irq_mask &= ~interrupt_mask;
261 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 	POSTING_READ_FW(GTIMR);
269 }
270 
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275 
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280 
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285 
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290 
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 			      uint32_t interrupt_mask,
299 			      uint32_t enabled_irq_mask)
300 {
301 	uint32_t new_val;
302 
303 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
304 
305 	lockdep_assert_held(&dev_priv->irq_lock);
306 
307 	new_val = dev_priv->pm_imr;
308 	new_val &= ~interrupt_mask;
309 	new_val |= (~enabled_irq_mask & interrupt_mask);
310 
311 	if (new_val != dev_priv->pm_imr) {
312 		dev_priv->pm_imr = new_val;
313 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 		POSTING_READ(gen6_pm_imr(dev_priv));
315 	}
316 }
317 
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 		return;
322 
323 	snb_update_pm_irq(dev_priv, mask, mask);
324 }
325 
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_mask_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	lockdep_assert_held(&dev_priv->irq_lock);
344 
345 	I915_WRITE(reg, reset_mask);
346 	I915_WRITE(reg, reset_mask);
347 	POSTING_READ(reg);
348 }
349 
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 	lockdep_assert_held(&dev_priv->irq_lock);
353 
354 	dev_priv->pm_ier |= enable_mask;
355 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 	gen6_unmask_pm_irq(dev_priv, enable_mask);
357 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359 
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 	lockdep_assert_held(&dev_priv->irq_lock);
363 
364 	dev_priv->pm_ier &= ~disable_mask;
365 	__gen6_mask_pm_irq(dev_priv, disable_mask);
366 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 	/* though a barrier is missing here, but don't really need a one */
368 }
369 
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 	spin_lock_irq(&dev_priv->irq_lock);
373 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 	dev_priv->rps.pm_iir = 0;
375 	spin_unlock_irq(&dev_priv->irq_lock);
376 }
377 
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 		return;
382 
383 	spin_lock_irq(&dev_priv->irq_lock);
384 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 	dev_priv->rps.interrupts_enabled = true;
387 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388 
389 	spin_unlock_irq(&dev_priv->irq_lock);
390 }
391 
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 		return;
396 
397 	spin_lock_irq(&dev_priv->irq_lock);
398 	dev_priv->rps.interrupts_enabled = false;
399 
400 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401 
402 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403 
404 	spin_unlock_irq(&dev_priv->irq_lock);
405 	synchronize_irq(dev_priv->drm.irq);
406 
407 	/* Now that we will not be generating any more work, flush any
408 	 * outsanding tasks. As we are called on the RPS idle path,
409 	 * we will reset the GPU to minimum frequencies, so the current
410 	 * state of the worker can be discarded.
411 	 */
412 	cancel_work_sync(&dev_priv->rps.work);
413 	gen6_reset_rps_interrupts(dev_priv);
414 }
415 
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 	spin_lock_irq(&dev_priv->irq_lock);
419 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 	spin_unlock_irq(&dev_priv->irq_lock);
421 }
422 
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 	spin_lock_irq(&dev_priv->irq_lock);
426 	if (!dev_priv->guc.interrupts_enabled) {
427 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 				       dev_priv->pm_guc_events);
429 		dev_priv->guc.interrupts_enabled = true;
430 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 	}
432 	spin_unlock_irq(&dev_priv->irq_lock);
433 }
434 
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 	spin_lock_irq(&dev_priv->irq_lock);
438 	dev_priv->guc.interrupts_enabled = false;
439 
440 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441 
442 	spin_unlock_irq(&dev_priv->irq_lock);
443 	synchronize_irq(dev_priv->drm.irq);
444 
445 	gen9_reset_guc_interrupts(dev_priv);
446 }
447 
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 				uint32_t interrupt_mask,
456 				uint32_t enabled_irq_mask)
457 {
458 	uint32_t new_val;
459 	uint32_t old_val;
460 
461 	lockdep_assert_held(&dev_priv->irq_lock);
462 
463 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
464 
465 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 		return;
467 
468 	old_val = I915_READ(GEN8_DE_PORT_IMR);
469 
470 	new_val = old_val;
471 	new_val &= ~interrupt_mask;
472 	new_val |= (~enabled_irq_mask & interrupt_mask);
473 
474 	if (new_val != old_val) {
475 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 		POSTING_READ(GEN8_DE_PORT_IMR);
477 	}
478 }
479 
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 			 enum pipe pipe,
489 			 uint32_t interrupt_mask,
490 			 uint32_t enabled_irq_mask)
491 {
492 	uint32_t new_val;
493 
494 	lockdep_assert_held(&dev_priv->irq_lock);
495 
496 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
497 
498 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 		return;
500 
501 	new_val = dev_priv->de_irq_mask[pipe];
502 	new_val &= ~interrupt_mask;
503 	new_val |= (~enabled_irq_mask & interrupt_mask);
504 
505 	if (new_val != dev_priv->de_irq_mask[pipe]) {
506 		dev_priv->de_irq_mask[pipe] = new_val;
507 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 	}
510 }
511 
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 				  uint32_t interrupt_mask,
520 				  uint32_t enabled_irq_mask)
521 {
522 	uint32_t sdeimr = I915_READ(SDEIMR);
523 	sdeimr &= ~interrupt_mask;
524 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
525 
526 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
527 
528 	lockdep_assert_held(&dev_priv->irq_lock);
529 
530 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 		return;
532 
533 	I915_WRITE(SDEIMR, sdeimr);
534 	POSTING_READ(SDEIMR);
535 }
536 
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 		       u32 enable_mask, u32 status_mask)
540 {
541 	i915_reg_t reg = PIPESTAT(pipe);
542 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543 
544 	lockdep_assert_held(&dev_priv->irq_lock);
545 	WARN_ON(!intel_irqs_enabled(dev_priv));
546 
547 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 		      pipe_name(pipe), enable_mask, status_mask))
551 		return;
552 
553 	if ((pipestat & enable_mask) == enable_mask)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557 
558 	/* Enable the interrupt, clear any pending status */
559 	pipestat |= enable_mask | status_mask;
560 	I915_WRITE(reg, pipestat);
561 	POSTING_READ(reg);
562 }
563 
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 		        u32 enable_mask, u32 status_mask)
567 {
568 	i915_reg_t reg = PIPESTAT(pipe);
569 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570 
571 	lockdep_assert_held(&dev_priv->irq_lock);
572 	WARN_ON(!intel_irqs_enabled(dev_priv));
573 
574 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 		      pipe_name(pipe), enable_mask, status_mask))
578 		return;
579 
580 	if ((pipestat & enable_mask) == 0)
581 		return;
582 
583 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584 
585 	pipestat &= ~enable_mask;
586 	I915_WRITE(reg, pipestat);
587 	POSTING_READ(reg);
588 }
589 
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 	u32 enable_mask = status_mask << 16;
593 
594 	/*
595 	 * On pipe A we don't support the PSR interrupt yet,
596 	 * on pipe B and C the same bit MBZ.
597 	 */
598 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 		return 0;
600 	/*
601 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 	 * A the same bit is for perf counters which we don't use either.
603 	 */
604 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 		return 0;
606 
607 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614 
615 	return enable_mask;
616 }
617 
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 		     u32 status_mask)
621 {
622 	u32 enable_mask;
623 
624 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 							   status_mask);
627 	else
628 		enable_mask = status_mask << 16;
629 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631 
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 		      u32 status_mask)
635 {
636 	u32 enable_mask;
637 
638 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 							   status_mask);
641 	else
642 		enable_mask = status_mask << 16;
643 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645 
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 		return;
654 
655 	spin_lock_irq(&dev_priv->irq_lock);
656 
657 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 	if (INTEL_GEN(dev_priv) >= 4)
659 		i915_enable_pipestat(dev_priv, PIPE_A,
660 				     PIPE_LEGACY_BLC_EVENT_STATUS);
661 
662 	spin_unlock_irq(&dev_priv->irq_lock);
663 }
664 
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714 
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 	struct drm_i915_private *dev_priv = to_i915(dev);
721 	i915_reg_t high_frame, low_frame;
722 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 	unsigned long irqflags;
725 
726 	htotal = mode->crtc_htotal;
727 	hsync_start = mode->crtc_hsync_start;
728 	vbl_start = mode->crtc_vblank_start;
729 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
731 
732 	/* Convert to pixel count */
733 	vbl_start *= htotal;
734 
735 	/* Start of vblank event occurs at start of hsync */
736 	vbl_start -= htotal - hsync_start;
737 
738 	high_frame = PIPEFRAME(pipe);
739 	low_frame = PIPEFRAMEPIXEL(pipe);
740 
741 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742 
743 	/*
744 	 * High & low register fields aren't synchronized, so make sure
745 	 * we get a low value that's stable across two reads of the high
746 	 * register.
747 	 */
748 	do {
749 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 		low   = I915_READ_FW(low_frame);
751 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 	} while (high1 != high2);
753 
754 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755 
756 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 	pixel = low & PIPE_PIXEL_MASK;
758 	low >>= PIPE_FRAME_LOW_SHIFT;
759 
760 	/*
761 	 * The frame counter increments at beginning of active.
762 	 * Cook up a vblank counter by also checking the pixel
763 	 * counter against vblank start.
764 	 */
765 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767 
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 	struct drm_i915_private *dev_priv = to_i915(dev);
771 
772 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774 
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 	struct drm_device *dev = crtc->base.dev;
779 	struct drm_i915_private *dev_priv = to_i915(dev);
780 	const struct drm_display_mode *mode;
781 	struct drm_vblank_crtc *vblank;
782 	enum pipe pipe = crtc->pipe;
783 	int position, vtotal;
784 
785 	if (!crtc->active)
786 		return -1;
787 
788 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 	mode = &vblank->hwmode;
790 
791 	vtotal = mode->crtc_vtotal;
792 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 		vtotal /= 2;
794 
795 	if (IS_GEN2(dev_priv))
796 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 	else
798 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799 
800 	/*
801 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 	 * read it just before the start of vblank.  So try it again
803 	 * so we don't accidentally end up spanning a vblank frame
804 	 * increment, causing the pipe_update_end() code to squak at us.
805 	 *
806 	 * The nature of this problem means we can't simply check the ISR
807 	 * bit and return the vblank start value; nor can we use the scanline
808 	 * debug register in the transcoder as it appears to have the same
809 	 * problem.  We may need to extend this to include other platforms,
810 	 * but so far testing only shows the problem on HSW.
811 	 */
812 	if (HAS_DDI(dev_priv) && !position) {
813 		int i, temp;
814 
815 		for (i = 0; i < 100; i++) {
816 			udelay(1);
817 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 			if (temp != position) {
819 				position = temp;
820 				break;
821 			}
822 		}
823 	}
824 
825 	/*
826 	 * See update_scanline_offset() for the details on the
827 	 * scanline_offset adjustment.
828 	 */
829 	return (position + crtc->scanline_offset) % vtotal;
830 }
831 
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 				     bool in_vblank_irq, int *vpos, int *hpos,
834 				     ktime_t *stime, ktime_t *etime,
835 				     const struct drm_display_mode *mode)
836 {
837 	struct drm_i915_private *dev_priv = to_i915(dev);
838 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 								pipe);
840 	int position;
841 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 	bool in_vbl = true;
843 	unsigned long irqflags;
844 
845 	if (WARN_ON(!mode->crtc_clock)) {
846 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847 				 "pipe %c\n", pipe_name(pipe));
848 		return false;
849 	}
850 
851 	htotal = mode->crtc_htotal;
852 	hsync_start = mode->crtc_hsync_start;
853 	vtotal = mode->crtc_vtotal;
854 	vbl_start = mode->crtc_vblank_start;
855 	vbl_end = mode->crtc_vblank_end;
856 
857 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
859 		vbl_end /= 2;
860 		vtotal /= 2;
861 	}
862 
863 	/*
864 	 * Lock uncore.lock, as we will do multiple timing critical raw
865 	 * register reads, potentially with preemption disabled, so the
866 	 * following code must not block on uncore.lock.
867 	 */
868 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869 
870 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871 
872 	/* Get optional system timestamp before query. */
873 	if (stime)
874 		*stime = ktime_get();
875 
876 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877 		/* No obvious pixelcount register. Only query vertical
878 		 * scanout position from Display scan line register.
879 		 */
880 		position = __intel_get_crtc_scanline(intel_crtc);
881 	} else {
882 		/* Have access to pixelcount since start of frame.
883 		 * We can split this into vertical and horizontal
884 		 * scanout position.
885 		 */
886 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887 
888 		/* convert to pixel counts */
889 		vbl_start *= htotal;
890 		vbl_end *= htotal;
891 		vtotal *= htotal;
892 
893 		/*
894 		 * In interlaced modes, the pixel counter counts all pixels,
895 		 * so one field will have htotal more pixels. In order to avoid
896 		 * the reported position from jumping backwards when the pixel
897 		 * counter is beyond the length of the shorter field, just
898 		 * clamp the position the length of the shorter field. This
899 		 * matches how the scanline counter based position works since
900 		 * the scanline counter doesn't count the two half lines.
901 		 */
902 		if (position >= vtotal)
903 			position = vtotal - 1;
904 
905 		/*
906 		 * Start of vblank interrupt is triggered at start of hsync,
907 		 * just prior to the first active line of vblank. However we
908 		 * consider lines to start at the leading edge of horizontal
909 		 * active. So, should we get here before we've crossed into
910 		 * the horizontal active of the first line in vblank, we would
911 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912 		 * always add htotal-hsync_start to the current pixel position.
913 		 */
914 		position = (position + htotal - hsync_start) % vtotal;
915 	}
916 
917 	/* Get optional system timestamp after query. */
918 	if (etime)
919 		*etime = ktime_get();
920 
921 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922 
923 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924 
925 	in_vbl = position >= vbl_start && position < vbl_end;
926 
927 	/*
928 	 * While in vblank, position will be negative
929 	 * counting up towards 0 at vbl_end. And outside
930 	 * vblank, position will be positive counting
931 	 * up since vbl_end.
932 	 */
933 	if (position >= vbl_start)
934 		position -= vbl_end;
935 	else
936 		position += vtotal - vbl_end;
937 
938 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939 		*vpos = position;
940 		*hpos = 0;
941 	} else {
942 		*vpos = position / htotal;
943 		*hpos = position - (*vpos * htotal);
944 	}
945 
946 	return true;
947 }
948 
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952 	unsigned long irqflags;
953 	int position;
954 
955 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956 	position = __intel_get_crtc_scanline(crtc);
957 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958 
959 	return position;
960 }
961 
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964 	u32 busy_up, busy_down, max_avg, min_avg;
965 	u8 new_delay;
966 
967 	spin_lock(&mchdev_lock);
968 
969 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970 
971 	new_delay = dev_priv->ips.cur_delay;
972 
973 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974 	busy_up = I915_READ(RCPREVBSYTUPAVG);
975 	busy_down = I915_READ(RCPREVBSYTDNAVG);
976 	max_avg = I915_READ(RCBMAXAVG);
977 	min_avg = I915_READ(RCBMINAVG);
978 
979 	/* Handle RCS change request from hw */
980 	if (busy_up > max_avg) {
981 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982 			new_delay = dev_priv->ips.cur_delay - 1;
983 		if (new_delay < dev_priv->ips.max_delay)
984 			new_delay = dev_priv->ips.max_delay;
985 	} else if (busy_down < min_avg) {
986 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987 			new_delay = dev_priv->ips.cur_delay + 1;
988 		if (new_delay > dev_priv->ips.min_delay)
989 			new_delay = dev_priv->ips.min_delay;
990 	}
991 
992 	if (ironlake_set_drps(dev_priv, new_delay))
993 		dev_priv->ips.cur_delay = new_delay;
994 
995 	spin_unlock(&mchdev_lock);
996 
997 	return;
998 }
999 
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002 	struct drm_i915_gem_request *rq = NULL;
1003 	struct intel_wait *wait;
1004 
1005 	atomic_inc(&engine->irq_count);
1006 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007 
1008 	spin_lock(&engine->breadcrumbs.irq_lock);
1009 	wait = engine->breadcrumbs.irq_wait;
1010 	if (wait) {
1011 		/* We use a callback from the dma-fence to submit
1012 		 * requests after waiting on our own requests. To
1013 		 * ensure minimum delay in queuing the next request to
1014 		 * hardware, signal the fence now rather than wait for
1015 		 * the signaler to be woken up. We still wake up the
1016 		 * waiter in order to handle the irq-seqno coherency
1017 		 * issues (we may receive the interrupt before the
1018 		 * seqno is written, see __i915_request_irq_complete())
1019 		 * and to handle coalescing of multiple seqno updates
1020 		 * and many waiters.
1021 		 */
1022 		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023 				      wait->seqno) &&
1024 		    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025 			      &wait->request->fence.flags))
1026 			rq = i915_gem_request_get(wait->request);
1027 
1028 		wake_up_process(wait->tsk);
1029 	} else {
1030 		__intel_engine_disarm_breadcrumbs(engine);
1031 	}
1032 	spin_unlock(&engine->breadcrumbs.irq_lock);
1033 
1034 	if (rq) {
1035 		dma_fence_signal(&rq->fence);
1036 		i915_gem_request_put(rq);
1037 	}
1038 
1039 	trace_intel_engine_notify(engine, wait);
1040 }
1041 
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043 			struct intel_rps_ei *ei)
1044 {
1045 	ei->ktime = ktime_get_raw();
1046 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049 
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052 	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054 
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057 	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058 	struct intel_rps_ei now;
1059 	u32 events = 0;
1060 
1061 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062 		return 0;
1063 
1064 	vlv_c0_read(dev_priv, &now);
1065 
1066 	if (prev->ktime) {
1067 		u64 time, c0;
1068 		u32 render, media;
1069 
1070 		time = ktime_us_delta(now.ktime, prev->ktime);
1071 
1072 		time *= dev_priv->czclk_freq;
1073 
1074 		/* Workload can be split between render + media,
1075 		 * e.g. SwapBuffers being blitted in X after being rendered in
1076 		 * mesa. To account for this we need to combine both engines
1077 		 * into our activity counter.
1078 		 */
1079 		render = now.render_c0 - prev->render_c0;
1080 		media = now.media_c0 - prev->media_c0;
1081 		c0 = max(render, media);
1082 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083 
1084 		if (c0 > time * dev_priv->rps.up_threshold)
1085 			events = GEN6_PM_RP_UP_THRESHOLD;
1086 		else if (c0 < time * dev_priv->rps.down_threshold)
1087 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1088 	}
1089 
1090 	dev_priv->rps.ei = now;
1091 	return events;
1092 }
1093 
1094 static void gen6_pm_rps_work(struct work_struct *work)
1095 {
1096 	struct drm_i915_private *dev_priv =
1097 		container_of(work, struct drm_i915_private, rps.work);
1098 	bool client_boost = false;
1099 	int new_delay, adj, min, max;
1100 	u32 pm_iir = 0;
1101 
1102 	spin_lock_irq(&dev_priv->irq_lock);
1103 	if (dev_priv->rps.interrupts_enabled) {
1104 		pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1105 		client_boost = atomic_read(&dev_priv->rps.num_waiters);
1106 	}
1107 	spin_unlock_irq(&dev_priv->irq_lock);
1108 
1109 	/* Make sure we didn't queue anything we're not going to process. */
1110 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1111 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1112 		goto out;
1113 
1114 	mutex_lock(&dev_priv->rps.hw_lock);
1115 
1116 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1117 
1118 	adj = dev_priv->rps.last_adj;
1119 	new_delay = dev_priv->rps.cur_freq;
1120 	min = dev_priv->rps.min_freq_softlimit;
1121 	max = dev_priv->rps.max_freq_softlimit;
1122 	if (client_boost)
1123 		max = dev_priv->rps.max_freq;
1124 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1125 		new_delay = dev_priv->rps.boost_freq;
1126 		adj = 0;
1127 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1128 		if (adj > 0)
1129 			adj *= 2;
1130 		else /* CHV needs even encode values */
1131 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1132 
1133 		if (new_delay >= dev_priv->rps.max_freq_softlimit)
1134 			adj = 0;
1135 	} else if (client_boost) {
1136 		adj = 0;
1137 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1138 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1139 			new_delay = dev_priv->rps.efficient_freq;
1140 		else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1141 			new_delay = dev_priv->rps.min_freq_softlimit;
1142 		adj = 0;
1143 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1144 		if (adj < 0)
1145 			adj *= 2;
1146 		else /* CHV needs even encode values */
1147 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1148 
1149 		if (new_delay <= dev_priv->rps.min_freq_softlimit)
1150 			adj = 0;
1151 	} else { /* unknown event */
1152 		adj = 0;
1153 	}
1154 
1155 	dev_priv->rps.last_adj = adj;
1156 
1157 	/* sysfs frequency interfaces may have snuck in while servicing the
1158 	 * interrupt
1159 	 */
1160 	new_delay += adj;
1161 	new_delay = clamp_t(int, new_delay, min, max);
1162 
1163 	if (intel_set_rps(dev_priv, new_delay)) {
1164 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1165 		dev_priv->rps.last_adj = 0;
1166 	}
1167 
1168 	mutex_unlock(&dev_priv->rps.hw_lock);
1169 
1170 out:
1171 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1172 	spin_lock_irq(&dev_priv->irq_lock);
1173 	if (dev_priv->rps.interrupts_enabled)
1174 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1175 	spin_unlock_irq(&dev_priv->irq_lock);
1176 }
1177 
1178 
1179 /**
1180  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1181  * occurred.
1182  * @work: workqueue struct
1183  *
1184  * Doesn't actually do anything except notify userspace. As a consequence of
1185  * this event, userspace should try to remap the bad rows since statistically
1186  * it is likely the same row is more likely to go bad again.
1187  */
1188 static void ivybridge_parity_work(struct work_struct *work)
1189 {
1190 	struct drm_i915_private *dev_priv =
1191 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1192 	u32 error_status, row, bank, subbank;
1193 	char *parity_event[6];
1194 	uint32_t misccpctl;
1195 	uint8_t slice = 0;
1196 
1197 	/* We must turn off DOP level clock gating to access the L3 registers.
1198 	 * In order to prevent a get/put style interface, acquire struct mutex
1199 	 * any time we access those registers.
1200 	 */
1201 	mutex_lock(&dev_priv->drm.struct_mutex);
1202 
1203 	/* If we've screwed up tracking, just let the interrupt fire again */
1204 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1205 		goto out;
1206 
1207 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1208 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1209 	POSTING_READ(GEN7_MISCCPCTL);
1210 
1211 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1212 		i915_reg_t reg;
1213 
1214 		slice--;
1215 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1216 			break;
1217 
1218 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1219 
1220 		reg = GEN7_L3CDERRST1(slice);
1221 
1222 		error_status = I915_READ(reg);
1223 		row = GEN7_PARITY_ERROR_ROW(error_status);
1224 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1225 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1226 
1227 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1228 		POSTING_READ(reg);
1229 
1230 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1231 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1232 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1233 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1234 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1235 		parity_event[5] = NULL;
1236 
1237 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1238 				   KOBJ_CHANGE, parity_event);
1239 
1240 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1241 			  slice, row, bank, subbank);
1242 
1243 		kfree(parity_event[4]);
1244 		kfree(parity_event[3]);
1245 		kfree(parity_event[2]);
1246 		kfree(parity_event[1]);
1247 	}
1248 
1249 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1250 
1251 out:
1252 	WARN_ON(dev_priv->l3_parity.which_slice);
1253 	spin_lock_irq(&dev_priv->irq_lock);
1254 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255 	spin_unlock_irq(&dev_priv->irq_lock);
1256 
1257 	mutex_unlock(&dev_priv->drm.struct_mutex);
1258 }
1259 
1260 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1261 					       u32 iir)
1262 {
1263 	if (!HAS_L3_DPF(dev_priv))
1264 		return;
1265 
1266 	spin_lock(&dev_priv->irq_lock);
1267 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1268 	spin_unlock(&dev_priv->irq_lock);
1269 
1270 	iir &= GT_PARITY_ERROR(dev_priv);
1271 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1272 		dev_priv->l3_parity.which_slice |= 1 << 1;
1273 
1274 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1275 		dev_priv->l3_parity.which_slice |= 1 << 0;
1276 
1277 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1278 }
1279 
1280 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1281 			       u32 gt_iir)
1282 {
1283 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1284 		notify_ring(dev_priv->engine[RCS]);
1285 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1286 		notify_ring(dev_priv->engine[VCS]);
1287 }
1288 
1289 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1290 			       u32 gt_iir)
1291 {
1292 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1293 		notify_ring(dev_priv->engine[RCS]);
1294 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1295 		notify_ring(dev_priv->engine[VCS]);
1296 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1297 		notify_ring(dev_priv->engine[BCS]);
1298 
1299 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1300 		      GT_BSD_CS_ERROR_INTERRUPT |
1301 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1302 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1303 
1304 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1305 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1306 }
1307 
1308 static void
1309 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1310 {
1311 	bool tasklet = false;
1312 
1313 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1314 		if (port_count(&engine->execlist_port[0])) {
1315 			__set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1316 			tasklet = true;
1317 		}
1318 	}
1319 
1320 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1321 		notify_ring(engine);
1322 		tasklet |= i915.enable_guc_submission;
1323 	}
1324 
1325 	if (tasklet)
1326 		tasklet_hi_schedule(&engine->irq_tasklet);
1327 }
1328 
1329 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1330 				   u32 master_ctl,
1331 				   u32 gt_iir[4])
1332 {
1333 	irqreturn_t ret = IRQ_NONE;
1334 
1335 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1337 		if (gt_iir[0]) {
1338 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1339 			ret = IRQ_HANDLED;
1340 		} else
1341 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1342 	}
1343 
1344 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1345 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1346 		if (gt_iir[1]) {
1347 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1348 			ret = IRQ_HANDLED;
1349 		} else
1350 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1351 	}
1352 
1353 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1354 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1355 		if (gt_iir[3]) {
1356 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1357 			ret = IRQ_HANDLED;
1358 		} else
1359 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1360 	}
1361 
1362 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1363 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1364 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1365 				 dev_priv->pm_guc_events)) {
1366 			I915_WRITE_FW(GEN8_GT_IIR(2),
1367 				      gt_iir[2] & (dev_priv->pm_rps_events |
1368 						   dev_priv->pm_guc_events));
1369 			ret = IRQ_HANDLED;
1370 		} else
1371 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1372 	}
1373 
1374 	return ret;
1375 }
1376 
1377 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1378 				u32 gt_iir[4])
1379 {
1380 	if (gt_iir[0]) {
1381 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1382 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1383 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1384 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1385 	}
1386 
1387 	if (gt_iir[1]) {
1388 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1389 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1390 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1391 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1392 	}
1393 
1394 	if (gt_iir[3])
1395 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1396 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1397 
1398 	if (gt_iir[2] & dev_priv->pm_rps_events)
1399 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1400 
1401 	if (gt_iir[2] & dev_priv->pm_guc_events)
1402 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1403 }
1404 
1405 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407 	switch (port) {
1408 	case PORT_A:
1409 		return val & PORTA_HOTPLUG_LONG_DETECT;
1410 	case PORT_B:
1411 		return val & PORTB_HOTPLUG_LONG_DETECT;
1412 	case PORT_C:
1413 		return val & PORTC_HOTPLUG_LONG_DETECT;
1414 	default:
1415 		return false;
1416 	}
1417 }
1418 
1419 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1420 {
1421 	switch (port) {
1422 	case PORT_E:
1423 		return val & PORTE_HOTPLUG_LONG_DETECT;
1424 	default:
1425 		return false;
1426 	}
1427 }
1428 
1429 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431 	switch (port) {
1432 	case PORT_A:
1433 		return val & PORTA_HOTPLUG_LONG_DETECT;
1434 	case PORT_B:
1435 		return val & PORTB_HOTPLUG_LONG_DETECT;
1436 	case PORT_C:
1437 		return val & PORTC_HOTPLUG_LONG_DETECT;
1438 	case PORT_D:
1439 		return val & PORTD_HOTPLUG_LONG_DETECT;
1440 	default:
1441 		return false;
1442 	}
1443 }
1444 
1445 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1446 {
1447 	switch (port) {
1448 	case PORT_A:
1449 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1450 	default:
1451 		return false;
1452 	}
1453 }
1454 
1455 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 	switch (port) {
1458 	case PORT_B:
1459 		return val & PORTB_HOTPLUG_LONG_DETECT;
1460 	case PORT_C:
1461 		return val & PORTC_HOTPLUG_LONG_DETECT;
1462 	case PORT_D:
1463 		return val & PORTD_HOTPLUG_LONG_DETECT;
1464 	default:
1465 		return false;
1466 	}
1467 }
1468 
1469 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1470 {
1471 	switch (port) {
1472 	case PORT_B:
1473 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1474 	case PORT_C:
1475 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1476 	case PORT_D:
1477 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1478 	default:
1479 		return false;
1480 	}
1481 }
1482 
1483 /*
1484  * Get a bit mask of pins that have triggered, and which ones may be long.
1485  * This can be called multiple times with the same masks to accumulate
1486  * hotplug detection results from several registers.
1487  *
1488  * Note that the caller is expected to zero out the masks initially.
1489  */
1490 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1491 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1492 			     const u32 hpd[HPD_NUM_PINS],
1493 			     bool long_pulse_detect(enum port port, u32 val))
1494 {
1495 	enum port port;
1496 	int i;
1497 
1498 	for_each_hpd_pin(i) {
1499 		if ((hpd[i] & hotplug_trigger) == 0)
1500 			continue;
1501 
1502 		*pin_mask |= BIT(i);
1503 
1504 		port = intel_hpd_pin_to_port(i);
1505 		if (port == PORT_NONE)
1506 			continue;
1507 
1508 		if (long_pulse_detect(port, dig_hotplug_reg))
1509 			*long_mask |= BIT(i);
1510 	}
1511 
1512 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1513 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1514 
1515 }
1516 
1517 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1518 {
1519 	wake_up_all(&dev_priv->gmbus_wait_queue);
1520 }
1521 
1522 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1523 {
1524 	wake_up_all(&dev_priv->gmbus_wait_queue);
1525 }
1526 
1527 #if defined(CONFIG_DEBUG_FS)
1528 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1529 					 enum pipe pipe,
1530 					 uint32_t crc0, uint32_t crc1,
1531 					 uint32_t crc2, uint32_t crc3,
1532 					 uint32_t crc4)
1533 {
1534 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1535 	struct intel_pipe_crc_entry *entry;
1536 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1537 	struct drm_driver *driver = dev_priv->drm.driver;
1538 	uint32_t crcs[5];
1539 	int head, tail;
1540 
1541 	spin_lock(&pipe_crc->lock);
1542 	if (pipe_crc->source) {
1543 		if (!pipe_crc->entries) {
1544 			spin_unlock(&pipe_crc->lock);
1545 			DRM_DEBUG_KMS("spurious interrupt\n");
1546 			return;
1547 		}
1548 
1549 		head = pipe_crc->head;
1550 		tail = pipe_crc->tail;
1551 
1552 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1553 			spin_unlock(&pipe_crc->lock);
1554 			DRM_ERROR("CRC buffer overflowing\n");
1555 			return;
1556 		}
1557 
1558 		entry = &pipe_crc->entries[head];
1559 
1560 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1561 		entry->crc[0] = crc0;
1562 		entry->crc[1] = crc1;
1563 		entry->crc[2] = crc2;
1564 		entry->crc[3] = crc3;
1565 		entry->crc[4] = crc4;
1566 
1567 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1568 		pipe_crc->head = head;
1569 
1570 		spin_unlock(&pipe_crc->lock);
1571 
1572 		wake_up_interruptible(&pipe_crc->wq);
1573 	} else {
1574 		/*
1575 		 * For some not yet identified reason, the first CRC is
1576 		 * bonkers. So let's just wait for the next vblank and read
1577 		 * out the buggy result.
1578 		 *
1579 		 * On CHV sometimes the second CRC is bonkers as well, so
1580 		 * don't trust that one either.
1581 		 */
1582 		if (pipe_crc->skipped == 0 ||
1583 		    (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1584 			pipe_crc->skipped++;
1585 			spin_unlock(&pipe_crc->lock);
1586 			return;
1587 		}
1588 		spin_unlock(&pipe_crc->lock);
1589 		crcs[0] = crc0;
1590 		crcs[1] = crc1;
1591 		crcs[2] = crc2;
1592 		crcs[3] = crc3;
1593 		crcs[4] = crc4;
1594 		drm_crtc_add_crc_entry(&crtc->base, true,
1595 				       drm_crtc_accurate_vblank_count(&crtc->base),
1596 				       crcs);
1597 	}
1598 }
1599 #else
1600 static inline void
1601 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1602 			     enum pipe pipe,
1603 			     uint32_t crc0, uint32_t crc1,
1604 			     uint32_t crc2, uint32_t crc3,
1605 			     uint32_t crc4) {}
1606 #endif
1607 
1608 
1609 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1610 				     enum pipe pipe)
1611 {
1612 	display_pipe_crc_irq_handler(dev_priv, pipe,
1613 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1614 				     0, 0, 0, 0);
1615 }
1616 
1617 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1618 				     enum pipe pipe)
1619 {
1620 	display_pipe_crc_irq_handler(dev_priv, pipe,
1621 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1622 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1623 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1624 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1625 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1626 }
1627 
1628 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1629 				      enum pipe pipe)
1630 {
1631 	uint32_t res1, res2;
1632 
1633 	if (INTEL_GEN(dev_priv) >= 3)
1634 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1635 	else
1636 		res1 = 0;
1637 
1638 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1639 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1640 	else
1641 		res2 = 0;
1642 
1643 	display_pipe_crc_irq_handler(dev_priv, pipe,
1644 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1645 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1646 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1647 				     res1, res2);
1648 }
1649 
1650 /* The RPS events need forcewake, so we add them to a work queue and mask their
1651  * IMR bits until the work is done. Other interrupts can be processed without
1652  * the work queue. */
1653 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1654 {
1655 	if (pm_iir & dev_priv->pm_rps_events) {
1656 		spin_lock(&dev_priv->irq_lock);
1657 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1658 		if (dev_priv->rps.interrupts_enabled) {
1659 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1660 			schedule_work(&dev_priv->rps.work);
1661 		}
1662 		spin_unlock(&dev_priv->irq_lock);
1663 	}
1664 
1665 	if (INTEL_GEN(dev_priv) >= 8)
1666 		return;
1667 
1668 	if (HAS_VEBOX(dev_priv)) {
1669 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1670 			notify_ring(dev_priv->engine[VECS]);
1671 
1672 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1673 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1674 	}
1675 }
1676 
1677 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1678 {
1679 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1680 		/* Sample the log buffer flush related bits & clear them out now
1681 		 * itself from the message identity register to minimize the
1682 		 * probability of losing a flush interrupt, when there are back
1683 		 * to back flush interrupts.
1684 		 * There can be a new flush interrupt, for different log buffer
1685 		 * type (like for ISR), whilst Host is handling one (for DPC).
1686 		 * Since same bit is used in message register for ISR & DPC, it
1687 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1688 		 * clears out the bit on handling the 1st interrupt.
1689 		 */
1690 		u32 msg, flush;
1691 
1692 		msg = I915_READ(SOFT_SCRATCH(15));
1693 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1694 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1695 		if (flush) {
1696 			/* Clear the message bits that are handled */
1697 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1698 
1699 			/* Handle flush interrupt in bottom half */
1700 			queue_work(dev_priv->guc.log.runtime.flush_wq,
1701 				   &dev_priv->guc.log.runtime.flush_work);
1702 
1703 			dev_priv->guc.log.flush_interrupt_count++;
1704 		} else {
1705 			/* Not clearing of unhandled event bits won't result in
1706 			 * re-triggering of the interrupt.
1707 			 */
1708 		}
1709 	}
1710 }
1711 
1712 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1713 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1714 {
1715 	int pipe;
1716 
1717 	spin_lock(&dev_priv->irq_lock);
1718 
1719 	if (!dev_priv->display_irqs_enabled) {
1720 		spin_unlock(&dev_priv->irq_lock);
1721 		return;
1722 	}
1723 
1724 	for_each_pipe(dev_priv, pipe) {
1725 		i915_reg_t reg;
1726 		u32 mask, iir_bit = 0;
1727 
1728 		/*
1729 		 * PIPESTAT bits get signalled even when the interrupt is
1730 		 * disabled with the mask bits, and some of the status bits do
1731 		 * not generate interrupts at all (like the underrun bit). Hence
1732 		 * we need to be careful that we only handle what we want to
1733 		 * handle.
1734 		 */
1735 
1736 		/* fifo underruns are filterered in the underrun handler. */
1737 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1738 
1739 		switch (pipe) {
1740 		case PIPE_A:
1741 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1742 			break;
1743 		case PIPE_B:
1744 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1745 			break;
1746 		case PIPE_C:
1747 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1748 			break;
1749 		}
1750 		if (iir & iir_bit)
1751 			mask |= dev_priv->pipestat_irq_mask[pipe];
1752 
1753 		if (!mask)
1754 			continue;
1755 
1756 		reg = PIPESTAT(pipe);
1757 		mask |= PIPESTAT_INT_ENABLE_MASK;
1758 		pipe_stats[pipe] = I915_READ(reg) & mask;
1759 
1760 		/*
1761 		 * Clear the PIPE*STAT regs before the IIR
1762 		 */
1763 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1764 					PIPESTAT_INT_STATUS_MASK))
1765 			I915_WRITE(reg, pipe_stats[pipe]);
1766 	}
1767 	spin_unlock(&dev_priv->irq_lock);
1768 }
1769 
1770 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1771 					    u32 pipe_stats[I915_MAX_PIPES])
1772 {
1773 	enum pipe pipe;
1774 
1775 	for_each_pipe(dev_priv, pipe) {
1776 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1777 			drm_handle_vblank(&dev_priv->drm, pipe);
1778 
1779 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1780 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1781 
1782 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1783 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1784 	}
1785 
1786 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1787 		gmbus_irq_handler(dev_priv);
1788 }
1789 
1790 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1791 {
1792 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1793 
1794 	if (hotplug_status)
1795 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1796 
1797 	return hotplug_status;
1798 }
1799 
1800 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1801 				 u32 hotplug_status)
1802 {
1803 	u32 pin_mask = 0, long_mask = 0;
1804 
1805 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1806 	    IS_CHERRYVIEW(dev_priv)) {
1807 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1808 
1809 		if (hotplug_trigger) {
1810 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1811 					   hotplug_trigger, hpd_status_g4x,
1812 					   i9xx_port_hotplug_long_detect);
1813 
1814 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1815 		}
1816 
1817 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1818 			dp_aux_irq_handler(dev_priv);
1819 	} else {
1820 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1821 
1822 		if (hotplug_trigger) {
1823 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1824 					   hotplug_trigger, hpd_status_i915,
1825 					   i9xx_port_hotplug_long_detect);
1826 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1827 		}
1828 	}
1829 }
1830 
1831 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1832 {
1833 	struct drm_device *dev = arg;
1834 	struct drm_i915_private *dev_priv = to_i915(dev);
1835 	irqreturn_t ret = IRQ_NONE;
1836 
1837 	if (!intel_irqs_enabled(dev_priv))
1838 		return IRQ_NONE;
1839 
1840 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1841 	disable_rpm_wakeref_asserts(dev_priv);
1842 
1843 	do {
1844 		u32 iir, gt_iir, pm_iir;
1845 		u32 pipe_stats[I915_MAX_PIPES] = {};
1846 		u32 hotplug_status = 0;
1847 		u32 ier = 0;
1848 
1849 		gt_iir = I915_READ(GTIIR);
1850 		pm_iir = I915_READ(GEN6_PMIIR);
1851 		iir = I915_READ(VLV_IIR);
1852 
1853 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1854 			break;
1855 
1856 		ret = IRQ_HANDLED;
1857 
1858 		/*
1859 		 * Theory on interrupt generation, based on empirical evidence:
1860 		 *
1861 		 * x = ((VLV_IIR & VLV_IER) ||
1862 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1863 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1864 		 *
1865 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1866 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1867 		 * guarantee the CPU interrupt will be raised again even if we
1868 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1869 		 * bits this time around.
1870 		 */
1871 		I915_WRITE(VLV_MASTER_IER, 0);
1872 		ier = I915_READ(VLV_IER);
1873 		I915_WRITE(VLV_IER, 0);
1874 
1875 		if (gt_iir)
1876 			I915_WRITE(GTIIR, gt_iir);
1877 		if (pm_iir)
1878 			I915_WRITE(GEN6_PMIIR, pm_iir);
1879 
1880 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1881 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1882 
1883 		/* Call regardless, as some status bits might not be
1884 		 * signalled in iir */
1885 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1886 
1887 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1888 			   I915_LPE_PIPE_B_INTERRUPT))
1889 			intel_lpe_audio_irq_handler(dev_priv);
1890 
1891 		/*
1892 		 * VLV_IIR is single buffered, and reflects the level
1893 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1894 		 */
1895 		if (iir)
1896 			I915_WRITE(VLV_IIR, iir);
1897 
1898 		I915_WRITE(VLV_IER, ier);
1899 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1900 		POSTING_READ(VLV_MASTER_IER);
1901 
1902 		if (gt_iir)
1903 			snb_gt_irq_handler(dev_priv, gt_iir);
1904 		if (pm_iir)
1905 			gen6_rps_irq_handler(dev_priv, pm_iir);
1906 
1907 		if (hotplug_status)
1908 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1909 
1910 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1911 	} while (0);
1912 
1913 	enable_rpm_wakeref_asserts(dev_priv);
1914 
1915 	return ret;
1916 }
1917 
1918 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1919 {
1920 	struct drm_device *dev = arg;
1921 	struct drm_i915_private *dev_priv = to_i915(dev);
1922 	irqreturn_t ret = IRQ_NONE;
1923 
1924 	if (!intel_irqs_enabled(dev_priv))
1925 		return IRQ_NONE;
1926 
1927 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1928 	disable_rpm_wakeref_asserts(dev_priv);
1929 
1930 	do {
1931 		u32 master_ctl, iir;
1932 		u32 gt_iir[4] = {};
1933 		u32 pipe_stats[I915_MAX_PIPES] = {};
1934 		u32 hotplug_status = 0;
1935 		u32 ier = 0;
1936 
1937 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1938 		iir = I915_READ(VLV_IIR);
1939 
1940 		if (master_ctl == 0 && iir == 0)
1941 			break;
1942 
1943 		ret = IRQ_HANDLED;
1944 
1945 		/*
1946 		 * Theory on interrupt generation, based on empirical evidence:
1947 		 *
1948 		 * x = ((VLV_IIR & VLV_IER) ||
1949 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1950 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1951 		 *
1952 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1953 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1954 		 * guarantee the CPU interrupt will be raised again even if we
1955 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1956 		 * bits this time around.
1957 		 */
1958 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1959 		ier = I915_READ(VLV_IER);
1960 		I915_WRITE(VLV_IER, 0);
1961 
1962 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1963 
1964 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1965 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1966 
1967 		/* Call regardless, as some status bits might not be
1968 		 * signalled in iir */
1969 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1970 
1971 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1972 			   I915_LPE_PIPE_B_INTERRUPT |
1973 			   I915_LPE_PIPE_C_INTERRUPT))
1974 			intel_lpe_audio_irq_handler(dev_priv);
1975 
1976 		/*
1977 		 * VLV_IIR is single buffered, and reflects the level
1978 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1979 		 */
1980 		if (iir)
1981 			I915_WRITE(VLV_IIR, iir);
1982 
1983 		I915_WRITE(VLV_IER, ier);
1984 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1985 		POSTING_READ(GEN8_MASTER_IRQ);
1986 
1987 		gen8_gt_irq_handler(dev_priv, gt_iir);
1988 
1989 		if (hotplug_status)
1990 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1991 
1992 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1993 	} while (0);
1994 
1995 	enable_rpm_wakeref_asserts(dev_priv);
1996 
1997 	return ret;
1998 }
1999 
2000 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2001 				u32 hotplug_trigger,
2002 				const u32 hpd[HPD_NUM_PINS])
2003 {
2004 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2005 
2006 	/*
2007 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2008 	 * unless we touch the hotplug register, even if hotplug_trigger is
2009 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2010 	 * errors.
2011 	 */
2012 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2013 	if (!hotplug_trigger) {
2014 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2015 			PORTD_HOTPLUG_STATUS_MASK |
2016 			PORTC_HOTPLUG_STATUS_MASK |
2017 			PORTB_HOTPLUG_STATUS_MASK;
2018 		dig_hotplug_reg &= ~mask;
2019 	}
2020 
2021 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2022 	if (!hotplug_trigger)
2023 		return;
2024 
2025 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2026 			   dig_hotplug_reg, hpd,
2027 			   pch_port_hotplug_long_detect);
2028 
2029 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2030 }
2031 
2032 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2033 {
2034 	int pipe;
2035 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2036 
2037 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2038 
2039 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2040 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2041 			       SDE_AUDIO_POWER_SHIFT);
2042 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2043 				 port_name(port));
2044 	}
2045 
2046 	if (pch_iir & SDE_AUX_MASK)
2047 		dp_aux_irq_handler(dev_priv);
2048 
2049 	if (pch_iir & SDE_GMBUS)
2050 		gmbus_irq_handler(dev_priv);
2051 
2052 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2053 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2054 
2055 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2056 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2057 
2058 	if (pch_iir & SDE_POISON)
2059 		DRM_ERROR("PCH poison interrupt\n");
2060 
2061 	if (pch_iir & SDE_FDI_MASK)
2062 		for_each_pipe(dev_priv, pipe)
2063 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2064 					 pipe_name(pipe),
2065 					 I915_READ(FDI_RX_IIR(pipe)));
2066 
2067 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2068 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2069 
2070 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2071 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2072 
2073 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2074 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2075 
2076 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2077 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2078 }
2079 
2080 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2081 {
2082 	u32 err_int = I915_READ(GEN7_ERR_INT);
2083 	enum pipe pipe;
2084 
2085 	if (err_int & ERR_INT_POISON)
2086 		DRM_ERROR("Poison interrupt\n");
2087 
2088 	for_each_pipe(dev_priv, pipe) {
2089 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2090 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2091 
2092 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2093 			if (IS_IVYBRIDGE(dev_priv))
2094 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2095 			else
2096 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2097 		}
2098 	}
2099 
2100 	I915_WRITE(GEN7_ERR_INT, err_int);
2101 }
2102 
2103 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2104 {
2105 	u32 serr_int = I915_READ(SERR_INT);
2106 
2107 	if (serr_int & SERR_INT_POISON)
2108 		DRM_ERROR("PCH poison interrupt\n");
2109 
2110 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2111 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2112 
2113 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2114 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2115 
2116 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2117 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2118 
2119 	I915_WRITE(SERR_INT, serr_int);
2120 }
2121 
2122 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2123 {
2124 	int pipe;
2125 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2126 
2127 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2128 
2129 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2130 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2131 			       SDE_AUDIO_POWER_SHIFT_CPT);
2132 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2133 				 port_name(port));
2134 	}
2135 
2136 	if (pch_iir & SDE_AUX_MASK_CPT)
2137 		dp_aux_irq_handler(dev_priv);
2138 
2139 	if (pch_iir & SDE_GMBUS_CPT)
2140 		gmbus_irq_handler(dev_priv);
2141 
2142 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2143 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2144 
2145 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2146 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2147 
2148 	if (pch_iir & SDE_FDI_MASK_CPT)
2149 		for_each_pipe(dev_priv, pipe)
2150 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2151 					 pipe_name(pipe),
2152 					 I915_READ(FDI_RX_IIR(pipe)));
2153 
2154 	if (pch_iir & SDE_ERROR_CPT)
2155 		cpt_serr_int_handler(dev_priv);
2156 }
2157 
2158 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2159 {
2160 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2161 		~SDE_PORTE_HOTPLUG_SPT;
2162 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2163 	u32 pin_mask = 0, long_mask = 0;
2164 
2165 	if (hotplug_trigger) {
2166 		u32 dig_hotplug_reg;
2167 
2168 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2169 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2170 
2171 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2172 				   dig_hotplug_reg, hpd_spt,
2173 				   spt_port_hotplug_long_detect);
2174 	}
2175 
2176 	if (hotplug2_trigger) {
2177 		u32 dig_hotplug_reg;
2178 
2179 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2180 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2181 
2182 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2183 				   dig_hotplug_reg, hpd_spt,
2184 				   spt_port_hotplug2_long_detect);
2185 	}
2186 
2187 	if (pin_mask)
2188 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2189 
2190 	if (pch_iir & SDE_GMBUS_CPT)
2191 		gmbus_irq_handler(dev_priv);
2192 }
2193 
2194 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2195 				u32 hotplug_trigger,
2196 				const u32 hpd[HPD_NUM_PINS])
2197 {
2198 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2199 
2200 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2201 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2202 
2203 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2204 			   dig_hotplug_reg, hpd,
2205 			   ilk_port_hotplug_long_detect);
2206 
2207 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2208 }
2209 
2210 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2211 				    u32 de_iir)
2212 {
2213 	enum pipe pipe;
2214 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2215 
2216 	if (hotplug_trigger)
2217 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2218 
2219 	if (de_iir & DE_AUX_CHANNEL_A)
2220 		dp_aux_irq_handler(dev_priv);
2221 
2222 	if (de_iir & DE_GSE)
2223 		intel_opregion_asle_intr(dev_priv);
2224 
2225 	if (de_iir & DE_POISON)
2226 		DRM_ERROR("Poison interrupt\n");
2227 
2228 	for_each_pipe(dev_priv, pipe) {
2229 		if (de_iir & DE_PIPE_VBLANK(pipe))
2230 			drm_handle_vblank(&dev_priv->drm, pipe);
2231 
2232 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2233 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2234 
2235 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2236 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2237 	}
2238 
2239 	/* check event from PCH */
2240 	if (de_iir & DE_PCH_EVENT) {
2241 		u32 pch_iir = I915_READ(SDEIIR);
2242 
2243 		if (HAS_PCH_CPT(dev_priv))
2244 			cpt_irq_handler(dev_priv, pch_iir);
2245 		else
2246 			ibx_irq_handler(dev_priv, pch_iir);
2247 
2248 		/* should clear PCH hotplug event before clear CPU irq */
2249 		I915_WRITE(SDEIIR, pch_iir);
2250 	}
2251 
2252 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2253 		ironlake_rps_change_irq_handler(dev_priv);
2254 }
2255 
2256 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2257 				    u32 de_iir)
2258 {
2259 	enum pipe pipe;
2260 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2261 
2262 	if (hotplug_trigger)
2263 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2264 
2265 	if (de_iir & DE_ERR_INT_IVB)
2266 		ivb_err_int_handler(dev_priv);
2267 
2268 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2269 		dp_aux_irq_handler(dev_priv);
2270 
2271 	if (de_iir & DE_GSE_IVB)
2272 		intel_opregion_asle_intr(dev_priv);
2273 
2274 	for_each_pipe(dev_priv, pipe) {
2275 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2276 			drm_handle_vblank(&dev_priv->drm, pipe);
2277 	}
2278 
2279 	/* check event from PCH */
2280 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2281 		u32 pch_iir = I915_READ(SDEIIR);
2282 
2283 		cpt_irq_handler(dev_priv, pch_iir);
2284 
2285 		/* clear PCH hotplug event before clear CPU irq */
2286 		I915_WRITE(SDEIIR, pch_iir);
2287 	}
2288 }
2289 
2290 /*
2291  * To handle irqs with the minimum potential races with fresh interrupts, we:
2292  * 1 - Disable Master Interrupt Control.
2293  * 2 - Find the source(s) of the interrupt.
2294  * 3 - Clear the Interrupt Identity bits (IIR).
2295  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2296  * 5 - Re-enable Master Interrupt Control.
2297  */
2298 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2299 {
2300 	struct drm_device *dev = arg;
2301 	struct drm_i915_private *dev_priv = to_i915(dev);
2302 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2303 	irqreturn_t ret = IRQ_NONE;
2304 
2305 	if (!intel_irqs_enabled(dev_priv))
2306 		return IRQ_NONE;
2307 
2308 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2309 	disable_rpm_wakeref_asserts(dev_priv);
2310 
2311 	/* disable master interrupt before clearing iir  */
2312 	de_ier = I915_READ(DEIER);
2313 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2314 	POSTING_READ(DEIER);
2315 
2316 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2317 	 * interrupts will will be stored on its back queue, and then we'll be
2318 	 * able to process them after we restore SDEIER (as soon as we restore
2319 	 * it, we'll get an interrupt if SDEIIR still has something to process
2320 	 * due to its back queue). */
2321 	if (!HAS_PCH_NOP(dev_priv)) {
2322 		sde_ier = I915_READ(SDEIER);
2323 		I915_WRITE(SDEIER, 0);
2324 		POSTING_READ(SDEIER);
2325 	}
2326 
2327 	/* Find, clear, then process each source of interrupt */
2328 
2329 	gt_iir = I915_READ(GTIIR);
2330 	if (gt_iir) {
2331 		I915_WRITE(GTIIR, gt_iir);
2332 		ret = IRQ_HANDLED;
2333 		if (INTEL_GEN(dev_priv) >= 6)
2334 			snb_gt_irq_handler(dev_priv, gt_iir);
2335 		else
2336 			ilk_gt_irq_handler(dev_priv, gt_iir);
2337 	}
2338 
2339 	de_iir = I915_READ(DEIIR);
2340 	if (de_iir) {
2341 		I915_WRITE(DEIIR, de_iir);
2342 		ret = IRQ_HANDLED;
2343 		if (INTEL_GEN(dev_priv) >= 7)
2344 			ivb_display_irq_handler(dev_priv, de_iir);
2345 		else
2346 			ilk_display_irq_handler(dev_priv, de_iir);
2347 	}
2348 
2349 	if (INTEL_GEN(dev_priv) >= 6) {
2350 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2351 		if (pm_iir) {
2352 			I915_WRITE(GEN6_PMIIR, pm_iir);
2353 			ret = IRQ_HANDLED;
2354 			gen6_rps_irq_handler(dev_priv, pm_iir);
2355 		}
2356 	}
2357 
2358 	I915_WRITE(DEIER, de_ier);
2359 	POSTING_READ(DEIER);
2360 	if (!HAS_PCH_NOP(dev_priv)) {
2361 		I915_WRITE(SDEIER, sde_ier);
2362 		POSTING_READ(SDEIER);
2363 	}
2364 
2365 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2366 	enable_rpm_wakeref_asserts(dev_priv);
2367 
2368 	return ret;
2369 }
2370 
2371 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2372 				u32 hotplug_trigger,
2373 				const u32 hpd[HPD_NUM_PINS])
2374 {
2375 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2376 
2377 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2378 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2379 
2380 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2381 			   dig_hotplug_reg, hpd,
2382 			   bxt_port_hotplug_long_detect);
2383 
2384 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2385 }
2386 
2387 static irqreturn_t
2388 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2389 {
2390 	irqreturn_t ret = IRQ_NONE;
2391 	u32 iir;
2392 	enum pipe pipe;
2393 
2394 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2395 		iir = I915_READ(GEN8_DE_MISC_IIR);
2396 		if (iir) {
2397 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2398 			ret = IRQ_HANDLED;
2399 			if (iir & GEN8_DE_MISC_GSE)
2400 				intel_opregion_asle_intr(dev_priv);
2401 			else
2402 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2403 		}
2404 		else
2405 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2406 	}
2407 
2408 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2409 		iir = I915_READ(GEN8_DE_PORT_IIR);
2410 		if (iir) {
2411 			u32 tmp_mask;
2412 			bool found = false;
2413 
2414 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2415 			ret = IRQ_HANDLED;
2416 
2417 			tmp_mask = GEN8_AUX_CHANNEL_A;
2418 			if (INTEL_GEN(dev_priv) >= 9)
2419 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2420 					    GEN9_AUX_CHANNEL_C |
2421 					    GEN9_AUX_CHANNEL_D;
2422 
2423 			if (iir & tmp_mask) {
2424 				dp_aux_irq_handler(dev_priv);
2425 				found = true;
2426 			}
2427 
2428 			if (IS_GEN9_LP(dev_priv)) {
2429 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2430 				if (tmp_mask) {
2431 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2432 							    hpd_bxt);
2433 					found = true;
2434 				}
2435 			} else if (IS_BROADWELL(dev_priv)) {
2436 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2437 				if (tmp_mask) {
2438 					ilk_hpd_irq_handler(dev_priv,
2439 							    tmp_mask, hpd_bdw);
2440 					found = true;
2441 				}
2442 			}
2443 
2444 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2445 				gmbus_irq_handler(dev_priv);
2446 				found = true;
2447 			}
2448 
2449 			if (!found)
2450 				DRM_ERROR("Unexpected DE Port interrupt\n");
2451 		}
2452 		else
2453 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2454 	}
2455 
2456 	for_each_pipe(dev_priv, pipe) {
2457 		u32 fault_errors;
2458 
2459 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2460 			continue;
2461 
2462 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2463 		if (!iir) {
2464 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2465 			continue;
2466 		}
2467 
2468 		ret = IRQ_HANDLED;
2469 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2470 
2471 		if (iir & GEN8_PIPE_VBLANK)
2472 			drm_handle_vblank(&dev_priv->drm, pipe);
2473 
2474 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2475 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2476 
2477 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2478 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2479 
2480 		fault_errors = iir;
2481 		if (INTEL_GEN(dev_priv) >= 9)
2482 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2483 		else
2484 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2485 
2486 		if (fault_errors)
2487 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2488 				  pipe_name(pipe),
2489 				  fault_errors);
2490 	}
2491 
2492 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2493 	    master_ctl & GEN8_DE_PCH_IRQ) {
2494 		/*
2495 		 * FIXME(BDW): Assume for now that the new interrupt handling
2496 		 * scheme also closed the SDE interrupt handling race we've seen
2497 		 * on older pch-split platforms. But this needs testing.
2498 		 */
2499 		iir = I915_READ(SDEIIR);
2500 		if (iir) {
2501 			I915_WRITE(SDEIIR, iir);
2502 			ret = IRQ_HANDLED;
2503 
2504 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2505 			    HAS_PCH_CNP(dev_priv))
2506 				spt_irq_handler(dev_priv, iir);
2507 			else
2508 				cpt_irq_handler(dev_priv, iir);
2509 		} else {
2510 			/*
2511 			 * Like on previous PCH there seems to be something
2512 			 * fishy going on with forwarding PCH interrupts.
2513 			 */
2514 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2515 		}
2516 	}
2517 
2518 	return ret;
2519 }
2520 
2521 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2522 {
2523 	struct drm_device *dev = arg;
2524 	struct drm_i915_private *dev_priv = to_i915(dev);
2525 	u32 master_ctl;
2526 	u32 gt_iir[4] = {};
2527 	irqreturn_t ret;
2528 
2529 	if (!intel_irqs_enabled(dev_priv))
2530 		return IRQ_NONE;
2531 
2532 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2533 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2534 	if (!master_ctl)
2535 		return IRQ_NONE;
2536 
2537 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2538 
2539 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2540 	disable_rpm_wakeref_asserts(dev_priv);
2541 
2542 	/* Find, clear, then process each source of interrupt */
2543 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2544 	gen8_gt_irq_handler(dev_priv, gt_iir);
2545 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2546 
2547 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2548 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2549 
2550 	enable_rpm_wakeref_asserts(dev_priv);
2551 
2552 	return ret;
2553 }
2554 
2555 struct wedge_me {
2556 	struct delayed_work work;
2557 	struct drm_i915_private *i915;
2558 	const char *name;
2559 };
2560 
2561 static void wedge_me(struct work_struct *work)
2562 {
2563 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2564 
2565 	dev_err(w->i915->drm.dev,
2566 		"%s timed out, cancelling all in-flight rendering.\n",
2567 		w->name);
2568 	i915_gem_set_wedged(w->i915);
2569 }
2570 
2571 static void __init_wedge(struct wedge_me *w,
2572 			 struct drm_i915_private *i915,
2573 			 long timeout,
2574 			 const char *name)
2575 {
2576 	w->i915 = i915;
2577 	w->name = name;
2578 
2579 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2580 	schedule_delayed_work(&w->work, timeout);
2581 }
2582 
2583 static void __fini_wedge(struct wedge_me *w)
2584 {
2585 	cancel_delayed_work_sync(&w->work);
2586 	destroy_delayed_work_on_stack(&w->work);
2587 	w->i915 = NULL;
2588 }
2589 
2590 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2591 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2592 	     (W)->i915;							\
2593 	     __fini_wedge((W)))
2594 
2595 /**
2596  * i915_reset_device - do process context error handling work
2597  * @dev_priv: i915 device private
2598  *
2599  * Fire an error uevent so userspace can see that a hang or error
2600  * was detected.
2601  */
2602 static void i915_reset_device(struct drm_i915_private *dev_priv)
2603 {
2604 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2605 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2606 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2607 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2608 	struct wedge_me w;
2609 
2610 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2611 
2612 	DRM_DEBUG_DRIVER("resetting chip\n");
2613 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2614 
2615 	/* Use a watchdog to ensure that our reset completes */
2616 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2617 		intel_prepare_reset(dev_priv);
2618 
2619 		/* Signal that locked waiters should reset the GPU */
2620 		set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2621 		wake_up_all(&dev_priv->gpu_error.wait_queue);
2622 
2623 		/* Wait for anyone holding the lock to wakeup, without
2624 		 * blocking indefinitely on struct_mutex.
2625 		 */
2626 		do {
2627 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2628 				i915_reset(dev_priv, 0);
2629 				mutex_unlock(&dev_priv->drm.struct_mutex);
2630 			}
2631 		} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2632 					     I915_RESET_HANDOFF,
2633 					     TASK_UNINTERRUPTIBLE,
2634 					     1));
2635 
2636 		intel_finish_reset(dev_priv);
2637 	}
2638 
2639 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2640 		kobject_uevent_env(kobj,
2641 				   KOBJ_CHANGE, reset_done_event);
2642 }
2643 
2644 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2645 {
2646 	u32 eir;
2647 
2648 	if (!IS_GEN2(dev_priv))
2649 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2650 
2651 	if (INTEL_GEN(dev_priv) < 4)
2652 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2653 	else
2654 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2655 
2656 	I915_WRITE(EIR, I915_READ(EIR));
2657 	eir = I915_READ(EIR);
2658 	if (eir) {
2659 		/*
2660 		 * some errors might have become stuck,
2661 		 * mask them.
2662 		 */
2663 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2664 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2665 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2666 	}
2667 }
2668 
2669 /**
2670  * i915_handle_error - handle a gpu error
2671  * @dev_priv: i915 device private
2672  * @engine_mask: mask representing engines that are hung
2673  * @fmt: Error message format string
2674  *
2675  * Do some basic checking of register state at error time and
2676  * dump it to the syslog.  Also call i915_capture_error_state() to make
2677  * sure we get a record and make it available in debugfs.  Fire a uevent
2678  * so userspace knows something bad happened (should trigger collection
2679  * of a ring dump etc.).
2680  */
2681 void i915_handle_error(struct drm_i915_private *dev_priv,
2682 		       u32 engine_mask,
2683 		       const char *fmt, ...)
2684 {
2685 	struct intel_engine_cs *engine;
2686 	unsigned int tmp;
2687 	va_list args;
2688 	char error_msg[80];
2689 
2690 	va_start(args, fmt);
2691 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2692 	va_end(args);
2693 
2694 	/*
2695 	 * In most cases it's guaranteed that we get here with an RPM
2696 	 * reference held, for example because there is a pending GPU
2697 	 * request that won't finish until the reset is done. This
2698 	 * isn't the case at least when we get here by doing a
2699 	 * simulated reset via debugfs, so get an RPM reference.
2700 	 */
2701 	intel_runtime_pm_get(dev_priv);
2702 
2703 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2704 	i915_clear_error_registers(dev_priv);
2705 
2706 	/*
2707 	 * Try engine reset when available. We fall back to full reset if
2708 	 * single reset fails.
2709 	 */
2710 	if (intel_has_reset_engine(dev_priv)) {
2711 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2712 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2713 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2714 					     &dev_priv->gpu_error.flags))
2715 				continue;
2716 
2717 			if (i915_reset_engine(engine, 0) == 0)
2718 				engine_mask &= ~intel_engine_flag(engine);
2719 
2720 			clear_bit(I915_RESET_ENGINE + engine->id,
2721 				  &dev_priv->gpu_error.flags);
2722 			wake_up_bit(&dev_priv->gpu_error.flags,
2723 				    I915_RESET_ENGINE + engine->id);
2724 		}
2725 	}
2726 
2727 	if (!engine_mask)
2728 		goto out;
2729 
2730 	/* Full reset needs the mutex, stop any other user trying to do so. */
2731 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2732 		wait_event(dev_priv->gpu_error.reset_queue,
2733 			   !test_bit(I915_RESET_BACKOFF,
2734 				     &dev_priv->gpu_error.flags));
2735 		goto out;
2736 	}
2737 
2738 	/* Prevent any other reset-engine attempt. */
2739 	for_each_engine(engine, dev_priv, tmp) {
2740 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2741 					&dev_priv->gpu_error.flags))
2742 			wait_on_bit(&dev_priv->gpu_error.flags,
2743 				    I915_RESET_ENGINE + engine->id,
2744 				    TASK_UNINTERRUPTIBLE);
2745 	}
2746 
2747 	i915_reset_device(dev_priv);
2748 
2749 	for_each_engine(engine, dev_priv, tmp) {
2750 		clear_bit(I915_RESET_ENGINE + engine->id,
2751 			  &dev_priv->gpu_error.flags);
2752 	}
2753 
2754 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2755 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2756 
2757 out:
2758 	intel_runtime_pm_put(dev_priv);
2759 }
2760 
2761 /* Called from drm generic code, passed 'crtc' which
2762  * we use as a pipe index
2763  */
2764 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2765 {
2766 	struct drm_i915_private *dev_priv = to_i915(dev);
2767 	unsigned long irqflags;
2768 
2769 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2770 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2771 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 
2773 	return 0;
2774 }
2775 
2776 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2777 {
2778 	struct drm_i915_private *dev_priv = to_i915(dev);
2779 	unsigned long irqflags;
2780 
2781 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782 	i915_enable_pipestat(dev_priv, pipe,
2783 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2784 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2785 
2786 	return 0;
2787 }
2788 
2789 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2790 {
2791 	struct drm_i915_private *dev_priv = to_i915(dev);
2792 	unsigned long irqflags;
2793 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2794 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2795 
2796 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 	ilk_enable_display_irq(dev_priv, bit);
2798 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799 
2800 	return 0;
2801 }
2802 
2803 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2804 {
2805 	struct drm_i915_private *dev_priv = to_i915(dev);
2806 	unsigned long irqflags;
2807 
2808 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2809 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2810 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2811 
2812 	return 0;
2813 }
2814 
2815 /* Called from drm generic code, passed 'crtc' which
2816  * we use as a pipe index
2817  */
2818 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2819 {
2820 	struct drm_i915_private *dev_priv = to_i915(dev);
2821 	unsigned long irqflags;
2822 
2823 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2824 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2825 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2826 }
2827 
2828 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2829 {
2830 	struct drm_i915_private *dev_priv = to_i915(dev);
2831 	unsigned long irqflags;
2832 
2833 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2834 	i915_disable_pipestat(dev_priv, pipe,
2835 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2836 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2837 }
2838 
2839 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2840 {
2841 	struct drm_i915_private *dev_priv = to_i915(dev);
2842 	unsigned long irqflags;
2843 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2844 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2845 
2846 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2847 	ilk_disable_display_irq(dev_priv, bit);
2848 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2849 }
2850 
2851 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2852 {
2853 	struct drm_i915_private *dev_priv = to_i915(dev);
2854 	unsigned long irqflags;
2855 
2856 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2857 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2858 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2859 }
2860 
2861 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2862 {
2863 	if (HAS_PCH_NOP(dev_priv))
2864 		return;
2865 
2866 	GEN5_IRQ_RESET(SDE);
2867 
2868 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2869 		I915_WRITE(SERR_INT, 0xffffffff);
2870 }
2871 
2872 /*
2873  * SDEIER is also touched by the interrupt handler to work around missed PCH
2874  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2875  * instead we unconditionally enable all PCH interrupt sources here, but then
2876  * only unmask them as needed with SDEIMR.
2877  *
2878  * This function needs to be called before interrupts are enabled.
2879  */
2880 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2881 {
2882 	struct drm_i915_private *dev_priv = to_i915(dev);
2883 
2884 	if (HAS_PCH_NOP(dev_priv))
2885 		return;
2886 
2887 	WARN_ON(I915_READ(SDEIER) != 0);
2888 	I915_WRITE(SDEIER, 0xffffffff);
2889 	POSTING_READ(SDEIER);
2890 }
2891 
2892 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2893 {
2894 	GEN5_IRQ_RESET(GT);
2895 	if (INTEL_GEN(dev_priv) >= 6)
2896 		GEN5_IRQ_RESET(GEN6_PM);
2897 }
2898 
2899 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2900 {
2901 	enum pipe pipe;
2902 
2903 	if (IS_CHERRYVIEW(dev_priv))
2904 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2905 	else
2906 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2907 
2908 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2909 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2910 
2911 	for_each_pipe(dev_priv, pipe) {
2912 		I915_WRITE(PIPESTAT(pipe),
2913 			   PIPE_FIFO_UNDERRUN_STATUS |
2914 			   PIPESTAT_INT_STATUS_MASK);
2915 		dev_priv->pipestat_irq_mask[pipe] = 0;
2916 	}
2917 
2918 	GEN5_IRQ_RESET(VLV_);
2919 	dev_priv->irq_mask = ~0;
2920 }
2921 
2922 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2923 {
2924 	u32 pipestat_mask;
2925 	u32 enable_mask;
2926 	enum pipe pipe;
2927 
2928 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2929 			PIPE_CRC_DONE_INTERRUPT_STATUS;
2930 
2931 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2932 	for_each_pipe(dev_priv, pipe)
2933 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2934 
2935 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2936 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2937 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2938 		I915_LPE_PIPE_A_INTERRUPT |
2939 		I915_LPE_PIPE_B_INTERRUPT;
2940 
2941 	if (IS_CHERRYVIEW(dev_priv))
2942 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2943 			I915_LPE_PIPE_C_INTERRUPT;
2944 
2945 	WARN_ON(dev_priv->irq_mask != ~0);
2946 
2947 	dev_priv->irq_mask = ~enable_mask;
2948 
2949 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2950 }
2951 
2952 /* drm_dma.h hooks
2953 */
2954 static void ironlake_irq_reset(struct drm_device *dev)
2955 {
2956 	struct drm_i915_private *dev_priv = to_i915(dev);
2957 
2958 	I915_WRITE(HWSTAM, 0xffffffff);
2959 
2960 	GEN5_IRQ_RESET(DE);
2961 	if (IS_GEN7(dev_priv))
2962 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2963 
2964 	gen5_gt_irq_reset(dev_priv);
2965 
2966 	ibx_irq_reset(dev_priv);
2967 }
2968 
2969 static void valleyview_irq_preinstall(struct drm_device *dev)
2970 {
2971 	struct drm_i915_private *dev_priv = to_i915(dev);
2972 
2973 	I915_WRITE(VLV_MASTER_IER, 0);
2974 	POSTING_READ(VLV_MASTER_IER);
2975 
2976 	gen5_gt_irq_reset(dev_priv);
2977 
2978 	spin_lock_irq(&dev_priv->irq_lock);
2979 	if (dev_priv->display_irqs_enabled)
2980 		vlv_display_irq_reset(dev_priv);
2981 	spin_unlock_irq(&dev_priv->irq_lock);
2982 }
2983 
2984 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2985 {
2986 	GEN8_IRQ_RESET_NDX(GT, 0);
2987 	GEN8_IRQ_RESET_NDX(GT, 1);
2988 	GEN8_IRQ_RESET_NDX(GT, 2);
2989 	GEN8_IRQ_RESET_NDX(GT, 3);
2990 }
2991 
2992 static void gen8_irq_reset(struct drm_device *dev)
2993 {
2994 	struct drm_i915_private *dev_priv = to_i915(dev);
2995 	int pipe;
2996 
2997 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2998 	POSTING_READ(GEN8_MASTER_IRQ);
2999 
3000 	gen8_gt_irq_reset(dev_priv);
3001 
3002 	for_each_pipe(dev_priv, pipe)
3003 		if (intel_display_power_is_enabled(dev_priv,
3004 						   POWER_DOMAIN_PIPE(pipe)))
3005 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3006 
3007 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3008 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3009 	GEN5_IRQ_RESET(GEN8_PCU_);
3010 
3011 	if (HAS_PCH_SPLIT(dev_priv))
3012 		ibx_irq_reset(dev_priv);
3013 }
3014 
3015 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3016 				     u8 pipe_mask)
3017 {
3018 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3019 	enum pipe pipe;
3020 
3021 	spin_lock_irq(&dev_priv->irq_lock);
3022 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3023 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3024 				  dev_priv->de_irq_mask[pipe],
3025 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3026 	spin_unlock_irq(&dev_priv->irq_lock);
3027 }
3028 
3029 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3030 				     u8 pipe_mask)
3031 {
3032 	enum pipe pipe;
3033 
3034 	spin_lock_irq(&dev_priv->irq_lock);
3035 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3036 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3037 	spin_unlock_irq(&dev_priv->irq_lock);
3038 
3039 	/* make sure we're done processing display irqs */
3040 	synchronize_irq(dev_priv->drm.irq);
3041 }
3042 
3043 static void cherryview_irq_preinstall(struct drm_device *dev)
3044 {
3045 	struct drm_i915_private *dev_priv = to_i915(dev);
3046 
3047 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3048 	POSTING_READ(GEN8_MASTER_IRQ);
3049 
3050 	gen8_gt_irq_reset(dev_priv);
3051 
3052 	GEN5_IRQ_RESET(GEN8_PCU_);
3053 
3054 	spin_lock_irq(&dev_priv->irq_lock);
3055 	if (dev_priv->display_irqs_enabled)
3056 		vlv_display_irq_reset(dev_priv);
3057 	spin_unlock_irq(&dev_priv->irq_lock);
3058 }
3059 
3060 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3061 				  const u32 hpd[HPD_NUM_PINS])
3062 {
3063 	struct intel_encoder *encoder;
3064 	u32 enabled_irqs = 0;
3065 
3066 	for_each_intel_encoder(&dev_priv->drm, encoder)
3067 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3068 			enabled_irqs |= hpd[encoder->hpd_pin];
3069 
3070 	return enabled_irqs;
3071 }
3072 
3073 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3074 {
3075 	u32 hotplug;
3076 
3077 	/*
3078 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3079 	 * duration to 2ms (which is the minimum in the Display Port spec).
3080 	 * The pulse duration bits are reserved on LPT+.
3081 	 */
3082 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3083 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3084 		     PORTC_PULSE_DURATION_MASK |
3085 		     PORTD_PULSE_DURATION_MASK);
3086 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3087 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3088 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3089 	/*
3090 	 * When CPU and PCH are on the same package, port A
3091 	 * HPD must be enabled in both north and south.
3092 	 */
3093 	if (HAS_PCH_LPT_LP(dev_priv))
3094 		hotplug |= PORTA_HOTPLUG_ENABLE;
3095 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3096 }
3097 
3098 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3099 {
3100 	u32 hotplug_irqs, enabled_irqs;
3101 
3102 	if (HAS_PCH_IBX(dev_priv)) {
3103 		hotplug_irqs = SDE_HOTPLUG_MASK;
3104 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3105 	} else {
3106 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3107 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3108 	}
3109 
3110 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3111 
3112 	ibx_hpd_detection_setup(dev_priv);
3113 }
3114 
3115 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3116 {
3117 	u32 hotplug;
3118 
3119 	/* Enable digital hotplug on the PCH */
3120 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3121 	hotplug |= PORTA_HOTPLUG_ENABLE |
3122 		   PORTB_HOTPLUG_ENABLE |
3123 		   PORTC_HOTPLUG_ENABLE |
3124 		   PORTD_HOTPLUG_ENABLE;
3125 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3126 
3127 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3128 	hotplug |= PORTE_HOTPLUG_ENABLE;
3129 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3130 }
3131 
3132 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3133 {
3134 	u32 hotplug_irqs, enabled_irqs;
3135 
3136 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3137 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3138 
3139 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3140 
3141 	spt_hpd_detection_setup(dev_priv);
3142 }
3143 
3144 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3145 {
3146 	u32 hotplug;
3147 
3148 	/*
3149 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3150 	 * duration to 2ms (which is the minimum in the Display Port spec)
3151 	 * The pulse duration bits are reserved on HSW+.
3152 	 */
3153 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3154 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3155 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3156 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3157 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3158 }
3159 
3160 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3161 {
3162 	u32 hotplug_irqs, enabled_irqs;
3163 
3164 	if (INTEL_GEN(dev_priv) >= 8) {
3165 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3166 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3167 
3168 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3169 	} else if (INTEL_GEN(dev_priv) >= 7) {
3170 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3171 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3172 
3173 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3174 	} else {
3175 		hotplug_irqs = DE_DP_A_HOTPLUG;
3176 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3177 
3178 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3179 	}
3180 
3181 	ilk_hpd_detection_setup(dev_priv);
3182 
3183 	ibx_hpd_irq_setup(dev_priv);
3184 }
3185 
3186 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3187 				      u32 enabled_irqs)
3188 {
3189 	u32 hotplug;
3190 
3191 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3192 	hotplug |= PORTA_HOTPLUG_ENABLE |
3193 		   PORTB_HOTPLUG_ENABLE |
3194 		   PORTC_HOTPLUG_ENABLE;
3195 
3196 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3197 		      hotplug, enabled_irqs);
3198 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3199 
3200 	/*
3201 	 * For BXT invert bit has to be set based on AOB design
3202 	 * for HPD detection logic, update it based on VBT fields.
3203 	 */
3204 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3205 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3206 		hotplug |= BXT_DDIA_HPD_INVERT;
3207 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3208 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3209 		hotplug |= BXT_DDIB_HPD_INVERT;
3210 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3211 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3212 		hotplug |= BXT_DDIC_HPD_INVERT;
3213 
3214 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3215 }
3216 
3217 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3218 {
3219 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3220 }
3221 
3222 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3223 {
3224 	u32 hotplug_irqs, enabled_irqs;
3225 
3226 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3227 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3228 
3229 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3230 
3231 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3232 }
3233 
3234 static void ibx_irq_postinstall(struct drm_device *dev)
3235 {
3236 	struct drm_i915_private *dev_priv = to_i915(dev);
3237 	u32 mask;
3238 
3239 	if (HAS_PCH_NOP(dev_priv))
3240 		return;
3241 
3242 	if (HAS_PCH_IBX(dev_priv))
3243 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3244 	else
3245 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3246 
3247 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3248 	I915_WRITE(SDEIMR, ~mask);
3249 
3250 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3251 	    HAS_PCH_LPT(dev_priv))
3252 		ibx_hpd_detection_setup(dev_priv);
3253 	else
3254 		spt_hpd_detection_setup(dev_priv);
3255 }
3256 
3257 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3258 {
3259 	struct drm_i915_private *dev_priv = to_i915(dev);
3260 	u32 pm_irqs, gt_irqs;
3261 
3262 	pm_irqs = gt_irqs = 0;
3263 
3264 	dev_priv->gt_irq_mask = ~0;
3265 	if (HAS_L3_DPF(dev_priv)) {
3266 		/* L3 parity interrupt is always unmasked. */
3267 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3268 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3269 	}
3270 
3271 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3272 	if (IS_GEN5(dev_priv)) {
3273 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3274 	} else {
3275 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3276 	}
3277 
3278 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3279 
3280 	if (INTEL_GEN(dev_priv) >= 6) {
3281 		/*
3282 		 * RPS interrupts will get enabled/disabled on demand when RPS
3283 		 * itself is enabled/disabled.
3284 		 */
3285 		if (HAS_VEBOX(dev_priv)) {
3286 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3287 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3288 		}
3289 
3290 		dev_priv->pm_imr = 0xffffffff;
3291 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3292 	}
3293 }
3294 
3295 static int ironlake_irq_postinstall(struct drm_device *dev)
3296 {
3297 	struct drm_i915_private *dev_priv = to_i915(dev);
3298 	u32 display_mask, extra_mask;
3299 
3300 	if (INTEL_GEN(dev_priv) >= 7) {
3301 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3302 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3303 				DE_PLANEB_FLIP_DONE_IVB |
3304 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3305 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3306 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3307 			      DE_DP_A_HOTPLUG_IVB);
3308 	} else {
3309 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3310 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3311 				DE_AUX_CHANNEL_A |
3312 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3313 				DE_POISON);
3314 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3315 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3316 			      DE_DP_A_HOTPLUG);
3317 	}
3318 
3319 	dev_priv->irq_mask = ~display_mask;
3320 
3321 	I915_WRITE(HWSTAM, 0xeffe);
3322 
3323 	ibx_irq_pre_postinstall(dev);
3324 
3325 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3326 
3327 	gen5_gt_irq_postinstall(dev);
3328 
3329 	ilk_hpd_detection_setup(dev_priv);
3330 
3331 	ibx_irq_postinstall(dev);
3332 
3333 	if (IS_IRONLAKE_M(dev_priv)) {
3334 		/* Enable PCU event interrupts
3335 		 *
3336 		 * spinlocking not required here for correctness since interrupt
3337 		 * setup is guaranteed to run in single-threaded context. But we
3338 		 * need it to make the assert_spin_locked happy. */
3339 		spin_lock_irq(&dev_priv->irq_lock);
3340 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3341 		spin_unlock_irq(&dev_priv->irq_lock);
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349 	lockdep_assert_held(&dev_priv->irq_lock);
3350 
3351 	if (dev_priv->display_irqs_enabled)
3352 		return;
3353 
3354 	dev_priv->display_irqs_enabled = true;
3355 
3356 	if (intel_irqs_enabled(dev_priv)) {
3357 		vlv_display_irq_reset(dev_priv);
3358 		vlv_display_irq_postinstall(dev_priv);
3359 	}
3360 }
3361 
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364 	lockdep_assert_held(&dev_priv->irq_lock);
3365 
3366 	if (!dev_priv->display_irqs_enabled)
3367 		return;
3368 
3369 	dev_priv->display_irqs_enabled = false;
3370 
3371 	if (intel_irqs_enabled(dev_priv))
3372 		vlv_display_irq_reset(dev_priv);
3373 }
3374 
3375 
3376 static int valleyview_irq_postinstall(struct drm_device *dev)
3377 {
3378 	struct drm_i915_private *dev_priv = to_i915(dev);
3379 
3380 	gen5_gt_irq_postinstall(dev);
3381 
3382 	spin_lock_irq(&dev_priv->irq_lock);
3383 	if (dev_priv->display_irqs_enabled)
3384 		vlv_display_irq_postinstall(dev_priv);
3385 	spin_unlock_irq(&dev_priv->irq_lock);
3386 
3387 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3388 	POSTING_READ(VLV_MASTER_IER);
3389 
3390 	return 0;
3391 }
3392 
3393 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3394 {
3395 	/* These are interrupts we'll toggle with the ring mask register */
3396 	uint32_t gt_interrupts[] = {
3397 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3398 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3399 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3400 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3401 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3402 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3403 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3404 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3405 		0,
3406 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3407 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3408 		};
3409 
3410 	if (HAS_L3_DPF(dev_priv))
3411 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3412 
3413 	dev_priv->pm_ier = 0x0;
3414 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3415 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3416 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3417 	/*
3418 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3419 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3420 	 */
3421 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3422 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3423 }
3424 
3425 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3428 	uint32_t de_pipe_enables;
3429 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3430 	u32 de_port_enables;
3431 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3432 	enum pipe pipe;
3433 
3434 	if (INTEL_GEN(dev_priv) >= 9) {
3435 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3436 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3437 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3438 				  GEN9_AUX_CHANNEL_D;
3439 		if (IS_GEN9_LP(dev_priv))
3440 			de_port_masked |= BXT_DE_PORT_GMBUS;
3441 	} else {
3442 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3443 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3444 	}
3445 
3446 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3447 					   GEN8_PIPE_FIFO_UNDERRUN;
3448 
3449 	de_port_enables = de_port_masked;
3450 	if (IS_GEN9_LP(dev_priv))
3451 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3452 	else if (IS_BROADWELL(dev_priv))
3453 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3454 
3455 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3456 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3457 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3458 
3459 	for_each_pipe(dev_priv, pipe)
3460 		if (intel_display_power_is_enabled(dev_priv,
3461 				POWER_DOMAIN_PIPE(pipe)))
3462 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3463 					  dev_priv->de_irq_mask[pipe],
3464 					  de_pipe_enables);
3465 
3466 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3467 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3468 
3469 	if (IS_GEN9_LP(dev_priv))
3470 		bxt_hpd_detection_setup(dev_priv);
3471 	else if (IS_BROADWELL(dev_priv))
3472 		ilk_hpd_detection_setup(dev_priv);
3473 }
3474 
3475 static int gen8_irq_postinstall(struct drm_device *dev)
3476 {
3477 	struct drm_i915_private *dev_priv = to_i915(dev);
3478 
3479 	if (HAS_PCH_SPLIT(dev_priv))
3480 		ibx_irq_pre_postinstall(dev);
3481 
3482 	gen8_gt_irq_postinstall(dev_priv);
3483 	gen8_de_irq_postinstall(dev_priv);
3484 
3485 	if (HAS_PCH_SPLIT(dev_priv))
3486 		ibx_irq_postinstall(dev);
3487 
3488 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3489 	POSTING_READ(GEN8_MASTER_IRQ);
3490 
3491 	return 0;
3492 }
3493 
3494 static int cherryview_irq_postinstall(struct drm_device *dev)
3495 {
3496 	struct drm_i915_private *dev_priv = to_i915(dev);
3497 
3498 	gen8_gt_irq_postinstall(dev_priv);
3499 
3500 	spin_lock_irq(&dev_priv->irq_lock);
3501 	if (dev_priv->display_irqs_enabled)
3502 		vlv_display_irq_postinstall(dev_priv);
3503 	spin_unlock_irq(&dev_priv->irq_lock);
3504 
3505 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3506 	POSTING_READ(GEN8_MASTER_IRQ);
3507 
3508 	return 0;
3509 }
3510 
3511 static void gen8_irq_uninstall(struct drm_device *dev)
3512 {
3513 	struct drm_i915_private *dev_priv = to_i915(dev);
3514 
3515 	if (!dev_priv)
3516 		return;
3517 
3518 	gen8_irq_reset(dev);
3519 }
3520 
3521 static void valleyview_irq_uninstall(struct drm_device *dev)
3522 {
3523 	struct drm_i915_private *dev_priv = to_i915(dev);
3524 
3525 	if (!dev_priv)
3526 		return;
3527 
3528 	I915_WRITE(VLV_MASTER_IER, 0);
3529 	POSTING_READ(VLV_MASTER_IER);
3530 
3531 	gen5_gt_irq_reset(dev_priv);
3532 
3533 	I915_WRITE(HWSTAM, 0xffffffff);
3534 
3535 	spin_lock_irq(&dev_priv->irq_lock);
3536 	if (dev_priv->display_irqs_enabled)
3537 		vlv_display_irq_reset(dev_priv);
3538 	spin_unlock_irq(&dev_priv->irq_lock);
3539 }
3540 
3541 static void cherryview_irq_uninstall(struct drm_device *dev)
3542 {
3543 	struct drm_i915_private *dev_priv = to_i915(dev);
3544 
3545 	if (!dev_priv)
3546 		return;
3547 
3548 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3549 	POSTING_READ(GEN8_MASTER_IRQ);
3550 
3551 	gen8_gt_irq_reset(dev_priv);
3552 
3553 	GEN5_IRQ_RESET(GEN8_PCU_);
3554 
3555 	spin_lock_irq(&dev_priv->irq_lock);
3556 	if (dev_priv->display_irqs_enabled)
3557 		vlv_display_irq_reset(dev_priv);
3558 	spin_unlock_irq(&dev_priv->irq_lock);
3559 }
3560 
3561 static void ironlake_irq_uninstall(struct drm_device *dev)
3562 {
3563 	struct drm_i915_private *dev_priv = to_i915(dev);
3564 
3565 	if (!dev_priv)
3566 		return;
3567 
3568 	ironlake_irq_reset(dev);
3569 }
3570 
3571 static void i8xx_irq_preinstall(struct drm_device * dev)
3572 {
3573 	struct drm_i915_private *dev_priv = to_i915(dev);
3574 	int pipe;
3575 
3576 	for_each_pipe(dev_priv, pipe)
3577 		I915_WRITE(PIPESTAT(pipe), 0);
3578 	I915_WRITE16(IMR, 0xffff);
3579 	I915_WRITE16(IER, 0x0);
3580 	POSTING_READ16(IER);
3581 }
3582 
3583 static int i8xx_irq_postinstall(struct drm_device *dev)
3584 {
3585 	struct drm_i915_private *dev_priv = to_i915(dev);
3586 
3587 	I915_WRITE16(EMR,
3588 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3589 
3590 	/* Unmask the interrupts that we always want on. */
3591 	dev_priv->irq_mask =
3592 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3593 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3594 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3595 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3596 	I915_WRITE16(IMR, dev_priv->irq_mask);
3597 
3598 	I915_WRITE16(IER,
3599 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3600 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3601 		     I915_USER_INTERRUPT);
3602 	POSTING_READ16(IER);
3603 
3604 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3605 	 * just to make the assert_spin_locked check happy. */
3606 	spin_lock_irq(&dev_priv->irq_lock);
3607 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3608 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3609 	spin_unlock_irq(&dev_priv->irq_lock);
3610 
3611 	return 0;
3612 }
3613 
3614 /*
3615  * Returns true when a page flip has completed.
3616  */
3617 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3618 {
3619 	struct drm_device *dev = arg;
3620 	struct drm_i915_private *dev_priv = to_i915(dev);
3621 	u16 iir, new_iir;
3622 	u32 pipe_stats[2];
3623 	int pipe;
3624 	irqreturn_t ret;
3625 
3626 	if (!intel_irqs_enabled(dev_priv))
3627 		return IRQ_NONE;
3628 
3629 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3630 	disable_rpm_wakeref_asserts(dev_priv);
3631 
3632 	ret = IRQ_NONE;
3633 	iir = I915_READ16(IIR);
3634 	if (iir == 0)
3635 		goto out;
3636 
3637 	while (iir) {
3638 		/* Can't rely on pipestat interrupt bit in iir as it might
3639 		 * have been cleared after the pipestat interrupt was received.
3640 		 * It doesn't set the bit in iir again, but it still produces
3641 		 * interrupts (for non-MSI).
3642 		 */
3643 		spin_lock(&dev_priv->irq_lock);
3644 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3645 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3646 
3647 		for_each_pipe(dev_priv, pipe) {
3648 			i915_reg_t reg = PIPESTAT(pipe);
3649 			pipe_stats[pipe] = I915_READ(reg);
3650 
3651 			/*
3652 			 * Clear the PIPE*STAT regs before the IIR
3653 			 */
3654 			if (pipe_stats[pipe] & 0x8000ffff)
3655 				I915_WRITE(reg, pipe_stats[pipe]);
3656 		}
3657 		spin_unlock(&dev_priv->irq_lock);
3658 
3659 		I915_WRITE16(IIR, iir);
3660 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3661 
3662 		if (iir & I915_USER_INTERRUPT)
3663 			notify_ring(dev_priv->engine[RCS]);
3664 
3665 		for_each_pipe(dev_priv, pipe) {
3666 			int plane = pipe;
3667 			if (HAS_FBC(dev_priv))
3668 				plane = !plane;
3669 
3670 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3671 				drm_handle_vblank(&dev_priv->drm, pipe);
3672 
3673 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3674 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3675 
3676 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3677 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3678 								    pipe);
3679 		}
3680 
3681 		iir = new_iir;
3682 	}
3683 	ret = IRQ_HANDLED;
3684 
3685 out:
3686 	enable_rpm_wakeref_asserts(dev_priv);
3687 
3688 	return ret;
3689 }
3690 
3691 static void i8xx_irq_uninstall(struct drm_device * dev)
3692 {
3693 	struct drm_i915_private *dev_priv = to_i915(dev);
3694 	int pipe;
3695 
3696 	for_each_pipe(dev_priv, pipe) {
3697 		/* Clear enable bits; then clear status bits */
3698 		I915_WRITE(PIPESTAT(pipe), 0);
3699 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3700 	}
3701 	I915_WRITE16(IMR, 0xffff);
3702 	I915_WRITE16(IER, 0x0);
3703 	I915_WRITE16(IIR, I915_READ16(IIR));
3704 }
3705 
3706 static void i915_irq_preinstall(struct drm_device * dev)
3707 {
3708 	struct drm_i915_private *dev_priv = to_i915(dev);
3709 	int pipe;
3710 
3711 	if (I915_HAS_HOTPLUG(dev_priv)) {
3712 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3713 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3714 	}
3715 
3716 	I915_WRITE16(HWSTAM, 0xeffe);
3717 	for_each_pipe(dev_priv, pipe)
3718 		I915_WRITE(PIPESTAT(pipe), 0);
3719 	I915_WRITE(IMR, 0xffffffff);
3720 	I915_WRITE(IER, 0x0);
3721 	POSTING_READ(IER);
3722 }
3723 
3724 static int i915_irq_postinstall(struct drm_device *dev)
3725 {
3726 	struct drm_i915_private *dev_priv = to_i915(dev);
3727 	u32 enable_mask;
3728 
3729 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3730 
3731 	/* Unmask the interrupts that we always want on. */
3732 	dev_priv->irq_mask =
3733 		~(I915_ASLE_INTERRUPT |
3734 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3735 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3736 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3737 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3738 
3739 	enable_mask =
3740 		I915_ASLE_INTERRUPT |
3741 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3742 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3743 		I915_USER_INTERRUPT;
3744 
3745 	if (I915_HAS_HOTPLUG(dev_priv)) {
3746 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3747 		POSTING_READ(PORT_HOTPLUG_EN);
3748 
3749 		/* Enable in IER... */
3750 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3751 		/* and unmask in IMR */
3752 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3753 	}
3754 
3755 	I915_WRITE(IMR, dev_priv->irq_mask);
3756 	I915_WRITE(IER, enable_mask);
3757 	POSTING_READ(IER);
3758 
3759 	i915_enable_asle_pipestat(dev_priv);
3760 
3761 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3762 	 * just to make the assert_spin_locked check happy. */
3763 	spin_lock_irq(&dev_priv->irq_lock);
3764 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3765 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3766 	spin_unlock_irq(&dev_priv->irq_lock);
3767 
3768 	return 0;
3769 }
3770 
3771 static irqreturn_t i915_irq_handler(int irq, void *arg)
3772 {
3773 	struct drm_device *dev = arg;
3774 	struct drm_i915_private *dev_priv = to_i915(dev);
3775 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3776 	int pipe, ret = IRQ_NONE;
3777 
3778 	if (!intel_irqs_enabled(dev_priv))
3779 		return IRQ_NONE;
3780 
3781 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3782 	disable_rpm_wakeref_asserts(dev_priv);
3783 
3784 	iir = I915_READ(IIR);
3785 	do {
3786 		bool irq_received = (iir) != 0;
3787 		bool blc_event = false;
3788 
3789 		/* Can't rely on pipestat interrupt bit in iir as it might
3790 		 * have been cleared after the pipestat interrupt was received.
3791 		 * It doesn't set the bit in iir again, but it still produces
3792 		 * interrupts (for non-MSI).
3793 		 */
3794 		spin_lock(&dev_priv->irq_lock);
3795 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3796 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3797 
3798 		for_each_pipe(dev_priv, pipe) {
3799 			i915_reg_t reg = PIPESTAT(pipe);
3800 			pipe_stats[pipe] = I915_READ(reg);
3801 
3802 			/* Clear the PIPE*STAT regs before the IIR */
3803 			if (pipe_stats[pipe] & 0x8000ffff) {
3804 				I915_WRITE(reg, pipe_stats[pipe]);
3805 				irq_received = true;
3806 			}
3807 		}
3808 		spin_unlock(&dev_priv->irq_lock);
3809 
3810 		if (!irq_received)
3811 			break;
3812 
3813 		/* Consume port.  Then clear IIR or we'll miss events */
3814 		if (I915_HAS_HOTPLUG(dev_priv) &&
3815 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
3816 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3817 			if (hotplug_status)
3818 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3819 		}
3820 
3821 		I915_WRITE(IIR, iir);
3822 		new_iir = I915_READ(IIR); /* Flush posted writes */
3823 
3824 		if (iir & I915_USER_INTERRUPT)
3825 			notify_ring(dev_priv->engine[RCS]);
3826 
3827 		for_each_pipe(dev_priv, pipe) {
3828 			int plane = pipe;
3829 			if (HAS_FBC(dev_priv))
3830 				plane = !plane;
3831 
3832 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3833 				drm_handle_vblank(&dev_priv->drm, pipe);
3834 
3835 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3836 				blc_event = true;
3837 
3838 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3839 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3840 
3841 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3842 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3843 								    pipe);
3844 		}
3845 
3846 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3847 			intel_opregion_asle_intr(dev_priv);
3848 
3849 		/* With MSI, interrupts are only generated when iir
3850 		 * transitions from zero to nonzero.  If another bit got
3851 		 * set while we were handling the existing iir bits, then
3852 		 * we would never get another interrupt.
3853 		 *
3854 		 * This is fine on non-MSI as well, as if we hit this path
3855 		 * we avoid exiting the interrupt handler only to generate
3856 		 * another one.
3857 		 *
3858 		 * Note that for MSI this could cause a stray interrupt report
3859 		 * if an interrupt landed in the time between writing IIR and
3860 		 * the posting read.  This should be rare enough to never
3861 		 * trigger the 99% of 100,000 interrupts test for disabling
3862 		 * stray interrupts.
3863 		 */
3864 		ret = IRQ_HANDLED;
3865 		iir = new_iir;
3866 	} while (iir);
3867 
3868 	enable_rpm_wakeref_asserts(dev_priv);
3869 
3870 	return ret;
3871 }
3872 
3873 static void i915_irq_uninstall(struct drm_device * dev)
3874 {
3875 	struct drm_i915_private *dev_priv = to_i915(dev);
3876 	int pipe;
3877 
3878 	if (I915_HAS_HOTPLUG(dev_priv)) {
3879 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3880 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3881 	}
3882 
3883 	I915_WRITE16(HWSTAM, 0xffff);
3884 	for_each_pipe(dev_priv, pipe) {
3885 		/* Clear enable bits; then clear status bits */
3886 		I915_WRITE(PIPESTAT(pipe), 0);
3887 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3888 	}
3889 	I915_WRITE(IMR, 0xffffffff);
3890 	I915_WRITE(IER, 0x0);
3891 
3892 	I915_WRITE(IIR, I915_READ(IIR));
3893 }
3894 
3895 static void i965_irq_preinstall(struct drm_device * dev)
3896 {
3897 	struct drm_i915_private *dev_priv = to_i915(dev);
3898 	int pipe;
3899 
3900 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3901 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3902 
3903 	I915_WRITE(HWSTAM, 0xeffe);
3904 	for_each_pipe(dev_priv, pipe)
3905 		I915_WRITE(PIPESTAT(pipe), 0);
3906 	I915_WRITE(IMR, 0xffffffff);
3907 	I915_WRITE(IER, 0x0);
3908 	POSTING_READ(IER);
3909 }
3910 
3911 static int i965_irq_postinstall(struct drm_device *dev)
3912 {
3913 	struct drm_i915_private *dev_priv = to_i915(dev);
3914 	u32 enable_mask;
3915 	u32 error_mask;
3916 
3917 	/* Unmask the interrupts that we always want on. */
3918 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3919 			       I915_DISPLAY_PORT_INTERRUPT |
3920 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3921 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3922 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3923 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3924 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3925 
3926 	enable_mask = ~dev_priv->irq_mask;
3927 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3928 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3929 	enable_mask |= I915_USER_INTERRUPT;
3930 
3931 	if (IS_G4X(dev_priv))
3932 		enable_mask |= I915_BSD_USER_INTERRUPT;
3933 
3934 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3935 	 * just to make the assert_spin_locked check happy. */
3936 	spin_lock_irq(&dev_priv->irq_lock);
3937 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3938 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3939 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3940 	spin_unlock_irq(&dev_priv->irq_lock);
3941 
3942 	/*
3943 	 * Enable some error detection, note the instruction error mask
3944 	 * bit is reserved, so we leave it masked.
3945 	 */
3946 	if (IS_G4X(dev_priv)) {
3947 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3948 			       GM45_ERROR_MEM_PRIV |
3949 			       GM45_ERROR_CP_PRIV |
3950 			       I915_ERROR_MEMORY_REFRESH);
3951 	} else {
3952 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3953 			       I915_ERROR_MEMORY_REFRESH);
3954 	}
3955 	I915_WRITE(EMR, error_mask);
3956 
3957 	I915_WRITE(IMR, dev_priv->irq_mask);
3958 	I915_WRITE(IER, enable_mask);
3959 	POSTING_READ(IER);
3960 
3961 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3962 	POSTING_READ(PORT_HOTPLUG_EN);
3963 
3964 	i915_enable_asle_pipestat(dev_priv);
3965 
3966 	return 0;
3967 }
3968 
3969 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3970 {
3971 	u32 hotplug_en;
3972 
3973 	lockdep_assert_held(&dev_priv->irq_lock);
3974 
3975 	/* Note HDMI and DP share hotplug bits */
3976 	/* enable bits are the same for all generations */
3977 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3978 	/* Programming the CRT detection parameters tends
3979 	   to generate a spurious hotplug event about three
3980 	   seconds later.  So just do it once.
3981 	*/
3982 	if (IS_G4X(dev_priv))
3983 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3984 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3985 
3986 	/* Ignore TV since it's buggy */
3987 	i915_hotplug_interrupt_update_locked(dev_priv,
3988 					     HOTPLUG_INT_EN_MASK |
3989 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3990 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3991 					     hotplug_en);
3992 }
3993 
3994 static irqreturn_t i965_irq_handler(int irq, void *arg)
3995 {
3996 	struct drm_device *dev = arg;
3997 	struct drm_i915_private *dev_priv = to_i915(dev);
3998 	u32 iir, new_iir;
3999 	u32 pipe_stats[I915_MAX_PIPES];
4000 	int ret = IRQ_NONE, pipe;
4001 
4002 	if (!intel_irqs_enabled(dev_priv))
4003 		return IRQ_NONE;
4004 
4005 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4006 	disable_rpm_wakeref_asserts(dev_priv);
4007 
4008 	iir = I915_READ(IIR);
4009 
4010 	for (;;) {
4011 		bool irq_received = (iir) != 0;
4012 		bool blc_event = false;
4013 
4014 		/* Can't rely on pipestat interrupt bit in iir as it might
4015 		 * have been cleared after the pipestat interrupt was received.
4016 		 * It doesn't set the bit in iir again, but it still produces
4017 		 * interrupts (for non-MSI).
4018 		 */
4019 		spin_lock(&dev_priv->irq_lock);
4020 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4021 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4022 
4023 		for_each_pipe(dev_priv, pipe) {
4024 			i915_reg_t reg = PIPESTAT(pipe);
4025 			pipe_stats[pipe] = I915_READ(reg);
4026 
4027 			/*
4028 			 * Clear the PIPE*STAT regs before the IIR
4029 			 */
4030 			if (pipe_stats[pipe] & 0x8000ffff) {
4031 				I915_WRITE(reg, pipe_stats[pipe]);
4032 				irq_received = true;
4033 			}
4034 		}
4035 		spin_unlock(&dev_priv->irq_lock);
4036 
4037 		if (!irq_received)
4038 			break;
4039 
4040 		ret = IRQ_HANDLED;
4041 
4042 		/* Consume port.  Then clear IIR or we'll miss events */
4043 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4044 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4045 			if (hotplug_status)
4046 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4047 		}
4048 
4049 		I915_WRITE(IIR, iir);
4050 		new_iir = I915_READ(IIR); /* Flush posted writes */
4051 
4052 		if (iir & I915_USER_INTERRUPT)
4053 			notify_ring(dev_priv->engine[RCS]);
4054 		if (iir & I915_BSD_USER_INTERRUPT)
4055 			notify_ring(dev_priv->engine[VCS]);
4056 
4057 		for_each_pipe(dev_priv, pipe) {
4058 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4059 				drm_handle_vblank(&dev_priv->drm, pipe);
4060 
4061 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4062 				blc_event = true;
4063 
4064 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4065 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4066 
4067 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4068 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4069 		}
4070 
4071 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4072 			intel_opregion_asle_intr(dev_priv);
4073 
4074 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4075 			gmbus_irq_handler(dev_priv);
4076 
4077 		/* With MSI, interrupts are only generated when iir
4078 		 * transitions from zero to nonzero.  If another bit got
4079 		 * set while we were handling the existing iir bits, then
4080 		 * we would never get another interrupt.
4081 		 *
4082 		 * This is fine on non-MSI as well, as if we hit this path
4083 		 * we avoid exiting the interrupt handler only to generate
4084 		 * another one.
4085 		 *
4086 		 * Note that for MSI this could cause a stray interrupt report
4087 		 * if an interrupt landed in the time between writing IIR and
4088 		 * the posting read.  This should be rare enough to never
4089 		 * trigger the 99% of 100,000 interrupts test for disabling
4090 		 * stray interrupts.
4091 		 */
4092 		iir = new_iir;
4093 	}
4094 
4095 	enable_rpm_wakeref_asserts(dev_priv);
4096 
4097 	return ret;
4098 }
4099 
4100 static void i965_irq_uninstall(struct drm_device * dev)
4101 {
4102 	struct drm_i915_private *dev_priv = to_i915(dev);
4103 	int pipe;
4104 
4105 	if (!dev_priv)
4106 		return;
4107 
4108 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4109 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4110 
4111 	I915_WRITE(HWSTAM, 0xffffffff);
4112 	for_each_pipe(dev_priv, pipe)
4113 		I915_WRITE(PIPESTAT(pipe), 0);
4114 	I915_WRITE(IMR, 0xffffffff);
4115 	I915_WRITE(IER, 0x0);
4116 
4117 	for_each_pipe(dev_priv, pipe)
4118 		I915_WRITE(PIPESTAT(pipe),
4119 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4120 	I915_WRITE(IIR, I915_READ(IIR));
4121 }
4122 
4123 /**
4124  * intel_irq_init - initializes irq support
4125  * @dev_priv: i915 device instance
4126  *
4127  * This function initializes all the irq support including work items, timers
4128  * and all the vtables. It does not setup the interrupt itself though.
4129  */
4130 void intel_irq_init(struct drm_i915_private *dev_priv)
4131 {
4132 	struct drm_device *dev = &dev_priv->drm;
4133 	int i;
4134 
4135 	intel_hpd_init_work(dev_priv);
4136 
4137 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4138 
4139 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4140 	for (i = 0; i < MAX_L3_SLICES; ++i)
4141 		dev_priv->l3_parity.remap_info[i] = NULL;
4142 
4143 	if (HAS_GUC_SCHED(dev_priv))
4144 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4145 
4146 	/* Let's track the enabled rps events */
4147 	if (IS_VALLEYVIEW(dev_priv))
4148 		/* WaGsvRC0ResidencyMethod:vlv */
4149 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4150 	else
4151 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4152 
4153 	dev_priv->rps.pm_intrmsk_mbz = 0;
4154 
4155 	/*
4156 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4157 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4158 	 *
4159 	 * TODO: verify if this can be reproduced on VLV,CHV.
4160 	 */
4161 	if (INTEL_GEN(dev_priv) <= 7)
4162 		dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4163 
4164 	if (INTEL_GEN(dev_priv) >= 8)
4165 		dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4166 
4167 	if (IS_GEN2(dev_priv)) {
4168 		/* Gen2 doesn't have a hardware frame counter */
4169 		dev->max_vblank_count = 0;
4170 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4171 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4172 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4173 	} else {
4174 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4175 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4176 	}
4177 
4178 	/*
4179 	 * Opt out of the vblank disable timer on everything except gen2.
4180 	 * Gen2 doesn't have a hardware frame counter and so depends on
4181 	 * vblank interrupts to produce sane vblank seuquence numbers.
4182 	 */
4183 	if (!IS_GEN2(dev_priv))
4184 		dev->vblank_disable_immediate = true;
4185 
4186 	/* Most platforms treat the display irq block as an always-on
4187 	 * power domain. vlv/chv can disable it at runtime and need
4188 	 * special care to avoid writing any of the display block registers
4189 	 * outside of the power domain. We defer setting up the display irqs
4190 	 * in this case to the runtime pm.
4191 	 */
4192 	dev_priv->display_irqs_enabled = true;
4193 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4194 		dev_priv->display_irqs_enabled = false;
4195 
4196 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4197 
4198 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4199 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4200 
4201 	if (IS_CHERRYVIEW(dev_priv)) {
4202 		dev->driver->irq_handler = cherryview_irq_handler;
4203 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4204 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4205 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4206 		dev->driver->enable_vblank = i965_enable_vblank;
4207 		dev->driver->disable_vblank = i965_disable_vblank;
4208 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4209 	} else if (IS_VALLEYVIEW(dev_priv)) {
4210 		dev->driver->irq_handler = valleyview_irq_handler;
4211 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4212 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4213 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4214 		dev->driver->enable_vblank = i965_enable_vblank;
4215 		dev->driver->disable_vblank = i965_disable_vblank;
4216 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4217 	} else if (INTEL_GEN(dev_priv) >= 8) {
4218 		dev->driver->irq_handler = gen8_irq_handler;
4219 		dev->driver->irq_preinstall = gen8_irq_reset;
4220 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4221 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4222 		dev->driver->enable_vblank = gen8_enable_vblank;
4223 		dev->driver->disable_vblank = gen8_disable_vblank;
4224 		if (IS_GEN9_LP(dev_priv))
4225 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4226 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4227 			 HAS_PCH_CNP(dev_priv))
4228 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4229 		else
4230 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4231 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4232 		dev->driver->irq_handler = ironlake_irq_handler;
4233 		dev->driver->irq_preinstall = ironlake_irq_reset;
4234 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4235 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4236 		dev->driver->enable_vblank = ironlake_enable_vblank;
4237 		dev->driver->disable_vblank = ironlake_disable_vblank;
4238 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4239 	} else {
4240 		if (IS_GEN2(dev_priv)) {
4241 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4242 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4243 			dev->driver->irq_handler = i8xx_irq_handler;
4244 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4245 			dev->driver->enable_vblank = i8xx_enable_vblank;
4246 			dev->driver->disable_vblank = i8xx_disable_vblank;
4247 		} else if (IS_GEN3(dev_priv)) {
4248 			dev->driver->irq_preinstall = i915_irq_preinstall;
4249 			dev->driver->irq_postinstall = i915_irq_postinstall;
4250 			dev->driver->irq_uninstall = i915_irq_uninstall;
4251 			dev->driver->irq_handler = i915_irq_handler;
4252 			dev->driver->enable_vblank = i8xx_enable_vblank;
4253 			dev->driver->disable_vblank = i8xx_disable_vblank;
4254 		} else {
4255 			dev->driver->irq_preinstall = i965_irq_preinstall;
4256 			dev->driver->irq_postinstall = i965_irq_postinstall;
4257 			dev->driver->irq_uninstall = i965_irq_uninstall;
4258 			dev->driver->irq_handler = i965_irq_handler;
4259 			dev->driver->enable_vblank = i965_enable_vblank;
4260 			dev->driver->disable_vblank = i965_disable_vblank;
4261 		}
4262 		if (I915_HAS_HOTPLUG(dev_priv))
4263 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4264 	}
4265 }
4266 
4267 /**
4268  * intel_irq_fini - deinitializes IRQ support
4269  * @i915: i915 device instance
4270  *
4271  * This function deinitializes all the IRQ support.
4272  */
4273 void intel_irq_fini(struct drm_i915_private *i915)
4274 {
4275 	int i;
4276 
4277 	for (i = 0; i < MAX_L3_SLICES; ++i)
4278 		kfree(i915->l3_parity.remap_info[i]);
4279 }
4280 
4281 /**
4282  * intel_irq_install - enables the hardware interrupt
4283  * @dev_priv: i915 device instance
4284  *
4285  * This function enables the hardware interrupt handling, but leaves the hotplug
4286  * handling still disabled. It is called after intel_irq_init().
4287  *
4288  * In the driver load and resume code we need working interrupts in a few places
4289  * but don't want to deal with the hassle of concurrent probe and hotplug
4290  * workers. Hence the split into this two-stage approach.
4291  */
4292 int intel_irq_install(struct drm_i915_private *dev_priv)
4293 {
4294 	/*
4295 	 * We enable some interrupt sources in our postinstall hooks, so mark
4296 	 * interrupts as enabled _before_ actually enabling them to avoid
4297 	 * special cases in our ordering checks.
4298 	 */
4299 	dev_priv->pm.irqs_enabled = true;
4300 
4301 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4302 }
4303 
4304 /**
4305  * intel_irq_uninstall - finilizes all irq handling
4306  * @dev_priv: i915 device instance
4307  *
4308  * This stops interrupt and hotplug handling and unregisters and frees all
4309  * resources acquired in the init functions.
4310  */
4311 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4312 {
4313 	drm_irq_uninstall(&dev_priv->drm);
4314 	intel_hpd_cancel_work(dev_priv);
4315 	dev_priv->pm.irqs_enabled = false;
4316 }
4317 
4318 /**
4319  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4320  * @dev_priv: i915 device instance
4321  *
4322  * This function is used to disable interrupts at runtime, both in the runtime
4323  * pm and the system suspend/resume code.
4324  */
4325 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4326 {
4327 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4328 	dev_priv->pm.irqs_enabled = false;
4329 	synchronize_irq(dev_priv->drm.irq);
4330 }
4331 
4332 /**
4333  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4334  * @dev_priv: i915 device instance
4335  *
4336  * This function is used to enable interrupts at runtime, both in the runtime
4337  * pm and the system suspend/resume code.
4338  */
4339 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4340 {
4341 	dev_priv->pm.irqs_enabled = true;
4342 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4343 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4344 }
4345