xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 93d90ad7)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ibx[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55 
56 static const u32 hpd_cpt[] = {
57 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63 
64 static const u32 hpd_mask_i915[] = {
65 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72 
73 static const u32 hpd_status_g4x[] = {
74 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81 
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90 
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94 	POSTING_READ(GEN8_##type##_IMR(which)); \
95 	I915_WRITE(GEN8_##type##_IER(which), 0); \
96 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97 	POSTING_READ(GEN8_##type##_IIR(which)); \
98 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99 	POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101 
102 #define GEN5_IRQ_RESET(type) do { \
103 	I915_WRITE(type##IMR, 0xffffffff); \
104 	POSTING_READ(type##IMR); \
105 	I915_WRITE(type##IER, 0); \
106 	I915_WRITE(type##IIR, 0xffffffff); \
107 	POSTING_READ(type##IIR); \
108 	I915_WRITE(type##IIR, 0xffffffff); \
109 	POSTING_READ(type##IIR); \
110 } while (0)
111 
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116 	u32 val = I915_READ(reg); \
117 	if (val) { \
118 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119 		     (reg), val); \
120 		I915_WRITE((reg), 0xffffffff); \
121 		POSTING_READ(reg); \
122 		I915_WRITE((reg), 0xffffffff); \
123 		POSTING_READ(reg); \
124 	} \
125 } while (0)
126 
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131 	POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133 
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136 	I915_WRITE(type##IER, (ier_val)); \
137 	I915_WRITE(type##IMR, (imr_val)); \
138 	POSTING_READ(type##IMR); \
139 } while (0)
140 
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142 
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 	assert_spin_locked(&dev_priv->irq_lock);
148 
149 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 		return;
151 
152 	if ((dev_priv->irq_mask & mask) != 0) {
153 		dev_priv->irq_mask &= ~mask;
154 		I915_WRITE(DEIMR, dev_priv->irq_mask);
155 		POSTING_READ(DEIMR);
156 	}
157 }
158 
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162 	assert_spin_locked(&dev_priv->irq_lock);
163 
164 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165 		return;
166 
167 	if ((dev_priv->irq_mask & mask) != mask) {
168 		dev_priv->irq_mask |= mask;
169 		I915_WRITE(DEIMR, dev_priv->irq_mask);
170 		POSTING_READ(DEIMR);
171 	}
172 }
173 
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181 			      uint32_t interrupt_mask,
182 			      uint32_t enabled_irq_mask)
183 {
184 	assert_spin_locked(&dev_priv->irq_lock);
185 
186 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
187 
188 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189 		return;
190 
191 	dev_priv->gt_irq_mask &= ~interrupt_mask;
192 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194 	POSTING_READ(GTIMR);
195 }
196 
197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199 	ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201 
202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204 	ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206 
207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211 
212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216 
217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221 
222 /**
223   * snb_update_pm_irq - update GEN6_PMIMR
224   * @dev_priv: driver private
225   * @interrupt_mask: mask of interrupt bits to update
226   * @enabled_irq_mask: mask of interrupt bits to enable
227   */
228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229 			      uint32_t interrupt_mask,
230 			      uint32_t enabled_irq_mask)
231 {
232 	uint32_t new_val;
233 
234 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
235 
236 	assert_spin_locked(&dev_priv->irq_lock);
237 
238 	new_val = dev_priv->pm_irq_mask;
239 	new_val &= ~interrupt_mask;
240 	new_val |= (~enabled_irq_mask & interrupt_mask);
241 
242 	if (new_val != dev_priv->pm_irq_mask) {
243 		dev_priv->pm_irq_mask = new_val;
244 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245 		POSTING_READ(gen6_pm_imr(dev_priv));
246 	}
247 }
248 
249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252 		return;
253 
254 	snb_update_pm_irq(dev_priv, mask, mask);
255 }
256 
257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258 				  uint32_t mask)
259 {
260 	snb_update_pm_irq(dev_priv, mask, 0);
261 }
262 
263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266 		return;
267 
268 	__gen6_disable_pm_irq(dev_priv, mask);
269 }
270 
271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273 	struct drm_i915_private *dev_priv = dev->dev_private;
274 	uint32_t reg = gen6_pm_iir(dev_priv);
275 
276 	spin_lock_irq(&dev_priv->irq_lock);
277 	I915_WRITE(reg, dev_priv->pm_rps_events);
278 	I915_WRITE(reg, dev_priv->pm_rps_events);
279 	POSTING_READ(reg);
280 	spin_unlock_irq(&dev_priv->irq_lock);
281 }
282 
283 void gen6_enable_rps_interrupts(struct drm_device *dev)
284 {
285 	struct drm_i915_private *dev_priv = dev->dev_private;
286 
287 	spin_lock_irq(&dev_priv->irq_lock);
288 
289 	WARN_ON(dev_priv->rps.pm_iir);
290 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
291 	dev_priv->rps.interrupts_enabled = true;
292 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
293 				dev_priv->pm_rps_events);
294 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
295 
296 	spin_unlock_irq(&dev_priv->irq_lock);
297 }
298 
299 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
300 {
301 	/*
302 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
303 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
304 	 *
305 	 * TODO: verify if this can be reproduced on VLV,CHV.
306 	 */
307 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
308 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
309 
310 	if (INTEL_INFO(dev_priv)->gen >= 8)
311 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
312 
313 	return mask;
314 }
315 
316 void gen6_disable_rps_interrupts(struct drm_device *dev)
317 {
318 	struct drm_i915_private *dev_priv = dev->dev_private;
319 
320 	spin_lock_irq(&dev_priv->irq_lock);
321 	dev_priv->rps.interrupts_enabled = false;
322 	spin_unlock_irq(&dev_priv->irq_lock);
323 
324 	cancel_work_sync(&dev_priv->rps.work);
325 
326 	spin_lock_irq(&dev_priv->irq_lock);
327 
328 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
329 
330 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
331 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
332 				~dev_priv->pm_rps_events);
333 	I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
334 	I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
335 
336 	dev_priv->rps.pm_iir = 0;
337 
338 	spin_unlock_irq(&dev_priv->irq_lock);
339 }
340 
341 /**
342  * ibx_display_interrupt_update - update SDEIMR
343  * @dev_priv: driver private
344  * @interrupt_mask: mask of interrupt bits to update
345  * @enabled_irq_mask: mask of interrupt bits to enable
346  */
347 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
348 				  uint32_t interrupt_mask,
349 				  uint32_t enabled_irq_mask)
350 {
351 	uint32_t sdeimr = I915_READ(SDEIMR);
352 	sdeimr &= ~interrupt_mask;
353 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
354 
355 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
356 
357 	assert_spin_locked(&dev_priv->irq_lock);
358 
359 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
360 		return;
361 
362 	I915_WRITE(SDEIMR, sdeimr);
363 	POSTING_READ(SDEIMR);
364 }
365 
366 static void
367 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
368 		       u32 enable_mask, u32 status_mask)
369 {
370 	u32 reg = PIPESTAT(pipe);
371 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
372 
373 	assert_spin_locked(&dev_priv->irq_lock);
374 	WARN_ON(!intel_irqs_enabled(dev_priv));
375 
376 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
377 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
378 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
379 		      pipe_name(pipe), enable_mask, status_mask))
380 		return;
381 
382 	if ((pipestat & enable_mask) == enable_mask)
383 		return;
384 
385 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
386 
387 	/* Enable the interrupt, clear any pending status */
388 	pipestat |= enable_mask | status_mask;
389 	I915_WRITE(reg, pipestat);
390 	POSTING_READ(reg);
391 }
392 
393 static void
394 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
395 		        u32 enable_mask, u32 status_mask)
396 {
397 	u32 reg = PIPESTAT(pipe);
398 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
399 
400 	assert_spin_locked(&dev_priv->irq_lock);
401 	WARN_ON(!intel_irqs_enabled(dev_priv));
402 
403 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
404 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
405 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
406 		      pipe_name(pipe), enable_mask, status_mask))
407 		return;
408 
409 	if ((pipestat & enable_mask) == 0)
410 		return;
411 
412 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
413 
414 	pipestat &= ~enable_mask;
415 	I915_WRITE(reg, pipestat);
416 	POSTING_READ(reg);
417 }
418 
419 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
420 {
421 	u32 enable_mask = status_mask << 16;
422 
423 	/*
424 	 * On pipe A we don't support the PSR interrupt yet,
425 	 * on pipe B and C the same bit MBZ.
426 	 */
427 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
428 		return 0;
429 	/*
430 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
431 	 * A the same bit is for perf counters which we don't use either.
432 	 */
433 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
434 		return 0;
435 
436 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
437 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
438 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
439 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
440 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
441 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
442 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
443 
444 	return enable_mask;
445 }
446 
447 void
448 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
449 		     u32 status_mask)
450 {
451 	u32 enable_mask;
452 
453 	if (IS_VALLEYVIEW(dev_priv->dev))
454 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
455 							   status_mask);
456 	else
457 		enable_mask = status_mask << 16;
458 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
459 }
460 
461 void
462 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
463 		      u32 status_mask)
464 {
465 	u32 enable_mask;
466 
467 	if (IS_VALLEYVIEW(dev_priv->dev))
468 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
469 							   status_mask);
470 	else
471 		enable_mask = status_mask << 16;
472 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
473 }
474 
475 /**
476  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
477  */
478 static void i915_enable_asle_pipestat(struct drm_device *dev)
479 {
480 	struct drm_i915_private *dev_priv = dev->dev_private;
481 
482 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
483 		return;
484 
485 	spin_lock_irq(&dev_priv->irq_lock);
486 
487 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
488 	if (INTEL_INFO(dev)->gen >= 4)
489 		i915_enable_pipestat(dev_priv, PIPE_A,
490 				     PIPE_LEGACY_BLC_EVENT_STATUS);
491 
492 	spin_unlock_irq(&dev_priv->irq_lock);
493 }
494 
495 /**
496  * i915_pipe_enabled - check if a pipe is enabled
497  * @dev: DRM device
498  * @pipe: pipe to check
499  *
500  * Reading certain registers when the pipe is disabled can hang the chip.
501  * Use this routine to make sure the PLL is running and the pipe is active
502  * before reading such registers if unsure.
503  */
504 static int
505 i915_pipe_enabled(struct drm_device *dev, int pipe)
506 {
507 	struct drm_i915_private *dev_priv = dev->dev_private;
508 
509 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
510 		/* Locking is horribly broken here, but whatever. */
511 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
512 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
513 
514 		return intel_crtc->active;
515 	} else {
516 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
517 	}
518 }
519 
520 /*
521  * This timing diagram depicts the video signal in and
522  * around the vertical blanking period.
523  *
524  * Assumptions about the fictitious mode used in this example:
525  *  vblank_start >= 3
526  *  vsync_start = vblank_start + 1
527  *  vsync_end = vblank_start + 2
528  *  vtotal = vblank_start + 3
529  *
530  *           start of vblank:
531  *           latch double buffered registers
532  *           increment frame counter (ctg+)
533  *           generate start of vblank interrupt (gen4+)
534  *           |
535  *           |          frame start:
536  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
537  *           |          may be shifted forward 1-3 extra lines via PIPECONF
538  *           |          |
539  *           |          |  start of vsync:
540  *           |          |  generate vsync interrupt
541  *           |          |  |
542  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
543  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
544  * ----va---> <-----------------vb--------------------> <--------va-------------
545  *       |          |       <----vs----->                     |
546  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
547  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
548  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
549  *       |          |                                         |
550  *       last visible pixel                                   first visible pixel
551  *                  |                                         increment frame counter (gen3/4)
552  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
553  *
554  * x  = horizontal active
555  * _  = horizontal blanking
556  * hs = horizontal sync
557  * va = vertical active
558  * vb = vertical blanking
559  * vs = vertical sync
560  * vbs = vblank_start (number)
561  *
562  * Summary:
563  * - most events happen at the start of horizontal sync
564  * - frame start happens at the start of horizontal blank, 1-4 lines
565  *   (depending on PIPECONF settings) after the start of vblank
566  * - gen3/4 pixel and frame counter are synchronized with the start
567  *   of horizontal active on the first line of vertical active
568  */
569 
570 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
571 {
572 	/* Gen2 doesn't have a hardware frame counter */
573 	return 0;
574 }
575 
576 /* Called from drm generic code, passed a 'crtc', which
577  * we use as a pipe index
578  */
579 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
580 {
581 	struct drm_i915_private *dev_priv = dev->dev_private;
582 	unsigned long high_frame;
583 	unsigned long low_frame;
584 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
585 
586 	if (!i915_pipe_enabled(dev, pipe)) {
587 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
588 				"pipe %c\n", pipe_name(pipe));
589 		return 0;
590 	}
591 
592 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
593 		struct intel_crtc *intel_crtc =
594 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
595 		const struct drm_display_mode *mode =
596 			&intel_crtc->config.adjusted_mode;
597 
598 		htotal = mode->crtc_htotal;
599 		hsync_start = mode->crtc_hsync_start;
600 		vbl_start = mode->crtc_vblank_start;
601 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
603 	} else {
604 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
605 
606 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
607 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
608 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
609 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
610 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
611 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
612 	}
613 
614 	/* Convert to pixel count */
615 	vbl_start *= htotal;
616 
617 	/* Start of vblank event occurs at start of hsync */
618 	vbl_start -= htotal - hsync_start;
619 
620 	high_frame = PIPEFRAME(pipe);
621 	low_frame = PIPEFRAMEPIXEL(pipe);
622 
623 	/*
624 	 * High & low register fields aren't synchronized, so make sure
625 	 * we get a low value that's stable across two reads of the high
626 	 * register.
627 	 */
628 	do {
629 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
630 		low   = I915_READ(low_frame);
631 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
632 	} while (high1 != high2);
633 
634 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
635 	pixel = low & PIPE_PIXEL_MASK;
636 	low >>= PIPE_FRAME_LOW_SHIFT;
637 
638 	/*
639 	 * The frame counter increments at beginning of active.
640 	 * Cook up a vblank counter by also checking the pixel
641 	 * counter against vblank start.
642 	 */
643 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
644 }
645 
646 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
647 {
648 	struct drm_i915_private *dev_priv = dev->dev_private;
649 	int reg = PIPE_FRMCOUNT_GM45(pipe);
650 
651 	if (!i915_pipe_enabled(dev, pipe)) {
652 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
653 				 "pipe %c\n", pipe_name(pipe));
654 		return 0;
655 	}
656 
657 	return I915_READ(reg);
658 }
659 
660 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
661 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
662 
663 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
664 {
665 	struct drm_device *dev = crtc->base.dev;
666 	struct drm_i915_private *dev_priv = dev->dev_private;
667 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
668 	enum pipe pipe = crtc->pipe;
669 	int position, vtotal;
670 
671 	vtotal = mode->crtc_vtotal;
672 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
673 		vtotal /= 2;
674 
675 	if (IS_GEN2(dev))
676 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
677 	else
678 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
679 
680 	/*
681 	 * See update_scanline_offset() for the details on the
682 	 * scanline_offset adjustment.
683 	 */
684 	return (position + crtc->scanline_offset) % vtotal;
685 }
686 
687 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
688 				    unsigned int flags, int *vpos, int *hpos,
689 				    ktime_t *stime, ktime_t *etime)
690 {
691 	struct drm_i915_private *dev_priv = dev->dev_private;
692 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
693 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
694 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
695 	int position;
696 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
697 	bool in_vbl = true;
698 	int ret = 0;
699 	unsigned long irqflags;
700 
701 	if (!intel_crtc->active) {
702 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
703 				 "pipe %c\n", pipe_name(pipe));
704 		return 0;
705 	}
706 
707 	htotal = mode->crtc_htotal;
708 	hsync_start = mode->crtc_hsync_start;
709 	vtotal = mode->crtc_vtotal;
710 	vbl_start = mode->crtc_vblank_start;
711 	vbl_end = mode->crtc_vblank_end;
712 
713 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
714 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
715 		vbl_end /= 2;
716 		vtotal /= 2;
717 	}
718 
719 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
720 
721 	/*
722 	 * Lock uncore.lock, as we will do multiple timing critical raw
723 	 * register reads, potentially with preemption disabled, so the
724 	 * following code must not block on uncore.lock.
725 	 */
726 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
727 
728 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
729 
730 	/* Get optional system timestamp before query. */
731 	if (stime)
732 		*stime = ktime_get();
733 
734 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
735 		/* No obvious pixelcount register. Only query vertical
736 		 * scanout position from Display scan line register.
737 		 */
738 		position = __intel_get_crtc_scanline(intel_crtc);
739 	} else {
740 		/* Have access to pixelcount since start of frame.
741 		 * We can split this into vertical and horizontal
742 		 * scanout position.
743 		 */
744 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
745 
746 		/* convert to pixel counts */
747 		vbl_start *= htotal;
748 		vbl_end *= htotal;
749 		vtotal *= htotal;
750 
751 		/*
752 		 * In interlaced modes, the pixel counter counts all pixels,
753 		 * so one field will have htotal more pixels. In order to avoid
754 		 * the reported position from jumping backwards when the pixel
755 		 * counter is beyond the length of the shorter field, just
756 		 * clamp the position the length of the shorter field. This
757 		 * matches how the scanline counter based position works since
758 		 * the scanline counter doesn't count the two half lines.
759 		 */
760 		if (position >= vtotal)
761 			position = vtotal - 1;
762 
763 		/*
764 		 * Start of vblank interrupt is triggered at start of hsync,
765 		 * just prior to the first active line of vblank. However we
766 		 * consider lines to start at the leading edge of horizontal
767 		 * active. So, should we get here before we've crossed into
768 		 * the horizontal active of the first line in vblank, we would
769 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
770 		 * always add htotal-hsync_start to the current pixel position.
771 		 */
772 		position = (position + htotal - hsync_start) % vtotal;
773 	}
774 
775 	/* Get optional system timestamp after query. */
776 	if (etime)
777 		*etime = ktime_get();
778 
779 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
780 
781 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782 
783 	in_vbl = position >= vbl_start && position < vbl_end;
784 
785 	/*
786 	 * While in vblank, position will be negative
787 	 * counting up towards 0 at vbl_end. And outside
788 	 * vblank, position will be positive counting
789 	 * up since vbl_end.
790 	 */
791 	if (position >= vbl_start)
792 		position -= vbl_end;
793 	else
794 		position += vtotal - vbl_end;
795 
796 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
797 		*vpos = position;
798 		*hpos = 0;
799 	} else {
800 		*vpos = position / htotal;
801 		*hpos = position - (*vpos * htotal);
802 	}
803 
804 	/* In vblank? */
805 	if (in_vbl)
806 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
807 
808 	return ret;
809 }
810 
811 int intel_get_crtc_scanline(struct intel_crtc *crtc)
812 {
813 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
814 	unsigned long irqflags;
815 	int position;
816 
817 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
818 	position = __intel_get_crtc_scanline(crtc);
819 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
820 
821 	return position;
822 }
823 
824 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
825 			      int *max_error,
826 			      struct timeval *vblank_time,
827 			      unsigned flags)
828 {
829 	struct drm_crtc *crtc;
830 
831 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
832 		DRM_ERROR("Invalid crtc %d\n", pipe);
833 		return -EINVAL;
834 	}
835 
836 	/* Get drm_crtc to timestamp: */
837 	crtc = intel_get_crtc_for_pipe(dev, pipe);
838 	if (crtc == NULL) {
839 		DRM_ERROR("Invalid crtc %d\n", pipe);
840 		return -EINVAL;
841 	}
842 
843 	if (!crtc->enabled) {
844 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
845 		return -EBUSY;
846 	}
847 
848 	/* Helper routine in DRM core does all the work: */
849 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
850 						     vblank_time, flags,
851 						     crtc,
852 						     &to_intel_crtc(crtc)->config.adjusted_mode);
853 }
854 
855 static bool intel_hpd_irq_event(struct drm_device *dev,
856 				struct drm_connector *connector)
857 {
858 	enum drm_connector_status old_status;
859 
860 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
861 	old_status = connector->status;
862 
863 	connector->status = connector->funcs->detect(connector, false);
864 	if (old_status == connector->status)
865 		return false;
866 
867 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
868 		      connector->base.id,
869 		      connector->name,
870 		      drm_get_connector_status_name(old_status),
871 		      drm_get_connector_status_name(connector->status));
872 
873 	return true;
874 }
875 
876 static void i915_digport_work_func(struct work_struct *work)
877 {
878 	struct drm_i915_private *dev_priv =
879 		container_of(work, struct drm_i915_private, dig_port_work);
880 	u32 long_port_mask, short_port_mask;
881 	struct intel_digital_port *intel_dig_port;
882 	int i, ret;
883 	u32 old_bits = 0;
884 
885 	spin_lock_irq(&dev_priv->irq_lock);
886 	long_port_mask = dev_priv->long_hpd_port_mask;
887 	dev_priv->long_hpd_port_mask = 0;
888 	short_port_mask = dev_priv->short_hpd_port_mask;
889 	dev_priv->short_hpd_port_mask = 0;
890 	spin_unlock_irq(&dev_priv->irq_lock);
891 
892 	for (i = 0; i < I915_MAX_PORTS; i++) {
893 		bool valid = false;
894 		bool long_hpd = false;
895 		intel_dig_port = dev_priv->hpd_irq_port[i];
896 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
897 			continue;
898 
899 		if (long_port_mask & (1 << i))  {
900 			valid = true;
901 			long_hpd = true;
902 		} else if (short_port_mask & (1 << i))
903 			valid = true;
904 
905 		if (valid) {
906 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
907 			if (ret == true) {
908 				/* if we get true fallback to old school hpd */
909 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
910 			}
911 		}
912 	}
913 
914 	if (old_bits) {
915 		spin_lock_irq(&dev_priv->irq_lock);
916 		dev_priv->hpd_event_bits |= old_bits;
917 		spin_unlock_irq(&dev_priv->irq_lock);
918 		schedule_work(&dev_priv->hotplug_work);
919 	}
920 }
921 
922 /*
923  * Handle hotplug events outside the interrupt handler proper.
924  */
925 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
926 
927 static void i915_hotplug_work_func(struct work_struct *work)
928 {
929 	struct drm_i915_private *dev_priv =
930 		container_of(work, struct drm_i915_private, hotplug_work);
931 	struct drm_device *dev = dev_priv->dev;
932 	struct drm_mode_config *mode_config = &dev->mode_config;
933 	struct intel_connector *intel_connector;
934 	struct intel_encoder *intel_encoder;
935 	struct drm_connector *connector;
936 	bool hpd_disabled = false;
937 	bool changed = false;
938 	u32 hpd_event_bits;
939 
940 	mutex_lock(&mode_config->mutex);
941 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
942 
943 	spin_lock_irq(&dev_priv->irq_lock);
944 
945 	hpd_event_bits = dev_priv->hpd_event_bits;
946 	dev_priv->hpd_event_bits = 0;
947 	list_for_each_entry(connector, &mode_config->connector_list, head) {
948 		intel_connector = to_intel_connector(connector);
949 		if (!intel_connector->encoder)
950 			continue;
951 		intel_encoder = intel_connector->encoder;
952 		if (intel_encoder->hpd_pin > HPD_NONE &&
953 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
954 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
955 			DRM_INFO("HPD interrupt storm detected on connector %s: "
956 				 "switching from hotplug detection to polling\n",
957 				connector->name);
958 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
959 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
960 				| DRM_CONNECTOR_POLL_DISCONNECT;
961 			hpd_disabled = true;
962 		}
963 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
964 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
965 				      connector->name, intel_encoder->hpd_pin);
966 		}
967 	}
968 	 /* if there were no outputs to poll, poll was disabled,
969 	  * therefore make sure it's enabled when disabling HPD on
970 	  * some connectors */
971 	if (hpd_disabled) {
972 		drm_kms_helper_poll_enable(dev);
973 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
974 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
975 	}
976 
977 	spin_unlock_irq(&dev_priv->irq_lock);
978 
979 	list_for_each_entry(connector, &mode_config->connector_list, head) {
980 		intel_connector = to_intel_connector(connector);
981 		if (!intel_connector->encoder)
982 			continue;
983 		intel_encoder = intel_connector->encoder;
984 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
985 			if (intel_encoder->hot_plug)
986 				intel_encoder->hot_plug(intel_encoder);
987 			if (intel_hpd_irq_event(dev, connector))
988 				changed = true;
989 		}
990 	}
991 	mutex_unlock(&mode_config->mutex);
992 
993 	if (changed)
994 		drm_kms_helper_hotplug_event(dev);
995 }
996 
997 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
998 {
999 	struct drm_i915_private *dev_priv = dev->dev_private;
1000 	u32 busy_up, busy_down, max_avg, min_avg;
1001 	u8 new_delay;
1002 
1003 	spin_lock(&mchdev_lock);
1004 
1005 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1006 
1007 	new_delay = dev_priv->ips.cur_delay;
1008 
1009 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1010 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1011 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1012 	max_avg = I915_READ(RCBMAXAVG);
1013 	min_avg = I915_READ(RCBMINAVG);
1014 
1015 	/* Handle RCS change request from hw */
1016 	if (busy_up > max_avg) {
1017 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1018 			new_delay = dev_priv->ips.cur_delay - 1;
1019 		if (new_delay < dev_priv->ips.max_delay)
1020 			new_delay = dev_priv->ips.max_delay;
1021 	} else if (busy_down < min_avg) {
1022 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1023 			new_delay = dev_priv->ips.cur_delay + 1;
1024 		if (new_delay > dev_priv->ips.min_delay)
1025 			new_delay = dev_priv->ips.min_delay;
1026 	}
1027 
1028 	if (ironlake_set_drps(dev, new_delay))
1029 		dev_priv->ips.cur_delay = new_delay;
1030 
1031 	spin_unlock(&mchdev_lock);
1032 
1033 	return;
1034 }
1035 
1036 static void notify_ring(struct drm_device *dev,
1037 			struct intel_engine_cs *ring)
1038 {
1039 	if (!intel_ring_initialized(ring))
1040 		return;
1041 
1042 	trace_i915_gem_request_notify(ring);
1043 
1044 	wake_up_all(&ring->irq_queue);
1045 }
1046 
1047 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1048 			    struct intel_rps_ei *rps_ei)
1049 {
1050 	u32 cz_ts, cz_freq_khz;
1051 	u32 render_count, media_count;
1052 	u32 elapsed_render, elapsed_media, elapsed_time;
1053 	u32 residency = 0;
1054 
1055 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1056 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1057 
1058 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1059 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1060 
1061 	if (rps_ei->cz_clock == 0) {
1062 		rps_ei->cz_clock = cz_ts;
1063 		rps_ei->render_c0 = render_count;
1064 		rps_ei->media_c0 = media_count;
1065 
1066 		return dev_priv->rps.cur_freq;
1067 	}
1068 
1069 	elapsed_time = cz_ts - rps_ei->cz_clock;
1070 	rps_ei->cz_clock = cz_ts;
1071 
1072 	elapsed_render = render_count - rps_ei->render_c0;
1073 	rps_ei->render_c0 = render_count;
1074 
1075 	elapsed_media = media_count - rps_ei->media_c0;
1076 	rps_ei->media_c0 = media_count;
1077 
1078 	/* Convert all the counters into common unit of milli sec */
1079 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1080 	elapsed_render /=  cz_freq_khz;
1081 	elapsed_media /= cz_freq_khz;
1082 
1083 	/*
1084 	 * Calculate overall C0 residency percentage
1085 	 * only if elapsed time is non zero
1086 	 */
1087 	if (elapsed_time) {
1088 		residency =
1089 			((max(elapsed_render, elapsed_media) * 100)
1090 				/ elapsed_time);
1091 	}
1092 
1093 	return residency;
1094 }
1095 
1096 /**
1097  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1098  * busy-ness calculated from C0 counters of render & media power wells
1099  * @dev_priv: DRM device private
1100  *
1101  */
1102 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1103 {
1104 	u32 residency_C0_up = 0, residency_C0_down = 0;
1105 	int new_delay, adj;
1106 
1107 	dev_priv->rps.ei_interrupt_count++;
1108 
1109 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1110 
1111 
1112 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1113 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1114 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1115 		return dev_priv->rps.cur_freq;
1116 	}
1117 
1118 
1119 	/*
1120 	 * To down throttle, C0 residency should be less than down threshold
1121 	 * for continous EI intervals. So calculate down EI counters
1122 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1123 	 */
1124 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1125 
1126 		dev_priv->rps.ei_interrupt_count = 0;
1127 
1128 		residency_C0_down = vlv_c0_residency(dev_priv,
1129 						     &dev_priv->rps.down_ei);
1130 	} else {
1131 		residency_C0_up = vlv_c0_residency(dev_priv,
1132 						   &dev_priv->rps.up_ei);
1133 	}
1134 
1135 	new_delay = dev_priv->rps.cur_freq;
1136 
1137 	adj = dev_priv->rps.last_adj;
1138 	/* C0 residency is greater than UP threshold. Increase Frequency */
1139 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1140 		if (adj > 0)
1141 			adj *= 2;
1142 		else
1143 			adj = 1;
1144 
1145 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1146 			new_delay = dev_priv->rps.cur_freq + adj;
1147 
1148 		/*
1149 		 * For better performance, jump directly
1150 		 * to RPe if we're below it.
1151 		 */
1152 		if (new_delay < dev_priv->rps.efficient_freq)
1153 			new_delay = dev_priv->rps.efficient_freq;
1154 
1155 	} else if (!dev_priv->rps.ei_interrupt_count &&
1156 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1157 		if (adj < 0)
1158 			adj *= 2;
1159 		else
1160 			adj = -1;
1161 		/*
1162 		 * This means, C0 residency is less than down threshold over
1163 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1164 		 */
1165 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1166 			new_delay = dev_priv->rps.cur_freq + adj;
1167 	}
1168 
1169 	return new_delay;
1170 }
1171 
1172 static void gen6_pm_rps_work(struct work_struct *work)
1173 {
1174 	struct drm_i915_private *dev_priv =
1175 		container_of(work, struct drm_i915_private, rps.work);
1176 	u32 pm_iir;
1177 	int new_delay, adj;
1178 
1179 	spin_lock_irq(&dev_priv->irq_lock);
1180 	/* Speed up work cancelation during disabling rps interrupts. */
1181 	if (!dev_priv->rps.interrupts_enabled) {
1182 		spin_unlock_irq(&dev_priv->irq_lock);
1183 		return;
1184 	}
1185 	pm_iir = dev_priv->rps.pm_iir;
1186 	dev_priv->rps.pm_iir = 0;
1187 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1188 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1189 	spin_unlock_irq(&dev_priv->irq_lock);
1190 
1191 	/* Make sure we didn't queue anything we're not going to process. */
1192 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1193 
1194 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1195 		return;
1196 
1197 	mutex_lock(&dev_priv->rps.hw_lock);
1198 
1199 	adj = dev_priv->rps.last_adj;
1200 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1201 		if (adj > 0)
1202 			adj *= 2;
1203 		else {
1204 			/* CHV needs even encode values */
1205 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1206 		}
1207 		new_delay = dev_priv->rps.cur_freq + adj;
1208 
1209 		/*
1210 		 * For better performance, jump directly
1211 		 * to RPe if we're below it.
1212 		 */
1213 		if (new_delay < dev_priv->rps.efficient_freq)
1214 			new_delay = dev_priv->rps.efficient_freq;
1215 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1216 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1217 			new_delay = dev_priv->rps.efficient_freq;
1218 		else
1219 			new_delay = dev_priv->rps.min_freq_softlimit;
1220 		adj = 0;
1221 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1222 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1223 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1224 		if (adj < 0)
1225 			adj *= 2;
1226 		else {
1227 			/* CHV needs even encode values */
1228 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1229 		}
1230 		new_delay = dev_priv->rps.cur_freq + adj;
1231 	} else { /* unknown event */
1232 		new_delay = dev_priv->rps.cur_freq;
1233 	}
1234 
1235 	/* sysfs frequency interfaces may have snuck in while servicing the
1236 	 * interrupt
1237 	 */
1238 	new_delay = clamp_t(int, new_delay,
1239 			    dev_priv->rps.min_freq_softlimit,
1240 			    dev_priv->rps.max_freq_softlimit);
1241 
1242 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1243 
1244 	if (IS_VALLEYVIEW(dev_priv->dev))
1245 		valleyview_set_rps(dev_priv->dev, new_delay);
1246 	else
1247 		gen6_set_rps(dev_priv->dev, new_delay);
1248 
1249 	mutex_unlock(&dev_priv->rps.hw_lock);
1250 }
1251 
1252 
1253 /**
1254  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1255  * occurred.
1256  * @work: workqueue struct
1257  *
1258  * Doesn't actually do anything except notify userspace. As a consequence of
1259  * this event, userspace should try to remap the bad rows since statistically
1260  * it is likely the same row is more likely to go bad again.
1261  */
1262 static void ivybridge_parity_work(struct work_struct *work)
1263 {
1264 	struct drm_i915_private *dev_priv =
1265 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1266 	u32 error_status, row, bank, subbank;
1267 	char *parity_event[6];
1268 	uint32_t misccpctl;
1269 	uint8_t slice = 0;
1270 
1271 	/* We must turn off DOP level clock gating to access the L3 registers.
1272 	 * In order to prevent a get/put style interface, acquire struct mutex
1273 	 * any time we access those registers.
1274 	 */
1275 	mutex_lock(&dev_priv->dev->struct_mutex);
1276 
1277 	/* If we've screwed up tracking, just let the interrupt fire again */
1278 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1279 		goto out;
1280 
1281 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1282 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1283 	POSTING_READ(GEN7_MISCCPCTL);
1284 
1285 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1286 		u32 reg;
1287 
1288 		slice--;
1289 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1290 			break;
1291 
1292 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1293 
1294 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1295 
1296 		error_status = I915_READ(reg);
1297 		row = GEN7_PARITY_ERROR_ROW(error_status);
1298 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1299 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1300 
1301 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1302 		POSTING_READ(reg);
1303 
1304 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1305 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1306 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1307 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1308 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1309 		parity_event[5] = NULL;
1310 
1311 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1312 				   KOBJ_CHANGE, parity_event);
1313 
1314 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1315 			  slice, row, bank, subbank);
1316 
1317 		kfree(parity_event[4]);
1318 		kfree(parity_event[3]);
1319 		kfree(parity_event[2]);
1320 		kfree(parity_event[1]);
1321 	}
1322 
1323 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1324 
1325 out:
1326 	WARN_ON(dev_priv->l3_parity.which_slice);
1327 	spin_lock_irq(&dev_priv->irq_lock);
1328 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1329 	spin_unlock_irq(&dev_priv->irq_lock);
1330 
1331 	mutex_unlock(&dev_priv->dev->struct_mutex);
1332 }
1333 
1334 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1335 {
1336 	struct drm_i915_private *dev_priv = dev->dev_private;
1337 
1338 	if (!HAS_L3_DPF(dev))
1339 		return;
1340 
1341 	spin_lock(&dev_priv->irq_lock);
1342 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1343 	spin_unlock(&dev_priv->irq_lock);
1344 
1345 	iir &= GT_PARITY_ERROR(dev);
1346 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1347 		dev_priv->l3_parity.which_slice |= 1 << 1;
1348 
1349 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1350 		dev_priv->l3_parity.which_slice |= 1 << 0;
1351 
1352 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1353 }
1354 
1355 static void ilk_gt_irq_handler(struct drm_device *dev,
1356 			       struct drm_i915_private *dev_priv,
1357 			       u32 gt_iir)
1358 {
1359 	if (gt_iir &
1360 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1361 		notify_ring(dev, &dev_priv->ring[RCS]);
1362 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1363 		notify_ring(dev, &dev_priv->ring[VCS]);
1364 }
1365 
1366 static void snb_gt_irq_handler(struct drm_device *dev,
1367 			       struct drm_i915_private *dev_priv,
1368 			       u32 gt_iir)
1369 {
1370 
1371 	if (gt_iir &
1372 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1373 		notify_ring(dev, &dev_priv->ring[RCS]);
1374 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1375 		notify_ring(dev, &dev_priv->ring[VCS]);
1376 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1377 		notify_ring(dev, &dev_priv->ring[BCS]);
1378 
1379 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1380 		      GT_BSD_CS_ERROR_INTERRUPT |
1381 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1382 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1383 
1384 	if (gt_iir & GT_PARITY_ERROR(dev))
1385 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1386 }
1387 
1388 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1389 				       struct drm_i915_private *dev_priv,
1390 				       u32 master_ctl)
1391 {
1392 	struct intel_engine_cs *ring;
1393 	u32 rcs, bcs, vcs;
1394 	uint32_t tmp = 0;
1395 	irqreturn_t ret = IRQ_NONE;
1396 
1397 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1398 		tmp = I915_READ(GEN8_GT_IIR(0));
1399 		if (tmp) {
1400 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1401 			ret = IRQ_HANDLED;
1402 
1403 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1404 			ring = &dev_priv->ring[RCS];
1405 			if (rcs & GT_RENDER_USER_INTERRUPT)
1406 				notify_ring(dev, ring);
1407 			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1408 				intel_lrc_irq_handler(ring);
1409 
1410 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1411 			ring = &dev_priv->ring[BCS];
1412 			if (bcs & GT_RENDER_USER_INTERRUPT)
1413 				notify_ring(dev, ring);
1414 			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1415 				intel_lrc_irq_handler(ring);
1416 		} else
1417 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1418 	}
1419 
1420 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1421 		tmp = I915_READ(GEN8_GT_IIR(1));
1422 		if (tmp) {
1423 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1424 			ret = IRQ_HANDLED;
1425 
1426 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1427 			ring = &dev_priv->ring[VCS];
1428 			if (vcs & GT_RENDER_USER_INTERRUPT)
1429 				notify_ring(dev, ring);
1430 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1431 				intel_lrc_irq_handler(ring);
1432 
1433 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1434 			ring = &dev_priv->ring[VCS2];
1435 			if (vcs & GT_RENDER_USER_INTERRUPT)
1436 				notify_ring(dev, ring);
1437 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1438 				intel_lrc_irq_handler(ring);
1439 		} else
1440 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1441 	}
1442 
1443 	if (master_ctl & GEN8_GT_PM_IRQ) {
1444 		tmp = I915_READ(GEN8_GT_IIR(2));
1445 		if (tmp & dev_priv->pm_rps_events) {
1446 			I915_WRITE(GEN8_GT_IIR(2),
1447 				   tmp & dev_priv->pm_rps_events);
1448 			ret = IRQ_HANDLED;
1449 			gen6_rps_irq_handler(dev_priv, tmp);
1450 		} else
1451 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1452 	}
1453 
1454 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1455 		tmp = I915_READ(GEN8_GT_IIR(3));
1456 		if (tmp) {
1457 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1458 			ret = IRQ_HANDLED;
1459 
1460 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1461 			ring = &dev_priv->ring[VECS];
1462 			if (vcs & GT_RENDER_USER_INTERRUPT)
1463 				notify_ring(dev, ring);
1464 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1465 				intel_lrc_irq_handler(ring);
1466 		} else
1467 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1468 	}
1469 
1470 	return ret;
1471 }
1472 
1473 #define HPD_STORM_DETECT_PERIOD 1000
1474 #define HPD_STORM_THRESHOLD 5
1475 
1476 static int pch_port_to_hotplug_shift(enum port port)
1477 {
1478 	switch (port) {
1479 	case PORT_A:
1480 	case PORT_E:
1481 	default:
1482 		return -1;
1483 	case PORT_B:
1484 		return 0;
1485 	case PORT_C:
1486 		return 8;
1487 	case PORT_D:
1488 		return 16;
1489 	}
1490 }
1491 
1492 static int i915_port_to_hotplug_shift(enum port port)
1493 {
1494 	switch (port) {
1495 	case PORT_A:
1496 	case PORT_E:
1497 	default:
1498 		return -1;
1499 	case PORT_B:
1500 		return 17;
1501 	case PORT_C:
1502 		return 19;
1503 	case PORT_D:
1504 		return 21;
1505 	}
1506 }
1507 
1508 static inline enum port get_port_from_pin(enum hpd_pin pin)
1509 {
1510 	switch (pin) {
1511 	case HPD_PORT_B:
1512 		return PORT_B;
1513 	case HPD_PORT_C:
1514 		return PORT_C;
1515 	case HPD_PORT_D:
1516 		return PORT_D;
1517 	default:
1518 		return PORT_A; /* no hpd */
1519 	}
1520 }
1521 
1522 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1523 					 u32 hotplug_trigger,
1524 					 u32 dig_hotplug_reg,
1525 					 const u32 *hpd)
1526 {
1527 	struct drm_i915_private *dev_priv = dev->dev_private;
1528 	int i;
1529 	enum port port;
1530 	bool storm_detected = false;
1531 	bool queue_dig = false, queue_hp = false;
1532 	u32 dig_shift;
1533 	u32 dig_port_mask = 0;
1534 
1535 	if (!hotplug_trigger)
1536 		return;
1537 
1538 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1539 			 hotplug_trigger, dig_hotplug_reg);
1540 
1541 	spin_lock(&dev_priv->irq_lock);
1542 	for (i = 1; i < HPD_NUM_PINS; i++) {
1543 		if (!(hpd[i] & hotplug_trigger))
1544 			continue;
1545 
1546 		port = get_port_from_pin(i);
1547 		if (port && dev_priv->hpd_irq_port[port]) {
1548 			bool long_hpd;
1549 
1550 			if (HAS_PCH_SPLIT(dev)) {
1551 				dig_shift = pch_port_to_hotplug_shift(port);
1552 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1553 			} else {
1554 				dig_shift = i915_port_to_hotplug_shift(port);
1555 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1556 			}
1557 
1558 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1559 					 port_name(port),
1560 					 long_hpd ? "long" : "short");
1561 			/* for long HPD pulses we want to have the digital queue happen,
1562 			   but we still want HPD storm detection to function. */
1563 			if (long_hpd) {
1564 				dev_priv->long_hpd_port_mask |= (1 << port);
1565 				dig_port_mask |= hpd[i];
1566 			} else {
1567 				/* for short HPD just trigger the digital queue */
1568 				dev_priv->short_hpd_port_mask |= (1 << port);
1569 				hotplug_trigger &= ~hpd[i];
1570 			}
1571 			queue_dig = true;
1572 		}
1573 	}
1574 
1575 	for (i = 1; i < HPD_NUM_PINS; i++) {
1576 		if (hpd[i] & hotplug_trigger &&
1577 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1578 			/*
1579 			 * On GMCH platforms the interrupt mask bits only
1580 			 * prevent irq generation, not the setting of the
1581 			 * hotplug bits itself. So only WARN about unexpected
1582 			 * interrupts on saner platforms.
1583 			 */
1584 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1585 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1586 				  hotplug_trigger, i, hpd[i]);
1587 
1588 			continue;
1589 		}
1590 
1591 		if (!(hpd[i] & hotplug_trigger) ||
1592 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1593 			continue;
1594 
1595 		if (!(dig_port_mask & hpd[i])) {
1596 			dev_priv->hpd_event_bits |= (1 << i);
1597 			queue_hp = true;
1598 		}
1599 
1600 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1601 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1602 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1603 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1604 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1605 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1606 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1607 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1608 			dev_priv->hpd_event_bits &= ~(1 << i);
1609 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1610 			storm_detected = true;
1611 		} else {
1612 			dev_priv->hpd_stats[i].hpd_cnt++;
1613 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1614 				      dev_priv->hpd_stats[i].hpd_cnt);
1615 		}
1616 	}
1617 
1618 	if (storm_detected)
1619 		dev_priv->display.hpd_irq_setup(dev);
1620 	spin_unlock(&dev_priv->irq_lock);
1621 
1622 	/*
1623 	 * Our hotplug handler can grab modeset locks (by calling down into the
1624 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1625 	 * queue for otherwise the flush_work in the pageflip code will
1626 	 * deadlock.
1627 	 */
1628 	if (queue_dig)
1629 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1630 	if (queue_hp)
1631 		schedule_work(&dev_priv->hotplug_work);
1632 }
1633 
1634 static void gmbus_irq_handler(struct drm_device *dev)
1635 {
1636 	struct drm_i915_private *dev_priv = dev->dev_private;
1637 
1638 	wake_up_all(&dev_priv->gmbus_wait_queue);
1639 }
1640 
1641 static void dp_aux_irq_handler(struct drm_device *dev)
1642 {
1643 	struct drm_i915_private *dev_priv = dev->dev_private;
1644 
1645 	wake_up_all(&dev_priv->gmbus_wait_queue);
1646 }
1647 
1648 #if defined(CONFIG_DEBUG_FS)
1649 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1650 					 uint32_t crc0, uint32_t crc1,
1651 					 uint32_t crc2, uint32_t crc3,
1652 					 uint32_t crc4)
1653 {
1654 	struct drm_i915_private *dev_priv = dev->dev_private;
1655 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1656 	struct intel_pipe_crc_entry *entry;
1657 	int head, tail;
1658 
1659 	spin_lock(&pipe_crc->lock);
1660 
1661 	if (!pipe_crc->entries) {
1662 		spin_unlock(&pipe_crc->lock);
1663 		DRM_DEBUG_KMS("spurious interrupt\n");
1664 		return;
1665 	}
1666 
1667 	head = pipe_crc->head;
1668 	tail = pipe_crc->tail;
1669 
1670 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1671 		spin_unlock(&pipe_crc->lock);
1672 		DRM_ERROR("CRC buffer overflowing\n");
1673 		return;
1674 	}
1675 
1676 	entry = &pipe_crc->entries[head];
1677 
1678 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1679 	entry->crc[0] = crc0;
1680 	entry->crc[1] = crc1;
1681 	entry->crc[2] = crc2;
1682 	entry->crc[3] = crc3;
1683 	entry->crc[4] = crc4;
1684 
1685 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1686 	pipe_crc->head = head;
1687 
1688 	spin_unlock(&pipe_crc->lock);
1689 
1690 	wake_up_interruptible(&pipe_crc->wq);
1691 }
1692 #else
1693 static inline void
1694 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1695 			     uint32_t crc0, uint32_t crc1,
1696 			     uint32_t crc2, uint32_t crc3,
1697 			     uint32_t crc4) {}
1698 #endif
1699 
1700 
1701 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1702 {
1703 	struct drm_i915_private *dev_priv = dev->dev_private;
1704 
1705 	display_pipe_crc_irq_handler(dev, pipe,
1706 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1707 				     0, 0, 0, 0);
1708 }
1709 
1710 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1711 {
1712 	struct drm_i915_private *dev_priv = dev->dev_private;
1713 
1714 	display_pipe_crc_irq_handler(dev, pipe,
1715 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1716 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1717 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1718 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1719 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1720 }
1721 
1722 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1723 {
1724 	struct drm_i915_private *dev_priv = dev->dev_private;
1725 	uint32_t res1, res2;
1726 
1727 	if (INTEL_INFO(dev)->gen >= 3)
1728 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1729 	else
1730 		res1 = 0;
1731 
1732 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1733 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1734 	else
1735 		res2 = 0;
1736 
1737 	display_pipe_crc_irq_handler(dev, pipe,
1738 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1739 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1740 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1741 				     res1, res2);
1742 }
1743 
1744 /* The RPS events need forcewake, so we add them to a work queue and mask their
1745  * IMR bits until the work is done. Other interrupts can be processed without
1746  * the work queue. */
1747 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1748 {
1749 	/* TODO: RPS on GEN9+ is not supported yet. */
1750 	if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1751 		      "GEN9+: unexpected RPS IRQ\n"))
1752 		return;
1753 
1754 	if (pm_iir & dev_priv->pm_rps_events) {
1755 		spin_lock(&dev_priv->irq_lock);
1756 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1757 		if (dev_priv->rps.interrupts_enabled) {
1758 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1759 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1760 		}
1761 		spin_unlock(&dev_priv->irq_lock);
1762 	}
1763 
1764 	if (INTEL_INFO(dev_priv)->gen >= 8)
1765 		return;
1766 
1767 	if (HAS_VEBOX(dev_priv->dev)) {
1768 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1769 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1770 
1771 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1772 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1773 	}
1774 }
1775 
1776 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1777 {
1778 	if (!drm_handle_vblank(dev, pipe))
1779 		return false;
1780 
1781 	return true;
1782 }
1783 
1784 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1785 {
1786 	struct drm_i915_private *dev_priv = dev->dev_private;
1787 	u32 pipe_stats[I915_MAX_PIPES] = { };
1788 	int pipe;
1789 
1790 	spin_lock(&dev_priv->irq_lock);
1791 	for_each_pipe(dev_priv, pipe) {
1792 		int reg;
1793 		u32 mask, iir_bit = 0;
1794 
1795 		/*
1796 		 * PIPESTAT bits get signalled even when the interrupt is
1797 		 * disabled with the mask bits, and some of the status bits do
1798 		 * not generate interrupts at all (like the underrun bit). Hence
1799 		 * we need to be careful that we only handle what we want to
1800 		 * handle.
1801 		 */
1802 
1803 		/* fifo underruns are filterered in the underrun handler. */
1804 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1805 
1806 		switch (pipe) {
1807 		case PIPE_A:
1808 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1809 			break;
1810 		case PIPE_B:
1811 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1812 			break;
1813 		case PIPE_C:
1814 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1815 			break;
1816 		}
1817 		if (iir & iir_bit)
1818 			mask |= dev_priv->pipestat_irq_mask[pipe];
1819 
1820 		if (!mask)
1821 			continue;
1822 
1823 		reg = PIPESTAT(pipe);
1824 		mask |= PIPESTAT_INT_ENABLE_MASK;
1825 		pipe_stats[pipe] = I915_READ(reg) & mask;
1826 
1827 		/*
1828 		 * Clear the PIPE*STAT regs before the IIR
1829 		 */
1830 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1831 					PIPESTAT_INT_STATUS_MASK))
1832 			I915_WRITE(reg, pipe_stats[pipe]);
1833 	}
1834 	spin_unlock(&dev_priv->irq_lock);
1835 
1836 	for_each_pipe(dev_priv, pipe) {
1837 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1838 		    intel_pipe_handle_vblank(dev, pipe))
1839 			intel_check_page_flip(dev, pipe);
1840 
1841 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1842 			intel_prepare_page_flip(dev, pipe);
1843 			intel_finish_page_flip(dev, pipe);
1844 		}
1845 
1846 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1847 			i9xx_pipe_crc_irq_handler(dev, pipe);
1848 
1849 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1850 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1851 	}
1852 
1853 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1854 		gmbus_irq_handler(dev);
1855 }
1856 
1857 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1858 {
1859 	struct drm_i915_private *dev_priv = dev->dev_private;
1860 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1861 
1862 	if (hotplug_status) {
1863 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1864 		/*
1865 		 * Make sure hotplug status is cleared before we clear IIR, or else we
1866 		 * may miss hotplug events.
1867 		 */
1868 		POSTING_READ(PORT_HOTPLUG_STAT);
1869 
1870 		if (IS_G4X(dev)) {
1871 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1872 
1873 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1874 		} else {
1875 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1876 
1877 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1878 		}
1879 
1880 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1881 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1882 			dp_aux_irq_handler(dev);
1883 	}
1884 }
1885 
1886 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1887 {
1888 	struct drm_device *dev = arg;
1889 	struct drm_i915_private *dev_priv = dev->dev_private;
1890 	u32 iir, gt_iir, pm_iir;
1891 	irqreturn_t ret = IRQ_NONE;
1892 
1893 	while (true) {
1894 		/* Find, clear, then process each source of interrupt */
1895 
1896 		gt_iir = I915_READ(GTIIR);
1897 		if (gt_iir)
1898 			I915_WRITE(GTIIR, gt_iir);
1899 
1900 		pm_iir = I915_READ(GEN6_PMIIR);
1901 		if (pm_iir)
1902 			I915_WRITE(GEN6_PMIIR, pm_iir);
1903 
1904 		iir = I915_READ(VLV_IIR);
1905 		if (iir) {
1906 			/* Consume port before clearing IIR or we'll miss events */
1907 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1908 				i9xx_hpd_irq_handler(dev);
1909 			I915_WRITE(VLV_IIR, iir);
1910 		}
1911 
1912 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1913 			goto out;
1914 
1915 		ret = IRQ_HANDLED;
1916 
1917 		if (gt_iir)
1918 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1919 		if (pm_iir)
1920 			gen6_rps_irq_handler(dev_priv, pm_iir);
1921 		/* Call regardless, as some status bits might not be
1922 		 * signalled in iir */
1923 		valleyview_pipestat_irq_handler(dev, iir);
1924 	}
1925 
1926 out:
1927 	return ret;
1928 }
1929 
1930 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1931 {
1932 	struct drm_device *dev = arg;
1933 	struct drm_i915_private *dev_priv = dev->dev_private;
1934 	u32 master_ctl, iir;
1935 	irqreturn_t ret = IRQ_NONE;
1936 
1937 	for (;;) {
1938 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1939 		iir = I915_READ(VLV_IIR);
1940 
1941 		if (master_ctl == 0 && iir == 0)
1942 			break;
1943 
1944 		ret = IRQ_HANDLED;
1945 
1946 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1947 
1948 		/* Find, clear, then process each source of interrupt */
1949 
1950 		if (iir) {
1951 			/* Consume port before clearing IIR or we'll miss events */
1952 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1953 				i9xx_hpd_irq_handler(dev);
1954 			I915_WRITE(VLV_IIR, iir);
1955 		}
1956 
1957 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1958 
1959 		/* Call regardless, as some status bits might not be
1960 		 * signalled in iir */
1961 		valleyview_pipestat_irq_handler(dev, iir);
1962 
1963 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1964 		POSTING_READ(GEN8_MASTER_IRQ);
1965 	}
1966 
1967 	return ret;
1968 }
1969 
1970 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1971 {
1972 	struct drm_i915_private *dev_priv = dev->dev_private;
1973 	int pipe;
1974 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1975 	u32 dig_hotplug_reg;
1976 
1977 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1978 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1979 
1980 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1981 
1982 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1983 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1984 			       SDE_AUDIO_POWER_SHIFT);
1985 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1986 				 port_name(port));
1987 	}
1988 
1989 	if (pch_iir & SDE_AUX_MASK)
1990 		dp_aux_irq_handler(dev);
1991 
1992 	if (pch_iir & SDE_GMBUS)
1993 		gmbus_irq_handler(dev);
1994 
1995 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1996 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1997 
1998 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1999 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2000 
2001 	if (pch_iir & SDE_POISON)
2002 		DRM_ERROR("PCH poison interrupt\n");
2003 
2004 	if (pch_iir & SDE_FDI_MASK)
2005 		for_each_pipe(dev_priv, pipe)
2006 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2007 					 pipe_name(pipe),
2008 					 I915_READ(FDI_RX_IIR(pipe)));
2009 
2010 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2011 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2012 
2013 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2014 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2015 
2016 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2017 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2018 
2019 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2020 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2021 }
2022 
2023 static void ivb_err_int_handler(struct drm_device *dev)
2024 {
2025 	struct drm_i915_private *dev_priv = dev->dev_private;
2026 	u32 err_int = I915_READ(GEN7_ERR_INT);
2027 	enum pipe pipe;
2028 
2029 	if (err_int & ERR_INT_POISON)
2030 		DRM_ERROR("Poison interrupt\n");
2031 
2032 	for_each_pipe(dev_priv, pipe) {
2033 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2034 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2035 
2036 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2037 			if (IS_IVYBRIDGE(dev))
2038 				ivb_pipe_crc_irq_handler(dev, pipe);
2039 			else
2040 				hsw_pipe_crc_irq_handler(dev, pipe);
2041 		}
2042 	}
2043 
2044 	I915_WRITE(GEN7_ERR_INT, err_int);
2045 }
2046 
2047 static void cpt_serr_int_handler(struct drm_device *dev)
2048 {
2049 	struct drm_i915_private *dev_priv = dev->dev_private;
2050 	u32 serr_int = I915_READ(SERR_INT);
2051 
2052 	if (serr_int & SERR_INT_POISON)
2053 		DRM_ERROR("PCH poison interrupt\n");
2054 
2055 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2056 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2057 
2058 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2059 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2060 
2061 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2062 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2063 
2064 	I915_WRITE(SERR_INT, serr_int);
2065 }
2066 
2067 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2068 {
2069 	struct drm_i915_private *dev_priv = dev->dev_private;
2070 	int pipe;
2071 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2072 	u32 dig_hotplug_reg;
2073 
2074 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2075 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2076 
2077 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2078 
2079 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2080 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2081 			       SDE_AUDIO_POWER_SHIFT_CPT);
2082 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2083 				 port_name(port));
2084 	}
2085 
2086 	if (pch_iir & SDE_AUX_MASK_CPT)
2087 		dp_aux_irq_handler(dev);
2088 
2089 	if (pch_iir & SDE_GMBUS_CPT)
2090 		gmbus_irq_handler(dev);
2091 
2092 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2093 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2094 
2095 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2096 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2097 
2098 	if (pch_iir & SDE_FDI_MASK_CPT)
2099 		for_each_pipe(dev_priv, pipe)
2100 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2101 					 pipe_name(pipe),
2102 					 I915_READ(FDI_RX_IIR(pipe)));
2103 
2104 	if (pch_iir & SDE_ERROR_CPT)
2105 		cpt_serr_int_handler(dev);
2106 }
2107 
2108 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2109 {
2110 	struct drm_i915_private *dev_priv = dev->dev_private;
2111 	enum pipe pipe;
2112 
2113 	if (de_iir & DE_AUX_CHANNEL_A)
2114 		dp_aux_irq_handler(dev);
2115 
2116 	if (de_iir & DE_GSE)
2117 		intel_opregion_asle_intr(dev);
2118 
2119 	if (de_iir & DE_POISON)
2120 		DRM_ERROR("Poison interrupt\n");
2121 
2122 	for_each_pipe(dev_priv, pipe) {
2123 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2124 		    intel_pipe_handle_vblank(dev, pipe))
2125 			intel_check_page_flip(dev, pipe);
2126 
2127 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2128 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2129 
2130 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2131 			i9xx_pipe_crc_irq_handler(dev, pipe);
2132 
2133 		/* plane/pipes map 1:1 on ilk+ */
2134 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2135 			intel_prepare_page_flip(dev, pipe);
2136 			intel_finish_page_flip_plane(dev, pipe);
2137 		}
2138 	}
2139 
2140 	/* check event from PCH */
2141 	if (de_iir & DE_PCH_EVENT) {
2142 		u32 pch_iir = I915_READ(SDEIIR);
2143 
2144 		if (HAS_PCH_CPT(dev))
2145 			cpt_irq_handler(dev, pch_iir);
2146 		else
2147 			ibx_irq_handler(dev, pch_iir);
2148 
2149 		/* should clear PCH hotplug event before clear CPU irq */
2150 		I915_WRITE(SDEIIR, pch_iir);
2151 	}
2152 
2153 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2154 		ironlake_rps_change_irq_handler(dev);
2155 }
2156 
2157 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2158 {
2159 	struct drm_i915_private *dev_priv = dev->dev_private;
2160 	enum pipe pipe;
2161 
2162 	if (de_iir & DE_ERR_INT_IVB)
2163 		ivb_err_int_handler(dev);
2164 
2165 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2166 		dp_aux_irq_handler(dev);
2167 
2168 	if (de_iir & DE_GSE_IVB)
2169 		intel_opregion_asle_intr(dev);
2170 
2171 	for_each_pipe(dev_priv, pipe) {
2172 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2173 		    intel_pipe_handle_vblank(dev, pipe))
2174 			intel_check_page_flip(dev, pipe);
2175 
2176 		/* plane/pipes map 1:1 on ilk+ */
2177 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2178 			intel_prepare_page_flip(dev, pipe);
2179 			intel_finish_page_flip_plane(dev, pipe);
2180 		}
2181 	}
2182 
2183 	/* check event from PCH */
2184 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2185 		u32 pch_iir = I915_READ(SDEIIR);
2186 
2187 		cpt_irq_handler(dev, pch_iir);
2188 
2189 		/* clear PCH hotplug event before clear CPU irq */
2190 		I915_WRITE(SDEIIR, pch_iir);
2191 	}
2192 }
2193 
2194 /*
2195  * To handle irqs with the minimum potential races with fresh interrupts, we:
2196  * 1 - Disable Master Interrupt Control.
2197  * 2 - Find the source(s) of the interrupt.
2198  * 3 - Clear the Interrupt Identity bits (IIR).
2199  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2200  * 5 - Re-enable Master Interrupt Control.
2201  */
2202 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2203 {
2204 	struct drm_device *dev = arg;
2205 	struct drm_i915_private *dev_priv = dev->dev_private;
2206 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2207 	irqreturn_t ret = IRQ_NONE;
2208 
2209 	/* We get interrupts on unclaimed registers, so check for this before we
2210 	 * do any I915_{READ,WRITE}. */
2211 	intel_uncore_check_errors(dev);
2212 
2213 	/* disable master interrupt before clearing iir  */
2214 	de_ier = I915_READ(DEIER);
2215 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2216 	POSTING_READ(DEIER);
2217 
2218 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2219 	 * interrupts will will be stored on its back queue, and then we'll be
2220 	 * able to process them after we restore SDEIER (as soon as we restore
2221 	 * it, we'll get an interrupt if SDEIIR still has something to process
2222 	 * due to its back queue). */
2223 	if (!HAS_PCH_NOP(dev)) {
2224 		sde_ier = I915_READ(SDEIER);
2225 		I915_WRITE(SDEIER, 0);
2226 		POSTING_READ(SDEIER);
2227 	}
2228 
2229 	/* Find, clear, then process each source of interrupt */
2230 
2231 	gt_iir = I915_READ(GTIIR);
2232 	if (gt_iir) {
2233 		I915_WRITE(GTIIR, gt_iir);
2234 		ret = IRQ_HANDLED;
2235 		if (INTEL_INFO(dev)->gen >= 6)
2236 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2237 		else
2238 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2239 	}
2240 
2241 	de_iir = I915_READ(DEIIR);
2242 	if (de_iir) {
2243 		I915_WRITE(DEIIR, de_iir);
2244 		ret = IRQ_HANDLED;
2245 		if (INTEL_INFO(dev)->gen >= 7)
2246 			ivb_display_irq_handler(dev, de_iir);
2247 		else
2248 			ilk_display_irq_handler(dev, de_iir);
2249 	}
2250 
2251 	if (INTEL_INFO(dev)->gen >= 6) {
2252 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2253 		if (pm_iir) {
2254 			I915_WRITE(GEN6_PMIIR, pm_iir);
2255 			ret = IRQ_HANDLED;
2256 			gen6_rps_irq_handler(dev_priv, pm_iir);
2257 		}
2258 	}
2259 
2260 	I915_WRITE(DEIER, de_ier);
2261 	POSTING_READ(DEIER);
2262 	if (!HAS_PCH_NOP(dev)) {
2263 		I915_WRITE(SDEIER, sde_ier);
2264 		POSTING_READ(SDEIER);
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2271 {
2272 	struct drm_device *dev = arg;
2273 	struct drm_i915_private *dev_priv = dev->dev_private;
2274 	u32 master_ctl;
2275 	irqreturn_t ret = IRQ_NONE;
2276 	uint32_t tmp = 0;
2277 	enum pipe pipe;
2278 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2279 
2280 	if (IS_GEN9(dev))
2281 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2282 			GEN9_AUX_CHANNEL_D;
2283 
2284 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2285 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2286 	if (!master_ctl)
2287 		return IRQ_NONE;
2288 
2289 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2290 	POSTING_READ(GEN8_MASTER_IRQ);
2291 
2292 	/* Find, clear, then process each source of interrupt */
2293 
2294 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2295 
2296 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2297 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2298 		if (tmp) {
2299 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2300 			ret = IRQ_HANDLED;
2301 			if (tmp & GEN8_DE_MISC_GSE)
2302 				intel_opregion_asle_intr(dev);
2303 			else
2304 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2305 		}
2306 		else
2307 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2308 	}
2309 
2310 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2311 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2312 		if (tmp) {
2313 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2314 			ret = IRQ_HANDLED;
2315 
2316 			if (tmp & aux_mask)
2317 				dp_aux_irq_handler(dev);
2318 			else
2319 				DRM_ERROR("Unexpected DE Port interrupt\n");
2320 		}
2321 		else
2322 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2323 	}
2324 
2325 	for_each_pipe(dev_priv, pipe) {
2326 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2327 
2328 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2329 			continue;
2330 
2331 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2332 		if (pipe_iir) {
2333 			ret = IRQ_HANDLED;
2334 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2335 
2336 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2337 			    intel_pipe_handle_vblank(dev, pipe))
2338 				intel_check_page_flip(dev, pipe);
2339 
2340 			if (IS_GEN9(dev))
2341 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2342 			else
2343 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2344 
2345 			if (flip_done) {
2346 				intel_prepare_page_flip(dev, pipe);
2347 				intel_finish_page_flip_plane(dev, pipe);
2348 			}
2349 
2350 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2351 				hsw_pipe_crc_irq_handler(dev, pipe);
2352 
2353 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2354 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2355 								    pipe);
2356 
2357 
2358 			if (IS_GEN9(dev))
2359 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2360 			else
2361 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2362 
2363 			if (fault_errors)
2364 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2365 					  pipe_name(pipe),
2366 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2367 		} else
2368 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2369 	}
2370 
2371 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2372 		/*
2373 		 * FIXME(BDW): Assume for now that the new interrupt handling
2374 		 * scheme also closed the SDE interrupt handling race we've seen
2375 		 * on older pch-split platforms. But this needs testing.
2376 		 */
2377 		u32 pch_iir = I915_READ(SDEIIR);
2378 		if (pch_iir) {
2379 			I915_WRITE(SDEIIR, pch_iir);
2380 			ret = IRQ_HANDLED;
2381 			cpt_irq_handler(dev, pch_iir);
2382 		} else
2383 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2384 
2385 	}
2386 
2387 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2388 	POSTING_READ(GEN8_MASTER_IRQ);
2389 
2390 	return ret;
2391 }
2392 
2393 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2394 			       bool reset_completed)
2395 {
2396 	struct intel_engine_cs *ring;
2397 	int i;
2398 
2399 	/*
2400 	 * Notify all waiters for GPU completion events that reset state has
2401 	 * been changed, and that they need to restart their wait after
2402 	 * checking for potential errors (and bail out to drop locks if there is
2403 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2404 	 */
2405 
2406 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2407 	for_each_ring(ring, dev_priv, i)
2408 		wake_up_all(&ring->irq_queue);
2409 
2410 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2411 	wake_up_all(&dev_priv->pending_flip_queue);
2412 
2413 	/*
2414 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2415 	 * reset state is cleared.
2416 	 */
2417 	if (reset_completed)
2418 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2419 }
2420 
2421 /**
2422  * i915_error_work_func - do process context error handling work
2423  * @work: work struct
2424  *
2425  * Fire an error uevent so userspace can see that a hang or error
2426  * was detected.
2427  */
2428 static void i915_error_work_func(struct work_struct *work)
2429 {
2430 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2431 						    work);
2432 	struct drm_i915_private *dev_priv =
2433 		container_of(error, struct drm_i915_private, gpu_error);
2434 	struct drm_device *dev = dev_priv->dev;
2435 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2436 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2437 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2438 	int ret;
2439 
2440 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2441 
2442 	/*
2443 	 * Note that there's only one work item which does gpu resets, so we
2444 	 * need not worry about concurrent gpu resets potentially incrementing
2445 	 * error->reset_counter twice. We only need to take care of another
2446 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2447 	 * quick check for that is good enough: schedule_work ensures the
2448 	 * correct ordering between hang detection and this work item, and since
2449 	 * the reset in-progress bit is only ever set by code outside of this
2450 	 * work we don't need to worry about any other races.
2451 	 */
2452 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2453 		DRM_DEBUG_DRIVER("resetting chip\n");
2454 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2455 				   reset_event);
2456 
2457 		/*
2458 		 * In most cases it's guaranteed that we get here with an RPM
2459 		 * reference held, for example because there is a pending GPU
2460 		 * request that won't finish until the reset is done. This
2461 		 * isn't the case at least when we get here by doing a
2462 		 * simulated reset via debugs, so get an RPM reference.
2463 		 */
2464 		intel_runtime_pm_get(dev_priv);
2465 
2466 		intel_prepare_reset(dev);
2467 
2468 		/*
2469 		 * All state reset _must_ be completed before we update the
2470 		 * reset counter, for otherwise waiters might miss the reset
2471 		 * pending state and not properly drop locks, resulting in
2472 		 * deadlocks with the reset work.
2473 		 */
2474 		ret = i915_reset(dev);
2475 
2476 		intel_finish_reset(dev);
2477 
2478 		intel_runtime_pm_put(dev_priv);
2479 
2480 		if (ret == 0) {
2481 			/*
2482 			 * After all the gem state is reset, increment the reset
2483 			 * counter and wake up everyone waiting for the reset to
2484 			 * complete.
2485 			 *
2486 			 * Since unlock operations are a one-sided barrier only,
2487 			 * we need to insert a barrier here to order any seqno
2488 			 * updates before
2489 			 * the counter increment.
2490 			 */
2491 			smp_mb__before_atomic();
2492 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2493 
2494 			kobject_uevent_env(&dev->primary->kdev->kobj,
2495 					   KOBJ_CHANGE, reset_done_event);
2496 		} else {
2497 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2498 		}
2499 
2500 		/*
2501 		 * Note: The wake_up also serves as a memory barrier so that
2502 		 * waiters see the update value of the reset counter atomic_t.
2503 		 */
2504 		i915_error_wake_up(dev_priv, true);
2505 	}
2506 }
2507 
2508 static void i915_report_and_clear_eir(struct drm_device *dev)
2509 {
2510 	struct drm_i915_private *dev_priv = dev->dev_private;
2511 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2512 	u32 eir = I915_READ(EIR);
2513 	int pipe, i;
2514 
2515 	if (!eir)
2516 		return;
2517 
2518 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2519 
2520 	i915_get_extra_instdone(dev, instdone);
2521 
2522 	if (IS_G4X(dev)) {
2523 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2524 			u32 ipeir = I915_READ(IPEIR_I965);
2525 
2526 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2527 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2528 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2529 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2530 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2531 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2532 			I915_WRITE(IPEIR_I965, ipeir);
2533 			POSTING_READ(IPEIR_I965);
2534 		}
2535 		if (eir & GM45_ERROR_PAGE_TABLE) {
2536 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2537 			pr_err("page table error\n");
2538 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2539 			I915_WRITE(PGTBL_ER, pgtbl_err);
2540 			POSTING_READ(PGTBL_ER);
2541 		}
2542 	}
2543 
2544 	if (!IS_GEN2(dev)) {
2545 		if (eir & I915_ERROR_PAGE_TABLE) {
2546 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2547 			pr_err("page table error\n");
2548 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2549 			I915_WRITE(PGTBL_ER, pgtbl_err);
2550 			POSTING_READ(PGTBL_ER);
2551 		}
2552 	}
2553 
2554 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2555 		pr_err("memory refresh error:\n");
2556 		for_each_pipe(dev_priv, pipe)
2557 			pr_err("pipe %c stat: 0x%08x\n",
2558 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2559 		/* pipestat has already been acked */
2560 	}
2561 	if (eir & I915_ERROR_INSTRUCTION) {
2562 		pr_err("instruction error\n");
2563 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2564 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2565 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2566 		if (INTEL_INFO(dev)->gen < 4) {
2567 			u32 ipeir = I915_READ(IPEIR);
2568 
2569 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2570 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2571 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2572 			I915_WRITE(IPEIR, ipeir);
2573 			POSTING_READ(IPEIR);
2574 		} else {
2575 			u32 ipeir = I915_READ(IPEIR_I965);
2576 
2577 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2578 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2579 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2580 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2581 			I915_WRITE(IPEIR_I965, ipeir);
2582 			POSTING_READ(IPEIR_I965);
2583 		}
2584 	}
2585 
2586 	I915_WRITE(EIR, eir);
2587 	POSTING_READ(EIR);
2588 	eir = I915_READ(EIR);
2589 	if (eir) {
2590 		/*
2591 		 * some errors might have become stuck,
2592 		 * mask them.
2593 		 */
2594 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2595 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2596 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2597 	}
2598 }
2599 
2600 /**
2601  * i915_handle_error - handle an error interrupt
2602  * @dev: drm device
2603  *
2604  * Do some basic checking of regsiter state at error interrupt time and
2605  * dump it to the syslog.  Also call i915_capture_error_state() to make
2606  * sure we get a record and make it available in debugfs.  Fire a uevent
2607  * so userspace knows something bad happened (should trigger collection
2608  * of a ring dump etc.).
2609  */
2610 void i915_handle_error(struct drm_device *dev, bool wedged,
2611 		       const char *fmt, ...)
2612 {
2613 	struct drm_i915_private *dev_priv = dev->dev_private;
2614 	va_list args;
2615 	char error_msg[80];
2616 
2617 	va_start(args, fmt);
2618 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2619 	va_end(args);
2620 
2621 	i915_capture_error_state(dev, wedged, error_msg);
2622 	i915_report_and_clear_eir(dev);
2623 
2624 	if (wedged) {
2625 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2626 				&dev_priv->gpu_error.reset_counter);
2627 
2628 		/*
2629 		 * Wakeup waiting processes so that the reset work function
2630 		 * i915_error_work_func doesn't deadlock trying to grab various
2631 		 * locks. By bumping the reset counter first, the woken
2632 		 * processes will see a reset in progress and back off,
2633 		 * releasing their locks and then wait for the reset completion.
2634 		 * We must do this for _all_ gpu waiters that might hold locks
2635 		 * that the reset work needs to acquire.
2636 		 *
2637 		 * Note: The wake_up serves as the required memory barrier to
2638 		 * ensure that the waiters see the updated value of the reset
2639 		 * counter atomic_t.
2640 		 */
2641 		i915_error_wake_up(dev_priv, false);
2642 	}
2643 
2644 	/*
2645 	 * Our reset work can grab modeset locks (since it needs to reset the
2646 	 * state of outstanding pagelips). Hence it must not be run on our own
2647 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2648 	 * code will deadlock.
2649 	 */
2650 	schedule_work(&dev_priv->gpu_error.work);
2651 }
2652 
2653 /* Called from drm generic code, passed 'crtc' which
2654  * we use as a pipe index
2655  */
2656 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2657 {
2658 	struct drm_i915_private *dev_priv = dev->dev_private;
2659 	unsigned long irqflags;
2660 
2661 	if (!i915_pipe_enabled(dev, pipe))
2662 		return -EINVAL;
2663 
2664 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2665 	if (INTEL_INFO(dev)->gen >= 4)
2666 		i915_enable_pipestat(dev_priv, pipe,
2667 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2668 	else
2669 		i915_enable_pipestat(dev_priv, pipe,
2670 				     PIPE_VBLANK_INTERRUPT_STATUS);
2671 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2672 
2673 	return 0;
2674 }
2675 
2676 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2677 {
2678 	struct drm_i915_private *dev_priv = dev->dev_private;
2679 	unsigned long irqflags;
2680 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2681 						     DE_PIPE_VBLANK(pipe);
2682 
2683 	if (!i915_pipe_enabled(dev, pipe))
2684 		return -EINVAL;
2685 
2686 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2687 	ironlake_enable_display_irq(dev_priv, bit);
2688 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2689 
2690 	return 0;
2691 }
2692 
2693 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2694 {
2695 	struct drm_i915_private *dev_priv = dev->dev_private;
2696 	unsigned long irqflags;
2697 
2698 	if (!i915_pipe_enabled(dev, pipe))
2699 		return -EINVAL;
2700 
2701 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2702 	i915_enable_pipestat(dev_priv, pipe,
2703 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2704 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2705 
2706 	return 0;
2707 }
2708 
2709 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2710 {
2711 	struct drm_i915_private *dev_priv = dev->dev_private;
2712 	unsigned long irqflags;
2713 
2714 	if (!i915_pipe_enabled(dev, pipe))
2715 		return -EINVAL;
2716 
2717 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2719 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2720 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2721 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2722 	return 0;
2723 }
2724 
2725 /* Called from drm generic code, passed 'crtc' which
2726  * we use as a pipe index
2727  */
2728 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2729 {
2730 	struct drm_i915_private *dev_priv = dev->dev_private;
2731 	unsigned long irqflags;
2732 
2733 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734 	i915_disable_pipestat(dev_priv, pipe,
2735 			      PIPE_VBLANK_INTERRUPT_STATUS |
2736 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2737 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2738 }
2739 
2740 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2741 {
2742 	struct drm_i915_private *dev_priv = dev->dev_private;
2743 	unsigned long irqflags;
2744 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2745 						     DE_PIPE_VBLANK(pipe);
2746 
2747 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2748 	ironlake_disable_display_irq(dev_priv, bit);
2749 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2750 }
2751 
2752 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2753 {
2754 	struct drm_i915_private *dev_priv = dev->dev_private;
2755 	unsigned long irqflags;
2756 
2757 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2758 	i915_disable_pipestat(dev_priv, pipe,
2759 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2760 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2761 }
2762 
2763 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2764 {
2765 	struct drm_i915_private *dev_priv = dev->dev_private;
2766 	unsigned long irqflags;
2767 
2768 	if (!i915_pipe_enabled(dev, pipe))
2769 		return;
2770 
2771 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2772 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2773 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2774 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2775 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2776 }
2777 
2778 static struct drm_i915_gem_request *
2779 ring_last_request(struct intel_engine_cs *ring)
2780 {
2781 	return list_entry(ring->request_list.prev,
2782 			  struct drm_i915_gem_request, list);
2783 }
2784 
2785 static bool
2786 ring_idle(struct intel_engine_cs *ring)
2787 {
2788 	return (list_empty(&ring->request_list) ||
2789 		i915_gem_request_completed(ring_last_request(ring), false));
2790 }
2791 
2792 static bool
2793 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2794 {
2795 	if (INTEL_INFO(dev)->gen >= 8) {
2796 		return (ipehr >> 23) == 0x1c;
2797 	} else {
2798 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2799 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2800 				 MI_SEMAPHORE_REGISTER);
2801 	}
2802 }
2803 
2804 static struct intel_engine_cs *
2805 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2806 {
2807 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2808 	struct intel_engine_cs *signaller;
2809 	int i;
2810 
2811 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2812 		for_each_ring(signaller, dev_priv, i) {
2813 			if (ring == signaller)
2814 				continue;
2815 
2816 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2817 				return signaller;
2818 		}
2819 	} else {
2820 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2821 
2822 		for_each_ring(signaller, dev_priv, i) {
2823 			if(ring == signaller)
2824 				continue;
2825 
2826 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2827 				return signaller;
2828 		}
2829 	}
2830 
2831 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2832 		  ring->id, ipehr, offset);
2833 
2834 	return NULL;
2835 }
2836 
2837 static struct intel_engine_cs *
2838 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2839 {
2840 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2841 	u32 cmd, ipehr, head;
2842 	u64 offset = 0;
2843 	int i, backwards;
2844 
2845 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2846 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2847 		return NULL;
2848 
2849 	/*
2850 	 * HEAD is likely pointing to the dword after the actual command,
2851 	 * so scan backwards until we find the MBOX. But limit it to just 3
2852 	 * or 4 dwords depending on the semaphore wait command size.
2853 	 * Note that we don't care about ACTHD here since that might
2854 	 * point at at batch, and semaphores are always emitted into the
2855 	 * ringbuffer itself.
2856 	 */
2857 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2858 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2859 
2860 	for (i = backwards; i; --i) {
2861 		/*
2862 		 * Be paranoid and presume the hw has gone off into the wild -
2863 		 * our ring is smaller than what the hardware (and hence
2864 		 * HEAD_ADDR) allows. Also handles wrap-around.
2865 		 */
2866 		head &= ring->buffer->size - 1;
2867 
2868 		/* This here seems to blow up */
2869 		cmd = ioread32(ring->buffer->virtual_start + head);
2870 		if (cmd == ipehr)
2871 			break;
2872 
2873 		head -= 4;
2874 	}
2875 
2876 	if (!i)
2877 		return NULL;
2878 
2879 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2880 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2881 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2882 		offset <<= 32;
2883 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2884 	}
2885 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2886 }
2887 
2888 static int semaphore_passed(struct intel_engine_cs *ring)
2889 {
2890 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2891 	struct intel_engine_cs *signaller;
2892 	u32 seqno;
2893 
2894 	ring->hangcheck.deadlock++;
2895 
2896 	signaller = semaphore_waits_for(ring, &seqno);
2897 	if (signaller == NULL)
2898 		return -1;
2899 
2900 	/* Prevent pathological recursion due to driver bugs */
2901 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2902 		return -1;
2903 
2904 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2905 		return 1;
2906 
2907 	/* cursory check for an unkickable deadlock */
2908 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2909 	    semaphore_passed(signaller) < 0)
2910 		return -1;
2911 
2912 	return 0;
2913 }
2914 
2915 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2916 {
2917 	struct intel_engine_cs *ring;
2918 	int i;
2919 
2920 	for_each_ring(ring, dev_priv, i)
2921 		ring->hangcheck.deadlock = 0;
2922 }
2923 
2924 static enum intel_ring_hangcheck_action
2925 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2926 {
2927 	struct drm_device *dev = ring->dev;
2928 	struct drm_i915_private *dev_priv = dev->dev_private;
2929 	u32 tmp;
2930 
2931 	if (acthd != ring->hangcheck.acthd) {
2932 		if (acthd > ring->hangcheck.max_acthd) {
2933 			ring->hangcheck.max_acthd = acthd;
2934 			return HANGCHECK_ACTIVE;
2935 		}
2936 
2937 		return HANGCHECK_ACTIVE_LOOP;
2938 	}
2939 
2940 	if (IS_GEN2(dev))
2941 		return HANGCHECK_HUNG;
2942 
2943 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2944 	 * If so we can simply poke the RB_WAIT bit
2945 	 * and break the hang. This should work on
2946 	 * all but the second generation chipsets.
2947 	 */
2948 	tmp = I915_READ_CTL(ring);
2949 	if (tmp & RING_WAIT) {
2950 		i915_handle_error(dev, false,
2951 				  "Kicking stuck wait on %s",
2952 				  ring->name);
2953 		I915_WRITE_CTL(ring, tmp);
2954 		return HANGCHECK_KICK;
2955 	}
2956 
2957 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2958 		switch (semaphore_passed(ring)) {
2959 		default:
2960 			return HANGCHECK_HUNG;
2961 		case 1:
2962 			i915_handle_error(dev, false,
2963 					  "Kicking stuck semaphore on %s",
2964 					  ring->name);
2965 			I915_WRITE_CTL(ring, tmp);
2966 			return HANGCHECK_KICK;
2967 		case 0:
2968 			return HANGCHECK_WAIT;
2969 		}
2970 	}
2971 
2972 	return HANGCHECK_HUNG;
2973 }
2974 
2975 /**
2976  * This is called when the chip hasn't reported back with completed
2977  * batchbuffers in a long time. We keep track per ring seqno progress and
2978  * if there are no progress, hangcheck score for that ring is increased.
2979  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2980  * we kick the ring. If we see no progress on three subsequent calls
2981  * we assume chip is wedged and try to fix it by resetting the chip.
2982  */
2983 static void i915_hangcheck_elapsed(unsigned long data)
2984 {
2985 	struct drm_device *dev = (struct drm_device *)data;
2986 	struct drm_i915_private *dev_priv = dev->dev_private;
2987 	struct intel_engine_cs *ring;
2988 	int i;
2989 	int busy_count = 0, rings_hung = 0;
2990 	bool stuck[I915_NUM_RINGS] = { 0 };
2991 #define BUSY 1
2992 #define KICK 5
2993 #define HUNG 20
2994 
2995 	if (!i915.enable_hangcheck)
2996 		return;
2997 
2998 	for_each_ring(ring, dev_priv, i) {
2999 		u64 acthd;
3000 		u32 seqno;
3001 		bool busy = true;
3002 
3003 		semaphore_clear_deadlocks(dev_priv);
3004 
3005 		seqno = ring->get_seqno(ring, false);
3006 		acthd = intel_ring_get_active_head(ring);
3007 
3008 		if (ring->hangcheck.seqno == seqno) {
3009 			if (ring_idle(ring)) {
3010 				ring->hangcheck.action = HANGCHECK_IDLE;
3011 
3012 				if (waitqueue_active(&ring->irq_queue)) {
3013 					/* Issue a wake-up to catch stuck h/w. */
3014 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3015 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3016 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3017 								  ring->name);
3018 						else
3019 							DRM_INFO("Fake missed irq on %s\n",
3020 								 ring->name);
3021 						wake_up_all(&ring->irq_queue);
3022 					}
3023 					/* Safeguard against driver failure */
3024 					ring->hangcheck.score += BUSY;
3025 				} else
3026 					busy = false;
3027 			} else {
3028 				/* We always increment the hangcheck score
3029 				 * if the ring is busy and still processing
3030 				 * the same request, so that no single request
3031 				 * can run indefinitely (such as a chain of
3032 				 * batches). The only time we do not increment
3033 				 * the hangcheck score on this ring, if this
3034 				 * ring is in a legitimate wait for another
3035 				 * ring. In that case the waiting ring is a
3036 				 * victim and we want to be sure we catch the
3037 				 * right culprit. Then every time we do kick
3038 				 * the ring, add a small increment to the
3039 				 * score so that we can catch a batch that is
3040 				 * being repeatedly kicked and so responsible
3041 				 * for stalling the machine.
3042 				 */
3043 				ring->hangcheck.action = ring_stuck(ring,
3044 								    acthd);
3045 
3046 				switch (ring->hangcheck.action) {
3047 				case HANGCHECK_IDLE:
3048 				case HANGCHECK_WAIT:
3049 				case HANGCHECK_ACTIVE:
3050 					break;
3051 				case HANGCHECK_ACTIVE_LOOP:
3052 					ring->hangcheck.score += BUSY;
3053 					break;
3054 				case HANGCHECK_KICK:
3055 					ring->hangcheck.score += KICK;
3056 					break;
3057 				case HANGCHECK_HUNG:
3058 					ring->hangcheck.score += HUNG;
3059 					stuck[i] = true;
3060 					break;
3061 				}
3062 			}
3063 		} else {
3064 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3065 
3066 			/* Gradually reduce the count so that we catch DoS
3067 			 * attempts across multiple batches.
3068 			 */
3069 			if (ring->hangcheck.score > 0)
3070 				ring->hangcheck.score--;
3071 
3072 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3073 		}
3074 
3075 		ring->hangcheck.seqno = seqno;
3076 		ring->hangcheck.acthd = acthd;
3077 		busy_count += busy;
3078 	}
3079 
3080 	for_each_ring(ring, dev_priv, i) {
3081 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3082 			DRM_INFO("%s on %s\n",
3083 				 stuck[i] ? "stuck" : "no progress",
3084 				 ring->name);
3085 			rings_hung++;
3086 		}
3087 	}
3088 
3089 	if (rings_hung)
3090 		return i915_handle_error(dev, true, "Ring hung");
3091 
3092 	if (busy_count)
3093 		/* Reset timer case chip hangs without another request
3094 		 * being added */
3095 		i915_queue_hangcheck(dev);
3096 }
3097 
3098 void i915_queue_hangcheck(struct drm_device *dev)
3099 {
3100 	struct drm_i915_private *dev_priv = dev->dev_private;
3101 	struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3102 
3103 	if (!i915.enable_hangcheck)
3104 		return;
3105 
3106 	/* Don't continually defer the hangcheck, but make sure it is active */
3107 	if (timer_pending(timer))
3108 		return;
3109 	mod_timer(timer,
3110 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3111 }
3112 
3113 static void ibx_irq_reset(struct drm_device *dev)
3114 {
3115 	struct drm_i915_private *dev_priv = dev->dev_private;
3116 
3117 	if (HAS_PCH_NOP(dev))
3118 		return;
3119 
3120 	GEN5_IRQ_RESET(SDE);
3121 
3122 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3123 		I915_WRITE(SERR_INT, 0xffffffff);
3124 }
3125 
3126 /*
3127  * SDEIER is also touched by the interrupt handler to work around missed PCH
3128  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3129  * instead we unconditionally enable all PCH interrupt sources here, but then
3130  * only unmask them as needed with SDEIMR.
3131  *
3132  * This function needs to be called before interrupts are enabled.
3133  */
3134 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3135 {
3136 	struct drm_i915_private *dev_priv = dev->dev_private;
3137 
3138 	if (HAS_PCH_NOP(dev))
3139 		return;
3140 
3141 	WARN_ON(I915_READ(SDEIER) != 0);
3142 	I915_WRITE(SDEIER, 0xffffffff);
3143 	POSTING_READ(SDEIER);
3144 }
3145 
3146 static void gen5_gt_irq_reset(struct drm_device *dev)
3147 {
3148 	struct drm_i915_private *dev_priv = dev->dev_private;
3149 
3150 	GEN5_IRQ_RESET(GT);
3151 	if (INTEL_INFO(dev)->gen >= 6)
3152 		GEN5_IRQ_RESET(GEN6_PM);
3153 }
3154 
3155 /* drm_dma.h hooks
3156 */
3157 static void ironlake_irq_reset(struct drm_device *dev)
3158 {
3159 	struct drm_i915_private *dev_priv = dev->dev_private;
3160 
3161 	I915_WRITE(HWSTAM, 0xffffffff);
3162 
3163 	GEN5_IRQ_RESET(DE);
3164 	if (IS_GEN7(dev))
3165 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3166 
3167 	gen5_gt_irq_reset(dev);
3168 
3169 	ibx_irq_reset(dev);
3170 }
3171 
3172 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3173 {
3174 	enum pipe pipe;
3175 
3176 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3177 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3178 
3179 	for_each_pipe(dev_priv, pipe)
3180 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3181 
3182 	GEN5_IRQ_RESET(VLV_);
3183 }
3184 
3185 static void valleyview_irq_preinstall(struct drm_device *dev)
3186 {
3187 	struct drm_i915_private *dev_priv = dev->dev_private;
3188 
3189 	/* VLV magic */
3190 	I915_WRITE(VLV_IMR, 0);
3191 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3192 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3193 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3194 
3195 	gen5_gt_irq_reset(dev);
3196 
3197 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3198 
3199 	vlv_display_irq_reset(dev_priv);
3200 }
3201 
3202 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3203 {
3204 	GEN8_IRQ_RESET_NDX(GT, 0);
3205 	GEN8_IRQ_RESET_NDX(GT, 1);
3206 	GEN8_IRQ_RESET_NDX(GT, 2);
3207 	GEN8_IRQ_RESET_NDX(GT, 3);
3208 }
3209 
3210 static void gen8_irq_reset(struct drm_device *dev)
3211 {
3212 	struct drm_i915_private *dev_priv = dev->dev_private;
3213 	int pipe;
3214 
3215 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3216 	POSTING_READ(GEN8_MASTER_IRQ);
3217 
3218 	gen8_gt_irq_reset(dev_priv);
3219 
3220 	for_each_pipe(dev_priv, pipe)
3221 		if (intel_display_power_is_enabled(dev_priv,
3222 						   POWER_DOMAIN_PIPE(pipe)))
3223 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3224 
3225 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3226 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3227 	GEN5_IRQ_RESET(GEN8_PCU_);
3228 
3229 	ibx_irq_reset(dev);
3230 }
3231 
3232 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3233 {
3234 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3235 
3236 	spin_lock_irq(&dev_priv->irq_lock);
3237 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3238 			  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3239 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3240 			  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3241 	spin_unlock_irq(&dev_priv->irq_lock);
3242 }
3243 
3244 static void cherryview_irq_preinstall(struct drm_device *dev)
3245 {
3246 	struct drm_i915_private *dev_priv = dev->dev_private;
3247 
3248 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3249 	POSTING_READ(GEN8_MASTER_IRQ);
3250 
3251 	gen8_gt_irq_reset(dev_priv);
3252 
3253 	GEN5_IRQ_RESET(GEN8_PCU_);
3254 
3255 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3256 
3257 	vlv_display_irq_reset(dev_priv);
3258 }
3259 
3260 static void ibx_hpd_irq_setup(struct drm_device *dev)
3261 {
3262 	struct drm_i915_private *dev_priv = dev->dev_private;
3263 	struct intel_encoder *intel_encoder;
3264 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3265 
3266 	if (HAS_PCH_IBX(dev)) {
3267 		hotplug_irqs = SDE_HOTPLUG_MASK;
3268 		for_each_intel_encoder(dev, intel_encoder)
3269 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3270 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3271 	} else {
3272 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3273 		for_each_intel_encoder(dev, intel_encoder)
3274 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3275 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3276 	}
3277 
3278 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3279 
3280 	/*
3281 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3282 	 * duration to 2ms (which is the minimum in the Display Port spec)
3283 	 *
3284 	 * This register is the same on all known PCH chips.
3285 	 */
3286 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3287 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3288 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3289 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3290 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3291 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3292 }
3293 
3294 static void ibx_irq_postinstall(struct drm_device *dev)
3295 {
3296 	struct drm_i915_private *dev_priv = dev->dev_private;
3297 	u32 mask;
3298 
3299 	if (HAS_PCH_NOP(dev))
3300 		return;
3301 
3302 	if (HAS_PCH_IBX(dev))
3303 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3304 	else
3305 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3306 
3307 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3308 	I915_WRITE(SDEIMR, ~mask);
3309 }
3310 
3311 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3312 {
3313 	struct drm_i915_private *dev_priv = dev->dev_private;
3314 	u32 pm_irqs, gt_irqs;
3315 
3316 	pm_irqs = gt_irqs = 0;
3317 
3318 	dev_priv->gt_irq_mask = ~0;
3319 	if (HAS_L3_DPF(dev)) {
3320 		/* L3 parity interrupt is always unmasked. */
3321 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3322 		gt_irqs |= GT_PARITY_ERROR(dev);
3323 	}
3324 
3325 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3326 	if (IS_GEN5(dev)) {
3327 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3328 			   ILK_BSD_USER_INTERRUPT;
3329 	} else {
3330 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3331 	}
3332 
3333 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3334 
3335 	if (INTEL_INFO(dev)->gen >= 6) {
3336 		/*
3337 		 * RPS interrupts will get enabled/disabled on demand when RPS
3338 		 * itself is enabled/disabled.
3339 		 */
3340 		if (HAS_VEBOX(dev))
3341 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3342 
3343 		dev_priv->pm_irq_mask = 0xffffffff;
3344 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3345 	}
3346 }
3347 
3348 static int ironlake_irq_postinstall(struct drm_device *dev)
3349 {
3350 	struct drm_i915_private *dev_priv = dev->dev_private;
3351 	u32 display_mask, extra_mask;
3352 
3353 	if (INTEL_INFO(dev)->gen >= 7) {
3354 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3355 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3356 				DE_PLANEB_FLIP_DONE_IVB |
3357 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3358 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3359 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3360 	} else {
3361 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3362 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3363 				DE_AUX_CHANNEL_A |
3364 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3365 				DE_POISON);
3366 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3367 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3368 	}
3369 
3370 	dev_priv->irq_mask = ~display_mask;
3371 
3372 	I915_WRITE(HWSTAM, 0xeffe);
3373 
3374 	ibx_irq_pre_postinstall(dev);
3375 
3376 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3377 
3378 	gen5_gt_irq_postinstall(dev);
3379 
3380 	ibx_irq_postinstall(dev);
3381 
3382 	if (IS_IRONLAKE_M(dev)) {
3383 		/* Enable PCU event interrupts
3384 		 *
3385 		 * spinlocking not required here for correctness since interrupt
3386 		 * setup is guaranteed to run in single-threaded context. But we
3387 		 * need it to make the assert_spin_locked happy. */
3388 		spin_lock_irq(&dev_priv->irq_lock);
3389 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3390 		spin_unlock_irq(&dev_priv->irq_lock);
3391 	}
3392 
3393 	return 0;
3394 }
3395 
3396 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3397 {
3398 	u32 pipestat_mask;
3399 	u32 iir_mask;
3400 	enum pipe pipe;
3401 
3402 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3403 			PIPE_FIFO_UNDERRUN_STATUS;
3404 
3405 	for_each_pipe(dev_priv, pipe)
3406 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3407 	POSTING_READ(PIPESTAT(PIPE_A));
3408 
3409 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3410 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3411 
3412 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3413 	for_each_pipe(dev_priv, pipe)
3414 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3415 
3416 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3417 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3418 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3419 	if (IS_CHERRYVIEW(dev_priv))
3420 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3421 	dev_priv->irq_mask &= ~iir_mask;
3422 
3423 	I915_WRITE(VLV_IIR, iir_mask);
3424 	I915_WRITE(VLV_IIR, iir_mask);
3425 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3426 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3427 	POSTING_READ(VLV_IMR);
3428 }
3429 
3430 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432 	u32 pipestat_mask;
3433 	u32 iir_mask;
3434 	enum pipe pipe;
3435 
3436 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3437 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3438 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3439 	if (IS_CHERRYVIEW(dev_priv))
3440 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3441 
3442 	dev_priv->irq_mask |= iir_mask;
3443 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3444 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3445 	I915_WRITE(VLV_IIR, iir_mask);
3446 	I915_WRITE(VLV_IIR, iir_mask);
3447 	POSTING_READ(VLV_IIR);
3448 
3449 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3450 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3451 
3452 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3453 	for_each_pipe(dev_priv, pipe)
3454 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3455 
3456 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3457 			PIPE_FIFO_UNDERRUN_STATUS;
3458 
3459 	for_each_pipe(dev_priv, pipe)
3460 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3461 	POSTING_READ(PIPESTAT(PIPE_A));
3462 }
3463 
3464 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3465 {
3466 	assert_spin_locked(&dev_priv->irq_lock);
3467 
3468 	if (dev_priv->display_irqs_enabled)
3469 		return;
3470 
3471 	dev_priv->display_irqs_enabled = true;
3472 
3473 	if (intel_irqs_enabled(dev_priv))
3474 		valleyview_display_irqs_install(dev_priv);
3475 }
3476 
3477 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3478 {
3479 	assert_spin_locked(&dev_priv->irq_lock);
3480 
3481 	if (!dev_priv->display_irqs_enabled)
3482 		return;
3483 
3484 	dev_priv->display_irqs_enabled = false;
3485 
3486 	if (intel_irqs_enabled(dev_priv))
3487 		valleyview_display_irqs_uninstall(dev_priv);
3488 }
3489 
3490 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3491 {
3492 	dev_priv->irq_mask = ~0;
3493 
3494 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3495 	POSTING_READ(PORT_HOTPLUG_EN);
3496 
3497 	I915_WRITE(VLV_IIR, 0xffffffff);
3498 	I915_WRITE(VLV_IIR, 0xffffffff);
3499 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3500 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3501 	POSTING_READ(VLV_IMR);
3502 
3503 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3504 	 * just to make the assert_spin_locked check happy. */
3505 	spin_lock_irq(&dev_priv->irq_lock);
3506 	if (dev_priv->display_irqs_enabled)
3507 		valleyview_display_irqs_install(dev_priv);
3508 	spin_unlock_irq(&dev_priv->irq_lock);
3509 }
3510 
3511 static int valleyview_irq_postinstall(struct drm_device *dev)
3512 {
3513 	struct drm_i915_private *dev_priv = dev->dev_private;
3514 
3515 	vlv_display_irq_postinstall(dev_priv);
3516 
3517 	gen5_gt_irq_postinstall(dev);
3518 
3519 	/* ack & enable invalid PTE error interrupts */
3520 #if 0 /* FIXME: add support to irq handler for checking these bits */
3521 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3522 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3523 #endif
3524 
3525 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3526 
3527 	return 0;
3528 }
3529 
3530 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3531 {
3532 	/* These are interrupts we'll toggle with the ring mask register */
3533 	uint32_t gt_interrupts[] = {
3534 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3535 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3536 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3537 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3538 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3539 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3540 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3541 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3542 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3543 		0,
3544 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3545 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3546 		};
3547 
3548 	dev_priv->pm_irq_mask = 0xffffffff;
3549 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3550 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3551 	/*
3552 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3553 	 * is enabled/disabled.
3554 	 */
3555 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3556 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3557 }
3558 
3559 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3562 	uint32_t de_pipe_enables;
3563 	int pipe;
3564 	u32 aux_en = GEN8_AUX_CHANNEL_A;
3565 
3566 	if (IS_GEN9(dev_priv)) {
3567 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3568 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3569 		aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3570 			GEN9_AUX_CHANNEL_D;
3571 	} else
3572 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3573 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3574 
3575 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3576 					   GEN8_PIPE_FIFO_UNDERRUN;
3577 
3578 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3579 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3580 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3581 
3582 	for_each_pipe(dev_priv, pipe)
3583 		if (intel_display_power_is_enabled(dev_priv,
3584 				POWER_DOMAIN_PIPE(pipe)))
3585 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3586 					  dev_priv->de_irq_mask[pipe],
3587 					  de_pipe_enables);
3588 
3589 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3590 }
3591 
3592 static int gen8_irq_postinstall(struct drm_device *dev)
3593 {
3594 	struct drm_i915_private *dev_priv = dev->dev_private;
3595 
3596 	ibx_irq_pre_postinstall(dev);
3597 
3598 	gen8_gt_irq_postinstall(dev_priv);
3599 	gen8_de_irq_postinstall(dev_priv);
3600 
3601 	ibx_irq_postinstall(dev);
3602 
3603 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3604 	POSTING_READ(GEN8_MASTER_IRQ);
3605 
3606 	return 0;
3607 }
3608 
3609 static int cherryview_irq_postinstall(struct drm_device *dev)
3610 {
3611 	struct drm_i915_private *dev_priv = dev->dev_private;
3612 
3613 	vlv_display_irq_postinstall(dev_priv);
3614 
3615 	gen8_gt_irq_postinstall(dev_priv);
3616 
3617 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3618 	POSTING_READ(GEN8_MASTER_IRQ);
3619 
3620 	return 0;
3621 }
3622 
3623 static void gen8_irq_uninstall(struct drm_device *dev)
3624 {
3625 	struct drm_i915_private *dev_priv = dev->dev_private;
3626 
3627 	if (!dev_priv)
3628 		return;
3629 
3630 	gen8_irq_reset(dev);
3631 }
3632 
3633 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3634 {
3635 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3636 	 * just to make the assert_spin_locked check happy. */
3637 	spin_lock_irq(&dev_priv->irq_lock);
3638 	if (dev_priv->display_irqs_enabled)
3639 		valleyview_display_irqs_uninstall(dev_priv);
3640 	spin_unlock_irq(&dev_priv->irq_lock);
3641 
3642 	vlv_display_irq_reset(dev_priv);
3643 
3644 	dev_priv->irq_mask = ~0;
3645 }
3646 
3647 static void valleyview_irq_uninstall(struct drm_device *dev)
3648 {
3649 	struct drm_i915_private *dev_priv = dev->dev_private;
3650 
3651 	if (!dev_priv)
3652 		return;
3653 
3654 	I915_WRITE(VLV_MASTER_IER, 0);
3655 
3656 	gen5_gt_irq_reset(dev);
3657 
3658 	I915_WRITE(HWSTAM, 0xffffffff);
3659 
3660 	vlv_display_irq_uninstall(dev_priv);
3661 }
3662 
3663 static void cherryview_irq_uninstall(struct drm_device *dev)
3664 {
3665 	struct drm_i915_private *dev_priv = dev->dev_private;
3666 
3667 	if (!dev_priv)
3668 		return;
3669 
3670 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3671 	POSTING_READ(GEN8_MASTER_IRQ);
3672 
3673 	gen8_gt_irq_reset(dev_priv);
3674 
3675 	GEN5_IRQ_RESET(GEN8_PCU_);
3676 
3677 	vlv_display_irq_uninstall(dev_priv);
3678 }
3679 
3680 static void ironlake_irq_uninstall(struct drm_device *dev)
3681 {
3682 	struct drm_i915_private *dev_priv = dev->dev_private;
3683 
3684 	if (!dev_priv)
3685 		return;
3686 
3687 	ironlake_irq_reset(dev);
3688 }
3689 
3690 static void i8xx_irq_preinstall(struct drm_device * dev)
3691 {
3692 	struct drm_i915_private *dev_priv = dev->dev_private;
3693 	int pipe;
3694 
3695 	for_each_pipe(dev_priv, pipe)
3696 		I915_WRITE(PIPESTAT(pipe), 0);
3697 	I915_WRITE16(IMR, 0xffff);
3698 	I915_WRITE16(IER, 0x0);
3699 	POSTING_READ16(IER);
3700 }
3701 
3702 static int i8xx_irq_postinstall(struct drm_device *dev)
3703 {
3704 	struct drm_i915_private *dev_priv = dev->dev_private;
3705 
3706 	I915_WRITE16(EMR,
3707 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3708 
3709 	/* Unmask the interrupts that we always want on. */
3710 	dev_priv->irq_mask =
3711 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3712 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3713 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3714 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3715 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3716 	I915_WRITE16(IMR, dev_priv->irq_mask);
3717 
3718 	I915_WRITE16(IER,
3719 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3720 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3721 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3722 		     I915_USER_INTERRUPT);
3723 	POSTING_READ16(IER);
3724 
3725 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3726 	 * just to make the assert_spin_locked check happy. */
3727 	spin_lock_irq(&dev_priv->irq_lock);
3728 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3729 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3730 	spin_unlock_irq(&dev_priv->irq_lock);
3731 
3732 	return 0;
3733 }
3734 
3735 /*
3736  * Returns true when a page flip has completed.
3737  */
3738 static bool i8xx_handle_vblank(struct drm_device *dev,
3739 			       int plane, int pipe, u32 iir)
3740 {
3741 	struct drm_i915_private *dev_priv = dev->dev_private;
3742 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3743 
3744 	if (!intel_pipe_handle_vblank(dev, pipe))
3745 		return false;
3746 
3747 	if ((iir & flip_pending) == 0)
3748 		goto check_page_flip;
3749 
3750 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3751 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3752 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3753 	 * the flip is completed (no longer pending). Since this doesn't raise
3754 	 * an interrupt per se, we watch for the change at vblank.
3755 	 */
3756 	if (I915_READ16(ISR) & flip_pending)
3757 		goto check_page_flip;
3758 
3759 	intel_prepare_page_flip(dev, plane);
3760 	intel_finish_page_flip(dev, pipe);
3761 	return true;
3762 
3763 check_page_flip:
3764 	intel_check_page_flip(dev, pipe);
3765 	return false;
3766 }
3767 
3768 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3769 {
3770 	struct drm_device *dev = arg;
3771 	struct drm_i915_private *dev_priv = dev->dev_private;
3772 	u16 iir, new_iir;
3773 	u32 pipe_stats[2];
3774 	int pipe;
3775 	u16 flip_mask =
3776 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3777 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3778 
3779 	iir = I915_READ16(IIR);
3780 	if (iir == 0)
3781 		return IRQ_NONE;
3782 
3783 	while (iir & ~flip_mask) {
3784 		/* Can't rely on pipestat interrupt bit in iir as it might
3785 		 * have been cleared after the pipestat interrupt was received.
3786 		 * It doesn't set the bit in iir again, but it still produces
3787 		 * interrupts (for non-MSI).
3788 		 */
3789 		spin_lock(&dev_priv->irq_lock);
3790 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3791 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3792 
3793 		for_each_pipe(dev_priv, pipe) {
3794 			int reg = PIPESTAT(pipe);
3795 			pipe_stats[pipe] = I915_READ(reg);
3796 
3797 			/*
3798 			 * Clear the PIPE*STAT regs before the IIR
3799 			 */
3800 			if (pipe_stats[pipe] & 0x8000ffff)
3801 				I915_WRITE(reg, pipe_stats[pipe]);
3802 		}
3803 		spin_unlock(&dev_priv->irq_lock);
3804 
3805 		I915_WRITE16(IIR, iir & ~flip_mask);
3806 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3807 
3808 		if (iir & I915_USER_INTERRUPT)
3809 			notify_ring(dev, &dev_priv->ring[RCS]);
3810 
3811 		for_each_pipe(dev_priv, pipe) {
3812 			int plane = pipe;
3813 			if (HAS_FBC(dev))
3814 				plane = !plane;
3815 
3816 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3817 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3818 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3819 
3820 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3821 				i9xx_pipe_crc_irq_handler(dev, pipe);
3822 
3823 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3824 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3825 								    pipe);
3826 		}
3827 
3828 		iir = new_iir;
3829 	}
3830 
3831 	return IRQ_HANDLED;
3832 }
3833 
3834 static void i8xx_irq_uninstall(struct drm_device * dev)
3835 {
3836 	struct drm_i915_private *dev_priv = dev->dev_private;
3837 	int pipe;
3838 
3839 	for_each_pipe(dev_priv, pipe) {
3840 		/* Clear enable bits; then clear status bits */
3841 		I915_WRITE(PIPESTAT(pipe), 0);
3842 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3843 	}
3844 	I915_WRITE16(IMR, 0xffff);
3845 	I915_WRITE16(IER, 0x0);
3846 	I915_WRITE16(IIR, I915_READ16(IIR));
3847 }
3848 
3849 static void i915_irq_preinstall(struct drm_device * dev)
3850 {
3851 	struct drm_i915_private *dev_priv = dev->dev_private;
3852 	int pipe;
3853 
3854 	if (I915_HAS_HOTPLUG(dev)) {
3855 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3856 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3857 	}
3858 
3859 	I915_WRITE16(HWSTAM, 0xeffe);
3860 	for_each_pipe(dev_priv, pipe)
3861 		I915_WRITE(PIPESTAT(pipe), 0);
3862 	I915_WRITE(IMR, 0xffffffff);
3863 	I915_WRITE(IER, 0x0);
3864 	POSTING_READ(IER);
3865 }
3866 
3867 static int i915_irq_postinstall(struct drm_device *dev)
3868 {
3869 	struct drm_i915_private *dev_priv = dev->dev_private;
3870 	u32 enable_mask;
3871 
3872 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3873 
3874 	/* Unmask the interrupts that we always want on. */
3875 	dev_priv->irq_mask =
3876 		~(I915_ASLE_INTERRUPT |
3877 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3878 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3879 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3880 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3881 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3882 
3883 	enable_mask =
3884 		I915_ASLE_INTERRUPT |
3885 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3886 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3887 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3888 		I915_USER_INTERRUPT;
3889 
3890 	if (I915_HAS_HOTPLUG(dev)) {
3891 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3892 		POSTING_READ(PORT_HOTPLUG_EN);
3893 
3894 		/* Enable in IER... */
3895 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3896 		/* and unmask in IMR */
3897 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3898 	}
3899 
3900 	I915_WRITE(IMR, dev_priv->irq_mask);
3901 	I915_WRITE(IER, enable_mask);
3902 	POSTING_READ(IER);
3903 
3904 	i915_enable_asle_pipestat(dev);
3905 
3906 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3907 	 * just to make the assert_spin_locked check happy. */
3908 	spin_lock_irq(&dev_priv->irq_lock);
3909 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3911 	spin_unlock_irq(&dev_priv->irq_lock);
3912 
3913 	return 0;
3914 }
3915 
3916 /*
3917  * Returns true when a page flip has completed.
3918  */
3919 static bool i915_handle_vblank(struct drm_device *dev,
3920 			       int plane, int pipe, u32 iir)
3921 {
3922 	struct drm_i915_private *dev_priv = dev->dev_private;
3923 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3924 
3925 	if (!intel_pipe_handle_vblank(dev, pipe))
3926 		return false;
3927 
3928 	if ((iir & flip_pending) == 0)
3929 		goto check_page_flip;
3930 
3931 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3932 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3933 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3934 	 * the flip is completed (no longer pending). Since this doesn't raise
3935 	 * an interrupt per se, we watch for the change at vblank.
3936 	 */
3937 	if (I915_READ(ISR) & flip_pending)
3938 		goto check_page_flip;
3939 
3940 	intel_prepare_page_flip(dev, plane);
3941 	intel_finish_page_flip(dev, pipe);
3942 	return true;
3943 
3944 check_page_flip:
3945 	intel_check_page_flip(dev, pipe);
3946 	return false;
3947 }
3948 
3949 static irqreturn_t i915_irq_handler(int irq, void *arg)
3950 {
3951 	struct drm_device *dev = arg;
3952 	struct drm_i915_private *dev_priv = dev->dev_private;
3953 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3954 	u32 flip_mask =
3955 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3956 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3957 	int pipe, ret = IRQ_NONE;
3958 
3959 	iir = I915_READ(IIR);
3960 	do {
3961 		bool irq_received = (iir & ~flip_mask) != 0;
3962 		bool blc_event = false;
3963 
3964 		/* Can't rely on pipestat interrupt bit in iir as it might
3965 		 * have been cleared after the pipestat interrupt was received.
3966 		 * It doesn't set the bit in iir again, but it still produces
3967 		 * interrupts (for non-MSI).
3968 		 */
3969 		spin_lock(&dev_priv->irq_lock);
3970 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3971 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3972 
3973 		for_each_pipe(dev_priv, pipe) {
3974 			int reg = PIPESTAT(pipe);
3975 			pipe_stats[pipe] = I915_READ(reg);
3976 
3977 			/* Clear the PIPE*STAT regs before the IIR */
3978 			if (pipe_stats[pipe] & 0x8000ffff) {
3979 				I915_WRITE(reg, pipe_stats[pipe]);
3980 				irq_received = true;
3981 			}
3982 		}
3983 		spin_unlock(&dev_priv->irq_lock);
3984 
3985 		if (!irq_received)
3986 			break;
3987 
3988 		/* Consume port.  Then clear IIR or we'll miss events */
3989 		if (I915_HAS_HOTPLUG(dev) &&
3990 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3991 			i9xx_hpd_irq_handler(dev);
3992 
3993 		I915_WRITE(IIR, iir & ~flip_mask);
3994 		new_iir = I915_READ(IIR); /* Flush posted writes */
3995 
3996 		if (iir & I915_USER_INTERRUPT)
3997 			notify_ring(dev, &dev_priv->ring[RCS]);
3998 
3999 		for_each_pipe(dev_priv, pipe) {
4000 			int plane = pipe;
4001 			if (HAS_FBC(dev))
4002 				plane = !plane;
4003 
4004 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4005 			    i915_handle_vblank(dev, plane, pipe, iir))
4006 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4007 
4008 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4009 				blc_event = true;
4010 
4011 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4012 				i9xx_pipe_crc_irq_handler(dev, pipe);
4013 
4014 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4015 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4016 								    pipe);
4017 		}
4018 
4019 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4020 			intel_opregion_asle_intr(dev);
4021 
4022 		/* With MSI, interrupts are only generated when iir
4023 		 * transitions from zero to nonzero.  If another bit got
4024 		 * set while we were handling the existing iir bits, then
4025 		 * we would never get another interrupt.
4026 		 *
4027 		 * This is fine on non-MSI as well, as if we hit this path
4028 		 * we avoid exiting the interrupt handler only to generate
4029 		 * another one.
4030 		 *
4031 		 * Note that for MSI this could cause a stray interrupt report
4032 		 * if an interrupt landed in the time between writing IIR and
4033 		 * the posting read.  This should be rare enough to never
4034 		 * trigger the 99% of 100,000 interrupts test for disabling
4035 		 * stray interrupts.
4036 		 */
4037 		ret = IRQ_HANDLED;
4038 		iir = new_iir;
4039 	} while (iir & ~flip_mask);
4040 
4041 	return ret;
4042 }
4043 
4044 static void i915_irq_uninstall(struct drm_device * dev)
4045 {
4046 	struct drm_i915_private *dev_priv = dev->dev_private;
4047 	int pipe;
4048 
4049 	if (I915_HAS_HOTPLUG(dev)) {
4050 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4051 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4052 	}
4053 
4054 	I915_WRITE16(HWSTAM, 0xffff);
4055 	for_each_pipe(dev_priv, pipe) {
4056 		/* Clear enable bits; then clear status bits */
4057 		I915_WRITE(PIPESTAT(pipe), 0);
4058 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4059 	}
4060 	I915_WRITE(IMR, 0xffffffff);
4061 	I915_WRITE(IER, 0x0);
4062 
4063 	I915_WRITE(IIR, I915_READ(IIR));
4064 }
4065 
4066 static void i965_irq_preinstall(struct drm_device * dev)
4067 {
4068 	struct drm_i915_private *dev_priv = dev->dev_private;
4069 	int pipe;
4070 
4071 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4072 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4073 
4074 	I915_WRITE(HWSTAM, 0xeffe);
4075 	for_each_pipe(dev_priv, pipe)
4076 		I915_WRITE(PIPESTAT(pipe), 0);
4077 	I915_WRITE(IMR, 0xffffffff);
4078 	I915_WRITE(IER, 0x0);
4079 	POSTING_READ(IER);
4080 }
4081 
4082 static int i965_irq_postinstall(struct drm_device *dev)
4083 {
4084 	struct drm_i915_private *dev_priv = dev->dev_private;
4085 	u32 enable_mask;
4086 	u32 error_mask;
4087 
4088 	/* Unmask the interrupts that we always want on. */
4089 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4090 			       I915_DISPLAY_PORT_INTERRUPT |
4091 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4092 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4093 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4094 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4095 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4096 
4097 	enable_mask = ~dev_priv->irq_mask;
4098 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4099 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4100 	enable_mask |= I915_USER_INTERRUPT;
4101 
4102 	if (IS_G4X(dev))
4103 		enable_mask |= I915_BSD_USER_INTERRUPT;
4104 
4105 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4106 	 * just to make the assert_spin_locked check happy. */
4107 	spin_lock_irq(&dev_priv->irq_lock);
4108 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4109 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4110 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4111 	spin_unlock_irq(&dev_priv->irq_lock);
4112 
4113 	/*
4114 	 * Enable some error detection, note the instruction error mask
4115 	 * bit is reserved, so we leave it masked.
4116 	 */
4117 	if (IS_G4X(dev)) {
4118 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4119 			       GM45_ERROR_MEM_PRIV |
4120 			       GM45_ERROR_CP_PRIV |
4121 			       I915_ERROR_MEMORY_REFRESH);
4122 	} else {
4123 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4124 			       I915_ERROR_MEMORY_REFRESH);
4125 	}
4126 	I915_WRITE(EMR, error_mask);
4127 
4128 	I915_WRITE(IMR, dev_priv->irq_mask);
4129 	I915_WRITE(IER, enable_mask);
4130 	POSTING_READ(IER);
4131 
4132 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4133 	POSTING_READ(PORT_HOTPLUG_EN);
4134 
4135 	i915_enable_asle_pipestat(dev);
4136 
4137 	return 0;
4138 }
4139 
4140 static void i915_hpd_irq_setup(struct drm_device *dev)
4141 {
4142 	struct drm_i915_private *dev_priv = dev->dev_private;
4143 	struct intel_encoder *intel_encoder;
4144 	u32 hotplug_en;
4145 
4146 	assert_spin_locked(&dev_priv->irq_lock);
4147 
4148 	if (I915_HAS_HOTPLUG(dev)) {
4149 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4150 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4151 		/* Note HDMI and DP share hotplug bits */
4152 		/* enable bits are the same for all generations */
4153 		for_each_intel_encoder(dev, intel_encoder)
4154 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4155 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4156 		/* Programming the CRT detection parameters tends
4157 		   to generate a spurious hotplug event about three
4158 		   seconds later.  So just do it once.
4159 		*/
4160 		if (IS_G4X(dev))
4161 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4162 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4163 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4164 
4165 		/* Ignore TV since it's buggy */
4166 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4167 	}
4168 }
4169 
4170 static irqreturn_t i965_irq_handler(int irq, void *arg)
4171 {
4172 	struct drm_device *dev = arg;
4173 	struct drm_i915_private *dev_priv = dev->dev_private;
4174 	u32 iir, new_iir;
4175 	u32 pipe_stats[I915_MAX_PIPES];
4176 	int ret = IRQ_NONE, pipe;
4177 	u32 flip_mask =
4178 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4179 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4180 
4181 	iir = I915_READ(IIR);
4182 
4183 	for (;;) {
4184 		bool irq_received = (iir & ~flip_mask) != 0;
4185 		bool blc_event = false;
4186 
4187 		/* Can't rely on pipestat interrupt bit in iir as it might
4188 		 * have been cleared after the pipestat interrupt was received.
4189 		 * It doesn't set the bit in iir again, but it still produces
4190 		 * interrupts (for non-MSI).
4191 		 */
4192 		spin_lock(&dev_priv->irq_lock);
4193 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4194 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4195 
4196 		for_each_pipe(dev_priv, pipe) {
4197 			int reg = PIPESTAT(pipe);
4198 			pipe_stats[pipe] = I915_READ(reg);
4199 
4200 			/*
4201 			 * Clear the PIPE*STAT regs before the IIR
4202 			 */
4203 			if (pipe_stats[pipe] & 0x8000ffff) {
4204 				I915_WRITE(reg, pipe_stats[pipe]);
4205 				irq_received = true;
4206 			}
4207 		}
4208 		spin_unlock(&dev_priv->irq_lock);
4209 
4210 		if (!irq_received)
4211 			break;
4212 
4213 		ret = IRQ_HANDLED;
4214 
4215 		/* Consume port.  Then clear IIR or we'll miss events */
4216 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4217 			i9xx_hpd_irq_handler(dev);
4218 
4219 		I915_WRITE(IIR, iir & ~flip_mask);
4220 		new_iir = I915_READ(IIR); /* Flush posted writes */
4221 
4222 		if (iir & I915_USER_INTERRUPT)
4223 			notify_ring(dev, &dev_priv->ring[RCS]);
4224 		if (iir & I915_BSD_USER_INTERRUPT)
4225 			notify_ring(dev, &dev_priv->ring[VCS]);
4226 
4227 		for_each_pipe(dev_priv, pipe) {
4228 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4229 			    i915_handle_vblank(dev, pipe, pipe, iir))
4230 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4231 
4232 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4233 				blc_event = true;
4234 
4235 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4236 				i9xx_pipe_crc_irq_handler(dev, pipe);
4237 
4238 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4239 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4240 		}
4241 
4242 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4243 			intel_opregion_asle_intr(dev);
4244 
4245 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4246 			gmbus_irq_handler(dev);
4247 
4248 		/* With MSI, interrupts are only generated when iir
4249 		 * transitions from zero to nonzero.  If another bit got
4250 		 * set while we were handling the existing iir bits, then
4251 		 * we would never get another interrupt.
4252 		 *
4253 		 * This is fine on non-MSI as well, as if we hit this path
4254 		 * we avoid exiting the interrupt handler only to generate
4255 		 * another one.
4256 		 *
4257 		 * Note that for MSI this could cause a stray interrupt report
4258 		 * if an interrupt landed in the time between writing IIR and
4259 		 * the posting read.  This should be rare enough to never
4260 		 * trigger the 99% of 100,000 interrupts test for disabling
4261 		 * stray interrupts.
4262 		 */
4263 		iir = new_iir;
4264 	}
4265 
4266 	return ret;
4267 }
4268 
4269 static void i965_irq_uninstall(struct drm_device * dev)
4270 {
4271 	struct drm_i915_private *dev_priv = dev->dev_private;
4272 	int pipe;
4273 
4274 	if (!dev_priv)
4275 		return;
4276 
4277 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4278 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4279 
4280 	I915_WRITE(HWSTAM, 0xffffffff);
4281 	for_each_pipe(dev_priv, pipe)
4282 		I915_WRITE(PIPESTAT(pipe), 0);
4283 	I915_WRITE(IMR, 0xffffffff);
4284 	I915_WRITE(IER, 0x0);
4285 
4286 	for_each_pipe(dev_priv, pipe)
4287 		I915_WRITE(PIPESTAT(pipe),
4288 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4289 	I915_WRITE(IIR, I915_READ(IIR));
4290 }
4291 
4292 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4293 {
4294 	struct drm_i915_private *dev_priv =
4295 		container_of(work, typeof(*dev_priv),
4296 			     hotplug_reenable_work.work);
4297 	struct drm_device *dev = dev_priv->dev;
4298 	struct drm_mode_config *mode_config = &dev->mode_config;
4299 	int i;
4300 
4301 	intel_runtime_pm_get(dev_priv);
4302 
4303 	spin_lock_irq(&dev_priv->irq_lock);
4304 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4305 		struct drm_connector *connector;
4306 
4307 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4308 			continue;
4309 
4310 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4311 
4312 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4313 			struct intel_connector *intel_connector = to_intel_connector(connector);
4314 
4315 			if (intel_connector->encoder->hpd_pin == i) {
4316 				if (connector->polled != intel_connector->polled)
4317 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4318 							 connector->name);
4319 				connector->polled = intel_connector->polled;
4320 				if (!connector->polled)
4321 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4322 			}
4323 		}
4324 	}
4325 	if (dev_priv->display.hpd_irq_setup)
4326 		dev_priv->display.hpd_irq_setup(dev);
4327 	spin_unlock_irq(&dev_priv->irq_lock);
4328 
4329 	intel_runtime_pm_put(dev_priv);
4330 }
4331 
4332 /**
4333  * intel_irq_init - initializes irq support
4334  * @dev_priv: i915 device instance
4335  *
4336  * This function initializes all the irq support including work items, timers
4337  * and all the vtables. It does not setup the interrupt itself though.
4338  */
4339 void intel_irq_init(struct drm_i915_private *dev_priv)
4340 {
4341 	struct drm_device *dev = dev_priv->dev;
4342 
4343 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4344 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4345 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4346 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4347 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4348 
4349 	/* Let's track the enabled rps events */
4350 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4351 		/* WaGsvRC0ResidencyMethod:vlv */
4352 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4353 	else
4354 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4355 
4356 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4357 		    i915_hangcheck_elapsed,
4358 		    (unsigned long) dev);
4359 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4360 			  intel_hpd_irq_reenable_work);
4361 
4362 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4363 
4364 	if (IS_GEN2(dev_priv)) {
4365 		dev->max_vblank_count = 0;
4366 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4367 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4368 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4369 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4370 	} else {
4371 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4372 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4373 	}
4374 
4375 	/*
4376 	 * Opt out of the vblank disable timer on everything except gen2.
4377 	 * Gen2 doesn't have a hardware frame counter and so depends on
4378 	 * vblank interrupts to produce sane vblank seuquence numbers.
4379 	 */
4380 	if (!IS_GEN2(dev_priv))
4381 		dev->vblank_disable_immediate = true;
4382 
4383 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4384 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4385 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4386 	}
4387 
4388 	if (IS_CHERRYVIEW(dev_priv)) {
4389 		dev->driver->irq_handler = cherryview_irq_handler;
4390 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4391 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4392 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4393 		dev->driver->enable_vblank = valleyview_enable_vblank;
4394 		dev->driver->disable_vblank = valleyview_disable_vblank;
4395 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4396 	} else if (IS_VALLEYVIEW(dev_priv)) {
4397 		dev->driver->irq_handler = valleyview_irq_handler;
4398 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4399 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4400 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4401 		dev->driver->enable_vblank = valleyview_enable_vblank;
4402 		dev->driver->disable_vblank = valleyview_disable_vblank;
4403 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4404 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4405 		dev->driver->irq_handler = gen8_irq_handler;
4406 		dev->driver->irq_preinstall = gen8_irq_reset;
4407 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4408 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4409 		dev->driver->enable_vblank = gen8_enable_vblank;
4410 		dev->driver->disable_vblank = gen8_disable_vblank;
4411 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4412 	} else if (HAS_PCH_SPLIT(dev)) {
4413 		dev->driver->irq_handler = ironlake_irq_handler;
4414 		dev->driver->irq_preinstall = ironlake_irq_reset;
4415 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4416 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4417 		dev->driver->enable_vblank = ironlake_enable_vblank;
4418 		dev->driver->disable_vblank = ironlake_disable_vblank;
4419 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4420 	} else {
4421 		if (INTEL_INFO(dev_priv)->gen == 2) {
4422 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4423 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4424 			dev->driver->irq_handler = i8xx_irq_handler;
4425 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4426 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4427 			dev->driver->irq_preinstall = i915_irq_preinstall;
4428 			dev->driver->irq_postinstall = i915_irq_postinstall;
4429 			dev->driver->irq_uninstall = i915_irq_uninstall;
4430 			dev->driver->irq_handler = i915_irq_handler;
4431 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4432 		} else {
4433 			dev->driver->irq_preinstall = i965_irq_preinstall;
4434 			dev->driver->irq_postinstall = i965_irq_postinstall;
4435 			dev->driver->irq_uninstall = i965_irq_uninstall;
4436 			dev->driver->irq_handler = i965_irq_handler;
4437 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4438 		}
4439 		dev->driver->enable_vblank = i915_enable_vblank;
4440 		dev->driver->disable_vblank = i915_disable_vblank;
4441 	}
4442 }
4443 
4444 /**
4445  * intel_hpd_init - initializes and enables hpd support
4446  * @dev_priv: i915 device instance
4447  *
4448  * This function enables the hotplug support. It requires that interrupts have
4449  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4450  * poll request can run concurrently to other code, so locking rules must be
4451  * obeyed.
4452  *
4453  * This is a separate step from interrupt enabling to simplify the locking rules
4454  * in the driver load and resume code.
4455  */
4456 void intel_hpd_init(struct drm_i915_private *dev_priv)
4457 {
4458 	struct drm_device *dev = dev_priv->dev;
4459 	struct drm_mode_config *mode_config = &dev->mode_config;
4460 	struct drm_connector *connector;
4461 	int i;
4462 
4463 	for (i = 1; i < HPD_NUM_PINS; i++) {
4464 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4465 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4466 	}
4467 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4468 		struct intel_connector *intel_connector = to_intel_connector(connector);
4469 		connector->polled = intel_connector->polled;
4470 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4471 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4472 		if (intel_connector->mst_port)
4473 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4474 	}
4475 
4476 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4477 	 * just to make the assert_spin_locked checks happy. */
4478 	spin_lock_irq(&dev_priv->irq_lock);
4479 	if (dev_priv->display.hpd_irq_setup)
4480 		dev_priv->display.hpd_irq_setup(dev);
4481 	spin_unlock_irq(&dev_priv->irq_lock);
4482 }
4483 
4484 /**
4485  * intel_irq_install - enables the hardware interrupt
4486  * @dev_priv: i915 device instance
4487  *
4488  * This function enables the hardware interrupt handling, but leaves the hotplug
4489  * handling still disabled. It is called after intel_irq_init().
4490  *
4491  * In the driver load and resume code we need working interrupts in a few places
4492  * but don't want to deal with the hassle of concurrent probe and hotplug
4493  * workers. Hence the split into this two-stage approach.
4494  */
4495 int intel_irq_install(struct drm_i915_private *dev_priv)
4496 {
4497 	/*
4498 	 * We enable some interrupt sources in our postinstall hooks, so mark
4499 	 * interrupts as enabled _before_ actually enabling them to avoid
4500 	 * special cases in our ordering checks.
4501 	 */
4502 	dev_priv->pm.irqs_enabled = true;
4503 
4504 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4505 }
4506 
4507 /**
4508  * intel_irq_uninstall - finilizes all irq handling
4509  * @dev_priv: i915 device instance
4510  *
4511  * This stops interrupt and hotplug handling and unregisters and frees all
4512  * resources acquired in the init functions.
4513  */
4514 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4515 {
4516 	drm_irq_uninstall(dev_priv->dev);
4517 	intel_hpd_cancel_work(dev_priv);
4518 	dev_priv->pm.irqs_enabled = false;
4519 }
4520 
4521 /**
4522  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4523  * @dev_priv: i915 device instance
4524  *
4525  * This function is used to disable interrupts at runtime, both in the runtime
4526  * pm and the system suspend/resume code.
4527  */
4528 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4529 {
4530 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4531 	dev_priv->pm.irqs_enabled = false;
4532 }
4533 
4534 /**
4535  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4536  * @dev_priv: i915 device instance
4537  *
4538  * This function is used to enable interrupts at runtime, both in the runtime
4539  * pm and the system suspend/resume code.
4540  */
4541 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4542 {
4543 	dev_priv->pm.irqs_enabled = true;
4544 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4545 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4546 }
4547