xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 8cb5d748)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174 
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 				     uint32_t mask,
179 				     uint32_t bits)
180 {
181 	uint32_t val;
182 
183 	lockdep_assert_held(&dev_priv->irq_lock);
184 	WARN_ON(bits & ~mask);
185 
186 	val = I915_READ(PORT_HOTPLUG_EN);
187 	val &= ~mask;
188 	val |= bits;
189 	I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191 
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 				   uint32_t mask,
206 				   uint32_t bits)
207 {
208 	spin_lock_irq(&dev_priv->irq_lock);
209 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 	spin_unlock_irq(&dev_priv->irq_lock);
211 }
212 
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 			    uint32_t interrupt_mask,
221 			    uint32_t enabled_irq_mask)
222 {
223 	uint32_t new_val;
224 
225 	lockdep_assert_held(&dev_priv->irq_lock);
226 
227 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
228 
229 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 		return;
231 
232 	new_val = dev_priv->irq_mask;
233 	new_val &= ~interrupt_mask;
234 	new_val |= (~enabled_irq_mask & interrupt_mask);
235 
236 	if (new_val != dev_priv->irq_mask) {
237 		dev_priv->irq_mask = new_val;
238 		I915_WRITE(DEIMR, dev_priv->irq_mask);
239 		POSTING_READ(DEIMR);
240 	}
241 }
242 
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 			      uint32_t interrupt_mask,
251 			      uint32_t enabled_irq_mask)
252 {
253 	lockdep_assert_held(&dev_priv->irq_lock);
254 
255 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
256 
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	dev_priv->gt_irq_mask &= ~interrupt_mask;
261 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 	POSTING_READ_FW(GTIMR);
269 }
270 
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275 
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280 
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285 
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290 
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 			      uint32_t interrupt_mask,
299 			      uint32_t enabled_irq_mask)
300 {
301 	uint32_t new_val;
302 
303 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
304 
305 	lockdep_assert_held(&dev_priv->irq_lock);
306 
307 	new_val = dev_priv->pm_imr;
308 	new_val &= ~interrupt_mask;
309 	new_val |= (~enabled_irq_mask & interrupt_mask);
310 
311 	if (new_val != dev_priv->pm_imr) {
312 		dev_priv->pm_imr = new_val;
313 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 		POSTING_READ(gen6_pm_imr(dev_priv));
315 	}
316 }
317 
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 		return;
322 
323 	snb_update_pm_irq(dev_priv, mask, mask);
324 }
325 
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_mask_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	lockdep_assert_held(&dev_priv->irq_lock);
344 
345 	I915_WRITE(reg, reset_mask);
346 	I915_WRITE(reg, reset_mask);
347 	POSTING_READ(reg);
348 }
349 
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 	lockdep_assert_held(&dev_priv->irq_lock);
353 
354 	dev_priv->pm_ier |= enable_mask;
355 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 	gen6_unmask_pm_irq(dev_priv, enable_mask);
357 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359 
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 	lockdep_assert_held(&dev_priv->irq_lock);
363 
364 	dev_priv->pm_ier &= ~disable_mask;
365 	__gen6_mask_pm_irq(dev_priv, disable_mask);
366 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 	/* though a barrier is missing here, but don't really need a one */
368 }
369 
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 	spin_lock_irq(&dev_priv->irq_lock);
373 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 	dev_priv->rps.pm_iir = 0;
375 	spin_unlock_irq(&dev_priv->irq_lock);
376 }
377 
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 		return;
382 
383 	spin_lock_irq(&dev_priv->irq_lock);
384 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 	dev_priv->rps.interrupts_enabled = true;
387 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388 
389 	spin_unlock_irq(&dev_priv->irq_lock);
390 }
391 
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 		return;
396 
397 	spin_lock_irq(&dev_priv->irq_lock);
398 	dev_priv->rps.interrupts_enabled = false;
399 
400 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401 
402 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403 
404 	spin_unlock_irq(&dev_priv->irq_lock);
405 	synchronize_irq(dev_priv->drm.irq);
406 
407 	/* Now that we will not be generating any more work, flush any
408 	 * outsanding tasks. As we are called on the RPS idle path,
409 	 * we will reset the GPU to minimum frequencies, so the current
410 	 * state of the worker can be discarded.
411 	 */
412 	cancel_work_sync(&dev_priv->rps.work);
413 	gen6_reset_rps_interrupts(dev_priv);
414 }
415 
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 	spin_lock_irq(&dev_priv->irq_lock);
419 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 	spin_unlock_irq(&dev_priv->irq_lock);
421 }
422 
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 	spin_lock_irq(&dev_priv->irq_lock);
426 	if (!dev_priv->guc.interrupts_enabled) {
427 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 				       dev_priv->pm_guc_events);
429 		dev_priv->guc.interrupts_enabled = true;
430 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 	}
432 	spin_unlock_irq(&dev_priv->irq_lock);
433 }
434 
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 	spin_lock_irq(&dev_priv->irq_lock);
438 	dev_priv->guc.interrupts_enabled = false;
439 
440 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441 
442 	spin_unlock_irq(&dev_priv->irq_lock);
443 	synchronize_irq(dev_priv->drm.irq);
444 
445 	gen9_reset_guc_interrupts(dev_priv);
446 }
447 
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 				uint32_t interrupt_mask,
456 				uint32_t enabled_irq_mask)
457 {
458 	uint32_t new_val;
459 	uint32_t old_val;
460 
461 	lockdep_assert_held(&dev_priv->irq_lock);
462 
463 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
464 
465 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 		return;
467 
468 	old_val = I915_READ(GEN8_DE_PORT_IMR);
469 
470 	new_val = old_val;
471 	new_val &= ~interrupt_mask;
472 	new_val |= (~enabled_irq_mask & interrupt_mask);
473 
474 	if (new_val != old_val) {
475 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 		POSTING_READ(GEN8_DE_PORT_IMR);
477 	}
478 }
479 
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 			 enum pipe pipe,
489 			 uint32_t interrupt_mask,
490 			 uint32_t enabled_irq_mask)
491 {
492 	uint32_t new_val;
493 
494 	lockdep_assert_held(&dev_priv->irq_lock);
495 
496 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
497 
498 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 		return;
500 
501 	new_val = dev_priv->de_irq_mask[pipe];
502 	new_val &= ~interrupt_mask;
503 	new_val |= (~enabled_irq_mask & interrupt_mask);
504 
505 	if (new_val != dev_priv->de_irq_mask[pipe]) {
506 		dev_priv->de_irq_mask[pipe] = new_val;
507 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 	}
510 }
511 
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 				  uint32_t interrupt_mask,
520 				  uint32_t enabled_irq_mask)
521 {
522 	uint32_t sdeimr = I915_READ(SDEIMR);
523 	sdeimr &= ~interrupt_mask;
524 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
525 
526 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
527 
528 	lockdep_assert_held(&dev_priv->irq_lock);
529 
530 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 		return;
532 
533 	I915_WRITE(SDEIMR, sdeimr);
534 	POSTING_READ(SDEIMR);
535 }
536 
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 		       u32 enable_mask, u32 status_mask)
540 {
541 	i915_reg_t reg = PIPESTAT(pipe);
542 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543 
544 	lockdep_assert_held(&dev_priv->irq_lock);
545 	WARN_ON(!intel_irqs_enabled(dev_priv));
546 
547 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 		      pipe_name(pipe), enable_mask, status_mask))
551 		return;
552 
553 	if ((pipestat & enable_mask) == enable_mask)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557 
558 	/* Enable the interrupt, clear any pending status */
559 	pipestat |= enable_mask | status_mask;
560 	I915_WRITE(reg, pipestat);
561 	POSTING_READ(reg);
562 }
563 
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 		        u32 enable_mask, u32 status_mask)
567 {
568 	i915_reg_t reg = PIPESTAT(pipe);
569 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570 
571 	lockdep_assert_held(&dev_priv->irq_lock);
572 	WARN_ON(!intel_irqs_enabled(dev_priv));
573 
574 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 		      pipe_name(pipe), enable_mask, status_mask))
578 		return;
579 
580 	if ((pipestat & enable_mask) == 0)
581 		return;
582 
583 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584 
585 	pipestat &= ~enable_mask;
586 	I915_WRITE(reg, pipestat);
587 	POSTING_READ(reg);
588 }
589 
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 	u32 enable_mask = status_mask << 16;
593 
594 	/*
595 	 * On pipe A we don't support the PSR interrupt yet,
596 	 * on pipe B and C the same bit MBZ.
597 	 */
598 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 		return 0;
600 	/*
601 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 	 * A the same bit is for perf counters which we don't use either.
603 	 */
604 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 		return 0;
606 
607 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614 
615 	return enable_mask;
616 }
617 
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 		     u32 status_mask)
621 {
622 	u32 enable_mask;
623 
624 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 							   status_mask);
627 	else
628 		enable_mask = status_mask << 16;
629 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631 
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 		      u32 status_mask)
635 {
636 	u32 enable_mask;
637 
638 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 							   status_mask);
641 	else
642 		enable_mask = status_mask << 16;
643 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645 
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 		return;
654 
655 	spin_lock_irq(&dev_priv->irq_lock);
656 
657 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 	if (INTEL_GEN(dev_priv) >= 4)
659 		i915_enable_pipestat(dev_priv, PIPE_A,
660 				     PIPE_LEGACY_BLC_EVENT_STATUS);
661 
662 	spin_unlock_irq(&dev_priv->irq_lock);
663 }
664 
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714 
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 	struct drm_i915_private *dev_priv = to_i915(dev);
721 	i915_reg_t high_frame, low_frame;
722 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 	unsigned long irqflags;
725 
726 	htotal = mode->crtc_htotal;
727 	hsync_start = mode->crtc_hsync_start;
728 	vbl_start = mode->crtc_vblank_start;
729 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
731 
732 	/* Convert to pixel count */
733 	vbl_start *= htotal;
734 
735 	/* Start of vblank event occurs at start of hsync */
736 	vbl_start -= htotal - hsync_start;
737 
738 	high_frame = PIPEFRAME(pipe);
739 	low_frame = PIPEFRAMEPIXEL(pipe);
740 
741 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742 
743 	/*
744 	 * High & low register fields aren't synchronized, so make sure
745 	 * we get a low value that's stable across two reads of the high
746 	 * register.
747 	 */
748 	do {
749 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 		low   = I915_READ_FW(low_frame);
751 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 	} while (high1 != high2);
753 
754 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755 
756 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 	pixel = low & PIPE_PIXEL_MASK;
758 	low >>= PIPE_FRAME_LOW_SHIFT;
759 
760 	/*
761 	 * The frame counter increments at beginning of active.
762 	 * Cook up a vblank counter by also checking the pixel
763 	 * counter against vblank start.
764 	 */
765 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767 
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 	struct drm_i915_private *dev_priv = to_i915(dev);
771 
772 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774 
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 	struct drm_device *dev = crtc->base.dev;
779 	struct drm_i915_private *dev_priv = to_i915(dev);
780 	const struct drm_display_mode *mode;
781 	struct drm_vblank_crtc *vblank;
782 	enum pipe pipe = crtc->pipe;
783 	int position, vtotal;
784 
785 	if (!crtc->active)
786 		return -1;
787 
788 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 	mode = &vblank->hwmode;
790 
791 	vtotal = mode->crtc_vtotal;
792 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 		vtotal /= 2;
794 
795 	if (IS_GEN2(dev_priv))
796 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 	else
798 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799 
800 	/*
801 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 	 * read it just before the start of vblank.  So try it again
803 	 * so we don't accidentally end up spanning a vblank frame
804 	 * increment, causing the pipe_update_end() code to squak at us.
805 	 *
806 	 * The nature of this problem means we can't simply check the ISR
807 	 * bit and return the vblank start value; nor can we use the scanline
808 	 * debug register in the transcoder as it appears to have the same
809 	 * problem.  We may need to extend this to include other platforms,
810 	 * but so far testing only shows the problem on HSW.
811 	 */
812 	if (HAS_DDI(dev_priv) && !position) {
813 		int i, temp;
814 
815 		for (i = 0; i < 100; i++) {
816 			udelay(1);
817 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 			if (temp != position) {
819 				position = temp;
820 				break;
821 			}
822 		}
823 	}
824 
825 	/*
826 	 * See update_scanline_offset() for the details on the
827 	 * scanline_offset adjustment.
828 	 */
829 	return (position + crtc->scanline_offset) % vtotal;
830 }
831 
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 				     bool in_vblank_irq, int *vpos, int *hpos,
834 				     ktime_t *stime, ktime_t *etime,
835 				     const struct drm_display_mode *mode)
836 {
837 	struct drm_i915_private *dev_priv = to_i915(dev);
838 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 								pipe);
840 	int position;
841 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 	unsigned long irqflags;
843 
844 	if (WARN_ON(!mode->crtc_clock)) {
845 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
846 				 "pipe %c\n", pipe_name(pipe));
847 		return false;
848 	}
849 
850 	htotal = mode->crtc_htotal;
851 	hsync_start = mode->crtc_hsync_start;
852 	vtotal = mode->crtc_vtotal;
853 	vbl_start = mode->crtc_vblank_start;
854 	vbl_end = mode->crtc_vblank_end;
855 
856 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
857 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
858 		vbl_end /= 2;
859 		vtotal /= 2;
860 	}
861 
862 	/*
863 	 * Lock uncore.lock, as we will do multiple timing critical raw
864 	 * register reads, potentially with preemption disabled, so the
865 	 * following code must not block on uncore.lock.
866 	 */
867 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868 
869 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870 
871 	/* Get optional system timestamp before query. */
872 	if (stime)
873 		*stime = ktime_get();
874 
875 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 		/* No obvious pixelcount register. Only query vertical
877 		 * scanout position from Display scan line register.
878 		 */
879 		position = __intel_get_crtc_scanline(intel_crtc);
880 	} else {
881 		/* Have access to pixelcount since start of frame.
882 		 * We can split this into vertical and horizontal
883 		 * scanout position.
884 		 */
885 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886 
887 		/* convert to pixel counts */
888 		vbl_start *= htotal;
889 		vbl_end *= htotal;
890 		vtotal *= htotal;
891 
892 		/*
893 		 * In interlaced modes, the pixel counter counts all pixels,
894 		 * so one field will have htotal more pixels. In order to avoid
895 		 * the reported position from jumping backwards when the pixel
896 		 * counter is beyond the length of the shorter field, just
897 		 * clamp the position the length of the shorter field. This
898 		 * matches how the scanline counter based position works since
899 		 * the scanline counter doesn't count the two half lines.
900 		 */
901 		if (position >= vtotal)
902 			position = vtotal - 1;
903 
904 		/*
905 		 * Start of vblank interrupt is triggered at start of hsync,
906 		 * just prior to the first active line of vblank. However we
907 		 * consider lines to start at the leading edge of horizontal
908 		 * active. So, should we get here before we've crossed into
909 		 * the horizontal active of the first line in vblank, we would
910 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 		 * always add htotal-hsync_start to the current pixel position.
912 		 */
913 		position = (position + htotal - hsync_start) % vtotal;
914 	}
915 
916 	/* Get optional system timestamp after query. */
917 	if (etime)
918 		*etime = ktime_get();
919 
920 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921 
922 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923 
924 	/*
925 	 * While in vblank, position will be negative
926 	 * counting up towards 0 at vbl_end. And outside
927 	 * vblank, position will be positive counting
928 	 * up since vbl_end.
929 	 */
930 	if (position >= vbl_start)
931 		position -= vbl_end;
932 	else
933 		position += vtotal - vbl_end;
934 
935 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
936 		*vpos = position;
937 		*hpos = 0;
938 	} else {
939 		*vpos = position / htotal;
940 		*hpos = position - (*vpos * htotal);
941 	}
942 
943 	return true;
944 }
945 
946 int intel_get_crtc_scanline(struct intel_crtc *crtc)
947 {
948 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
949 	unsigned long irqflags;
950 	int position;
951 
952 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
953 	position = __intel_get_crtc_scanline(crtc);
954 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
955 
956 	return position;
957 }
958 
959 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
960 {
961 	u32 busy_up, busy_down, max_avg, min_avg;
962 	u8 new_delay;
963 
964 	spin_lock(&mchdev_lock);
965 
966 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967 
968 	new_delay = dev_priv->ips.cur_delay;
969 
970 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 	busy_up = I915_READ(RCPREVBSYTUPAVG);
972 	busy_down = I915_READ(RCPREVBSYTDNAVG);
973 	max_avg = I915_READ(RCBMAXAVG);
974 	min_avg = I915_READ(RCBMINAVG);
975 
976 	/* Handle RCS change request from hw */
977 	if (busy_up > max_avg) {
978 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 			new_delay = dev_priv->ips.cur_delay - 1;
980 		if (new_delay < dev_priv->ips.max_delay)
981 			new_delay = dev_priv->ips.max_delay;
982 	} else if (busy_down < min_avg) {
983 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 			new_delay = dev_priv->ips.cur_delay + 1;
985 		if (new_delay > dev_priv->ips.min_delay)
986 			new_delay = dev_priv->ips.min_delay;
987 	}
988 
989 	if (ironlake_set_drps(dev_priv, new_delay))
990 		dev_priv->ips.cur_delay = new_delay;
991 
992 	spin_unlock(&mchdev_lock);
993 
994 	return;
995 }
996 
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 	struct drm_i915_gem_request *rq = NULL;
1000 	struct intel_wait *wait;
1001 
1002 	atomic_inc(&engine->irq_count);
1003 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1004 
1005 	spin_lock(&engine->breadcrumbs.irq_lock);
1006 	wait = engine->breadcrumbs.irq_wait;
1007 	if (wait) {
1008 		/* We use a callback from the dma-fence to submit
1009 		 * requests after waiting on our own requests. To
1010 		 * ensure minimum delay in queuing the next request to
1011 		 * hardware, signal the fence now rather than wait for
1012 		 * the signaler to be woken up. We still wake up the
1013 		 * waiter in order to handle the irq-seqno coherency
1014 		 * issues (we may receive the interrupt before the
1015 		 * seqno is written, see __i915_request_irq_complete())
1016 		 * and to handle coalescing of multiple seqno updates
1017 		 * and many waiters.
1018 		 */
1019 		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1020 				      wait->seqno) &&
1021 		    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1022 			      &wait->request->fence.flags))
1023 			rq = i915_gem_request_get(wait->request);
1024 
1025 		wake_up_process(wait->tsk);
1026 	} else {
1027 		__intel_engine_disarm_breadcrumbs(engine);
1028 	}
1029 	spin_unlock(&engine->breadcrumbs.irq_lock);
1030 
1031 	if (rq) {
1032 		dma_fence_signal(&rq->fence);
1033 		i915_gem_request_put(rq);
1034 	}
1035 
1036 	trace_intel_engine_notify(engine, wait);
1037 }
1038 
1039 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1040 			struct intel_rps_ei *ei)
1041 {
1042 	ei->ktime = ktime_get_raw();
1043 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1044 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1045 }
1046 
1047 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1048 {
1049 	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1050 }
1051 
1052 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1053 {
1054 	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1055 	struct intel_rps_ei now;
1056 	u32 events = 0;
1057 
1058 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1059 		return 0;
1060 
1061 	vlv_c0_read(dev_priv, &now);
1062 
1063 	if (prev->ktime) {
1064 		u64 time, c0;
1065 		u32 render, media;
1066 
1067 		time = ktime_us_delta(now.ktime, prev->ktime);
1068 
1069 		time *= dev_priv->czclk_freq;
1070 
1071 		/* Workload can be split between render + media,
1072 		 * e.g. SwapBuffers being blitted in X after being rendered in
1073 		 * mesa. To account for this we need to combine both engines
1074 		 * into our activity counter.
1075 		 */
1076 		render = now.render_c0 - prev->render_c0;
1077 		media = now.media_c0 - prev->media_c0;
1078 		c0 = max(render, media);
1079 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1080 
1081 		if (c0 > time * dev_priv->rps.up_threshold)
1082 			events = GEN6_PM_RP_UP_THRESHOLD;
1083 		else if (c0 < time * dev_priv->rps.down_threshold)
1084 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1085 	}
1086 
1087 	dev_priv->rps.ei = now;
1088 	return events;
1089 }
1090 
1091 static void gen6_pm_rps_work(struct work_struct *work)
1092 {
1093 	struct drm_i915_private *dev_priv =
1094 		container_of(work, struct drm_i915_private, rps.work);
1095 	bool client_boost = false;
1096 	int new_delay, adj, min, max;
1097 	u32 pm_iir = 0;
1098 
1099 	spin_lock_irq(&dev_priv->irq_lock);
1100 	if (dev_priv->rps.interrupts_enabled) {
1101 		pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1102 		client_boost = atomic_read(&dev_priv->rps.num_waiters);
1103 	}
1104 	spin_unlock_irq(&dev_priv->irq_lock);
1105 
1106 	/* Make sure we didn't queue anything we're not going to process. */
1107 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1108 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1109 		goto out;
1110 
1111 	mutex_lock(&dev_priv->rps.hw_lock);
1112 
1113 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1114 
1115 	adj = dev_priv->rps.last_adj;
1116 	new_delay = dev_priv->rps.cur_freq;
1117 	min = dev_priv->rps.min_freq_softlimit;
1118 	max = dev_priv->rps.max_freq_softlimit;
1119 	if (client_boost)
1120 		max = dev_priv->rps.max_freq;
1121 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1122 		new_delay = dev_priv->rps.boost_freq;
1123 		adj = 0;
1124 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1125 		if (adj > 0)
1126 			adj *= 2;
1127 		else /* CHV needs even encode values */
1128 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1129 
1130 		if (new_delay >= dev_priv->rps.max_freq_softlimit)
1131 			adj = 0;
1132 	} else if (client_boost) {
1133 		adj = 0;
1134 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1135 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1136 			new_delay = dev_priv->rps.efficient_freq;
1137 		else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1138 			new_delay = dev_priv->rps.min_freq_softlimit;
1139 		adj = 0;
1140 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1141 		if (adj < 0)
1142 			adj *= 2;
1143 		else /* CHV needs even encode values */
1144 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1145 
1146 		if (new_delay <= dev_priv->rps.min_freq_softlimit)
1147 			adj = 0;
1148 	} else { /* unknown event */
1149 		adj = 0;
1150 	}
1151 
1152 	dev_priv->rps.last_adj = adj;
1153 
1154 	/* sysfs frequency interfaces may have snuck in while servicing the
1155 	 * interrupt
1156 	 */
1157 	new_delay += adj;
1158 	new_delay = clamp_t(int, new_delay, min, max);
1159 
1160 	if (intel_set_rps(dev_priv, new_delay)) {
1161 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1162 		dev_priv->rps.last_adj = 0;
1163 	}
1164 
1165 	mutex_unlock(&dev_priv->rps.hw_lock);
1166 
1167 out:
1168 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1169 	spin_lock_irq(&dev_priv->irq_lock);
1170 	if (dev_priv->rps.interrupts_enabled)
1171 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1172 	spin_unlock_irq(&dev_priv->irq_lock);
1173 }
1174 
1175 
1176 /**
1177  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1178  * occurred.
1179  * @work: workqueue struct
1180  *
1181  * Doesn't actually do anything except notify userspace. As a consequence of
1182  * this event, userspace should try to remap the bad rows since statistically
1183  * it is likely the same row is more likely to go bad again.
1184  */
1185 static void ivybridge_parity_work(struct work_struct *work)
1186 {
1187 	struct drm_i915_private *dev_priv =
1188 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1189 	u32 error_status, row, bank, subbank;
1190 	char *parity_event[6];
1191 	uint32_t misccpctl;
1192 	uint8_t slice = 0;
1193 
1194 	/* We must turn off DOP level clock gating to access the L3 registers.
1195 	 * In order to prevent a get/put style interface, acquire struct mutex
1196 	 * any time we access those registers.
1197 	 */
1198 	mutex_lock(&dev_priv->drm.struct_mutex);
1199 
1200 	/* If we've screwed up tracking, just let the interrupt fire again */
1201 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1202 		goto out;
1203 
1204 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1205 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1206 	POSTING_READ(GEN7_MISCCPCTL);
1207 
1208 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1209 		i915_reg_t reg;
1210 
1211 		slice--;
1212 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1213 			break;
1214 
1215 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1216 
1217 		reg = GEN7_L3CDERRST1(slice);
1218 
1219 		error_status = I915_READ(reg);
1220 		row = GEN7_PARITY_ERROR_ROW(error_status);
1221 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1222 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1223 
1224 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1225 		POSTING_READ(reg);
1226 
1227 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1228 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1229 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1230 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1231 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1232 		parity_event[5] = NULL;
1233 
1234 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1235 				   KOBJ_CHANGE, parity_event);
1236 
1237 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1238 			  slice, row, bank, subbank);
1239 
1240 		kfree(parity_event[4]);
1241 		kfree(parity_event[3]);
1242 		kfree(parity_event[2]);
1243 		kfree(parity_event[1]);
1244 	}
1245 
1246 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1247 
1248 out:
1249 	WARN_ON(dev_priv->l3_parity.which_slice);
1250 	spin_lock_irq(&dev_priv->irq_lock);
1251 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1252 	spin_unlock_irq(&dev_priv->irq_lock);
1253 
1254 	mutex_unlock(&dev_priv->drm.struct_mutex);
1255 }
1256 
1257 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1258 					       u32 iir)
1259 {
1260 	if (!HAS_L3_DPF(dev_priv))
1261 		return;
1262 
1263 	spin_lock(&dev_priv->irq_lock);
1264 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1265 	spin_unlock(&dev_priv->irq_lock);
1266 
1267 	iir &= GT_PARITY_ERROR(dev_priv);
1268 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1269 		dev_priv->l3_parity.which_slice |= 1 << 1;
1270 
1271 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1272 		dev_priv->l3_parity.which_slice |= 1 << 0;
1273 
1274 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1275 }
1276 
1277 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1278 			       u32 gt_iir)
1279 {
1280 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1281 		notify_ring(dev_priv->engine[RCS]);
1282 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1283 		notify_ring(dev_priv->engine[VCS]);
1284 }
1285 
1286 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1287 			       u32 gt_iir)
1288 {
1289 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1290 		notify_ring(dev_priv->engine[RCS]);
1291 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1292 		notify_ring(dev_priv->engine[VCS]);
1293 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1294 		notify_ring(dev_priv->engine[BCS]);
1295 
1296 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1297 		      GT_BSD_CS_ERROR_INTERRUPT |
1298 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1299 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1300 
1301 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1302 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1303 }
1304 
1305 static void
1306 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1307 {
1308 	bool tasklet = false;
1309 
1310 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1311 		if (port_count(&engine->execlist_port[0])) {
1312 			__set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1313 			tasklet = true;
1314 		}
1315 	}
1316 
1317 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1318 		notify_ring(engine);
1319 		tasklet |= i915.enable_guc_submission;
1320 	}
1321 
1322 	if (tasklet)
1323 		tasklet_hi_schedule(&engine->irq_tasklet);
1324 }
1325 
1326 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1327 				   u32 master_ctl,
1328 				   u32 gt_iir[4])
1329 {
1330 	irqreturn_t ret = IRQ_NONE;
1331 
1332 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1333 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1334 		if (gt_iir[0]) {
1335 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1336 			ret = IRQ_HANDLED;
1337 		} else
1338 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1339 	}
1340 
1341 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1342 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1343 		if (gt_iir[1]) {
1344 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1345 			ret = IRQ_HANDLED;
1346 		} else
1347 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1348 	}
1349 
1350 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1351 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1352 		if (gt_iir[3]) {
1353 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1354 			ret = IRQ_HANDLED;
1355 		} else
1356 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1357 	}
1358 
1359 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1360 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1361 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1362 				 dev_priv->pm_guc_events)) {
1363 			I915_WRITE_FW(GEN8_GT_IIR(2),
1364 				      gt_iir[2] & (dev_priv->pm_rps_events |
1365 						   dev_priv->pm_guc_events));
1366 			ret = IRQ_HANDLED;
1367 		} else
1368 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1369 	}
1370 
1371 	return ret;
1372 }
1373 
1374 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1375 				u32 gt_iir[4])
1376 {
1377 	if (gt_iir[0]) {
1378 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1379 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1380 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1381 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1382 	}
1383 
1384 	if (gt_iir[1]) {
1385 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1386 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1387 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1388 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1389 	}
1390 
1391 	if (gt_iir[3])
1392 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1393 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1394 
1395 	if (gt_iir[2] & dev_priv->pm_rps_events)
1396 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1397 
1398 	if (gt_iir[2] & dev_priv->pm_guc_events)
1399 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1400 }
1401 
1402 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1403 {
1404 	switch (port) {
1405 	case PORT_A:
1406 		return val & PORTA_HOTPLUG_LONG_DETECT;
1407 	case PORT_B:
1408 		return val & PORTB_HOTPLUG_LONG_DETECT;
1409 	case PORT_C:
1410 		return val & PORTC_HOTPLUG_LONG_DETECT;
1411 	default:
1412 		return false;
1413 	}
1414 }
1415 
1416 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1417 {
1418 	switch (port) {
1419 	case PORT_E:
1420 		return val & PORTE_HOTPLUG_LONG_DETECT;
1421 	default:
1422 		return false;
1423 	}
1424 }
1425 
1426 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1427 {
1428 	switch (port) {
1429 	case PORT_A:
1430 		return val & PORTA_HOTPLUG_LONG_DETECT;
1431 	case PORT_B:
1432 		return val & PORTB_HOTPLUG_LONG_DETECT;
1433 	case PORT_C:
1434 		return val & PORTC_HOTPLUG_LONG_DETECT;
1435 	case PORT_D:
1436 		return val & PORTD_HOTPLUG_LONG_DETECT;
1437 	default:
1438 		return false;
1439 	}
1440 }
1441 
1442 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1443 {
1444 	switch (port) {
1445 	case PORT_A:
1446 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1447 	default:
1448 		return false;
1449 	}
1450 }
1451 
1452 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1453 {
1454 	switch (port) {
1455 	case PORT_B:
1456 		return val & PORTB_HOTPLUG_LONG_DETECT;
1457 	case PORT_C:
1458 		return val & PORTC_HOTPLUG_LONG_DETECT;
1459 	case PORT_D:
1460 		return val & PORTD_HOTPLUG_LONG_DETECT;
1461 	default:
1462 		return false;
1463 	}
1464 }
1465 
1466 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1467 {
1468 	switch (port) {
1469 	case PORT_B:
1470 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1471 	case PORT_C:
1472 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1473 	case PORT_D:
1474 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1475 	default:
1476 		return false;
1477 	}
1478 }
1479 
1480 /*
1481  * Get a bit mask of pins that have triggered, and which ones may be long.
1482  * This can be called multiple times with the same masks to accumulate
1483  * hotplug detection results from several registers.
1484  *
1485  * Note that the caller is expected to zero out the masks initially.
1486  */
1487 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1488 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1489 			     const u32 hpd[HPD_NUM_PINS],
1490 			     bool long_pulse_detect(enum port port, u32 val))
1491 {
1492 	enum port port;
1493 	int i;
1494 
1495 	for_each_hpd_pin(i) {
1496 		if ((hpd[i] & hotplug_trigger) == 0)
1497 			continue;
1498 
1499 		*pin_mask |= BIT(i);
1500 
1501 		port = intel_hpd_pin_to_port(i);
1502 		if (port == PORT_NONE)
1503 			continue;
1504 
1505 		if (long_pulse_detect(port, dig_hotplug_reg))
1506 			*long_mask |= BIT(i);
1507 	}
1508 
1509 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1510 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1511 
1512 }
1513 
1514 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1515 {
1516 	wake_up_all(&dev_priv->gmbus_wait_queue);
1517 }
1518 
1519 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1520 {
1521 	wake_up_all(&dev_priv->gmbus_wait_queue);
1522 }
1523 
1524 #if defined(CONFIG_DEBUG_FS)
1525 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1526 					 enum pipe pipe,
1527 					 uint32_t crc0, uint32_t crc1,
1528 					 uint32_t crc2, uint32_t crc3,
1529 					 uint32_t crc4)
1530 {
1531 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1532 	struct intel_pipe_crc_entry *entry;
1533 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1534 	struct drm_driver *driver = dev_priv->drm.driver;
1535 	uint32_t crcs[5];
1536 	int head, tail;
1537 
1538 	spin_lock(&pipe_crc->lock);
1539 	if (pipe_crc->source) {
1540 		if (!pipe_crc->entries) {
1541 			spin_unlock(&pipe_crc->lock);
1542 			DRM_DEBUG_KMS("spurious interrupt\n");
1543 			return;
1544 		}
1545 
1546 		head = pipe_crc->head;
1547 		tail = pipe_crc->tail;
1548 
1549 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1550 			spin_unlock(&pipe_crc->lock);
1551 			DRM_ERROR("CRC buffer overflowing\n");
1552 			return;
1553 		}
1554 
1555 		entry = &pipe_crc->entries[head];
1556 
1557 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1558 		entry->crc[0] = crc0;
1559 		entry->crc[1] = crc1;
1560 		entry->crc[2] = crc2;
1561 		entry->crc[3] = crc3;
1562 		entry->crc[4] = crc4;
1563 
1564 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1565 		pipe_crc->head = head;
1566 
1567 		spin_unlock(&pipe_crc->lock);
1568 
1569 		wake_up_interruptible(&pipe_crc->wq);
1570 	} else {
1571 		/*
1572 		 * For some not yet identified reason, the first CRC is
1573 		 * bonkers. So let's just wait for the next vblank and read
1574 		 * out the buggy result.
1575 		 *
1576 		 * On CHV sometimes the second CRC is bonkers as well, so
1577 		 * don't trust that one either.
1578 		 */
1579 		if (pipe_crc->skipped == 0 ||
1580 		    (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1581 			pipe_crc->skipped++;
1582 			spin_unlock(&pipe_crc->lock);
1583 			return;
1584 		}
1585 		spin_unlock(&pipe_crc->lock);
1586 		crcs[0] = crc0;
1587 		crcs[1] = crc1;
1588 		crcs[2] = crc2;
1589 		crcs[3] = crc3;
1590 		crcs[4] = crc4;
1591 		drm_crtc_add_crc_entry(&crtc->base, true,
1592 				       drm_crtc_accurate_vblank_count(&crtc->base),
1593 				       crcs);
1594 	}
1595 }
1596 #else
1597 static inline void
1598 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1599 			     enum pipe pipe,
1600 			     uint32_t crc0, uint32_t crc1,
1601 			     uint32_t crc2, uint32_t crc3,
1602 			     uint32_t crc4) {}
1603 #endif
1604 
1605 
1606 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607 				     enum pipe pipe)
1608 {
1609 	display_pipe_crc_irq_handler(dev_priv, pipe,
1610 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1611 				     0, 0, 0, 0);
1612 }
1613 
1614 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615 				     enum pipe pipe)
1616 {
1617 	display_pipe_crc_irq_handler(dev_priv, pipe,
1618 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1620 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1621 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1622 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1623 }
1624 
1625 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1626 				      enum pipe pipe)
1627 {
1628 	uint32_t res1, res2;
1629 
1630 	if (INTEL_GEN(dev_priv) >= 3)
1631 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1632 	else
1633 		res1 = 0;
1634 
1635 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1636 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1637 	else
1638 		res2 = 0;
1639 
1640 	display_pipe_crc_irq_handler(dev_priv, pipe,
1641 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1642 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1643 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1644 				     res1, res2);
1645 }
1646 
1647 /* The RPS events need forcewake, so we add them to a work queue and mask their
1648  * IMR bits until the work is done. Other interrupts can be processed without
1649  * the work queue. */
1650 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1651 {
1652 	if (pm_iir & dev_priv->pm_rps_events) {
1653 		spin_lock(&dev_priv->irq_lock);
1654 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1655 		if (dev_priv->rps.interrupts_enabled) {
1656 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1657 			schedule_work(&dev_priv->rps.work);
1658 		}
1659 		spin_unlock(&dev_priv->irq_lock);
1660 	}
1661 
1662 	if (INTEL_GEN(dev_priv) >= 8)
1663 		return;
1664 
1665 	if (HAS_VEBOX(dev_priv)) {
1666 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1667 			notify_ring(dev_priv->engine[VECS]);
1668 
1669 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1670 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1671 	}
1672 }
1673 
1674 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1675 {
1676 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1677 		/* Sample the log buffer flush related bits & clear them out now
1678 		 * itself from the message identity register to minimize the
1679 		 * probability of losing a flush interrupt, when there are back
1680 		 * to back flush interrupts.
1681 		 * There can be a new flush interrupt, for different log buffer
1682 		 * type (like for ISR), whilst Host is handling one (for DPC).
1683 		 * Since same bit is used in message register for ISR & DPC, it
1684 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1685 		 * clears out the bit on handling the 1st interrupt.
1686 		 */
1687 		u32 msg, flush;
1688 
1689 		msg = I915_READ(SOFT_SCRATCH(15));
1690 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1691 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1692 		if (flush) {
1693 			/* Clear the message bits that are handled */
1694 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1695 
1696 			/* Handle flush interrupt in bottom half */
1697 			queue_work(dev_priv->guc.log.runtime.flush_wq,
1698 				   &dev_priv->guc.log.runtime.flush_work);
1699 
1700 			dev_priv->guc.log.flush_interrupt_count++;
1701 		} else {
1702 			/* Not clearing of unhandled event bits won't result in
1703 			 * re-triggering of the interrupt.
1704 			 */
1705 		}
1706 	}
1707 }
1708 
1709 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1710 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1711 {
1712 	int pipe;
1713 
1714 	spin_lock(&dev_priv->irq_lock);
1715 
1716 	if (!dev_priv->display_irqs_enabled) {
1717 		spin_unlock(&dev_priv->irq_lock);
1718 		return;
1719 	}
1720 
1721 	for_each_pipe(dev_priv, pipe) {
1722 		i915_reg_t reg;
1723 		u32 mask, iir_bit = 0;
1724 
1725 		/*
1726 		 * PIPESTAT bits get signalled even when the interrupt is
1727 		 * disabled with the mask bits, and some of the status bits do
1728 		 * not generate interrupts at all (like the underrun bit). Hence
1729 		 * we need to be careful that we only handle what we want to
1730 		 * handle.
1731 		 */
1732 
1733 		/* fifo underruns are filterered in the underrun handler. */
1734 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1735 
1736 		switch (pipe) {
1737 		case PIPE_A:
1738 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1739 			break;
1740 		case PIPE_B:
1741 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1742 			break;
1743 		case PIPE_C:
1744 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1745 			break;
1746 		}
1747 		if (iir & iir_bit)
1748 			mask |= dev_priv->pipestat_irq_mask[pipe];
1749 
1750 		if (!mask)
1751 			continue;
1752 
1753 		reg = PIPESTAT(pipe);
1754 		mask |= PIPESTAT_INT_ENABLE_MASK;
1755 		pipe_stats[pipe] = I915_READ(reg) & mask;
1756 
1757 		/*
1758 		 * Clear the PIPE*STAT regs before the IIR
1759 		 */
1760 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1761 					PIPESTAT_INT_STATUS_MASK))
1762 			I915_WRITE(reg, pipe_stats[pipe]);
1763 	}
1764 	spin_unlock(&dev_priv->irq_lock);
1765 }
1766 
1767 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1768 					    u32 pipe_stats[I915_MAX_PIPES])
1769 {
1770 	enum pipe pipe;
1771 
1772 	for_each_pipe(dev_priv, pipe) {
1773 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1774 			drm_handle_vblank(&dev_priv->drm, pipe);
1775 
1776 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1777 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1778 
1779 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1780 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1781 	}
1782 
1783 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1784 		gmbus_irq_handler(dev_priv);
1785 }
1786 
1787 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1788 {
1789 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1790 
1791 	if (hotplug_status)
1792 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1793 
1794 	return hotplug_status;
1795 }
1796 
1797 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1798 				 u32 hotplug_status)
1799 {
1800 	u32 pin_mask = 0, long_mask = 0;
1801 
1802 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1803 	    IS_CHERRYVIEW(dev_priv)) {
1804 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1805 
1806 		if (hotplug_trigger) {
1807 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1808 					   hotplug_trigger, hpd_status_g4x,
1809 					   i9xx_port_hotplug_long_detect);
1810 
1811 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1812 		}
1813 
1814 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1815 			dp_aux_irq_handler(dev_priv);
1816 	} else {
1817 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1818 
1819 		if (hotplug_trigger) {
1820 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1821 					   hotplug_trigger, hpd_status_i915,
1822 					   i9xx_port_hotplug_long_detect);
1823 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1824 		}
1825 	}
1826 }
1827 
1828 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1829 {
1830 	struct drm_device *dev = arg;
1831 	struct drm_i915_private *dev_priv = to_i915(dev);
1832 	irqreturn_t ret = IRQ_NONE;
1833 
1834 	if (!intel_irqs_enabled(dev_priv))
1835 		return IRQ_NONE;
1836 
1837 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1838 	disable_rpm_wakeref_asserts(dev_priv);
1839 
1840 	do {
1841 		u32 iir, gt_iir, pm_iir;
1842 		u32 pipe_stats[I915_MAX_PIPES] = {};
1843 		u32 hotplug_status = 0;
1844 		u32 ier = 0;
1845 
1846 		gt_iir = I915_READ(GTIIR);
1847 		pm_iir = I915_READ(GEN6_PMIIR);
1848 		iir = I915_READ(VLV_IIR);
1849 
1850 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1851 			break;
1852 
1853 		ret = IRQ_HANDLED;
1854 
1855 		/*
1856 		 * Theory on interrupt generation, based on empirical evidence:
1857 		 *
1858 		 * x = ((VLV_IIR & VLV_IER) ||
1859 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1860 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1861 		 *
1862 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1863 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1864 		 * guarantee the CPU interrupt will be raised again even if we
1865 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1866 		 * bits this time around.
1867 		 */
1868 		I915_WRITE(VLV_MASTER_IER, 0);
1869 		ier = I915_READ(VLV_IER);
1870 		I915_WRITE(VLV_IER, 0);
1871 
1872 		if (gt_iir)
1873 			I915_WRITE(GTIIR, gt_iir);
1874 		if (pm_iir)
1875 			I915_WRITE(GEN6_PMIIR, pm_iir);
1876 
1877 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1878 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1879 
1880 		/* Call regardless, as some status bits might not be
1881 		 * signalled in iir */
1882 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1883 
1884 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1885 			   I915_LPE_PIPE_B_INTERRUPT))
1886 			intel_lpe_audio_irq_handler(dev_priv);
1887 
1888 		/*
1889 		 * VLV_IIR is single buffered, and reflects the level
1890 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1891 		 */
1892 		if (iir)
1893 			I915_WRITE(VLV_IIR, iir);
1894 
1895 		I915_WRITE(VLV_IER, ier);
1896 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1897 		POSTING_READ(VLV_MASTER_IER);
1898 
1899 		if (gt_iir)
1900 			snb_gt_irq_handler(dev_priv, gt_iir);
1901 		if (pm_iir)
1902 			gen6_rps_irq_handler(dev_priv, pm_iir);
1903 
1904 		if (hotplug_status)
1905 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1906 
1907 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1908 	} while (0);
1909 
1910 	enable_rpm_wakeref_asserts(dev_priv);
1911 
1912 	return ret;
1913 }
1914 
1915 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1916 {
1917 	struct drm_device *dev = arg;
1918 	struct drm_i915_private *dev_priv = to_i915(dev);
1919 	irqreturn_t ret = IRQ_NONE;
1920 
1921 	if (!intel_irqs_enabled(dev_priv))
1922 		return IRQ_NONE;
1923 
1924 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1925 	disable_rpm_wakeref_asserts(dev_priv);
1926 
1927 	do {
1928 		u32 master_ctl, iir;
1929 		u32 gt_iir[4] = {};
1930 		u32 pipe_stats[I915_MAX_PIPES] = {};
1931 		u32 hotplug_status = 0;
1932 		u32 ier = 0;
1933 
1934 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1935 		iir = I915_READ(VLV_IIR);
1936 
1937 		if (master_ctl == 0 && iir == 0)
1938 			break;
1939 
1940 		ret = IRQ_HANDLED;
1941 
1942 		/*
1943 		 * Theory on interrupt generation, based on empirical evidence:
1944 		 *
1945 		 * x = ((VLV_IIR & VLV_IER) ||
1946 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1947 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1948 		 *
1949 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1950 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1951 		 * guarantee the CPU interrupt will be raised again even if we
1952 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1953 		 * bits this time around.
1954 		 */
1955 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1956 		ier = I915_READ(VLV_IER);
1957 		I915_WRITE(VLV_IER, 0);
1958 
1959 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1960 
1961 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1962 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1963 
1964 		/* Call regardless, as some status bits might not be
1965 		 * signalled in iir */
1966 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1967 
1968 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1969 			   I915_LPE_PIPE_B_INTERRUPT |
1970 			   I915_LPE_PIPE_C_INTERRUPT))
1971 			intel_lpe_audio_irq_handler(dev_priv);
1972 
1973 		/*
1974 		 * VLV_IIR is single buffered, and reflects the level
1975 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1976 		 */
1977 		if (iir)
1978 			I915_WRITE(VLV_IIR, iir);
1979 
1980 		I915_WRITE(VLV_IER, ier);
1981 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1982 		POSTING_READ(GEN8_MASTER_IRQ);
1983 
1984 		gen8_gt_irq_handler(dev_priv, gt_iir);
1985 
1986 		if (hotplug_status)
1987 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1988 
1989 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1990 	} while (0);
1991 
1992 	enable_rpm_wakeref_asserts(dev_priv);
1993 
1994 	return ret;
1995 }
1996 
1997 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1998 				u32 hotplug_trigger,
1999 				const u32 hpd[HPD_NUM_PINS])
2000 {
2001 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2002 
2003 	/*
2004 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2005 	 * unless we touch the hotplug register, even if hotplug_trigger is
2006 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2007 	 * errors.
2008 	 */
2009 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2010 	if (!hotplug_trigger) {
2011 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2012 			PORTD_HOTPLUG_STATUS_MASK |
2013 			PORTC_HOTPLUG_STATUS_MASK |
2014 			PORTB_HOTPLUG_STATUS_MASK;
2015 		dig_hotplug_reg &= ~mask;
2016 	}
2017 
2018 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2019 	if (!hotplug_trigger)
2020 		return;
2021 
2022 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2023 			   dig_hotplug_reg, hpd,
2024 			   pch_port_hotplug_long_detect);
2025 
2026 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2027 }
2028 
2029 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2030 {
2031 	int pipe;
2032 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2033 
2034 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2035 
2036 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2037 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2038 			       SDE_AUDIO_POWER_SHIFT);
2039 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2040 				 port_name(port));
2041 	}
2042 
2043 	if (pch_iir & SDE_AUX_MASK)
2044 		dp_aux_irq_handler(dev_priv);
2045 
2046 	if (pch_iir & SDE_GMBUS)
2047 		gmbus_irq_handler(dev_priv);
2048 
2049 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2050 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2051 
2052 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2053 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2054 
2055 	if (pch_iir & SDE_POISON)
2056 		DRM_ERROR("PCH poison interrupt\n");
2057 
2058 	if (pch_iir & SDE_FDI_MASK)
2059 		for_each_pipe(dev_priv, pipe)
2060 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2061 					 pipe_name(pipe),
2062 					 I915_READ(FDI_RX_IIR(pipe)));
2063 
2064 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2065 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2066 
2067 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2068 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2069 
2070 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2071 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2072 
2073 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2074 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2075 }
2076 
2077 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2078 {
2079 	u32 err_int = I915_READ(GEN7_ERR_INT);
2080 	enum pipe pipe;
2081 
2082 	if (err_int & ERR_INT_POISON)
2083 		DRM_ERROR("Poison interrupt\n");
2084 
2085 	for_each_pipe(dev_priv, pipe) {
2086 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2087 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2088 
2089 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2090 			if (IS_IVYBRIDGE(dev_priv))
2091 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2092 			else
2093 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2094 		}
2095 	}
2096 
2097 	I915_WRITE(GEN7_ERR_INT, err_int);
2098 }
2099 
2100 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2101 {
2102 	u32 serr_int = I915_READ(SERR_INT);
2103 
2104 	if (serr_int & SERR_INT_POISON)
2105 		DRM_ERROR("PCH poison interrupt\n");
2106 
2107 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2108 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2109 
2110 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2111 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2112 
2113 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2114 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2115 
2116 	I915_WRITE(SERR_INT, serr_int);
2117 }
2118 
2119 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2120 {
2121 	int pipe;
2122 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2123 
2124 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2125 
2126 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2127 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2128 			       SDE_AUDIO_POWER_SHIFT_CPT);
2129 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2130 				 port_name(port));
2131 	}
2132 
2133 	if (pch_iir & SDE_AUX_MASK_CPT)
2134 		dp_aux_irq_handler(dev_priv);
2135 
2136 	if (pch_iir & SDE_GMBUS_CPT)
2137 		gmbus_irq_handler(dev_priv);
2138 
2139 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2140 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2141 
2142 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2143 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2144 
2145 	if (pch_iir & SDE_FDI_MASK_CPT)
2146 		for_each_pipe(dev_priv, pipe)
2147 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2148 					 pipe_name(pipe),
2149 					 I915_READ(FDI_RX_IIR(pipe)));
2150 
2151 	if (pch_iir & SDE_ERROR_CPT)
2152 		cpt_serr_int_handler(dev_priv);
2153 }
2154 
2155 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2156 {
2157 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2158 		~SDE_PORTE_HOTPLUG_SPT;
2159 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2160 	u32 pin_mask = 0, long_mask = 0;
2161 
2162 	if (hotplug_trigger) {
2163 		u32 dig_hotplug_reg;
2164 
2165 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2166 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2167 
2168 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2169 				   dig_hotplug_reg, hpd_spt,
2170 				   spt_port_hotplug_long_detect);
2171 	}
2172 
2173 	if (hotplug2_trigger) {
2174 		u32 dig_hotplug_reg;
2175 
2176 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2177 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2178 
2179 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2180 				   dig_hotplug_reg, hpd_spt,
2181 				   spt_port_hotplug2_long_detect);
2182 	}
2183 
2184 	if (pin_mask)
2185 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2186 
2187 	if (pch_iir & SDE_GMBUS_CPT)
2188 		gmbus_irq_handler(dev_priv);
2189 }
2190 
2191 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2192 				u32 hotplug_trigger,
2193 				const u32 hpd[HPD_NUM_PINS])
2194 {
2195 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2196 
2197 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2198 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2199 
2200 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2201 			   dig_hotplug_reg, hpd,
2202 			   ilk_port_hotplug_long_detect);
2203 
2204 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2205 }
2206 
2207 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2208 				    u32 de_iir)
2209 {
2210 	enum pipe pipe;
2211 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2212 
2213 	if (hotplug_trigger)
2214 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2215 
2216 	if (de_iir & DE_AUX_CHANNEL_A)
2217 		dp_aux_irq_handler(dev_priv);
2218 
2219 	if (de_iir & DE_GSE)
2220 		intel_opregion_asle_intr(dev_priv);
2221 
2222 	if (de_iir & DE_POISON)
2223 		DRM_ERROR("Poison interrupt\n");
2224 
2225 	for_each_pipe(dev_priv, pipe) {
2226 		if (de_iir & DE_PIPE_VBLANK(pipe))
2227 			drm_handle_vblank(&dev_priv->drm, pipe);
2228 
2229 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2230 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2231 
2232 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2233 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2234 	}
2235 
2236 	/* check event from PCH */
2237 	if (de_iir & DE_PCH_EVENT) {
2238 		u32 pch_iir = I915_READ(SDEIIR);
2239 
2240 		if (HAS_PCH_CPT(dev_priv))
2241 			cpt_irq_handler(dev_priv, pch_iir);
2242 		else
2243 			ibx_irq_handler(dev_priv, pch_iir);
2244 
2245 		/* should clear PCH hotplug event before clear CPU irq */
2246 		I915_WRITE(SDEIIR, pch_iir);
2247 	}
2248 
2249 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2250 		ironlake_rps_change_irq_handler(dev_priv);
2251 }
2252 
2253 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2254 				    u32 de_iir)
2255 {
2256 	enum pipe pipe;
2257 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2258 
2259 	if (hotplug_trigger)
2260 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2261 
2262 	if (de_iir & DE_ERR_INT_IVB)
2263 		ivb_err_int_handler(dev_priv);
2264 
2265 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2266 		dp_aux_irq_handler(dev_priv);
2267 
2268 	if (de_iir & DE_GSE_IVB)
2269 		intel_opregion_asle_intr(dev_priv);
2270 
2271 	for_each_pipe(dev_priv, pipe) {
2272 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2273 			drm_handle_vblank(&dev_priv->drm, pipe);
2274 	}
2275 
2276 	/* check event from PCH */
2277 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2278 		u32 pch_iir = I915_READ(SDEIIR);
2279 
2280 		cpt_irq_handler(dev_priv, pch_iir);
2281 
2282 		/* clear PCH hotplug event before clear CPU irq */
2283 		I915_WRITE(SDEIIR, pch_iir);
2284 	}
2285 }
2286 
2287 /*
2288  * To handle irqs with the minimum potential races with fresh interrupts, we:
2289  * 1 - Disable Master Interrupt Control.
2290  * 2 - Find the source(s) of the interrupt.
2291  * 3 - Clear the Interrupt Identity bits (IIR).
2292  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2293  * 5 - Re-enable Master Interrupt Control.
2294  */
2295 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2296 {
2297 	struct drm_device *dev = arg;
2298 	struct drm_i915_private *dev_priv = to_i915(dev);
2299 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2300 	irqreturn_t ret = IRQ_NONE;
2301 
2302 	if (!intel_irqs_enabled(dev_priv))
2303 		return IRQ_NONE;
2304 
2305 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2306 	disable_rpm_wakeref_asserts(dev_priv);
2307 
2308 	/* disable master interrupt before clearing iir  */
2309 	de_ier = I915_READ(DEIER);
2310 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2311 	POSTING_READ(DEIER);
2312 
2313 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2314 	 * interrupts will will be stored on its back queue, and then we'll be
2315 	 * able to process them after we restore SDEIER (as soon as we restore
2316 	 * it, we'll get an interrupt if SDEIIR still has something to process
2317 	 * due to its back queue). */
2318 	if (!HAS_PCH_NOP(dev_priv)) {
2319 		sde_ier = I915_READ(SDEIER);
2320 		I915_WRITE(SDEIER, 0);
2321 		POSTING_READ(SDEIER);
2322 	}
2323 
2324 	/* Find, clear, then process each source of interrupt */
2325 
2326 	gt_iir = I915_READ(GTIIR);
2327 	if (gt_iir) {
2328 		I915_WRITE(GTIIR, gt_iir);
2329 		ret = IRQ_HANDLED;
2330 		if (INTEL_GEN(dev_priv) >= 6)
2331 			snb_gt_irq_handler(dev_priv, gt_iir);
2332 		else
2333 			ilk_gt_irq_handler(dev_priv, gt_iir);
2334 	}
2335 
2336 	de_iir = I915_READ(DEIIR);
2337 	if (de_iir) {
2338 		I915_WRITE(DEIIR, de_iir);
2339 		ret = IRQ_HANDLED;
2340 		if (INTEL_GEN(dev_priv) >= 7)
2341 			ivb_display_irq_handler(dev_priv, de_iir);
2342 		else
2343 			ilk_display_irq_handler(dev_priv, de_iir);
2344 	}
2345 
2346 	if (INTEL_GEN(dev_priv) >= 6) {
2347 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2348 		if (pm_iir) {
2349 			I915_WRITE(GEN6_PMIIR, pm_iir);
2350 			ret = IRQ_HANDLED;
2351 			gen6_rps_irq_handler(dev_priv, pm_iir);
2352 		}
2353 	}
2354 
2355 	I915_WRITE(DEIER, de_ier);
2356 	POSTING_READ(DEIER);
2357 	if (!HAS_PCH_NOP(dev_priv)) {
2358 		I915_WRITE(SDEIER, sde_ier);
2359 		POSTING_READ(SDEIER);
2360 	}
2361 
2362 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2363 	enable_rpm_wakeref_asserts(dev_priv);
2364 
2365 	return ret;
2366 }
2367 
2368 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2369 				u32 hotplug_trigger,
2370 				const u32 hpd[HPD_NUM_PINS])
2371 {
2372 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2373 
2374 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2375 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2376 
2377 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2378 			   dig_hotplug_reg, hpd,
2379 			   bxt_port_hotplug_long_detect);
2380 
2381 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2382 }
2383 
2384 static irqreturn_t
2385 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2386 {
2387 	irqreturn_t ret = IRQ_NONE;
2388 	u32 iir;
2389 	enum pipe pipe;
2390 
2391 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2392 		iir = I915_READ(GEN8_DE_MISC_IIR);
2393 		if (iir) {
2394 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2395 			ret = IRQ_HANDLED;
2396 			if (iir & GEN8_DE_MISC_GSE)
2397 				intel_opregion_asle_intr(dev_priv);
2398 			else
2399 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2400 		}
2401 		else
2402 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2403 	}
2404 
2405 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2406 		iir = I915_READ(GEN8_DE_PORT_IIR);
2407 		if (iir) {
2408 			u32 tmp_mask;
2409 			bool found = false;
2410 
2411 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2412 			ret = IRQ_HANDLED;
2413 
2414 			tmp_mask = GEN8_AUX_CHANNEL_A;
2415 			if (INTEL_GEN(dev_priv) >= 9)
2416 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2417 					    GEN9_AUX_CHANNEL_C |
2418 					    GEN9_AUX_CHANNEL_D;
2419 
2420 			if (iir & tmp_mask) {
2421 				dp_aux_irq_handler(dev_priv);
2422 				found = true;
2423 			}
2424 
2425 			if (IS_GEN9_LP(dev_priv)) {
2426 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2427 				if (tmp_mask) {
2428 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2429 							    hpd_bxt);
2430 					found = true;
2431 				}
2432 			} else if (IS_BROADWELL(dev_priv)) {
2433 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2434 				if (tmp_mask) {
2435 					ilk_hpd_irq_handler(dev_priv,
2436 							    tmp_mask, hpd_bdw);
2437 					found = true;
2438 				}
2439 			}
2440 
2441 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2442 				gmbus_irq_handler(dev_priv);
2443 				found = true;
2444 			}
2445 
2446 			if (!found)
2447 				DRM_ERROR("Unexpected DE Port interrupt\n");
2448 		}
2449 		else
2450 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2451 	}
2452 
2453 	for_each_pipe(dev_priv, pipe) {
2454 		u32 fault_errors;
2455 
2456 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2457 			continue;
2458 
2459 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2460 		if (!iir) {
2461 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2462 			continue;
2463 		}
2464 
2465 		ret = IRQ_HANDLED;
2466 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2467 
2468 		if (iir & GEN8_PIPE_VBLANK)
2469 			drm_handle_vblank(&dev_priv->drm, pipe);
2470 
2471 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2472 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2473 
2474 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2475 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2476 
2477 		fault_errors = iir;
2478 		if (INTEL_GEN(dev_priv) >= 9)
2479 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2480 		else
2481 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2482 
2483 		if (fault_errors)
2484 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2485 				  pipe_name(pipe),
2486 				  fault_errors);
2487 	}
2488 
2489 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2490 	    master_ctl & GEN8_DE_PCH_IRQ) {
2491 		/*
2492 		 * FIXME(BDW): Assume for now that the new interrupt handling
2493 		 * scheme also closed the SDE interrupt handling race we've seen
2494 		 * on older pch-split platforms. But this needs testing.
2495 		 */
2496 		iir = I915_READ(SDEIIR);
2497 		if (iir) {
2498 			I915_WRITE(SDEIIR, iir);
2499 			ret = IRQ_HANDLED;
2500 
2501 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2502 			    HAS_PCH_CNP(dev_priv))
2503 				spt_irq_handler(dev_priv, iir);
2504 			else
2505 				cpt_irq_handler(dev_priv, iir);
2506 		} else {
2507 			/*
2508 			 * Like on previous PCH there seems to be something
2509 			 * fishy going on with forwarding PCH interrupts.
2510 			 */
2511 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2512 		}
2513 	}
2514 
2515 	return ret;
2516 }
2517 
2518 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2519 {
2520 	struct drm_device *dev = arg;
2521 	struct drm_i915_private *dev_priv = to_i915(dev);
2522 	u32 master_ctl;
2523 	u32 gt_iir[4] = {};
2524 	irqreturn_t ret;
2525 
2526 	if (!intel_irqs_enabled(dev_priv))
2527 		return IRQ_NONE;
2528 
2529 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2530 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2531 	if (!master_ctl)
2532 		return IRQ_NONE;
2533 
2534 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2535 
2536 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2537 	disable_rpm_wakeref_asserts(dev_priv);
2538 
2539 	/* Find, clear, then process each source of interrupt */
2540 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2541 	gen8_gt_irq_handler(dev_priv, gt_iir);
2542 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2543 
2544 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2545 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2546 
2547 	enable_rpm_wakeref_asserts(dev_priv);
2548 
2549 	return ret;
2550 }
2551 
2552 struct wedge_me {
2553 	struct delayed_work work;
2554 	struct drm_i915_private *i915;
2555 	const char *name;
2556 };
2557 
2558 static void wedge_me(struct work_struct *work)
2559 {
2560 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2561 
2562 	dev_err(w->i915->drm.dev,
2563 		"%s timed out, cancelling all in-flight rendering.\n",
2564 		w->name);
2565 	i915_gem_set_wedged(w->i915);
2566 }
2567 
2568 static void __init_wedge(struct wedge_me *w,
2569 			 struct drm_i915_private *i915,
2570 			 long timeout,
2571 			 const char *name)
2572 {
2573 	w->i915 = i915;
2574 	w->name = name;
2575 
2576 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2577 	schedule_delayed_work(&w->work, timeout);
2578 }
2579 
2580 static void __fini_wedge(struct wedge_me *w)
2581 {
2582 	cancel_delayed_work_sync(&w->work);
2583 	destroy_delayed_work_on_stack(&w->work);
2584 	w->i915 = NULL;
2585 }
2586 
2587 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2588 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2589 	     (W)->i915;							\
2590 	     __fini_wedge((W)))
2591 
2592 /**
2593  * i915_reset_device - do process context error handling work
2594  * @dev_priv: i915 device private
2595  *
2596  * Fire an error uevent so userspace can see that a hang or error
2597  * was detected.
2598  */
2599 static void i915_reset_device(struct drm_i915_private *dev_priv)
2600 {
2601 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2602 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2603 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2604 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2605 	struct wedge_me w;
2606 
2607 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2608 
2609 	DRM_DEBUG_DRIVER("resetting chip\n");
2610 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2611 
2612 	/* Use a watchdog to ensure that our reset completes */
2613 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2614 		intel_prepare_reset(dev_priv);
2615 
2616 		/* Signal that locked waiters should reset the GPU */
2617 		set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2618 		wake_up_all(&dev_priv->gpu_error.wait_queue);
2619 
2620 		/* Wait for anyone holding the lock to wakeup, without
2621 		 * blocking indefinitely on struct_mutex.
2622 		 */
2623 		do {
2624 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2625 				i915_reset(dev_priv, 0);
2626 				mutex_unlock(&dev_priv->drm.struct_mutex);
2627 			}
2628 		} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2629 					     I915_RESET_HANDOFF,
2630 					     TASK_UNINTERRUPTIBLE,
2631 					     1));
2632 
2633 		intel_finish_reset(dev_priv);
2634 	}
2635 
2636 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2637 		kobject_uevent_env(kobj,
2638 				   KOBJ_CHANGE, reset_done_event);
2639 }
2640 
2641 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2642 {
2643 	u32 eir;
2644 
2645 	if (!IS_GEN2(dev_priv))
2646 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2647 
2648 	if (INTEL_GEN(dev_priv) < 4)
2649 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2650 	else
2651 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2652 
2653 	I915_WRITE(EIR, I915_READ(EIR));
2654 	eir = I915_READ(EIR);
2655 	if (eir) {
2656 		/*
2657 		 * some errors might have become stuck,
2658 		 * mask them.
2659 		 */
2660 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2661 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2662 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2663 	}
2664 }
2665 
2666 /**
2667  * i915_handle_error - handle a gpu error
2668  * @dev_priv: i915 device private
2669  * @engine_mask: mask representing engines that are hung
2670  * @fmt: Error message format string
2671  *
2672  * Do some basic checking of register state at error time and
2673  * dump it to the syslog.  Also call i915_capture_error_state() to make
2674  * sure we get a record and make it available in debugfs.  Fire a uevent
2675  * so userspace knows something bad happened (should trigger collection
2676  * of a ring dump etc.).
2677  */
2678 void i915_handle_error(struct drm_i915_private *dev_priv,
2679 		       u32 engine_mask,
2680 		       const char *fmt, ...)
2681 {
2682 	struct intel_engine_cs *engine;
2683 	unsigned int tmp;
2684 	va_list args;
2685 	char error_msg[80];
2686 
2687 	va_start(args, fmt);
2688 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2689 	va_end(args);
2690 
2691 	/*
2692 	 * In most cases it's guaranteed that we get here with an RPM
2693 	 * reference held, for example because there is a pending GPU
2694 	 * request that won't finish until the reset is done. This
2695 	 * isn't the case at least when we get here by doing a
2696 	 * simulated reset via debugfs, so get an RPM reference.
2697 	 */
2698 	intel_runtime_pm_get(dev_priv);
2699 
2700 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2701 	i915_clear_error_registers(dev_priv);
2702 
2703 	/*
2704 	 * Try engine reset when available. We fall back to full reset if
2705 	 * single reset fails.
2706 	 */
2707 	if (intel_has_reset_engine(dev_priv)) {
2708 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2709 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2710 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2711 					     &dev_priv->gpu_error.flags))
2712 				continue;
2713 
2714 			if (i915_reset_engine(engine, 0) == 0)
2715 				engine_mask &= ~intel_engine_flag(engine);
2716 
2717 			clear_bit(I915_RESET_ENGINE + engine->id,
2718 				  &dev_priv->gpu_error.flags);
2719 			wake_up_bit(&dev_priv->gpu_error.flags,
2720 				    I915_RESET_ENGINE + engine->id);
2721 		}
2722 	}
2723 
2724 	if (!engine_mask)
2725 		goto out;
2726 
2727 	/* Full reset needs the mutex, stop any other user trying to do so. */
2728 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2729 		wait_event(dev_priv->gpu_error.reset_queue,
2730 			   !test_bit(I915_RESET_BACKOFF,
2731 				     &dev_priv->gpu_error.flags));
2732 		goto out;
2733 	}
2734 
2735 	/* Prevent any other reset-engine attempt. */
2736 	for_each_engine(engine, dev_priv, tmp) {
2737 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2738 					&dev_priv->gpu_error.flags))
2739 			wait_on_bit(&dev_priv->gpu_error.flags,
2740 				    I915_RESET_ENGINE + engine->id,
2741 				    TASK_UNINTERRUPTIBLE);
2742 	}
2743 
2744 	i915_reset_device(dev_priv);
2745 
2746 	for_each_engine(engine, dev_priv, tmp) {
2747 		clear_bit(I915_RESET_ENGINE + engine->id,
2748 			  &dev_priv->gpu_error.flags);
2749 	}
2750 
2751 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2752 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2753 
2754 out:
2755 	intel_runtime_pm_put(dev_priv);
2756 }
2757 
2758 /* Called from drm generic code, passed 'crtc' which
2759  * we use as a pipe index
2760  */
2761 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2762 {
2763 	struct drm_i915_private *dev_priv = to_i915(dev);
2764 	unsigned long irqflags;
2765 
2766 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2768 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2769 
2770 	return 0;
2771 }
2772 
2773 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775 	struct drm_i915_private *dev_priv = to_i915(dev);
2776 	unsigned long irqflags;
2777 
2778 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2779 	i915_enable_pipestat(dev_priv, pipe,
2780 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2781 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2782 
2783 	return 0;
2784 }
2785 
2786 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788 	struct drm_i915_private *dev_priv = to_i915(dev);
2789 	unsigned long irqflags;
2790 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2791 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2792 
2793 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2794 	ilk_enable_display_irq(dev_priv, bit);
2795 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2796 
2797 	return 0;
2798 }
2799 
2800 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2801 {
2802 	struct drm_i915_private *dev_priv = to_i915(dev);
2803 	unsigned long irqflags;
2804 
2805 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2806 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2807 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2808 
2809 	return 0;
2810 }
2811 
2812 /* Called from drm generic code, passed 'crtc' which
2813  * we use as a pipe index
2814  */
2815 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2816 {
2817 	struct drm_i915_private *dev_priv = to_i915(dev);
2818 	unsigned long irqflags;
2819 
2820 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2821 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2822 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2823 }
2824 
2825 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2826 {
2827 	struct drm_i915_private *dev_priv = to_i915(dev);
2828 	unsigned long irqflags;
2829 
2830 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2831 	i915_disable_pipestat(dev_priv, pipe,
2832 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2833 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2834 }
2835 
2836 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2837 {
2838 	struct drm_i915_private *dev_priv = to_i915(dev);
2839 	unsigned long irqflags;
2840 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2841 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2842 
2843 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2844 	ilk_disable_display_irq(dev_priv, bit);
2845 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2846 }
2847 
2848 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2849 {
2850 	struct drm_i915_private *dev_priv = to_i915(dev);
2851 	unsigned long irqflags;
2852 
2853 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2854 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2855 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2856 }
2857 
2858 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2859 {
2860 	if (HAS_PCH_NOP(dev_priv))
2861 		return;
2862 
2863 	GEN5_IRQ_RESET(SDE);
2864 
2865 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2866 		I915_WRITE(SERR_INT, 0xffffffff);
2867 }
2868 
2869 /*
2870  * SDEIER is also touched by the interrupt handler to work around missed PCH
2871  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2872  * instead we unconditionally enable all PCH interrupt sources here, but then
2873  * only unmask them as needed with SDEIMR.
2874  *
2875  * This function needs to be called before interrupts are enabled.
2876  */
2877 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2878 {
2879 	struct drm_i915_private *dev_priv = to_i915(dev);
2880 
2881 	if (HAS_PCH_NOP(dev_priv))
2882 		return;
2883 
2884 	WARN_ON(I915_READ(SDEIER) != 0);
2885 	I915_WRITE(SDEIER, 0xffffffff);
2886 	POSTING_READ(SDEIER);
2887 }
2888 
2889 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2890 {
2891 	GEN5_IRQ_RESET(GT);
2892 	if (INTEL_GEN(dev_priv) >= 6)
2893 		GEN5_IRQ_RESET(GEN6_PM);
2894 }
2895 
2896 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2897 {
2898 	enum pipe pipe;
2899 
2900 	if (IS_CHERRYVIEW(dev_priv))
2901 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2902 	else
2903 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2904 
2905 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2906 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2907 
2908 	for_each_pipe(dev_priv, pipe) {
2909 		I915_WRITE(PIPESTAT(pipe),
2910 			   PIPE_FIFO_UNDERRUN_STATUS |
2911 			   PIPESTAT_INT_STATUS_MASK);
2912 		dev_priv->pipestat_irq_mask[pipe] = 0;
2913 	}
2914 
2915 	GEN5_IRQ_RESET(VLV_);
2916 	dev_priv->irq_mask = ~0;
2917 }
2918 
2919 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2920 {
2921 	u32 pipestat_mask;
2922 	u32 enable_mask;
2923 	enum pipe pipe;
2924 
2925 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2926 			PIPE_CRC_DONE_INTERRUPT_STATUS;
2927 
2928 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2929 	for_each_pipe(dev_priv, pipe)
2930 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2931 
2932 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2933 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2934 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2935 		I915_LPE_PIPE_A_INTERRUPT |
2936 		I915_LPE_PIPE_B_INTERRUPT;
2937 
2938 	if (IS_CHERRYVIEW(dev_priv))
2939 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2940 			I915_LPE_PIPE_C_INTERRUPT;
2941 
2942 	WARN_ON(dev_priv->irq_mask != ~0);
2943 
2944 	dev_priv->irq_mask = ~enable_mask;
2945 
2946 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2947 }
2948 
2949 /* drm_dma.h hooks
2950 */
2951 static void ironlake_irq_reset(struct drm_device *dev)
2952 {
2953 	struct drm_i915_private *dev_priv = to_i915(dev);
2954 
2955 	I915_WRITE(HWSTAM, 0xffffffff);
2956 
2957 	GEN5_IRQ_RESET(DE);
2958 	if (IS_GEN7(dev_priv))
2959 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2960 
2961 	gen5_gt_irq_reset(dev_priv);
2962 
2963 	ibx_irq_reset(dev_priv);
2964 }
2965 
2966 static void valleyview_irq_preinstall(struct drm_device *dev)
2967 {
2968 	struct drm_i915_private *dev_priv = to_i915(dev);
2969 
2970 	I915_WRITE(VLV_MASTER_IER, 0);
2971 	POSTING_READ(VLV_MASTER_IER);
2972 
2973 	gen5_gt_irq_reset(dev_priv);
2974 
2975 	spin_lock_irq(&dev_priv->irq_lock);
2976 	if (dev_priv->display_irqs_enabled)
2977 		vlv_display_irq_reset(dev_priv);
2978 	spin_unlock_irq(&dev_priv->irq_lock);
2979 }
2980 
2981 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2982 {
2983 	GEN8_IRQ_RESET_NDX(GT, 0);
2984 	GEN8_IRQ_RESET_NDX(GT, 1);
2985 	GEN8_IRQ_RESET_NDX(GT, 2);
2986 	GEN8_IRQ_RESET_NDX(GT, 3);
2987 }
2988 
2989 static void gen8_irq_reset(struct drm_device *dev)
2990 {
2991 	struct drm_i915_private *dev_priv = to_i915(dev);
2992 	int pipe;
2993 
2994 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2995 	POSTING_READ(GEN8_MASTER_IRQ);
2996 
2997 	gen8_gt_irq_reset(dev_priv);
2998 
2999 	for_each_pipe(dev_priv, pipe)
3000 		if (intel_display_power_is_enabled(dev_priv,
3001 						   POWER_DOMAIN_PIPE(pipe)))
3002 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3003 
3004 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3005 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3006 	GEN5_IRQ_RESET(GEN8_PCU_);
3007 
3008 	if (HAS_PCH_SPLIT(dev_priv))
3009 		ibx_irq_reset(dev_priv);
3010 }
3011 
3012 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3013 				     u8 pipe_mask)
3014 {
3015 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3016 	enum pipe pipe;
3017 
3018 	spin_lock_irq(&dev_priv->irq_lock);
3019 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3020 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3021 				  dev_priv->de_irq_mask[pipe],
3022 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3023 	spin_unlock_irq(&dev_priv->irq_lock);
3024 }
3025 
3026 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3027 				     u8 pipe_mask)
3028 {
3029 	enum pipe pipe;
3030 
3031 	spin_lock_irq(&dev_priv->irq_lock);
3032 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3033 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3034 	spin_unlock_irq(&dev_priv->irq_lock);
3035 
3036 	/* make sure we're done processing display irqs */
3037 	synchronize_irq(dev_priv->drm.irq);
3038 }
3039 
3040 static void cherryview_irq_preinstall(struct drm_device *dev)
3041 {
3042 	struct drm_i915_private *dev_priv = to_i915(dev);
3043 
3044 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3045 	POSTING_READ(GEN8_MASTER_IRQ);
3046 
3047 	gen8_gt_irq_reset(dev_priv);
3048 
3049 	GEN5_IRQ_RESET(GEN8_PCU_);
3050 
3051 	spin_lock_irq(&dev_priv->irq_lock);
3052 	if (dev_priv->display_irqs_enabled)
3053 		vlv_display_irq_reset(dev_priv);
3054 	spin_unlock_irq(&dev_priv->irq_lock);
3055 }
3056 
3057 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3058 				  const u32 hpd[HPD_NUM_PINS])
3059 {
3060 	struct intel_encoder *encoder;
3061 	u32 enabled_irqs = 0;
3062 
3063 	for_each_intel_encoder(&dev_priv->drm, encoder)
3064 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3065 			enabled_irqs |= hpd[encoder->hpd_pin];
3066 
3067 	return enabled_irqs;
3068 }
3069 
3070 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3071 {
3072 	u32 hotplug;
3073 
3074 	/*
3075 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3076 	 * duration to 2ms (which is the minimum in the Display Port spec).
3077 	 * The pulse duration bits are reserved on LPT+.
3078 	 */
3079 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3080 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3081 		     PORTC_PULSE_DURATION_MASK |
3082 		     PORTD_PULSE_DURATION_MASK);
3083 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3084 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3085 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3086 	/*
3087 	 * When CPU and PCH are on the same package, port A
3088 	 * HPD must be enabled in both north and south.
3089 	 */
3090 	if (HAS_PCH_LPT_LP(dev_priv))
3091 		hotplug |= PORTA_HOTPLUG_ENABLE;
3092 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3093 }
3094 
3095 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3096 {
3097 	u32 hotplug_irqs, enabled_irqs;
3098 
3099 	if (HAS_PCH_IBX(dev_priv)) {
3100 		hotplug_irqs = SDE_HOTPLUG_MASK;
3101 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3102 	} else {
3103 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3104 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3105 	}
3106 
3107 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3108 
3109 	ibx_hpd_detection_setup(dev_priv);
3110 }
3111 
3112 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3113 {
3114 	u32 hotplug;
3115 
3116 	/* Enable digital hotplug on the PCH */
3117 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3118 	hotplug |= PORTA_HOTPLUG_ENABLE |
3119 		   PORTB_HOTPLUG_ENABLE |
3120 		   PORTC_HOTPLUG_ENABLE |
3121 		   PORTD_HOTPLUG_ENABLE;
3122 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3123 
3124 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3125 	hotplug |= PORTE_HOTPLUG_ENABLE;
3126 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3127 }
3128 
3129 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3130 {
3131 	u32 hotplug_irqs, enabled_irqs;
3132 
3133 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3134 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3135 
3136 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3137 
3138 	spt_hpd_detection_setup(dev_priv);
3139 }
3140 
3141 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3142 {
3143 	u32 hotplug;
3144 
3145 	/*
3146 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3147 	 * duration to 2ms (which is the minimum in the Display Port spec)
3148 	 * The pulse duration bits are reserved on HSW+.
3149 	 */
3150 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3151 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3152 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3153 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3154 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3155 }
3156 
3157 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3158 {
3159 	u32 hotplug_irqs, enabled_irqs;
3160 
3161 	if (INTEL_GEN(dev_priv) >= 8) {
3162 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3163 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3164 
3165 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3166 	} else if (INTEL_GEN(dev_priv) >= 7) {
3167 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3168 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3169 
3170 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3171 	} else {
3172 		hotplug_irqs = DE_DP_A_HOTPLUG;
3173 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3174 
3175 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3176 	}
3177 
3178 	ilk_hpd_detection_setup(dev_priv);
3179 
3180 	ibx_hpd_irq_setup(dev_priv);
3181 }
3182 
3183 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3184 				      u32 enabled_irqs)
3185 {
3186 	u32 hotplug;
3187 
3188 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3189 	hotplug |= PORTA_HOTPLUG_ENABLE |
3190 		   PORTB_HOTPLUG_ENABLE |
3191 		   PORTC_HOTPLUG_ENABLE;
3192 
3193 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3194 		      hotplug, enabled_irqs);
3195 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3196 
3197 	/*
3198 	 * For BXT invert bit has to be set based on AOB design
3199 	 * for HPD detection logic, update it based on VBT fields.
3200 	 */
3201 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3202 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3203 		hotplug |= BXT_DDIA_HPD_INVERT;
3204 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3205 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3206 		hotplug |= BXT_DDIB_HPD_INVERT;
3207 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3208 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3209 		hotplug |= BXT_DDIC_HPD_INVERT;
3210 
3211 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3212 }
3213 
3214 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3215 {
3216 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3217 }
3218 
3219 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3220 {
3221 	u32 hotplug_irqs, enabled_irqs;
3222 
3223 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3224 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3225 
3226 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3227 
3228 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3229 }
3230 
3231 static void ibx_irq_postinstall(struct drm_device *dev)
3232 {
3233 	struct drm_i915_private *dev_priv = to_i915(dev);
3234 	u32 mask;
3235 
3236 	if (HAS_PCH_NOP(dev_priv))
3237 		return;
3238 
3239 	if (HAS_PCH_IBX(dev_priv))
3240 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3241 	else
3242 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3243 
3244 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3245 	I915_WRITE(SDEIMR, ~mask);
3246 
3247 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3248 	    HAS_PCH_LPT(dev_priv))
3249 		ibx_hpd_detection_setup(dev_priv);
3250 	else
3251 		spt_hpd_detection_setup(dev_priv);
3252 }
3253 
3254 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3255 {
3256 	struct drm_i915_private *dev_priv = to_i915(dev);
3257 	u32 pm_irqs, gt_irqs;
3258 
3259 	pm_irqs = gt_irqs = 0;
3260 
3261 	dev_priv->gt_irq_mask = ~0;
3262 	if (HAS_L3_DPF(dev_priv)) {
3263 		/* L3 parity interrupt is always unmasked. */
3264 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3265 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3266 	}
3267 
3268 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3269 	if (IS_GEN5(dev_priv)) {
3270 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3271 	} else {
3272 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3273 	}
3274 
3275 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3276 
3277 	if (INTEL_GEN(dev_priv) >= 6) {
3278 		/*
3279 		 * RPS interrupts will get enabled/disabled on demand when RPS
3280 		 * itself is enabled/disabled.
3281 		 */
3282 		if (HAS_VEBOX(dev_priv)) {
3283 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3284 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3285 		}
3286 
3287 		dev_priv->pm_imr = 0xffffffff;
3288 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3289 	}
3290 }
3291 
3292 static int ironlake_irq_postinstall(struct drm_device *dev)
3293 {
3294 	struct drm_i915_private *dev_priv = to_i915(dev);
3295 	u32 display_mask, extra_mask;
3296 
3297 	if (INTEL_GEN(dev_priv) >= 7) {
3298 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3299 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3300 				DE_PLANEB_FLIP_DONE_IVB |
3301 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3302 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3303 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3304 			      DE_DP_A_HOTPLUG_IVB);
3305 	} else {
3306 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3307 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3308 				DE_AUX_CHANNEL_A |
3309 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3310 				DE_POISON);
3311 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3312 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3313 			      DE_DP_A_HOTPLUG);
3314 	}
3315 
3316 	dev_priv->irq_mask = ~display_mask;
3317 
3318 	I915_WRITE(HWSTAM, 0xeffe);
3319 
3320 	ibx_irq_pre_postinstall(dev);
3321 
3322 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3323 
3324 	gen5_gt_irq_postinstall(dev);
3325 
3326 	ilk_hpd_detection_setup(dev_priv);
3327 
3328 	ibx_irq_postinstall(dev);
3329 
3330 	if (IS_IRONLAKE_M(dev_priv)) {
3331 		/* Enable PCU event interrupts
3332 		 *
3333 		 * spinlocking not required here for correctness since interrupt
3334 		 * setup is guaranteed to run in single-threaded context. But we
3335 		 * need it to make the assert_spin_locked happy. */
3336 		spin_lock_irq(&dev_priv->irq_lock);
3337 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3338 		spin_unlock_irq(&dev_priv->irq_lock);
3339 	}
3340 
3341 	return 0;
3342 }
3343 
3344 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3345 {
3346 	lockdep_assert_held(&dev_priv->irq_lock);
3347 
3348 	if (dev_priv->display_irqs_enabled)
3349 		return;
3350 
3351 	dev_priv->display_irqs_enabled = true;
3352 
3353 	if (intel_irqs_enabled(dev_priv)) {
3354 		vlv_display_irq_reset(dev_priv);
3355 		vlv_display_irq_postinstall(dev_priv);
3356 	}
3357 }
3358 
3359 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3360 {
3361 	lockdep_assert_held(&dev_priv->irq_lock);
3362 
3363 	if (!dev_priv->display_irqs_enabled)
3364 		return;
3365 
3366 	dev_priv->display_irqs_enabled = false;
3367 
3368 	if (intel_irqs_enabled(dev_priv))
3369 		vlv_display_irq_reset(dev_priv);
3370 }
3371 
3372 
3373 static int valleyview_irq_postinstall(struct drm_device *dev)
3374 {
3375 	struct drm_i915_private *dev_priv = to_i915(dev);
3376 
3377 	gen5_gt_irq_postinstall(dev);
3378 
3379 	spin_lock_irq(&dev_priv->irq_lock);
3380 	if (dev_priv->display_irqs_enabled)
3381 		vlv_display_irq_postinstall(dev_priv);
3382 	spin_unlock_irq(&dev_priv->irq_lock);
3383 
3384 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3385 	POSTING_READ(VLV_MASTER_IER);
3386 
3387 	return 0;
3388 }
3389 
3390 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3391 {
3392 	/* These are interrupts we'll toggle with the ring mask register */
3393 	uint32_t gt_interrupts[] = {
3394 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3395 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3396 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3397 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3398 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3399 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3400 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3401 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3402 		0,
3403 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3404 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3405 		};
3406 
3407 	if (HAS_L3_DPF(dev_priv))
3408 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3409 
3410 	dev_priv->pm_ier = 0x0;
3411 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3412 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3413 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3414 	/*
3415 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3416 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3417 	 */
3418 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3419 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3420 }
3421 
3422 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3423 {
3424 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3425 	uint32_t de_pipe_enables;
3426 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3427 	u32 de_port_enables;
3428 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3429 	enum pipe pipe;
3430 
3431 	if (INTEL_GEN(dev_priv) >= 9) {
3432 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3433 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3434 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3435 				  GEN9_AUX_CHANNEL_D;
3436 		if (IS_GEN9_LP(dev_priv))
3437 			de_port_masked |= BXT_DE_PORT_GMBUS;
3438 	} else {
3439 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3440 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3441 	}
3442 
3443 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3444 					   GEN8_PIPE_FIFO_UNDERRUN;
3445 
3446 	de_port_enables = de_port_masked;
3447 	if (IS_GEN9_LP(dev_priv))
3448 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3449 	else if (IS_BROADWELL(dev_priv))
3450 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3451 
3452 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3453 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3454 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3455 
3456 	for_each_pipe(dev_priv, pipe)
3457 		if (intel_display_power_is_enabled(dev_priv,
3458 				POWER_DOMAIN_PIPE(pipe)))
3459 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3460 					  dev_priv->de_irq_mask[pipe],
3461 					  de_pipe_enables);
3462 
3463 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3464 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3465 
3466 	if (IS_GEN9_LP(dev_priv))
3467 		bxt_hpd_detection_setup(dev_priv);
3468 	else if (IS_BROADWELL(dev_priv))
3469 		ilk_hpd_detection_setup(dev_priv);
3470 }
3471 
3472 static int gen8_irq_postinstall(struct drm_device *dev)
3473 {
3474 	struct drm_i915_private *dev_priv = to_i915(dev);
3475 
3476 	if (HAS_PCH_SPLIT(dev_priv))
3477 		ibx_irq_pre_postinstall(dev);
3478 
3479 	gen8_gt_irq_postinstall(dev_priv);
3480 	gen8_de_irq_postinstall(dev_priv);
3481 
3482 	if (HAS_PCH_SPLIT(dev_priv))
3483 		ibx_irq_postinstall(dev);
3484 
3485 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3486 	POSTING_READ(GEN8_MASTER_IRQ);
3487 
3488 	return 0;
3489 }
3490 
3491 static int cherryview_irq_postinstall(struct drm_device *dev)
3492 {
3493 	struct drm_i915_private *dev_priv = to_i915(dev);
3494 
3495 	gen8_gt_irq_postinstall(dev_priv);
3496 
3497 	spin_lock_irq(&dev_priv->irq_lock);
3498 	if (dev_priv->display_irqs_enabled)
3499 		vlv_display_irq_postinstall(dev_priv);
3500 	spin_unlock_irq(&dev_priv->irq_lock);
3501 
3502 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3503 	POSTING_READ(GEN8_MASTER_IRQ);
3504 
3505 	return 0;
3506 }
3507 
3508 static void gen8_irq_uninstall(struct drm_device *dev)
3509 {
3510 	struct drm_i915_private *dev_priv = to_i915(dev);
3511 
3512 	if (!dev_priv)
3513 		return;
3514 
3515 	gen8_irq_reset(dev);
3516 }
3517 
3518 static void valleyview_irq_uninstall(struct drm_device *dev)
3519 {
3520 	struct drm_i915_private *dev_priv = to_i915(dev);
3521 
3522 	if (!dev_priv)
3523 		return;
3524 
3525 	I915_WRITE(VLV_MASTER_IER, 0);
3526 	POSTING_READ(VLV_MASTER_IER);
3527 
3528 	gen5_gt_irq_reset(dev_priv);
3529 
3530 	I915_WRITE(HWSTAM, 0xffffffff);
3531 
3532 	spin_lock_irq(&dev_priv->irq_lock);
3533 	if (dev_priv->display_irqs_enabled)
3534 		vlv_display_irq_reset(dev_priv);
3535 	spin_unlock_irq(&dev_priv->irq_lock);
3536 }
3537 
3538 static void cherryview_irq_uninstall(struct drm_device *dev)
3539 {
3540 	struct drm_i915_private *dev_priv = to_i915(dev);
3541 
3542 	if (!dev_priv)
3543 		return;
3544 
3545 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3546 	POSTING_READ(GEN8_MASTER_IRQ);
3547 
3548 	gen8_gt_irq_reset(dev_priv);
3549 
3550 	GEN5_IRQ_RESET(GEN8_PCU_);
3551 
3552 	spin_lock_irq(&dev_priv->irq_lock);
3553 	if (dev_priv->display_irqs_enabled)
3554 		vlv_display_irq_reset(dev_priv);
3555 	spin_unlock_irq(&dev_priv->irq_lock);
3556 }
3557 
3558 static void ironlake_irq_uninstall(struct drm_device *dev)
3559 {
3560 	struct drm_i915_private *dev_priv = to_i915(dev);
3561 
3562 	if (!dev_priv)
3563 		return;
3564 
3565 	ironlake_irq_reset(dev);
3566 }
3567 
3568 static void i8xx_irq_preinstall(struct drm_device * dev)
3569 {
3570 	struct drm_i915_private *dev_priv = to_i915(dev);
3571 	int pipe;
3572 
3573 	for_each_pipe(dev_priv, pipe)
3574 		I915_WRITE(PIPESTAT(pipe), 0);
3575 	I915_WRITE16(IMR, 0xffff);
3576 	I915_WRITE16(IER, 0x0);
3577 	POSTING_READ16(IER);
3578 }
3579 
3580 static int i8xx_irq_postinstall(struct drm_device *dev)
3581 {
3582 	struct drm_i915_private *dev_priv = to_i915(dev);
3583 
3584 	I915_WRITE16(EMR,
3585 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3586 
3587 	/* Unmask the interrupts that we always want on. */
3588 	dev_priv->irq_mask =
3589 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3590 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3591 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3592 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3593 	I915_WRITE16(IMR, dev_priv->irq_mask);
3594 
3595 	I915_WRITE16(IER,
3596 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3597 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3598 		     I915_USER_INTERRUPT);
3599 	POSTING_READ16(IER);
3600 
3601 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3602 	 * just to make the assert_spin_locked check happy. */
3603 	spin_lock_irq(&dev_priv->irq_lock);
3604 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3605 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3606 	spin_unlock_irq(&dev_priv->irq_lock);
3607 
3608 	return 0;
3609 }
3610 
3611 /*
3612  * Returns true when a page flip has completed.
3613  */
3614 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3615 {
3616 	struct drm_device *dev = arg;
3617 	struct drm_i915_private *dev_priv = to_i915(dev);
3618 	u16 iir, new_iir;
3619 	u32 pipe_stats[2];
3620 	int pipe;
3621 	irqreturn_t ret;
3622 
3623 	if (!intel_irqs_enabled(dev_priv))
3624 		return IRQ_NONE;
3625 
3626 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3627 	disable_rpm_wakeref_asserts(dev_priv);
3628 
3629 	ret = IRQ_NONE;
3630 	iir = I915_READ16(IIR);
3631 	if (iir == 0)
3632 		goto out;
3633 
3634 	while (iir) {
3635 		/* Can't rely on pipestat interrupt bit in iir as it might
3636 		 * have been cleared after the pipestat interrupt was received.
3637 		 * It doesn't set the bit in iir again, but it still produces
3638 		 * interrupts (for non-MSI).
3639 		 */
3640 		spin_lock(&dev_priv->irq_lock);
3641 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3642 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3643 
3644 		for_each_pipe(dev_priv, pipe) {
3645 			i915_reg_t reg = PIPESTAT(pipe);
3646 			pipe_stats[pipe] = I915_READ(reg);
3647 
3648 			/*
3649 			 * Clear the PIPE*STAT regs before the IIR
3650 			 */
3651 			if (pipe_stats[pipe] & 0x8000ffff)
3652 				I915_WRITE(reg, pipe_stats[pipe]);
3653 		}
3654 		spin_unlock(&dev_priv->irq_lock);
3655 
3656 		I915_WRITE16(IIR, iir);
3657 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3658 
3659 		if (iir & I915_USER_INTERRUPT)
3660 			notify_ring(dev_priv->engine[RCS]);
3661 
3662 		for_each_pipe(dev_priv, pipe) {
3663 			int plane = pipe;
3664 			if (HAS_FBC(dev_priv))
3665 				plane = !plane;
3666 
3667 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3668 				drm_handle_vblank(&dev_priv->drm, pipe);
3669 
3670 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3671 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3672 
3673 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3674 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3675 								    pipe);
3676 		}
3677 
3678 		iir = new_iir;
3679 	}
3680 	ret = IRQ_HANDLED;
3681 
3682 out:
3683 	enable_rpm_wakeref_asserts(dev_priv);
3684 
3685 	return ret;
3686 }
3687 
3688 static void i8xx_irq_uninstall(struct drm_device * dev)
3689 {
3690 	struct drm_i915_private *dev_priv = to_i915(dev);
3691 	int pipe;
3692 
3693 	for_each_pipe(dev_priv, pipe) {
3694 		/* Clear enable bits; then clear status bits */
3695 		I915_WRITE(PIPESTAT(pipe), 0);
3696 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3697 	}
3698 	I915_WRITE16(IMR, 0xffff);
3699 	I915_WRITE16(IER, 0x0);
3700 	I915_WRITE16(IIR, I915_READ16(IIR));
3701 }
3702 
3703 static void i915_irq_preinstall(struct drm_device * dev)
3704 {
3705 	struct drm_i915_private *dev_priv = to_i915(dev);
3706 	int pipe;
3707 
3708 	if (I915_HAS_HOTPLUG(dev_priv)) {
3709 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3710 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3711 	}
3712 
3713 	I915_WRITE16(HWSTAM, 0xeffe);
3714 	for_each_pipe(dev_priv, pipe)
3715 		I915_WRITE(PIPESTAT(pipe), 0);
3716 	I915_WRITE(IMR, 0xffffffff);
3717 	I915_WRITE(IER, 0x0);
3718 	POSTING_READ(IER);
3719 }
3720 
3721 static int i915_irq_postinstall(struct drm_device *dev)
3722 {
3723 	struct drm_i915_private *dev_priv = to_i915(dev);
3724 	u32 enable_mask;
3725 
3726 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3727 
3728 	/* Unmask the interrupts that we always want on. */
3729 	dev_priv->irq_mask =
3730 		~(I915_ASLE_INTERRUPT |
3731 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3732 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3733 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3734 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3735 
3736 	enable_mask =
3737 		I915_ASLE_INTERRUPT |
3738 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3739 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3740 		I915_USER_INTERRUPT;
3741 
3742 	if (I915_HAS_HOTPLUG(dev_priv)) {
3743 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3744 		POSTING_READ(PORT_HOTPLUG_EN);
3745 
3746 		/* Enable in IER... */
3747 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3748 		/* and unmask in IMR */
3749 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3750 	}
3751 
3752 	I915_WRITE(IMR, dev_priv->irq_mask);
3753 	I915_WRITE(IER, enable_mask);
3754 	POSTING_READ(IER);
3755 
3756 	i915_enable_asle_pipestat(dev_priv);
3757 
3758 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3759 	 * just to make the assert_spin_locked check happy. */
3760 	spin_lock_irq(&dev_priv->irq_lock);
3761 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3762 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3763 	spin_unlock_irq(&dev_priv->irq_lock);
3764 
3765 	return 0;
3766 }
3767 
3768 static irqreturn_t i915_irq_handler(int irq, void *arg)
3769 {
3770 	struct drm_device *dev = arg;
3771 	struct drm_i915_private *dev_priv = to_i915(dev);
3772 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3773 	int pipe, ret = IRQ_NONE;
3774 
3775 	if (!intel_irqs_enabled(dev_priv))
3776 		return IRQ_NONE;
3777 
3778 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3779 	disable_rpm_wakeref_asserts(dev_priv);
3780 
3781 	iir = I915_READ(IIR);
3782 	do {
3783 		bool irq_received = (iir) != 0;
3784 		bool blc_event = false;
3785 
3786 		/* Can't rely on pipestat interrupt bit in iir as it might
3787 		 * have been cleared after the pipestat interrupt was received.
3788 		 * It doesn't set the bit in iir again, but it still produces
3789 		 * interrupts (for non-MSI).
3790 		 */
3791 		spin_lock(&dev_priv->irq_lock);
3792 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3793 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3794 
3795 		for_each_pipe(dev_priv, pipe) {
3796 			i915_reg_t reg = PIPESTAT(pipe);
3797 			pipe_stats[pipe] = I915_READ(reg);
3798 
3799 			/* Clear the PIPE*STAT regs before the IIR */
3800 			if (pipe_stats[pipe] & 0x8000ffff) {
3801 				I915_WRITE(reg, pipe_stats[pipe]);
3802 				irq_received = true;
3803 			}
3804 		}
3805 		spin_unlock(&dev_priv->irq_lock);
3806 
3807 		if (!irq_received)
3808 			break;
3809 
3810 		/* Consume port.  Then clear IIR or we'll miss events */
3811 		if (I915_HAS_HOTPLUG(dev_priv) &&
3812 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
3813 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3814 			if (hotplug_status)
3815 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3816 		}
3817 
3818 		I915_WRITE(IIR, iir);
3819 		new_iir = I915_READ(IIR); /* Flush posted writes */
3820 
3821 		if (iir & I915_USER_INTERRUPT)
3822 			notify_ring(dev_priv->engine[RCS]);
3823 
3824 		for_each_pipe(dev_priv, pipe) {
3825 			int plane = pipe;
3826 			if (HAS_FBC(dev_priv))
3827 				plane = !plane;
3828 
3829 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3830 				drm_handle_vblank(&dev_priv->drm, pipe);
3831 
3832 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3833 				blc_event = true;
3834 
3835 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3836 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3837 
3838 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3839 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3840 								    pipe);
3841 		}
3842 
3843 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3844 			intel_opregion_asle_intr(dev_priv);
3845 
3846 		/* With MSI, interrupts are only generated when iir
3847 		 * transitions from zero to nonzero.  If another bit got
3848 		 * set while we were handling the existing iir bits, then
3849 		 * we would never get another interrupt.
3850 		 *
3851 		 * This is fine on non-MSI as well, as if we hit this path
3852 		 * we avoid exiting the interrupt handler only to generate
3853 		 * another one.
3854 		 *
3855 		 * Note that for MSI this could cause a stray interrupt report
3856 		 * if an interrupt landed in the time between writing IIR and
3857 		 * the posting read.  This should be rare enough to never
3858 		 * trigger the 99% of 100,000 interrupts test for disabling
3859 		 * stray interrupts.
3860 		 */
3861 		ret = IRQ_HANDLED;
3862 		iir = new_iir;
3863 	} while (iir);
3864 
3865 	enable_rpm_wakeref_asserts(dev_priv);
3866 
3867 	return ret;
3868 }
3869 
3870 static void i915_irq_uninstall(struct drm_device * dev)
3871 {
3872 	struct drm_i915_private *dev_priv = to_i915(dev);
3873 	int pipe;
3874 
3875 	if (I915_HAS_HOTPLUG(dev_priv)) {
3876 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3877 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3878 	}
3879 
3880 	I915_WRITE16(HWSTAM, 0xffff);
3881 	for_each_pipe(dev_priv, pipe) {
3882 		/* Clear enable bits; then clear status bits */
3883 		I915_WRITE(PIPESTAT(pipe), 0);
3884 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3885 	}
3886 	I915_WRITE(IMR, 0xffffffff);
3887 	I915_WRITE(IER, 0x0);
3888 
3889 	I915_WRITE(IIR, I915_READ(IIR));
3890 }
3891 
3892 static void i965_irq_preinstall(struct drm_device * dev)
3893 {
3894 	struct drm_i915_private *dev_priv = to_i915(dev);
3895 	int pipe;
3896 
3897 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3898 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3899 
3900 	I915_WRITE(HWSTAM, 0xeffe);
3901 	for_each_pipe(dev_priv, pipe)
3902 		I915_WRITE(PIPESTAT(pipe), 0);
3903 	I915_WRITE(IMR, 0xffffffff);
3904 	I915_WRITE(IER, 0x0);
3905 	POSTING_READ(IER);
3906 }
3907 
3908 static int i965_irq_postinstall(struct drm_device *dev)
3909 {
3910 	struct drm_i915_private *dev_priv = to_i915(dev);
3911 	u32 enable_mask;
3912 	u32 error_mask;
3913 
3914 	/* Unmask the interrupts that we always want on. */
3915 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3916 			       I915_DISPLAY_PORT_INTERRUPT |
3917 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3918 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3919 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3920 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3921 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3922 
3923 	enable_mask = ~dev_priv->irq_mask;
3924 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3925 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3926 	enable_mask |= I915_USER_INTERRUPT;
3927 
3928 	if (IS_G4X(dev_priv))
3929 		enable_mask |= I915_BSD_USER_INTERRUPT;
3930 
3931 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3932 	 * just to make the assert_spin_locked check happy. */
3933 	spin_lock_irq(&dev_priv->irq_lock);
3934 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3935 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3936 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3937 	spin_unlock_irq(&dev_priv->irq_lock);
3938 
3939 	/*
3940 	 * Enable some error detection, note the instruction error mask
3941 	 * bit is reserved, so we leave it masked.
3942 	 */
3943 	if (IS_G4X(dev_priv)) {
3944 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3945 			       GM45_ERROR_MEM_PRIV |
3946 			       GM45_ERROR_CP_PRIV |
3947 			       I915_ERROR_MEMORY_REFRESH);
3948 	} else {
3949 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3950 			       I915_ERROR_MEMORY_REFRESH);
3951 	}
3952 	I915_WRITE(EMR, error_mask);
3953 
3954 	I915_WRITE(IMR, dev_priv->irq_mask);
3955 	I915_WRITE(IER, enable_mask);
3956 	POSTING_READ(IER);
3957 
3958 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3959 	POSTING_READ(PORT_HOTPLUG_EN);
3960 
3961 	i915_enable_asle_pipestat(dev_priv);
3962 
3963 	return 0;
3964 }
3965 
3966 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3967 {
3968 	u32 hotplug_en;
3969 
3970 	lockdep_assert_held(&dev_priv->irq_lock);
3971 
3972 	/* Note HDMI and DP share hotplug bits */
3973 	/* enable bits are the same for all generations */
3974 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3975 	/* Programming the CRT detection parameters tends
3976 	   to generate a spurious hotplug event about three
3977 	   seconds later.  So just do it once.
3978 	*/
3979 	if (IS_G4X(dev_priv))
3980 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3981 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3982 
3983 	/* Ignore TV since it's buggy */
3984 	i915_hotplug_interrupt_update_locked(dev_priv,
3985 					     HOTPLUG_INT_EN_MASK |
3986 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3987 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3988 					     hotplug_en);
3989 }
3990 
3991 static irqreturn_t i965_irq_handler(int irq, void *arg)
3992 {
3993 	struct drm_device *dev = arg;
3994 	struct drm_i915_private *dev_priv = to_i915(dev);
3995 	u32 iir, new_iir;
3996 	u32 pipe_stats[I915_MAX_PIPES];
3997 	int ret = IRQ_NONE, pipe;
3998 
3999 	if (!intel_irqs_enabled(dev_priv))
4000 		return IRQ_NONE;
4001 
4002 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4003 	disable_rpm_wakeref_asserts(dev_priv);
4004 
4005 	iir = I915_READ(IIR);
4006 
4007 	for (;;) {
4008 		bool irq_received = (iir) != 0;
4009 		bool blc_event = false;
4010 
4011 		/* Can't rely on pipestat interrupt bit in iir as it might
4012 		 * have been cleared after the pipestat interrupt was received.
4013 		 * It doesn't set the bit in iir again, but it still produces
4014 		 * interrupts (for non-MSI).
4015 		 */
4016 		spin_lock(&dev_priv->irq_lock);
4017 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4018 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4019 
4020 		for_each_pipe(dev_priv, pipe) {
4021 			i915_reg_t reg = PIPESTAT(pipe);
4022 			pipe_stats[pipe] = I915_READ(reg);
4023 
4024 			/*
4025 			 * Clear the PIPE*STAT regs before the IIR
4026 			 */
4027 			if (pipe_stats[pipe] & 0x8000ffff) {
4028 				I915_WRITE(reg, pipe_stats[pipe]);
4029 				irq_received = true;
4030 			}
4031 		}
4032 		spin_unlock(&dev_priv->irq_lock);
4033 
4034 		if (!irq_received)
4035 			break;
4036 
4037 		ret = IRQ_HANDLED;
4038 
4039 		/* Consume port.  Then clear IIR or we'll miss events */
4040 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4041 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4042 			if (hotplug_status)
4043 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4044 		}
4045 
4046 		I915_WRITE(IIR, iir);
4047 		new_iir = I915_READ(IIR); /* Flush posted writes */
4048 
4049 		if (iir & I915_USER_INTERRUPT)
4050 			notify_ring(dev_priv->engine[RCS]);
4051 		if (iir & I915_BSD_USER_INTERRUPT)
4052 			notify_ring(dev_priv->engine[VCS]);
4053 
4054 		for_each_pipe(dev_priv, pipe) {
4055 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4056 				drm_handle_vblank(&dev_priv->drm, pipe);
4057 
4058 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4059 				blc_event = true;
4060 
4061 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4062 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4063 
4064 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4065 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4066 		}
4067 
4068 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4069 			intel_opregion_asle_intr(dev_priv);
4070 
4071 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4072 			gmbus_irq_handler(dev_priv);
4073 
4074 		/* With MSI, interrupts are only generated when iir
4075 		 * transitions from zero to nonzero.  If another bit got
4076 		 * set while we were handling the existing iir bits, then
4077 		 * we would never get another interrupt.
4078 		 *
4079 		 * This is fine on non-MSI as well, as if we hit this path
4080 		 * we avoid exiting the interrupt handler only to generate
4081 		 * another one.
4082 		 *
4083 		 * Note that for MSI this could cause a stray interrupt report
4084 		 * if an interrupt landed in the time between writing IIR and
4085 		 * the posting read.  This should be rare enough to never
4086 		 * trigger the 99% of 100,000 interrupts test for disabling
4087 		 * stray interrupts.
4088 		 */
4089 		iir = new_iir;
4090 	}
4091 
4092 	enable_rpm_wakeref_asserts(dev_priv);
4093 
4094 	return ret;
4095 }
4096 
4097 static void i965_irq_uninstall(struct drm_device * dev)
4098 {
4099 	struct drm_i915_private *dev_priv = to_i915(dev);
4100 	int pipe;
4101 
4102 	if (!dev_priv)
4103 		return;
4104 
4105 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4106 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4107 
4108 	I915_WRITE(HWSTAM, 0xffffffff);
4109 	for_each_pipe(dev_priv, pipe)
4110 		I915_WRITE(PIPESTAT(pipe), 0);
4111 	I915_WRITE(IMR, 0xffffffff);
4112 	I915_WRITE(IER, 0x0);
4113 
4114 	for_each_pipe(dev_priv, pipe)
4115 		I915_WRITE(PIPESTAT(pipe),
4116 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4117 	I915_WRITE(IIR, I915_READ(IIR));
4118 }
4119 
4120 /**
4121  * intel_irq_init - initializes irq support
4122  * @dev_priv: i915 device instance
4123  *
4124  * This function initializes all the irq support including work items, timers
4125  * and all the vtables. It does not setup the interrupt itself though.
4126  */
4127 void intel_irq_init(struct drm_i915_private *dev_priv)
4128 {
4129 	struct drm_device *dev = &dev_priv->drm;
4130 	int i;
4131 
4132 	intel_hpd_init_work(dev_priv);
4133 
4134 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4135 
4136 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4137 	for (i = 0; i < MAX_L3_SLICES; ++i)
4138 		dev_priv->l3_parity.remap_info[i] = NULL;
4139 
4140 	if (HAS_GUC_SCHED(dev_priv))
4141 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4142 
4143 	/* Let's track the enabled rps events */
4144 	if (IS_VALLEYVIEW(dev_priv))
4145 		/* WaGsvRC0ResidencyMethod:vlv */
4146 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4147 	else
4148 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4149 
4150 	dev_priv->rps.pm_intrmsk_mbz = 0;
4151 
4152 	/*
4153 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4154 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4155 	 *
4156 	 * TODO: verify if this can be reproduced on VLV,CHV.
4157 	 */
4158 	if (INTEL_GEN(dev_priv) <= 7)
4159 		dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4160 
4161 	if (INTEL_GEN(dev_priv) >= 8)
4162 		dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4163 
4164 	if (IS_GEN2(dev_priv)) {
4165 		/* Gen2 doesn't have a hardware frame counter */
4166 		dev->max_vblank_count = 0;
4167 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4168 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4169 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4170 	} else {
4171 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4172 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4173 	}
4174 
4175 	/*
4176 	 * Opt out of the vblank disable timer on everything except gen2.
4177 	 * Gen2 doesn't have a hardware frame counter and so depends on
4178 	 * vblank interrupts to produce sane vblank seuquence numbers.
4179 	 */
4180 	if (!IS_GEN2(dev_priv))
4181 		dev->vblank_disable_immediate = true;
4182 
4183 	/* Most platforms treat the display irq block as an always-on
4184 	 * power domain. vlv/chv can disable it at runtime and need
4185 	 * special care to avoid writing any of the display block registers
4186 	 * outside of the power domain. We defer setting up the display irqs
4187 	 * in this case to the runtime pm.
4188 	 */
4189 	dev_priv->display_irqs_enabled = true;
4190 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4191 		dev_priv->display_irqs_enabled = false;
4192 
4193 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4194 
4195 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4196 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4197 
4198 	if (IS_CHERRYVIEW(dev_priv)) {
4199 		dev->driver->irq_handler = cherryview_irq_handler;
4200 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4201 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4202 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4203 		dev->driver->enable_vblank = i965_enable_vblank;
4204 		dev->driver->disable_vblank = i965_disable_vblank;
4205 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4206 	} else if (IS_VALLEYVIEW(dev_priv)) {
4207 		dev->driver->irq_handler = valleyview_irq_handler;
4208 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4209 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4210 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4211 		dev->driver->enable_vblank = i965_enable_vblank;
4212 		dev->driver->disable_vblank = i965_disable_vblank;
4213 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4214 	} else if (INTEL_GEN(dev_priv) >= 8) {
4215 		dev->driver->irq_handler = gen8_irq_handler;
4216 		dev->driver->irq_preinstall = gen8_irq_reset;
4217 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4218 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4219 		dev->driver->enable_vblank = gen8_enable_vblank;
4220 		dev->driver->disable_vblank = gen8_disable_vblank;
4221 		if (IS_GEN9_LP(dev_priv))
4222 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4223 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4224 			 HAS_PCH_CNP(dev_priv))
4225 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4226 		else
4227 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4228 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4229 		dev->driver->irq_handler = ironlake_irq_handler;
4230 		dev->driver->irq_preinstall = ironlake_irq_reset;
4231 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4232 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4233 		dev->driver->enable_vblank = ironlake_enable_vblank;
4234 		dev->driver->disable_vblank = ironlake_disable_vblank;
4235 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4236 	} else {
4237 		if (IS_GEN2(dev_priv)) {
4238 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4239 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4240 			dev->driver->irq_handler = i8xx_irq_handler;
4241 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4242 			dev->driver->enable_vblank = i8xx_enable_vblank;
4243 			dev->driver->disable_vblank = i8xx_disable_vblank;
4244 		} else if (IS_GEN3(dev_priv)) {
4245 			dev->driver->irq_preinstall = i915_irq_preinstall;
4246 			dev->driver->irq_postinstall = i915_irq_postinstall;
4247 			dev->driver->irq_uninstall = i915_irq_uninstall;
4248 			dev->driver->irq_handler = i915_irq_handler;
4249 			dev->driver->enable_vblank = i8xx_enable_vblank;
4250 			dev->driver->disable_vblank = i8xx_disable_vblank;
4251 		} else {
4252 			dev->driver->irq_preinstall = i965_irq_preinstall;
4253 			dev->driver->irq_postinstall = i965_irq_postinstall;
4254 			dev->driver->irq_uninstall = i965_irq_uninstall;
4255 			dev->driver->irq_handler = i965_irq_handler;
4256 			dev->driver->enable_vblank = i965_enable_vblank;
4257 			dev->driver->disable_vblank = i965_disable_vblank;
4258 		}
4259 		if (I915_HAS_HOTPLUG(dev_priv))
4260 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4261 	}
4262 }
4263 
4264 /**
4265  * intel_irq_fini - deinitializes IRQ support
4266  * @i915: i915 device instance
4267  *
4268  * This function deinitializes all the IRQ support.
4269  */
4270 void intel_irq_fini(struct drm_i915_private *i915)
4271 {
4272 	int i;
4273 
4274 	for (i = 0; i < MAX_L3_SLICES; ++i)
4275 		kfree(i915->l3_parity.remap_info[i]);
4276 }
4277 
4278 /**
4279  * intel_irq_install - enables the hardware interrupt
4280  * @dev_priv: i915 device instance
4281  *
4282  * This function enables the hardware interrupt handling, but leaves the hotplug
4283  * handling still disabled. It is called after intel_irq_init().
4284  *
4285  * In the driver load and resume code we need working interrupts in a few places
4286  * but don't want to deal with the hassle of concurrent probe and hotplug
4287  * workers. Hence the split into this two-stage approach.
4288  */
4289 int intel_irq_install(struct drm_i915_private *dev_priv)
4290 {
4291 	/*
4292 	 * We enable some interrupt sources in our postinstall hooks, so mark
4293 	 * interrupts as enabled _before_ actually enabling them to avoid
4294 	 * special cases in our ordering checks.
4295 	 */
4296 	dev_priv->pm.irqs_enabled = true;
4297 
4298 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4299 }
4300 
4301 /**
4302  * intel_irq_uninstall - finilizes all irq handling
4303  * @dev_priv: i915 device instance
4304  *
4305  * This stops interrupt and hotplug handling and unregisters and frees all
4306  * resources acquired in the init functions.
4307  */
4308 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4309 {
4310 	drm_irq_uninstall(&dev_priv->drm);
4311 	intel_hpd_cancel_work(dev_priv);
4312 	dev_priv->pm.irqs_enabled = false;
4313 }
4314 
4315 /**
4316  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4317  * @dev_priv: i915 device instance
4318  *
4319  * This function is used to disable interrupts at runtime, both in the runtime
4320  * pm and the system suspend/resume code.
4321  */
4322 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4323 {
4324 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4325 	dev_priv->pm.irqs_enabled = false;
4326 	synchronize_irq(dev_priv->drm.irq);
4327 }
4328 
4329 /**
4330  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4331  * @dev_priv: i915 device instance
4332  *
4333  * This function is used to enable interrupts at runtime, both in the runtime
4334  * pm and the system suspend/resume code.
4335  */
4336 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4337 {
4338 	dev_priv->pm.irqs_enabled = true;
4339 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4340 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4341 }
4342