xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 8b235f2f)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55 
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63 
64 static const u32 hpd_spt[HPD_NUM_PINS] = {
65 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
66 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
67 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
68 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
69 };
70 
71 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
72 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
73 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
74 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
75 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
76 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
77 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
78 };
79 
80 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
81 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
82 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
83 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
84 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
85 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
86 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
87 };
88 
89 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
90 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
91 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
92 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
93 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
94 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
95 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
96 };
97 
98 /* BXT hpd list */
99 static const u32 hpd_bxt[HPD_NUM_PINS] = {
100 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
101 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
102 };
103 
104 /* IIR can theoretically queue up two events. Be paranoid. */
105 #define GEN8_IRQ_RESET_NDX(type, which) do { \
106 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
107 	POSTING_READ(GEN8_##type##_IMR(which)); \
108 	I915_WRITE(GEN8_##type##_IER(which), 0); \
109 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
110 	POSTING_READ(GEN8_##type##_IIR(which)); \
111 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
112 	POSTING_READ(GEN8_##type##_IIR(which)); \
113 } while (0)
114 
115 #define GEN5_IRQ_RESET(type) do { \
116 	I915_WRITE(type##IMR, 0xffffffff); \
117 	POSTING_READ(type##IMR); \
118 	I915_WRITE(type##IER, 0); \
119 	I915_WRITE(type##IIR, 0xffffffff); \
120 	POSTING_READ(type##IIR); \
121 	I915_WRITE(type##IIR, 0xffffffff); \
122 	POSTING_READ(type##IIR); \
123 } while (0)
124 
125 /*
126  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
127  */
128 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
129 	u32 val = I915_READ(reg); \
130 	if (val) { \
131 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
132 		     (reg), val); \
133 		I915_WRITE((reg), 0xffffffff); \
134 		POSTING_READ(reg); \
135 		I915_WRITE((reg), 0xffffffff); \
136 		POSTING_READ(reg); \
137 	} \
138 } while (0)
139 
140 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
141 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
142 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
143 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
144 	POSTING_READ(GEN8_##type##_IMR(which)); \
145 } while (0)
146 
147 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
148 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
149 	I915_WRITE(type##IER, (ier_val)); \
150 	I915_WRITE(type##IMR, (imr_val)); \
151 	POSTING_READ(type##IMR); \
152 } while (0)
153 
154 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
155 
156 /* For display hotplug interrupt */
157 void
158 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
159 {
160 	assert_spin_locked(&dev_priv->irq_lock);
161 
162 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
163 		return;
164 
165 	if ((dev_priv->irq_mask & mask) != 0) {
166 		dev_priv->irq_mask &= ~mask;
167 		I915_WRITE(DEIMR, dev_priv->irq_mask);
168 		POSTING_READ(DEIMR);
169 	}
170 }
171 
172 void
173 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
174 {
175 	assert_spin_locked(&dev_priv->irq_lock);
176 
177 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
178 		return;
179 
180 	if ((dev_priv->irq_mask & mask) != mask) {
181 		dev_priv->irq_mask |= mask;
182 		I915_WRITE(DEIMR, dev_priv->irq_mask);
183 		POSTING_READ(DEIMR);
184 	}
185 }
186 
187 /**
188  * ilk_update_gt_irq - update GTIMR
189  * @dev_priv: driver private
190  * @interrupt_mask: mask of interrupt bits to update
191  * @enabled_irq_mask: mask of interrupt bits to enable
192  */
193 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
194 			      uint32_t interrupt_mask,
195 			      uint32_t enabled_irq_mask)
196 {
197 	assert_spin_locked(&dev_priv->irq_lock);
198 
199 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
200 
201 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
202 		return;
203 
204 	dev_priv->gt_irq_mask &= ~interrupt_mask;
205 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
206 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
207 	POSTING_READ(GTIMR);
208 }
209 
210 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
211 {
212 	ilk_update_gt_irq(dev_priv, mask, mask);
213 }
214 
215 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
216 {
217 	ilk_update_gt_irq(dev_priv, mask, 0);
218 }
219 
220 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
221 {
222 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
223 }
224 
225 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
226 {
227 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
228 }
229 
230 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
231 {
232 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
233 }
234 
235 /**
236   * snb_update_pm_irq - update GEN6_PMIMR
237   * @dev_priv: driver private
238   * @interrupt_mask: mask of interrupt bits to update
239   * @enabled_irq_mask: mask of interrupt bits to enable
240   */
241 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
242 			      uint32_t interrupt_mask,
243 			      uint32_t enabled_irq_mask)
244 {
245 	uint32_t new_val;
246 
247 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
248 
249 	assert_spin_locked(&dev_priv->irq_lock);
250 
251 	new_val = dev_priv->pm_irq_mask;
252 	new_val &= ~interrupt_mask;
253 	new_val |= (~enabled_irq_mask & interrupt_mask);
254 
255 	if (new_val != dev_priv->pm_irq_mask) {
256 		dev_priv->pm_irq_mask = new_val;
257 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
258 		POSTING_READ(gen6_pm_imr(dev_priv));
259 	}
260 }
261 
262 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
263 {
264 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
265 		return;
266 
267 	snb_update_pm_irq(dev_priv, mask, mask);
268 }
269 
270 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
271 				  uint32_t mask)
272 {
273 	snb_update_pm_irq(dev_priv, mask, 0);
274 }
275 
276 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
279 		return;
280 
281 	__gen6_disable_pm_irq(dev_priv, mask);
282 }
283 
284 void gen6_reset_rps_interrupts(struct drm_device *dev)
285 {
286 	struct drm_i915_private *dev_priv = dev->dev_private;
287 	uint32_t reg = gen6_pm_iir(dev_priv);
288 
289 	spin_lock_irq(&dev_priv->irq_lock);
290 	I915_WRITE(reg, dev_priv->pm_rps_events);
291 	I915_WRITE(reg, dev_priv->pm_rps_events);
292 	POSTING_READ(reg);
293 	dev_priv->rps.pm_iir = 0;
294 	spin_unlock_irq(&dev_priv->irq_lock);
295 }
296 
297 void gen6_enable_rps_interrupts(struct drm_device *dev)
298 {
299 	struct drm_i915_private *dev_priv = dev->dev_private;
300 
301 	spin_lock_irq(&dev_priv->irq_lock);
302 
303 	WARN_ON(dev_priv->rps.pm_iir);
304 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
305 	dev_priv->rps.interrupts_enabled = true;
306 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
307 				dev_priv->pm_rps_events);
308 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
309 
310 	spin_unlock_irq(&dev_priv->irq_lock);
311 }
312 
313 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
314 {
315 	/*
316 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
317 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
318 	 *
319 	 * TODO: verify if this can be reproduced on VLV,CHV.
320 	 */
321 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
322 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
323 
324 	if (INTEL_INFO(dev_priv)->gen >= 8)
325 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
326 
327 	return mask;
328 }
329 
330 void gen6_disable_rps_interrupts(struct drm_device *dev)
331 {
332 	struct drm_i915_private *dev_priv = dev->dev_private;
333 
334 	spin_lock_irq(&dev_priv->irq_lock);
335 	dev_priv->rps.interrupts_enabled = false;
336 	spin_unlock_irq(&dev_priv->irq_lock);
337 
338 	cancel_work_sync(&dev_priv->rps.work);
339 
340 	spin_lock_irq(&dev_priv->irq_lock);
341 
342 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
343 
344 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
345 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
346 				~dev_priv->pm_rps_events);
347 
348 	spin_unlock_irq(&dev_priv->irq_lock);
349 
350 	synchronize_irq(dev->irq);
351 }
352 
353 /**
354  * ibx_display_interrupt_update - update SDEIMR
355  * @dev_priv: driver private
356  * @interrupt_mask: mask of interrupt bits to update
357  * @enabled_irq_mask: mask of interrupt bits to enable
358  */
359 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
360 				  uint32_t interrupt_mask,
361 				  uint32_t enabled_irq_mask)
362 {
363 	uint32_t sdeimr = I915_READ(SDEIMR);
364 	sdeimr &= ~interrupt_mask;
365 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
366 
367 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
368 
369 	assert_spin_locked(&dev_priv->irq_lock);
370 
371 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
372 		return;
373 
374 	I915_WRITE(SDEIMR, sdeimr);
375 	POSTING_READ(SDEIMR);
376 }
377 
378 static void
379 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
380 		       u32 enable_mask, u32 status_mask)
381 {
382 	u32 reg = PIPESTAT(pipe);
383 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
384 
385 	assert_spin_locked(&dev_priv->irq_lock);
386 	WARN_ON(!intel_irqs_enabled(dev_priv));
387 
388 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
389 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
390 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
391 		      pipe_name(pipe), enable_mask, status_mask))
392 		return;
393 
394 	if ((pipestat & enable_mask) == enable_mask)
395 		return;
396 
397 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
398 
399 	/* Enable the interrupt, clear any pending status */
400 	pipestat |= enable_mask | status_mask;
401 	I915_WRITE(reg, pipestat);
402 	POSTING_READ(reg);
403 }
404 
405 static void
406 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
407 		        u32 enable_mask, u32 status_mask)
408 {
409 	u32 reg = PIPESTAT(pipe);
410 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
411 
412 	assert_spin_locked(&dev_priv->irq_lock);
413 	WARN_ON(!intel_irqs_enabled(dev_priv));
414 
415 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
416 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
417 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
418 		      pipe_name(pipe), enable_mask, status_mask))
419 		return;
420 
421 	if ((pipestat & enable_mask) == 0)
422 		return;
423 
424 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
425 
426 	pipestat &= ~enable_mask;
427 	I915_WRITE(reg, pipestat);
428 	POSTING_READ(reg);
429 }
430 
431 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
432 {
433 	u32 enable_mask = status_mask << 16;
434 
435 	/*
436 	 * On pipe A we don't support the PSR interrupt yet,
437 	 * on pipe B and C the same bit MBZ.
438 	 */
439 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
440 		return 0;
441 	/*
442 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
443 	 * A the same bit is for perf counters which we don't use either.
444 	 */
445 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
446 		return 0;
447 
448 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
450 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
451 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455 
456 	return enable_mask;
457 }
458 
459 void
460 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
461 		     u32 status_mask)
462 {
463 	u32 enable_mask;
464 
465 	if (IS_VALLEYVIEW(dev_priv->dev))
466 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
467 							   status_mask);
468 	else
469 		enable_mask = status_mask << 16;
470 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
471 }
472 
473 void
474 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
475 		      u32 status_mask)
476 {
477 	u32 enable_mask;
478 
479 	if (IS_VALLEYVIEW(dev_priv->dev))
480 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
481 							   status_mask);
482 	else
483 		enable_mask = status_mask << 16;
484 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
485 }
486 
487 /**
488  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
489  */
490 static void i915_enable_asle_pipestat(struct drm_device *dev)
491 {
492 	struct drm_i915_private *dev_priv = dev->dev_private;
493 
494 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
495 		return;
496 
497 	spin_lock_irq(&dev_priv->irq_lock);
498 
499 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
500 	if (INTEL_INFO(dev)->gen >= 4)
501 		i915_enable_pipestat(dev_priv, PIPE_A,
502 				     PIPE_LEGACY_BLC_EVENT_STATUS);
503 
504 	spin_unlock_irq(&dev_priv->irq_lock);
505 }
506 
507 /*
508  * This timing diagram depicts the video signal in and
509  * around the vertical blanking period.
510  *
511  * Assumptions about the fictitious mode used in this example:
512  *  vblank_start >= 3
513  *  vsync_start = vblank_start + 1
514  *  vsync_end = vblank_start + 2
515  *  vtotal = vblank_start + 3
516  *
517  *           start of vblank:
518  *           latch double buffered registers
519  *           increment frame counter (ctg+)
520  *           generate start of vblank interrupt (gen4+)
521  *           |
522  *           |          frame start:
523  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
524  *           |          may be shifted forward 1-3 extra lines via PIPECONF
525  *           |          |
526  *           |          |  start of vsync:
527  *           |          |  generate vsync interrupt
528  *           |          |  |
529  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
530  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
531  * ----va---> <-----------------vb--------------------> <--------va-------------
532  *       |          |       <----vs----->                     |
533  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
534  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
535  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
536  *       |          |                                         |
537  *       last visible pixel                                   first visible pixel
538  *                  |                                         increment frame counter (gen3/4)
539  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
540  *
541  * x  = horizontal active
542  * _  = horizontal blanking
543  * hs = horizontal sync
544  * va = vertical active
545  * vb = vertical blanking
546  * vs = vertical sync
547  * vbs = vblank_start (number)
548  *
549  * Summary:
550  * - most events happen at the start of horizontal sync
551  * - frame start happens at the start of horizontal blank, 1-4 lines
552  *   (depending on PIPECONF settings) after the start of vblank
553  * - gen3/4 pixel and frame counter are synchronized with the start
554  *   of horizontal active on the first line of vertical active
555  */
556 
557 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559 	/* Gen2 doesn't have a hardware frame counter */
560 	return 0;
561 }
562 
563 /* Called from drm generic code, passed a 'crtc', which
564  * we use as a pipe index
565  */
566 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
567 {
568 	struct drm_i915_private *dev_priv = dev->dev_private;
569 	unsigned long high_frame;
570 	unsigned long low_frame;
571 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
572 	struct intel_crtc *intel_crtc =
573 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
574 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
575 
576 	htotal = mode->crtc_htotal;
577 	hsync_start = mode->crtc_hsync_start;
578 	vbl_start = mode->crtc_vblank_start;
579 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
580 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
581 
582 	/* Convert to pixel count */
583 	vbl_start *= htotal;
584 
585 	/* Start of vblank event occurs at start of hsync */
586 	vbl_start -= htotal - hsync_start;
587 
588 	high_frame = PIPEFRAME(pipe);
589 	low_frame = PIPEFRAMEPIXEL(pipe);
590 
591 	/*
592 	 * High & low register fields aren't synchronized, so make sure
593 	 * we get a low value that's stable across two reads of the high
594 	 * register.
595 	 */
596 	do {
597 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
598 		low   = I915_READ(low_frame);
599 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
600 	} while (high1 != high2);
601 
602 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
603 	pixel = low & PIPE_PIXEL_MASK;
604 	low >>= PIPE_FRAME_LOW_SHIFT;
605 
606 	/*
607 	 * The frame counter increments at beginning of active.
608 	 * Cook up a vblank counter by also checking the pixel
609 	 * counter against vblank start.
610 	 */
611 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
612 }
613 
614 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
615 {
616 	struct drm_i915_private *dev_priv = dev->dev_private;
617 	int reg = PIPE_FRMCOUNT_GM45(pipe);
618 
619 	return I915_READ(reg);
620 }
621 
622 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
623 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
624 
625 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
626 {
627 	struct drm_device *dev = crtc->base.dev;
628 	struct drm_i915_private *dev_priv = dev->dev_private;
629 	const struct drm_display_mode *mode = &crtc->base.hwmode;
630 	enum pipe pipe = crtc->pipe;
631 	int position, vtotal;
632 
633 	vtotal = mode->crtc_vtotal;
634 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
635 		vtotal /= 2;
636 
637 	if (IS_GEN2(dev))
638 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
639 	else
640 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
641 
642 	/*
643 	 * See update_scanline_offset() for the details on the
644 	 * scanline_offset adjustment.
645 	 */
646 	return (position + crtc->scanline_offset) % vtotal;
647 }
648 
649 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
650 				    unsigned int flags, int *vpos, int *hpos,
651 				    ktime_t *stime, ktime_t *etime)
652 {
653 	struct drm_i915_private *dev_priv = dev->dev_private;
654 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
655 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
656 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
657 	int position;
658 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
659 	bool in_vbl = true;
660 	int ret = 0;
661 	unsigned long irqflags;
662 
663 	if (WARN_ON(!mode->crtc_clock)) {
664 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
665 				 "pipe %c\n", pipe_name(pipe));
666 		return 0;
667 	}
668 
669 	htotal = mode->crtc_htotal;
670 	hsync_start = mode->crtc_hsync_start;
671 	vtotal = mode->crtc_vtotal;
672 	vbl_start = mode->crtc_vblank_start;
673 	vbl_end = mode->crtc_vblank_end;
674 
675 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
676 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
677 		vbl_end /= 2;
678 		vtotal /= 2;
679 	}
680 
681 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
682 
683 	/*
684 	 * Lock uncore.lock, as we will do multiple timing critical raw
685 	 * register reads, potentially with preemption disabled, so the
686 	 * following code must not block on uncore.lock.
687 	 */
688 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
689 
690 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
691 
692 	/* Get optional system timestamp before query. */
693 	if (stime)
694 		*stime = ktime_get();
695 
696 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
697 		/* No obvious pixelcount register. Only query vertical
698 		 * scanout position from Display scan line register.
699 		 */
700 		position = __intel_get_crtc_scanline(intel_crtc);
701 	} else {
702 		/* Have access to pixelcount since start of frame.
703 		 * We can split this into vertical and horizontal
704 		 * scanout position.
705 		 */
706 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
707 
708 		/* convert to pixel counts */
709 		vbl_start *= htotal;
710 		vbl_end *= htotal;
711 		vtotal *= htotal;
712 
713 		/*
714 		 * In interlaced modes, the pixel counter counts all pixels,
715 		 * so one field will have htotal more pixels. In order to avoid
716 		 * the reported position from jumping backwards when the pixel
717 		 * counter is beyond the length of the shorter field, just
718 		 * clamp the position the length of the shorter field. This
719 		 * matches how the scanline counter based position works since
720 		 * the scanline counter doesn't count the two half lines.
721 		 */
722 		if (position >= vtotal)
723 			position = vtotal - 1;
724 
725 		/*
726 		 * Start of vblank interrupt is triggered at start of hsync,
727 		 * just prior to the first active line of vblank. However we
728 		 * consider lines to start at the leading edge of horizontal
729 		 * active. So, should we get here before we've crossed into
730 		 * the horizontal active of the first line in vblank, we would
731 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
732 		 * always add htotal-hsync_start to the current pixel position.
733 		 */
734 		position = (position + htotal - hsync_start) % vtotal;
735 	}
736 
737 	/* Get optional system timestamp after query. */
738 	if (etime)
739 		*etime = ktime_get();
740 
741 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
742 
743 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
744 
745 	in_vbl = position >= vbl_start && position < vbl_end;
746 
747 	/*
748 	 * While in vblank, position will be negative
749 	 * counting up towards 0 at vbl_end. And outside
750 	 * vblank, position will be positive counting
751 	 * up since vbl_end.
752 	 */
753 	if (position >= vbl_start)
754 		position -= vbl_end;
755 	else
756 		position += vtotal - vbl_end;
757 
758 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
759 		*vpos = position;
760 		*hpos = 0;
761 	} else {
762 		*vpos = position / htotal;
763 		*hpos = position - (*vpos * htotal);
764 	}
765 
766 	/* In vblank? */
767 	if (in_vbl)
768 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
769 
770 	return ret;
771 }
772 
773 int intel_get_crtc_scanline(struct intel_crtc *crtc)
774 {
775 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
776 	unsigned long irqflags;
777 	int position;
778 
779 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
780 	position = __intel_get_crtc_scanline(crtc);
781 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782 
783 	return position;
784 }
785 
786 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
787 			      int *max_error,
788 			      struct timeval *vblank_time,
789 			      unsigned flags)
790 {
791 	struct drm_crtc *crtc;
792 
793 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
794 		DRM_ERROR("Invalid crtc %d\n", pipe);
795 		return -EINVAL;
796 	}
797 
798 	/* Get drm_crtc to timestamp: */
799 	crtc = intel_get_crtc_for_pipe(dev, pipe);
800 	if (crtc == NULL) {
801 		DRM_ERROR("Invalid crtc %d\n", pipe);
802 		return -EINVAL;
803 	}
804 
805 	if (!crtc->hwmode.crtc_clock) {
806 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
807 		return -EBUSY;
808 	}
809 
810 	/* Helper routine in DRM core does all the work: */
811 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
812 						     vblank_time, flags,
813 						     crtc,
814 						     &crtc->hwmode);
815 }
816 
817 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
818 {
819 	struct drm_i915_private *dev_priv = dev->dev_private;
820 	u32 busy_up, busy_down, max_avg, min_avg;
821 	u8 new_delay;
822 
823 	spin_lock(&mchdev_lock);
824 
825 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
826 
827 	new_delay = dev_priv->ips.cur_delay;
828 
829 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
830 	busy_up = I915_READ(RCPREVBSYTUPAVG);
831 	busy_down = I915_READ(RCPREVBSYTDNAVG);
832 	max_avg = I915_READ(RCBMAXAVG);
833 	min_avg = I915_READ(RCBMINAVG);
834 
835 	/* Handle RCS change request from hw */
836 	if (busy_up > max_avg) {
837 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
838 			new_delay = dev_priv->ips.cur_delay - 1;
839 		if (new_delay < dev_priv->ips.max_delay)
840 			new_delay = dev_priv->ips.max_delay;
841 	} else if (busy_down < min_avg) {
842 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
843 			new_delay = dev_priv->ips.cur_delay + 1;
844 		if (new_delay > dev_priv->ips.min_delay)
845 			new_delay = dev_priv->ips.min_delay;
846 	}
847 
848 	if (ironlake_set_drps(dev, new_delay))
849 		dev_priv->ips.cur_delay = new_delay;
850 
851 	spin_unlock(&mchdev_lock);
852 
853 	return;
854 }
855 
856 static void notify_ring(struct intel_engine_cs *ring)
857 {
858 	if (!intel_ring_initialized(ring))
859 		return;
860 
861 	trace_i915_gem_request_notify(ring);
862 
863 	wake_up_all(&ring->irq_queue);
864 }
865 
866 static void vlv_c0_read(struct drm_i915_private *dev_priv,
867 			struct intel_rps_ei *ei)
868 {
869 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
870 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
871 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
872 }
873 
874 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
875 			 const struct intel_rps_ei *old,
876 			 const struct intel_rps_ei *now,
877 			 int threshold)
878 {
879 	u64 time, c0;
880 
881 	if (old->cz_clock == 0)
882 		return false;
883 
884 	time = now->cz_clock - old->cz_clock;
885 	time *= threshold * dev_priv->mem_freq;
886 
887 	/* Workload can be split between render + media, e.g. SwapBuffers
888 	 * being blitted in X after being rendered in mesa. To account for
889 	 * this we need to combine both engines into our activity counter.
890 	 */
891 	c0 = now->render_c0 - old->render_c0;
892 	c0 += now->media_c0 - old->media_c0;
893 	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
894 
895 	return c0 >= time;
896 }
897 
898 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
899 {
900 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
901 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
902 }
903 
904 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
905 {
906 	struct intel_rps_ei now;
907 	u32 events = 0;
908 
909 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
910 		return 0;
911 
912 	vlv_c0_read(dev_priv, &now);
913 	if (now.cz_clock == 0)
914 		return 0;
915 
916 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
917 		if (!vlv_c0_above(dev_priv,
918 				  &dev_priv->rps.down_ei, &now,
919 				  dev_priv->rps.down_threshold))
920 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
921 		dev_priv->rps.down_ei = now;
922 	}
923 
924 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
925 		if (vlv_c0_above(dev_priv,
926 				 &dev_priv->rps.up_ei, &now,
927 				 dev_priv->rps.up_threshold))
928 			events |= GEN6_PM_RP_UP_THRESHOLD;
929 		dev_priv->rps.up_ei = now;
930 	}
931 
932 	return events;
933 }
934 
935 static bool any_waiters(struct drm_i915_private *dev_priv)
936 {
937 	struct intel_engine_cs *ring;
938 	int i;
939 
940 	for_each_ring(ring, dev_priv, i)
941 		if (ring->irq_refcount)
942 			return true;
943 
944 	return false;
945 }
946 
947 static void gen6_pm_rps_work(struct work_struct *work)
948 {
949 	struct drm_i915_private *dev_priv =
950 		container_of(work, struct drm_i915_private, rps.work);
951 	bool client_boost;
952 	int new_delay, adj, min, max;
953 	u32 pm_iir;
954 
955 	spin_lock_irq(&dev_priv->irq_lock);
956 	/* Speed up work cancelation during disabling rps interrupts. */
957 	if (!dev_priv->rps.interrupts_enabled) {
958 		spin_unlock_irq(&dev_priv->irq_lock);
959 		return;
960 	}
961 	pm_iir = dev_priv->rps.pm_iir;
962 	dev_priv->rps.pm_iir = 0;
963 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
964 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
965 	client_boost = dev_priv->rps.client_boost;
966 	dev_priv->rps.client_boost = false;
967 	spin_unlock_irq(&dev_priv->irq_lock);
968 
969 	/* Make sure we didn't queue anything we're not going to process. */
970 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
971 
972 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
973 		return;
974 
975 	mutex_lock(&dev_priv->rps.hw_lock);
976 
977 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
978 
979 	adj = dev_priv->rps.last_adj;
980 	new_delay = dev_priv->rps.cur_freq;
981 	min = dev_priv->rps.min_freq_softlimit;
982 	max = dev_priv->rps.max_freq_softlimit;
983 
984 	if (client_boost) {
985 		new_delay = dev_priv->rps.max_freq_softlimit;
986 		adj = 0;
987 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
988 		if (adj > 0)
989 			adj *= 2;
990 		else /* CHV needs even encode values */
991 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
992 		/*
993 		 * For better performance, jump directly
994 		 * to RPe if we're below it.
995 		 */
996 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
997 			new_delay = dev_priv->rps.efficient_freq;
998 			adj = 0;
999 		}
1000 	} else if (any_waiters(dev_priv)) {
1001 		adj = 0;
1002 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1003 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1004 			new_delay = dev_priv->rps.efficient_freq;
1005 		else
1006 			new_delay = dev_priv->rps.min_freq_softlimit;
1007 		adj = 0;
1008 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1009 		if (adj < 0)
1010 			adj *= 2;
1011 		else /* CHV needs even encode values */
1012 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1013 	} else { /* unknown event */
1014 		adj = 0;
1015 	}
1016 
1017 	dev_priv->rps.last_adj = adj;
1018 
1019 	/* sysfs frequency interfaces may have snuck in while servicing the
1020 	 * interrupt
1021 	 */
1022 	new_delay += adj;
1023 	new_delay = clamp_t(int, new_delay, min, max);
1024 
1025 	intel_set_rps(dev_priv->dev, new_delay);
1026 
1027 	mutex_unlock(&dev_priv->rps.hw_lock);
1028 }
1029 
1030 
1031 /**
1032  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1033  * occurred.
1034  * @work: workqueue struct
1035  *
1036  * Doesn't actually do anything except notify userspace. As a consequence of
1037  * this event, userspace should try to remap the bad rows since statistically
1038  * it is likely the same row is more likely to go bad again.
1039  */
1040 static void ivybridge_parity_work(struct work_struct *work)
1041 {
1042 	struct drm_i915_private *dev_priv =
1043 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1044 	u32 error_status, row, bank, subbank;
1045 	char *parity_event[6];
1046 	uint32_t misccpctl;
1047 	uint8_t slice = 0;
1048 
1049 	/* We must turn off DOP level clock gating to access the L3 registers.
1050 	 * In order to prevent a get/put style interface, acquire struct mutex
1051 	 * any time we access those registers.
1052 	 */
1053 	mutex_lock(&dev_priv->dev->struct_mutex);
1054 
1055 	/* If we've screwed up tracking, just let the interrupt fire again */
1056 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1057 		goto out;
1058 
1059 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1060 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1061 	POSTING_READ(GEN7_MISCCPCTL);
1062 
1063 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1064 		u32 reg;
1065 
1066 		slice--;
1067 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1068 			break;
1069 
1070 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1071 
1072 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1073 
1074 		error_status = I915_READ(reg);
1075 		row = GEN7_PARITY_ERROR_ROW(error_status);
1076 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1077 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1078 
1079 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1080 		POSTING_READ(reg);
1081 
1082 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1083 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1084 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1085 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1086 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1087 		parity_event[5] = NULL;
1088 
1089 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1090 				   KOBJ_CHANGE, parity_event);
1091 
1092 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1093 			  slice, row, bank, subbank);
1094 
1095 		kfree(parity_event[4]);
1096 		kfree(parity_event[3]);
1097 		kfree(parity_event[2]);
1098 		kfree(parity_event[1]);
1099 	}
1100 
1101 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1102 
1103 out:
1104 	WARN_ON(dev_priv->l3_parity.which_slice);
1105 	spin_lock_irq(&dev_priv->irq_lock);
1106 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1107 	spin_unlock_irq(&dev_priv->irq_lock);
1108 
1109 	mutex_unlock(&dev_priv->dev->struct_mutex);
1110 }
1111 
1112 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1113 {
1114 	struct drm_i915_private *dev_priv = dev->dev_private;
1115 
1116 	if (!HAS_L3_DPF(dev))
1117 		return;
1118 
1119 	spin_lock(&dev_priv->irq_lock);
1120 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1121 	spin_unlock(&dev_priv->irq_lock);
1122 
1123 	iir &= GT_PARITY_ERROR(dev);
1124 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1125 		dev_priv->l3_parity.which_slice |= 1 << 1;
1126 
1127 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1128 		dev_priv->l3_parity.which_slice |= 1 << 0;
1129 
1130 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1131 }
1132 
1133 static void ilk_gt_irq_handler(struct drm_device *dev,
1134 			       struct drm_i915_private *dev_priv,
1135 			       u32 gt_iir)
1136 {
1137 	if (gt_iir &
1138 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1139 		notify_ring(&dev_priv->ring[RCS]);
1140 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1141 		notify_ring(&dev_priv->ring[VCS]);
1142 }
1143 
1144 static void snb_gt_irq_handler(struct drm_device *dev,
1145 			       struct drm_i915_private *dev_priv,
1146 			       u32 gt_iir)
1147 {
1148 
1149 	if (gt_iir &
1150 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1151 		notify_ring(&dev_priv->ring[RCS]);
1152 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1153 		notify_ring(&dev_priv->ring[VCS]);
1154 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1155 		notify_ring(&dev_priv->ring[BCS]);
1156 
1157 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1158 		      GT_BSD_CS_ERROR_INTERRUPT |
1159 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1160 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1161 
1162 	if (gt_iir & GT_PARITY_ERROR(dev))
1163 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1164 }
1165 
1166 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1167 				       u32 master_ctl)
1168 {
1169 	irqreturn_t ret = IRQ_NONE;
1170 
1171 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1172 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1173 		if (tmp) {
1174 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1175 			ret = IRQ_HANDLED;
1176 
1177 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1178 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1179 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1180 				notify_ring(&dev_priv->ring[RCS]);
1181 
1182 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1183 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1184 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1185 				notify_ring(&dev_priv->ring[BCS]);
1186 		} else
1187 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1188 	}
1189 
1190 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1191 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1192 		if (tmp) {
1193 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1194 			ret = IRQ_HANDLED;
1195 
1196 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1197 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1198 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1199 				notify_ring(&dev_priv->ring[VCS]);
1200 
1201 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1202 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1203 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1204 				notify_ring(&dev_priv->ring[VCS2]);
1205 		} else
1206 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1207 	}
1208 
1209 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1210 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1211 		if (tmp) {
1212 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1213 			ret = IRQ_HANDLED;
1214 
1215 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1216 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1217 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1218 				notify_ring(&dev_priv->ring[VECS]);
1219 		} else
1220 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1221 	}
1222 
1223 	if (master_ctl & GEN8_GT_PM_IRQ) {
1224 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1225 		if (tmp & dev_priv->pm_rps_events) {
1226 			I915_WRITE_FW(GEN8_GT_IIR(2),
1227 				      tmp & dev_priv->pm_rps_events);
1228 			ret = IRQ_HANDLED;
1229 			gen6_rps_irq_handler(dev_priv, tmp);
1230 		} else
1231 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1232 	}
1233 
1234 	return ret;
1235 }
1236 
1237 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1238 {
1239 	switch (port) {
1240 	case PORT_A:
1241 		return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1242 	case PORT_B:
1243 		return val & PORTB_HOTPLUG_LONG_DETECT;
1244 	case PORT_C:
1245 		return val & PORTC_HOTPLUG_LONG_DETECT;
1246 	case PORT_D:
1247 		return val & PORTD_HOTPLUG_LONG_DETECT;
1248 	default:
1249 		return false;
1250 	}
1251 }
1252 
1253 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1254 {
1255 	switch (port) {
1256 	case PORT_B:
1257 		return val & PORTB_HOTPLUG_LONG_DETECT;
1258 	case PORT_C:
1259 		return val & PORTC_HOTPLUG_LONG_DETECT;
1260 	case PORT_D:
1261 		return val & PORTD_HOTPLUG_LONG_DETECT;
1262 	case PORT_E:
1263 		return val & PORTE_HOTPLUG_LONG_DETECT;
1264 	default:
1265 		return false;
1266 	}
1267 }
1268 
1269 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1270 {
1271 	switch (port) {
1272 	case PORT_B:
1273 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1274 	case PORT_C:
1275 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1276 	case PORT_D:
1277 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1278 	default:
1279 		return false;
1280 	}
1281 }
1282 
1283 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1284 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1285 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1286 			     const u32 hpd[HPD_NUM_PINS],
1287 			     bool long_pulse_detect(enum port port, u32 val))
1288 {
1289 	enum port port;
1290 	int i;
1291 
1292 	*pin_mask = 0;
1293 	*long_mask = 0;
1294 
1295 	for_each_hpd_pin(i) {
1296 		if ((hpd[i] & hotplug_trigger) == 0)
1297 			continue;
1298 
1299 		*pin_mask |= BIT(i);
1300 
1301 		if (!intel_hpd_pin_to_port(i, &port))
1302 			continue;
1303 
1304 		if (long_pulse_detect(port, dig_hotplug_reg))
1305 			*long_mask |= BIT(i);
1306 	}
1307 
1308 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1309 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1310 
1311 }
1312 
1313 static void gmbus_irq_handler(struct drm_device *dev)
1314 {
1315 	struct drm_i915_private *dev_priv = dev->dev_private;
1316 
1317 	wake_up_all(&dev_priv->gmbus_wait_queue);
1318 }
1319 
1320 static void dp_aux_irq_handler(struct drm_device *dev)
1321 {
1322 	struct drm_i915_private *dev_priv = dev->dev_private;
1323 
1324 	wake_up_all(&dev_priv->gmbus_wait_queue);
1325 }
1326 
1327 #if defined(CONFIG_DEBUG_FS)
1328 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1329 					 uint32_t crc0, uint32_t crc1,
1330 					 uint32_t crc2, uint32_t crc3,
1331 					 uint32_t crc4)
1332 {
1333 	struct drm_i915_private *dev_priv = dev->dev_private;
1334 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1335 	struct intel_pipe_crc_entry *entry;
1336 	int head, tail;
1337 
1338 	spin_lock(&pipe_crc->lock);
1339 
1340 	if (!pipe_crc->entries) {
1341 		spin_unlock(&pipe_crc->lock);
1342 		DRM_DEBUG_KMS("spurious interrupt\n");
1343 		return;
1344 	}
1345 
1346 	head = pipe_crc->head;
1347 	tail = pipe_crc->tail;
1348 
1349 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1350 		spin_unlock(&pipe_crc->lock);
1351 		DRM_ERROR("CRC buffer overflowing\n");
1352 		return;
1353 	}
1354 
1355 	entry = &pipe_crc->entries[head];
1356 
1357 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1358 	entry->crc[0] = crc0;
1359 	entry->crc[1] = crc1;
1360 	entry->crc[2] = crc2;
1361 	entry->crc[3] = crc3;
1362 	entry->crc[4] = crc4;
1363 
1364 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1365 	pipe_crc->head = head;
1366 
1367 	spin_unlock(&pipe_crc->lock);
1368 
1369 	wake_up_interruptible(&pipe_crc->wq);
1370 }
1371 #else
1372 static inline void
1373 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1374 			     uint32_t crc0, uint32_t crc1,
1375 			     uint32_t crc2, uint32_t crc3,
1376 			     uint32_t crc4) {}
1377 #endif
1378 
1379 
1380 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1381 {
1382 	struct drm_i915_private *dev_priv = dev->dev_private;
1383 
1384 	display_pipe_crc_irq_handler(dev, pipe,
1385 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1386 				     0, 0, 0, 0);
1387 }
1388 
1389 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1390 {
1391 	struct drm_i915_private *dev_priv = dev->dev_private;
1392 
1393 	display_pipe_crc_irq_handler(dev, pipe,
1394 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1395 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1396 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1397 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1398 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1399 }
1400 
1401 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1402 {
1403 	struct drm_i915_private *dev_priv = dev->dev_private;
1404 	uint32_t res1, res2;
1405 
1406 	if (INTEL_INFO(dev)->gen >= 3)
1407 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1408 	else
1409 		res1 = 0;
1410 
1411 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1412 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1413 	else
1414 		res2 = 0;
1415 
1416 	display_pipe_crc_irq_handler(dev, pipe,
1417 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1418 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1419 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1420 				     res1, res2);
1421 }
1422 
1423 /* The RPS events need forcewake, so we add them to a work queue and mask their
1424  * IMR bits until the work is done. Other interrupts can be processed without
1425  * the work queue. */
1426 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1427 {
1428 	if (pm_iir & dev_priv->pm_rps_events) {
1429 		spin_lock(&dev_priv->irq_lock);
1430 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1431 		if (dev_priv->rps.interrupts_enabled) {
1432 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1433 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1434 		}
1435 		spin_unlock(&dev_priv->irq_lock);
1436 	}
1437 
1438 	if (INTEL_INFO(dev_priv)->gen >= 8)
1439 		return;
1440 
1441 	if (HAS_VEBOX(dev_priv->dev)) {
1442 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1443 			notify_ring(&dev_priv->ring[VECS]);
1444 
1445 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1446 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1447 	}
1448 }
1449 
1450 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1451 {
1452 	if (!drm_handle_vblank(dev, pipe))
1453 		return false;
1454 
1455 	return true;
1456 }
1457 
1458 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1459 {
1460 	struct drm_i915_private *dev_priv = dev->dev_private;
1461 	u32 pipe_stats[I915_MAX_PIPES] = { };
1462 	int pipe;
1463 
1464 	spin_lock(&dev_priv->irq_lock);
1465 	for_each_pipe(dev_priv, pipe) {
1466 		int reg;
1467 		u32 mask, iir_bit = 0;
1468 
1469 		/*
1470 		 * PIPESTAT bits get signalled even when the interrupt is
1471 		 * disabled with the mask bits, and some of the status bits do
1472 		 * not generate interrupts at all (like the underrun bit). Hence
1473 		 * we need to be careful that we only handle what we want to
1474 		 * handle.
1475 		 */
1476 
1477 		/* fifo underruns are filterered in the underrun handler. */
1478 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1479 
1480 		switch (pipe) {
1481 		case PIPE_A:
1482 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1483 			break;
1484 		case PIPE_B:
1485 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1486 			break;
1487 		case PIPE_C:
1488 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1489 			break;
1490 		}
1491 		if (iir & iir_bit)
1492 			mask |= dev_priv->pipestat_irq_mask[pipe];
1493 
1494 		if (!mask)
1495 			continue;
1496 
1497 		reg = PIPESTAT(pipe);
1498 		mask |= PIPESTAT_INT_ENABLE_MASK;
1499 		pipe_stats[pipe] = I915_READ(reg) & mask;
1500 
1501 		/*
1502 		 * Clear the PIPE*STAT regs before the IIR
1503 		 */
1504 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1505 					PIPESTAT_INT_STATUS_MASK))
1506 			I915_WRITE(reg, pipe_stats[pipe]);
1507 	}
1508 	spin_unlock(&dev_priv->irq_lock);
1509 
1510 	for_each_pipe(dev_priv, pipe) {
1511 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1512 		    intel_pipe_handle_vblank(dev, pipe))
1513 			intel_check_page_flip(dev, pipe);
1514 
1515 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1516 			intel_prepare_page_flip(dev, pipe);
1517 			intel_finish_page_flip(dev, pipe);
1518 		}
1519 
1520 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1521 			i9xx_pipe_crc_irq_handler(dev, pipe);
1522 
1523 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1524 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1525 	}
1526 
1527 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1528 		gmbus_irq_handler(dev);
1529 }
1530 
1531 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1532 {
1533 	struct drm_i915_private *dev_priv = dev->dev_private;
1534 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1535 	u32 pin_mask, long_mask;
1536 
1537 	if (!hotplug_status)
1538 		return;
1539 
1540 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1541 	/*
1542 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1543 	 * may miss hotplug events.
1544 	 */
1545 	POSTING_READ(PORT_HOTPLUG_STAT);
1546 
1547 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1548 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1549 
1550 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1551 				   hotplug_trigger, hpd_status_g4x,
1552 				   i9xx_port_hotplug_long_detect);
1553 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1554 
1555 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1556 			dp_aux_irq_handler(dev);
1557 	} else {
1558 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1559 
1560 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1561 				   hotplug_trigger, hpd_status_g4x,
1562 				   i9xx_port_hotplug_long_detect);
1563 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1564 	}
1565 }
1566 
1567 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1568 {
1569 	struct drm_device *dev = arg;
1570 	struct drm_i915_private *dev_priv = dev->dev_private;
1571 	u32 iir, gt_iir, pm_iir;
1572 	irqreturn_t ret = IRQ_NONE;
1573 
1574 	if (!intel_irqs_enabled(dev_priv))
1575 		return IRQ_NONE;
1576 
1577 	while (true) {
1578 		/* Find, clear, then process each source of interrupt */
1579 
1580 		gt_iir = I915_READ(GTIIR);
1581 		if (gt_iir)
1582 			I915_WRITE(GTIIR, gt_iir);
1583 
1584 		pm_iir = I915_READ(GEN6_PMIIR);
1585 		if (pm_iir)
1586 			I915_WRITE(GEN6_PMIIR, pm_iir);
1587 
1588 		iir = I915_READ(VLV_IIR);
1589 		if (iir) {
1590 			/* Consume port before clearing IIR or we'll miss events */
1591 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1592 				i9xx_hpd_irq_handler(dev);
1593 			I915_WRITE(VLV_IIR, iir);
1594 		}
1595 
1596 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1597 			goto out;
1598 
1599 		ret = IRQ_HANDLED;
1600 
1601 		if (gt_iir)
1602 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1603 		if (pm_iir)
1604 			gen6_rps_irq_handler(dev_priv, pm_iir);
1605 		/* Call regardless, as some status bits might not be
1606 		 * signalled in iir */
1607 		valleyview_pipestat_irq_handler(dev, iir);
1608 	}
1609 
1610 out:
1611 	return ret;
1612 }
1613 
1614 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1615 {
1616 	struct drm_device *dev = arg;
1617 	struct drm_i915_private *dev_priv = dev->dev_private;
1618 	u32 master_ctl, iir;
1619 	irqreturn_t ret = IRQ_NONE;
1620 
1621 	if (!intel_irqs_enabled(dev_priv))
1622 		return IRQ_NONE;
1623 
1624 	for (;;) {
1625 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1626 		iir = I915_READ(VLV_IIR);
1627 
1628 		if (master_ctl == 0 && iir == 0)
1629 			break;
1630 
1631 		ret = IRQ_HANDLED;
1632 
1633 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1634 
1635 		/* Find, clear, then process each source of interrupt */
1636 
1637 		if (iir) {
1638 			/* Consume port before clearing IIR or we'll miss events */
1639 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1640 				i9xx_hpd_irq_handler(dev);
1641 			I915_WRITE(VLV_IIR, iir);
1642 		}
1643 
1644 		gen8_gt_irq_handler(dev_priv, master_ctl);
1645 
1646 		/* Call regardless, as some status bits might not be
1647 		 * signalled in iir */
1648 		valleyview_pipestat_irq_handler(dev, iir);
1649 
1650 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1651 		POSTING_READ(GEN8_MASTER_IRQ);
1652 	}
1653 
1654 	return ret;
1655 }
1656 
1657 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1658 {
1659 	struct drm_i915_private *dev_priv = dev->dev_private;
1660 	int pipe;
1661 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1662 
1663 	if (hotplug_trigger) {
1664 		u32 dig_hotplug_reg, pin_mask, long_mask;
1665 
1666 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1667 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1668 
1669 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1670 				   dig_hotplug_reg, hpd_ibx,
1671 				   pch_port_hotplug_long_detect);
1672 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1673 	}
1674 
1675 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1676 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1677 			       SDE_AUDIO_POWER_SHIFT);
1678 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1679 				 port_name(port));
1680 	}
1681 
1682 	if (pch_iir & SDE_AUX_MASK)
1683 		dp_aux_irq_handler(dev);
1684 
1685 	if (pch_iir & SDE_GMBUS)
1686 		gmbus_irq_handler(dev);
1687 
1688 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1689 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1690 
1691 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1692 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1693 
1694 	if (pch_iir & SDE_POISON)
1695 		DRM_ERROR("PCH poison interrupt\n");
1696 
1697 	if (pch_iir & SDE_FDI_MASK)
1698 		for_each_pipe(dev_priv, pipe)
1699 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1700 					 pipe_name(pipe),
1701 					 I915_READ(FDI_RX_IIR(pipe)));
1702 
1703 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1704 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1705 
1706 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1707 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1708 
1709 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1710 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1711 
1712 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1713 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1714 }
1715 
1716 static void ivb_err_int_handler(struct drm_device *dev)
1717 {
1718 	struct drm_i915_private *dev_priv = dev->dev_private;
1719 	u32 err_int = I915_READ(GEN7_ERR_INT);
1720 	enum pipe pipe;
1721 
1722 	if (err_int & ERR_INT_POISON)
1723 		DRM_ERROR("Poison interrupt\n");
1724 
1725 	for_each_pipe(dev_priv, pipe) {
1726 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1727 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1728 
1729 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1730 			if (IS_IVYBRIDGE(dev))
1731 				ivb_pipe_crc_irq_handler(dev, pipe);
1732 			else
1733 				hsw_pipe_crc_irq_handler(dev, pipe);
1734 		}
1735 	}
1736 
1737 	I915_WRITE(GEN7_ERR_INT, err_int);
1738 }
1739 
1740 static void cpt_serr_int_handler(struct drm_device *dev)
1741 {
1742 	struct drm_i915_private *dev_priv = dev->dev_private;
1743 	u32 serr_int = I915_READ(SERR_INT);
1744 
1745 	if (serr_int & SERR_INT_POISON)
1746 		DRM_ERROR("PCH poison interrupt\n");
1747 
1748 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1749 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1750 
1751 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1752 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1753 
1754 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1755 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1756 
1757 	I915_WRITE(SERR_INT, serr_int);
1758 }
1759 
1760 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1761 {
1762 	struct drm_i915_private *dev_priv = dev->dev_private;
1763 	int pipe;
1764 	u32 hotplug_trigger;
1765 
1766 	if (HAS_PCH_SPT(dev))
1767 		hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
1768 	else
1769 		hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1770 
1771 	if (hotplug_trigger) {
1772 		u32 dig_hotplug_reg, pin_mask, long_mask;
1773 
1774 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1775 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1776 
1777 		if (HAS_PCH_SPT(dev)) {
1778 			intel_get_hpd_pins(&pin_mask, &long_mask,
1779 					   hotplug_trigger,
1780 					   dig_hotplug_reg, hpd_spt,
1781 					   pch_port_hotplug_long_detect);
1782 
1783 			/* detect PORTE HP event */
1784 			dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1785 			if (pch_port_hotplug_long_detect(PORT_E,
1786 							 dig_hotplug_reg))
1787 				long_mask |= 1 << HPD_PORT_E;
1788 		} else
1789 			intel_get_hpd_pins(&pin_mask, &long_mask,
1790 					   hotplug_trigger,
1791 					   dig_hotplug_reg, hpd_cpt,
1792 					   pch_port_hotplug_long_detect);
1793 
1794 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1795 	}
1796 
1797 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1798 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1799 			       SDE_AUDIO_POWER_SHIFT_CPT);
1800 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1801 				 port_name(port));
1802 	}
1803 
1804 	if (pch_iir & SDE_AUX_MASK_CPT)
1805 		dp_aux_irq_handler(dev);
1806 
1807 	if (pch_iir & SDE_GMBUS_CPT)
1808 		gmbus_irq_handler(dev);
1809 
1810 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1811 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1812 
1813 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1814 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1815 
1816 	if (pch_iir & SDE_FDI_MASK_CPT)
1817 		for_each_pipe(dev_priv, pipe)
1818 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1819 					 pipe_name(pipe),
1820 					 I915_READ(FDI_RX_IIR(pipe)));
1821 
1822 	if (pch_iir & SDE_ERROR_CPT)
1823 		cpt_serr_int_handler(dev);
1824 }
1825 
1826 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1827 {
1828 	struct drm_i915_private *dev_priv = dev->dev_private;
1829 	enum pipe pipe;
1830 
1831 	if (de_iir & DE_AUX_CHANNEL_A)
1832 		dp_aux_irq_handler(dev);
1833 
1834 	if (de_iir & DE_GSE)
1835 		intel_opregion_asle_intr(dev);
1836 
1837 	if (de_iir & DE_POISON)
1838 		DRM_ERROR("Poison interrupt\n");
1839 
1840 	for_each_pipe(dev_priv, pipe) {
1841 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
1842 		    intel_pipe_handle_vblank(dev, pipe))
1843 			intel_check_page_flip(dev, pipe);
1844 
1845 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1846 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1847 
1848 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1849 			i9xx_pipe_crc_irq_handler(dev, pipe);
1850 
1851 		/* plane/pipes map 1:1 on ilk+ */
1852 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1853 			intel_prepare_page_flip(dev, pipe);
1854 			intel_finish_page_flip_plane(dev, pipe);
1855 		}
1856 	}
1857 
1858 	/* check event from PCH */
1859 	if (de_iir & DE_PCH_EVENT) {
1860 		u32 pch_iir = I915_READ(SDEIIR);
1861 
1862 		if (HAS_PCH_CPT(dev))
1863 			cpt_irq_handler(dev, pch_iir);
1864 		else
1865 			ibx_irq_handler(dev, pch_iir);
1866 
1867 		/* should clear PCH hotplug event before clear CPU irq */
1868 		I915_WRITE(SDEIIR, pch_iir);
1869 	}
1870 
1871 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1872 		ironlake_rps_change_irq_handler(dev);
1873 }
1874 
1875 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1876 {
1877 	struct drm_i915_private *dev_priv = dev->dev_private;
1878 	enum pipe pipe;
1879 
1880 	if (de_iir & DE_ERR_INT_IVB)
1881 		ivb_err_int_handler(dev);
1882 
1883 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1884 		dp_aux_irq_handler(dev);
1885 
1886 	if (de_iir & DE_GSE_IVB)
1887 		intel_opregion_asle_intr(dev);
1888 
1889 	for_each_pipe(dev_priv, pipe) {
1890 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1891 		    intel_pipe_handle_vblank(dev, pipe))
1892 			intel_check_page_flip(dev, pipe);
1893 
1894 		/* plane/pipes map 1:1 on ilk+ */
1895 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1896 			intel_prepare_page_flip(dev, pipe);
1897 			intel_finish_page_flip_plane(dev, pipe);
1898 		}
1899 	}
1900 
1901 	/* check event from PCH */
1902 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1903 		u32 pch_iir = I915_READ(SDEIIR);
1904 
1905 		cpt_irq_handler(dev, pch_iir);
1906 
1907 		/* clear PCH hotplug event before clear CPU irq */
1908 		I915_WRITE(SDEIIR, pch_iir);
1909 	}
1910 }
1911 
1912 /*
1913  * To handle irqs with the minimum potential races with fresh interrupts, we:
1914  * 1 - Disable Master Interrupt Control.
1915  * 2 - Find the source(s) of the interrupt.
1916  * 3 - Clear the Interrupt Identity bits (IIR).
1917  * 4 - Process the interrupt(s) that had bits set in the IIRs.
1918  * 5 - Re-enable Master Interrupt Control.
1919  */
1920 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1921 {
1922 	struct drm_device *dev = arg;
1923 	struct drm_i915_private *dev_priv = dev->dev_private;
1924 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1925 	irqreturn_t ret = IRQ_NONE;
1926 
1927 	if (!intel_irqs_enabled(dev_priv))
1928 		return IRQ_NONE;
1929 
1930 	/* We get interrupts on unclaimed registers, so check for this before we
1931 	 * do any I915_{READ,WRITE}. */
1932 	intel_uncore_check_errors(dev);
1933 
1934 	/* disable master interrupt before clearing iir  */
1935 	de_ier = I915_READ(DEIER);
1936 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1937 	POSTING_READ(DEIER);
1938 
1939 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1940 	 * interrupts will will be stored on its back queue, and then we'll be
1941 	 * able to process them after we restore SDEIER (as soon as we restore
1942 	 * it, we'll get an interrupt if SDEIIR still has something to process
1943 	 * due to its back queue). */
1944 	if (!HAS_PCH_NOP(dev)) {
1945 		sde_ier = I915_READ(SDEIER);
1946 		I915_WRITE(SDEIER, 0);
1947 		POSTING_READ(SDEIER);
1948 	}
1949 
1950 	/* Find, clear, then process each source of interrupt */
1951 
1952 	gt_iir = I915_READ(GTIIR);
1953 	if (gt_iir) {
1954 		I915_WRITE(GTIIR, gt_iir);
1955 		ret = IRQ_HANDLED;
1956 		if (INTEL_INFO(dev)->gen >= 6)
1957 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1958 		else
1959 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1960 	}
1961 
1962 	de_iir = I915_READ(DEIIR);
1963 	if (de_iir) {
1964 		I915_WRITE(DEIIR, de_iir);
1965 		ret = IRQ_HANDLED;
1966 		if (INTEL_INFO(dev)->gen >= 7)
1967 			ivb_display_irq_handler(dev, de_iir);
1968 		else
1969 			ilk_display_irq_handler(dev, de_iir);
1970 	}
1971 
1972 	if (INTEL_INFO(dev)->gen >= 6) {
1973 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1974 		if (pm_iir) {
1975 			I915_WRITE(GEN6_PMIIR, pm_iir);
1976 			ret = IRQ_HANDLED;
1977 			gen6_rps_irq_handler(dev_priv, pm_iir);
1978 		}
1979 	}
1980 
1981 	I915_WRITE(DEIER, de_ier);
1982 	POSTING_READ(DEIER);
1983 	if (!HAS_PCH_NOP(dev)) {
1984 		I915_WRITE(SDEIER, sde_ier);
1985 		POSTING_READ(SDEIER);
1986 	}
1987 
1988 	return ret;
1989 }
1990 
1991 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
1992 {
1993 	struct drm_i915_private *dev_priv = dev->dev_private;
1994 	u32 hp_control, hp_trigger;
1995 	u32 pin_mask, long_mask;
1996 
1997 	/* Get the status */
1998 	hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
1999 	hp_control = I915_READ(BXT_HOTPLUG_CTL);
2000 
2001 	/* Hotplug not enabled ? */
2002 	if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2003 		DRM_ERROR("Interrupt when HPD disabled\n");
2004 		return;
2005 	}
2006 
2007 	/* Clear sticky bits in hpd status */
2008 	I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2009 
2010 	intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
2011 			   hpd_bxt, bxt_port_hotplug_long_detect);
2012 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2013 }
2014 
2015 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2016 {
2017 	struct drm_device *dev = arg;
2018 	struct drm_i915_private *dev_priv = dev->dev_private;
2019 	u32 master_ctl;
2020 	irqreturn_t ret = IRQ_NONE;
2021 	uint32_t tmp = 0;
2022 	enum pipe pipe;
2023 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2024 
2025 	if (!intel_irqs_enabled(dev_priv))
2026 		return IRQ_NONE;
2027 
2028 	if (IS_GEN9(dev))
2029 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2030 			GEN9_AUX_CHANNEL_D;
2031 
2032 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2033 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2034 	if (!master_ctl)
2035 		return IRQ_NONE;
2036 
2037 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2038 
2039 	/* Find, clear, then process each source of interrupt */
2040 
2041 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2042 
2043 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2044 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2045 		if (tmp) {
2046 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2047 			ret = IRQ_HANDLED;
2048 			if (tmp & GEN8_DE_MISC_GSE)
2049 				intel_opregion_asle_intr(dev);
2050 			else
2051 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2052 		}
2053 		else
2054 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2055 	}
2056 
2057 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2058 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2059 		if (tmp) {
2060 			bool found = false;
2061 
2062 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2063 			ret = IRQ_HANDLED;
2064 
2065 			if (tmp & aux_mask) {
2066 				dp_aux_irq_handler(dev);
2067 				found = true;
2068 			}
2069 
2070 			if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2071 				bxt_hpd_handler(dev, tmp);
2072 				found = true;
2073 			}
2074 
2075 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2076 				gmbus_irq_handler(dev);
2077 				found = true;
2078 			}
2079 
2080 			if (!found)
2081 				DRM_ERROR("Unexpected DE Port interrupt\n");
2082 		}
2083 		else
2084 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2085 	}
2086 
2087 	for_each_pipe(dev_priv, pipe) {
2088 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2089 
2090 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2091 			continue;
2092 
2093 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2094 		if (pipe_iir) {
2095 			ret = IRQ_HANDLED;
2096 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2097 
2098 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2099 			    intel_pipe_handle_vblank(dev, pipe))
2100 				intel_check_page_flip(dev, pipe);
2101 
2102 			if (IS_GEN9(dev))
2103 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2104 			else
2105 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2106 
2107 			if (flip_done) {
2108 				intel_prepare_page_flip(dev, pipe);
2109 				intel_finish_page_flip_plane(dev, pipe);
2110 			}
2111 
2112 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2113 				hsw_pipe_crc_irq_handler(dev, pipe);
2114 
2115 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2116 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2117 								    pipe);
2118 
2119 
2120 			if (IS_GEN9(dev))
2121 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2122 			else
2123 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2124 
2125 			if (fault_errors)
2126 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2127 					  pipe_name(pipe),
2128 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2129 		} else
2130 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2131 	}
2132 
2133 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2134 	    master_ctl & GEN8_DE_PCH_IRQ) {
2135 		/*
2136 		 * FIXME(BDW): Assume for now that the new interrupt handling
2137 		 * scheme also closed the SDE interrupt handling race we've seen
2138 		 * on older pch-split platforms. But this needs testing.
2139 		 */
2140 		u32 pch_iir = I915_READ(SDEIIR);
2141 		if (pch_iir) {
2142 			I915_WRITE(SDEIIR, pch_iir);
2143 			ret = IRQ_HANDLED;
2144 			cpt_irq_handler(dev, pch_iir);
2145 		} else
2146 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2147 
2148 	}
2149 
2150 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2151 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2152 
2153 	return ret;
2154 }
2155 
2156 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2157 			       bool reset_completed)
2158 {
2159 	struct intel_engine_cs *ring;
2160 	int i;
2161 
2162 	/*
2163 	 * Notify all waiters for GPU completion events that reset state has
2164 	 * been changed, and that they need to restart their wait after
2165 	 * checking for potential errors (and bail out to drop locks if there is
2166 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2167 	 */
2168 
2169 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2170 	for_each_ring(ring, dev_priv, i)
2171 		wake_up_all(&ring->irq_queue);
2172 
2173 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2174 	wake_up_all(&dev_priv->pending_flip_queue);
2175 
2176 	/*
2177 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2178 	 * reset state is cleared.
2179 	 */
2180 	if (reset_completed)
2181 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2182 }
2183 
2184 /**
2185  * i915_reset_and_wakeup - do process context error handling work
2186  *
2187  * Fire an error uevent so userspace can see that a hang or error
2188  * was detected.
2189  */
2190 static void i915_reset_and_wakeup(struct drm_device *dev)
2191 {
2192 	struct drm_i915_private *dev_priv = to_i915(dev);
2193 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2194 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2195 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2196 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2197 	int ret;
2198 
2199 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2200 
2201 	/*
2202 	 * Note that there's only one work item which does gpu resets, so we
2203 	 * need not worry about concurrent gpu resets potentially incrementing
2204 	 * error->reset_counter twice. We only need to take care of another
2205 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2206 	 * quick check for that is good enough: schedule_work ensures the
2207 	 * correct ordering between hang detection and this work item, and since
2208 	 * the reset in-progress bit is only ever set by code outside of this
2209 	 * work we don't need to worry about any other races.
2210 	 */
2211 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2212 		DRM_DEBUG_DRIVER("resetting chip\n");
2213 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2214 				   reset_event);
2215 
2216 		/*
2217 		 * In most cases it's guaranteed that we get here with an RPM
2218 		 * reference held, for example because there is a pending GPU
2219 		 * request that won't finish until the reset is done. This
2220 		 * isn't the case at least when we get here by doing a
2221 		 * simulated reset via debugs, so get an RPM reference.
2222 		 */
2223 		intel_runtime_pm_get(dev_priv);
2224 
2225 		intel_prepare_reset(dev);
2226 
2227 		/*
2228 		 * All state reset _must_ be completed before we update the
2229 		 * reset counter, for otherwise waiters might miss the reset
2230 		 * pending state and not properly drop locks, resulting in
2231 		 * deadlocks with the reset work.
2232 		 */
2233 		ret = i915_reset(dev);
2234 
2235 		intel_finish_reset(dev);
2236 
2237 		intel_runtime_pm_put(dev_priv);
2238 
2239 		if (ret == 0) {
2240 			/*
2241 			 * After all the gem state is reset, increment the reset
2242 			 * counter and wake up everyone waiting for the reset to
2243 			 * complete.
2244 			 *
2245 			 * Since unlock operations are a one-sided barrier only,
2246 			 * we need to insert a barrier here to order any seqno
2247 			 * updates before
2248 			 * the counter increment.
2249 			 */
2250 			smp_mb__before_atomic();
2251 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2252 
2253 			kobject_uevent_env(&dev->primary->kdev->kobj,
2254 					   KOBJ_CHANGE, reset_done_event);
2255 		} else {
2256 			atomic_or(I915_WEDGED, &error->reset_counter);
2257 		}
2258 
2259 		/*
2260 		 * Note: The wake_up also serves as a memory barrier so that
2261 		 * waiters see the update value of the reset counter atomic_t.
2262 		 */
2263 		i915_error_wake_up(dev_priv, true);
2264 	}
2265 }
2266 
2267 static void i915_report_and_clear_eir(struct drm_device *dev)
2268 {
2269 	struct drm_i915_private *dev_priv = dev->dev_private;
2270 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2271 	u32 eir = I915_READ(EIR);
2272 	int pipe, i;
2273 
2274 	if (!eir)
2275 		return;
2276 
2277 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2278 
2279 	i915_get_extra_instdone(dev, instdone);
2280 
2281 	if (IS_G4X(dev)) {
2282 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2283 			u32 ipeir = I915_READ(IPEIR_I965);
2284 
2285 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2286 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2287 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2288 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2289 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2290 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2291 			I915_WRITE(IPEIR_I965, ipeir);
2292 			POSTING_READ(IPEIR_I965);
2293 		}
2294 		if (eir & GM45_ERROR_PAGE_TABLE) {
2295 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2296 			pr_err("page table error\n");
2297 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2298 			I915_WRITE(PGTBL_ER, pgtbl_err);
2299 			POSTING_READ(PGTBL_ER);
2300 		}
2301 	}
2302 
2303 	if (!IS_GEN2(dev)) {
2304 		if (eir & I915_ERROR_PAGE_TABLE) {
2305 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2306 			pr_err("page table error\n");
2307 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2308 			I915_WRITE(PGTBL_ER, pgtbl_err);
2309 			POSTING_READ(PGTBL_ER);
2310 		}
2311 	}
2312 
2313 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2314 		pr_err("memory refresh error:\n");
2315 		for_each_pipe(dev_priv, pipe)
2316 			pr_err("pipe %c stat: 0x%08x\n",
2317 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2318 		/* pipestat has already been acked */
2319 	}
2320 	if (eir & I915_ERROR_INSTRUCTION) {
2321 		pr_err("instruction error\n");
2322 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2323 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2324 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2325 		if (INTEL_INFO(dev)->gen < 4) {
2326 			u32 ipeir = I915_READ(IPEIR);
2327 
2328 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2329 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2330 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2331 			I915_WRITE(IPEIR, ipeir);
2332 			POSTING_READ(IPEIR);
2333 		} else {
2334 			u32 ipeir = I915_READ(IPEIR_I965);
2335 
2336 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2337 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2338 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2339 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2340 			I915_WRITE(IPEIR_I965, ipeir);
2341 			POSTING_READ(IPEIR_I965);
2342 		}
2343 	}
2344 
2345 	I915_WRITE(EIR, eir);
2346 	POSTING_READ(EIR);
2347 	eir = I915_READ(EIR);
2348 	if (eir) {
2349 		/*
2350 		 * some errors might have become stuck,
2351 		 * mask them.
2352 		 */
2353 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2354 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2355 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2356 	}
2357 }
2358 
2359 /**
2360  * i915_handle_error - handle a gpu error
2361  * @dev: drm device
2362  *
2363  * Do some basic checking of regsiter state at error time and
2364  * dump it to the syslog.  Also call i915_capture_error_state() to make
2365  * sure we get a record and make it available in debugfs.  Fire a uevent
2366  * so userspace knows something bad happened (should trigger collection
2367  * of a ring dump etc.).
2368  */
2369 void i915_handle_error(struct drm_device *dev, bool wedged,
2370 		       const char *fmt, ...)
2371 {
2372 	struct drm_i915_private *dev_priv = dev->dev_private;
2373 	va_list args;
2374 	char error_msg[80];
2375 
2376 	va_start(args, fmt);
2377 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2378 	va_end(args);
2379 
2380 	i915_capture_error_state(dev, wedged, error_msg);
2381 	i915_report_and_clear_eir(dev);
2382 
2383 	if (wedged) {
2384 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2385 				&dev_priv->gpu_error.reset_counter);
2386 
2387 		/*
2388 		 * Wakeup waiting processes so that the reset function
2389 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2390 		 * various locks. By bumping the reset counter first, the woken
2391 		 * processes will see a reset in progress and back off,
2392 		 * releasing their locks and then wait for the reset completion.
2393 		 * We must do this for _all_ gpu waiters that might hold locks
2394 		 * that the reset work needs to acquire.
2395 		 *
2396 		 * Note: The wake_up serves as the required memory barrier to
2397 		 * ensure that the waiters see the updated value of the reset
2398 		 * counter atomic_t.
2399 		 */
2400 		i915_error_wake_up(dev_priv, false);
2401 	}
2402 
2403 	i915_reset_and_wakeup(dev);
2404 }
2405 
2406 /* Called from drm generic code, passed 'crtc' which
2407  * we use as a pipe index
2408  */
2409 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2410 {
2411 	struct drm_i915_private *dev_priv = dev->dev_private;
2412 	unsigned long irqflags;
2413 
2414 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2415 	if (INTEL_INFO(dev)->gen >= 4)
2416 		i915_enable_pipestat(dev_priv, pipe,
2417 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2418 	else
2419 		i915_enable_pipestat(dev_priv, pipe,
2420 				     PIPE_VBLANK_INTERRUPT_STATUS);
2421 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2422 
2423 	return 0;
2424 }
2425 
2426 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2427 {
2428 	struct drm_i915_private *dev_priv = dev->dev_private;
2429 	unsigned long irqflags;
2430 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2431 						     DE_PIPE_VBLANK(pipe);
2432 
2433 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2434 	ironlake_enable_display_irq(dev_priv, bit);
2435 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2436 
2437 	return 0;
2438 }
2439 
2440 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2441 {
2442 	struct drm_i915_private *dev_priv = dev->dev_private;
2443 	unsigned long irqflags;
2444 
2445 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2446 	i915_enable_pipestat(dev_priv, pipe,
2447 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2448 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2449 
2450 	return 0;
2451 }
2452 
2453 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2454 {
2455 	struct drm_i915_private *dev_priv = dev->dev_private;
2456 	unsigned long irqflags;
2457 
2458 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2459 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2460 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2461 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2462 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2463 	return 0;
2464 }
2465 
2466 /* Called from drm generic code, passed 'crtc' which
2467  * we use as a pipe index
2468  */
2469 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2470 {
2471 	struct drm_i915_private *dev_priv = dev->dev_private;
2472 	unsigned long irqflags;
2473 
2474 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2475 	i915_disable_pipestat(dev_priv, pipe,
2476 			      PIPE_VBLANK_INTERRUPT_STATUS |
2477 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2478 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2479 }
2480 
2481 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2482 {
2483 	struct drm_i915_private *dev_priv = dev->dev_private;
2484 	unsigned long irqflags;
2485 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2486 						     DE_PIPE_VBLANK(pipe);
2487 
2488 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2489 	ironlake_disable_display_irq(dev_priv, bit);
2490 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2491 }
2492 
2493 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2494 {
2495 	struct drm_i915_private *dev_priv = dev->dev_private;
2496 	unsigned long irqflags;
2497 
2498 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2499 	i915_disable_pipestat(dev_priv, pipe,
2500 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2501 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2502 }
2503 
2504 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2505 {
2506 	struct drm_i915_private *dev_priv = dev->dev_private;
2507 	unsigned long irqflags;
2508 
2509 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2510 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2511 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2512 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2513 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2514 }
2515 
2516 static bool
2517 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2518 {
2519 	return (list_empty(&ring->request_list) ||
2520 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2521 }
2522 
2523 static bool
2524 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2525 {
2526 	if (INTEL_INFO(dev)->gen >= 8) {
2527 		return (ipehr >> 23) == 0x1c;
2528 	} else {
2529 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2530 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2531 				 MI_SEMAPHORE_REGISTER);
2532 	}
2533 }
2534 
2535 static struct intel_engine_cs *
2536 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2537 {
2538 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2539 	struct intel_engine_cs *signaller;
2540 	int i;
2541 
2542 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2543 		for_each_ring(signaller, dev_priv, i) {
2544 			if (ring == signaller)
2545 				continue;
2546 
2547 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2548 				return signaller;
2549 		}
2550 	} else {
2551 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2552 
2553 		for_each_ring(signaller, dev_priv, i) {
2554 			if(ring == signaller)
2555 				continue;
2556 
2557 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2558 				return signaller;
2559 		}
2560 	}
2561 
2562 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2563 		  ring->id, ipehr, offset);
2564 
2565 	return NULL;
2566 }
2567 
2568 static struct intel_engine_cs *
2569 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2570 {
2571 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2572 	u32 cmd, ipehr, head;
2573 	u64 offset = 0;
2574 	int i, backwards;
2575 
2576 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2577 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2578 		return NULL;
2579 
2580 	/*
2581 	 * HEAD is likely pointing to the dword after the actual command,
2582 	 * so scan backwards until we find the MBOX. But limit it to just 3
2583 	 * or 4 dwords depending on the semaphore wait command size.
2584 	 * Note that we don't care about ACTHD here since that might
2585 	 * point at at batch, and semaphores are always emitted into the
2586 	 * ringbuffer itself.
2587 	 */
2588 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2589 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2590 
2591 	for (i = backwards; i; --i) {
2592 		/*
2593 		 * Be paranoid and presume the hw has gone off into the wild -
2594 		 * our ring is smaller than what the hardware (and hence
2595 		 * HEAD_ADDR) allows. Also handles wrap-around.
2596 		 */
2597 		head &= ring->buffer->size - 1;
2598 
2599 		/* This here seems to blow up */
2600 		cmd = ioread32(ring->buffer->virtual_start + head);
2601 		if (cmd == ipehr)
2602 			break;
2603 
2604 		head -= 4;
2605 	}
2606 
2607 	if (!i)
2608 		return NULL;
2609 
2610 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2611 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2612 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2613 		offset <<= 32;
2614 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2615 	}
2616 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2617 }
2618 
2619 static int semaphore_passed(struct intel_engine_cs *ring)
2620 {
2621 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2622 	struct intel_engine_cs *signaller;
2623 	u32 seqno;
2624 
2625 	ring->hangcheck.deadlock++;
2626 
2627 	signaller = semaphore_waits_for(ring, &seqno);
2628 	if (signaller == NULL)
2629 		return -1;
2630 
2631 	/* Prevent pathological recursion due to driver bugs */
2632 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2633 		return -1;
2634 
2635 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2636 		return 1;
2637 
2638 	/* cursory check for an unkickable deadlock */
2639 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2640 	    semaphore_passed(signaller) < 0)
2641 		return -1;
2642 
2643 	return 0;
2644 }
2645 
2646 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2647 {
2648 	struct intel_engine_cs *ring;
2649 	int i;
2650 
2651 	for_each_ring(ring, dev_priv, i)
2652 		ring->hangcheck.deadlock = 0;
2653 }
2654 
2655 static enum intel_ring_hangcheck_action
2656 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2657 {
2658 	struct drm_device *dev = ring->dev;
2659 	struct drm_i915_private *dev_priv = dev->dev_private;
2660 	u32 tmp;
2661 
2662 	if (acthd != ring->hangcheck.acthd) {
2663 		if (acthd > ring->hangcheck.max_acthd) {
2664 			ring->hangcheck.max_acthd = acthd;
2665 			return HANGCHECK_ACTIVE;
2666 		}
2667 
2668 		return HANGCHECK_ACTIVE_LOOP;
2669 	}
2670 
2671 	if (IS_GEN2(dev))
2672 		return HANGCHECK_HUNG;
2673 
2674 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2675 	 * If so we can simply poke the RB_WAIT bit
2676 	 * and break the hang. This should work on
2677 	 * all but the second generation chipsets.
2678 	 */
2679 	tmp = I915_READ_CTL(ring);
2680 	if (tmp & RING_WAIT) {
2681 		i915_handle_error(dev, false,
2682 				  "Kicking stuck wait on %s",
2683 				  ring->name);
2684 		I915_WRITE_CTL(ring, tmp);
2685 		return HANGCHECK_KICK;
2686 	}
2687 
2688 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2689 		switch (semaphore_passed(ring)) {
2690 		default:
2691 			return HANGCHECK_HUNG;
2692 		case 1:
2693 			i915_handle_error(dev, false,
2694 					  "Kicking stuck semaphore on %s",
2695 					  ring->name);
2696 			I915_WRITE_CTL(ring, tmp);
2697 			return HANGCHECK_KICK;
2698 		case 0:
2699 			return HANGCHECK_WAIT;
2700 		}
2701 	}
2702 
2703 	return HANGCHECK_HUNG;
2704 }
2705 
2706 /*
2707  * This is called when the chip hasn't reported back with completed
2708  * batchbuffers in a long time. We keep track per ring seqno progress and
2709  * if there are no progress, hangcheck score for that ring is increased.
2710  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2711  * we kick the ring. If we see no progress on three subsequent calls
2712  * we assume chip is wedged and try to fix it by resetting the chip.
2713  */
2714 static void i915_hangcheck_elapsed(struct work_struct *work)
2715 {
2716 	struct drm_i915_private *dev_priv =
2717 		container_of(work, typeof(*dev_priv),
2718 			     gpu_error.hangcheck_work.work);
2719 	struct drm_device *dev = dev_priv->dev;
2720 	struct intel_engine_cs *ring;
2721 	int i;
2722 	int busy_count = 0, rings_hung = 0;
2723 	bool stuck[I915_NUM_RINGS] = { 0 };
2724 #define BUSY 1
2725 #define KICK 5
2726 #define HUNG 20
2727 
2728 	if (!i915.enable_hangcheck)
2729 		return;
2730 
2731 	for_each_ring(ring, dev_priv, i) {
2732 		u64 acthd;
2733 		u32 seqno;
2734 		bool busy = true;
2735 
2736 		semaphore_clear_deadlocks(dev_priv);
2737 
2738 		seqno = ring->get_seqno(ring, false);
2739 		acthd = intel_ring_get_active_head(ring);
2740 
2741 		if (ring->hangcheck.seqno == seqno) {
2742 			if (ring_idle(ring, seqno)) {
2743 				ring->hangcheck.action = HANGCHECK_IDLE;
2744 
2745 				if (waitqueue_active(&ring->irq_queue)) {
2746 					/* Issue a wake-up to catch stuck h/w. */
2747 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2748 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2749 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2750 								  ring->name);
2751 						else
2752 							DRM_INFO("Fake missed irq on %s\n",
2753 								 ring->name);
2754 						wake_up_all(&ring->irq_queue);
2755 					}
2756 					/* Safeguard against driver failure */
2757 					ring->hangcheck.score += BUSY;
2758 				} else
2759 					busy = false;
2760 			} else {
2761 				/* We always increment the hangcheck score
2762 				 * if the ring is busy and still processing
2763 				 * the same request, so that no single request
2764 				 * can run indefinitely (such as a chain of
2765 				 * batches). The only time we do not increment
2766 				 * the hangcheck score on this ring, if this
2767 				 * ring is in a legitimate wait for another
2768 				 * ring. In that case the waiting ring is a
2769 				 * victim and we want to be sure we catch the
2770 				 * right culprit. Then every time we do kick
2771 				 * the ring, add a small increment to the
2772 				 * score so that we can catch a batch that is
2773 				 * being repeatedly kicked and so responsible
2774 				 * for stalling the machine.
2775 				 */
2776 				ring->hangcheck.action = ring_stuck(ring,
2777 								    acthd);
2778 
2779 				switch (ring->hangcheck.action) {
2780 				case HANGCHECK_IDLE:
2781 				case HANGCHECK_WAIT:
2782 				case HANGCHECK_ACTIVE:
2783 					break;
2784 				case HANGCHECK_ACTIVE_LOOP:
2785 					ring->hangcheck.score += BUSY;
2786 					break;
2787 				case HANGCHECK_KICK:
2788 					ring->hangcheck.score += KICK;
2789 					break;
2790 				case HANGCHECK_HUNG:
2791 					ring->hangcheck.score += HUNG;
2792 					stuck[i] = true;
2793 					break;
2794 				}
2795 			}
2796 		} else {
2797 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2798 
2799 			/* Gradually reduce the count so that we catch DoS
2800 			 * attempts across multiple batches.
2801 			 */
2802 			if (ring->hangcheck.score > 0)
2803 				ring->hangcheck.score--;
2804 
2805 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2806 		}
2807 
2808 		ring->hangcheck.seqno = seqno;
2809 		ring->hangcheck.acthd = acthd;
2810 		busy_count += busy;
2811 	}
2812 
2813 	for_each_ring(ring, dev_priv, i) {
2814 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2815 			DRM_INFO("%s on %s\n",
2816 				 stuck[i] ? "stuck" : "no progress",
2817 				 ring->name);
2818 			rings_hung++;
2819 		}
2820 	}
2821 
2822 	if (rings_hung)
2823 		return i915_handle_error(dev, true, "Ring hung");
2824 
2825 	if (busy_count)
2826 		/* Reset timer case chip hangs without another request
2827 		 * being added */
2828 		i915_queue_hangcheck(dev);
2829 }
2830 
2831 void i915_queue_hangcheck(struct drm_device *dev)
2832 {
2833 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2834 
2835 	if (!i915.enable_hangcheck)
2836 		return;
2837 
2838 	/* Don't continually defer the hangcheck so that it is always run at
2839 	 * least once after work has been scheduled on any ring. Otherwise,
2840 	 * we will ignore a hung ring if a second ring is kept busy.
2841 	 */
2842 
2843 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2844 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2845 }
2846 
2847 static void ibx_irq_reset(struct drm_device *dev)
2848 {
2849 	struct drm_i915_private *dev_priv = dev->dev_private;
2850 
2851 	if (HAS_PCH_NOP(dev))
2852 		return;
2853 
2854 	GEN5_IRQ_RESET(SDE);
2855 
2856 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2857 		I915_WRITE(SERR_INT, 0xffffffff);
2858 }
2859 
2860 /*
2861  * SDEIER is also touched by the interrupt handler to work around missed PCH
2862  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2863  * instead we unconditionally enable all PCH interrupt sources here, but then
2864  * only unmask them as needed with SDEIMR.
2865  *
2866  * This function needs to be called before interrupts are enabled.
2867  */
2868 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2869 {
2870 	struct drm_i915_private *dev_priv = dev->dev_private;
2871 
2872 	if (HAS_PCH_NOP(dev))
2873 		return;
2874 
2875 	WARN_ON(I915_READ(SDEIER) != 0);
2876 	I915_WRITE(SDEIER, 0xffffffff);
2877 	POSTING_READ(SDEIER);
2878 }
2879 
2880 static void gen5_gt_irq_reset(struct drm_device *dev)
2881 {
2882 	struct drm_i915_private *dev_priv = dev->dev_private;
2883 
2884 	GEN5_IRQ_RESET(GT);
2885 	if (INTEL_INFO(dev)->gen >= 6)
2886 		GEN5_IRQ_RESET(GEN6_PM);
2887 }
2888 
2889 /* drm_dma.h hooks
2890 */
2891 static void ironlake_irq_reset(struct drm_device *dev)
2892 {
2893 	struct drm_i915_private *dev_priv = dev->dev_private;
2894 
2895 	I915_WRITE(HWSTAM, 0xffffffff);
2896 
2897 	GEN5_IRQ_RESET(DE);
2898 	if (IS_GEN7(dev))
2899 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2900 
2901 	gen5_gt_irq_reset(dev);
2902 
2903 	ibx_irq_reset(dev);
2904 }
2905 
2906 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2907 {
2908 	enum pipe pipe;
2909 
2910 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2911 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2912 
2913 	for_each_pipe(dev_priv, pipe)
2914 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2915 
2916 	GEN5_IRQ_RESET(VLV_);
2917 }
2918 
2919 static void valleyview_irq_preinstall(struct drm_device *dev)
2920 {
2921 	struct drm_i915_private *dev_priv = dev->dev_private;
2922 
2923 	/* VLV magic */
2924 	I915_WRITE(VLV_IMR, 0);
2925 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2926 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2927 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2928 
2929 	gen5_gt_irq_reset(dev);
2930 
2931 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2932 
2933 	vlv_display_irq_reset(dev_priv);
2934 }
2935 
2936 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2937 {
2938 	GEN8_IRQ_RESET_NDX(GT, 0);
2939 	GEN8_IRQ_RESET_NDX(GT, 1);
2940 	GEN8_IRQ_RESET_NDX(GT, 2);
2941 	GEN8_IRQ_RESET_NDX(GT, 3);
2942 }
2943 
2944 static void gen8_irq_reset(struct drm_device *dev)
2945 {
2946 	struct drm_i915_private *dev_priv = dev->dev_private;
2947 	int pipe;
2948 
2949 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2950 	POSTING_READ(GEN8_MASTER_IRQ);
2951 
2952 	gen8_gt_irq_reset(dev_priv);
2953 
2954 	for_each_pipe(dev_priv, pipe)
2955 		if (intel_display_power_is_enabled(dev_priv,
2956 						   POWER_DOMAIN_PIPE(pipe)))
2957 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2958 
2959 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
2960 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
2961 	GEN5_IRQ_RESET(GEN8_PCU_);
2962 
2963 	if (HAS_PCH_SPLIT(dev))
2964 		ibx_irq_reset(dev);
2965 }
2966 
2967 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2968 				     unsigned int pipe_mask)
2969 {
2970 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2971 
2972 	spin_lock_irq(&dev_priv->irq_lock);
2973 	if (pipe_mask & 1 << PIPE_A)
2974 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
2975 				  dev_priv->de_irq_mask[PIPE_A],
2976 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
2977 	if (pipe_mask & 1 << PIPE_B)
2978 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
2979 				  dev_priv->de_irq_mask[PIPE_B],
2980 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
2981 	if (pipe_mask & 1 << PIPE_C)
2982 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
2983 				  dev_priv->de_irq_mask[PIPE_C],
2984 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
2985 	spin_unlock_irq(&dev_priv->irq_lock);
2986 }
2987 
2988 static void cherryview_irq_preinstall(struct drm_device *dev)
2989 {
2990 	struct drm_i915_private *dev_priv = dev->dev_private;
2991 
2992 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2993 	POSTING_READ(GEN8_MASTER_IRQ);
2994 
2995 	gen8_gt_irq_reset(dev_priv);
2996 
2997 	GEN5_IRQ_RESET(GEN8_PCU_);
2998 
2999 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3000 
3001 	vlv_display_irq_reset(dev_priv);
3002 }
3003 
3004 static void ibx_hpd_irq_setup(struct drm_device *dev)
3005 {
3006 	struct drm_i915_private *dev_priv = dev->dev_private;
3007 	struct intel_encoder *intel_encoder;
3008 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3009 
3010 	if (HAS_PCH_IBX(dev)) {
3011 		hotplug_irqs = SDE_HOTPLUG_MASK;
3012 		for_each_intel_encoder(dev, intel_encoder)
3013 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3014 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3015 	} else if (HAS_PCH_SPT(dev)) {
3016 		hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3017 		for_each_intel_encoder(dev, intel_encoder)
3018 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3019 				enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
3020 	} else {
3021 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3022 		for_each_intel_encoder(dev, intel_encoder)
3023 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3024 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3025 	}
3026 
3027 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3028 
3029 	/*
3030 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3031 	 * duration to 2ms (which is the minimum in the Display Port spec)
3032 	 *
3033 	 * This register is the same on all known PCH chips.
3034 	 */
3035 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3036 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3037 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3038 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3039 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3040 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3041 
3042 	/* enable SPT PORTE hot plug */
3043 	if (HAS_PCH_SPT(dev)) {
3044 		hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3045 		hotplug |= PORTE_HOTPLUG_ENABLE;
3046 		I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3047 	}
3048 }
3049 
3050 static void bxt_hpd_irq_setup(struct drm_device *dev)
3051 {
3052 	struct drm_i915_private *dev_priv = dev->dev_private;
3053 	struct intel_encoder *intel_encoder;
3054 	u32 hotplug_port = 0;
3055 	u32 hotplug_ctrl;
3056 
3057 	/* Now, enable HPD */
3058 	for_each_intel_encoder(dev, intel_encoder) {
3059 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3060 				== HPD_ENABLED)
3061 			hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3062 	}
3063 
3064 	/* Mask all HPD control bits */
3065 	hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3066 
3067 	/* Enable requested port in hotplug control */
3068 	/* TODO: implement (short) HPD support on port A */
3069 	WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3070 	if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3071 		hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3072 	if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3073 		hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3074 	I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3075 
3076 	/* Unmask DDI hotplug in IMR */
3077 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3078 	I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3079 
3080 	/* Enable DDI hotplug in IER */
3081 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3082 	I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3083 	POSTING_READ(GEN8_DE_PORT_IER);
3084 }
3085 
3086 static void ibx_irq_postinstall(struct drm_device *dev)
3087 {
3088 	struct drm_i915_private *dev_priv = dev->dev_private;
3089 	u32 mask;
3090 
3091 	if (HAS_PCH_NOP(dev))
3092 		return;
3093 
3094 	if (HAS_PCH_IBX(dev))
3095 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3096 	else
3097 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3098 
3099 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3100 	I915_WRITE(SDEIMR, ~mask);
3101 }
3102 
3103 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3104 {
3105 	struct drm_i915_private *dev_priv = dev->dev_private;
3106 	u32 pm_irqs, gt_irqs;
3107 
3108 	pm_irqs = gt_irqs = 0;
3109 
3110 	dev_priv->gt_irq_mask = ~0;
3111 	if (HAS_L3_DPF(dev)) {
3112 		/* L3 parity interrupt is always unmasked. */
3113 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3114 		gt_irqs |= GT_PARITY_ERROR(dev);
3115 	}
3116 
3117 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3118 	if (IS_GEN5(dev)) {
3119 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3120 			   ILK_BSD_USER_INTERRUPT;
3121 	} else {
3122 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3123 	}
3124 
3125 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3126 
3127 	if (INTEL_INFO(dev)->gen >= 6) {
3128 		/*
3129 		 * RPS interrupts will get enabled/disabled on demand when RPS
3130 		 * itself is enabled/disabled.
3131 		 */
3132 		if (HAS_VEBOX(dev))
3133 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3134 
3135 		dev_priv->pm_irq_mask = 0xffffffff;
3136 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3137 	}
3138 }
3139 
3140 static int ironlake_irq_postinstall(struct drm_device *dev)
3141 {
3142 	struct drm_i915_private *dev_priv = dev->dev_private;
3143 	u32 display_mask, extra_mask;
3144 
3145 	if (INTEL_INFO(dev)->gen >= 7) {
3146 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3147 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3148 				DE_PLANEB_FLIP_DONE_IVB |
3149 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3150 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3151 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3152 	} else {
3153 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3154 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3155 				DE_AUX_CHANNEL_A |
3156 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3157 				DE_POISON);
3158 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3159 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3160 	}
3161 
3162 	dev_priv->irq_mask = ~display_mask;
3163 
3164 	I915_WRITE(HWSTAM, 0xeffe);
3165 
3166 	ibx_irq_pre_postinstall(dev);
3167 
3168 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3169 
3170 	gen5_gt_irq_postinstall(dev);
3171 
3172 	ibx_irq_postinstall(dev);
3173 
3174 	if (IS_IRONLAKE_M(dev)) {
3175 		/* Enable PCU event interrupts
3176 		 *
3177 		 * spinlocking not required here for correctness since interrupt
3178 		 * setup is guaranteed to run in single-threaded context. But we
3179 		 * need it to make the assert_spin_locked happy. */
3180 		spin_lock_irq(&dev_priv->irq_lock);
3181 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3182 		spin_unlock_irq(&dev_priv->irq_lock);
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3189 {
3190 	u32 pipestat_mask;
3191 	u32 iir_mask;
3192 	enum pipe pipe;
3193 
3194 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3195 			PIPE_FIFO_UNDERRUN_STATUS;
3196 
3197 	for_each_pipe(dev_priv, pipe)
3198 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3199 	POSTING_READ(PIPESTAT(PIPE_A));
3200 
3201 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3202 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3203 
3204 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3205 	for_each_pipe(dev_priv, pipe)
3206 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3207 
3208 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3209 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3210 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3211 	if (IS_CHERRYVIEW(dev_priv))
3212 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3213 	dev_priv->irq_mask &= ~iir_mask;
3214 
3215 	I915_WRITE(VLV_IIR, iir_mask);
3216 	I915_WRITE(VLV_IIR, iir_mask);
3217 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3218 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3219 	POSTING_READ(VLV_IMR);
3220 }
3221 
3222 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3223 {
3224 	u32 pipestat_mask;
3225 	u32 iir_mask;
3226 	enum pipe pipe;
3227 
3228 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3229 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3230 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3231 	if (IS_CHERRYVIEW(dev_priv))
3232 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3233 
3234 	dev_priv->irq_mask |= iir_mask;
3235 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3236 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3237 	I915_WRITE(VLV_IIR, iir_mask);
3238 	I915_WRITE(VLV_IIR, iir_mask);
3239 	POSTING_READ(VLV_IIR);
3240 
3241 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3242 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3243 
3244 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3245 	for_each_pipe(dev_priv, pipe)
3246 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3247 
3248 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3249 			PIPE_FIFO_UNDERRUN_STATUS;
3250 
3251 	for_each_pipe(dev_priv, pipe)
3252 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3253 	POSTING_READ(PIPESTAT(PIPE_A));
3254 }
3255 
3256 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3257 {
3258 	assert_spin_locked(&dev_priv->irq_lock);
3259 
3260 	if (dev_priv->display_irqs_enabled)
3261 		return;
3262 
3263 	dev_priv->display_irqs_enabled = true;
3264 
3265 	if (intel_irqs_enabled(dev_priv))
3266 		valleyview_display_irqs_install(dev_priv);
3267 }
3268 
3269 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3270 {
3271 	assert_spin_locked(&dev_priv->irq_lock);
3272 
3273 	if (!dev_priv->display_irqs_enabled)
3274 		return;
3275 
3276 	dev_priv->display_irqs_enabled = false;
3277 
3278 	if (intel_irqs_enabled(dev_priv))
3279 		valleyview_display_irqs_uninstall(dev_priv);
3280 }
3281 
3282 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3283 {
3284 	dev_priv->irq_mask = ~0;
3285 
3286 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3287 	POSTING_READ(PORT_HOTPLUG_EN);
3288 
3289 	I915_WRITE(VLV_IIR, 0xffffffff);
3290 	I915_WRITE(VLV_IIR, 0xffffffff);
3291 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3292 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3293 	POSTING_READ(VLV_IMR);
3294 
3295 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3296 	 * just to make the assert_spin_locked check happy. */
3297 	spin_lock_irq(&dev_priv->irq_lock);
3298 	if (dev_priv->display_irqs_enabled)
3299 		valleyview_display_irqs_install(dev_priv);
3300 	spin_unlock_irq(&dev_priv->irq_lock);
3301 }
3302 
3303 static int valleyview_irq_postinstall(struct drm_device *dev)
3304 {
3305 	struct drm_i915_private *dev_priv = dev->dev_private;
3306 
3307 	vlv_display_irq_postinstall(dev_priv);
3308 
3309 	gen5_gt_irq_postinstall(dev);
3310 
3311 	/* ack & enable invalid PTE error interrupts */
3312 #if 0 /* FIXME: add support to irq handler for checking these bits */
3313 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3314 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3315 #endif
3316 
3317 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3318 
3319 	return 0;
3320 }
3321 
3322 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3323 {
3324 	/* These are interrupts we'll toggle with the ring mask register */
3325 	uint32_t gt_interrupts[] = {
3326 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3327 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3328 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3329 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3330 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3331 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3332 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3333 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3334 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3335 		0,
3336 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3337 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3338 		};
3339 
3340 	dev_priv->pm_irq_mask = 0xffffffff;
3341 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3342 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3343 	/*
3344 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3345 	 * is enabled/disabled.
3346 	 */
3347 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3348 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3349 }
3350 
3351 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3352 {
3353 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3354 	uint32_t de_pipe_enables;
3355 	int pipe;
3356 	u32 de_port_en = GEN8_AUX_CHANNEL_A;
3357 
3358 	if (IS_GEN9(dev_priv)) {
3359 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3360 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3361 		de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3362 			GEN9_AUX_CHANNEL_D;
3363 
3364 		if (IS_BROXTON(dev_priv))
3365 			de_port_en |= BXT_DE_PORT_GMBUS;
3366 	} else
3367 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3368 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3369 
3370 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3371 					   GEN8_PIPE_FIFO_UNDERRUN;
3372 
3373 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3374 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3375 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3376 
3377 	for_each_pipe(dev_priv, pipe)
3378 		if (intel_display_power_is_enabled(dev_priv,
3379 				POWER_DOMAIN_PIPE(pipe)))
3380 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3381 					  dev_priv->de_irq_mask[pipe],
3382 					  de_pipe_enables);
3383 
3384 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3385 }
3386 
3387 static int gen8_irq_postinstall(struct drm_device *dev)
3388 {
3389 	struct drm_i915_private *dev_priv = dev->dev_private;
3390 
3391 	if (HAS_PCH_SPLIT(dev))
3392 		ibx_irq_pre_postinstall(dev);
3393 
3394 	gen8_gt_irq_postinstall(dev_priv);
3395 	gen8_de_irq_postinstall(dev_priv);
3396 
3397 	if (HAS_PCH_SPLIT(dev))
3398 		ibx_irq_postinstall(dev);
3399 
3400 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3401 	POSTING_READ(GEN8_MASTER_IRQ);
3402 
3403 	return 0;
3404 }
3405 
3406 static int cherryview_irq_postinstall(struct drm_device *dev)
3407 {
3408 	struct drm_i915_private *dev_priv = dev->dev_private;
3409 
3410 	vlv_display_irq_postinstall(dev_priv);
3411 
3412 	gen8_gt_irq_postinstall(dev_priv);
3413 
3414 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3415 	POSTING_READ(GEN8_MASTER_IRQ);
3416 
3417 	return 0;
3418 }
3419 
3420 static void gen8_irq_uninstall(struct drm_device *dev)
3421 {
3422 	struct drm_i915_private *dev_priv = dev->dev_private;
3423 
3424 	if (!dev_priv)
3425 		return;
3426 
3427 	gen8_irq_reset(dev);
3428 }
3429 
3430 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3433 	 * just to make the assert_spin_locked check happy. */
3434 	spin_lock_irq(&dev_priv->irq_lock);
3435 	if (dev_priv->display_irqs_enabled)
3436 		valleyview_display_irqs_uninstall(dev_priv);
3437 	spin_unlock_irq(&dev_priv->irq_lock);
3438 
3439 	vlv_display_irq_reset(dev_priv);
3440 
3441 	dev_priv->irq_mask = ~0;
3442 }
3443 
3444 static void valleyview_irq_uninstall(struct drm_device *dev)
3445 {
3446 	struct drm_i915_private *dev_priv = dev->dev_private;
3447 
3448 	if (!dev_priv)
3449 		return;
3450 
3451 	I915_WRITE(VLV_MASTER_IER, 0);
3452 
3453 	gen5_gt_irq_reset(dev);
3454 
3455 	I915_WRITE(HWSTAM, 0xffffffff);
3456 
3457 	vlv_display_irq_uninstall(dev_priv);
3458 }
3459 
3460 static void cherryview_irq_uninstall(struct drm_device *dev)
3461 {
3462 	struct drm_i915_private *dev_priv = dev->dev_private;
3463 
3464 	if (!dev_priv)
3465 		return;
3466 
3467 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3468 	POSTING_READ(GEN8_MASTER_IRQ);
3469 
3470 	gen8_gt_irq_reset(dev_priv);
3471 
3472 	GEN5_IRQ_RESET(GEN8_PCU_);
3473 
3474 	vlv_display_irq_uninstall(dev_priv);
3475 }
3476 
3477 static void ironlake_irq_uninstall(struct drm_device *dev)
3478 {
3479 	struct drm_i915_private *dev_priv = dev->dev_private;
3480 
3481 	if (!dev_priv)
3482 		return;
3483 
3484 	ironlake_irq_reset(dev);
3485 }
3486 
3487 static void i8xx_irq_preinstall(struct drm_device * dev)
3488 {
3489 	struct drm_i915_private *dev_priv = dev->dev_private;
3490 	int pipe;
3491 
3492 	for_each_pipe(dev_priv, pipe)
3493 		I915_WRITE(PIPESTAT(pipe), 0);
3494 	I915_WRITE16(IMR, 0xffff);
3495 	I915_WRITE16(IER, 0x0);
3496 	POSTING_READ16(IER);
3497 }
3498 
3499 static int i8xx_irq_postinstall(struct drm_device *dev)
3500 {
3501 	struct drm_i915_private *dev_priv = dev->dev_private;
3502 
3503 	I915_WRITE16(EMR,
3504 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3505 
3506 	/* Unmask the interrupts that we always want on. */
3507 	dev_priv->irq_mask =
3508 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3509 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3510 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3511 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3512 	I915_WRITE16(IMR, dev_priv->irq_mask);
3513 
3514 	I915_WRITE16(IER,
3515 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3516 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3517 		     I915_USER_INTERRUPT);
3518 	POSTING_READ16(IER);
3519 
3520 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3521 	 * just to make the assert_spin_locked check happy. */
3522 	spin_lock_irq(&dev_priv->irq_lock);
3523 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3524 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3525 	spin_unlock_irq(&dev_priv->irq_lock);
3526 
3527 	return 0;
3528 }
3529 
3530 /*
3531  * Returns true when a page flip has completed.
3532  */
3533 static bool i8xx_handle_vblank(struct drm_device *dev,
3534 			       int plane, int pipe, u32 iir)
3535 {
3536 	struct drm_i915_private *dev_priv = dev->dev_private;
3537 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3538 
3539 	if (!intel_pipe_handle_vblank(dev, pipe))
3540 		return false;
3541 
3542 	if ((iir & flip_pending) == 0)
3543 		goto check_page_flip;
3544 
3545 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3546 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3547 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3548 	 * the flip is completed (no longer pending). Since this doesn't raise
3549 	 * an interrupt per se, we watch for the change at vblank.
3550 	 */
3551 	if (I915_READ16(ISR) & flip_pending)
3552 		goto check_page_flip;
3553 
3554 	intel_prepare_page_flip(dev, plane);
3555 	intel_finish_page_flip(dev, pipe);
3556 	return true;
3557 
3558 check_page_flip:
3559 	intel_check_page_flip(dev, pipe);
3560 	return false;
3561 }
3562 
3563 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3564 {
3565 	struct drm_device *dev = arg;
3566 	struct drm_i915_private *dev_priv = dev->dev_private;
3567 	u16 iir, new_iir;
3568 	u32 pipe_stats[2];
3569 	int pipe;
3570 	u16 flip_mask =
3571 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3572 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3573 
3574 	if (!intel_irqs_enabled(dev_priv))
3575 		return IRQ_NONE;
3576 
3577 	iir = I915_READ16(IIR);
3578 	if (iir == 0)
3579 		return IRQ_NONE;
3580 
3581 	while (iir & ~flip_mask) {
3582 		/* Can't rely on pipestat interrupt bit in iir as it might
3583 		 * have been cleared after the pipestat interrupt was received.
3584 		 * It doesn't set the bit in iir again, but it still produces
3585 		 * interrupts (for non-MSI).
3586 		 */
3587 		spin_lock(&dev_priv->irq_lock);
3588 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3589 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3590 
3591 		for_each_pipe(dev_priv, pipe) {
3592 			int reg = PIPESTAT(pipe);
3593 			pipe_stats[pipe] = I915_READ(reg);
3594 
3595 			/*
3596 			 * Clear the PIPE*STAT regs before the IIR
3597 			 */
3598 			if (pipe_stats[pipe] & 0x8000ffff)
3599 				I915_WRITE(reg, pipe_stats[pipe]);
3600 		}
3601 		spin_unlock(&dev_priv->irq_lock);
3602 
3603 		I915_WRITE16(IIR, iir & ~flip_mask);
3604 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3605 
3606 		if (iir & I915_USER_INTERRUPT)
3607 			notify_ring(&dev_priv->ring[RCS]);
3608 
3609 		for_each_pipe(dev_priv, pipe) {
3610 			int plane = pipe;
3611 			if (HAS_FBC(dev))
3612 				plane = !plane;
3613 
3614 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3615 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3616 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3617 
3618 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3619 				i9xx_pipe_crc_irq_handler(dev, pipe);
3620 
3621 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3622 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3623 								    pipe);
3624 		}
3625 
3626 		iir = new_iir;
3627 	}
3628 
3629 	return IRQ_HANDLED;
3630 }
3631 
3632 static void i8xx_irq_uninstall(struct drm_device * dev)
3633 {
3634 	struct drm_i915_private *dev_priv = dev->dev_private;
3635 	int pipe;
3636 
3637 	for_each_pipe(dev_priv, pipe) {
3638 		/* Clear enable bits; then clear status bits */
3639 		I915_WRITE(PIPESTAT(pipe), 0);
3640 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3641 	}
3642 	I915_WRITE16(IMR, 0xffff);
3643 	I915_WRITE16(IER, 0x0);
3644 	I915_WRITE16(IIR, I915_READ16(IIR));
3645 }
3646 
3647 static void i915_irq_preinstall(struct drm_device * dev)
3648 {
3649 	struct drm_i915_private *dev_priv = dev->dev_private;
3650 	int pipe;
3651 
3652 	if (I915_HAS_HOTPLUG(dev)) {
3653 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3654 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3655 	}
3656 
3657 	I915_WRITE16(HWSTAM, 0xeffe);
3658 	for_each_pipe(dev_priv, pipe)
3659 		I915_WRITE(PIPESTAT(pipe), 0);
3660 	I915_WRITE(IMR, 0xffffffff);
3661 	I915_WRITE(IER, 0x0);
3662 	POSTING_READ(IER);
3663 }
3664 
3665 static int i915_irq_postinstall(struct drm_device *dev)
3666 {
3667 	struct drm_i915_private *dev_priv = dev->dev_private;
3668 	u32 enable_mask;
3669 
3670 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3671 
3672 	/* Unmask the interrupts that we always want on. */
3673 	dev_priv->irq_mask =
3674 		~(I915_ASLE_INTERRUPT |
3675 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3676 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3677 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3678 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3679 
3680 	enable_mask =
3681 		I915_ASLE_INTERRUPT |
3682 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3683 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3684 		I915_USER_INTERRUPT;
3685 
3686 	if (I915_HAS_HOTPLUG(dev)) {
3687 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3688 		POSTING_READ(PORT_HOTPLUG_EN);
3689 
3690 		/* Enable in IER... */
3691 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3692 		/* and unmask in IMR */
3693 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3694 	}
3695 
3696 	I915_WRITE(IMR, dev_priv->irq_mask);
3697 	I915_WRITE(IER, enable_mask);
3698 	POSTING_READ(IER);
3699 
3700 	i915_enable_asle_pipestat(dev);
3701 
3702 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3703 	 * just to make the assert_spin_locked check happy. */
3704 	spin_lock_irq(&dev_priv->irq_lock);
3705 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3707 	spin_unlock_irq(&dev_priv->irq_lock);
3708 
3709 	return 0;
3710 }
3711 
3712 /*
3713  * Returns true when a page flip has completed.
3714  */
3715 static bool i915_handle_vblank(struct drm_device *dev,
3716 			       int plane, int pipe, u32 iir)
3717 {
3718 	struct drm_i915_private *dev_priv = dev->dev_private;
3719 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3720 
3721 	if (!intel_pipe_handle_vblank(dev, pipe))
3722 		return false;
3723 
3724 	if ((iir & flip_pending) == 0)
3725 		goto check_page_flip;
3726 
3727 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3728 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3729 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3730 	 * the flip is completed (no longer pending). Since this doesn't raise
3731 	 * an interrupt per se, we watch for the change at vblank.
3732 	 */
3733 	if (I915_READ(ISR) & flip_pending)
3734 		goto check_page_flip;
3735 
3736 	intel_prepare_page_flip(dev, plane);
3737 	intel_finish_page_flip(dev, pipe);
3738 	return true;
3739 
3740 check_page_flip:
3741 	intel_check_page_flip(dev, pipe);
3742 	return false;
3743 }
3744 
3745 static irqreturn_t i915_irq_handler(int irq, void *arg)
3746 {
3747 	struct drm_device *dev = arg;
3748 	struct drm_i915_private *dev_priv = dev->dev_private;
3749 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3750 	u32 flip_mask =
3751 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3752 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3753 	int pipe, ret = IRQ_NONE;
3754 
3755 	if (!intel_irqs_enabled(dev_priv))
3756 		return IRQ_NONE;
3757 
3758 	iir = I915_READ(IIR);
3759 	do {
3760 		bool irq_received = (iir & ~flip_mask) != 0;
3761 		bool blc_event = false;
3762 
3763 		/* Can't rely on pipestat interrupt bit in iir as it might
3764 		 * have been cleared after the pipestat interrupt was received.
3765 		 * It doesn't set the bit in iir again, but it still produces
3766 		 * interrupts (for non-MSI).
3767 		 */
3768 		spin_lock(&dev_priv->irq_lock);
3769 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3770 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3771 
3772 		for_each_pipe(dev_priv, pipe) {
3773 			int reg = PIPESTAT(pipe);
3774 			pipe_stats[pipe] = I915_READ(reg);
3775 
3776 			/* Clear the PIPE*STAT regs before the IIR */
3777 			if (pipe_stats[pipe] & 0x8000ffff) {
3778 				I915_WRITE(reg, pipe_stats[pipe]);
3779 				irq_received = true;
3780 			}
3781 		}
3782 		spin_unlock(&dev_priv->irq_lock);
3783 
3784 		if (!irq_received)
3785 			break;
3786 
3787 		/* Consume port.  Then clear IIR or we'll miss events */
3788 		if (I915_HAS_HOTPLUG(dev) &&
3789 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3790 			i9xx_hpd_irq_handler(dev);
3791 
3792 		I915_WRITE(IIR, iir & ~flip_mask);
3793 		new_iir = I915_READ(IIR); /* Flush posted writes */
3794 
3795 		if (iir & I915_USER_INTERRUPT)
3796 			notify_ring(&dev_priv->ring[RCS]);
3797 
3798 		for_each_pipe(dev_priv, pipe) {
3799 			int plane = pipe;
3800 			if (HAS_FBC(dev))
3801 				plane = !plane;
3802 
3803 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3804 			    i915_handle_vblank(dev, plane, pipe, iir))
3805 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3806 
3807 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3808 				blc_event = true;
3809 
3810 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3811 				i9xx_pipe_crc_irq_handler(dev, pipe);
3812 
3813 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3814 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3815 								    pipe);
3816 		}
3817 
3818 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3819 			intel_opregion_asle_intr(dev);
3820 
3821 		/* With MSI, interrupts are only generated when iir
3822 		 * transitions from zero to nonzero.  If another bit got
3823 		 * set while we were handling the existing iir bits, then
3824 		 * we would never get another interrupt.
3825 		 *
3826 		 * This is fine on non-MSI as well, as if we hit this path
3827 		 * we avoid exiting the interrupt handler only to generate
3828 		 * another one.
3829 		 *
3830 		 * Note that for MSI this could cause a stray interrupt report
3831 		 * if an interrupt landed in the time between writing IIR and
3832 		 * the posting read.  This should be rare enough to never
3833 		 * trigger the 99% of 100,000 interrupts test for disabling
3834 		 * stray interrupts.
3835 		 */
3836 		ret = IRQ_HANDLED;
3837 		iir = new_iir;
3838 	} while (iir & ~flip_mask);
3839 
3840 	return ret;
3841 }
3842 
3843 static void i915_irq_uninstall(struct drm_device * dev)
3844 {
3845 	struct drm_i915_private *dev_priv = dev->dev_private;
3846 	int pipe;
3847 
3848 	if (I915_HAS_HOTPLUG(dev)) {
3849 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3850 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3851 	}
3852 
3853 	I915_WRITE16(HWSTAM, 0xffff);
3854 	for_each_pipe(dev_priv, pipe) {
3855 		/* Clear enable bits; then clear status bits */
3856 		I915_WRITE(PIPESTAT(pipe), 0);
3857 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3858 	}
3859 	I915_WRITE(IMR, 0xffffffff);
3860 	I915_WRITE(IER, 0x0);
3861 
3862 	I915_WRITE(IIR, I915_READ(IIR));
3863 }
3864 
3865 static void i965_irq_preinstall(struct drm_device * dev)
3866 {
3867 	struct drm_i915_private *dev_priv = dev->dev_private;
3868 	int pipe;
3869 
3870 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3871 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3872 
3873 	I915_WRITE(HWSTAM, 0xeffe);
3874 	for_each_pipe(dev_priv, pipe)
3875 		I915_WRITE(PIPESTAT(pipe), 0);
3876 	I915_WRITE(IMR, 0xffffffff);
3877 	I915_WRITE(IER, 0x0);
3878 	POSTING_READ(IER);
3879 }
3880 
3881 static int i965_irq_postinstall(struct drm_device *dev)
3882 {
3883 	struct drm_i915_private *dev_priv = dev->dev_private;
3884 	u32 enable_mask;
3885 	u32 error_mask;
3886 
3887 	/* Unmask the interrupts that we always want on. */
3888 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3889 			       I915_DISPLAY_PORT_INTERRUPT |
3890 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3891 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3892 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3893 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3894 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3895 
3896 	enable_mask = ~dev_priv->irq_mask;
3897 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3898 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3899 	enable_mask |= I915_USER_INTERRUPT;
3900 
3901 	if (IS_G4X(dev))
3902 		enable_mask |= I915_BSD_USER_INTERRUPT;
3903 
3904 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3905 	 * just to make the assert_spin_locked check happy. */
3906 	spin_lock_irq(&dev_priv->irq_lock);
3907 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3908 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3909 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910 	spin_unlock_irq(&dev_priv->irq_lock);
3911 
3912 	/*
3913 	 * Enable some error detection, note the instruction error mask
3914 	 * bit is reserved, so we leave it masked.
3915 	 */
3916 	if (IS_G4X(dev)) {
3917 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3918 			       GM45_ERROR_MEM_PRIV |
3919 			       GM45_ERROR_CP_PRIV |
3920 			       I915_ERROR_MEMORY_REFRESH);
3921 	} else {
3922 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3923 			       I915_ERROR_MEMORY_REFRESH);
3924 	}
3925 	I915_WRITE(EMR, error_mask);
3926 
3927 	I915_WRITE(IMR, dev_priv->irq_mask);
3928 	I915_WRITE(IER, enable_mask);
3929 	POSTING_READ(IER);
3930 
3931 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3932 	POSTING_READ(PORT_HOTPLUG_EN);
3933 
3934 	i915_enable_asle_pipestat(dev);
3935 
3936 	return 0;
3937 }
3938 
3939 static void i915_hpd_irq_setup(struct drm_device *dev)
3940 {
3941 	struct drm_i915_private *dev_priv = dev->dev_private;
3942 	struct intel_encoder *intel_encoder;
3943 	u32 hotplug_en;
3944 
3945 	assert_spin_locked(&dev_priv->irq_lock);
3946 
3947 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3948 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3949 	/* Note HDMI and DP share hotplug bits */
3950 	/* enable bits are the same for all generations */
3951 	for_each_intel_encoder(dev, intel_encoder)
3952 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3953 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3954 	/* Programming the CRT detection parameters tends
3955 	   to generate a spurious hotplug event about three
3956 	   seconds later.  So just do it once.
3957 	*/
3958 	if (IS_G4X(dev))
3959 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3960 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3961 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3962 
3963 	/* Ignore TV since it's buggy */
3964 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3965 }
3966 
3967 static irqreturn_t i965_irq_handler(int irq, void *arg)
3968 {
3969 	struct drm_device *dev = arg;
3970 	struct drm_i915_private *dev_priv = dev->dev_private;
3971 	u32 iir, new_iir;
3972 	u32 pipe_stats[I915_MAX_PIPES];
3973 	int ret = IRQ_NONE, pipe;
3974 	u32 flip_mask =
3975 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3976 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3977 
3978 	if (!intel_irqs_enabled(dev_priv))
3979 		return IRQ_NONE;
3980 
3981 	iir = I915_READ(IIR);
3982 
3983 	for (;;) {
3984 		bool irq_received = (iir & ~flip_mask) != 0;
3985 		bool blc_event = false;
3986 
3987 		/* Can't rely on pipestat interrupt bit in iir as it might
3988 		 * have been cleared after the pipestat interrupt was received.
3989 		 * It doesn't set the bit in iir again, but it still produces
3990 		 * interrupts (for non-MSI).
3991 		 */
3992 		spin_lock(&dev_priv->irq_lock);
3993 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3994 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3995 
3996 		for_each_pipe(dev_priv, pipe) {
3997 			int reg = PIPESTAT(pipe);
3998 			pipe_stats[pipe] = I915_READ(reg);
3999 
4000 			/*
4001 			 * Clear the PIPE*STAT regs before the IIR
4002 			 */
4003 			if (pipe_stats[pipe] & 0x8000ffff) {
4004 				I915_WRITE(reg, pipe_stats[pipe]);
4005 				irq_received = true;
4006 			}
4007 		}
4008 		spin_unlock(&dev_priv->irq_lock);
4009 
4010 		if (!irq_received)
4011 			break;
4012 
4013 		ret = IRQ_HANDLED;
4014 
4015 		/* Consume port.  Then clear IIR or we'll miss events */
4016 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4017 			i9xx_hpd_irq_handler(dev);
4018 
4019 		I915_WRITE(IIR, iir & ~flip_mask);
4020 		new_iir = I915_READ(IIR); /* Flush posted writes */
4021 
4022 		if (iir & I915_USER_INTERRUPT)
4023 			notify_ring(&dev_priv->ring[RCS]);
4024 		if (iir & I915_BSD_USER_INTERRUPT)
4025 			notify_ring(&dev_priv->ring[VCS]);
4026 
4027 		for_each_pipe(dev_priv, pipe) {
4028 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4029 			    i915_handle_vblank(dev, pipe, pipe, iir))
4030 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4031 
4032 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4033 				blc_event = true;
4034 
4035 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4036 				i9xx_pipe_crc_irq_handler(dev, pipe);
4037 
4038 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4039 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4040 		}
4041 
4042 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4043 			intel_opregion_asle_intr(dev);
4044 
4045 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4046 			gmbus_irq_handler(dev);
4047 
4048 		/* With MSI, interrupts are only generated when iir
4049 		 * transitions from zero to nonzero.  If another bit got
4050 		 * set while we were handling the existing iir bits, then
4051 		 * we would never get another interrupt.
4052 		 *
4053 		 * This is fine on non-MSI as well, as if we hit this path
4054 		 * we avoid exiting the interrupt handler only to generate
4055 		 * another one.
4056 		 *
4057 		 * Note that for MSI this could cause a stray interrupt report
4058 		 * if an interrupt landed in the time between writing IIR and
4059 		 * the posting read.  This should be rare enough to never
4060 		 * trigger the 99% of 100,000 interrupts test for disabling
4061 		 * stray interrupts.
4062 		 */
4063 		iir = new_iir;
4064 	}
4065 
4066 	return ret;
4067 }
4068 
4069 static void i965_irq_uninstall(struct drm_device * dev)
4070 {
4071 	struct drm_i915_private *dev_priv = dev->dev_private;
4072 	int pipe;
4073 
4074 	if (!dev_priv)
4075 		return;
4076 
4077 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4078 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4079 
4080 	I915_WRITE(HWSTAM, 0xffffffff);
4081 	for_each_pipe(dev_priv, pipe)
4082 		I915_WRITE(PIPESTAT(pipe), 0);
4083 	I915_WRITE(IMR, 0xffffffff);
4084 	I915_WRITE(IER, 0x0);
4085 
4086 	for_each_pipe(dev_priv, pipe)
4087 		I915_WRITE(PIPESTAT(pipe),
4088 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4089 	I915_WRITE(IIR, I915_READ(IIR));
4090 }
4091 
4092 /**
4093  * intel_irq_init - initializes irq support
4094  * @dev_priv: i915 device instance
4095  *
4096  * This function initializes all the irq support including work items, timers
4097  * and all the vtables. It does not setup the interrupt itself though.
4098  */
4099 void intel_irq_init(struct drm_i915_private *dev_priv)
4100 {
4101 	struct drm_device *dev = dev_priv->dev;
4102 
4103 	intel_hpd_init_work(dev_priv);
4104 
4105 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4106 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4107 
4108 	/* Let's track the enabled rps events */
4109 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4110 		/* WaGsvRC0ResidencyMethod:vlv */
4111 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4112 	else
4113 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4114 
4115 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4116 			  i915_hangcheck_elapsed);
4117 
4118 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4119 
4120 	if (IS_GEN2(dev_priv)) {
4121 		dev->max_vblank_count = 0;
4122 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4123 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4124 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4125 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4126 	} else {
4127 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4128 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4129 	}
4130 
4131 	/*
4132 	 * Opt out of the vblank disable timer on everything except gen2.
4133 	 * Gen2 doesn't have a hardware frame counter and so depends on
4134 	 * vblank interrupts to produce sane vblank seuquence numbers.
4135 	 */
4136 	if (!IS_GEN2(dev_priv))
4137 		dev->vblank_disable_immediate = true;
4138 
4139 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4140 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4141 
4142 	if (IS_CHERRYVIEW(dev_priv)) {
4143 		dev->driver->irq_handler = cherryview_irq_handler;
4144 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4145 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4146 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4147 		dev->driver->enable_vblank = valleyview_enable_vblank;
4148 		dev->driver->disable_vblank = valleyview_disable_vblank;
4149 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4150 	} else if (IS_VALLEYVIEW(dev_priv)) {
4151 		dev->driver->irq_handler = valleyview_irq_handler;
4152 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4153 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4154 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4155 		dev->driver->enable_vblank = valleyview_enable_vblank;
4156 		dev->driver->disable_vblank = valleyview_disable_vblank;
4157 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4158 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4159 		dev->driver->irq_handler = gen8_irq_handler;
4160 		dev->driver->irq_preinstall = gen8_irq_reset;
4161 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4162 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4163 		dev->driver->enable_vblank = gen8_enable_vblank;
4164 		dev->driver->disable_vblank = gen8_disable_vblank;
4165 		if (HAS_PCH_SPLIT(dev))
4166 			dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4167 		else
4168 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4169 	} else if (HAS_PCH_SPLIT(dev)) {
4170 		dev->driver->irq_handler = ironlake_irq_handler;
4171 		dev->driver->irq_preinstall = ironlake_irq_reset;
4172 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4173 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4174 		dev->driver->enable_vblank = ironlake_enable_vblank;
4175 		dev->driver->disable_vblank = ironlake_disable_vblank;
4176 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4177 	} else {
4178 		if (INTEL_INFO(dev_priv)->gen == 2) {
4179 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4180 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4181 			dev->driver->irq_handler = i8xx_irq_handler;
4182 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4183 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4184 			dev->driver->irq_preinstall = i915_irq_preinstall;
4185 			dev->driver->irq_postinstall = i915_irq_postinstall;
4186 			dev->driver->irq_uninstall = i915_irq_uninstall;
4187 			dev->driver->irq_handler = i915_irq_handler;
4188 		} else {
4189 			dev->driver->irq_preinstall = i965_irq_preinstall;
4190 			dev->driver->irq_postinstall = i965_irq_postinstall;
4191 			dev->driver->irq_uninstall = i965_irq_uninstall;
4192 			dev->driver->irq_handler = i965_irq_handler;
4193 		}
4194 		if (I915_HAS_HOTPLUG(dev_priv))
4195 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4196 		dev->driver->enable_vblank = i915_enable_vblank;
4197 		dev->driver->disable_vblank = i915_disable_vblank;
4198 	}
4199 }
4200 
4201 /**
4202  * intel_irq_install - enables the hardware interrupt
4203  * @dev_priv: i915 device instance
4204  *
4205  * This function enables the hardware interrupt handling, but leaves the hotplug
4206  * handling still disabled. It is called after intel_irq_init().
4207  *
4208  * In the driver load and resume code we need working interrupts in a few places
4209  * but don't want to deal with the hassle of concurrent probe and hotplug
4210  * workers. Hence the split into this two-stage approach.
4211  */
4212 int intel_irq_install(struct drm_i915_private *dev_priv)
4213 {
4214 	/*
4215 	 * We enable some interrupt sources in our postinstall hooks, so mark
4216 	 * interrupts as enabled _before_ actually enabling them to avoid
4217 	 * special cases in our ordering checks.
4218 	 */
4219 	dev_priv->pm.irqs_enabled = true;
4220 
4221 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4222 }
4223 
4224 /**
4225  * intel_irq_uninstall - finilizes all irq handling
4226  * @dev_priv: i915 device instance
4227  *
4228  * This stops interrupt and hotplug handling and unregisters and frees all
4229  * resources acquired in the init functions.
4230  */
4231 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4232 {
4233 	drm_irq_uninstall(dev_priv->dev);
4234 	intel_hpd_cancel_work(dev_priv);
4235 	dev_priv->pm.irqs_enabled = false;
4236 }
4237 
4238 /**
4239  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4240  * @dev_priv: i915 device instance
4241  *
4242  * This function is used to disable interrupts at runtime, both in the runtime
4243  * pm and the system suspend/resume code.
4244  */
4245 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4246 {
4247 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4248 	dev_priv->pm.irqs_enabled = false;
4249 	synchronize_irq(dev_priv->dev->irq);
4250 }
4251 
4252 /**
4253  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4254  * @dev_priv: i915 device instance
4255  *
4256  * This function is used to enable interrupts at runtime, both in the runtime
4257  * pm and the system suspend/resume code.
4258  */
4259 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4260 {
4261 	dev_priv->pm.irqs_enabled = true;
4262 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4263 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4264 }
4265