1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/sysrq.h> 32 #include <linux/slab.h> 33 #include <linux/circ_buf.h> 34 #include <drm/drmP.h> 35 #include <drm/i915_drm.h> 36 #include "i915_drv.h" 37 #include "i915_trace.h" 38 #include "intel_drv.h" 39 40 /** 41 * DOC: interrupt handling 42 * 43 * These functions provide the basic support for enabling and disabling the 44 * interrupt handling support. There's a lot more functionality in i915_irq.c 45 * and related files, but that will be described in separate chapters. 46 */ 47 48 static const u32 hpd_ilk[HPD_NUM_PINS] = { 49 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 50 }; 51 52 static const u32 hpd_ivb[HPD_NUM_PINS] = { 53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 54 }; 55 56 static const u32 hpd_bdw[HPD_NUM_PINS] = { 57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 58 }; 59 60 static const u32 hpd_ibx[HPD_NUM_PINS] = { 61 [HPD_CRT] = SDE_CRT_HOTPLUG, 62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 66 }; 67 68 static const u32 hpd_cpt[HPD_NUM_PINS] = { 69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 74 }; 75 76 static const u32 hpd_spt[HPD_NUM_PINS] = { 77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT 82 }; 83 84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 85 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 91 }; 92 93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 100 }; 101 102 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 109 }; 110 111 /* BXT hpd list */ 112 static const u32 hpd_bxt[HPD_NUM_PINS] = { 113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC 116 }; 117 118 /* IIR can theoretically queue up two events. Be paranoid. */ 119 #define GEN8_IRQ_RESET_NDX(type, which) do { \ 120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ 121 POSTING_READ(GEN8_##type##_IMR(which)); \ 122 I915_WRITE(GEN8_##type##_IER(which), 0); \ 123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 124 POSTING_READ(GEN8_##type##_IIR(which)); \ 125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 126 POSTING_READ(GEN8_##type##_IIR(which)); \ 127 } while (0) 128 129 #define GEN5_IRQ_RESET(type) do { \ 130 I915_WRITE(type##IMR, 0xffffffff); \ 131 POSTING_READ(type##IMR); \ 132 I915_WRITE(type##IER, 0); \ 133 I915_WRITE(type##IIR, 0xffffffff); \ 134 POSTING_READ(type##IIR); \ 135 I915_WRITE(type##IIR, 0xffffffff); \ 136 POSTING_READ(type##IIR); \ 137 } while (0) 138 139 /* 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 141 */ 142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, 143 i915_reg_t reg) 144 { 145 u32 val = I915_READ(reg); 146 147 if (val == 0) 148 return; 149 150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 151 i915_mmio_reg_offset(reg), val); 152 I915_WRITE(reg, 0xffffffff); 153 POSTING_READ(reg); 154 I915_WRITE(reg, 0xffffffff); 155 POSTING_READ(reg); 156 } 157 158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ 159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \ 160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ 161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ 162 POSTING_READ(GEN8_##type##_IMR(which)); \ 163 } while (0) 164 165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \ 166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \ 167 I915_WRITE(type##IER, (ier_val)); \ 168 I915_WRITE(type##IMR, (imr_val)); \ 169 POSTING_READ(type##IMR); \ 170 } while (0) 171 172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 174 175 /* For display hotplug interrupt */ 176 static inline void 177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 178 uint32_t mask, 179 uint32_t bits) 180 { 181 uint32_t val; 182 183 assert_spin_locked(&dev_priv->irq_lock); 184 WARN_ON(bits & ~mask); 185 186 val = I915_READ(PORT_HOTPLUG_EN); 187 val &= ~mask; 188 val |= bits; 189 I915_WRITE(PORT_HOTPLUG_EN, val); 190 } 191 192 /** 193 * i915_hotplug_interrupt_update - update hotplug interrupt enable 194 * @dev_priv: driver private 195 * @mask: bits to update 196 * @bits: bits to enable 197 * NOTE: the HPD enable bits are modified both inside and outside 198 * of an interrupt context. To avoid that read-modify-write cycles 199 * interfer, these bits are protected by a spinlock. Since this 200 * function is usually not called from a context where the lock is 201 * held already, this function acquires the lock itself. A non-locking 202 * version is also available. 203 */ 204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 205 uint32_t mask, 206 uint32_t bits) 207 { 208 spin_lock_irq(&dev_priv->irq_lock); 209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 210 spin_unlock_irq(&dev_priv->irq_lock); 211 } 212 213 /** 214 * ilk_update_display_irq - update DEIMR 215 * @dev_priv: driver private 216 * @interrupt_mask: mask of interrupt bits to update 217 * @enabled_irq_mask: mask of interrupt bits to enable 218 */ 219 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 220 uint32_t interrupt_mask, 221 uint32_t enabled_irq_mask) 222 { 223 uint32_t new_val; 224 225 assert_spin_locked(&dev_priv->irq_lock); 226 227 WARN_ON(enabled_irq_mask & ~interrupt_mask); 228 229 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 230 return; 231 232 new_val = dev_priv->irq_mask; 233 new_val &= ~interrupt_mask; 234 new_val |= (~enabled_irq_mask & interrupt_mask); 235 236 if (new_val != dev_priv->irq_mask) { 237 dev_priv->irq_mask = new_val; 238 I915_WRITE(DEIMR, dev_priv->irq_mask); 239 POSTING_READ(DEIMR); 240 } 241 } 242 243 /** 244 * ilk_update_gt_irq - update GTIMR 245 * @dev_priv: driver private 246 * @interrupt_mask: mask of interrupt bits to update 247 * @enabled_irq_mask: mask of interrupt bits to enable 248 */ 249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 250 uint32_t interrupt_mask, 251 uint32_t enabled_irq_mask) 252 { 253 assert_spin_locked(&dev_priv->irq_lock); 254 255 WARN_ON(enabled_irq_mask & ~interrupt_mask); 256 257 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 258 return; 259 260 dev_priv->gt_irq_mask &= ~interrupt_mask; 261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 263 } 264 265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 266 { 267 ilk_update_gt_irq(dev_priv, mask, mask); 268 POSTING_READ_FW(GTIMR); 269 } 270 271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 272 { 273 ilk_update_gt_irq(dev_priv, mask, 0); 274 } 275 276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) 277 { 278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; 279 } 280 281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv) 282 { 283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR; 284 } 285 286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv) 287 { 288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER; 289 } 290 291 /** 292 * snb_update_pm_irq - update GEN6_PMIMR 293 * @dev_priv: driver private 294 * @interrupt_mask: mask of interrupt bits to update 295 * @enabled_irq_mask: mask of interrupt bits to enable 296 */ 297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 298 uint32_t interrupt_mask, 299 uint32_t enabled_irq_mask) 300 { 301 uint32_t new_val; 302 303 WARN_ON(enabled_irq_mask & ~interrupt_mask); 304 305 assert_spin_locked(&dev_priv->irq_lock); 306 307 new_val = dev_priv->pm_imr; 308 new_val &= ~interrupt_mask; 309 new_val |= (~enabled_irq_mask & interrupt_mask); 310 311 if (new_val != dev_priv->pm_imr) { 312 dev_priv->pm_imr = new_val; 313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr); 314 POSTING_READ(gen6_pm_imr(dev_priv)); 315 } 316 } 317 318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 319 { 320 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 321 return; 322 323 snb_update_pm_irq(dev_priv, mask, mask); 324 } 325 326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 327 { 328 snb_update_pm_irq(dev_priv, mask, 0); 329 } 330 331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 332 { 333 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 334 return; 335 336 __gen6_mask_pm_irq(dev_priv, mask); 337 } 338 339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) 340 { 341 i915_reg_t reg = gen6_pm_iir(dev_priv); 342 343 assert_spin_locked(&dev_priv->irq_lock); 344 345 I915_WRITE(reg, reset_mask); 346 I915_WRITE(reg, reset_mask); 347 POSTING_READ(reg); 348 } 349 350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) 351 { 352 assert_spin_locked(&dev_priv->irq_lock); 353 354 dev_priv->pm_ier |= enable_mask; 355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 356 gen6_unmask_pm_irq(dev_priv, enable_mask); 357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ 358 } 359 360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) 361 { 362 assert_spin_locked(&dev_priv->irq_lock); 363 364 dev_priv->pm_ier &= ~disable_mask; 365 __gen6_mask_pm_irq(dev_priv, disable_mask); 366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); 367 /* though a barrier is missing here, but don't really need a one */ 368 } 369 370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) 371 { 372 spin_lock_irq(&dev_priv->irq_lock); 373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events); 374 dev_priv->rps.pm_iir = 0; 375 spin_unlock_irq(&dev_priv->irq_lock); 376 } 377 378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) 379 { 380 if (READ_ONCE(dev_priv->rps.interrupts_enabled)) 381 return; 382 383 spin_lock_irq(&dev_priv->irq_lock); 384 WARN_ON_ONCE(dev_priv->rps.pm_iir); 385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); 386 dev_priv->rps.interrupts_enabled = true; 387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 388 389 spin_unlock_irq(&dev_priv->irq_lock); 390 } 391 392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask) 393 { 394 return (mask & ~dev_priv->rps.pm_intr_keep); 395 } 396 397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) 398 { 399 if (!READ_ONCE(dev_priv->rps.interrupts_enabled)) 400 return; 401 402 spin_lock_irq(&dev_priv->irq_lock); 403 dev_priv->rps.interrupts_enabled = false; 404 405 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); 406 407 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events); 408 409 spin_unlock_irq(&dev_priv->irq_lock); 410 synchronize_irq(dev_priv->drm.irq); 411 412 /* Now that we will not be generating any more work, flush any 413 * outsanding tasks. As we are called on the RPS idle path, 414 * we will reset the GPU to minimum frequencies, so the current 415 * state of the worker can be discarded. 416 */ 417 cancel_work_sync(&dev_priv->rps.work); 418 gen6_reset_rps_interrupts(dev_priv); 419 } 420 421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) 422 { 423 spin_lock_irq(&dev_priv->irq_lock); 424 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); 425 spin_unlock_irq(&dev_priv->irq_lock); 426 } 427 428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) 429 { 430 spin_lock_irq(&dev_priv->irq_lock); 431 if (!dev_priv->guc.interrupts_enabled) { 432 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & 433 dev_priv->pm_guc_events); 434 dev_priv->guc.interrupts_enabled = true; 435 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); 436 } 437 spin_unlock_irq(&dev_priv->irq_lock); 438 } 439 440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) 441 { 442 spin_lock_irq(&dev_priv->irq_lock); 443 dev_priv->guc.interrupts_enabled = false; 444 445 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); 446 447 spin_unlock_irq(&dev_priv->irq_lock); 448 synchronize_irq(dev_priv->drm.irq); 449 450 gen9_reset_guc_interrupts(dev_priv); 451 } 452 453 /** 454 * bdw_update_port_irq - update DE port interrupt 455 * @dev_priv: driver private 456 * @interrupt_mask: mask of interrupt bits to update 457 * @enabled_irq_mask: mask of interrupt bits to enable 458 */ 459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 460 uint32_t interrupt_mask, 461 uint32_t enabled_irq_mask) 462 { 463 uint32_t new_val; 464 uint32_t old_val; 465 466 assert_spin_locked(&dev_priv->irq_lock); 467 468 WARN_ON(enabled_irq_mask & ~interrupt_mask); 469 470 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 471 return; 472 473 old_val = I915_READ(GEN8_DE_PORT_IMR); 474 475 new_val = old_val; 476 new_val &= ~interrupt_mask; 477 new_val |= (~enabled_irq_mask & interrupt_mask); 478 479 if (new_val != old_val) { 480 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 481 POSTING_READ(GEN8_DE_PORT_IMR); 482 } 483 } 484 485 /** 486 * bdw_update_pipe_irq - update DE pipe interrupt 487 * @dev_priv: driver private 488 * @pipe: pipe whose interrupt to update 489 * @interrupt_mask: mask of interrupt bits to update 490 * @enabled_irq_mask: mask of interrupt bits to enable 491 */ 492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 493 enum pipe pipe, 494 uint32_t interrupt_mask, 495 uint32_t enabled_irq_mask) 496 { 497 uint32_t new_val; 498 499 assert_spin_locked(&dev_priv->irq_lock); 500 501 WARN_ON(enabled_irq_mask & ~interrupt_mask); 502 503 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 504 return; 505 506 new_val = dev_priv->de_irq_mask[pipe]; 507 new_val &= ~interrupt_mask; 508 new_val |= (~enabled_irq_mask & interrupt_mask); 509 510 if (new_val != dev_priv->de_irq_mask[pipe]) { 511 dev_priv->de_irq_mask[pipe] = new_val; 512 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 513 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 514 } 515 } 516 517 /** 518 * ibx_display_interrupt_update - update SDEIMR 519 * @dev_priv: driver private 520 * @interrupt_mask: mask of interrupt bits to update 521 * @enabled_irq_mask: mask of interrupt bits to enable 522 */ 523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 524 uint32_t interrupt_mask, 525 uint32_t enabled_irq_mask) 526 { 527 uint32_t sdeimr = I915_READ(SDEIMR); 528 sdeimr &= ~interrupt_mask; 529 sdeimr |= (~enabled_irq_mask & interrupt_mask); 530 531 WARN_ON(enabled_irq_mask & ~interrupt_mask); 532 533 assert_spin_locked(&dev_priv->irq_lock); 534 535 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 536 return; 537 538 I915_WRITE(SDEIMR, sdeimr); 539 POSTING_READ(SDEIMR); 540 } 541 542 static void 543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 544 u32 enable_mask, u32 status_mask) 545 { 546 i915_reg_t reg = PIPESTAT(pipe); 547 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; 548 549 assert_spin_locked(&dev_priv->irq_lock); 550 WARN_ON(!intel_irqs_enabled(dev_priv)); 551 552 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 553 status_mask & ~PIPESTAT_INT_STATUS_MASK, 554 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 555 pipe_name(pipe), enable_mask, status_mask)) 556 return; 557 558 if ((pipestat & enable_mask) == enable_mask) 559 return; 560 561 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 562 563 /* Enable the interrupt, clear any pending status */ 564 pipestat |= enable_mask | status_mask; 565 I915_WRITE(reg, pipestat); 566 POSTING_READ(reg); 567 } 568 569 static void 570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 571 u32 enable_mask, u32 status_mask) 572 { 573 i915_reg_t reg = PIPESTAT(pipe); 574 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; 575 576 assert_spin_locked(&dev_priv->irq_lock); 577 WARN_ON(!intel_irqs_enabled(dev_priv)); 578 579 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 580 status_mask & ~PIPESTAT_INT_STATUS_MASK, 581 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 582 pipe_name(pipe), enable_mask, status_mask)) 583 return; 584 585 if ((pipestat & enable_mask) == 0) 586 return; 587 588 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 589 590 pipestat &= ~enable_mask; 591 I915_WRITE(reg, pipestat); 592 POSTING_READ(reg); 593 } 594 595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask) 596 { 597 u32 enable_mask = status_mask << 16; 598 599 /* 600 * On pipe A we don't support the PSR interrupt yet, 601 * on pipe B and C the same bit MBZ. 602 */ 603 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 604 return 0; 605 /* 606 * On pipe B and C we don't support the PSR interrupt yet, on pipe 607 * A the same bit is for perf counters which we don't use either. 608 */ 609 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 610 return 0; 611 612 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 613 SPRITE0_FLIP_DONE_INT_EN_VLV | 614 SPRITE1_FLIP_DONE_INT_EN_VLV); 615 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 616 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 617 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 618 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 619 620 return enable_mask; 621 } 622 623 void 624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 625 u32 status_mask) 626 { 627 u32 enable_mask; 628 629 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 630 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm, 631 status_mask); 632 else 633 enable_mask = status_mask << 16; 634 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask); 635 } 636 637 void 638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 639 u32 status_mask) 640 { 641 u32 enable_mask; 642 643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 644 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm, 645 status_mask); 646 else 647 enable_mask = status_mask << 16; 648 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask); 649 } 650 651 /** 652 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 653 * @dev_priv: i915 device private 654 */ 655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 656 { 657 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv)) 658 return; 659 660 spin_lock_irq(&dev_priv->irq_lock); 661 662 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 663 if (INTEL_GEN(dev_priv) >= 4) 664 i915_enable_pipestat(dev_priv, PIPE_A, 665 PIPE_LEGACY_BLC_EVENT_STATUS); 666 667 spin_unlock_irq(&dev_priv->irq_lock); 668 } 669 670 /* 671 * This timing diagram depicts the video signal in and 672 * around the vertical blanking period. 673 * 674 * Assumptions about the fictitious mode used in this example: 675 * vblank_start >= 3 676 * vsync_start = vblank_start + 1 677 * vsync_end = vblank_start + 2 678 * vtotal = vblank_start + 3 679 * 680 * start of vblank: 681 * latch double buffered registers 682 * increment frame counter (ctg+) 683 * generate start of vblank interrupt (gen4+) 684 * | 685 * | frame start: 686 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 687 * | may be shifted forward 1-3 extra lines via PIPECONF 688 * | | 689 * | | start of vsync: 690 * | | generate vsync interrupt 691 * | | | 692 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 693 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 694 * ----va---> <-----------------vb--------------------> <--------va------------- 695 * | | <----vs-----> | 696 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 697 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 698 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 699 * | | | 700 * last visible pixel first visible pixel 701 * | increment frame counter (gen3/4) 702 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 703 * 704 * x = horizontal active 705 * _ = horizontal blanking 706 * hs = horizontal sync 707 * va = vertical active 708 * vb = vertical blanking 709 * vs = vertical sync 710 * vbs = vblank_start (number) 711 * 712 * Summary: 713 * - most events happen at the start of horizontal sync 714 * - frame start happens at the start of horizontal blank, 1-4 lines 715 * (depending on PIPECONF settings) after the start of vblank 716 * - gen3/4 pixel and frame counter are synchronized with the start 717 * of horizontal active on the first line of vertical active 718 */ 719 720 /* Called from drm generic code, passed a 'crtc', which 721 * we use as a pipe index 722 */ 723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 724 { 725 struct drm_i915_private *dev_priv = to_i915(dev); 726 i915_reg_t high_frame, low_frame; 727 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 728 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 729 pipe); 730 const struct drm_display_mode *mode = &intel_crtc->base.hwmode; 731 732 htotal = mode->crtc_htotal; 733 hsync_start = mode->crtc_hsync_start; 734 vbl_start = mode->crtc_vblank_start; 735 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 736 vbl_start = DIV_ROUND_UP(vbl_start, 2); 737 738 /* Convert to pixel count */ 739 vbl_start *= htotal; 740 741 /* Start of vblank event occurs at start of hsync */ 742 vbl_start -= htotal - hsync_start; 743 744 high_frame = PIPEFRAME(pipe); 745 low_frame = PIPEFRAMEPIXEL(pipe); 746 747 /* 748 * High & low register fields aren't synchronized, so make sure 749 * we get a low value that's stable across two reads of the high 750 * register. 751 */ 752 do { 753 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; 754 low = I915_READ(low_frame); 755 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; 756 } while (high1 != high2); 757 758 high1 >>= PIPE_FRAME_HIGH_SHIFT; 759 pixel = low & PIPE_PIXEL_MASK; 760 low >>= PIPE_FRAME_LOW_SHIFT; 761 762 /* 763 * The frame counter increments at beginning of active. 764 * Cook up a vblank counter by also checking the pixel 765 * counter against vblank start. 766 */ 767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 768 } 769 770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 771 { 772 struct drm_i915_private *dev_priv = to_i915(dev); 773 774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 775 } 776 777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ 778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 779 { 780 struct drm_device *dev = crtc->base.dev; 781 struct drm_i915_private *dev_priv = to_i915(dev); 782 const struct drm_display_mode *mode = &crtc->base.hwmode; 783 enum pipe pipe = crtc->pipe; 784 int position, vtotal; 785 786 vtotal = mode->crtc_vtotal; 787 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 788 vtotal /= 2; 789 790 if (IS_GEN2(dev_priv)) 791 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 792 else 793 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 794 795 /* 796 * On HSW, the DSL reg (0x70000) appears to return 0 if we 797 * read it just before the start of vblank. So try it again 798 * so we don't accidentally end up spanning a vblank frame 799 * increment, causing the pipe_update_end() code to squak at us. 800 * 801 * The nature of this problem means we can't simply check the ISR 802 * bit and return the vblank start value; nor can we use the scanline 803 * debug register in the transcoder as it appears to have the same 804 * problem. We may need to extend this to include other platforms, 805 * but so far testing only shows the problem on HSW. 806 */ 807 if (HAS_DDI(dev_priv) && !position) { 808 int i, temp; 809 810 for (i = 0; i < 100; i++) { 811 udelay(1); 812 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & 813 DSL_LINEMASK_GEN3; 814 if (temp != position) { 815 position = temp; 816 break; 817 } 818 } 819 } 820 821 /* 822 * See update_scanline_offset() for the details on the 823 * scanline_offset adjustment. 824 */ 825 return (position + crtc->scanline_offset) % vtotal; 826 } 827 828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, 829 unsigned int flags, int *vpos, int *hpos, 830 ktime_t *stime, ktime_t *etime, 831 const struct drm_display_mode *mode) 832 { 833 struct drm_i915_private *dev_priv = to_i915(dev); 834 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 835 pipe); 836 int position; 837 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 838 bool in_vbl = true; 839 int ret = 0; 840 unsigned long irqflags; 841 842 if (WARN_ON(!mode->crtc_clock)) { 843 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 844 "pipe %c\n", pipe_name(pipe)); 845 return 0; 846 } 847 848 htotal = mode->crtc_htotal; 849 hsync_start = mode->crtc_hsync_start; 850 vtotal = mode->crtc_vtotal; 851 vbl_start = mode->crtc_vblank_start; 852 vbl_end = mode->crtc_vblank_end; 853 854 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 855 vbl_start = DIV_ROUND_UP(vbl_start, 2); 856 vbl_end /= 2; 857 vtotal /= 2; 858 } 859 860 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; 861 862 /* 863 * Lock uncore.lock, as we will do multiple timing critical raw 864 * register reads, potentially with preemption disabled, so the 865 * following code must not block on uncore.lock. 866 */ 867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 868 869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 870 871 /* Get optional system timestamp before query. */ 872 if (stime) 873 *stime = ktime_get(); 874 875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 876 /* No obvious pixelcount register. Only query vertical 877 * scanout position from Display scan line register. 878 */ 879 position = __intel_get_crtc_scanline(intel_crtc); 880 } else { 881 /* Have access to pixelcount since start of frame. 882 * We can split this into vertical and horizontal 883 * scanout position. 884 */ 885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 886 887 /* convert to pixel counts */ 888 vbl_start *= htotal; 889 vbl_end *= htotal; 890 vtotal *= htotal; 891 892 /* 893 * In interlaced modes, the pixel counter counts all pixels, 894 * so one field will have htotal more pixels. In order to avoid 895 * the reported position from jumping backwards when the pixel 896 * counter is beyond the length of the shorter field, just 897 * clamp the position the length of the shorter field. This 898 * matches how the scanline counter based position works since 899 * the scanline counter doesn't count the two half lines. 900 */ 901 if (position >= vtotal) 902 position = vtotal - 1; 903 904 /* 905 * Start of vblank interrupt is triggered at start of hsync, 906 * just prior to the first active line of vblank. However we 907 * consider lines to start at the leading edge of horizontal 908 * active. So, should we get here before we've crossed into 909 * the horizontal active of the first line in vblank, we would 910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 911 * always add htotal-hsync_start to the current pixel position. 912 */ 913 position = (position + htotal - hsync_start) % vtotal; 914 } 915 916 /* Get optional system timestamp after query. */ 917 if (etime) 918 *etime = ktime_get(); 919 920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 921 922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 923 924 in_vbl = position >= vbl_start && position < vbl_end; 925 926 /* 927 * While in vblank, position will be negative 928 * counting up towards 0 at vbl_end. And outside 929 * vblank, position will be positive counting 930 * up since vbl_end. 931 */ 932 if (position >= vbl_start) 933 position -= vbl_end; 934 else 935 position += vtotal - vbl_end; 936 937 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { 938 *vpos = position; 939 *hpos = 0; 940 } else { 941 *vpos = position / htotal; 942 *hpos = position - (*vpos * htotal); 943 } 944 945 /* In vblank? */ 946 if (in_vbl) 947 ret |= DRM_SCANOUTPOS_IN_VBLANK; 948 949 return ret; 950 } 951 952 int intel_get_crtc_scanline(struct intel_crtc *crtc) 953 { 954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 955 unsigned long irqflags; 956 int position; 957 958 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 959 position = __intel_get_crtc_scanline(crtc); 960 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 961 962 return position; 963 } 964 965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe, 966 int *max_error, 967 struct timeval *vblank_time, 968 unsigned flags) 969 { 970 struct drm_i915_private *dev_priv = to_i915(dev); 971 struct intel_crtc *crtc; 972 973 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) { 974 DRM_ERROR("Invalid crtc %u\n", pipe); 975 return -EINVAL; 976 } 977 978 /* Get drm_crtc to timestamp: */ 979 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 980 if (crtc == NULL) { 981 DRM_ERROR("Invalid crtc %u\n", pipe); 982 return -EINVAL; 983 } 984 985 if (!crtc->base.hwmode.crtc_clock) { 986 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe); 987 return -EBUSY; 988 } 989 990 /* Helper routine in DRM core does all the work: */ 991 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, 992 vblank_time, flags, 993 &crtc->base.hwmode); 994 } 995 996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) 997 { 998 u32 busy_up, busy_down, max_avg, min_avg; 999 u8 new_delay; 1000 1001 spin_lock(&mchdev_lock); 1002 1003 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); 1004 1005 new_delay = dev_priv->ips.cur_delay; 1006 1007 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); 1008 busy_up = I915_READ(RCPREVBSYTUPAVG); 1009 busy_down = I915_READ(RCPREVBSYTDNAVG); 1010 max_avg = I915_READ(RCBMAXAVG); 1011 min_avg = I915_READ(RCBMINAVG); 1012 1013 /* Handle RCS change request from hw */ 1014 if (busy_up > max_avg) { 1015 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1016 new_delay = dev_priv->ips.cur_delay - 1; 1017 if (new_delay < dev_priv->ips.max_delay) 1018 new_delay = dev_priv->ips.max_delay; 1019 } else if (busy_down < min_avg) { 1020 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1021 new_delay = dev_priv->ips.cur_delay + 1; 1022 if (new_delay > dev_priv->ips.min_delay) 1023 new_delay = dev_priv->ips.min_delay; 1024 } 1025 1026 if (ironlake_set_drps(dev_priv, new_delay)) 1027 dev_priv->ips.cur_delay = new_delay; 1028 1029 spin_unlock(&mchdev_lock); 1030 1031 return; 1032 } 1033 1034 static void notify_ring(struct intel_engine_cs *engine) 1035 { 1036 smp_store_mb(engine->breadcrumbs.irq_posted, true); 1037 if (intel_engine_wakeup(engine)) 1038 trace_i915_gem_request_notify(engine); 1039 } 1040 1041 static void vlv_c0_read(struct drm_i915_private *dev_priv, 1042 struct intel_rps_ei *ei) 1043 { 1044 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP); 1045 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); 1046 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); 1047 } 1048 1049 static bool vlv_c0_above(struct drm_i915_private *dev_priv, 1050 const struct intel_rps_ei *old, 1051 const struct intel_rps_ei *now, 1052 int threshold) 1053 { 1054 u64 time, c0; 1055 unsigned int mul = 100; 1056 1057 if (old->cz_clock == 0) 1058 return false; 1059 1060 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) 1061 mul <<= 8; 1062 1063 time = now->cz_clock - old->cz_clock; 1064 time *= threshold * dev_priv->czclk_freq; 1065 1066 /* Workload can be split between render + media, e.g. SwapBuffers 1067 * being blitted in X after being rendered in mesa. To account for 1068 * this we need to combine both engines into our activity counter. 1069 */ 1070 c0 = now->render_c0 - old->render_c0; 1071 c0 += now->media_c0 - old->media_c0; 1072 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC; 1073 1074 return c0 >= time; 1075 } 1076 1077 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) 1078 { 1079 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei); 1080 dev_priv->rps.up_ei = dev_priv->rps.down_ei; 1081 } 1082 1083 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) 1084 { 1085 struct intel_rps_ei now; 1086 u32 events = 0; 1087 1088 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0) 1089 return 0; 1090 1091 vlv_c0_read(dev_priv, &now); 1092 if (now.cz_clock == 0) 1093 return 0; 1094 1095 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) { 1096 if (!vlv_c0_above(dev_priv, 1097 &dev_priv->rps.down_ei, &now, 1098 dev_priv->rps.down_threshold)) 1099 events |= GEN6_PM_RP_DOWN_THRESHOLD; 1100 dev_priv->rps.down_ei = now; 1101 } 1102 1103 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) { 1104 if (vlv_c0_above(dev_priv, 1105 &dev_priv->rps.up_ei, &now, 1106 dev_priv->rps.up_threshold)) 1107 events |= GEN6_PM_RP_UP_THRESHOLD; 1108 dev_priv->rps.up_ei = now; 1109 } 1110 1111 return events; 1112 } 1113 1114 static bool any_waiters(struct drm_i915_private *dev_priv) 1115 { 1116 struct intel_engine_cs *engine; 1117 enum intel_engine_id id; 1118 1119 for_each_engine(engine, dev_priv, id) 1120 if (intel_engine_has_waiter(engine)) 1121 return true; 1122 1123 return false; 1124 } 1125 1126 static void gen6_pm_rps_work(struct work_struct *work) 1127 { 1128 struct drm_i915_private *dev_priv = 1129 container_of(work, struct drm_i915_private, rps.work); 1130 bool client_boost; 1131 int new_delay, adj, min, max; 1132 u32 pm_iir; 1133 1134 spin_lock_irq(&dev_priv->irq_lock); 1135 /* Speed up work cancelation during disabling rps interrupts. */ 1136 if (!dev_priv->rps.interrupts_enabled) { 1137 spin_unlock_irq(&dev_priv->irq_lock); 1138 return; 1139 } 1140 1141 pm_iir = dev_priv->rps.pm_iir; 1142 dev_priv->rps.pm_iir = 0; 1143 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ 1144 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); 1145 client_boost = dev_priv->rps.client_boost; 1146 dev_priv->rps.client_boost = false; 1147 spin_unlock_irq(&dev_priv->irq_lock); 1148 1149 /* Make sure we didn't queue anything we're not going to process. */ 1150 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1151 1152 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) 1153 return; 1154 1155 mutex_lock(&dev_priv->rps.hw_lock); 1156 1157 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); 1158 1159 adj = dev_priv->rps.last_adj; 1160 new_delay = dev_priv->rps.cur_freq; 1161 min = dev_priv->rps.min_freq_softlimit; 1162 max = dev_priv->rps.max_freq_softlimit; 1163 if (client_boost || any_waiters(dev_priv)) 1164 max = dev_priv->rps.max_freq; 1165 if (client_boost && new_delay < dev_priv->rps.boost_freq) { 1166 new_delay = dev_priv->rps.boost_freq; 1167 adj = 0; 1168 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1169 if (adj > 0) 1170 adj *= 2; 1171 else /* CHV needs even encode values */ 1172 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; 1173 /* 1174 * For better performance, jump directly 1175 * to RPe if we're below it. 1176 */ 1177 if (new_delay < dev_priv->rps.efficient_freq - adj) { 1178 new_delay = dev_priv->rps.efficient_freq; 1179 adj = 0; 1180 } 1181 } else if (client_boost || any_waiters(dev_priv)) { 1182 adj = 0; 1183 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1184 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq) 1185 new_delay = dev_priv->rps.efficient_freq; 1186 else 1187 new_delay = dev_priv->rps.min_freq_softlimit; 1188 adj = 0; 1189 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1190 if (adj < 0) 1191 adj *= 2; 1192 else /* CHV needs even encode values */ 1193 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; 1194 } else { /* unknown event */ 1195 adj = 0; 1196 } 1197 1198 dev_priv->rps.last_adj = adj; 1199 1200 /* sysfs frequency interfaces may have snuck in while servicing the 1201 * interrupt 1202 */ 1203 new_delay += adj; 1204 new_delay = clamp_t(int, new_delay, min, max); 1205 1206 intel_set_rps(dev_priv, new_delay); 1207 1208 mutex_unlock(&dev_priv->rps.hw_lock); 1209 } 1210 1211 1212 /** 1213 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1214 * occurred. 1215 * @work: workqueue struct 1216 * 1217 * Doesn't actually do anything except notify userspace. As a consequence of 1218 * this event, userspace should try to remap the bad rows since statistically 1219 * it is likely the same row is more likely to go bad again. 1220 */ 1221 static void ivybridge_parity_work(struct work_struct *work) 1222 { 1223 struct drm_i915_private *dev_priv = 1224 container_of(work, struct drm_i915_private, l3_parity.error_work); 1225 u32 error_status, row, bank, subbank; 1226 char *parity_event[6]; 1227 uint32_t misccpctl; 1228 uint8_t slice = 0; 1229 1230 /* We must turn off DOP level clock gating to access the L3 registers. 1231 * In order to prevent a get/put style interface, acquire struct mutex 1232 * any time we access those registers. 1233 */ 1234 mutex_lock(&dev_priv->drm.struct_mutex); 1235 1236 /* If we've screwed up tracking, just let the interrupt fire again */ 1237 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1238 goto out; 1239 1240 misccpctl = I915_READ(GEN7_MISCCPCTL); 1241 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1242 POSTING_READ(GEN7_MISCCPCTL); 1243 1244 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1245 i915_reg_t reg; 1246 1247 slice--; 1248 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) 1249 break; 1250 1251 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1252 1253 reg = GEN7_L3CDERRST1(slice); 1254 1255 error_status = I915_READ(reg); 1256 row = GEN7_PARITY_ERROR_ROW(error_status); 1257 bank = GEN7_PARITY_ERROR_BANK(error_status); 1258 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1259 1260 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1261 POSTING_READ(reg); 1262 1263 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1264 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1265 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1266 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1267 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1268 parity_event[5] = NULL; 1269 1270 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1271 KOBJ_CHANGE, parity_event); 1272 1273 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1274 slice, row, bank, subbank); 1275 1276 kfree(parity_event[4]); 1277 kfree(parity_event[3]); 1278 kfree(parity_event[2]); 1279 kfree(parity_event[1]); 1280 } 1281 1282 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1283 1284 out: 1285 WARN_ON(dev_priv->l3_parity.which_slice); 1286 spin_lock_irq(&dev_priv->irq_lock); 1287 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1288 spin_unlock_irq(&dev_priv->irq_lock); 1289 1290 mutex_unlock(&dev_priv->drm.struct_mutex); 1291 } 1292 1293 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, 1294 u32 iir) 1295 { 1296 if (!HAS_L3_DPF(dev_priv)) 1297 return; 1298 1299 spin_lock(&dev_priv->irq_lock); 1300 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1301 spin_unlock(&dev_priv->irq_lock); 1302 1303 iir &= GT_PARITY_ERROR(dev_priv); 1304 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1305 dev_priv->l3_parity.which_slice |= 1 << 1; 1306 1307 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1308 dev_priv->l3_parity.which_slice |= 1 << 0; 1309 1310 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1311 } 1312 1313 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, 1314 u32 gt_iir) 1315 { 1316 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1317 notify_ring(dev_priv->engine[RCS]); 1318 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1319 notify_ring(dev_priv->engine[VCS]); 1320 } 1321 1322 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, 1323 u32 gt_iir) 1324 { 1325 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1326 notify_ring(dev_priv->engine[RCS]); 1327 if (gt_iir & GT_BSD_USER_INTERRUPT) 1328 notify_ring(dev_priv->engine[VCS]); 1329 if (gt_iir & GT_BLT_USER_INTERRUPT) 1330 notify_ring(dev_priv->engine[BCS]); 1331 1332 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1333 GT_BSD_CS_ERROR_INTERRUPT | 1334 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) 1335 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); 1336 1337 if (gt_iir & GT_PARITY_ERROR(dev_priv)) 1338 ivybridge_parity_error_irq_handler(dev_priv, gt_iir); 1339 } 1340 1341 static __always_inline void 1342 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift) 1343 { 1344 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) 1345 notify_ring(engine); 1346 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) 1347 tasklet_schedule(&engine->irq_tasklet); 1348 } 1349 1350 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv, 1351 u32 master_ctl, 1352 u32 gt_iir[4]) 1353 { 1354 irqreturn_t ret = IRQ_NONE; 1355 1356 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1357 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0)); 1358 if (gt_iir[0]) { 1359 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]); 1360 ret = IRQ_HANDLED; 1361 } else 1362 DRM_ERROR("The master control interrupt lied (GT0)!\n"); 1363 } 1364 1365 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1366 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1)); 1367 if (gt_iir[1]) { 1368 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]); 1369 ret = IRQ_HANDLED; 1370 } else 1371 DRM_ERROR("The master control interrupt lied (GT1)!\n"); 1372 } 1373 1374 if (master_ctl & GEN8_GT_VECS_IRQ) { 1375 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3)); 1376 if (gt_iir[3]) { 1377 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]); 1378 ret = IRQ_HANDLED; 1379 } else 1380 DRM_ERROR("The master control interrupt lied (GT3)!\n"); 1381 } 1382 1383 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1384 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2)); 1385 if (gt_iir[2] & (dev_priv->pm_rps_events | 1386 dev_priv->pm_guc_events)) { 1387 I915_WRITE_FW(GEN8_GT_IIR(2), 1388 gt_iir[2] & (dev_priv->pm_rps_events | 1389 dev_priv->pm_guc_events)); 1390 ret = IRQ_HANDLED; 1391 } else 1392 DRM_ERROR("The master control interrupt lied (PM)!\n"); 1393 } 1394 1395 return ret; 1396 } 1397 1398 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv, 1399 u32 gt_iir[4]) 1400 { 1401 if (gt_iir[0]) { 1402 gen8_cs_irq_handler(dev_priv->engine[RCS], 1403 gt_iir[0], GEN8_RCS_IRQ_SHIFT); 1404 gen8_cs_irq_handler(dev_priv->engine[BCS], 1405 gt_iir[0], GEN8_BCS_IRQ_SHIFT); 1406 } 1407 1408 if (gt_iir[1]) { 1409 gen8_cs_irq_handler(dev_priv->engine[VCS], 1410 gt_iir[1], GEN8_VCS1_IRQ_SHIFT); 1411 gen8_cs_irq_handler(dev_priv->engine[VCS2], 1412 gt_iir[1], GEN8_VCS2_IRQ_SHIFT); 1413 } 1414 1415 if (gt_iir[3]) 1416 gen8_cs_irq_handler(dev_priv->engine[VECS], 1417 gt_iir[3], GEN8_VECS_IRQ_SHIFT); 1418 1419 if (gt_iir[2] & dev_priv->pm_rps_events) 1420 gen6_rps_irq_handler(dev_priv, gt_iir[2]); 1421 1422 if (gt_iir[2] & dev_priv->pm_guc_events) 1423 gen9_guc_irq_handler(dev_priv, gt_iir[2]); 1424 } 1425 1426 static bool bxt_port_hotplug_long_detect(enum port port, u32 val) 1427 { 1428 switch (port) { 1429 case PORT_A: 1430 return val & PORTA_HOTPLUG_LONG_DETECT; 1431 case PORT_B: 1432 return val & PORTB_HOTPLUG_LONG_DETECT; 1433 case PORT_C: 1434 return val & PORTC_HOTPLUG_LONG_DETECT; 1435 default: 1436 return false; 1437 } 1438 } 1439 1440 static bool spt_port_hotplug2_long_detect(enum port port, u32 val) 1441 { 1442 switch (port) { 1443 case PORT_E: 1444 return val & PORTE_HOTPLUG_LONG_DETECT; 1445 default: 1446 return false; 1447 } 1448 } 1449 1450 static bool spt_port_hotplug_long_detect(enum port port, u32 val) 1451 { 1452 switch (port) { 1453 case PORT_A: 1454 return val & PORTA_HOTPLUG_LONG_DETECT; 1455 case PORT_B: 1456 return val & PORTB_HOTPLUG_LONG_DETECT; 1457 case PORT_C: 1458 return val & PORTC_HOTPLUG_LONG_DETECT; 1459 case PORT_D: 1460 return val & PORTD_HOTPLUG_LONG_DETECT; 1461 default: 1462 return false; 1463 } 1464 } 1465 1466 static bool ilk_port_hotplug_long_detect(enum port port, u32 val) 1467 { 1468 switch (port) { 1469 case PORT_A: 1470 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1471 default: 1472 return false; 1473 } 1474 } 1475 1476 static bool pch_port_hotplug_long_detect(enum port port, u32 val) 1477 { 1478 switch (port) { 1479 case PORT_B: 1480 return val & PORTB_HOTPLUG_LONG_DETECT; 1481 case PORT_C: 1482 return val & PORTC_HOTPLUG_LONG_DETECT; 1483 case PORT_D: 1484 return val & PORTD_HOTPLUG_LONG_DETECT; 1485 default: 1486 return false; 1487 } 1488 } 1489 1490 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val) 1491 { 1492 switch (port) { 1493 case PORT_B: 1494 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1495 case PORT_C: 1496 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1497 case PORT_D: 1498 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1499 default: 1500 return false; 1501 } 1502 } 1503 1504 /* 1505 * Get a bit mask of pins that have triggered, and which ones may be long. 1506 * This can be called multiple times with the same masks to accumulate 1507 * hotplug detection results from several registers. 1508 * 1509 * Note that the caller is expected to zero out the masks initially. 1510 */ 1511 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask, 1512 u32 hotplug_trigger, u32 dig_hotplug_reg, 1513 const u32 hpd[HPD_NUM_PINS], 1514 bool long_pulse_detect(enum port port, u32 val)) 1515 { 1516 enum port port; 1517 int i; 1518 1519 for_each_hpd_pin(i) { 1520 if ((hpd[i] & hotplug_trigger) == 0) 1521 continue; 1522 1523 *pin_mask |= BIT(i); 1524 1525 if (!intel_hpd_pin_to_port(i, &port)) 1526 continue; 1527 1528 if (long_pulse_detect(port, dig_hotplug_reg)) 1529 *long_mask |= BIT(i); 1530 } 1531 1532 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n", 1533 hotplug_trigger, dig_hotplug_reg, *pin_mask); 1534 1535 } 1536 1537 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1538 { 1539 wake_up_all(&dev_priv->gmbus_wait_queue); 1540 } 1541 1542 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1543 { 1544 wake_up_all(&dev_priv->gmbus_wait_queue); 1545 } 1546 1547 #if defined(CONFIG_DEBUG_FS) 1548 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1549 enum pipe pipe, 1550 uint32_t crc0, uint32_t crc1, 1551 uint32_t crc2, uint32_t crc3, 1552 uint32_t crc4) 1553 { 1554 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1555 struct intel_pipe_crc_entry *entry; 1556 int head, tail; 1557 1558 spin_lock(&pipe_crc->lock); 1559 1560 if (!pipe_crc->entries) { 1561 spin_unlock(&pipe_crc->lock); 1562 DRM_DEBUG_KMS("spurious interrupt\n"); 1563 return; 1564 } 1565 1566 head = pipe_crc->head; 1567 tail = pipe_crc->tail; 1568 1569 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { 1570 spin_unlock(&pipe_crc->lock); 1571 DRM_ERROR("CRC buffer overflowing\n"); 1572 return; 1573 } 1574 1575 entry = &pipe_crc->entries[head]; 1576 1577 entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm, 1578 pipe); 1579 entry->crc[0] = crc0; 1580 entry->crc[1] = crc1; 1581 entry->crc[2] = crc2; 1582 entry->crc[3] = crc3; 1583 entry->crc[4] = crc4; 1584 1585 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 1586 pipe_crc->head = head; 1587 1588 spin_unlock(&pipe_crc->lock); 1589 1590 wake_up_interruptible(&pipe_crc->wq); 1591 } 1592 #else 1593 static inline void 1594 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1595 enum pipe pipe, 1596 uint32_t crc0, uint32_t crc1, 1597 uint32_t crc2, uint32_t crc3, 1598 uint32_t crc4) {} 1599 #endif 1600 1601 1602 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1603 enum pipe pipe) 1604 { 1605 display_pipe_crc_irq_handler(dev_priv, pipe, 1606 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1607 0, 0, 0, 0); 1608 } 1609 1610 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1611 enum pipe pipe) 1612 { 1613 display_pipe_crc_irq_handler(dev_priv, pipe, 1614 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1615 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1616 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1617 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1618 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1619 } 1620 1621 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1622 enum pipe pipe) 1623 { 1624 uint32_t res1, res2; 1625 1626 if (INTEL_GEN(dev_priv) >= 3) 1627 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1628 else 1629 res1 = 0; 1630 1631 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1632 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1633 else 1634 res2 = 0; 1635 1636 display_pipe_crc_irq_handler(dev_priv, pipe, 1637 I915_READ(PIPE_CRC_RES_RED(pipe)), 1638 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1639 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1640 res1, res2); 1641 } 1642 1643 /* The RPS events need forcewake, so we add them to a work queue and mask their 1644 * IMR bits until the work is done. Other interrupts can be processed without 1645 * the work queue. */ 1646 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1647 { 1648 if (pm_iir & dev_priv->pm_rps_events) { 1649 spin_lock(&dev_priv->irq_lock); 1650 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1651 if (dev_priv->rps.interrupts_enabled) { 1652 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events; 1653 schedule_work(&dev_priv->rps.work); 1654 } 1655 spin_unlock(&dev_priv->irq_lock); 1656 } 1657 1658 if (INTEL_INFO(dev_priv)->gen >= 8) 1659 return; 1660 1661 if (HAS_VEBOX(dev_priv)) { 1662 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1663 notify_ring(dev_priv->engine[VECS]); 1664 1665 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1666 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1667 } 1668 } 1669 1670 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) 1671 { 1672 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) { 1673 /* Sample the log buffer flush related bits & clear them out now 1674 * itself from the message identity register to minimize the 1675 * probability of losing a flush interrupt, when there are back 1676 * to back flush interrupts. 1677 * There can be a new flush interrupt, for different log buffer 1678 * type (like for ISR), whilst Host is handling one (for DPC). 1679 * Since same bit is used in message register for ISR & DPC, it 1680 * could happen that GuC sets the bit for 2nd interrupt but Host 1681 * clears out the bit on handling the 1st interrupt. 1682 */ 1683 u32 msg, flush; 1684 1685 msg = I915_READ(SOFT_SCRATCH(15)); 1686 flush = msg & (GUC2HOST_MSG_CRASH_DUMP_POSTED | 1687 GUC2HOST_MSG_FLUSH_LOG_BUFFER); 1688 if (flush) { 1689 /* Clear the message bits that are handled */ 1690 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush); 1691 1692 /* Handle flush interrupt in bottom half */ 1693 queue_work(dev_priv->guc.log.flush_wq, 1694 &dev_priv->guc.log.flush_work); 1695 1696 dev_priv->guc.log.flush_interrupt_count++; 1697 } else { 1698 /* Not clearing of unhandled event bits won't result in 1699 * re-triggering of the interrupt. 1700 */ 1701 } 1702 } 1703 } 1704 1705 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv, 1706 enum pipe pipe) 1707 { 1708 bool ret; 1709 1710 ret = drm_handle_vblank(&dev_priv->drm, pipe); 1711 if (ret) 1712 intel_finish_page_flip_mmio(dev_priv, pipe); 1713 1714 return ret; 1715 } 1716 1717 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1718 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1719 { 1720 int pipe; 1721 1722 spin_lock(&dev_priv->irq_lock); 1723 1724 if (!dev_priv->display_irqs_enabled) { 1725 spin_unlock(&dev_priv->irq_lock); 1726 return; 1727 } 1728 1729 for_each_pipe(dev_priv, pipe) { 1730 i915_reg_t reg; 1731 u32 mask, iir_bit = 0; 1732 1733 /* 1734 * PIPESTAT bits get signalled even when the interrupt is 1735 * disabled with the mask bits, and some of the status bits do 1736 * not generate interrupts at all (like the underrun bit). Hence 1737 * we need to be careful that we only handle what we want to 1738 * handle. 1739 */ 1740 1741 /* fifo underruns are filterered in the underrun handler. */ 1742 mask = PIPE_FIFO_UNDERRUN_STATUS; 1743 1744 switch (pipe) { 1745 case PIPE_A: 1746 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1747 break; 1748 case PIPE_B: 1749 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1750 break; 1751 case PIPE_C: 1752 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1753 break; 1754 } 1755 if (iir & iir_bit) 1756 mask |= dev_priv->pipestat_irq_mask[pipe]; 1757 1758 if (!mask) 1759 continue; 1760 1761 reg = PIPESTAT(pipe); 1762 mask |= PIPESTAT_INT_ENABLE_MASK; 1763 pipe_stats[pipe] = I915_READ(reg) & mask; 1764 1765 /* 1766 * Clear the PIPE*STAT regs before the IIR 1767 */ 1768 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS | 1769 PIPESTAT_INT_STATUS_MASK)) 1770 I915_WRITE(reg, pipe_stats[pipe]); 1771 } 1772 spin_unlock(&dev_priv->irq_lock); 1773 } 1774 1775 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1776 u32 pipe_stats[I915_MAX_PIPES]) 1777 { 1778 enum pipe pipe; 1779 1780 for_each_pipe(dev_priv, pipe) { 1781 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && 1782 intel_pipe_handle_vblank(dev_priv, pipe)) 1783 intel_check_page_flip(dev_priv, pipe); 1784 1785 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) 1786 intel_finish_page_flip_cs(dev_priv, pipe); 1787 1788 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1789 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1790 1791 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1792 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1793 } 1794 1795 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1796 gmbus_irq_handler(dev_priv); 1797 } 1798 1799 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1800 { 1801 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); 1802 1803 if (hotplug_status) 1804 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 1805 1806 return hotplug_status; 1807 } 1808 1809 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1810 u32 hotplug_status) 1811 { 1812 u32 pin_mask = 0, long_mask = 0; 1813 1814 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 1815 IS_CHERRYVIEW(dev_priv)) { 1816 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1817 1818 if (hotplug_trigger) { 1819 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 1820 hotplug_trigger, hpd_status_g4x, 1821 i9xx_port_hotplug_long_detect); 1822 1823 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1824 } 1825 1826 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1827 dp_aux_irq_handler(dev_priv); 1828 } else { 1829 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1830 1831 if (hotplug_trigger) { 1832 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 1833 hotplug_trigger, hpd_status_i915, 1834 i9xx_port_hotplug_long_detect); 1835 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1836 } 1837 } 1838 } 1839 1840 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1841 { 1842 struct drm_device *dev = arg; 1843 struct drm_i915_private *dev_priv = to_i915(dev); 1844 irqreturn_t ret = IRQ_NONE; 1845 1846 if (!intel_irqs_enabled(dev_priv)) 1847 return IRQ_NONE; 1848 1849 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1850 disable_rpm_wakeref_asserts(dev_priv); 1851 1852 do { 1853 u32 iir, gt_iir, pm_iir; 1854 u32 pipe_stats[I915_MAX_PIPES] = {}; 1855 u32 hotplug_status = 0; 1856 u32 ier = 0; 1857 1858 gt_iir = I915_READ(GTIIR); 1859 pm_iir = I915_READ(GEN6_PMIIR); 1860 iir = I915_READ(VLV_IIR); 1861 1862 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1863 break; 1864 1865 ret = IRQ_HANDLED; 1866 1867 /* 1868 * Theory on interrupt generation, based on empirical evidence: 1869 * 1870 * x = ((VLV_IIR & VLV_IER) || 1871 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1872 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1873 * 1874 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1875 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1876 * guarantee the CPU interrupt will be raised again even if we 1877 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1878 * bits this time around. 1879 */ 1880 I915_WRITE(VLV_MASTER_IER, 0); 1881 ier = I915_READ(VLV_IER); 1882 I915_WRITE(VLV_IER, 0); 1883 1884 if (gt_iir) 1885 I915_WRITE(GTIIR, gt_iir); 1886 if (pm_iir) 1887 I915_WRITE(GEN6_PMIIR, pm_iir); 1888 1889 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1890 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1891 1892 /* Call regardless, as some status bits might not be 1893 * signalled in iir */ 1894 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1895 1896 /* 1897 * VLV_IIR is single buffered, and reflects the level 1898 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1899 */ 1900 if (iir) 1901 I915_WRITE(VLV_IIR, iir); 1902 1903 I915_WRITE(VLV_IER, ier); 1904 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1905 POSTING_READ(VLV_MASTER_IER); 1906 1907 if (gt_iir) 1908 snb_gt_irq_handler(dev_priv, gt_iir); 1909 if (pm_iir) 1910 gen6_rps_irq_handler(dev_priv, pm_iir); 1911 1912 if (hotplug_status) 1913 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1914 1915 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1916 } while (0); 1917 1918 enable_rpm_wakeref_asserts(dev_priv); 1919 1920 return ret; 1921 } 1922 1923 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1924 { 1925 struct drm_device *dev = arg; 1926 struct drm_i915_private *dev_priv = to_i915(dev); 1927 irqreturn_t ret = IRQ_NONE; 1928 1929 if (!intel_irqs_enabled(dev_priv)) 1930 return IRQ_NONE; 1931 1932 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1933 disable_rpm_wakeref_asserts(dev_priv); 1934 1935 do { 1936 u32 master_ctl, iir; 1937 u32 gt_iir[4] = {}; 1938 u32 pipe_stats[I915_MAX_PIPES] = {}; 1939 u32 hotplug_status = 0; 1940 u32 ier = 0; 1941 1942 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1943 iir = I915_READ(VLV_IIR); 1944 1945 if (master_ctl == 0 && iir == 0) 1946 break; 1947 1948 ret = IRQ_HANDLED; 1949 1950 /* 1951 * Theory on interrupt generation, based on empirical evidence: 1952 * 1953 * x = ((VLV_IIR & VLV_IER) || 1954 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1955 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1956 * 1957 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1958 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1959 * guarantee the CPU interrupt will be raised again even if we 1960 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1961 * bits this time around. 1962 */ 1963 I915_WRITE(GEN8_MASTER_IRQ, 0); 1964 ier = I915_READ(VLV_IER); 1965 I915_WRITE(VLV_IER, 0); 1966 1967 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 1968 1969 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1970 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1971 1972 /* Call regardless, as some status bits might not be 1973 * signalled in iir */ 1974 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1975 1976 /* 1977 * VLV_IIR is single buffered, and reflects the level 1978 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1979 */ 1980 if (iir) 1981 I915_WRITE(VLV_IIR, iir); 1982 1983 I915_WRITE(VLV_IER, ier); 1984 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1985 POSTING_READ(GEN8_MASTER_IRQ); 1986 1987 gen8_gt_irq_handler(dev_priv, gt_iir); 1988 1989 if (hotplug_status) 1990 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1991 1992 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1993 } while (0); 1994 1995 enable_rpm_wakeref_asserts(dev_priv); 1996 1997 return ret; 1998 } 1999 2000 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2001 u32 hotplug_trigger, 2002 const u32 hpd[HPD_NUM_PINS]) 2003 { 2004 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2005 2006 /* 2007 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 2008 * unless we touch the hotplug register, even if hotplug_trigger is 2009 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 2010 * errors. 2011 */ 2012 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2013 if (!hotplug_trigger) { 2014 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 2015 PORTD_HOTPLUG_STATUS_MASK | 2016 PORTC_HOTPLUG_STATUS_MASK | 2017 PORTB_HOTPLUG_STATUS_MASK; 2018 dig_hotplug_reg &= ~mask; 2019 } 2020 2021 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2022 if (!hotplug_trigger) 2023 return; 2024 2025 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2026 dig_hotplug_reg, hpd, 2027 pch_port_hotplug_long_detect); 2028 2029 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2030 } 2031 2032 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2033 { 2034 int pipe; 2035 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2036 2037 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 2038 2039 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2040 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2041 SDE_AUDIO_POWER_SHIFT); 2042 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2043 port_name(port)); 2044 } 2045 2046 if (pch_iir & SDE_AUX_MASK) 2047 dp_aux_irq_handler(dev_priv); 2048 2049 if (pch_iir & SDE_GMBUS) 2050 gmbus_irq_handler(dev_priv); 2051 2052 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2053 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2054 2055 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2056 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2057 2058 if (pch_iir & SDE_POISON) 2059 DRM_ERROR("PCH poison interrupt\n"); 2060 2061 if (pch_iir & SDE_FDI_MASK) 2062 for_each_pipe(dev_priv, pipe) 2063 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2064 pipe_name(pipe), 2065 I915_READ(FDI_RX_IIR(pipe))); 2066 2067 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2068 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2069 2070 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2071 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2072 2073 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2074 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); 2075 2076 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2077 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); 2078 } 2079 2080 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 2081 { 2082 u32 err_int = I915_READ(GEN7_ERR_INT); 2083 enum pipe pipe; 2084 2085 if (err_int & ERR_INT_POISON) 2086 DRM_ERROR("Poison interrupt\n"); 2087 2088 for_each_pipe(dev_priv, pipe) { 2089 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 2090 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2091 2092 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2093 if (IS_IVYBRIDGE(dev_priv)) 2094 ivb_pipe_crc_irq_handler(dev_priv, pipe); 2095 else 2096 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2097 } 2098 } 2099 2100 I915_WRITE(GEN7_ERR_INT, err_int); 2101 } 2102 2103 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 2104 { 2105 u32 serr_int = I915_READ(SERR_INT); 2106 2107 if (serr_int & SERR_INT_POISON) 2108 DRM_ERROR("PCH poison interrupt\n"); 2109 2110 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) 2111 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); 2112 2113 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) 2114 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); 2115 2116 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) 2117 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C); 2118 2119 I915_WRITE(SERR_INT, serr_int); 2120 } 2121 2122 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2123 { 2124 int pipe; 2125 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2126 2127 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 2128 2129 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2130 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2131 SDE_AUDIO_POWER_SHIFT_CPT); 2132 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2133 port_name(port)); 2134 } 2135 2136 if (pch_iir & SDE_AUX_MASK_CPT) 2137 dp_aux_irq_handler(dev_priv); 2138 2139 if (pch_iir & SDE_GMBUS_CPT) 2140 gmbus_irq_handler(dev_priv); 2141 2142 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2143 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2144 2145 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2146 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2147 2148 if (pch_iir & SDE_FDI_MASK_CPT) 2149 for_each_pipe(dev_priv, pipe) 2150 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2151 pipe_name(pipe), 2152 I915_READ(FDI_RX_IIR(pipe))); 2153 2154 if (pch_iir & SDE_ERROR_CPT) 2155 cpt_serr_int_handler(dev_priv); 2156 } 2157 2158 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2159 { 2160 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2161 ~SDE_PORTE_HOTPLUG_SPT; 2162 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2163 u32 pin_mask = 0, long_mask = 0; 2164 2165 if (hotplug_trigger) { 2166 u32 dig_hotplug_reg; 2167 2168 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2169 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2170 2171 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2172 dig_hotplug_reg, hpd_spt, 2173 spt_port_hotplug_long_detect); 2174 } 2175 2176 if (hotplug2_trigger) { 2177 u32 dig_hotplug_reg; 2178 2179 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 2180 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2181 2182 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger, 2183 dig_hotplug_reg, hpd_spt, 2184 spt_port_hotplug2_long_detect); 2185 } 2186 2187 if (pin_mask) 2188 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2189 2190 if (pch_iir & SDE_GMBUS_CPT) 2191 gmbus_irq_handler(dev_priv); 2192 } 2193 2194 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2195 u32 hotplug_trigger, 2196 const u32 hpd[HPD_NUM_PINS]) 2197 { 2198 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2199 2200 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2201 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2202 2203 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2204 dig_hotplug_reg, hpd, 2205 ilk_port_hotplug_long_detect); 2206 2207 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2208 } 2209 2210 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2211 u32 de_iir) 2212 { 2213 enum pipe pipe; 2214 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2215 2216 if (hotplug_trigger) 2217 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 2218 2219 if (de_iir & DE_AUX_CHANNEL_A) 2220 dp_aux_irq_handler(dev_priv); 2221 2222 if (de_iir & DE_GSE) 2223 intel_opregion_asle_intr(dev_priv); 2224 2225 if (de_iir & DE_POISON) 2226 DRM_ERROR("Poison interrupt\n"); 2227 2228 for_each_pipe(dev_priv, pipe) { 2229 if (de_iir & DE_PIPE_VBLANK(pipe) && 2230 intel_pipe_handle_vblank(dev_priv, pipe)) 2231 intel_check_page_flip(dev_priv, pipe); 2232 2233 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2234 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2235 2236 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2237 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2238 2239 /* plane/pipes map 1:1 on ilk+ */ 2240 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) 2241 intel_finish_page_flip_cs(dev_priv, pipe); 2242 } 2243 2244 /* check event from PCH */ 2245 if (de_iir & DE_PCH_EVENT) { 2246 u32 pch_iir = I915_READ(SDEIIR); 2247 2248 if (HAS_PCH_CPT(dev_priv)) 2249 cpt_irq_handler(dev_priv, pch_iir); 2250 else 2251 ibx_irq_handler(dev_priv, pch_iir); 2252 2253 /* should clear PCH hotplug event before clear CPU irq */ 2254 I915_WRITE(SDEIIR, pch_iir); 2255 } 2256 2257 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT) 2258 ironlake_rps_change_irq_handler(dev_priv); 2259 } 2260 2261 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2262 u32 de_iir) 2263 { 2264 enum pipe pipe; 2265 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2266 2267 if (hotplug_trigger) 2268 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2269 2270 if (de_iir & DE_ERR_INT_IVB) 2271 ivb_err_int_handler(dev_priv); 2272 2273 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2274 dp_aux_irq_handler(dev_priv); 2275 2276 if (de_iir & DE_GSE_IVB) 2277 intel_opregion_asle_intr(dev_priv); 2278 2279 for_each_pipe(dev_priv, pipe) { 2280 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) && 2281 intel_pipe_handle_vblank(dev_priv, pipe)) 2282 intel_check_page_flip(dev_priv, pipe); 2283 2284 /* plane/pipes map 1:1 on ilk+ */ 2285 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) 2286 intel_finish_page_flip_cs(dev_priv, pipe); 2287 } 2288 2289 /* check event from PCH */ 2290 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2291 u32 pch_iir = I915_READ(SDEIIR); 2292 2293 cpt_irq_handler(dev_priv, pch_iir); 2294 2295 /* clear PCH hotplug event before clear CPU irq */ 2296 I915_WRITE(SDEIIR, pch_iir); 2297 } 2298 } 2299 2300 /* 2301 * To handle irqs with the minimum potential races with fresh interrupts, we: 2302 * 1 - Disable Master Interrupt Control. 2303 * 2 - Find the source(s) of the interrupt. 2304 * 3 - Clear the Interrupt Identity bits (IIR). 2305 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2306 * 5 - Re-enable Master Interrupt Control. 2307 */ 2308 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2309 { 2310 struct drm_device *dev = arg; 2311 struct drm_i915_private *dev_priv = to_i915(dev); 2312 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2313 irqreturn_t ret = IRQ_NONE; 2314 2315 if (!intel_irqs_enabled(dev_priv)) 2316 return IRQ_NONE; 2317 2318 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2319 disable_rpm_wakeref_asserts(dev_priv); 2320 2321 /* disable master interrupt before clearing iir */ 2322 de_ier = I915_READ(DEIER); 2323 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2324 POSTING_READ(DEIER); 2325 2326 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2327 * interrupts will will be stored on its back queue, and then we'll be 2328 * able to process them after we restore SDEIER (as soon as we restore 2329 * it, we'll get an interrupt if SDEIIR still has something to process 2330 * due to its back queue). */ 2331 if (!HAS_PCH_NOP(dev_priv)) { 2332 sde_ier = I915_READ(SDEIER); 2333 I915_WRITE(SDEIER, 0); 2334 POSTING_READ(SDEIER); 2335 } 2336 2337 /* Find, clear, then process each source of interrupt */ 2338 2339 gt_iir = I915_READ(GTIIR); 2340 if (gt_iir) { 2341 I915_WRITE(GTIIR, gt_iir); 2342 ret = IRQ_HANDLED; 2343 if (INTEL_GEN(dev_priv) >= 6) 2344 snb_gt_irq_handler(dev_priv, gt_iir); 2345 else 2346 ilk_gt_irq_handler(dev_priv, gt_iir); 2347 } 2348 2349 de_iir = I915_READ(DEIIR); 2350 if (de_iir) { 2351 I915_WRITE(DEIIR, de_iir); 2352 ret = IRQ_HANDLED; 2353 if (INTEL_GEN(dev_priv) >= 7) 2354 ivb_display_irq_handler(dev_priv, de_iir); 2355 else 2356 ilk_display_irq_handler(dev_priv, de_iir); 2357 } 2358 2359 if (INTEL_GEN(dev_priv) >= 6) { 2360 u32 pm_iir = I915_READ(GEN6_PMIIR); 2361 if (pm_iir) { 2362 I915_WRITE(GEN6_PMIIR, pm_iir); 2363 ret = IRQ_HANDLED; 2364 gen6_rps_irq_handler(dev_priv, pm_iir); 2365 } 2366 } 2367 2368 I915_WRITE(DEIER, de_ier); 2369 POSTING_READ(DEIER); 2370 if (!HAS_PCH_NOP(dev_priv)) { 2371 I915_WRITE(SDEIER, sde_ier); 2372 POSTING_READ(SDEIER); 2373 } 2374 2375 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2376 enable_rpm_wakeref_asserts(dev_priv); 2377 2378 return ret; 2379 } 2380 2381 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2382 u32 hotplug_trigger, 2383 const u32 hpd[HPD_NUM_PINS]) 2384 { 2385 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2386 2387 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2388 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2389 2390 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, 2391 dig_hotplug_reg, hpd, 2392 bxt_port_hotplug_long_detect); 2393 2394 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2395 } 2396 2397 static irqreturn_t 2398 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2399 { 2400 irqreturn_t ret = IRQ_NONE; 2401 u32 iir; 2402 enum pipe pipe; 2403 2404 if (master_ctl & GEN8_DE_MISC_IRQ) { 2405 iir = I915_READ(GEN8_DE_MISC_IIR); 2406 if (iir) { 2407 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2408 ret = IRQ_HANDLED; 2409 if (iir & GEN8_DE_MISC_GSE) 2410 intel_opregion_asle_intr(dev_priv); 2411 else 2412 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2413 } 2414 else 2415 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2416 } 2417 2418 if (master_ctl & GEN8_DE_PORT_IRQ) { 2419 iir = I915_READ(GEN8_DE_PORT_IIR); 2420 if (iir) { 2421 u32 tmp_mask; 2422 bool found = false; 2423 2424 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2425 ret = IRQ_HANDLED; 2426 2427 tmp_mask = GEN8_AUX_CHANNEL_A; 2428 if (INTEL_INFO(dev_priv)->gen >= 9) 2429 tmp_mask |= GEN9_AUX_CHANNEL_B | 2430 GEN9_AUX_CHANNEL_C | 2431 GEN9_AUX_CHANNEL_D; 2432 2433 if (iir & tmp_mask) { 2434 dp_aux_irq_handler(dev_priv); 2435 found = true; 2436 } 2437 2438 if (IS_BROXTON(dev_priv)) { 2439 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2440 if (tmp_mask) { 2441 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2442 hpd_bxt); 2443 found = true; 2444 } 2445 } else if (IS_BROADWELL(dev_priv)) { 2446 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2447 if (tmp_mask) { 2448 ilk_hpd_irq_handler(dev_priv, 2449 tmp_mask, hpd_bdw); 2450 found = true; 2451 } 2452 } 2453 2454 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2455 gmbus_irq_handler(dev_priv); 2456 found = true; 2457 } 2458 2459 if (!found) 2460 DRM_ERROR("Unexpected DE Port interrupt\n"); 2461 } 2462 else 2463 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2464 } 2465 2466 for_each_pipe(dev_priv, pipe) { 2467 u32 flip_done, fault_errors; 2468 2469 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2470 continue; 2471 2472 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2473 if (!iir) { 2474 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2475 continue; 2476 } 2477 2478 ret = IRQ_HANDLED; 2479 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2480 2481 if (iir & GEN8_PIPE_VBLANK && 2482 intel_pipe_handle_vblank(dev_priv, pipe)) 2483 intel_check_page_flip(dev_priv, pipe); 2484 2485 flip_done = iir; 2486 if (INTEL_INFO(dev_priv)->gen >= 9) 2487 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE; 2488 else 2489 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE; 2490 2491 if (flip_done) 2492 intel_finish_page_flip_cs(dev_priv, pipe); 2493 2494 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2495 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2496 2497 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2498 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2499 2500 fault_errors = iir; 2501 if (INTEL_INFO(dev_priv)->gen >= 9) 2502 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2503 else 2504 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2505 2506 if (fault_errors) 2507 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", 2508 pipe_name(pipe), 2509 fault_errors); 2510 } 2511 2512 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2513 master_ctl & GEN8_DE_PCH_IRQ) { 2514 /* 2515 * FIXME(BDW): Assume for now that the new interrupt handling 2516 * scheme also closed the SDE interrupt handling race we've seen 2517 * on older pch-split platforms. But this needs testing. 2518 */ 2519 iir = I915_READ(SDEIIR); 2520 if (iir) { 2521 I915_WRITE(SDEIIR, iir); 2522 ret = IRQ_HANDLED; 2523 2524 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv)) 2525 spt_irq_handler(dev_priv, iir); 2526 else 2527 cpt_irq_handler(dev_priv, iir); 2528 } else { 2529 /* 2530 * Like on previous PCH there seems to be something 2531 * fishy going on with forwarding PCH interrupts. 2532 */ 2533 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); 2534 } 2535 } 2536 2537 return ret; 2538 } 2539 2540 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2541 { 2542 struct drm_device *dev = arg; 2543 struct drm_i915_private *dev_priv = to_i915(dev); 2544 u32 master_ctl; 2545 u32 gt_iir[4] = {}; 2546 irqreturn_t ret; 2547 2548 if (!intel_irqs_enabled(dev_priv)) 2549 return IRQ_NONE; 2550 2551 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ); 2552 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; 2553 if (!master_ctl) 2554 return IRQ_NONE; 2555 2556 I915_WRITE_FW(GEN8_MASTER_IRQ, 0); 2557 2558 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2559 disable_rpm_wakeref_asserts(dev_priv); 2560 2561 /* Find, clear, then process each source of interrupt */ 2562 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2563 gen8_gt_irq_handler(dev_priv, gt_iir); 2564 ret |= gen8_de_irq_handler(dev_priv, master_ctl); 2565 2566 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2567 POSTING_READ_FW(GEN8_MASTER_IRQ); 2568 2569 enable_rpm_wakeref_asserts(dev_priv); 2570 2571 return ret; 2572 } 2573 2574 static void i915_error_wake_up(struct drm_i915_private *dev_priv) 2575 { 2576 /* 2577 * Notify all waiters for GPU completion events that reset state has 2578 * been changed, and that they need to restart their wait after 2579 * checking for potential errors (and bail out to drop locks if there is 2580 * a gpu reset pending so that i915_error_work_func can acquire them). 2581 */ 2582 2583 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */ 2584 wake_up_all(&dev_priv->gpu_error.wait_queue); 2585 2586 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */ 2587 wake_up_all(&dev_priv->pending_flip_queue); 2588 } 2589 2590 /** 2591 * i915_reset_and_wakeup - do process context error handling work 2592 * @dev_priv: i915 device private 2593 * 2594 * Fire an error uevent so userspace can see that a hang or error 2595 * was detected. 2596 */ 2597 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv) 2598 { 2599 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj; 2600 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 2601 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 2602 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 2603 2604 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 2605 2606 DRM_DEBUG_DRIVER("resetting chip\n"); 2607 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 2608 2609 /* 2610 * In most cases it's guaranteed that we get here with an RPM 2611 * reference held, for example because there is a pending GPU 2612 * request that won't finish until the reset is done. This 2613 * isn't the case at least when we get here by doing a 2614 * simulated reset via debugs, so get an RPM reference. 2615 */ 2616 intel_runtime_pm_get(dev_priv); 2617 intel_prepare_reset(dev_priv); 2618 2619 do { 2620 /* 2621 * All state reset _must_ be completed before we update the 2622 * reset counter, for otherwise waiters might miss the reset 2623 * pending state and not properly drop locks, resulting in 2624 * deadlocks with the reset work. 2625 */ 2626 if (mutex_trylock(&dev_priv->drm.struct_mutex)) { 2627 i915_reset(dev_priv); 2628 mutex_unlock(&dev_priv->drm.struct_mutex); 2629 } 2630 2631 /* We need to wait for anyone holding the lock to wakeup */ 2632 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags, 2633 I915_RESET_IN_PROGRESS, 2634 TASK_UNINTERRUPTIBLE, 2635 HZ)); 2636 2637 intel_finish_reset(dev_priv); 2638 intel_runtime_pm_put(dev_priv); 2639 2640 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags)) 2641 kobject_uevent_env(kobj, 2642 KOBJ_CHANGE, reset_done_event); 2643 2644 /* 2645 * Note: The wake_up also serves as a memory barrier so that 2646 * waiters see the updated value of the dev_priv->gpu_error. 2647 */ 2648 wake_up_all(&dev_priv->gpu_error.reset_queue); 2649 } 2650 2651 static inline void 2652 i915_err_print_instdone(struct drm_i915_private *dev_priv, 2653 struct intel_instdone *instdone) 2654 { 2655 int slice; 2656 int subslice; 2657 2658 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone); 2659 2660 if (INTEL_GEN(dev_priv) <= 3) 2661 return; 2662 2663 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common); 2664 2665 if (INTEL_GEN(dev_priv) <= 6) 2666 return; 2667 2668 for_each_instdone_slice_subslice(dev_priv, slice, subslice) 2669 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n", 2670 slice, subslice, instdone->sampler[slice][subslice]); 2671 2672 for_each_instdone_slice_subslice(dev_priv, slice, subslice) 2673 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n", 2674 slice, subslice, instdone->row[slice][subslice]); 2675 } 2676 2677 static void i915_clear_error_registers(struct drm_i915_private *dev_priv) 2678 { 2679 u32 eir; 2680 2681 if (!IS_GEN2(dev_priv)) 2682 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER)); 2683 2684 if (INTEL_GEN(dev_priv) < 4) 2685 I915_WRITE(IPEIR, I915_READ(IPEIR)); 2686 else 2687 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965)); 2688 2689 I915_WRITE(EIR, I915_READ(EIR)); 2690 eir = I915_READ(EIR); 2691 if (eir) { 2692 /* 2693 * some errors might have become stuck, 2694 * mask them. 2695 */ 2696 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 2697 I915_WRITE(EMR, I915_READ(EMR) | eir); 2698 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 2699 } 2700 } 2701 2702 /** 2703 * i915_handle_error - handle a gpu error 2704 * @dev_priv: i915 device private 2705 * @engine_mask: mask representing engines that are hung 2706 * Do some basic checking of register state at error time and 2707 * dump it to the syslog. Also call i915_capture_error_state() to make 2708 * sure we get a record and make it available in debugfs. Fire a uevent 2709 * so userspace knows something bad happened (should trigger collection 2710 * of a ring dump etc.). 2711 * @fmt: Error message format string 2712 */ 2713 void i915_handle_error(struct drm_i915_private *dev_priv, 2714 u32 engine_mask, 2715 const char *fmt, ...) 2716 { 2717 va_list args; 2718 char error_msg[80]; 2719 2720 va_start(args, fmt); 2721 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 2722 va_end(args); 2723 2724 i915_capture_error_state(dev_priv, engine_mask, error_msg); 2725 i915_clear_error_registers(dev_priv); 2726 2727 if (!engine_mask) 2728 return; 2729 2730 if (test_and_set_bit(I915_RESET_IN_PROGRESS, 2731 &dev_priv->gpu_error.flags)) 2732 return; 2733 2734 /* 2735 * Wakeup waiting processes so that the reset function 2736 * i915_reset_and_wakeup doesn't deadlock trying to grab 2737 * various locks. By bumping the reset counter first, the woken 2738 * processes will see a reset in progress and back off, 2739 * releasing their locks and then wait for the reset completion. 2740 * We must do this for _all_ gpu waiters that might hold locks 2741 * that the reset work needs to acquire. 2742 * 2743 * Note: The wake_up also provides a memory barrier to ensure that the 2744 * waiters see the updated value of the reset flags. 2745 */ 2746 i915_error_wake_up(dev_priv); 2747 2748 i915_reset_and_wakeup(dev_priv); 2749 } 2750 2751 /* Called from drm generic code, passed 'crtc' which 2752 * we use as a pipe index 2753 */ 2754 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) 2755 { 2756 struct drm_i915_private *dev_priv = to_i915(dev); 2757 unsigned long irqflags; 2758 2759 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2760 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2761 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2762 2763 return 0; 2764 } 2765 2766 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) 2767 { 2768 struct drm_i915_private *dev_priv = to_i915(dev); 2769 unsigned long irqflags; 2770 2771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2772 i915_enable_pipestat(dev_priv, pipe, 2773 PIPE_START_VBLANK_INTERRUPT_STATUS); 2774 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2775 2776 return 0; 2777 } 2778 2779 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) 2780 { 2781 struct drm_i915_private *dev_priv = to_i915(dev); 2782 unsigned long irqflags; 2783 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 2784 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2785 2786 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2787 ilk_enable_display_irq(dev_priv, bit); 2788 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2789 2790 return 0; 2791 } 2792 2793 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) 2794 { 2795 struct drm_i915_private *dev_priv = to_i915(dev); 2796 unsigned long irqflags; 2797 2798 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2799 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2801 2802 return 0; 2803 } 2804 2805 /* Called from drm generic code, passed 'crtc' which 2806 * we use as a pipe index 2807 */ 2808 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) 2809 { 2810 struct drm_i915_private *dev_priv = to_i915(dev); 2811 unsigned long irqflags; 2812 2813 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2814 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2815 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2816 } 2817 2818 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) 2819 { 2820 struct drm_i915_private *dev_priv = to_i915(dev); 2821 unsigned long irqflags; 2822 2823 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2824 i915_disable_pipestat(dev_priv, pipe, 2825 PIPE_START_VBLANK_INTERRUPT_STATUS); 2826 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2827 } 2828 2829 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) 2830 { 2831 struct drm_i915_private *dev_priv = to_i915(dev); 2832 unsigned long irqflags; 2833 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? 2834 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2835 2836 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2837 ilk_disable_display_irq(dev_priv, bit); 2838 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2839 } 2840 2841 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) 2842 { 2843 struct drm_i915_private *dev_priv = to_i915(dev); 2844 unsigned long irqflags; 2845 2846 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2847 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2848 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2849 } 2850 2851 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 2852 { 2853 if (HAS_PCH_NOP(dev_priv)) 2854 return; 2855 2856 GEN5_IRQ_RESET(SDE); 2857 2858 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 2859 I915_WRITE(SERR_INT, 0xffffffff); 2860 } 2861 2862 /* 2863 * SDEIER is also touched by the interrupt handler to work around missed PCH 2864 * interrupts. Hence we can't update it after the interrupt handler is enabled - 2865 * instead we unconditionally enable all PCH interrupt sources here, but then 2866 * only unmask them as needed with SDEIMR. 2867 * 2868 * This function needs to be called before interrupts are enabled. 2869 */ 2870 static void ibx_irq_pre_postinstall(struct drm_device *dev) 2871 { 2872 struct drm_i915_private *dev_priv = to_i915(dev); 2873 2874 if (HAS_PCH_NOP(dev_priv)) 2875 return; 2876 2877 WARN_ON(I915_READ(SDEIER) != 0); 2878 I915_WRITE(SDEIER, 0xffffffff); 2879 POSTING_READ(SDEIER); 2880 } 2881 2882 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) 2883 { 2884 GEN5_IRQ_RESET(GT); 2885 if (INTEL_GEN(dev_priv) >= 6) 2886 GEN5_IRQ_RESET(GEN6_PM); 2887 } 2888 2889 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 2890 { 2891 enum pipe pipe; 2892 2893 if (IS_CHERRYVIEW(dev_priv)) 2894 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 2895 else 2896 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 2897 2898 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 2899 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 2900 2901 for_each_pipe(dev_priv, pipe) { 2902 I915_WRITE(PIPESTAT(pipe), 2903 PIPE_FIFO_UNDERRUN_STATUS | 2904 PIPESTAT_INT_STATUS_MASK); 2905 dev_priv->pipestat_irq_mask[pipe] = 0; 2906 } 2907 2908 GEN5_IRQ_RESET(VLV_); 2909 dev_priv->irq_mask = ~0; 2910 } 2911 2912 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 2913 { 2914 u32 pipestat_mask; 2915 u32 enable_mask; 2916 enum pipe pipe; 2917 2918 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | 2919 PIPE_CRC_DONE_INTERRUPT_STATUS; 2920 2921 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 2922 for_each_pipe(dev_priv, pipe) 2923 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 2924 2925 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 2926 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 2927 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 2928 if (IS_CHERRYVIEW(dev_priv)) 2929 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 2930 2931 WARN_ON(dev_priv->irq_mask != ~0); 2932 2933 dev_priv->irq_mask = ~enable_mask; 2934 2935 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask); 2936 } 2937 2938 /* drm_dma.h hooks 2939 */ 2940 static void ironlake_irq_reset(struct drm_device *dev) 2941 { 2942 struct drm_i915_private *dev_priv = to_i915(dev); 2943 2944 I915_WRITE(HWSTAM, 0xffffffff); 2945 2946 GEN5_IRQ_RESET(DE); 2947 if (IS_GEN7(dev_priv)) 2948 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 2949 2950 gen5_gt_irq_reset(dev_priv); 2951 2952 ibx_irq_reset(dev_priv); 2953 } 2954 2955 static void valleyview_irq_preinstall(struct drm_device *dev) 2956 { 2957 struct drm_i915_private *dev_priv = to_i915(dev); 2958 2959 I915_WRITE(VLV_MASTER_IER, 0); 2960 POSTING_READ(VLV_MASTER_IER); 2961 2962 gen5_gt_irq_reset(dev_priv); 2963 2964 spin_lock_irq(&dev_priv->irq_lock); 2965 if (dev_priv->display_irqs_enabled) 2966 vlv_display_irq_reset(dev_priv); 2967 spin_unlock_irq(&dev_priv->irq_lock); 2968 } 2969 2970 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 2971 { 2972 GEN8_IRQ_RESET_NDX(GT, 0); 2973 GEN8_IRQ_RESET_NDX(GT, 1); 2974 GEN8_IRQ_RESET_NDX(GT, 2); 2975 GEN8_IRQ_RESET_NDX(GT, 3); 2976 } 2977 2978 static void gen8_irq_reset(struct drm_device *dev) 2979 { 2980 struct drm_i915_private *dev_priv = to_i915(dev); 2981 int pipe; 2982 2983 I915_WRITE(GEN8_MASTER_IRQ, 0); 2984 POSTING_READ(GEN8_MASTER_IRQ); 2985 2986 gen8_gt_irq_reset(dev_priv); 2987 2988 for_each_pipe(dev_priv, pipe) 2989 if (intel_display_power_is_enabled(dev_priv, 2990 POWER_DOMAIN_PIPE(pipe))) 2991 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 2992 2993 GEN5_IRQ_RESET(GEN8_DE_PORT_); 2994 GEN5_IRQ_RESET(GEN8_DE_MISC_); 2995 GEN5_IRQ_RESET(GEN8_PCU_); 2996 2997 if (HAS_PCH_SPLIT(dev_priv)) 2998 ibx_irq_reset(dev_priv); 2999 } 3000 3001 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3002 unsigned int pipe_mask) 3003 { 3004 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3005 enum pipe pipe; 3006 3007 spin_lock_irq(&dev_priv->irq_lock); 3008 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3009 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3010 dev_priv->de_irq_mask[pipe], 3011 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3012 spin_unlock_irq(&dev_priv->irq_lock); 3013 } 3014 3015 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3016 unsigned int pipe_mask) 3017 { 3018 enum pipe pipe; 3019 3020 spin_lock_irq(&dev_priv->irq_lock); 3021 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3022 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3023 spin_unlock_irq(&dev_priv->irq_lock); 3024 3025 /* make sure we're done processing display irqs */ 3026 synchronize_irq(dev_priv->drm.irq); 3027 } 3028 3029 static void cherryview_irq_preinstall(struct drm_device *dev) 3030 { 3031 struct drm_i915_private *dev_priv = to_i915(dev); 3032 3033 I915_WRITE(GEN8_MASTER_IRQ, 0); 3034 POSTING_READ(GEN8_MASTER_IRQ); 3035 3036 gen8_gt_irq_reset(dev_priv); 3037 3038 GEN5_IRQ_RESET(GEN8_PCU_); 3039 3040 spin_lock_irq(&dev_priv->irq_lock); 3041 if (dev_priv->display_irqs_enabled) 3042 vlv_display_irq_reset(dev_priv); 3043 spin_unlock_irq(&dev_priv->irq_lock); 3044 } 3045 3046 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 3047 const u32 hpd[HPD_NUM_PINS]) 3048 { 3049 struct intel_encoder *encoder; 3050 u32 enabled_irqs = 0; 3051 3052 for_each_intel_encoder(&dev_priv->drm, encoder) 3053 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 3054 enabled_irqs |= hpd[encoder->hpd_pin]; 3055 3056 return enabled_irqs; 3057 } 3058 3059 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3060 { 3061 u32 hotplug_irqs, hotplug, enabled_irqs; 3062 3063 if (HAS_PCH_IBX(dev_priv)) { 3064 hotplug_irqs = SDE_HOTPLUG_MASK; 3065 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 3066 } else { 3067 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3068 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 3069 } 3070 3071 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3072 3073 /* 3074 * Enable digital hotplug on the PCH, and configure the DP short pulse 3075 * duration to 2ms (which is the minimum in the Display Port spec). 3076 * The pulse duration bits are reserved on LPT+. 3077 */ 3078 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3079 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); 3080 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3081 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3082 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3083 /* 3084 * When CPU and PCH are on the same package, port A 3085 * HPD must be enabled in both north and south. 3086 */ 3087 if (HAS_PCH_LPT_LP(dev_priv)) 3088 hotplug |= PORTA_HOTPLUG_ENABLE; 3089 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3090 } 3091 3092 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3093 { 3094 u32 hotplug_irqs, hotplug, enabled_irqs; 3095 3096 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3097 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3098 3099 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3100 3101 /* Enable digital hotplug on the PCH */ 3102 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3103 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE | 3104 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE; 3105 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3106 3107 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3108 hotplug |= PORTE_HOTPLUG_ENABLE; 3109 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3110 } 3111 3112 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3113 { 3114 u32 hotplug_irqs, hotplug, enabled_irqs; 3115 3116 if (INTEL_GEN(dev_priv) >= 8) { 3117 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3118 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3119 3120 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3121 } else if (INTEL_GEN(dev_priv) >= 7) { 3122 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3123 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3124 3125 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3126 } else { 3127 hotplug_irqs = DE_DP_A_HOTPLUG; 3128 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3129 3130 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3131 } 3132 3133 /* 3134 * Enable digital hotplug on the CPU, and configure the DP short pulse 3135 * duration to 2ms (which is the minimum in the Display Port spec) 3136 * The pulse duration bits are reserved on HSW+. 3137 */ 3138 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3139 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3140 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms; 3141 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3142 3143 ibx_hpd_irq_setup(dev_priv); 3144 } 3145 3146 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3147 { 3148 u32 hotplug_irqs, hotplug, enabled_irqs; 3149 3150 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3151 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3152 3153 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3154 3155 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3156 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE | 3157 PORTA_HOTPLUG_ENABLE; 3158 3159 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", 3160 hotplug, enabled_irqs); 3161 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3162 3163 /* 3164 * For BXT invert bit has to be set based on AOB design 3165 * for HPD detection logic, update it based on VBT fields. 3166 */ 3167 3168 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3169 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3170 hotplug |= BXT_DDIA_HPD_INVERT; 3171 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3172 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3173 hotplug |= BXT_DDIB_HPD_INVERT; 3174 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3175 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3176 hotplug |= BXT_DDIC_HPD_INVERT; 3177 3178 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3179 } 3180 3181 static void ibx_irq_postinstall(struct drm_device *dev) 3182 { 3183 struct drm_i915_private *dev_priv = to_i915(dev); 3184 u32 mask; 3185 3186 if (HAS_PCH_NOP(dev_priv)) 3187 return; 3188 3189 if (HAS_PCH_IBX(dev_priv)) 3190 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3191 else 3192 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3193 3194 gen5_assert_iir_is_zero(dev_priv, SDEIIR); 3195 I915_WRITE(SDEIMR, ~mask); 3196 } 3197 3198 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3199 { 3200 struct drm_i915_private *dev_priv = to_i915(dev); 3201 u32 pm_irqs, gt_irqs; 3202 3203 pm_irqs = gt_irqs = 0; 3204 3205 dev_priv->gt_irq_mask = ~0; 3206 if (HAS_L3_DPF(dev_priv)) { 3207 /* L3 parity interrupt is always unmasked. */ 3208 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); 3209 gt_irqs |= GT_PARITY_ERROR(dev_priv); 3210 } 3211 3212 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3213 if (IS_GEN5(dev_priv)) { 3214 gt_irqs |= ILK_BSD_USER_INTERRUPT; 3215 } else { 3216 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3217 } 3218 3219 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); 3220 3221 if (INTEL_GEN(dev_priv) >= 6) { 3222 /* 3223 * RPS interrupts will get enabled/disabled on demand when RPS 3224 * itself is enabled/disabled. 3225 */ 3226 if (HAS_VEBOX(dev_priv)) { 3227 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 3228 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; 3229 } 3230 3231 dev_priv->pm_imr = 0xffffffff; 3232 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs); 3233 } 3234 } 3235 3236 static int ironlake_irq_postinstall(struct drm_device *dev) 3237 { 3238 struct drm_i915_private *dev_priv = to_i915(dev); 3239 u32 display_mask, extra_mask; 3240 3241 if (INTEL_GEN(dev_priv) >= 7) { 3242 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3243 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | 3244 DE_PLANEB_FLIP_DONE_IVB | 3245 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB); 3246 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3247 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3248 DE_DP_A_HOTPLUG_IVB); 3249 } else { 3250 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3251 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | 3252 DE_AUX_CHANNEL_A | 3253 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | 3254 DE_POISON); 3255 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3256 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3257 DE_DP_A_HOTPLUG); 3258 } 3259 3260 dev_priv->irq_mask = ~display_mask; 3261 3262 I915_WRITE(HWSTAM, 0xeffe); 3263 3264 ibx_irq_pre_postinstall(dev); 3265 3266 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); 3267 3268 gen5_gt_irq_postinstall(dev); 3269 3270 ibx_irq_postinstall(dev); 3271 3272 if (IS_IRONLAKE_M(dev_priv)) { 3273 /* Enable PCU event interrupts 3274 * 3275 * spinlocking not required here for correctness since interrupt 3276 * setup is guaranteed to run in single-threaded context. But we 3277 * need it to make the assert_spin_locked happy. */ 3278 spin_lock_irq(&dev_priv->irq_lock); 3279 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 3280 spin_unlock_irq(&dev_priv->irq_lock); 3281 } 3282 3283 return 0; 3284 } 3285 3286 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3287 { 3288 assert_spin_locked(&dev_priv->irq_lock); 3289 3290 if (dev_priv->display_irqs_enabled) 3291 return; 3292 3293 dev_priv->display_irqs_enabled = true; 3294 3295 if (intel_irqs_enabled(dev_priv)) { 3296 vlv_display_irq_reset(dev_priv); 3297 vlv_display_irq_postinstall(dev_priv); 3298 } 3299 } 3300 3301 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3302 { 3303 assert_spin_locked(&dev_priv->irq_lock); 3304 3305 if (!dev_priv->display_irqs_enabled) 3306 return; 3307 3308 dev_priv->display_irqs_enabled = false; 3309 3310 if (intel_irqs_enabled(dev_priv)) 3311 vlv_display_irq_reset(dev_priv); 3312 } 3313 3314 3315 static int valleyview_irq_postinstall(struct drm_device *dev) 3316 { 3317 struct drm_i915_private *dev_priv = to_i915(dev); 3318 3319 gen5_gt_irq_postinstall(dev); 3320 3321 spin_lock_irq(&dev_priv->irq_lock); 3322 if (dev_priv->display_irqs_enabled) 3323 vlv_display_irq_postinstall(dev_priv); 3324 spin_unlock_irq(&dev_priv->irq_lock); 3325 3326 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3327 POSTING_READ(VLV_MASTER_IER); 3328 3329 return 0; 3330 } 3331 3332 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3333 { 3334 /* These are interrupts we'll toggle with the ring mask register */ 3335 uint32_t gt_interrupts[] = { 3336 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3337 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3338 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 3339 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, 3340 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3341 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3342 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | 3343 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 3344 0, 3345 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 3346 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT 3347 }; 3348 3349 if (HAS_L3_DPF(dev_priv)) 3350 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; 3351 3352 dev_priv->pm_ier = 0x0; 3353 dev_priv->pm_imr = ~dev_priv->pm_ier; 3354 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 3355 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 3356 /* 3357 * RPS interrupts will get enabled/disabled on demand when RPS itself 3358 * is enabled/disabled. Same wil be the case for GuC interrupts. 3359 */ 3360 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); 3361 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 3362 } 3363 3364 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3365 { 3366 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; 3367 uint32_t de_pipe_enables; 3368 u32 de_port_masked = GEN8_AUX_CHANNEL_A; 3369 u32 de_port_enables; 3370 u32 de_misc_masked = GEN8_DE_MISC_GSE; 3371 enum pipe pipe; 3372 3373 if (INTEL_INFO(dev_priv)->gen >= 9) { 3374 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE | 3375 GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 3376 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | 3377 GEN9_AUX_CHANNEL_D; 3378 if (IS_BROXTON(dev_priv)) 3379 de_port_masked |= BXT_DE_PORT_GMBUS; 3380 } else { 3381 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE | 3382 GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 3383 } 3384 3385 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3386 GEN8_PIPE_FIFO_UNDERRUN; 3387 3388 de_port_enables = de_port_masked; 3389 if (IS_BROXTON(dev_priv)) 3390 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3391 else if (IS_BROADWELL(dev_priv)) 3392 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 3393 3394 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked; 3395 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked; 3396 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked; 3397 3398 for_each_pipe(dev_priv, pipe) 3399 if (intel_display_power_is_enabled(dev_priv, 3400 POWER_DOMAIN_PIPE(pipe))) 3401 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3402 dev_priv->de_irq_mask[pipe], 3403 de_pipe_enables); 3404 3405 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3406 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3407 } 3408 3409 static int gen8_irq_postinstall(struct drm_device *dev) 3410 { 3411 struct drm_i915_private *dev_priv = to_i915(dev); 3412 3413 if (HAS_PCH_SPLIT(dev_priv)) 3414 ibx_irq_pre_postinstall(dev); 3415 3416 gen8_gt_irq_postinstall(dev_priv); 3417 gen8_de_irq_postinstall(dev_priv); 3418 3419 if (HAS_PCH_SPLIT(dev_priv)) 3420 ibx_irq_postinstall(dev); 3421 3422 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3423 POSTING_READ(GEN8_MASTER_IRQ); 3424 3425 return 0; 3426 } 3427 3428 static int cherryview_irq_postinstall(struct drm_device *dev) 3429 { 3430 struct drm_i915_private *dev_priv = to_i915(dev); 3431 3432 gen8_gt_irq_postinstall(dev_priv); 3433 3434 spin_lock_irq(&dev_priv->irq_lock); 3435 if (dev_priv->display_irqs_enabled) 3436 vlv_display_irq_postinstall(dev_priv); 3437 spin_unlock_irq(&dev_priv->irq_lock); 3438 3439 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3440 POSTING_READ(GEN8_MASTER_IRQ); 3441 3442 return 0; 3443 } 3444 3445 static void gen8_irq_uninstall(struct drm_device *dev) 3446 { 3447 struct drm_i915_private *dev_priv = to_i915(dev); 3448 3449 if (!dev_priv) 3450 return; 3451 3452 gen8_irq_reset(dev); 3453 } 3454 3455 static void valleyview_irq_uninstall(struct drm_device *dev) 3456 { 3457 struct drm_i915_private *dev_priv = to_i915(dev); 3458 3459 if (!dev_priv) 3460 return; 3461 3462 I915_WRITE(VLV_MASTER_IER, 0); 3463 POSTING_READ(VLV_MASTER_IER); 3464 3465 gen5_gt_irq_reset(dev_priv); 3466 3467 I915_WRITE(HWSTAM, 0xffffffff); 3468 3469 spin_lock_irq(&dev_priv->irq_lock); 3470 if (dev_priv->display_irqs_enabled) 3471 vlv_display_irq_reset(dev_priv); 3472 spin_unlock_irq(&dev_priv->irq_lock); 3473 } 3474 3475 static void cherryview_irq_uninstall(struct drm_device *dev) 3476 { 3477 struct drm_i915_private *dev_priv = to_i915(dev); 3478 3479 if (!dev_priv) 3480 return; 3481 3482 I915_WRITE(GEN8_MASTER_IRQ, 0); 3483 POSTING_READ(GEN8_MASTER_IRQ); 3484 3485 gen8_gt_irq_reset(dev_priv); 3486 3487 GEN5_IRQ_RESET(GEN8_PCU_); 3488 3489 spin_lock_irq(&dev_priv->irq_lock); 3490 if (dev_priv->display_irqs_enabled) 3491 vlv_display_irq_reset(dev_priv); 3492 spin_unlock_irq(&dev_priv->irq_lock); 3493 } 3494 3495 static void ironlake_irq_uninstall(struct drm_device *dev) 3496 { 3497 struct drm_i915_private *dev_priv = to_i915(dev); 3498 3499 if (!dev_priv) 3500 return; 3501 3502 ironlake_irq_reset(dev); 3503 } 3504 3505 static void i8xx_irq_preinstall(struct drm_device * dev) 3506 { 3507 struct drm_i915_private *dev_priv = to_i915(dev); 3508 int pipe; 3509 3510 for_each_pipe(dev_priv, pipe) 3511 I915_WRITE(PIPESTAT(pipe), 0); 3512 I915_WRITE16(IMR, 0xffff); 3513 I915_WRITE16(IER, 0x0); 3514 POSTING_READ16(IER); 3515 } 3516 3517 static int i8xx_irq_postinstall(struct drm_device *dev) 3518 { 3519 struct drm_i915_private *dev_priv = to_i915(dev); 3520 3521 I915_WRITE16(EMR, 3522 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); 3523 3524 /* Unmask the interrupts that we always want on. */ 3525 dev_priv->irq_mask = 3526 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3527 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3528 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3529 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 3530 I915_WRITE16(IMR, dev_priv->irq_mask); 3531 3532 I915_WRITE16(IER, 3533 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3534 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3535 I915_USER_INTERRUPT); 3536 POSTING_READ16(IER); 3537 3538 /* Interrupt setup is already guaranteed to be single-threaded, this is 3539 * just to make the assert_spin_locked check happy. */ 3540 spin_lock_irq(&dev_priv->irq_lock); 3541 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3542 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3543 spin_unlock_irq(&dev_priv->irq_lock); 3544 3545 return 0; 3546 } 3547 3548 /* 3549 * Returns true when a page flip has completed. 3550 */ 3551 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv, 3552 int plane, int pipe, u32 iir) 3553 { 3554 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); 3555 3556 if (!intel_pipe_handle_vblank(dev_priv, pipe)) 3557 return false; 3558 3559 if ((iir & flip_pending) == 0) 3560 goto check_page_flip; 3561 3562 /* We detect FlipDone by looking for the change in PendingFlip from '1' 3563 * to '0' on the following vblank, i.e. IIR has the Pendingflip 3564 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence 3565 * the flip is completed (no longer pending). Since this doesn't raise 3566 * an interrupt per se, we watch for the change at vblank. 3567 */ 3568 if (I915_READ16(ISR) & flip_pending) 3569 goto check_page_flip; 3570 3571 intel_finish_page_flip_cs(dev_priv, pipe); 3572 return true; 3573 3574 check_page_flip: 3575 intel_check_page_flip(dev_priv, pipe); 3576 return false; 3577 } 3578 3579 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 3580 { 3581 struct drm_device *dev = arg; 3582 struct drm_i915_private *dev_priv = to_i915(dev); 3583 u16 iir, new_iir; 3584 u32 pipe_stats[2]; 3585 int pipe; 3586 u16 flip_mask = 3587 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3588 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 3589 irqreturn_t ret; 3590 3591 if (!intel_irqs_enabled(dev_priv)) 3592 return IRQ_NONE; 3593 3594 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3595 disable_rpm_wakeref_asserts(dev_priv); 3596 3597 ret = IRQ_NONE; 3598 iir = I915_READ16(IIR); 3599 if (iir == 0) 3600 goto out; 3601 3602 while (iir & ~flip_mask) { 3603 /* Can't rely on pipestat interrupt bit in iir as it might 3604 * have been cleared after the pipestat interrupt was received. 3605 * It doesn't set the bit in iir again, but it still produces 3606 * interrupts (for non-MSI). 3607 */ 3608 spin_lock(&dev_priv->irq_lock); 3609 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 3610 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 3611 3612 for_each_pipe(dev_priv, pipe) { 3613 i915_reg_t reg = PIPESTAT(pipe); 3614 pipe_stats[pipe] = I915_READ(reg); 3615 3616 /* 3617 * Clear the PIPE*STAT regs before the IIR 3618 */ 3619 if (pipe_stats[pipe] & 0x8000ffff) 3620 I915_WRITE(reg, pipe_stats[pipe]); 3621 } 3622 spin_unlock(&dev_priv->irq_lock); 3623 3624 I915_WRITE16(IIR, iir & ~flip_mask); 3625 new_iir = I915_READ16(IIR); /* Flush posted writes */ 3626 3627 if (iir & I915_USER_INTERRUPT) 3628 notify_ring(dev_priv->engine[RCS]); 3629 3630 for_each_pipe(dev_priv, pipe) { 3631 int plane = pipe; 3632 if (HAS_FBC(dev_priv)) 3633 plane = !plane; 3634 3635 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && 3636 i8xx_handle_vblank(dev_priv, plane, pipe, iir)) 3637 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); 3638 3639 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 3640 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 3641 3642 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 3643 intel_cpu_fifo_underrun_irq_handler(dev_priv, 3644 pipe); 3645 } 3646 3647 iir = new_iir; 3648 } 3649 ret = IRQ_HANDLED; 3650 3651 out: 3652 enable_rpm_wakeref_asserts(dev_priv); 3653 3654 return ret; 3655 } 3656 3657 static void i8xx_irq_uninstall(struct drm_device * dev) 3658 { 3659 struct drm_i915_private *dev_priv = to_i915(dev); 3660 int pipe; 3661 3662 for_each_pipe(dev_priv, pipe) { 3663 /* Clear enable bits; then clear status bits */ 3664 I915_WRITE(PIPESTAT(pipe), 0); 3665 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); 3666 } 3667 I915_WRITE16(IMR, 0xffff); 3668 I915_WRITE16(IER, 0x0); 3669 I915_WRITE16(IIR, I915_READ16(IIR)); 3670 } 3671 3672 static void i915_irq_preinstall(struct drm_device * dev) 3673 { 3674 struct drm_i915_private *dev_priv = to_i915(dev); 3675 int pipe; 3676 3677 if (I915_HAS_HOTPLUG(dev_priv)) { 3678 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3679 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3680 } 3681 3682 I915_WRITE16(HWSTAM, 0xeffe); 3683 for_each_pipe(dev_priv, pipe) 3684 I915_WRITE(PIPESTAT(pipe), 0); 3685 I915_WRITE(IMR, 0xffffffff); 3686 I915_WRITE(IER, 0x0); 3687 POSTING_READ(IER); 3688 } 3689 3690 static int i915_irq_postinstall(struct drm_device *dev) 3691 { 3692 struct drm_i915_private *dev_priv = to_i915(dev); 3693 u32 enable_mask; 3694 3695 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); 3696 3697 /* Unmask the interrupts that we always want on. */ 3698 dev_priv->irq_mask = 3699 ~(I915_ASLE_INTERRUPT | 3700 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3701 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3702 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3703 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 3704 3705 enable_mask = 3706 I915_ASLE_INTERRUPT | 3707 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3708 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3709 I915_USER_INTERRUPT; 3710 3711 if (I915_HAS_HOTPLUG(dev_priv)) { 3712 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3713 POSTING_READ(PORT_HOTPLUG_EN); 3714 3715 /* Enable in IER... */ 3716 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 3717 /* and unmask in IMR */ 3718 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 3719 } 3720 3721 I915_WRITE(IMR, dev_priv->irq_mask); 3722 I915_WRITE(IER, enable_mask); 3723 POSTING_READ(IER); 3724 3725 i915_enable_asle_pipestat(dev_priv); 3726 3727 /* Interrupt setup is already guaranteed to be single-threaded, this is 3728 * just to make the assert_spin_locked check happy. */ 3729 spin_lock_irq(&dev_priv->irq_lock); 3730 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3731 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3732 spin_unlock_irq(&dev_priv->irq_lock); 3733 3734 return 0; 3735 } 3736 3737 /* 3738 * Returns true when a page flip has completed. 3739 */ 3740 static bool i915_handle_vblank(struct drm_i915_private *dev_priv, 3741 int plane, int pipe, u32 iir) 3742 { 3743 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); 3744 3745 if (!intel_pipe_handle_vblank(dev_priv, pipe)) 3746 return false; 3747 3748 if ((iir & flip_pending) == 0) 3749 goto check_page_flip; 3750 3751 /* We detect FlipDone by looking for the change in PendingFlip from '1' 3752 * to '0' on the following vblank, i.e. IIR has the Pendingflip 3753 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence 3754 * the flip is completed (no longer pending). Since this doesn't raise 3755 * an interrupt per se, we watch for the change at vblank. 3756 */ 3757 if (I915_READ(ISR) & flip_pending) 3758 goto check_page_flip; 3759 3760 intel_finish_page_flip_cs(dev_priv, pipe); 3761 return true; 3762 3763 check_page_flip: 3764 intel_check_page_flip(dev_priv, pipe); 3765 return false; 3766 } 3767 3768 static irqreturn_t i915_irq_handler(int irq, void *arg) 3769 { 3770 struct drm_device *dev = arg; 3771 struct drm_i915_private *dev_priv = to_i915(dev); 3772 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; 3773 u32 flip_mask = 3774 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3775 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 3776 int pipe, ret = IRQ_NONE; 3777 3778 if (!intel_irqs_enabled(dev_priv)) 3779 return IRQ_NONE; 3780 3781 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3782 disable_rpm_wakeref_asserts(dev_priv); 3783 3784 iir = I915_READ(IIR); 3785 do { 3786 bool irq_received = (iir & ~flip_mask) != 0; 3787 bool blc_event = false; 3788 3789 /* Can't rely on pipestat interrupt bit in iir as it might 3790 * have been cleared after the pipestat interrupt was received. 3791 * It doesn't set the bit in iir again, but it still produces 3792 * interrupts (for non-MSI). 3793 */ 3794 spin_lock(&dev_priv->irq_lock); 3795 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 3796 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 3797 3798 for_each_pipe(dev_priv, pipe) { 3799 i915_reg_t reg = PIPESTAT(pipe); 3800 pipe_stats[pipe] = I915_READ(reg); 3801 3802 /* Clear the PIPE*STAT regs before the IIR */ 3803 if (pipe_stats[pipe] & 0x8000ffff) { 3804 I915_WRITE(reg, pipe_stats[pipe]); 3805 irq_received = true; 3806 } 3807 } 3808 spin_unlock(&dev_priv->irq_lock); 3809 3810 if (!irq_received) 3811 break; 3812 3813 /* Consume port. Then clear IIR or we'll miss events */ 3814 if (I915_HAS_HOTPLUG(dev_priv) && 3815 iir & I915_DISPLAY_PORT_INTERRUPT) { 3816 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 3817 if (hotplug_status) 3818 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 3819 } 3820 3821 I915_WRITE(IIR, iir & ~flip_mask); 3822 new_iir = I915_READ(IIR); /* Flush posted writes */ 3823 3824 if (iir & I915_USER_INTERRUPT) 3825 notify_ring(dev_priv->engine[RCS]); 3826 3827 for_each_pipe(dev_priv, pipe) { 3828 int plane = pipe; 3829 if (HAS_FBC(dev_priv)) 3830 plane = !plane; 3831 3832 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && 3833 i915_handle_vblank(dev_priv, plane, pipe, iir)) 3834 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); 3835 3836 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 3837 blc_event = true; 3838 3839 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 3840 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 3841 3842 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 3843 intel_cpu_fifo_underrun_irq_handler(dev_priv, 3844 pipe); 3845 } 3846 3847 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 3848 intel_opregion_asle_intr(dev_priv); 3849 3850 /* With MSI, interrupts are only generated when iir 3851 * transitions from zero to nonzero. If another bit got 3852 * set while we were handling the existing iir bits, then 3853 * we would never get another interrupt. 3854 * 3855 * This is fine on non-MSI as well, as if we hit this path 3856 * we avoid exiting the interrupt handler only to generate 3857 * another one. 3858 * 3859 * Note that for MSI this could cause a stray interrupt report 3860 * if an interrupt landed in the time between writing IIR and 3861 * the posting read. This should be rare enough to never 3862 * trigger the 99% of 100,000 interrupts test for disabling 3863 * stray interrupts. 3864 */ 3865 ret = IRQ_HANDLED; 3866 iir = new_iir; 3867 } while (iir & ~flip_mask); 3868 3869 enable_rpm_wakeref_asserts(dev_priv); 3870 3871 return ret; 3872 } 3873 3874 static void i915_irq_uninstall(struct drm_device * dev) 3875 { 3876 struct drm_i915_private *dev_priv = to_i915(dev); 3877 int pipe; 3878 3879 if (I915_HAS_HOTPLUG(dev_priv)) { 3880 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3881 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3882 } 3883 3884 I915_WRITE16(HWSTAM, 0xffff); 3885 for_each_pipe(dev_priv, pipe) { 3886 /* Clear enable bits; then clear status bits */ 3887 I915_WRITE(PIPESTAT(pipe), 0); 3888 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); 3889 } 3890 I915_WRITE(IMR, 0xffffffff); 3891 I915_WRITE(IER, 0x0); 3892 3893 I915_WRITE(IIR, I915_READ(IIR)); 3894 } 3895 3896 static void i965_irq_preinstall(struct drm_device * dev) 3897 { 3898 struct drm_i915_private *dev_priv = to_i915(dev); 3899 int pipe; 3900 3901 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3902 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3903 3904 I915_WRITE(HWSTAM, 0xeffe); 3905 for_each_pipe(dev_priv, pipe) 3906 I915_WRITE(PIPESTAT(pipe), 0); 3907 I915_WRITE(IMR, 0xffffffff); 3908 I915_WRITE(IER, 0x0); 3909 POSTING_READ(IER); 3910 } 3911 3912 static int i965_irq_postinstall(struct drm_device *dev) 3913 { 3914 struct drm_i915_private *dev_priv = to_i915(dev); 3915 u32 enable_mask; 3916 u32 error_mask; 3917 3918 /* Unmask the interrupts that we always want on. */ 3919 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | 3920 I915_DISPLAY_PORT_INTERRUPT | 3921 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3922 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3923 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3924 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | 3925 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 3926 3927 enable_mask = ~dev_priv->irq_mask; 3928 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3929 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 3930 enable_mask |= I915_USER_INTERRUPT; 3931 3932 if (IS_G4X(dev_priv)) 3933 enable_mask |= I915_BSD_USER_INTERRUPT; 3934 3935 /* Interrupt setup is already guaranteed to be single-threaded, this is 3936 * just to make the assert_spin_locked check happy. */ 3937 spin_lock_irq(&dev_priv->irq_lock); 3938 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3939 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3940 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3941 spin_unlock_irq(&dev_priv->irq_lock); 3942 3943 /* 3944 * Enable some error detection, note the instruction error mask 3945 * bit is reserved, so we leave it masked. 3946 */ 3947 if (IS_G4X(dev_priv)) { 3948 error_mask = ~(GM45_ERROR_PAGE_TABLE | 3949 GM45_ERROR_MEM_PRIV | 3950 GM45_ERROR_CP_PRIV | 3951 I915_ERROR_MEMORY_REFRESH); 3952 } else { 3953 error_mask = ~(I915_ERROR_PAGE_TABLE | 3954 I915_ERROR_MEMORY_REFRESH); 3955 } 3956 I915_WRITE(EMR, error_mask); 3957 3958 I915_WRITE(IMR, dev_priv->irq_mask); 3959 I915_WRITE(IER, enable_mask); 3960 POSTING_READ(IER); 3961 3962 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3963 POSTING_READ(PORT_HOTPLUG_EN); 3964 3965 i915_enable_asle_pipestat(dev_priv); 3966 3967 return 0; 3968 } 3969 3970 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 3971 { 3972 u32 hotplug_en; 3973 3974 assert_spin_locked(&dev_priv->irq_lock); 3975 3976 /* Note HDMI and DP share hotplug bits */ 3977 /* enable bits are the same for all generations */ 3978 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 3979 /* Programming the CRT detection parameters tends 3980 to generate a spurious hotplug event about three 3981 seconds later. So just do it once. 3982 */ 3983 if (IS_G4X(dev_priv)) 3984 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 3985 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 3986 3987 /* Ignore TV since it's buggy */ 3988 i915_hotplug_interrupt_update_locked(dev_priv, 3989 HOTPLUG_INT_EN_MASK | 3990 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 3991 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 3992 hotplug_en); 3993 } 3994 3995 static irqreturn_t i965_irq_handler(int irq, void *arg) 3996 { 3997 struct drm_device *dev = arg; 3998 struct drm_i915_private *dev_priv = to_i915(dev); 3999 u32 iir, new_iir; 4000 u32 pipe_stats[I915_MAX_PIPES]; 4001 int ret = IRQ_NONE, pipe; 4002 u32 flip_mask = 4003 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4004 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 4005 4006 if (!intel_irqs_enabled(dev_priv)) 4007 return IRQ_NONE; 4008 4009 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4010 disable_rpm_wakeref_asserts(dev_priv); 4011 4012 iir = I915_READ(IIR); 4013 4014 for (;;) { 4015 bool irq_received = (iir & ~flip_mask) != 0; 4016 bool blc_event = false; 4017 4018 /* Can't rely on pipestat interrupt bit in iir as it might 4019 * have been cleared after the pipestat interrupt was received. 4020 * It doesn't set the bit in iir again, but it still produces 4021 * interrupts (for non-MSI). 4022 */ 4023 spin_lock(&dev_priv->irq_lock); 4024 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4025 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); 4026 4027 for_each_pipe(dev_priv, pipe) { 4028 i915_reg_t reg = PIPESTAT(pipe); 4029 pipe_stats[pipe] = I915_READ(reg); 4030 4031 /* 4032 * Clear the PIPE*STAT regs before the IIR 4033 */ 4034 if (pipe_stats[pipe] & 0x8000ffff) { 4035 I915_WRITE(reg, pipe_stats[pipe]); 4036 irq_received = true; 4037 } 4038 } 4039 spin_unlock(&dev_priv->irq_lock); 4040 4041 if (!irq_received) 4042 break; 4043 4044 ret = IRQ_HANDLED; 4045 4046 /* Consume port. Then clear IIR or we'll miss events */ 4047 if (iir & I915_DISPLAY_PORT_INTERRUPT) { 4048 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4049 if (hotplug_status) 4050 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4051 } 4052 4053 I915_WRITE(IIR, iir & ~flip_mask); 4054 new_iir = I915_READ(IIR); /* Flush posted writes */ 4055 4056 if (iir & I915_USER_INTERRUPT) 4057 notify_ring(dev_priv->engine[RCS]); 4058 if (iir & I915_BSD_USER_INTERRUPT) 4059 notify_ring(dev_priv->engine[VCS]); 4060 4061 for_each_pipe(dev_priv, pipe) { 4062 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && 4063 i915_handle_vblank(dev_priv, pipe, pipe, iir)) 4064 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); 4065 4066 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 4067 blc_event = true; 4068 4069 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 4070 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 4071 4072 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 4073 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 4074 } 4075 4076 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 4077 intel_opregion_asle_intr(dev_priv); 4078 4079 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 4080 gmbus_irq_handler(dev_priv); 4081 4082 /* With MSI, interrupts are only generated when iir 4083 * transitions from zero to nonzero. If another bit got 4084 * set while we were handling the existing iir bits, then 4085 * we would never get another interrupt. 4086 * 4087 * This is fine on non-MSI as well, as if we hit this path 4088 * we avoid exiting the interrupt handler only to generate 4089 * another one. 4090 * 4091 * Note that for MSI this could cause a stray interrupt report 4092 * if an interrupt landed in the time between writing IIR and 4093 * the posting read. This should be rare enough to never 4094 * trigger the 99% of 100,000 interrupts test for disabling 4095 * stray interrupts. 4096 */ 4097 iir = new_iir; 4098 } 4099 4100 enable_rpm_wakeref_asserts(dev_priv); 4101 4102 return ret; 4103 } 4104 4105 static void i965_irq_uninstall(struct drm_device * dev) 4106 { 4107 struct drm_i915_private *dev_priv = to_i915(dev); 4108 int pipe; 4109 4110 if (!dev_priv) 4111 return; 4112 4113 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4114 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4115 4116 I915_WRITE(HWSTAM, 0xffffffff); 4117 for_each_pipe(dev_priv, pipe) 4118 I915_WRITE(PIPESTAT(pipe), 0); 4119 I915_WRITE(IMR, 0xffffffff); 4120 I915_WRITE(IER, 0x0); 4121 4122 for_each_pipe(dev_priv, pipe) 4123 I915_WRITE(PIPESTAT(pipe), 4124 I915_READ(PIPESTAT(pipe)) & 0x8000ffff); 4125 I915_WRITE(IIR, I915_READ(IIR)); 4126 } 4127 4128 /** 4129 * intel_irq_init - initializes irq support 4130 * @dev_priv: i915 device instance 4131 * 4132 * This function initializes all the irq support including work items, timers 4133 * and all the vtables. It does not setup the interrupt itself though. 4134 */ 4135 void intel_irq_init(struct drm_i915_private *dev_priv) 4136 { 4137 struct drm_device *dev = &dev_priv->drm; 4138 4139 intel_hpd_init_work(dev_priv); 4140 4141 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); 4142 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4143 4144 if (HAS_GUC_SCHED(dev_priv)) 4145 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; 4146 4147 /* Let's track the enabled rps events */ 4148 if (IS_VALLEYVIEW(dev_priv)) 4149 /* WaGsvRC0ResidencyMethod:vlv */ 4150 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED; 4151 else 4152 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; 4153 4154 dev_priv->rps.pm_intr_keep = 0; 4155 4156 /* 4157 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer 4158 * if GEN6_PM_UP_EI_EXPIRED is masked. 4159 * 4160 * TODO: verify if this can be reproduced on VLV,CHV. 4161 */ 4162 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv)) 4163 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED; 4164 4165 if (INTEL_INFO(dev_priv)->gen >= 8) 4166 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC; 4167 4168 if (IS_GEN2(dev_priv)) { 4169 /* Gen2 doesn't have a hardware frame counter */ 4170 dev->max_vblank_count = 0; 4171 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter; 4172 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) { 4173 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ 4174 dev->driver->get_vblank_counter = g4x_get_vblank_counter; 4175 } else { 4176 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4177 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ 4178 } 4179 4180 /* 4181 * Opt out of the vblank disable timer on everything except gen2. 4182 * Gen2 doesn't have a hardware frame counter and so depends on 4183 * vblank interrupts to produce sane vblank seuquence numbers. 4184 */ 4185 if (!IS_GEN2(dev_priv)) 4186 dev->vblank_disable_immediate = true; 4187 4188 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; 4189 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4190 4191 if (IS_CHERRYVIEW(dev_priv)) { 4192 dev->driver->irq_handler = cherryview_irq_handler; 4193 dev->driver->irq_preinstall = cherryview_irq_preinstall; 4194 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4195 dev->driver->irq_uninstall = cherryview_irq_uninstall; 4196 dev->driver->enable_vblank = i965_enable_vblank; 4197 dev->driver->disable_vblank = i965_disable_vblank; 4198 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4199 } else if (IS_VALLEYVIEW(dev_priv)) { 4200 dev->driver->irq_handler = valleyview_irq_handler; 4201 dev->driver->irq_preinstall = valleyview_irq_preinstall; 4202 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4203 dev->driver->irq_uninstall = valleyview_irq_uninstall; 4204 dev->driver->enable_vblank = i965_enable_vblank; 4205 dev->driver->disable_vblank = i965_disable_vblank; 4206 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4207 } else if (INTEL_INFO(dev_priv)->gen >= 8) { 4208 dev->driver->irq_handler = gen8_irq_handler; 4209 dev->driver->irq_preinstall = gen8_irq_reset; 4210 dev->driver->irq_postinstall = gen8_irq_postinstall; 4211 dev->driver->irq_uninstall = gen8_irq_uninstall; 4212 dev->driver->enable_vblank = gen8_enable_vblank; 4213 dev->driver->disable_vblank = gen8_disable_vblank; 4214 if (IS_BROXTON(dev_priv)) 4215 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4216 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv)) 4217 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4218 else 4219 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4220 } else if (HAS_PCH_SPLIT(dev_priv)) { 4221 dev->driver->irq_handler = ironlake_irq_handler; 4222 dev->driver->irq_preinstall = ironlake_irq_reset; 4223 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4224 dev->driver->irq_uninstall = ironlake_irq_uninstall; 4225 dev->driver->enable_vblank = ironlake_enable_vblank; 4226 dev->driver->disable_vblank = ironlake_disable_vblank; 4227 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4228 } else { 4229 if (IS_GEN2(dev_priv)) { 4230 dev->driver->irq_preinstall = i8xx_irq_preinstall; 4231 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4232 dev->driver->irq_handler = i8xx_irq_handler; 4233 dev->driver->irq_uninstall = i8xx_irq_uninstall; 4234 dev->driver->enable_vblank = i8xx_enable_vblank; 4235 dev->driver->disable_vblank = i8xx_disable_vblank; 4236 } else if (IS_GEN3(dev_priv)) { 4237 dev->driver->irq_preinstall = i915_irq_preinstall; 4238 dev->driver->irq_postinstall = i915_irq_postinstall; 4239 dev->driver->irq_uninstall = i915_irq_uninstall; 4240 dev->driver->irq_handler = i915_irq_handler; 4241 dev->driver->enable_vblank = i8xx_enable_vblank; 4242 dev->driver->disable_vblank = i8xx_disable_vblank; 4243 } else { 4244 dev->driver->irq_preinstall = i965_irq_preinstall; 4245 dev->driver->irq_postinstall = i965_irq_postinstall; 4246 dev->driver->irq_uninstall = i965_irq_uninstall; 4247 dev->driver->irq_handler = i965_irq_handler; 4248 dev->driver->enable_vblank = i965_enable_vblank; 4249 dev->driver->disable_vblank = i965_disable_vblank; 4250 } 4251 if (I915_HAS_HOTPLUG(dev_priv)) 4252 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4253 } 4254 } 4255 4256 /** 4257 * intel_irq_install - enables the hardware interrupt 4258 * @dev_priv: i915 device instance 4259 * 4260 * This function enables the hardware interrupt handling, but leaves the hotplug 4261 * handling still disabled. It is called after intel_irq_init(). 4262 * 4263 * In the driver load and resume code we need working interrupts in a few places 4264 * but don't want to deal with the hassle of concurrent probe and hotplug 4265 * workers. Hence the split into this two-stage approach. 4266 */ 4267 int intel_irq_install(struct drm_i915_private *dev_priv) 4268 { 4269 /* 4270 * We enable some interrupt sources in our postinstall hooks, so mark 4271 * interrupts as enabled _before_ actually enabling them to avoid 4272 * special cases in our ordering checks. 4273 */ 4274 dev_priv->pm.irqs_enabled = true; 4275 4276 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); 4277 } 4278 4279 /** 4280 * intel_irq_uninstall - finilizes all irq handling 4281 * @dev_priv: i915 device instance 4282 * 4283 * This stops interrupt and hotplug handling and unregisters and frees all 4284 * resources acquired in the init functions. 4285 */ 4286 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4287 { 4288 drm_irq_uninstall(&dev_priv->drm); 4289 intel_hpd_cancel_work(dev_priv); 4290 dev_priv->pm.irqs_enabled = false; 4291 } 4292 4293 /** 4294 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4295 * @dev_priv: i915 device instance 4296 * 4297 * This function is used to disable interrupts at runtime, both in the runtime 4298 * pm and the system suspend/resume code. 4299 */ 4300 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4301 { 4302 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); 4303 dev_priv->pm.irqs_enabled = false; 4304 synchronize_irq(dev_priv->drm.irq); 4305 } 4306 4307 /** 4308 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4309 * @dev_priv: i915 device instance 4310 * 4311 * This function is used to enable interrupts at runtime, both in the runtime 4312 * pm and the system suspend/resume code. 4313 */ 4314 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4315 { 4316 dev_priv->pm.irqs_enabled = true; 4317 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); 4318 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); 4319 } 4320