xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 84d517f3)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
86 {
87 	assert_spin_locked(&dev_priv->irq_lock);
88 
89 	if (dev_priv->pm.irqs_disabled) {
90 		WARN(1, "IRQs disabled\n");
91 		dev_priv->pm.regsave.deimr &= ~mask;
92 		return;
93 	}
94 
95 	if ((dev_priv->irq_mask & mask) != 0) {
96 		dev_priv->irq_mask &= ~mask;
97 		I915_WRITE(DEIMR, dev_priv->irq_mask);
98 		POSTING_READ(DEIMR);
99 	}
100 }
101 
102 static void
103 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
104 {
105 	assert_spin_locked(&dev_priv->irq_lock);
106 
107 	if (dev_priv->pm.irqs_disabled) {
108 		WARN(1, "IRQs disabled\n");
109 		dev_priv->pm.regsave.deimr |= mask;
110 		return;
111 	}
112 
113 	if ((dev_priv->irq_mask & mask) != mask) {
114 		dev_priv->irq_mask |= mask;
115 		I915_WRITE(DEIMR, dev_priv->irq_mask);
116 		POSTING_READ(DEIMR);
117 	}
118 }
119 
120 /**
121  * ilk_update_gt_irq - update GTIMR
122  * @dev_priv: driver private
123  * @interrupt_mask: mask of interrupt bits to update
124  * @enabled_irq_mask: mask of interrupt bits to enable
125  */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 			      uint32_t interrupt_mask,
128 			      uint32_t enabled_irq_mask)
129 {
130 	assert_spin_locked(&dev_priv->irq_lock);
131 
132 	if (dev_priv->pm.irqs_disabled) {
133 		WARN(1, "IRQs disabled\n");
134 		dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135 		dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136 						interrupt_mask);
137 		return;
138 	}
139 
140 	dev_priv->gt_irq_mask &= ~interrupt_mask;
141 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 	POSTING_READ(GTIMR);
144 }
145 
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 	ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150 
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 	ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155 
156 /**
157   * snb_update_pm_irq - update GEN6_PMIMR
158   * @dev_priv: driver private
159   * @interrupt_mask: mask of interrupt bits to update
160   * @enabled_irq_mask: mask of interrupt bits to enable
161   */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 			      uint32_t interrupt_mask,
164 			      uint32_t enabled_irq_mask)
165 {
166 	uint32_t new_val;
167 
168 	assert_spin_locked(&dev_priv->irq_lock);
169 
170 	if (dev_priv->pm.irqs_disabled) {
171 		WARN(1, "IRQs disabled\n");
172 		dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173 		dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 						     interrupt_mask);
175 		return;
176 	}
177 
178 	new_val = dev_priv->pm_irq_mask;
179 	new_val &= ~interrupt_mask;
180 	new_val |= (~enabled_irq_mask & interrupt_mask);
181 
182 	if (new_val != dev_priv->pm_irq_mask) {
183 		dev_priv->pm_irq_mask = new_val;
184 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 		POSTING_READ(GEN6_PMIMR);
186 	}
187 }
188 
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 	snb_update_pm_irq(dev_priv, mask, mask);
192 }
193 
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 	snb_update_pm_irq(dev_priv, mask, 0);
197 }
198 
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 	struct drm_i915_private *dev_priv = dev->dev_private;
202 	struct intel_crtc *crtc;
203 	enum pipe pipe;
204 
205 	assert_spin_locked(&dev_priv->irq_lock);
206 
207 	for_each_pipe(pipe) {
208 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209 
210 		if (crtc->cpu_fifo_underrun_disabled)
211 			return false;
212 	}
213 
214 	return true;
215 }
216 
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 	struct drm_i915_private *dev_priv = dev->dev_private;
220 	enum pipe pipe;
221 	struct intel_crtc *crtc;
222 
223 	assert_spin_locked(&dev_priv->irq_lock);
224 
225 	for_each_pipe(pipe) {
226 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227 
228 		if (crtc->pch_fifo_underrun_disabled)
229 			return false;
230 	}
231 
232 	return true;
233 }
234 
235 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236 {
237 	struct drm_i915_private *dev_priv = dev->dev_private;
238 	u32 reg = PIPESTAT(pipe);
239 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
240 
241 	assert_spin_locked(&dev_priv->irq_lock);
242 
243 	I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244 	POSTING_READ(reg);
245 }
246 
247 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248 						 enum pipe pipe, bool enable)
249 {
250 	struct drm_i915_private *dev_priv = dev->dev_private;
251 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252 					  DE_PIPEB_FIFO_UNDERRUN;
253 
254 	if (enable)
255 		ironlake_enable_display_irq(dev_priv, bit);
256 	else
257 		ironlake_disable_display_irq(dev_priv, bit);
258 }
259 
260 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261 						  enum pipe pipe, bool enable)
262 {
263 	struct drm_i915_private *dev_priv = dev->dev_private;
264 	if (enable) {
265 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266 
267 		if (!ivb_can_enable_err_int(dev))
268 			return;
269 
270 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271 	} else {
272 		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273 
274 		/* Change the state _after_ we've read out the current one. */
275 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276 
277 		if (!was_enabled &&
278 		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279 			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280 				      pipe_name(pipe));
281 		}
282 	}
283 }
284 
285 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286 						  enum pipe pipe, bool enable)
287 {
288 	struct drm_i915_private *dev_priv = dev->dev_private;
289 
290 	assert_spin_locked(&dev_priv->irq_lock);
291 
292 	if (enable)
293 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294 	else
295 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298 }
299 
300 /**
301  * ibx_display_interrupt_update - update SDEIMR
302  * @dev_priv: driver private
303  * @interrupt_mask: mask of interrupt bits to update
304  * @enabled_irq_mask: mask of interrupt bits to enable
305  */
306 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307 					 uint32_t interrupt_mask,
308 					 uint32_t enabled_irq_mask)
309 {
310 	uint32_t sdeimr = I915_READ(SDEIMR);
311 	sdeimr &= ~interrupt_mask;
312 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
313 
314 	assert_spin_locked(&dev_priv->irq_lock);
315 
316 	if (dev_priv->pm.irqs_disabled &&
317 	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318 		WARN(1, "IRQs disabled\n");
319 		dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320 		dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321 						 interrupt_mask);
322 		return;
323 	}
324 
325 	I915_WRITE(SDEIMR, sdeimr);
326 	POSTING_READ(SDEIMR);
327 }
328 #define ibx_enable_display_interrupt(dev_priv, bits) \
329 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
330 #define ibx_disable_display_interrupt(dev_priv, bits) \
331 	ibx_display_interrupt_update((dev_priv), (bits), 0)
332 
333 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334 					    enum transcoder pch_transcoder,
335 					    bool enable)
336 {
337 	struct drm_i915_private *dev_priv = dev->dev_private;
338 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340 
341 	if (enable)
342 		ibx_enable_display_interrupt(dev_priv, bit);
343 	else
344 		ibx_disable_display_interrupt(dev_priv, bit);
345 }
346 
347 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348 					    enum transcoder pch_transcoder,
349 					    bool enable)
350 {
351 	struct drm_i915_private *dev_priv = dev->dev_private;
352 
353 	if (enable) {
354 		I915_WRITE(SERR_INT,
355 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356 
357 		if (!cpt_can_enable_serr_int(dev))
358 			return;
359 
360 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361 	} else {
362 		uint32_t tmp = I915_READ(SERR_INT);
363 		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364 
365 		/* Change the state _after_ we've read out the current one. */
366 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367 
368 		if (!was_enabled &&
369 		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370 			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371 				      transcoder_name(pch_transcoder));
372 		}
373 	}
374 }
375 
376 /**
377  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378  * @dev: drm device
379  * @pipe: pipe
380  * @enable: true if we want to report FIFO underrun errors, false otherwise
381  *
382  * This function makes us disable or enable CPU fifo underruns for a specific
383  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384  * reporting for one pipe may also disable all the other CPU error interruts for
385  * the other pipes, due to the fact that there's just one interrupt mask/enable
386  * bit for all the pipes.
387  *
388  * Returns the previous state of underrun reporting.
389  */
390 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391 					     enum pipe pipe, bool enable)
392 {
393 	struct drm_i915_private *dev_priv = dev->dev_private;
394 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396 	bool ret;
397 
398 	assert_spin_locked(&dev_priv->irq_lock);
399 
400 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
401 
402 	if (enable == ret)
403 		goto done;
404 
405 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
406 
407 	if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408 		i9xx_clear_fifo_underrun(dev, pipe);
409 	else if (IS_GEN5(dev) || IS_GEN6(dev))
410 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411 	else if (IS_GEN7(dev))
412 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413 	else if (IS_GEN8(dev))
414 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415 
416 done:
417 	return ret;
418 }
419 
420 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421 					   enum pipe pipe, bool enable)
422 {
423 	struct drm_i915_private *dev_priv = dev->dev_private;
424 	unsigned long flags;
425 	bool ret;
426 
427 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
428 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430 
431 	return ret;
432 }
433 
434 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435 						  enum pipe pipe)
436 {
437 	struct drm_i915_private *dev_priv = dev->dev_private;
438 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440 
441 	return !intel_crtc->cpu_fifo_underrun_disabled;
442 }
443 
444 /**
445  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446  * @dev: drm device
447  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448  * @enable: true if we want to report FIFO underrun errors, false otherwise
449  *
450  * This function makes us disable or enable PCH fifo underruns for a specific
451  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452  * underrun reporting for one transcoder may also disable all the other PCH
453  * error interruts for the other transcoders, due to the fact that there's just
454  * one interrupt mask/enable bit for all the transcoders.
455  *
456  * Returns the previous state of underrun reporting.
457  */
458 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459 					   enum transcoder pch_transcoder,
460 					   bool enable)
461 {
462 	struct drm_i915_private *dev_priv = dev->dev_private;
463 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465 	unsigned long flags;
466 	bool ret;
467 
468 	/*
469 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470 	 * has only one pch transcoder A that all pipes can use. To avoid racy
471 	 * pch transcoder -> pipe lookups from interrupt code simply store the
472 	 * underrun statistics in crtc A. Since we never expose this anywhere
473 	 * nor use it outside of the fifo underrun code here using the "wrong"
474 	 * crtc on LPT won't cause issues.
475 	 */
476 
477 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
478 
479 	ret = !intel_crtc->pch_fifo_underrun_disabled;
480 
481 	if (enable == ret)
482 		goto done;
483 
484 	intel_crtc->pch_fifo_underrun_disabled = !enable;
485 
486 	if (HAS_PCH_IBX(dev))
487 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488 	else
489 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490 
491 done:
492 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493 	return ret;
494 }
495 
496 
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 		       u32 enable_mask, u32 status_mask)
500 {
501 	u32 reg = PIPESTAT(pipe);
502 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503 
504 	assert_spin_locked(&dev_priv->irq_lock);
505 
506 	if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507 	                 status_mask & ~PIPESTAT_INT_STATUS_MASK))
508 		return;
509 
510 	if ((pipestat & enable_mask) == enable_mask)
511 		return;
512 
513 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514 
515 	/* Enable the interrupt, clear any pending status */
516 	pipestat |= enable_mask | status_mask;
517 	I915_WRITE(reg, pipestat);
518 	POSTING_READ(reg);
519 }
520 
521 static void
522 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523 		        u32 enable_mask, u32 status_mask)
524 {
525 	u32 reg = PIPESTAT(pipe);
526 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527 
528 	assert_spin_locked(&dev_priv->irq_lock);
529 
530 	if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531 	                 status_mask & ~PIPESTAT_INT_STATUS_MASK))
532 		return;
533 
534 	if ((pipestat & enable_mask) == 0)
535 		return;
536 
537 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538 
539 	pipestat &= ~enable_mask;
540 	I915_WRITE(reg, pipestat);
541 	POSTING_READ(reg);
542 }
543 
544 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545 {
546 	u32 enable_mask = status_mask << 16;
547 
548 	/*
549 	 * On pipe A we don't support the PSR interrupt yet, on pipe B the
550 	 * same bit MBZ.
551 	 */
552 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553 		return 0;
554 
555 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
557 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
558 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562 
563 	return enable_mask;
564 }
565 
566 void
567 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568 		     u32 status_mask)
569 {
570 	u32 enable_mask;
571 
572 	if (IS_VALLEYVIEW(dev_priv->dev))
573 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574 							   status_mask);
575 	else
576 		enable_mask = status_mask << 16;
577 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578 }
579 
580 void
581 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582 		      u32 status_mask)
583 {
584 	u32 enable_mask;
585 
586 	if (IS_VALLEYVIEW(dev_priv->dev))
587 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588 							   status_mask);
589 	else
590 		enable_mask = status_mask << 16;
591 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592 }
593 
594 /**
595  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596  */
597 static void i915_enable_asle_pipestat(struct drm_device *dev)
598 {
599 	struct drm_i915_private *dev_priv = dev->dev_private;
600 	unsigned long irqflags;
601 
602 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603 		return;
604 
605 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606 
607 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608 	if (INTEL_INFO(dev)->gen >= 4)
609 		i915_enable_pipestat(dev_priv, PIPE_A,
610 				     PIPE_LEGACY_BLC_EVENT_STATUS);
611 
612 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613 }
614 
615 /**
616  * i915_pipe_enabled - check if a pipe is enabled
617  * @dev: DRM device
618  * @pipe: pipe to check
619  *
620  * Reading certain registers when the pipe is disabled can hang the chip.
621  * Use this routine to make sure the PLL is running and the pipe is active
622  * before reading such registers if unsure.
623  */
624 static int
625 i915_pipe_enabled(struct drm_device *dev, int pipe)
626 {
627 	struct drm_i915_private *dev_priv = dev->dev_private;
628 
629 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630 		/* Locking is horribly broken here, but whatever. */
631 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633 
634 		return intel_crtc->active;
635 	} else {
636 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637 	}
638 }
639 
640 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642 	/* Gen2 doesn't have a hardware frame counter */
643 	return 0;
644 }
645 
646 /* Called from drm generic code, passed a 'crtc', which
647  * we use as a pipe index
648  */
649 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650 {
651 	struct drm_i915_private *dev_priv = dev->dev_private;
652 	unsigned long high_frame;
653 	unsigned long low_frame;
654 	u32 high1, high2, low, pixel, vbl_start;
655 
656 	if (!i915_pipe_enabled(dev, pipe)) {
657 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658 				"pipe %c\n", pipe_name(pipe));
659 		return 0;
660 	}
661 
662 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663 		struct intel_crtc *intel_crtc =
664 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665 		const struct drm_display_mode *mode =
666 			&intel_crtc->config.adjusted_mode;
667 
668 		vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669 	} else {
670 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
671 		u32 htotal;
672 
673 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675 
676 		vbl_start *= htotal;
677 	}
678 
679 	high_frame = PIPEFRAME(pipe);
680 	low_frame = PIPEFRAMEPIXEL(pipe);
681 
682 	/*
683 	 * High & low register fields aren't synchronized, so make sure
684 	 * we get a low value that's stable across two reads of the high
685 	 * register.
686 	 */
687 	do {
688 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689 		low   = I915_READ(low_frame);
690 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691 	} while (high1 != high2);
692 
693 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
694 	pixel = low & PIPE_PIXEL_MASK;
695 	low >>= PIPE_FRAME_LOW_SHIFT;
696 
697 	/*
698 	 * The frame counter increments at beginning of active.
699 	 * Cook up a vblank counter by also checking the pixel
700 	 * counter against vblank start.
701 	 */
702 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703 }
704 
705 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706 {
707 	struct drm_i915_private *dev_priv = dev->dev_private;
708 	int reg = PIPE_FRMCOUNT_GM45(pipe);
709 
710 	if (!i915_pipe_enabled(dev, pipe)) {
711 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712 				 "pipe %c\n", pipe_name(pipe));
713 		return 0;
714 	}
715 
716 	return I915_READ(reg);
717 }
718 
719 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
720 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721 
722 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 	uint32_t status;
726 	int reg;
727 
728 	if (INTEL_INFO(dev)->gen >= 8) {
729 		status = GEN8_PIPE_VBLANK;
730 		reg = GEN8_DE_PIPE_ISR(pipe);
731 	} else if (INTEL_INFO(dev)->gen >= 7) {
732 		status = DE_PIPE_VBLANK_IVB(pipe);
733 		reg = DEISR;
734 	} else {
735 		status = DE_PIPE_VBLANK(pipe);
736 		reg = DEISR;
737 	}
738 
739 	return __raw_i915_read32(dev_priv, reg) & status;
740 }
741 
742 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
743 				    unsigned int flags, int *vpos, int *hpos,
744 				    ktime_t *stime, ktime_t *etime)
745 {
746 	struct drm_i915_private *dev_priv = dev->dev_private;
747 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
750 	int position;
751 	int vbl_start, vbl_end, htotal, vtotal;
752 	bool in_vbl = true;
753 	int ret = 0;
754 	unsigned long irqflags;
755 
756 	if (!intel_crtc->active) {
757 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
758 				 "pipe %c\n", pipe_name(pipe));
759 		return 0;
760 	}
761 
762 	htotal = mode->crtc_htotal;
763 	vtotal = mode->crtc_vtotal;
764 	vbl_start = mode->crtc_vblank_start;
765 	vbl_end = mode->crtc_vblank_end;
766 
767 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
768 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
769 		vbl_end /= 2;
770 		vtotal /= 2;
771 	}
772 
773 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
774 
775 	/*
776 	 * Lock uncore.lock, as we will do multiple timing critical raw
777 	 * register reads, potentially with preemption disabled, so the
778 	 * following code must not block on uncore.lock.
779 	 */
780 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
781 
782 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
783 
784 	/* Get optional system timestamp before query. */
785 	if (stime)
786 		*stime = ktime_get();
787 
788 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789 		/* No obvious pixelcount register. Only query vertical
790 		 * scanout position from Display scan line register.
791 		 */
792 		if (IS_GEN2(dev))
793 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
794 		else
795 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
796 
797 		if (HAS_DDI(dev)) {
798 			/*
799 			 * On HSW HDMI outputs there seems to be a 2 line
800 			 * difference, whereas eDP has the normal 1 line
801 			 * difference that earlier platforms have. External
802 			 * DP is unknown. For now just check for the 2 line
803 			 * difference case on all output types on HSW+.
804 			 *
805 			 * This might misinterpret the scanline counter being
806 			 * one line too far along on eDP, but that's less
807 			 * dangerous than the alternative since that would lead
808 			 * the vblank timestamp code astray when it sees a
809 			 * scanline count before vblank_start during a vblank
810 			 * interrupt.
811 			 */
812 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
813 			if ((in_vbl && (position == vbl_start - 2 ||
814 					position == vbl_start - 1)) ||
815 			    (!in_vbl && (position == vbl_end - 2 ||
816 					 position == vbl_end - 1)))
817 				position = (position + 2) % vtotal;
818 		} else if (HAS_PCH_SPLIT(dev)) {
819 			/*
820 			 * The scanline counter increments at the leading edge
821 			 * of hsync, ie. it completely misses the active portion
822 			 * of the line. Fix up the counter at both edges of vblank
823 			 * to get a more accurate picture whether we're in vblank
824 			 * or not.
825 			 */
826 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
827 			if ((in_vbl && position == vbl_start - 1) ||
828 			    (!in_vbl && position == vbl_end - 1))
829 				position = (position + 1) % vtotal;
830 		} else {
831 			/*
832 			 * ISR vblank status bits don't work the way we'd want
833 			 * them to work on non-PCH platforms (for
834 			 * ilk_pipe_in_vblank_locked()), and there doesn't
835 			 * appear any other way to determine if we're currently
836 			 * in vblank.
837 			 *
838 			 * Instead let's assume that we're already in vblank if
839 			 * we got called from the vblank interrupt and the
840 			 * scanline counter value indicates that we're on the
841 			 * line just prior to vblank start. This should result
842 			 * in the correct answer, unless the vblank interrupt
843 			 * delivery really got delayed for almost exactly one
844 			 * full frame/field.
845 			 */
846 			if (flags & DRM_CALLED_FROM_VBLIRQ &&
847 			    position == vbl_start - 1) {
848 				position = (position + 1) % vtotal;
849 
850 				/* Signal this correction as "applied". */
851 				ret |= 0x8;
852 			}
853 		}
854 	} else {
855 		/* Have access to pixelcount since start of frame.
856 		 * We can split this into vertical and horizontal
857 		 * scanout position.
858 		 */
859 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
860 
861 		/* convert to pixel counts */
862 		vbl_start *= htotal;
863 		vbl_end *= htotal;
864 		vtotal *= htotal;
865 	}
866 
867 	/* Get optional system timestamp after query. */
868 	if (etime)
869 		*etime = ktime_get();
870 
871 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
872 
873 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
874 
875 	in_vbl = position >= vbl_start && position < vbl_end;
876 
877 	/*
878 	 * While in vblank, position will be negative
879 	 * counting up towards 0 at vbl_end. And outside
880 	 * vblank, position will be positive counting
881 	 * up since vbl_end.
882 	 */
883 	if (position >= vbl_start)
884 		position -= vbl_end;
885 	else
886 		position += vtotal - vbl_end;
887 
888 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
889 		*vpos = position;
890 		*hpos = 0;
891 	} else {
892 		*vpos = position / htotal;
893 		*hpos = position - (*vpos * htotal);
894 	}
895 
896 	/* In vblank? */
897 	if (in_vbl)
898 		ret |= DRM_SCANOUTPOS_INVBL;
899 
900 	return ret;
901 }
902 
903 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
904 			      int *max_error,
905 			      struct timeval *vblank_time,
906 			      unsigned flags)
907 {
908 	struct drm_crtc *crtc;
909 
910 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
911 		DRM_ERROR("Invalid crtc %d\n", pipe);
912 		return -EINVAL;
913 	}
914 
915 	/* Get drm_crtc to timestamp: */
916 	crtc = intel_get_crtc_for_pipe(dev, pipe);
917 	if (crtc == NULL) {
918 		DRM_ERROR("Invalid crtc %d\n", pipe);
919 		return -EINVAL;
920 	}
921 
922 	if (!crtc->enabled) {
923 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
924 		return -EBUSY;
925 	}
926 
927 	/* Helper routine in DRM core does all the work: */
928 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
929 						     vblank_time, flags,
930 						     crtc,
931 						     &to_intel_crtc(crtc)->config.adjusted_mode);
932 }
933 
934 static bool intel_hpd_irq_event(struct drm_device *dev,
935 				struct drm_connector *connector)
936 {
937 	enum drm_connector_status old_status;
938 
939 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
940 	old_status = connector->status;
941 
942 	connector->status = connector->funcs->detect(connector, false);
943 	if (old_status == connector->status)
944 		return false;
945 
946 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
947 		      connector->base.id,
948 		      drm_get_connector_name(connector),
949 		      drm_get_connector_status_name(old_status),
950 		      drm_get_connector_status_name(connector->status));
951 
952 	return true;
953 }
954 
955 /*
956  * Handle hotplug events outside the interrupt handler proper.
957  */
958 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
959 
960 static void i915_hotplug_work_func(struct work_struct *work)
961 {
962 	struct drm_i915_private *dev_priv =
963 		container_of(work, struct drm_i915_private, hotplug_work);
964 	struct drm_device *dev = dev_priv->dev;
965 	struct drm_mode_config *mode_config = &dev->mode_config;
966 	struct intel_connector *intel_connector;
967 	struct intel_encoder *intel_encoder;
968 	struct drm_connector *connector;
969 	unsigned long irqflags;
970 	bool hpd_disabled = false;
971 	bool changed = false;
972 	u32 hpd_event_bits;
973 
974 	/* HPD irq before everything is fully set up. */
975 	if (!dev_priv->enable_hotplug_processing)
976 		return;
977 
978 	mutex_lock(&mode_config->mutex);
979 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
980 
981 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982 
983 	hpd_event_bits = dev_priv->hpd_event_bits;
984 	dev_priv->hpd_event_bits = 0;
985 	list_for_each_entry(connector, &mode_config->connector_list, head) {
986 		intel_connector = to_intel_connector(connector);
987 		intel_encoder = intel_connector->encoder;
988 		if (intel_encoder->hpd_pin > HPD_NONE &&
989 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
990 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
991 			DRM_INFO("HPD interrupt storm detected on connector %s: "
992 				 "switching from hotplug detection to polling\n",
993 				drm_get_connector_name(connector));
994 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
995 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
996 				| DRM_CONNECTOR_POLL_DISCONNECT;
997 			hpd_disabled = true;
998 		}
999 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002 		}
1003 	}
1004 	 /* if there were no outputs to poll, poll was disabled,
1005 	  * therefore make sure it's enabled when disabling HPD on
1006 	  * some connectors */
1007 	if (hpd_disabled) {
1008 		drm_kms_helper_poll_enable(dev);
1009 		mod_timer(&dev_priv->hotplug_reenable_timer,
1010 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011 	}
1012 
1013 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014 
1015 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1016 		intel_connector = to_intel_connector(connector);
1017 		intel_encoder = intel_connector->encoder;
1018 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019 			if (intel_encoder->hot_plug)
1020 				intel_encoder->hot_plug(intel_encoder);
1021 			if (intel_hpd_irq_event(dev, connector))
1022 				changed = true;
1023 		}
1024 	}
1025 	mutex_unlock(&mode_config->mutex);
1026 
1027 	if (changed)
1028 		drm_kms_helper_hotplug_event(dev);
1029 }
1030 
1031 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032 {
1033 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034 }
1035 
1036 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037 {
1038 	struct drm_i915_private *dev_priv = dev->dev_private;
1039 	u32 busy_up, busy_down, max_avg, min_avg;
1040 	u8 new_delay;
1041 
1042 	spin_lock(&mchdev_lock);
1043 
1044 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1045 
1046 	new_delay = dev_priv->ips.cur_delay;
1047 
1048 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1050 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1051 	max_avg = I915_READ(RCBMAXAVG);
1052 	min_avg = I915_READ(RCBMINAVG);
1053 
1054 	/* Handle RCS change request from hw */
1055 	if (busy_up > max_avg) {
1056 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057 			new_delay = dev_priv->ips.cur_delay - 1;
1058 		if (new_delay < dev_priv->ips.max_delay)
1059 			new_delay = dev_priv->ips.max_delay;
1060 	} else if (busy_down < min_avg) {
1061 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062 			new_delay = dev_priv->ips.cur_delay + 1;
1063 		if (new_delay > dev_priv->ips.min_delay)
1064 			new_delay = dev_priv->ips.min_delay;
1065 	}
1066 
1067 	if (ironlake_set_drps(dev, new_delay))
1068 		dev_priv->ips.cur_delay = new_delay;
1069 
1070 	spin_unlock(&mchdev_lock);
1071 
1072 	return;
1073 }
1074 
1075 static void notify_ring(struct drm_device *dev,
1076 			struct intel_ring_buffer *ring)
1077 {
1078 	if (ring->obj == NULL)
1079 		return;
1080 
1081 	trace_i915_gem_request_complete(ring);
1082 
1083 	wake_up_all(&ring->irq_queue);
1084 	i915_queue_hangcheck(dev);
1085 }
1086 
1087 static void gen6_pm_rps_work(struct work_struct *work)
1088 {
1089 	struct drm_i915_private *dev_priv =
1090 		container_of(work, struct drm_i915_private, rps.work);
1091 	u32 pm_iir;
1092 	int new_delay, adj;
1093 
1094 	spin_lock_irq(&dev_priv->irq_lock);
1095 	pm_iir = dev_priv->rps.pm_iir;
1096 	dev_priv->rps.pm_iir = 0;
1097 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098 	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099 	spin_unlock_irq(&dev_priv->irq_lock);
1100 
1101 	/* Make sure we didn't queue anything we're not going to process. */
1102 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103 
1104 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105 		return;
1106 
1107 	mutex_lock(&dev_priv->rps.hw_lock);
1108 
1109 	adj = dev_priv->rps.last_adj;
1110 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1111 		if (adj > 0)
1112 			adj *= 2;
1113 		else
1114 			adj = 1;
1115 		new_delay = dev_priv->rps.cur_freq + adj;
1116 
1117 		/*
1118 		 * For better performance, jump directly
1119 		 * to RPe if we're below it.
1120 		 */
1121 		if (new_delay < dev_priv->rps.efficient_freq)
1122 			new_delay = dev_priv->rps.efficient_freq;
1123 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125 			new_delay = dev_priv->rps.efficient_freq;
1126 		else
1127 			new_delay = dev_priv->rps.min_freq_softlimit;
1128 		adj = 0;
1129 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130 		if (adj < 0)
1131 			adj *= 2;
1132 		else
1133 			adj = -1;
1134 		new_delay = dev_priv->rps.cur_freq + adj;
1135 	} else { /* unknown event */
1136 		new_delay = dev_priv->rps.cur_freq;
1137 	}
1138 
1139 	/* sysfs frequency interfaces may have snuck in while servicing the
1140 	 * interrupt
1141 	 */
1142 	new_delay = clamp_t(int, new_delay,
1143 			    dev_priv->rps.min_freq_softlimit,
1144 			    dev_priv->rps.max_freq_softlimit);
1145 
1146 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1147 
1148 	if (IS_VALLEYVIEW(dev_priv->dev))
1149 		valleyview_set_rps(dev_priv->dev, new_delay);
1150 	else
1151 		gen6_set_rps(dev_priv->dev, new_delay);
1152 
1153 	mutex_unlock(&dev_priv->rps.hw_lock);
1154 }
1155 
1156 
1157 /**
1158  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159  * occurred.
1160  * @work: workqueue struct
1161  *
1162  * Doesn't actually do anything except notify userspace. As a consequence of
1163  * this event, userspace should try to remap the bad rows since statistically
1164  * it is likely the same row is more likely to go bad again.
1165  */
1166 static void ivybridge_parity_work(struct work_struct *work)
1167 {
1168 	struct drm_i915_private *dev_priv =
1169 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1170 	u32 error_status, row, bank, subbank;
1171 	char *parity_event[6];
1172 	uint32_t misccpctl;
1173 	unsigned long flags;
1174 	uint8_t slice = 0;
1175 
1176 	/* We must turn off DOP level clock gating to access the L3 registers.
1177 	 * In order to prevent a get/put style interface, acquire struct mutex
1178 	 * any time we access those registers.
1179 	 */
1180 	mutex_lock(&dev_priv->dev->struct_mutex);
1181 
1182 	/* If we've screwed up tracking, just let the interrupt fire again */
1183 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 		goto out;
1185 
1186 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 	POSTING_READ(GEN7_MISCCPCTL);
1189 
1190 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 		u32 reg;
1192 
1193 		slice--;
1194 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195 			break;
1196 
1197 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198 
1199 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200 
1201 		error_status = I915_READ(reg);
1202 		row = GEN7_PARITY_ERROR_ROW(error_status);
1203 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205 
1206 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 		POSTING_READ(reg);
1208 
1209 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 		parity_event[5] = NULL;
1215 
1216 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217 				   KOBJ_CHANGE, parity_event);
1218 
1219 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 			  slice, row, bank, subbank);
1221 
1222 		kfree(parity_event[4]);
1223 		kfree(parity_event[3]);
1224 		kfree(parity_event[2]);
1225 		kfree(parity_event[1]);
1226 	}
1227 
1228 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229 
1230 out:
1231 	WARN_ON(dev_priv->l3_parity.which_slice);
1232 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235 
1236 	mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238 
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241 	struct drm_i915_private *dev_priv = dev->dev_private;
1242 
1243 	if (!HAS_L3_DPF(dev))
1244 		return;
1245 
1246 	spin_lock(&dev_priv->irq_lock);
1247 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248 	spin_unlock(&dev_priv->irq_lock);
1249 
1250 	iir &= GT_PARITY_ERROR(dev);
1251 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252 		dev_priv->l3_parity.which_slice |= 1 << 1;
1253 
1254 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255 		dev_priv->l3_parity.which_slice |= 1 << 0;
1256 
1257 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259 
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261 			       struct drm_i915_private *dev_priv,
1262 			       u32 gt_iir)
1263 {
1264 	if (gt_iir &
1265 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 		notify_ring(dev, &dev_priv->ring[RCS]);
1267 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268 		notify_ring(dev, &dev_priv->ring[VCS]);
1269 }
1270 
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272 			       struct drm_i915_private *dev_priv,
1273 			       u32 gt_iir)
1274 {
1275 
1276 	if (gt_iir &
1277 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278 		notify_ring(dev, &dev_priv->ring[RCS]);
1279 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 		notify_ring(dev, &dev_priv->ring[VCS]);
1281 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 		notify_ring(dev, &dev_priv->ring[BCS]);
1283 
1284 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 		      GT_BSD_CS_ERROR_INTERRUPT |
1286 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288 				  gt_iir);
1289 	}
1290 
1291 	if (gt_iir & GT_PARITY_ERROR(dev))
1292 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1293 }
1294 
1295 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296 				       struct drm_i915_private *dev_priv,
1297 				       u32 master_ctl)
1298 {
1299 	u32 rcs, bcs, vcs;
1300 	uint32_t tmp = 0;
1301 	irqreturn_t ret = IRQ_NONE;
1302 
1303 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304 		tmp = I915_READ(GEN8_GT_IIR(0));
1305 		if (tmp) {
1306 			ret = IRQ_HANDLED;
1307 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309 			if (rcs & GT_RENDER_USER_INTERRUPT)
1310 				notify_ring(dev, &dev_priv->ring[RCS]);
1311 			if (bcs & GT_RENDER_USER_INTERRUPT)
1312 				notify_ring(dev, &dev_priv->ring[BCS]);
1313 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1314 		} else
1315 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316 	}
1317 
1318 	if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319 		tmp = I915_READ(GEN8_GT_IIR(1));
1320 		if (tmp) {
1321 			ret = IRQ_HANDLED;
1322 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323 			if (vcs & GT_RENDER_USER_INTERRUPT)
1324 				notify_ring(dev, &dev_priv->ring[VCS]);
1325 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1326 		} else
1327 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1328 	}
1329 
1330 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1331 		tmp = I915_READ(GEN8_GT_IIR(3));
1332 		if (tmp) {
1333 			ret = IRQ_HANDLED;
1334 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335 			if (vcs & GT_RENDER_USER_INTERRUPT)
1336 				notify_ring(dev, &dev_priv->ring[VECS]);
1337 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1338 		} else
1339 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1340 	}
1341 
1342 	return ret;
1343 }
1344 
1345 #define HPD_STORM_DETECT_PERIOD 1000
1346 #define HPD_STORM_THRESHOLD 5
1347 
1348 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349 					 u32 hotplug_trigger,
1350 					 const u32 *hpd)
1351 {
1352 	struct drm_i915_private *dev_priv = dev->dev_private;
1353 	int i;
1354 	bool storm_detected = false;
1355 
1356 	if (!hotplug_trigger)
1357 		return;
1358 
1359 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360 			  hotplug_trigger);
1361 
1362 	spin_lock(&dev_priv->irq_lock);
1363 	for (i = 1; i < HPD_NUM_PINS; i++) {
1364 
1365 		if (hpd[i] & hotplug_trigger &&
1366 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1367 			/*
1368 			 * On GMCH platforms the interrupt mask bits only
1369 			 * prevent irq generation, not the setting of the
1370 			 * hotplug bits itself. So only WARN about unexpected
1371 			 * interrupts on saner platforms.
1372 			 */
1373 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1374 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1375 				  hotplug_trigger, i, hpd[i]);
1376 
1377 			continue;
1378 		}
1379 
1380 		if (!(hpd[i] & hotplug_trigger) ||
1381 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1382 			continue;
1383 
1384 		dev_priv->hpd_event_bits |= (1 << i);
1385 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1386 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1387 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1388 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1389 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1390 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1391 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1392 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1393 			dev_priv->hpd_event_bits &= ~(1 << i);
1394 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1395 			storm_detected = true;
1396 		} else {
1397 			dev_priv->hpd_stats[i].hpd_cnt++;
1398 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1399 				      dev_priv->hpd_stats[i].hpd_cnt);
1400 		}
1401 	}
1402 
1403 	if (storm_detected)
1404 		dev_priv->display.hpd_irq_setup(dev);
1405 	spin_unlock(&dev_priv->irq_lock);
1406 
1407 	/*
1408 	 * Our hotplug handler can grab modeset locks (by calling down into the
1409 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1410 	 * queue for otherwise the flush_work in the pageflip code will
1411 	 * deadlock.
1412 	 */
1413 	schedule_work(&dev_priv->hotplug_work);
1414 }
1415 
1416 static void gmbus_irq_handler(struct drm_device *dev)
1417 {
1418 	struct drm_i915_private *dev_priv = dev->dev_private;
1419 
1420 	wake_up_all(&dev_priv->gmbus_wait_queue);
1421 }
1422 
1423 static void dp_aux_irq_handler(struct drm_device *dev)
1424 {
1425 	struct drm_i915_private *dev_priv = dev->dev_private;
1426 
1427 	wake_up_all(&dev_priv->gmbus_wait_queue);
1428 }
1429 
1430 #if defined(CONFIG_DEBUG_FS)
1431 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1432 					 uint32_t crc0, uint32_t crc1,
1433 					 uint32_t crc2, uint32_t crc3,
1434 					 uint32_t crc4)
1435 {
1436 	struct drm_i915_private *dev_priv = dev->dev_private;
1437 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1438 	struct intel_pipe_crc_entry *entry;
1439 	int head, tail;
1440 
1441 	spin_lock(&pipe_crc->lock);
1442 
1443 	if (!pipe_crc->entries) {
1444 		spin_unlock(&pipe_crc->lock);
1445 		DRM_ERROR("spurious interrupt\n");
1446 		return;
1447 	}
1448 
1449 	head = pipe_crc->head;
1450 	tail = pipe_crc->tail;
1451 
1452 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1453 		spin_unlock(&pipe_crc->lock);
1454 		DRM_ERROR("CRC buffer overflowing\n");
1455 		return;
1456 	}
1457 
1458 	entry = &pipe_crc->entries[head];
1459 
1460 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1461 	entry->crc[0] = crc0;
1462 	entry->crc[1] = crc1;
1463 	entry->crc[2] = crc2;
1464 	entry->crc[3] = crc3;
1465 	entry->crc[4] = crc4;
1466 
1467 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1468 	pipe_crc->head = head;
1469 
1470 	spin_unlock(&pipe_crc->lock);
1471 
1472 	wake_up_interruptible(&pipe_crc->wq);
1473 }
1474 #else
1475 static inline void
1476 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1477 			     uint32_t crc0, uint32_t crc1,
1478 			     uint32_t crc2, uint32_t crc3,
1479 			     uint32_t crc4) {}
1480 #endif
1481 
1482 
1483 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1484 {
1485 	struct drm_i915_private *dev_priv = dev->dev_private;
1486 
1487 	display_pipe_crc_irq_handler(dev, pipe,
1488 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1489 				     0, 0, 0, 0);
1490 }
1491 
1492 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1493 {
1494 	struct drm_i915_private *dev_priv = dev->dev_private;
1495 
1496 	display_pipe_crc_irq_handler(dev, pipe,
1497 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1498 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1499 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1500 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1501 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1502 }
1503 
1504 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1505 {
1506 	struct drm_i915_private *dev_priv = dev->dev_private;
1507 	uint32_t res1, res2;
1508 
1509 	if (INTEL_INFO(dev)->gen >= 3)
1510 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1511 	else
1512 		res1 = 0;
1513 
1514 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1515 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1516 	else
1517 		res2 = 0;
1518 
1519 	display_pipe_crc_irq_handler(dev, pipe,
1520 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1521 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1522 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1523 				     res1, res2);
1524 }
1525 
1526 /* The RPS events need forcewake, so we add them to a work queue and mask their
1527  * IMR bits until the work is done. Other interrupts can be processed without
1528  * the work queue. */
1529 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1530 {
1531 	if (pm_iir & dev_priv->pm_rps_events) {
1532 		spin_lock(&dev_priv->irq_lock);
1533 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1534 		snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1535 		spin_unlock(&dev_priv->irq_lock);
1536 
1537 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1538 	}
1539 
1540 	if (HAS_VEBOX(dev_priv->dev)) {
1541 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1542 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1543 
1544 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1545 			i915_handle_error(dev_priv->dev, false,
1546 					  "VEBOX CS error interrupt 0x%08x",
1547 					  pm_iir);
1548 		}
1549 	}
1550 }
1551 
1552 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1553 {
1554 	struct drm_i915_private *dev_priv = dev->dev_private;
1555 	u32 pipe_stats[I915_MAX_PIPES] = { };
1556 	int pipe;
1557 
1558 	spin_lock(&dev_priv->irq_lock);
1559 	for_each_pipe(pipe) {
1560 		int reg;
1561 		u32 mask, iir_bit = 0;
1562 
1563 		/*
1564 		 * PIPESTAT bits get signalled even when the interrupt is
1565 		 * disabled with the mask bits, and some of the status bits do
1566 		 * not generate interrupts at all (like the underrun bit). Hence
1567 		 * we need to be careful that we only handle what we want to
1568 		 * handle.
1569 		 */
1570 		mask = 0;
1571 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1572 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
1573 
1574 		switch (pipe) {
1575 		case PIPE_A:
1576 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1577 			break;
1578 		case PIPE_B:
1579 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1580 			break;
1581 		}
1582 		if (iir & iir_bit)
1583 			mask |= dev_priv->pipestat_irq_mask[pipe];
1584 
1585 		if (!mask)
1586 			continue;
1587 
1588 		reg = PIPESTAT(pipe);
1589 		mask |= PIPESTAT_INT_ENABLE_MASK;
1590 		pipe_stats[pipe] = I915_READ(reg) & mask;
1591 
1592 		/*
1593 		 * Clear the PIPE*STAT regs before the IIR
1594 		 */
1595 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1596 					PIPESTAT_INT_STATUS_MASK))
1597 			I915_WRITE(reg, pipe_stats[pipe]);
1598 	}
1599 	spin_unlock(&dev_priv->irq_lock);
1600 
1601 	for_each_pipe(pipe) {
1602 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1603 			drm_handle_vblank(dev, pipe);
1604 
1605 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1606 			intel_prepare_page_flip(dev, pipe);
1607 			intel_finish_page_flip(dev, pipe);
1608 		}
1609 
1610 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1611 			i9xx_pipe_crc_irq_handler(dev, pipe);
1612 
1613 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1614 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1615 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1616 	}
1617 
1618 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1619 		gmbus_irq_handler(dev);
1620 }
1621 
1622 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623 {
1624 	struct drm_device *dev = (struct drm_device *) arg;
1625 	struct drm_i915_private *dev_priv = dev->dev_private;
1626 	u32 iir, gt_iir, pm_iir;
1627 	irqreturn_t ret = IRQ_NONE;
1628 
1629 	while (true) {
1630 		iir = I915_READ(VLV_IIR);
1631 		gt_iir = I915_READ(GTIIR);
1632 		pm_iir = I915_READ(GEN6_PMIIR);
1633 
1634 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1635 			goto out;
1636 
1637 		ret = IRQ_HANDLED;
1638 
1639 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1640 
1641 		valleyview_pipestat_irq_handler(dev, iir);
1642 
1643 		/* Consume port.  Then clear IIR or we'll miss events */
1644 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1645 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1646 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1647 
1648 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1649 
1650 			if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1651 				dp_aux_irq_handler(dev);
1652 
1653 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1654 			I915_READ(PORT_HOTPLUG_STAT);
1655 		}
1656 
1657 
1658 		if (pm_iir)
1659 			gen6_rps_irq_handler(dev_priv, pm_iir);
1660 
1661 		I915_WRITE(GTIIR, gt_iir);
1662 		I915_WRITE(GEN6_PMIIR, pm_iir);
1663 		I915_WRITE(VLV_IIR, iir);
1664 	}
1665 
1666 out:
1667 	return ret;
1668 }
1669 
1670 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1671 {
1672 	struct drm_i915_private *dev_priv = dev->dev_private;
1673 	int pipe;
1674 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1675 
1676 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1677 
1678 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1679 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1680 			       SDE_AUDIO_POWER_SHIFT);
1681 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1682 				 port_name(port));
1683 	}
1684 
1685 	if (pch_iir & SDE_AUX_MASK)
1686 		dp_aux_irq_handler(dev);
1687 
1688 	if (pch_iir & SDE_GMBUS)
1689 		gmbus_irq_handler(dev);
1690 
1691 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1692 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1693 
1694 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1695 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1696 
1697 	if (pch_iir & SDE_POISON)
1698 		DRM_ERROR("PCH poison interrupt\n");
1699 
1700 	if (pch_iir & SDE_FDI_MASK)
1701 		for_each_pipe(pipe)
1702 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1703 					 pipe_name(pipe),
1704 					 I915_READ(FDI_RX_IIR(pipe)));
1705 
1706 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1707 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1708 
1709 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1710 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1711 
1712 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1713 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1714 							  false))
1715 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1716 
1717 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1718 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1719 							  false))
1720 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1721 }
1722 
1723 static void ivb_err_int_handler(struct drm_device *dev)
1724 {
1725 	struct drm_i915_private *dev_priv = dev->dev_private;
1726 	u32 err_int = I915_READ(GEN7_ERR_INT);
1727 	enum pipe pipe;
1728 
1729 	if (err_int & ERR_INT_POISON)
1730 		DRM_ERROR("Poison interrupt\n");
1731 
1732 	for_each_pipe(pipe) {
1733 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1734 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1735 								  false))
1736 				DRM_ERROR("Pipe %c FIFO underrun\n",
1737 					  pipe_name(pipe));
1738 		}
1739 
1740 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1741 			if (IS_IVYBRIDGE(dev))
1742 				ivb_pipe_crc_irq_handler(dev, pipe);
1743 			else
1744 				hsw_pipe_crc_irq_handler(dev, pipe);
1745 		}
1746 	}
1747 
1748 	I915_WRITE(GEN7_ERR_INT, err_int);
1749 }
1750 
1751 static void cpt_serr_int_handler(struct drm_device *dev)
1752 {
1753 	struct drm_i915_private *dev_priv = dev->dev_private;
1754 	u32 serr_int = I915_READ(SERR_INT);
1755 
1756 	if (serr_int & SERR_INT_POISON)
1757 		DRM_ERROR("PCH poison interrupt\n");
1758 
1759 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1760 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1761 							  false))
1762 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1763 
1764 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1765 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1766 							  false))
1767 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1768 
1769 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1770 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1771 							  false))
1772 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
1773 
1774 	I915_WRITE(SERR_INT, serr_int);
1775 }
1776 
1777 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1778 {
1779 	struct drm_i915_private *dev_priv = dev->dev_private;
1780 	int pipe;
1781 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1782 
1783 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1784 
1785 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1786 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1787 			       SDE_AUDIO_POWER_SHIFT_CPT);
1788 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1789 				 port_name(port));
1790 	}
1791 
1792 	if (pch_iir & SDE_AUX_MASK_CPT)
1793 		dp_aux_irq_handler(dev);
1794 
1795 	if (pch_iir & SDE_GMBUS_CPT)
1796 		gmbus_irq_handler(dev);
1797 
1798 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1799 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1800 
1801 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1802 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1803 
1804 	if (pch_iir & SDE_FDI_MASK_CPT)
1805 		for_each_pipe(pipe)
1806 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1807 					 pipe_name(pipe),
1808 					 I915_READ(FDI_RX_IIR(pipe)));
1809 
1810 	if (pch_iir & SDE_ERROR_CPT)
1811 		cpt_serr_int_handler(dev);
1812 }
1813 
1814 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1815 {
1816 	struct drm_i915_private *dev_priv = dev->dev_private;
1817 	enum pipe pipe;
1818 
1819 	if (de_iir & DE_AUX_CHANNEL_A)
1820 		dp_aux_irq_handler(dev);
1821 
1822 	if (de_iir & DE_GSE)
1823 		intel_opregion_asle_intr(dev);
1824 
1825 	if (de_iir & DE_POISON)
1826 		DRM_ERROR("Poison interrupt\n");
1827 
1828 	for_each_pipe(pipe) {
1829 		if (de_iir & DE_PIPE_VBLANK(pipe))
1830 			drm_handle_vblank(dev, pipe);
1831 
1832 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1833 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1834 				DRM_ERROR("Pipe %c FIFO underrun\n",
1835 					  pipe_name(pipe));
1836 
1837 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1838 			i9xx_pipe_crc_irq_handler(dev, pipe);
1839 
1840 		/* plane/pipes map 1:1 on ilk+ */
1841 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1842 			intel_prepare_page_flip(dev, pipe);
1843 			intel_finish_page_flip_plane(dev, pipe);
1844 		}
1845 	}
1846 
1847 	/* check event from PCH */
1848 	if (de_iir & DE_PCH_EVENT) {
1849 		u32 pch_iir = I915_READ(SDEIIR);
1850 
1851 		if (HAS_PCH_CPT(dev))
1852 			cpt_irq_handler(dev, pch_iir);
1853 		else
1854 			ibx_irq_handler(dev, pch_iir);
1855 
1856 		/* should clear PCH hotplug event before clear CPU irq */
1857 		I915_WRITE(SDEIIR, pch_iir);
1858 	}
1859 
1860 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1861 		ironlake_rps_change_irq_handler(dev);
1862 }
1863 
1864 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1865 {
1866 	struct drm_i915_private *dev_priv = dev->dev_private;
1867 	enum pipe pipe;
1868 
1869 	if (de_iir & DE_ERR_INT_IVB)
1870 		ivb_err_int_handler(dev);
1871 
1872 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1873 		dp_aux_irq_handler(dev);
1874 
1875 	if (de_iir & DE_GSE_IVB)
1876 		intel_opregion_asle_intr(dev);
1877 
1878 	for_each_pipe(pipe) {
1879 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1880 			drm_handle_vblank(dev, pipe);
1881 
1882 		/* plane/pipes map 1:1 on ilk+ */
1883 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1884 			intel_prepare_page_flip(dev, pipe);
1885 			intel_finish_page_flip_plane(dev, pipe);
1886 		}
1887 	}
1888 
1889 	/* check event from PCH */
1890 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1891 		u32 pch_iir = I915_READ(SDEIIR);
1892 
1893 		cpt_irq_handler(dev, pch_iir);
1894 
1895 		/* clear PCH hotplug event before clear CPU irq */
1896 		I915_WRITE(SDEIIR, pch_iir);
1897 	}
1898 }
1899 
1900 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1901 {
1902 	struct drm_device *dev = (struct drm_device *) arg;
1903 	struct drm_i915_private *dev_priv = dev->dev_private;
1904 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1905 	irqreturn_t ret = IRQ_NONE;
1906 
1907 	/* We get interrupts on unclaimed registers, so check for this before we
1908 	 * do any I915_{READ,WRITE}. */
1909 	intel_uncore_check_errors(dev);
1910 
1911 	/* disable master interrupt before clearing iir  */
1912 	de_ier = I915_READ(DEIER);
1913 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1914 	POSTING_READ(DEIER);
1915 
1916 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1917 	 * interrupts will will be stored on its back queue, and then we'll be
1918 	 * able to process them after we restore SDEIER (as soon as we restore
1919 	 * it, we'll get an interrupt if SDEIIR still has something to process
1920 	 * due to its back queue). */
1921 	if (!HAS_PCH_NOP(dev)) {
1922 		sde_ier = I915_READ(SDEIER);
1923 		I915_WRITE(SDEIER, 0);
1924 		POSTING_READ(SDEIER);
1925 	}
1926 
1927 	gt_iir = I915_READ(GTIIR);
1928 	if (gt_iir) {
1929 		if (INTEL_INFO(dev)->gen >= 6)
1930 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1931 		else
1932 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1933 		I915_WRITE(GTIIR, gt_iir);
1934 		ret = IRQ_HANDLED;
1935 	}
1936 
1937 	de_iir = I915_READ(DEIIR);
1938 	if (de_iir) {
1939 		if (INTEL_INFO(dev)->gen >= 7)
1940 			ivb_display_irq_handler(dev, de_iir);
1941 		else
1942 			ilk_display_irq_handler(dev, de_iir);
1943 		I915_WRITE(DEIIR, de_iir);
1944 		ret = IRQ_HANDLED;
1945 	}
1946 
1947 	if (INTEL_INFO(dev)->gen >= 6) {
1948 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1949 		if (pm_iir) {
1950 			gen6_rps_irq_handler(dev_priv, pm_iir);
1951 			I915_WRITE(GEN6_PMIIR, pm_iir);
1952 			ret = IRQ_HANDLED;
1953 		}
1954 	}
1955 
1956 	I915_WRITE(DEIER, de_ier);
1957 	POSTING_READ(DEIER);
1958 	if (!HAS_PCH_NOP(dev)) {
1959 		I915_WRITE(SDEIER, sde_ier);
1960 		POSTING_READ(SDEIER);
1961 	}
1962 
1963 	return ret;
1964 }
1965 
1966 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1967 {
1968 	struct drm_device *dev = arg;
1969 	struct drm_i915_private *dev_priv = dev->dev_private;
1970 	u32 master_ctl;
1971 	irqreturn_t ret = IRQ_NONE;
1972 	uint32_t tmp = 0;
1973 	enum pipe pipe;
1974 
1975 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
1976 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1977 	if (!master_ctl)
1978 		return IRQ_NONE;
1979 
1980 	I915_WRITE(GEN8_MASTER_IRQ, 0);
1981 	POSTING_READ(GEN8_MASTER_IRQ);
1982 
1983 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1984 
1985 	if (master_ctl & GEN8_DE_MISC_IRQ) {
1986 		tmp = I915_READ(GEN8_DE_MISC_IIR);
1987 		if (tmp & GEN8_DE_MISC_GSE)
1988 			intel_opregion_asle_intr(dev);
1989 		else if (tmp)
1990 			DRM_ERROR("Unexpected DE Misc interrupt\n");
1991 		else
1992 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1993 
1994 		if (tmp) {
1995 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1996 			ret = IRQ_HANDLED;
1997 		}
1998 	}
1999 
2000 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2001 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2002 		if (tmp & GEN8_AUX_CHANNEL_A)
2003 			dp_aux_irq_handler(dev);
2004 		else if (tmp)
2005 			DRM_ERROR("Unexpected DE Port interrupt\n");
2006 		else
2007 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2008 
2009 		if (tmp) {
2010 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2011 			ret = IRQ_HANDLED;
2012 		}
2013 	}
2014 
2015 	for_each_pipe(pipe) {
2016 		uint32_t pipe_iir;
2017 
2018 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2019 			continue;
2020 
2021 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2022 		if (pipe_iir & GEN8_PIPE_VBLANK)
2023 			drm_handle_vblank(dev, pipe);
2024 
2025 		if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2026 			intel_prepare_page_flip(dev, pipe);
2027 			intel_finish_page_flip_plane(dev, pipe);
2028 		}
2029 
2030 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2031 			hsw_pipe_crc_irq_handler(dev, pipe);
2032 
2033 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2034 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2035 								  false))
2036 				DRM_ERROR("Pipe %c FIFO underrun\n",
2037 					  pipe_name(pipe));
2038 		}
2039 
2040 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2041 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2042 				  pipe_name(pipe),
2043 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2044 		}
2045 
2046 		if (pipe_iir) {
2047 			ret = IRQ_HANDLED;
2048 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2049 		} else
2050 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2051 	}
2052 
2053 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2054 		/*
2055 		 * FIXME(BDW): Assume for now that the new interrupt handling
2056 		 * scheme also closed the SDE interrupt handling race we've seen
2057 		 * on older pch-split platforms. But this needs testing.
2058 		 */
2059 		u32 pch_iir = I915_READ(SDEIIR);
2060 
2061 		cpt_irq_handler(dev, pch_iir);
2062 
2063 		if (pch_iir) {
2064 			I915_WRITE(SDEIIR, pch_iir);
2065 			ret = IRQ_HANDLED;
2066 		}
2067 	}
2068 
2069 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2070 	POSTING_READ(GEN8_MASTER_IRQ);
2071 
2072 	return ret;
2073 }
2074 
2075 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2076 			       bool reset_completed)
2077 {
2078 	struct intel_ring_buffer *ring;
2079 	int i;
2080 
2081 	/*
2082 	 * Notify all waiters for GPU completion events that reset state has
2083 	 * been changed, and that they need to restart their wait after
2084 	 * checking for potential errors (and bail out to drop locks if there is
2085 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2086 	 */
2087 
2088 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2089 	for_each_ring(ring, dev_priv, i)
2090 		wake_up_all(&ring->irq_queue);
2091 
2092 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2093 	wake_up_all(&dev_priv->pending_flip_queue);
2094 
2095 	/*
2096 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2097 	 * reset state is cleared.
2098 	 */
2099 	if (reset_completed)
2100 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2101 }
2102 
2103 /**
2104  * i915_error_work_func - do process context error handling work
2105  * @work: work struct
2106  *
2107  * Fire an error uevent so userspace can see that a hang or error
2108  * was detected.
2109  */
2110 static void i915_error_work_func(struct work_struct *work)
2111 {
2112 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2113 						    work);
2114 	struct drm_i915_private *dev_priv =
2115 		container_of(error, struct drm_i915_private, gpu_error);
2116 	struct drm_device *dev = dev_priv->dev;
2117 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2118 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2119 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2120 	int ret;
2121 
2122 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2123 
2124 	/*
2125 	 * Note that there's only one work item which does gpu resets, so we
2126 	 * need not worry about concurrent gpu resets potentially incrementing
2127 	 * error->reset_counter twice. We only need to take care of another
2128 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2129 	 * quick check for that is good enough: schedule_work ensures the
2130 	 * correct ordering between hang detection and this work item, and since
2131 	 * the reset in-progress bit is only ever set by code outside of this
2132 	 * work we don't need to worry about any other races.
2133 	 */
2134 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2135 		DRM_DEBUG_DRIVER("resetting chip\n");
2136 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2137 				   reset_event);
2138 
2139 		/*
2140 		 * All state reset _must_ be completed before we update the
2141 		 * reset counter, for otherwise waiters might miss the reset
2142 		 * pending state and not properly drop locks, resulting in
2143 		 * deadlocks with the reset work.
2144 		 */
2145 		ret = i915_reset(dev);
2146 
2147 		intel_display_handle_reset(dev);
2148 
2149 		if (ret == 0) {
2150 			/*
2151 			 * After all the gem state is reset, increment the reset
2152 			 * counter and wake up everyone waiting for the reset to
2153 			 * complete.
2154 			 *
2155 			 * Since unlock operations are a one-sided barrier only,
2156 			 * we need to insert a barrier here to order any seqno
2157 			 * updates before
2158 			 * the counter increment.
2159 			 */
2160 			smp_mb__before_atomic();
2161 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2162 
2163 			kobject_uevent_env(&dev->primary->kdev->kobj,
2164 					   KOBJ_CHANGE, reset_done_event);
2165 		} else {
2166 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2167 		}
2168 
2169 		/*
2170 		 * Note: The wake_up also serves as a memory barrier so that
2171 		 * waiters see the update value of the reset counter atomic_t.
2172 		 */
2173 		i915_error_wake_up(dev_priv, true);
2174 	}
2175 }
2176 
2177 static void i915_report_and_clear_eir(struct drm_device *dev)
2178 {
2179 	struct drm_i915_private *dev_priv = dev->dev_private;
2180 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2181 	u32 eir = I915_READ(EIR);
2182 	int pipe, i;
2183 
2184 	if (!eir)
2185 		return;
2186 
2187 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2188 
2189 	i915_get_extra_instdone(dev, instdone);
2190 
2191 	if (IS_G4X(dev)) {
2192 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2193 			u32 ipeir = I915_READ(IPEIR_I965);
2194 
2195 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2196 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2197 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2198 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2199 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2200 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2201 			I915_WRITE(IPEIR_I965, ipeir);
2202 			POSTING_READ(IPEIR_I965);
2203 		}
2204 		if (eir & GM45_ERROR_PAGE_TABLE) {
2205 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2206 			pr_err("page table error\n");
2207 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2208 			I915_WRITE(PGTBL_ER, pgtbl_err);
2209 			POSTING_READ(PGTBL_ER);
2210 		}
2211 	}
2212 
2213 	if (!IS_GEN2(dev)) {
2214 		if (eir & I915_ERROR_PAGE_TABLE) {
2215 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2216 			pr_err("page table error\n");
2217 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2218 			I915_WRITE(PGTBL_ER, pgtbl_err);
2219 			POSTING_READ(PGTBL_ER);
2220 		}
2221 	}
2222 
2223 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2224 		pr_err("memory refresh error:\n");
2225 		for_each_pipe(pipe)
2226 			pr_err("pipe %c stat: 0x%08x\n",
2227 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2228 		/* pipestat has already been acked */
2229 	}
2230 	if (eir & I915_ERROR_INSTRUCTION) {
2231 		pr_err("instruction error\n");
2232 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2233 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2234 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2235 		if (INTEL_INFO(dev)->gen < 4) {
2236 			u32 ipeir = I915_READ(IPEIR);
2237 
2238 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2239 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2240 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2241 			I915_WRITE(IPEIR, ipeir);
2242 			POSTING_READ(IPEIR);
2243 		} else {
2244 			u32 ipeir = I915_READ(IPEIR_I965);
2245 
2246 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2247 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2248 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2249 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2250 			I915_WRITE(IPEIR_I965, ipeir);
2251 			POSTING_READ(IPEIR_I965);
2252 		}
2253 	}
2254 
2255 	I915_WRITE(EIR, eir);
2256 	POSTING_READ(EIR);
2257 	eir = I915_READ(EIR);
2258 	if (eir) {
2259 		/*
2260 		 * some errors might have become stuck,
2261 		 * mask them.
2262 		 */
2263 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2264 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2265 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2266 	}
2267 }
2268 
2269 /**
2270  * i915_handle_error - handle an error interrupt
2271  * @dev: drm device
2272  *
2273  * Do some basic checking of regsiter state at error interrupt time and
2274  * dump it to the syslog.  Also call i915_capture_error_state() to make
2275  * sure we get a record and make it available in debugfs.  Fire a uevent
2276  * so userspace knows something bad happened (should trigger collection
2277  * of a ring dump etc.).
2278  */
2279 void i915_handle_error(struct drm_device *dev, bool wedged,
2280 		       const char *fmt, ...)
2281 {
2282 	struct drm_i915_private *dev_priv = dev->dev_private;
2283 	va_list args;
2284 	char error_msg[80];
2285 
2286 	va_start(args, fmt);
2287 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2288 	va_end(args);
2289 
2290 	i915_capture_error_state(dev, wedged, error_msg);
2291 	i915_report_and_clear_eir(dev);
2292 
2293 	if (wedged) {
2294 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2295 				&dev_priv->gpu_error.reset_counter);
2296 
2297 		/*
2298 		 * Wakeup waiting processes so that the reset work function
2299 		 * i915_error_work_func doesn't deadlock trying to grab various
2300 		 * locks. By bumping the reset counter first, the woken
2301 		 * processes will see a reset in progress and back off,
2302 		 * releasing their locks and then wait for the reset completion.
2303 		 * We must do this for _all_ gpu waiters that might hold locks
2304 		 * that the reset work needs to acquire.
2305 		 *
2306 		 * Note: The wake_up serves as the required memory barrier to
2307 		 * ensure that the waiters see the updated value of the reset
2308 		 * counter atomic_t.
2309 		 */
2310 		i915_error_wake_up(dev_priv, false);
2311 	}
2312 
2313 	/*
2314 	 * Our reset work can grab modeset locks (since it needs to reset the
2315 	 * state of outstanding pagelips). Hence it must not be run on our own
2316 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2317 	 * code will deadlock.
2318 	 */
2319 	schedule_work(&dev_priv->gpu_error.work);
2320 }
2321 
2322 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2323 {
2324 	struct drm_i915_private *dev_priv = dev->dev_private;
2325 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2326 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 	struct drm_i915_gem_object *obj;
2328 	struct intel_unpin_work *work;
2329 	unsigned long flags;
2330 	bool stall_detected;
2331 
2332 	/* Ignore early vblank irqs */
2333 	if (intel_crtc == NULL)
2334 		return;
2335 
2336 	spin_lock_irqsave(&dev->event_lock, flags);
2337 	work = intel_crtc->unpin_work;
2338 
2339 	if (work == NULL ||
2340 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2341 	    !work->enable_stall_check) {
2342 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2343 		spin_unlock_irqrestore(&dev->event_lock, flags);
2344 		return;
2345 	}
2346 
2347 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2348 	obj = work->pending_flip_obj;
2349 	if (INTEL_INFO(dev)->gen >= 4) {
2350 		int dspsurf = DSPSURF(intel_crtc->plane);
2351 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2352 					i915_gem_obj_ggtt_offset(obj);
2353 	} else {
2354 		int dspaddr = DSPADDR(intel_crtc->plane);
2355 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2356 							crtc->y * crtc->primary->fb->pitches[0] +
2357 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2358 	}
2359 
2360 	spin_unlock_irqrestore(&dev->event_lock, flags);
2361 
2362 	if (stall_detected) {
2363 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2364 		intel_prepare_page_flip(dev, intel_crtc->plane);
2365 	}
2366 }
2367 
2368 /* Called from drm generic code, passed 'crtc' which
2369  * we use as a pipe index
2370  */
2371 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2372 {
2373 	struct drm_i915_private *dev_priv = dev->dev_private;
2374 	unsigned long irqflags;
2375 
2376 	if (!i915_pipe_enabled(dev, pipe))
2377 		return -EINVAL;
2378 
2379 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2380 	if (INTEL_INFO(dev)->gen >= 4)
2381 		i915_enable_pipestat(dev_priv, pipe,
2382 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2383 	else
2384 		i915_enable_pipestat(dev_priv, pipe,
2385 				     PIPE_VBLANK_INTERRUPT_STATUS);
2386 
2387 	/* maintain vblank delivery even in deep C-states */
2388 	if (INTEL_INFO(dev)->gen == 3)
2389 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2390 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2391 
2392 	return 0;
2393 }
2394 
2395 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2396 {
2397 	struct drm_i915_private *dev_priv = dev->dev_private;
2398 	unsigned long irqflags;
2399 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2400 						     DE_PIPE_VBLANK(pipe);
2401 
2402 	if (!i915_pipe_enabled(dev, pipe))
2403 		return -EINVAL;
2404 
2405 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2406 	ironlake_enable_display_irq(dev_priv, bit);
2407 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2408 
2409 	return 0;
2410 }
2411 
2412 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2413 {
2414 	struct drm_i915_private *dev_priv = dev->dev_private;
2415 	unsigned long irqflags;
2416 
2417 	if (!i915_pipe_enabled(dev, pipe))
2418 		return -EINVAL;
2419 
2420 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2421 	i915_enable_pipestat(dev_priv, pipe,
2422 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2423 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2424 
2425 	return 0;
2426 }
2427 
2428 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2429 {
2430 	struct drm_i915_private *dev_priv = dev->dev_private;
2431 	unsigned long irqflags;
2432 
2433 	if (!i915_pipe_enabled(dev, pipe))
2434 		return -EINVAL;
2435 
2436 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2437 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2438 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2439 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2440 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2441 	return 0;
2442 }
2443 
2444 /* Called from drm generic code, passed 'crtc' which
2445  * we use as a pipe index
2446  */
2447 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2448 {
2449 	struct drm_i915_private *dev_priv = dev->dev_private;
2450 	unsigned long irqflags;
2451 
2452 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2453 	if (INTEL_INFO(dev)->gen == 3)
2454 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2455 
2456 	i915_disable_pipestat(dev_priv, pipe,
2457 			      PIPE_VBLANK_INTERRUPT_STATUS |
2458 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2459 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2460 }
2461 
2462 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2463 {
2464 	struct drm_i915_private *dev_priv = dev->dev_private;
2465 	unsigned long irqflags;
2466 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2467 						     DE_PIPE_VBLANK(pipe);
2468 
2469 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470 	ironlake_disable_display_irq(dev_priv, bit);
2471 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2472 }
2473 
2474 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2475 {
2476 	struct drm_i915_private *dev_priv = dev->dev_private;
2477 	unsigned long irqflags;
2478 
2479 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2480 	i915_disable_pipestat(dev_priv, pipe,
2481 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2482 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2483 }
2484 
2485 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2486 {
2487 	struct drm_i915_private *dev_priv = dev->dev_private;
2488 	unsigned long irqflags;
2489 
2490 	if (!i915_pipe_enabled(dev, pipe))
2491 		return;
2492 
2493 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2494 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2495 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2496 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2497 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2498 }
2499 
2500 static u32
2501 ring_last_seqno(struct intel_ring_buffer *ring)
2502 {
2503 	return list_entry(ring->request_list.prev,
2504 			  struct drm_i915_gem_request, list)->seqno;
2505 }
2506 
2507 static bool
2508 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2509 {
2510 	return (list_empty(&ring->request_list) ||
2511 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2512 }
2513 
2514 static struct intel_ring_buffer *
2515 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2516 {
2517 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2518 	u32 cmd, ipehr, head;
2519 	int i;
2520 
2521 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2522 	if ((ipehr & ~(0x3 << 16)) !=
2523 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2524 		return NULL;
2525 
2526 	/*
2527 	 * HEAD is likely pointing to the dword after the actual command,
2528 	 * so scan backwards until we find the MBOX. But limit it to just 3
2529 	 * dwords. Note that we don't care about ACTHD here since that might
2530 	 * point at at batch, and semaphores are always emitted into the
2531 	 * ringbuffer itself.
2532 	 */
2533 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2534 
2535 	for (i = 4; i; --i) {
2536 		/*
2537 		 * Be paranoid and presume the hw has gone off into the wild -
2538 		 * our ring is smaller than what the hardware (and hence
2539 		 * HEAD_ADDR) allows. Also handles wrap-around.
2540 		 */
2541 		head &= ring->size - 1;
2542 
2543 		/* This here seems to blow up */
2544 		cmd = ioread32(ring->virtual_start + head);
2545 		if (cmd == ipehr)
2546 			break;
2547 
2548 		head -= 4;
2549 	}
2550 
2551 	if (!i)
2552 		return NULL;
2553 
2554 	*seqno = ioread32(ring->virtual_start + head + 4) + 1;
2555 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2556 }
2557 
2558 static int semaphore_passed(struct intel_ring_buffer *ring)
2559 {
2560 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2561 	struct intel_ring_buffer *signaller;
2562 	u32 seqno, ctl;
2563 
2564 	ring->hangcheck.deadlock = true;
2565 
2566 	signaller = semaphore_waits_for(ring, &seqno);
2567 	if (signaller == NULL || signaller->hangcheck.deadlock)
2568 		return -1;
2569 
2570 	/* cursory check for an unkickable deadlock */
2571 	ctl = I915_READ_CTL(signaller);
2572 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2573 		return -1;
2574 
2575 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2576 }
2577 
2578 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2579 {
2580 	struct intel_ring_buffer *ring;
2581 	int i;
2582 
2583 	for_each_ring(ring, dev_priv, i)
2584 		ring->hangcheck.deadlock = false;
2585 }
2586 
2587 static enum intel_ring_hangcheck_action
2588 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2589 {
2590 	struct drm_device *dev = ring->dev;
2591 	struct drm_i915_private *dev_priv = dev->dev_private;
2592 	u32 tmp;
2593 
2594 	if (ring->hangcheck.acthd != acthd)
2595 		return HANGCHECK_ACTIVE;
2596 
2597 	if (IS_GEN2(dev))
2598 		return HANGCHECK_HUNG;
2599 
2600 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2601 	 * If so we can simply poke the RB_WAIT bit
2602 	 * and break the hang. This should work on
2603 	 * all but the second generation chipsets.
2604 	 */
2605 	tmp = I915_READ_CTL(ring);
2606 	if (tmp & RING_WAIT) {
2607 		i915_handle_error(dev, false,
2608 				  "Kicking stuck wait on %s",
2609 				  ring->name);
2610 		I915_WRITE_CTL(ring, tmp);
2611 		return HANGCHECK_KICK;
2612 	}
2613 
2614 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2615 		switch (semaphore_passed(ring)) {
2616 		default:
2617 			return HANGCHECK_HUNG;
2618 		case 1:
2619 			i915_handle_error(dev, false,
2620 					  "Kicking stuck semaphore on %s",
2621 					  ring->name);
2622 			I915_WRITE_CTL(ring, tmp);
2623 			return HANGCHECK_KICK;
2624 		case 0:
2625 			return HANGCHECK_WAIT;
2626 		}
2627 	}
2628 
2629 	return HANGCHECK_HUNG;
2630 }
2631 
2632 /**
2633  * This is called when the chip hasn't reported back with completed
2634  * batchbuffers in a long time. We keep track per ring seqno progress and
2635  * if there are no progress, hangcheck score for that ring is increased.
2636  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2637  * we kick the ring. If we see no progress on three subsequent calls
2638  * we assume chip is wedged and try to fix it by resetting the chip.
2639  */
2640 static void i915_hangcheck_elapsed(unsigned long data)
2641 {
2642 	struct drm_device *dev = (struct drm_device *)data;
2643 	struct drm_i915_private *dev_priv = dev->dev_private;
2644 	struct intel_ring_buffer *ring;
2645 	int i;
2646 	int busy_count = 0, rings_hung = 0;
2647 	bool stuck[I915_NUM_RINGS] = { 0 };
2648 #define BUSY 1
2649 #define KICK 5
2650 #define HUNG 20
2651 
2652 	if (!i915.enable_hangcheck)
2653 		return;
2654 
2655 	for_each_ring(ring, dev_priv, i) {
2656 		u64 acthd;
2657 		u32 seqno;
2658 		bool busy = true;
2659 
2660 		semaphore_clear_deadlocks(dev_priv);
2661 
2662 		seqno = ring->get_seqno(ring, false);
2663 		acthd = intel_ring_get_active_head(ring);
2664 
2665 		if (ring->hangcheck.seqno == seqno) {
2666 			if (ring_idle(ring, seqno)) {
2667 				ring->hangcheck.action = HANGCHECK_IDLE;
2668 
2669 				if (waitqueue_active(&ring->irq_queue)) {
2670 					/* Issue a wake-up to catch stuck h/w. */
2671 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2672 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2673 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2674 								  ring->name);
2675 						else
2676 							DRM_INFO("Fake missed irq on %s\n",
2677 								 ring->name);
2678 						wake_up_all(&ring->irq_queue);
2679 					}
2680 					/* Safeguard against driver failure */
2681 					ring->hangcheck.score += BUSY;
2682 				} else
2683 					busy = false;
2684 			} else {
2685 				/* We always increment the hangcheck score
2686 				 * if the ring is busy and still processing
2687 				 * the same request, so that no single request
2688 				 * can run indefinitely (such as a chain of
2689 				 * batches). The only time we do not increment
2690 				 * the hangcheck score on this ring, if this
2691 				 * ring is in a legitimate wait for another
2692 				 * ring. In that case the waiting ring is a
2693 				 * victim and we want to be sure we catch the
2694 				 * right culprit. Then every time we do kick
2695 				 * the ring, add a small increment to the
2696 				 * score so that we can catch a batch that is
2697 				 * being repeatedly kicked and so responsible
2698 				 * for stalling the machine.
2699 				 */
2700 				ring->hangcheck.action = ring_stuck(ring,
2701 								    acthd);
2702 
2703 				switch (ring->hangcheck.action) {
2704 				case HANGCHECK_IDLE:
2705 				case HANGCHECK_WAIT:
2706 					break;
2707 				case HANGCHECK_ACTIVE:
2708 					ring->hangcheck.score += BUSY;
2709 					break;
2710 				case HANGCHECK_KICK:
2711 					ring->hangcheck.score += KICK;
2712 					break;
2713 				case HANGCHECK_HUNG:
2714 					ring->hangcheck.score += HUNG;
2715 					stuck[i] = true;
2716 					break;
2717 				}
2718 			}
2719 		} else {
2720 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2721 
2722 			/* Gradually reduce the count so that we catch DoS
2723 			 * attempts across multiple batches.
2724 			 */
2725 			if (ring->hangcheck.score > 0)
2726 				ring->hangcheck.score--;
2727 		}
2728 
2729 		ring->hangcheck.seqno = seqno;
2730 		ring->hangcheck.acthd = acthd;
2731 		busy_count += busy;
2732 	}
2733 
2734 	for_each_ring(ring, dev_priv, i) {
2735 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2736 			DRM_INFO("%s on %s\n",
2737 				 stuck[i] ? "stuck" : "no progress",
2738 				 ring->name);
2739 			rings_hung++;
2740 		}
2741 	}
2742 
2743 	if (rings_hung)
2744 		return i915_handle_error(dev, true, "Ring hung");
2745 
2746 	if (busy_count)
2747 		/* Reset timer case chip hangs without another request
2748 		 * being added */
2749 		i915_queue_hangcheck(dev);
2750 }
2751 
2752 void i915_queue_hangcheck(struct drm_device *dev)
2753 {
2754 	struct drm_i915_private *dev_priv = dev->dev_private;
2755 	if (!i915.enable_hangcheck)
2756 		return;
2757 
2758 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2759 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2760 }
2761 
2762 static void ibx_irq_preinstall(struct drm_device *dev)
2763 {
2764 	struct drm_i915_private *dev_priv = dev->dev_private;
2765 
2766 	if (HAS_PCH_NOP(dev))
2767 		return;
2768 
2769 	/* south display irq */
2770 	I915_WRITE(SDEIMR, 0xffffffff);
2771 	/*
2772 	 * SDEIER is also touched by the interrupt handler to work around missed
2773 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2774 	 * is enabled - instead we unconditionally enable all PCH interrupt
2775 	 * sources here, but then only unmask them as needed with SDEIMR.
2776 	 */
2777 	I915_WRITE(SDEIER, 0xffffffff);
2778 	POSTING_READ(SDEIER);
2779 }
2780 
2781 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2782 {
2783 	struct drm_i915_private *dev_priv = dev->dev_private;
2784 
2785 	/* and GT */
2786 	I915_WRITE(GTIMR, 0xffffffff);
2787 	I915_WRITE(GTIER, 0x0);
2788 	POSTING_READ(GTIER);
2789 
2790 	if (INTEL_INFO(dev)->gen >= 6) {
2791 		/* and PM */
2792 		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2793 		I915_WRITE(GEN6_PMIER, 0x0);
2794 		POSTING_READ(GEN6_PMIER);
2795 	}
2796 }
2797 
2798 /* drm_dma.h hooks
2799 */
2800 static void ironlake_irq_preinstall(struct drm_device *dev)
2801 {
2802 	struct drm_i915_private *dev_priv = dev->dev_private;
2803 
2804 	I915_WRITE(HWSTAM, 0xeffe);
2805 
2806 	I915_WRITE(DEIMR, 0xffffffff);
2807 	I915_WRITE(DEIER, 0x0);
2808 	POSTING_READ(DEIER);
2809 
2810 	gen5_gt_irq_preinstall(dev);
2811 
2812 	ibx_irq_preinstall(dev);
2813 }
2814 
2815 static void valleyview_irq_preinstall(struct drm_device *dev)
2816 {
2817 	struct drm_i915_private *dev_priv = dev->dev_private;
2818 	int pipe;
2819 
2820 	/* VLV magic */
2821 	I915_WRITE(VLV_IMR, 0);
2822 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2823 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2824 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2825 
2826 	/* and GT */
2827 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2828 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2829 
2830 	gen5_gt_irq_preinstall(dev);
2831 
2832 	I915_WRITE(DPINVGTT, 0xff);
2833 
2834 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2835 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2836 	for_each_pipe(pipe)
2837 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2838 	I915_WRITE(VLV_IIR, 0xffffffff);
2839 	I915_WRITE(VLV_IMR, 0xffffffff);
2840 	I915_WRITE(VLV_IER, 0x0);
2841 	POSTING_READ(VLV_IER);
2842 }
2843 
2844 static void gen8_irq_preinstall(struct drm_device *dev)
2845 {
2846 	struct drm_i915_private *dev_priv = dev->dev_private;
2847 	int pipe;
2848 
2849 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2850 	POSTING_READ(GEN8_MASTER_IRQ);
2851 
2852 	/* IIR can theoretically queue up two events. Be paranoid */
2853 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2854 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2855 		POSTING_READ(GEN8_##type##_IMR(which)); \
2856 		I915_WRITE(GEN8_##type##_IER(which), 0); \
2857 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2858 		POSTING_READ(GEN8_##type##_IIR(which)); \
2859 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2860 	} while (0)
2861 
2862 #define GEN8_IRQ_INIT(type) do { \
2863 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2864 		POSTING_READ(GEN8_##type##_IMR); \
2865 		I915_WRITE(GEN8_##type##_IER, 0); \
2866 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2867 		POSTING_READ(GEN8_##type##_IIR); \
2868 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2869 	} while (0)
2870 
2871 	GEN8_IRQ_INIT_NDX(GT, 0);
2872 	GEN8_IRQ_INIT_NDX(GT, 1);
2873 	GEN8_IRQ_INIT_NDX(GT, 2);
2874 	GEN8_IRQ_INIT_NDX(GT, 3);
2875 
2876 	for_each_pipe(pipe) {
2877 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2878 	}
2879 
2880 	GEN8_IRQ_INIT(DE_PORT);
2881 	GEN8_IRQ_INIT(DE_MISC);
2882 	GEN8_IRQ_INIT(PCU);
2883 #undef GEN8_IRQ_INIT
2884 #undef GEN8_IRQ_INIT_NDX
2885 
2886 	POSTING_READ(GEN8_PCU_IIR);
2887 
2888 	ibx_irq_preinstall(dev);
2889 }
2890 
2891 static void ibx_hpd_irq_setup(struct drm_device *dev)
2892 {
2893 	struct drm_i915_private *dev_priv = dev->dev_private;
2894 	struct drm_mode_config *mode_config = &dev->mode_config;
2895 	struct intel_encoder *intel_encoder;
2896 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2897 
2898 	if (HAS_PCH_IBX(dev)) {
2899 		hotplug_irqs = SDE_HOTPLUG_MASK;
2900 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2901 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2902 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2903 	} else {
2904 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2905 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2906 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2907 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2908 	}
2909 
2910 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2911 
2912 	/*
2913 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2914 	 * duration to 2ms (which is the minimum in the Display Port spec)
2915 	 *
2916 	 * This register is the same on all known PCH chips.
2917 	 */
2918 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2919 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2920 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2921 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2922 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2923 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2924 }
2925 
2926 static void ibx_irq_postinstall(struct drm_device *dev)
2927 {
2928 	struct drm_i915_private *dev_priv = dev->dev_private;
2929 	u32 mask;
2930 
2931 	if (HAS_PCH_NOP(dev))
2932 		return;
2933 
2934 	if (HAS_PCH_IBX(dev)) {
2935 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2936 	} else {
2937 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2938 
2939 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2940 	}
2941 
2942 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2943 	I915_WRITE(SDEIMR, ~mask);
2944 }
2945 
2946 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2947 {
2948 	struct drm_i915_private *dev_priv = dev->dev_private;
2949 	u32 pm_irqs, gt_irqs;
2950 
2951 	pm_irqs = gt_irqs = 0;
2952 
2953 	dev_priv->gt_irq_mask = ~0;
2954 	if (HAS_L3_DPF(dev)) {
2955 		/* L3 parity interrupt is always unmasked. */
2956 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2957 		gt_irqs |= GT_PARITY_ERROR(dev);
2958 	}
2959 
2960 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2961 	if (IS_GEN5(dev)) {
2962 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2963 			   ILK_BSD_USER_INTERRUPT;
2964 	} else {
2965 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2966 	}
2967 
2968 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2969 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2970 	I915_WRITE(GTIER, gt_irqs);
2971 	POSTING_READ(GTIER);
2972 
2973 	if (INTEL_INFO(dev)->gen >= 6) {
2974 		pm_irqs |= dev_priv->pm_rps_events;
2975 
2976 		if (HAS_VEBOX(dev))
2977 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2978 
2979 		dev_priv->pm_irq_mask = 0xffffffff;
2980 		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2981 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2982 		I915_WRITE(GEN6_PMIER, pm_irqs);
2983 		POSTING_READ(GEN6_PMIER);
2984 	}
2985 }
2986 
2987 static int ironlake_irq_postinstall(struct drm_device *dev)
2988 {
2989 	unsigned long irqflags;
2990 	struct drm_i915_private *dev_priv = dev->dev_private;
2991 	u32 display_mask, extra_mask;
2992 
2993 	if (INTEL_INFO(dev)->gen >= 7) {
2994 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2995 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2996 				DE_PLANEB_FLIP_DONE_IVB |
2997 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2998 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2999 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3000 
3001 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3002 	} else {
3003 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3004 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3005 				DE_AUX_CHANNEL_A |
3006 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3007 				DE_POISON);
3008 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3009 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3010 	}
3011 
3012 	dev_priv->irq_mask = ~display_mask;
3013 
3014 	/* should always can generate irq */
3015 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3016 	I915_WRITE(DEIMR, dev_priv->irq_mask);
3017 	I915_WRITE(DEIER, display_mask | extra_mask);
3018 	POSTING_READ(DEIER);
3019 
3020 	gen5_gt_irq_postinstall(dev);
3021 
3022 	ibx_irq_postinstall(dev);
3023 
3024 	if (IS_IRONLAKE_M(dev)) {
3025 		/* Enable PCU event interrupts
3026 		 *
3027 		 * spinlocking not required here for correctness since interrupt
3028 		 * setup is guaranteed to run in single-threaded context. But we
3029 		 * need it to make the assert_spin_locked happy. */
3030 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3031 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3032 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3039 {
3040 	u32 pipestat_mask;
3041 	u32 iir_mask;
3042 
3043 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3044 			PIPE_FIFO_UNDERRUN_STATUS;
3045 
3046 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3047 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3048 	POSTING_READ(PIPESTAT(PIPE_A));
3049 
3050 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3051 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3052 
3053 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3054 					       PIPE_GMBUS_INTERRUPT_STATUS);
3055 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3056 
3057 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3058 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3059 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3060 	dev_priv->irq_mask &= ~iir_mask;
3061 
3062 	I915_WRITE(VLV_IIR, iir_mask);
3063 	I915_WRITE(VLV_IIR, iir_mask);
3064 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3065 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3066 	POSTING_READ(VLV_IER);
3067 }
3068 
3069 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3070 {
3071 	u32 pipestat_mask;
3072 	u32 iir_mask;
3073 
3074 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3075 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3076 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3077 
3078 	dev_priv->irq_mask |= iir_mask;
3079 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3080 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3081 	I915_WRITE(VLV_IIR, iir_mask);
3082 	I915_WRITE(VLV_IIR, iir_mask);
3083 	POSTING_READ(VLV_IIR);
3084 
3085 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3086 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3087 
3088 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3089 					        PIPE_GMBUS_INTERRUPT_STATUS);
3090 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3091 
3092 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3093 			PIPE_FIFO_UNDERRUN_STATUS;
3094 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3095 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3096 	POSTING_READ(PIPESTAT(PIPE_A));
3097 }
3098 
3099 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3100 {
3101 	assert_spin_locked(&dev_priv->irq_lock);
3102 
3103 	if (dev_priv->display_irqs_enabled)
3104 		return;
3105 
3106 	dev_priv->display_irqs_enabled = true;
3107 
3108 	if (dev_priv->dev->irq_enabled)
3109 		valleyview_display_irqs_install(dev_priv);
3110 }
3111 
3112 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3113 {
3114 	assert_spin_locked(&dev_priv->irq_lock);
3115 
3116 	if (!dev_priv->display_irqs_enabled)
3117 		return;
3118 
3119 	dev_priv->display_irqs_enabled = false;
3120 
3121 	if (dev_priv->dev->irq_enabled)
3122 		valleyview_display_irqs_uninstall(dev_priv);
3123 }
3124 
3125 static int valleyview_irq_postinstall(struct drm_device *dev)
3126 {
3127 	struct drm_i915_private *dev_priv = dev->dev_private;
3128 	unsigned long irqflags;
3129 
3130 	dev_priv->irq_mask = ~0;
3131 
3132 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3133 	POSTING_READ(PORT_HOTPLUG_EN);
3134 
3135 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3136 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3137 	I915_WRITE(VLV_IIR, 0xffffffff);
3138 	POSTING_READ(VLV_IER);
3139 
3140 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3141 	 * just to make the assert_spin_locked check happy. */
3142 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3143 	if (dev_priv->display_irqs_enabled)
3144 		valleyview_display_irqs_install(dev_priv);
3145 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3146 
3147 	I915_WRITE(VLV_IIR, 0xffffffff);
3148 	I915_WRITE(VLV_IIR, 0xffffffff);
3149 
3150 	gen5_gt_irq_postinstall(dev);
3151 
3152 	/* ack & enable invalid PTE error interrupts */
3153 #if 0 /* FIXME: add support to irq handler for checking these bits */
3154 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3155 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3156 #endif
3157 
3158 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3159 
3160 	return 0;
3161 }
3162 
3163 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3164 {
3165 	int i;
3166 
3167 	/* These are interrupts we'll toggle with the ring mask register */
3168 	uint32_t gt_interrupts[] = {
3169 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3170 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3171 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3172 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3173 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3174 		0,
3175 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3176 		};
3177 
3178 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3179 		u32 tmp = I915_READ(GEN8_GT_IIR(i));
3180 		if (tmp)
3181 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3182 				  i, tmp);
3183 		I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3184 		I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3185 	}
3186 	POSTING_READ(GEN8_GT_IER(0));
3187 }
3188 
3189 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3190 {
3191 	struct drm_device *dev = dev_priv->dev;
3192 	uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3193 		GEN8_PIPE_CDCLK_CRC_DONE |
3194 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3195 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3196 		GEN8_PIPE_FIFO_UNDERRUN;
3197 	int pipe;
3198 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3199 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3200 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3201 
3202 	for_each_pipe(pipe) {
3203 		u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3204 		if (tmp)
3205 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3206 				  pipe, tmp);
3207 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3208 		I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3209 	}
3210 	POSTING_READ(GEN8_DE_PIPE_ISR(0));
3211 
3212 	I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3213 	I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3214 	POSTING_READ(GEN8_DE_PORT_IER);
3215 }
3216 
3217 static int gen8_irq_postinstall(struct drm_device *dev)
3218 {
3219 	struct drm_i915_private *dev_priv = dev->dev_private;
3220 
3221 	gen8_gt_irq_postinstall(dev_priv);
3222 	gen8_de_irq_postinstall(dev_priv);
3223 
3224 	ibx_irq_postinstall(dev);
3225 
3226 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3227 	POSTING_READ(GEN8_MASTER_IRQ);
3228 
3229 	return 0;
3230 }
3231 
3232 static void gen8_irq_uninstall(struct drm_device *dev)
3233 {
3234 	struct drm_i915_private *dev_priv = dev->dev_private;
3235 	int pipe;
3236 
3237 	if (!dev_priv)
3238 		return;
3239 
3240 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3241 
3242 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3243 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3244 		I915_WRITE(GEN8_##type##_IER(which), 0); \
3245 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3246 	} while (0)
3247 
3248 #define GEN8_IRQ_FINI(type) do { \
3249 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3250 		I915_WRITE(GEN8_##type##_IER, 0); \
3251 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3252 	} while (0)
3253 
3254 	GEN8_IRQ_FINI_NDX(GT, 0);
3255 	GEN8_IRQ_FINI_NDX(GT, 1);
3256 	GEN8_IRQ_FINI_NDX(GT, 2);
3257 	GEN8_IRQ_FINI_NDX(GT, 3);
3258 
3259 	for_each_pipe(pipe) {
3260 		GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3261 	}
3262 
3263 	GEN8_IRQ_FINI(DE_PORT);
3264 	GEN8_IRQ_FINI(DE_MISC);
3265 	GEN8_IRQ_FINI(PCU);
3266 #undef GEN8_IRQ_FINI
3267 #undef GEN8_IRQ_FINI_NDX
3268 
3269 	POSTING_READ(GEN8_PCU_IIR);
3270 }
3271 
3272 static void valleyview_irq_uninstall(struct drm_device *dev)
3273 {
3274 	struct drm_i915_private *dev_priv = dev->dev_private;
3275 	unsigned long irqflags;
3276 	int pipe;
3277 
3278 	if (!dev_priv)
3279 		return;
3280 
3281 	intel_hpd_irq_uninstall(dev_priv);
3282 
3283 	for_each_pipe(pipe)
3284 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3285 
3286 	I915_WRITE(HWSTAM, 0xffffffff);
3287 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3288 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3289 
3290 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3291 	if (dev_priv->display_irqs_enabled)
3292 		valleyview_display_irqs_uninstall(dev_priv);
3293 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3294 
3295 	dev_priv->irq_mask = 0;
3296 
3297 	I915_WRITE(VLV_IIR, 0xffffffff);
3298 	I915_WRITE(VLV_IMR, 0xffffffff);
3299 	I915_WRITE(VLV_IER, 0x0);
3300 	POSTING_READ(VLV_IER);
3301 }
3302 
3303 static void ironlake_irq_uninstall(struct drm_device *dev)
3304 {
3305 	struct drm_i915_private *dev_priv = dev->dev_private;
3306 
3307 	if (!dev_priv)
3308 		return;
3309 
3310 	intel_hpd_irq_uninstall(dev_priv);
3311 
3312 	I915_WRITE(HWSTAM, 0xffffffff);
3313 
3314 	I915_WRITE(DEIMR, 0xffffffff);
3315 	I915_WRITE(DEIER, 0x0);
3316 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3317 	if (IS_GEN7(dev))
3318 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3319 
3320 	I915_WRITE(GTIMR, 0xffffffff);
3321 	I915_WRITE(GTIER, 0x0);
3322 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3323 
3324 	if (HAS_PCH_NOP(dev))
3325 		return;
3326 
3327 	I915_WRITE(SDEIMR, 0xffffffff);
3328 	I915_WRITE(SDEIER, 0x0);
3329 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3330 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3331 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3332 }
3333 
3334 static void i8xx_irq_preinstall(struct drm_device * dev)
3335 {
3336 	struct drm_i915_private *dev_priv = dev->dev_private;
3337 	int pipe;
3338 
3339 	for_each_pipe(pipe)
3340 		I915_WRITE(PIPESTAT(pipe), 0);
3341 	I915_WRITE16(IMR, 0xffff);
3342 	I915_WRITE16(IER, 0x0);
3343 	POSTING_READ16(IER);
3344 }
3345 
3346 static int i8xx_irq_postinstall(struct drm_device *dev)
3347 {
3348 	struct drm_i915_private *dev_priv = dev->dev_private;
3349 	unsigned long irqflags;
3350 
3351 	I915_WRITE16(EMR,
3352 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3353 
3354 	/* Unmask the interrupts that we always want on. */
3355 	dev_priv->irq_mask =
3356 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3357 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3358 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3359 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3360 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3361 	I915_WRITE16(IMR, dev_priv->irq_mask);
3362 
3363 	I915_WRITE16(IER,
3364 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3365 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3366 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3367 		     I915_USER_INTERRUPT);
3368 	POSTING_READ16(IER);
3369 
3370 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3371 	 * just to make the assert_spin_locked check happy. */
3372 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3373 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3374 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3375 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3376 
3377 	return 0;
3378 }
3379 
3380 /*
3381  * Returns true when a page flip has completed.
3382  */
3383 static bool i8xx_handle_vblank(struct drm_device *dev,
3384 			       int plane, int pipe, u32 iir)
3385 {
3386 	struct drm_i915_private *dev_priv = dev->dev_private;
3387 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3388 
3389 	if (!drm_handle_vblank(dev, pipe))
3390 		return false;
3391 
3392 	if ((iir & flip_pending) == 0)
3393 		return false;
3394 
3395 	intel_prepare_page_flip(dev, plane);
3396 
3397 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3398 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3399 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3400 	 * the flip is completed (no longer pending). Since this doesn't raise
3401 	 * an interrupt per se, we watch for the change at vblank.
3402 	 */
3403 	if (I915_READ16(ISR) & flip_pending)
3404 		return false;
3405 
3406 	intel_finish_page_flip(dev, pipe);
3407 
3408 	return true;
3409 }
3410 
3411 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3412 {
3413 	struct drm_device *dev = (struct drm_device *) arg;
3414 	struct drm_i915_private *dev_priv = dev->dev_private;
3415 	u16 iir, new_iir;
3416 	u32 pipe_stats[2];
3417 	unsigned long irqflags;
3418 	int pipe;
3419 	u16 flip_mask =
3420 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3421 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3422 
3423 	iir = I915_READ16(IIR);
3424 	if (iir == 0)
3425 		return IRQ_NONE;
3426 
3427 	while (iir & ~flip_mask) {
3428 		/* Can't rely on pipestat interrupt bit in iir as it might
3429 		 * have been cleared after the pipestat interrupt was received.
3430 		 * It doesn't set the bit in iir again, but it still produces
3431 		 * interrupts (for non-MSI).
3432 		 */
3433 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3434 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3435 			i915_handle_error(dev, false,
3436 					  "Command parser error, iir 0x%08x",
3437 					  iir);
3438 
3439 		for_each_pipe(pipe) {
3440 			int reg = PIPESTAT(pipe);
3441 			pipe_stats[pipe] = I915_READ(reg);
3442 
3443 			/*
3444 			 * Clear the PIPE*STAT regs before the IIR
3445 			 */
3446 			if (pipe_stats[pipe] & 0x8000ffff)
3447 				I915_WRITE(reg, pipe_stats[pipe]);
3448 		}
3449 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3450 
3451 		I915_WRITE16(IIR, iir & ~flip_mask);
3452 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3453 
3454 		i915_update_dri1_breadcrumb(dev);
3455 
3456 		if (iir & I915_USER_INTERRUPT)
3457 			notify_ring(dev, &dev_priv->ring[RCS]);
3458 
3459 		for_each_pipe(pipe) {
3460 			int plane = pipe;
3461 			if (HAS_FBC(dev))
3462 				plane = !plane;
3463 
3464 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3465 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3466 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3467 
3468 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3469 				i9xx_pipe_crc_irq_handler(dev, pipe);
3470 
3471 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3472 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3473 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3474 		}
3475 
3476 		iir = new_iir;
3477 	}
3478 
3479 	return IRQ_HANDLED;
3480 }
3481 
3482 static void i8xx_irq_uninstall(struct drm_device * dev)
3483 {
3484 	struct drm_i915_private *dev_priv = dev->dev_private;
3485 	int pipe;
3486 
3487 	for_each_pipe(pipe) {
3488 		/* Clear enable bits; then clear status bits */
3489 		I915_WRITE(PIPESTAT(pipe), 0);
3490 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3491 	}
3492 	I915_WRITE16(IMR, 0xffff);
3493 	I915_WRITE16(IER, 0x0);
3494 	I915_WRITE16(IIR, I915_READ16(IIR));
3495 }
3496 
3497 static void i915_irq_preinstall(struct drm_device * dev)
3498 {
3499 	struct drm_i915_private *dev_priv = dev->dev_private;
3500 	int pipe;
3501 
3502 	if (I915_HAS_HOTPLUG(dev)) {
3503 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3504 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3505 	}
3506 
3507 	I915_WRITE16(HWSTAM, 0xeffe);
3508 	for_each_pipe(pipe)
3509 		I915_WRITE(PIPESTAT(pipe), 0);
3510 	I915_WRITE(IMR, 0xffffffff);
3511 	I915_WRITE(IER, 0x0);
3512 	POSTING_READ(IER);
3513 }
3514 
3515 static int i915_irq_postinstall(struct drm_device *dev)
3516 {
3517 	struct drm_i915_private *dev_priv = dev->dev_private;
3518 	u32 enable_mask;
3519 	unsigned long irqflags;
3520 
3521 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3522 
3523 	/* Unmask the interrupts that we always want on. */
3524 	dev_priv->irq_mask =
3525 		~(I915_ASLE_INTERRUPT |
3526 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3527 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3528 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3529 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3530 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3531 
3532 	enable_mask =
3533 		I915_ASLE_INTERRUPT |
3534 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3537 		I915_USER_INTERRUPT;
3538 
3539 	if (I915_HAS_HOTPLUG(dev)) {
3540 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3541 		POSTING_READ(PORT_HOTPLUG_EN);
3542 
3543 		/* Enable in IER... */
3544 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3545 		/* and unmask in IMR */
3546 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3547 	}
3548 
3549 	I915_WRITE(IMR, dev_priv->irq_mask);
3550 	I915_WRITE(IER, enable_mask);
3551 	POSTING_READ(IER);
3552 
3553 	i915_enable_asle_pipestat(dev);
3554 
3555 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3556 	 * just to make the assert_spin_locked check happy. */
3557 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3558 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3559 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3560 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3561 
3562 	return 0;
3563 }
3564 
3565 /*
3566  * Returns true when a page flip has completed.
3567  */
3568 static bool i915_handle_vblank(struct drm_device *dev,
3569 			       int plane, int pipe, u32 iir)
3570 {
3571 	struct drm_i915_private *dev_priv = dev->dev_private;
3572 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3573 
3574 	if (!drm_handle_vblank(dev, pipe))
3575 		return false;
3576 
3577 	if ((iir & flip_pending) == 0)
3578 		return false;
3579 
3580 	intel_prepare_page_flip(dev, plane);
3581 
3582 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3583 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3584 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3585 	 * the flip is completed (no longer pending). Since this doesn't raise
3586 	 * an interrupt per se, we watch for the change at vblank.
3587 	 */
3588 	if (I915_READ(ISR) & flip_pending)
3589 		return false;
3590 
3591 	intel_finish_page_flip(dev, pipe);
3592 
3593 	return true;
3594 }
3595 
3596 static irqreturn_t i915_irq_handler(int irq, void *arg)
3597 {
3598 	struct drm_device *dev = (struct drm_device *) arg;
3599 	struct drm_i915_private *dev_priv = dev->dev_private;
3600 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3601 	unsigned long irqflags;
3602 	u32 flip_mask =
3603 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3604 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3605 	int pipe, ret = IRQ_NONE;
3606 
3607 	iir = I915_READ(IIR);
3608 	do {
3609 		bool irq_received = (iir & ~flip_mask) != 0;
3610 		bool blc_event = false;
3611 
3612 		/* Can't rely on pipestat interrupt bit in iir as it might
3613 		 * have been cleared after the pipestat interrupt was received.
3614 		 * It doesn't set the bit in iir again, but it still produces
3615 		 * interrupts (for non-MSI).
3616 		 */
3617 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3618 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3619 			i915_handle_error(dev, false,
3620 					  "Command parser error, iir 0x%08x",
3621 					  iir);
3622 
3623 		for_each_pipe(pipe) {
3624 			int reg = PIPESTAT(pipe);
3625 			pipe_stats[pipe] = I915_READ(reg);
3626 
3627 			/* Clear the PIPE*STAT regs before the IIR */
3628 			if (pipe_stats[pipe] & 0x8000ffff) {
3629 				I915_WRITE(reg, pipe_stats[pipe]);
3630 				irq_received = true;
3631 			}
3632 		}
3633 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3634 
3635 		if (!irq_received)
3636 			break;
3637 
3638 		/* Consume port.  Then clear IIR or we'll miss events */
3639 		if ((I915_HAS_HOTPLUG(dev)) &&
3640 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3641 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3642 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3643 
3644 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3645 
3646 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3647 			POSTING_READ(PORT_HOTPLUG_STAT);
3648 		}
3649 
3650 		I915_WRITE(IIR, iir & ~flip_mask);
3651 		new_iir = I915_READ(IIR); /* Flush posted writes */
3652 
3653 		if (iir & I915_USER_INTERRUPT)
3654 			notify_ring(dev, &dev_priv->ring[RCS]);
3655 
3656 		for_each_pipe(pipe) {
3657 			int plane = pipe;
3658 			if (HAS_FBC(dev))
3659 				plane = !plane;
3660 
3661 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3662 			    i915_handle_vblank(dev, plane, pipe, iir))
3663 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3664 
3665 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3666 				blc_event = true;
3667 
3668 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3669 				i9xx_pipe_crc_irq_handler(dev, pipe);
3670 
3671 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3672 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3673 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3674 		}
3675 
3676 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3677 			intel_opregion_asle_intr(dev);
3678 
3679 		/* With MSI, interrupts are only generated when iir
3680 		 * transitions from zero to nonzero.  If another bit got
3681 		 * set while we were handling the existing iir bits, then
3682 		 * we would never get another interrupt.
3683 		 *
3684 		 * This is fine on non-MSI as well, as if we hit this path
3685 		 * we avoid exiting the interrupt handler only to generate
3686 		 * another one.
3687 		 *
3688 		 * Note that for MSI this could cause a stray interrupt report
3689 		 * if an interrupt landed in the time between writing IIR and
3690 		 * the posting read.  This should be rare enough to never
3691 		 * trigger the 99% of 100,000 interrupts test for disabling
3692 		 * stray interrupts.
3693 		 */
3694 		ret = IRQ_HANDLED;
3695 		iir = new_iir;
3696 	} while (iir & ~flip_mask);
3697 
3698 	i915_update_dri1_breadcrumb(dev);
3699 
3700 	return ret;
3701 }
3702 
3703 static void i915_irq_uninstall(struct drm_device * dev)
3704 {
3705 	struct drm_i915_private *dev_priv = dev->dev_private;
3706 	int pipe;
3707 
3708 	intel_hpd_irq_uninstall(dev_priv);
3709 
3710 	if (I915_HAS_HOTPLUG(dev)) {
3711 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3712 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3713 	}
3714 
3715 	I915_WRITE16(HWSTAM, 0xffff);
3716 	for_each_pipe(pipe) {
3717 		/* Clear enable bits; then clear status bits */
3718 		I915_WRITE(PIPESTAT(pipe), 0);
3719 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3720 	}
3721 	I915_WRITE(IMR, 0xffffffff);
3722 	I915_WRITE(IER, 0x0);
3723 
3724 	I915_WRITE(IIR, I915_READ(IIR));
3725 }
3726 
3727 static void i965_irq_preinstall(struct drm_device * dev)
3728 {
3729 	struct drm_i915_private *dev_priv = dev->dev_private;
3730 	int pipe;
3731 
3732 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3733 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3734 
3735 	I915_WRITE(HWSTAM, 0xeffe);
3736 	for_each_pipe(pipe)
3737 		I915_WRITE(PIPESTAT(pipe), 0);
3738 	I915_WRITE(IMR, 0xffffffff);
3739 	I915_WRITE(IER, 0x0);
3740 	POSTING_READ(IER);
3741 }
3742 
3743 static int i965_irq_postinstall(struct drm_device *dev)
3744 {
3745 	struct drm_i915_private *dev_priv = dev->dev_private;
3746 	u32 enable_mask;
3747 	u32 error_mask;
3748 	unsigned long irqflags;
3749 
3750 	/* Unmask the interrupts that we always want on. */
3751 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3752 			       I915_DISPLAY_PORT_INTERRUPT |
3753 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3754 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3755 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3756 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3757 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3758 
3759 	enable_mask = ~dev_priv->irq_mask;
3760 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3761 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3762 	enable_mask |= I915_USER_INTERRUPT;
3763 
3764 	if (IS_G4X(dev))
3765 		enable_mask |= I915_BSD_USER_INTERRUPT;
3766 
3767 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3768 	 * just to make the assert_spin_locked check happy. */
3769 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3770 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3771 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3772 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3773 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3774 
3775 	/*
3776 	 * Enable some error detection, note the instruction error mask
3777 	 * bit is reserved, so we leave it masked.
3778 	 */
3779 	if (IS_G4X(dev)) {
3780 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3781 			       GM45_ERROR_MEM_PRIV |
3782 			       GM45_ERROR_CP_PRIV |
3783 			       I915_ERROR_MEMORY_REFRESH);
3784 	} else {
3785 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3786 			       I915_ERROR_MEMORY_REFRESH);
3787 	}
3788 	I915_WRITE(EMR, error_mask);
3789 
3790 	I915_WRITE(IMR, dev_priv->irq_mask);
3791 	I915_WRITE(IER, enable_mask);
3792 	POSTING_READ(IER);
3793 
3794 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3795 	POSTING_READ(PORT_HOTPLUG_EN);
3796 
3797 	i915_enable_asle_pipestat(dev);
3798 
3799 	return 0;
3800 }
3801 
3802 static void i915_hpd_irq_setup(struct drm_device *dev)
3803 {
3804 	struct drm_i915_private *dev_priv = dev->dev_private;
3805 	struct drm_mode_config *mode_config = &dev->mode_config;
3806 	struct intel_encoder *intel_encoder;
3807 	u32 hotplug_en;
3808 
3809 	assert_spin_locked(&dev_priv->irq_lock);
3810 
3811 	if (I915_HAS_HOTPLUG(dev)) {
3812 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3813 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3814 		/* Note HDMI and DP share hotplug bits */
3815 		/* enable bits are the same for all generations */
3816 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3817 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3818 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3819 		/* Programming the CRT detection parameters tends
3820 		   to generate a spurious hotplug event about three
3821 		   seconds later.  So just do it once.
3822 		*/
3823 		if (IS_G4X(dev))
3824 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3825 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3826 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3827 
3828 		/* Ignore TV since it's buggy */
3829 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3830 	}
3831 }
3832 
3833 static irqreturn_t i965_irq_handler(int irq, void *arg)
3834 {
3835 	struct drm_device *dev = (struct drm_device *) arg;
3836 	struct drm_i915_private *dev_priv = dev->dev_private;
3837 	u32 iir, new_iir;
3838 	u32 pipe_stats[I915_MAX_PIPES];
3839 	unsigned long irqflags;
3840 	int ret = IRQ_NONE, pipe;
3841 	u32 flip_mask =
3842 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3843 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3844 
3845 	iir = I915_READ(IIR);
3846 
3847 	for (;;) {
3848 		bool irq_received = (iir & ~flip_mask) != 0;
3849 		bool blc_event = false;
3850 
3851 		/* Can't rely on pipestat interrupt bit in iir as it might
3852 		 * have been cleared after the pipestat interrupt was received.
3853 		 * It doesn't set the bit in iir again, but it still produces
3854 		 * interrupts (for non-MSI).
3855 		 */
3856 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3857 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858 			i915_handle_error(dev, false,
3859 					  "Command parser error, iir 0x%08x",
3860 					  iir);
3861 
3862 		for_each_pipe(pipe) {
3863 			int reg = PIPESTAT(pipe);
3864 			pipe_stats[pipe] = I915_READ(reg);
3865 
3866 			/*
3867 			 * Clear the PIPE*STAT regs before the IIR
3868 			 */
3869 			if (pipe_stats[pipe] & 0x8000ffff) {
3870 				I915_WRITE(reg, pipe_stats[pipe]);
3871 				irq_received = true;
3872 			}
3873 		}
3874 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3875 
3876 		if (!irq_received)
3877 			break;
3878 
3879 		ret = IRQ_HANDLED;
3880 
3881 		/* Consume port.  Then clear IIR or we'll miss events */
3882 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3883 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3884 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3885 								  HOTPLUG_INT_STATUS_G4X :
3886 								  HOTPLUG_INT_STATUS_I915);
3887 
3888 			intel_hpd_irq_handler(dev, hotplug_trigger,
3889 					      IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3890 
3891 			if (IS_G4X(dev) &&
3892 			    (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3893 				dp_aux_irq_handler(dev);
3894 
3895 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3896 			I915_READ(PORT_HOTPLUG_STAT);
3897 		}
3898 
3899 		I915_WRITE(IIR, iir & ~flip_mask);
3900 		new_iir = I915_READ(IIR); /* Flush posted writes */
3901 
3902 		if (iir & I915_USER_INTERRUPT)
3903 			notify_ring(dev, &dev_priv->ring[RCS]);
3904 		if (iir & I915_BSD_USER_INTERRUPT)
3905 			notify_ring(dev, &dev_priv->ring[VCS]);
3906 
3907 		for_each_pipe(pipe) {
3908 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3909 			    i915_handle_vblank(dev, pipe, pipe, iir))
3910 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3911 
3912 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3913 				blc_event = true;
3914 
3915 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3916 				i9xx_pipe_crc_irq_handler(dev, pipe);
3917 
3918 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3919 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3920 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3921 		}
3922 
3923 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3924 			intel_opregion_asle_intr(dev);
3925 
3926 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3927 			gmbus_irq_handler(dev);
3928 
3929 		/* With MSI, interrupts are only generated when iir
3930 		 * transitions from zero to nonzero.  If another bit got
3931 		 * set while we were handling the existing iir bits, then
3932 		 * we would never get another interrupt.
3933 		 *
3934 		 * This is fine on non-MSI as well, as if we hit this path
3935 		 * we avoid exiting the interrupt handler only to generate
3936 		 * another one.
3937 		 *
3938 		 * Note that for MSI this could cause a stray interrupt report
3939 		 * if an interrupt landed in the time between writing IIR and
3940 		 * the posting read.  This should be rare enough to never
3941 		 * trigger the 99% of 100,000 interrupts test for disabling
3942 		 * stray interrupts.
3943 		 */
3944 		iir = new_iir;
3945 	}
3946 
3947 	i915_update_dri1_breadcrumb(dev);
3948 
3949 	return ret;
3950 }
3951 
3952 static void i965_irq_uninstall(struct drm_device * dev)
3953 {
3954 	struct drm_i915_private *dev_priv = dev->dev_private;
3955 	int pipe;
3956 
3957 	if (!dev_priv)
3958 		return;
3959 
3960 	intel_hpd_irq_uninstall(dev_priv);
3961 
3962 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3963 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3964 
3965 	I915_WRITE(HWSTAM, 0xffffffff);
3966 	for_each_pipe(pipe)
3967 		I915_WRITE(PIPESTAT(pipe), 0);
3968 	I915_WRITE(IMR, 0xffffffff);
3969 	I915_WRITE(IER, 0x0);
3970 
3971 	for_each_pipe(pipe)
3972 		I915_WRITE(PIPESTAT(pipe),
3973 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3974 	I915_WRITE(IIR, I915_READ(IIR));
3975 }
3976 
3977 static void intel_hpd_irq_reenable(unsigned long data)
3978 {
3979 	struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3980 	struct drm_device *dev = dev_priv->dev;
3981 	struct drm_mode_config *mode_config = &dev->mode_config;
3982 	unsigned long irqflags;
3983 	int i;
3984 
3985 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3986 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3987 		struct drm_connector *connector;
3988 
3989 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3990 			continue;
3991 
3992 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3993 
3994 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3995 			struct intel_connector *intel_connector = to_intel_connector(connector);
3996 
3997 			if (intel_connector->encoder->hpd_pin == i) {
3998 				if (connector->polled != intel_connector->polled)
3999 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4000 							 drm_get_connector_name(connector));
4001 				connector->polled = intel_connector->polled;
4002 				if (!connector->polled)
4003 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4004 			}
4005 		}
4006 	}
4007 	if (dev_priv->display.hpd_irq_setup)
4008 		dev_priv->display.hpd_irq_setup(dev);
4009 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4010 }
4011 
4012 void intel_irq_init(struct drm_device *dev)
4013 {
4014 	struct drm_i915_private *dev_priv = dev->dev_private;
4015 
4016 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4017 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4018 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4019 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4020 
4021 	/* Let's track the enabled rps events */
4022 	dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4023 
4024 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4025 		    i915_hangcheck_elapsed,
4026 		    (unsigned long) dev);
4027 	setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4028 		    (unsigned long) dev_priv);
4029 
4030 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4031 
4032 	if (IS_GEN2(dev)) {
4033 		dev->max_vblank_count = 0;
4034 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4035 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4036 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4037 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4038 	} else {
4039 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4040 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4041 	}
4042 
4043 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4044 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4045 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4046 	}
4047 
4048 	if (IS_VALLEYVIEW(dev)) {
4049 		dev->driver->irq_handler = valleyview_irq_handler;
4050 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4051 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4052 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4053 		dev->driver->enable_vblank = valleyview_enable_vblank;
4054 		dev->driver->disable_vblank = valleyview_disable_vblank;
4055 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4056 	} else if (IS_GEN8(dev)) {
4057 		dev->driver->irq_handler = gen8_irq_handler;
4058 		dev->driver->irq_preinstall = gen8_irq_preinstall;
4059 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4060 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4061 		dev->driver->enable_vblank = gen8_enable_vblank;
4062 		dev->driver->disable_vblank = gen8_disable_vblank;
4063 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4064 	} else if (HAS_PCH_SPLIT(dev)) {
4065 		dev->driver->irq_handler = ironlake_irq_handler;
4066 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
4067 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4068 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4069 		dev->driver->enable_vblank = ironlake_enable_vblank;
4070 		dev->driver->disable_vblank = ironlake_disable_vblank;
4071 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4072 	} else {
4073 		if (INTEL_INFO(dev)->gen == 2) {
4074 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4075 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4076 			dev->driver->irq_handler = i8xx_irq_handler;
4077 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4078 		} else if (INTEL_INFO(dev)->gen == 3) {
4079 			dev->driver->irq_preinstall = i915_irq_preinstall;
4080 			dev->driver->irq_postinstall = i915_irq_postinstall;
4081 			dev->driver->irq_uninstall = i915_irq_uninstall;
4082 			dev->driver->irq_handler = i915_irq_handler;
4083 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4084 		} else {
4085 			dev->driver->irq_preinstall = i965_irq_preinstall;
4086 			dev->driver->irq_postinstall = i965_irq_postinstall;
4087 			dev->driver->irq_uninstall = i965_irq_uninstall;
4088 			dev->driver->irq_handler = i965_irq_handler;
4089 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4090 		}
4091 		dev->driver->enable_vblank = i915_enable_vblank;
4092 		dev->driver->disable_vblank = i915_disable_vblank;
4093 	}
4094 }
4095 
4096 void intel_hpd_init(struct drm_device *dev)
4097 {
4098 	struct drm_i915_private *dev_priv = dev->dev_private;
4099 	struct drm_mode_config *mode_config = &dev->mode_config;
4100 	struct drm_connector *connector;
4101 	unsigned long irqflags;
4102 	int i;
4103 
4104 	for (i = 1; i < HPD_NUM_PINS; i++) {
4105 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4106 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4107 	}
4108 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4109 		struct intel_connector *intel_connector = to_intel_connector(connector);
4110 		connector->polled = intel_connector->polled;
4111 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4112 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4113 	}
4114 
4115 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4116 	 * just to make the assert_spin_locked checks happy. */
4117 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4118 	if (dev_priv->display.hpd_irq_setup)
4119 		dev_priv->display.hpd_irq_setup(dev);
4120 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4121 }
4122 
4123 /* Disable interrupts so we can allow runtime PM. */
4124 void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4125 {
4126 	struct drm_i915_private *dev_priv = dev->dev_private;
4127 	unsigned long irqflags;
4128 
4129 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4130 
4131 	dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4132 	dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4133 	dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4134 	dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4135 	dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4136 
4137 	ironlake_disable_display_irq(dev_priv, 0xffffffff);
4138 	ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4139 	ilk_disable_gt_irq(dev_priv, 0xffffffff);
4140 	snb_disable_pm_irq(dev_priv, 0xffffffff);
4141 
4142 	dev_priv->pm.irqs_disabled = true;
4143 
4144 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4145 }
4146 
4147 /* Restore interrupts so we can recover from runtime PM. */
4148 void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4149 {
4150 	struct drm_i915_private *dev_priv = dev->dev_private;
4151 	unsigned long irqflags;
4152 	uint32_t val;
4153 
4154 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4155 
4156 	val = I915_READ(DEIMR);
4157 	WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4158 
4159 	val = I915_READ(SDEIMR);
4160 	WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4161 
4162 	val = I915_READ(GTIMR);
4163 	WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4164 
4165 	val = I915_READ(GEN6_PMIMR);
4166 	WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4167 
4168 	dev_priv->pm.irqs_disabled = false;
4169 
4170 	ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4171 	ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4172 	ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4173 	snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4174 	I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4175 
4176 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4177 }
4178