1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/slab.h> 33 #include <linux/sysrq.h> 34 35 #include <drm/drm_drv.h> 36 #include <drm/drm_irq.h> 37 38 #include "display/intel_display_types.h" 39 #include "display/intel_fifo_underrun.h" 40 #include "display/intel_hotplug.h" 41 #include "display/intel_lpe_audio.h" 42 #include "display/intel_psr.h" 43 44 #include "gt/intel_breadcrumbs.h" 45 #include "gt/intel_gt.h" 46 #include "gt/intel_gt_irq.h" 47 #include "gt/intel_gt_pm_irq.h" 48 #include "gt/intel_rps.h" 49 50 #include "i915_drv.h" 51 #include "i915_irq.h" 52 #include "i915_trace.h" 53 #include "intel_pm.h" 54 55 /** 56 * DOC: interrupt handling 57 * 58 * These functions provide the basic support for enabling and disabling the 59 * interrupt handling support. There's a lot more functionality in i915_irq.c 60 * and related files, but that will be described in separate chapters. 61 */ 62 63 /* 64 * Interrupt statistic for PMU. Increments the counter only if the 65 * interrupt originated from the the GPU so interrupts from a device which 66 * shares the interrupt line are not accounted. 67 */ 68 static inline void pmu_irq_stats(struct drm_i915_private *i915, 69 irqreturn_t res) 70 { 71 if (unlikely(res != IRQ_HANDLED)) 72 return; 73 74 /* 75 * A clever compiler translates that into INC. A not so clever one 76 * should at least prevent store tearing. 77 */ 78 WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1); 79 } 80 81 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val); 82 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915, 83 enum hpd_pin pin); 84 85 static const u32 hpd_ilk[HPD_NUM_PINS] = { 86 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 87 }; 88 89 static const u32 hpd_ivb[HPD_NUM_PINS] = { 90 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 91 }; 92 93 static const u32 hpd_bdw[HPD_NUM_PINS] = { 94 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A), 95 }; 96 97 static const u32 hpd_ibx[HPD_NUM_PINS] = { 98 [HPD_CRT] = SDE_CRT_HOTPLUG, 99 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 100 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 101 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 102 [HPD_PORT_D] = SDE_PORTD_HOTPLUG, 103 }; 104 105 static const u32 hpd_cpt[HPD_NUM_PINS] = { 106 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 107 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 108 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 109 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 110 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 111 }; 112 113 static const u32 hpd_spt[HPD_NUM_PINS] = { 114 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 115 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 116 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 117 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 118 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT, 119 }; 120 121 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 122 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 123 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 124 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 125 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 126 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 127 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN, 128 }; 129 130 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 131 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 132 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 133 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 134 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 135 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 136 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 137 }; 138 139 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 140 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 141 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 142 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 143 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 144 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 145 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 146 }; 147 148 static const u32 hpd_bxt[HPD_NUM_PINS] = { 149 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A), 150 [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B), 151 [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C), 152 }; 153 154 static const u32 hpd_gen11[HPD_NUM_PINS] = { 155 [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1), 156 [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2), 157 [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3), 158 [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4), 159 [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5), 160 [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6), 161 }; 162 163 static const u32 hpd_icp[HPD_NUM_PINS] = { 164 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A), 165 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B), 166 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C), 167 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1), 168 [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2), 169 [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3), 170 [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4), 171 [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5), 172 [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6), 173 }; 174 175 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = { 176 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A), 177 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B), 178 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C), 179 [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D), 180 }; 181 182 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv) 183 { 184 struct i915_hotplug *hpd = &dev_priv->hotplug; 185 186 if (HAS_GMCH(dev_priv)) { 187 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 188 IS_CHERRYVIEW(dev_priv)) 189 hpd->hpd = hpd_status_g4x; 190 else 191 hpd->hpd = hpd_status_i915; 192 return; 193 } 194 195 if (INTEL_GEN(dev_priv) >= 11) 196 hpd->hpd = hpd_gen11; 197 else if (IS_GEN9_LP(dev_priv)) 198 hpd->hpd = hpd_bxt; 199 else if (INTEL_GEN(dev_priv) >= 8) 200 hpd->hpd = hpd_bdw; 201 else if (INTEL_GEN(dev_priv) >= 7) 202 hpd->hpd = hpd_ivb; 203 else 204 hpd->hpd = hpd_ilk; 205 206 if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) && 207 (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))) 208 return; 209 210 if (HAS_PCH_DG1(dev_priv)) 211 hpd->pch_hpd = hpd_sde_dg1; 212 else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) || 213 HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv)) 214 hpd->pch_hpd = hpd_icp; 215 else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv)) 216 hpd->pch_hpd = hpd_spt; 217 else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv)) 218 hpd->pch_hpd = hpd_cpt; 219 else if (HAS_PCH_IBX(dev_priv)) 220 hpd->pch_hpd = hpd_ibx; 221 else 222 MISSING_CASE(INTEL_PCH_TYPE(dev_priv)); 223 } 224 225 static void 226 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) 227 { 228 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 229 230 drm_crtc_handle_vblank(&crtc->base); 231 } 232 233 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 234 i915_reg_t iir, i915_reg_t ier) 235 { 236 intel_uncore_write(uncore, imr, 0xffffffff); 237 intel_uncore_posting_read(uncore, imr); 238 239 intel_uncore_write(uncore, ier, 0); 240 241 /* IIR can theoretically queue up two events. Be paranoid. */ 242 intel_uncore_write(uncore, iir, 0xffffffff); 243 intel_uncore_posting_read(uncore, iir); 244 intel_uncore_write(uncore, iir, 0xffffffff); 245 intel_uncore_posting_read(uncore, iir); 246 } 247 248 void gen2_irq_reset(struct intel_uncore *uncore) 249 { 250 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 251 intel_uncore_posting_read16(uncore, GEN2_IMR); 252 253 intel_uncore_write16(uncore, GEN2_IER, 0); 254 255 /* IIR can theoretically queue up two events. Be paranoid. */ 256 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 257 intel_uncore_posting_read16(uncore, GEN2_IIR); 258 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 259 intel_uncore_posting_read16(uncore, GEN2_IIR); 260 } 261 262 /* 263 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 264 */ 265 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 266 { 267 u32 val = intel_uncore_read(uncore, reg); 268 269 if (val == 0) 270 return; 271 272 drm_WARN(&uncore->i915->drm, 1, 273 "Interrupt register 0x%x is not zero: 0x%08x\n", 274 i915_mmio_reg_offset(reg), val); 275 intel_uncore_write(uncore, reg, 0xffffffff); 276 intel_uncore_posting_read(uncore, reg); 277 intel_uncore_write(uncore, reg, 0xffffffff); 278 intel_uncore_posting_read(uncore, reg); 279 } 280 281 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 282 { 283 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 284 285 if (val == 0) 286 return; 287 288 drm_WARN(&uncore->i915->drm, 1, 289 "Interrupt register 0x%x is not zero: 0x%08x\n", 290 i915_mmio_reg_offset(GEN2_IIR), val); 291 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 292 intel_uncore_posting_read16(uncore, GEN2_IIR); 293 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 294 intel_uncore_posting_read16(uncore, GEN2_IIR); 295 } 296 297 void gen3_irq_init(struct intel_uncore *uncore, 298 i915_reg_t imr, u32 imr_val, 299 i915_reg_t ier, u32 ier_val, 300 i915_reg_t iir) 301 { 302 gen3_assert_iir_is_zero(uncore, iir); 303 304 intel_uncore_write(uncore, ier, ier_val); 305 intel_uncore_write(uncore, imr, imr_val); 306 intel_uncore_posting_read(uncore, imr); 307 } 308 309 void gen2_irq_init(struct intel_uncore *uncore, 310 u32 imr_val, u32 ier_val) 311 { 312 gen2_assert_iir_is_zero(uncore); 313 314 intel_uncore_write16(uncore, GEN2_IER, ier_val); 315 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 316 intel_uncore_posting_read16(uncore, GEN2_IMR); 317 } 318 319 /* For display hotplug interrupt */ 320 static inline void 321 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 322 u32 mask, 323 u32 bits) 324 { 325 u32 val; 326 327 lockdep_assert_held(&dev_priv->irq_lock); 328 drm_WARN_ON(&dev_priv->drm, bits & ~mask); 329 330 val = I915_READ(PORT_HOTPLUG_EN); 331 val &= ~mask; 332 val |= bits; 333 I915_WRITE(PORT_HOTPLUG_EN, val); 334 } 335 336 /** 337 * i915_hotplug_interrupt_update - update hotplug interrupt enable 338 * @dev_priv: driver private 339 * @mask: bits to update 340 * @bits: bits to enable 341 * NOTE: the HPD enable bits are modified both inside and outside 342 * of an interrupt context. To avoid that read-modify-write cycles 343 * interfer, these bits are protected by a spinlock. Since this 344 * function is usually not called from a context where the lock is 345 * held already, this function acquires the lock itself. A non-locking 346 * version is also available. 347 */ 348 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 349 u32 mask, 350 u32 bits) 351 { 352 spin_lock_irq(&dev_priv->irq_lock); 353 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 354 spin_unlock_irq(&dev_priv->irq_lock); 355 } 356 357 /** 358 * ilk_update_display_irq - update DEIMR 359 * @dev_priv: driver private 360 * @interrupt_mask: mask of interrupt bits to update 361 * @enabled_irq_mask: mask of interrupt bits to enable 362 */ 363 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 364 u32 interrupt_mask, 365 u32 enabled_irq_mask) 366 { 367 u32 new_val; 368 369 lockdep_assert_held(&dev_priv->irq_lock); 370 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 371 372 new_val = dev_priv->irq_mask; 373 new_val &= ~interrupt_mask; 374 new_val |= (~enabled_irq_mask & interrupt_mask); 375 376 if (new_val != dev_priv->irq_mask && 377 !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) { 378 dev_priv->irq_mask = new_val; 379 I915_WRITE(DEIMR, dev_priv->irq_mask); 380 POSTING_READ(DEIMR); 381 } 382 } 383 384 /** 385 * bdw_update_port_irq - update DE port interrupt 386 * @dev_priv: driver private 387 * @interrupt_mask: mask of interrupt bits to update 388 * @enabled_irq_mask: mask of interrupt bits to enable 389 */ 390 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 391 u32 interrupt_mask, 392 u32 enabled_irq_mask) 393 { 394 u32 new_val; 395 u32 old_val; 396 397 lockdep_assert_held(&dev_priv->irq_lock); 398 399 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 400 401 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 402 return; 403 404 old_val = I915_READ(GEN8_DE_PORT_IMR); 405 406 new_val = old_val; 407 new_val &= ~interrupt_mask; 408 new_val |= (~enabled_irq_mask & interrupt_mask); 409 410 if (new_val != old_val) { 411 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 412 POSTING_READ(GEN8_DE_PORT_IMR); 413 } 414 } 415 416 /** 417 * bdw_update_pipe_irq - update DE pipe interrupt 418 * @dev_priv: driver private 419 * @pipe: pipe whose interrupt to update 420 * @interrupt_mask: mask of interrupt bits to update 421 * @enabled_irq_mask: mask of interrupt bits to enable 422 */ 423 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 424 enum pipe pipe, 425 u32 interrupt_mask, 426 u32 enabled_irq_mask) 427 { 428 u32 new_val; 429 430 lockdep_assert_held(&dev_priv->irq_lock); 431 432 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 433 434 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 435 return; 436 437 new_val = dev_priv->de_irq_mask[pipe]; 438 new_val &= ~interrupt_mask; 439 new_val |= (~enabled_irq_mask & interrupt_mask); 440 441 if (new_val != dev_priv->de_irq_mask[pipe]) { 442 dev_priv->de_irq_mask[pipe] = new_val; 443 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 444 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 445 } 446 } 447 448 /** 449 * ibx_display_interrupt_update - update SDEIMR 450 * @dev_priv: driver private 451 * @interrupt_mask: mask of interrupt bits to update 452 * @enabled_irq_mask: mask of interrupt bits to enable 453 */ 454 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 455 u32 interrupt_mask, 456 u32 enabled_irq_mask) 457 { 458 u32 sdeimr = I915_READ(SDEIMR); 459 sdeimr &= ~interrupt_mask; 460 sdeimr |= (~enabled_irq_mask & interrupt_mask); 461 462 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 463 464 lockdep_assert_held(&dev_priv->irq_lock); 465 466 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 467 return; 468 469 I915_WRITE(SDEIMR, sdeimr); 470 POSTING_READ(SDEIMR); 471 } 472 473 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 474 enum pipe pipe) 475 { 476 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 477 u32 enable_mask = status_mask << 16; 478 479 lockdep_assert_held(&dev_priv->irq_lock); 480 481 if (INTEL_GEN(dev_priv) < 5) 482 goto out; 483 484 /* 485 * On pipe A we don't support the PSR interrupt yet, 486 * on pipe B and C the same bit MBZ. 487 */ 488 if (drm_WARN_ON_ONCE(&dev_priv->drm, 489 status_mask & PIPE_A_PSR_STATUS_VLV)) 490 return 0; 491 /* 492 * On pipe B and C we don't support the PSR interrupt yet, on pipe 493 * A the same bit is for perf counters which we don't use either. 494 */ 495 if (drm_WARN_ON_ONCE(&dev_priv->drm, 496 status_mask & PIPE_B_PSR_STATUS_VLV)) 497 return 0; 498 499 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 500 SPRITE0_FLIP_DONE_INT_EN_VLV | 501 SPRITE1_FLIP_DONE_INT_EN_VLV); 502 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 503 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 504 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 505 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 506 507 out: 508 drm_WARN_ONCE(&dev_priv->drm, 509 enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 510 status_mask & ~PIPESTAT_INT_STATUS_MASK, 511 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 512 pipe_name(pipe), enable_mask, status_mask); 513 514 return enable_mask; 515 } 516 517 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 518 enum pipe pipe, u32 status_mask) 519 { 520 i915_reg_t reg = PIPESTAT(pipe); 521 u32 enable_mask; 522 523 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 524 "pipe %c: status_mask=0x%x\n", 525 pipe_name(pipe), status_mask); 526 527 lockdep_assert_held(&dev_priv->irq_lock); 528 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 529 530 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 531 return; 532 533 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 534 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 535 536 I915_WRITE(reg, enable_mask | status_mask); 537 POSTING_READ(reg); 538 } 539 540 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 541 enum pipe pipe, u32 status_mask) 542 { 543 i915_reg_t reg = PIPESTAT(pipe); 544 u32 enable_mask; 545 546 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 547 "pipe %c: status_mask=0x%x\n", 548 pipe_name(pipe), status_mask); 549 550 lockdep_assert_held(&dev_priv->irq_lock); 551 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 552 553 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 554 return; 555 556 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 557 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 558 559 I915_WRITE(reg, enable_mask | status_mask); 560 POSTING_READ(reg); 561 } 562 563 static bool i915_has_asle(struct drm_i915_private *dev_priv) 564 { 565 if (!dev_priv->opregion.asle) 566 return false; 567 568 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 569 } 570 571 /** 572 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 573 * @dev_priv: i915 device private 574 */ 575 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 576 { 577 if (!i915_has_asle(dev_priv)) 578 return; 579 580 spin_lock_irq(&dev_priv->irq_lock); 581 582 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 583 if (INTEL_GEN(dev_priv) >= 4) 584 i915_enable_pipestat(dev_priv, PIPE_A, 585 PIPE_LEGACY_BLC_EVENT_STATUS); 586 587 spin_unlock_irq(&dev_priv->irq_lock); 588 } 589 590 /* 591 * This timing diagram depicts the video signal in and 592 * around the vertical blanking period. 593 * 594 * Assumptions about the fictitious mode used in this example: 595 * vblank_start >= 3 596 * vsync_start = vblank_start + 1 597 * vsync_end = vblank_start + 2 598 * vtotal = vblank_start + 3 599 * 600 * start of vblank: 601 * latch double buffered registers 602 * increment frame counter (ctg+) 603 * generate start of vblank interrupt (gen4+) 604 * | 605 * | frame start: 606 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 607 * | may be shifted forward 1-3 extra lines via PIPECONF 608 * | | 609 * | | start of vsync: 610 * | | generate vsync interrupt 611 * | | | 612 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 613 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 614 * ----va---> <-----------------vb--------------------> <--------va------------- 615 * | | <----vs-----> | 616 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 617 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 618 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 619 * | | | 620 * last visible pixel first visible pixel 621 * | increment frame counter (gen3/4) 622 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 623 * 624 * x = horizontal active 625 * _ = horizontal blanking 626 * hs = horizontal sync 627 * va = vertical active 628 * vb = vertical blanking 629 * vs = vertical sync 630 * vbs = vblank_start (number) 631 * 632 * Summary: 633 * - most events happen at the start of horizontal sync 634 * - frame start happens at the start of horizontal blank, 1-4 lines 635 * (depending on PIPECONF settings) after the start of vblank 636 * - gen3/4 pixel and frame counter are synchronized with the start 637 * of horizontal active on the first line of vertical active 638 */ 639 640 /* Called from drm generic code, passed a 'crtc', which 641 * we use as a pipe index 642 */ 643 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 644 { 645 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 646 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 647 const struct drm_display_mode *mode = &vblank->hwmode; 648 enum pipe pipe = to_intel_crtc(crtc)->pipe; 649 i915_reg_t high_frame, low_frame; 650 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 651 unsigned long irqflags; 652 653 /* 654 * On i965gm TV output the frame counter only works up to 655 * the point when we enable the TV encoder. After that the 656 * frame counter ceases to work and reads zero. We need a 657 * vblank wait before enabling the TV encoder and so we 658 * have to enable vblank interrupts while the frame counter 659 * is still in a working state. However the core vblank code 660 * does not like us returning non-zero frame counter values 661 * when we've told it that we don't have a working frame 662 * counter. Thus we must stop non-zero values leaking out. 663 */ 664 if (!vblank->max_vblank_count) 665 return 0; 666 667 htotal = mode->crtc_htotal; 668 hsync_start = mode->crtc_hsync_start; 669 vbl_start = mode->crtc_vblank_start; 670 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 671 vbl_start = DIV_ROUND_UP(vbl_start, 2); 672 673 /* Convert to pixel count */ 674 vbl_start *= htotal; 675 676 /* Start of vblank event occurs at start of hsync */ 677 vbl_start -= htotal - hsync_start; 678 679 high_frame = PIPEFRAME(pipe); 680 low_frame = PIPEFRAMEPIXEL(pipe); 681 682 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 683 684 /* 685 * High & low register fields aren't synchronized, so make sure 686 * we get a low value that's stable across two reads of the high 687 * register. 688 */ 689 do { 690 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 691 low = intel_de_read_fw(dev_priv, low_frame); 692 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 693 } while (high1 != high2); 694 695 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 696 697 high1 >>= PIPE_FRAME_HIGH_SHIFT; 698 pixel = low & PIPE_PIXEL_MASK; 699 low >>= PIPE_FRAME_LOW_SHIFT; 700 701 /* 702 * The frame counter increments at beginning of active. 703 * Cook up a vblank counter by also checking the pixel 704 * counter against vblank start. 705 */ 706 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 707 } 708 709 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 710 { 711 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 712 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 713 enum pipe pipe = to_intel_crtc(crtc)->pipe; 714 715 if (!vblank->max_vblank_count) 716 return 0; 717 718 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 719 } 720 721 /* 722 * On certain encoders on certain platforms, pipe 723 * scanline register will not work to get the scanline, 724 * since the timings are driven from the PORT or issues 725 * with scanline register updates. 726 * This function will use Framestamp and current 727 * timestamp registers to calculate the scanline. 728 */ 729 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 730 { 731 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 732 struct drm_vblank_crtc *vblank = 733 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 734 const struct drm_display_mode *mode = &vblank->hwmode; 735 u32 vblank_start = mode->crtc_vblank_start; 736 u32 vtotal = mode->crtc_vtotal; 737 u32 htotal = mode->crtc_htotal; 738 u32 clock = mode->crtc_clock; 739 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 740 741 /* 742 * To avoid the race condition where we might cross into the 743 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 744 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 745 * during the same frame. 746 */ 747 do { 748 /* 749 * This field provides read back of the display 750 * pipe frame time stamp. The time stamp value 751 * is sampled at every start of vertical blank. 752 */ 753 scan_prev_time = intel_de_read_fw(dev_priv, 754 PIPE_FRMTMSTMP(crtc->pipe)); 755 756 /* 757 * The TIMESTAMP_CTR register has the current 758 * time stamp value. 759 */ 760 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 761 762 scan_post_time = intel_de_read_fw(dev_priv, 763 PIPE_FRMTMSTMP(crtc->pipe)); 764 } while (scan_post_time != scan_prev_time); 765 766 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 767 clock), 1000 * htotal); 768 scanline = min(scanline, vtotal - 1); 769 scanline = (scanline + vblank_start) % vtotal; 770 771 return scanline; 772 } 773 774 /* 775 * intel_de_read_fw(), only for fast reads of display block, no need for 776 * forcewake etc. 777 */ 778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 779 { 780 struct drm_device *dev = crtc->base.dev; 781 struct drm_i915_private *dev_priv = to_i915(dev); 782 const struct drm_display_mode *mode; 783 struct drm_vblank_crtc *vblank; 784 enum pipe pipe = crtc->pipe; 785 int position, vtotal; 786 787 if (!crtc->active) 788 return -1; 789 790 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 791 mode = &vblank->hwmode; 792 793 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 794 return __intel_get_crtc_scanline_from_timestamp(crtc); 795 796 vtotal = mode->crtc_vtotal; 797 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 798 vtotal /= 2; 799 800 if (IS_GEN(dev_priv, 2)) 801 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 802 else 803 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 804 805 /* 806 * On HSW, the DSL reg (0x70000) appears to return 0 if we 807 * read it just before the start of vblank. So try it again 808 * so we don't accidentally end up spanning a vblank frame 809 * increment, causing the pipe_update_end() code to squak at us. 810 * 811 * The nature of this problem means we can't simply check the ISR 812 * bit and return the vblank start value; nor can we use the scanline 813 * debug register in the transcoder as it appears to have the same 814 * problem. We may need to extend this to include other platforms, 815 * but so far testing only shows the problem on HSW. 816 */ 817 if (HAS_DDI(dev_priv) && !position) { 818 int i, temp; 819 820 for (i = 0; i < 100; i++) { 821 udelay(1); 822 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 823 if (temp != position) { 824 position = temp; 825 break; 826 } 827 } 828 } 829 830 /* 831 * See update_scanline_offset() for the details on the 832 * scanline_offset adjustment. 833 */ 834 return (position + crtc->scanline_offset) % vtotal; 835 } 836 837 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 838 bool in_vblank_irq, 839 int *vpos, int *hpos, 840 ktime_t *stime, ktime_t *etime, 841 const struct drm_display_mode *mode) 842 { 843 struct drm_device *dev = _crtc->dev; 844 struct drm_i915_private *dev_priv = to_i915(dev); 845 struct intel_crtc *crtc = to_intel_crtc(_crtc); 846 enum pipe pipe = crtc->pipe; 847 int position; 848 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 849 unsigned long irqflags; 850 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 || 851 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) || 852 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 853 854 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 855 drm_dbg(&dev_priv->drm, 856 "trying to get scanoutpos for disabled " 857 "pipe %c\n", pipe_name(pipe)); 858 return false; 859 } 860 861 htotal = mode->crtc_htotal; 862 hsync_start = mode->crtc_hsync_start; 863 vtotal = mode->crtc_vtotal; 864 vbl_start = mode->crtc_vblank_start; 865 vbl_end = mode->crtc_vblank_end; 866 867 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 868 vbl_start = DIV_ROUND_UP(vbl_start, 2); 869 vbl_end /= 2; 870 vtotal /= 2; 871 } 872 873 /* 874 * Lock uncore.lock, as we will do multiple timing critical raw 875 * register reads, potentially with preemption disabled, so the 876 * following code must not block on uncore.lock. 877 */ 878 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 879 880 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 881 882 /* Get optional system timestamp before query. */ 883 if (stime) 884 *stime = ktime_get(); 885 886 if (use_scanline_counter) { 887 /* No obvious pixelcount register. Only query vertical 888 * scanout position from Display scan line register. 889 */ 890 position = __intel_get_crtc_scanline(crtc); 891 } else { 892 /* Have access to pixelcount since start of frame. 893 * We can split this into vertical and horizontal 894 * scanout position. 895 */ 896 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 897 898 /* convert to pixel counts */ 899 vbl_start *= htotal; 900 vbl_end *= htotal; 901 vtotal *= htotal; 902 903 /* 904 * In interlaced modes, the pixel counter counts all pixels, 905 * so one field will have htotal more pixels. In order to avoid 906 * the reported position from jumping backwards when the pixel 907 * counter is beyond the length of the shorter field, just 908 * clamp the position the length of the shorter field. This 909 * matches how the scanline counter based position works since 910 * the scanline counter doesn't count the two half lines. 911 */ 912 if (position >= vtotal) 913 position = vtotal - 1; 914 915 /* 916 * Start of vblank interrupt is triggered at start of hsync, 917 * just prior to the first active line of vblank. However we 918 * consider lines to start at the leading edge of horizontal 919 * active. So, should we get here before we've crossed into 920 * the horizontal active of the first line in vblank, we would 921 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 922 * always add htotal-hsync_start to the current pixel position. 923 */ 924 position = (position + htotal - hsync_start) % vtotal; 925 } 926 927 /* Get optional system timestamp after query. */ 928 if (etime) 929 *etime = ktime_get(); 930 931 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 932 933 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 934 935 /* 936 * While in vblank, position will be negative 937 * counting up towards 0 at vbl_end. And outside 938 * vblank, position will be positive counting 939 * up since vbl_end. 940 */ 941 if (position >= vbl_start) 942 position -= vbl_end; 943 else 944 position += vtotal - vbl_end; 945 946 if (use_scanline_counter) { 947 *vpos = position; 948 *hpos = 0; 949 } else { 950 *vpos = position / htotal; 951 *hpos = position - (*vpos * htotal); 952 } 953 954 return true; 955 } 956 957 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 958 ktime_t *vblank_time, bool in_vblank_irq) 959 { 960 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 961 crtc, max_error, vblank_time, in_vblank_irq, 962 i915_get_crtc_scanoutpos); 963 } 964 965 int intel_get_crtc_scanline(struct intel_crtc *crtc) 966 { 967 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 968 unsigned long irqflags; 969 int position; 970 971 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 972 position = __intel_get_crtc_scanline(crtc); 973 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 974 975 return position; 976 } 977 978 /** 979 * ivb_parity_work - Workqueue called when a parity error interrupt 980 * occurred. 981 * @work: workqueue struct 982 * 983 * Doesn't actually do anything except notify userspace. As a consequence of 984 * this event, userspace should try to remap the bad rows since statistically 985 * it is likely the same row is more likely to go bad again. 986 */ 987 static void ivb_parity_work(struct work_struct *work) 988 { 989 struct drm_i915_private *dev_priv = 990 container_of(work, typeof(*dev_priv), l3_parity.error_work); 991 struct intel_gt *gt = &dev_priv->gt; 992 u32 error_status, row, bank, subbank; 993 char *parity_event[6]; 994 u32 misccpctl; 995 u8 slice = 0; 996 997 /* We must turn off DOP level clock gating to access the L3 registers. 998 * In order to prevent a get/put style interface, acquire struct mutex 999 * any time we access those registers. 1000 */ 1001 mutex_lock(&dev_priv->drm.struct_mutex); 1002 1003 /* If we've screwed up tracking, just let the interrupt fire again */ 1004 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice)) 1005 goto out; 1006 1007 misccpctl = I915_READ(GEN7_MISCCPCTL); 1008 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1009 POSTING_READ(GEN7_MISCCPCTL); 1010 1011 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1012 i915_reg_t reg; 1013 1014 slice--; 1015 if (drm_WARN_ON_ONCE(&dev_priv->drm, 1016 slice >= NUM_L3_SLICES(dev_priv))) 1017 break; 1018 1019 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1020 1021 reg = GEN7_L3CDERRST1(slice); 1022 1023 error_status = I915_READ(reg); 1024 row = GEN7_PARITY_ERROR_ROW(error_status); 1025 bank = GEN7_PARITY_ERROR_BANK(error_status); 1026 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1027 1028 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1029 POSTING_READ(reg); 1030 1031 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1032 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1033 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1034 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1035 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1036 parity_event[5] = NULL; 1037 1038 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1039 KOBJ_CHANGE, parity_event); 1040 1041 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1042 slice, row, bank, subbank); 1043 1044 kfree(parity_event[4]); 1045 kfree(parity_event[3]); 1046 kfree(parity_event[2]); 1047 kfree(parity_event[1]); 1048 } 1049 1050 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1051 1052 out: 1053 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice); 1054 spin_lock_irq(>->irq_lock); 1055 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv)); 1056 spin_unlock_irq(>->irq_lock); 1057 1058 mutex_unlock(&dev_priv->drm.struct_mutex); 1059 } 1060 1061 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1062 { 1063 switch (pin) { 1064 case HPD_PORT_TC1: 1065 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC1); 1066 case HPD_PORT_TC2: 1067 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC2); 1068 case HPD_PORT_TC3: 1069 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC3); 1070 case HPD_PORT_TC4: 1071 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC4); 1072 case HPD_PORT_TC5: 1073 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC5); 1074 case HPD_PORT_TC6: 1075 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC6); 1076 default: 1077 return false; 1078 } 1079 } 1080 1081 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1082 { 1083 switch (pin) { 1084 case HPD_PORT_A: 1085 return val & PORTA_HOTPLUG_LONG_DETECT; 1086 case HPD_PORT_B: 1087 return val & PORTB_HOTPLUG_LONG_DETECT; 1088 case HPD_PORT_C: 1089 return val & PORTC_HOTPLUG_LONG_DETECT; 1090 default: 1091 return false; 1092 } 1093 } 1094 1095 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1096 { 1097 switch (pin) { 1098 case HPD_PORT_A: 1099 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_A); 1100 case HPD_PORT_B: 1101 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_B); 1102 case HPD_PORT_C: 1103 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_C); 1104 case HPD_PORT_D: 1105 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_D); 1106 default: 1107 return false; 1108 } 1109 } 1110 1111 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1112 { 1113 switch (pin) { 1114 case HPD_PORT_TC1: 1115 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC1); 1116 case HPD_PORT_TC2: 1117 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC2); 1118 case HPD_PORT_TC3: 1119 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC3); 1120 case HPD_PORT_TC4: 1121 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC4); 1122 case HPD_PORT_TC5: 1123 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC5); 1124 case HPD_PORT_TC6: 1125 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC6); 1126 default: 1127 return false; 1128 } 1129 } 1130 1131 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1132 { 1133 switch (pin) { 1134 case HPD_PORT_E: 1135 return val & PORTE_HOTPLUG_LONG_DETECT; 1136 default: 1137 return false; 1138 } 1139 } 1140 1141 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1142 { 1143 switch (pin) { 1144 case HPD_PORT_A: 1145 return val & PORTA_HOTPLUG_LONG_DETECT; 1146 case HPD_PORT_B: 1147 return val & PORTB_HOTPLUG_LONG_DETECT; 1148 case HPD_PORT_C: 1149 return val & PORTC_HOTPLUG_LONG_DETECT; 1150 case HPD_PORT_D: 1151 return val & PORTD_HOTPLUG_LONG_DETECT; 1152 default: 1153 return false; 1154 } 1155 } 1156 1157 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1158 { 1159 switch (pin) { 1160 case HPD_PORT_A: 1161 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1162 default: 1163 return false; 1164 } 1165 } 1166 1167 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1168 { 1169 switch (pin) { 1170 case HPD_PORT_B: 1171 return val & PORTB_HOTPLUG_LONG_DETECT; 1172 case HPD_PORT_C: 1173 return val & PORTC_HOTPLUG_LONG_DETECT; 1174 case HPD_PORT_D: 1175 return val & PORTD_HOTPLUG_LONG_DETECT; 1176 default: 1177 return false; 1178 } 1179 } 1180 1181 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1182 { 1183 switch (pin) { 1184 case HPD_PORT_B: 1185 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1186 case HPD_PORT_C: 1187 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1188 case HPD_PORT_D: 1189 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1190 default: 1191 return false; 1192 } 1193 } 1194 1195 /* 1196 * Get a bit mask of pins that have triggered, and which ones may be long. 1197 * This can be called multiple times with the same masks to accumulate 1198 * hotplug detection results from several registers. 1199 * 1200 * Note that the caller is expected to zero out the masks initially. 1201 */ 1202 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1203 u32 *pin_mask, u32 *long_mask, 1204 u32 hotplug_trigger, u32 dig_hotplug_reg, 1205 const u32 hpd[HPD_NUM_PINS], 1206 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1207 { 1208 enum hpd_pin pin; 1209 1210 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS); 1211 1212 for_each_hpd_pin(pin) { 1213 if ((hpd[pin] & hotplug_trigger) == 0) 1214 continue; 1215 1216 *pin_mask |= BIT(pin); 1217 1218 if (long_pulse_detect(pin, dig_hotplug_reg)) 1219 *long_mask |= BIT(pin); 1220 } 1221 1222 drm_dbg(&dev_priv->drm, 1223 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1224 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1225 1226 } 1227 1228 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 1229 const u32 hpd[HPD_NUM_PINS]) 1230 { 1231 struct intel_encoder *encoder; 1232 u32 enabled_irqs = 0; 1233 1234 for_each_intel_encoder(&dev_priv->drm, encoder) 1235 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 1236 enabled_irqs |= hpd[encoder->hpd_pin]; 1237 1238 return enabled_irqs; 1239 } 1240 1241 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv, 1242 const u32 hpd[HPD_NUM_PINS]) 1243 { 1244 struct intel_encoder *encoder; 1245 u32 hotplug_irqs = 0; 1246 1247 for_each_intel_encoder(&dev_priv->drm, encoder) 1248 hotplug_irqs |= hpd[encoder->hpd_pin]; 1249 1250 return hotplug_irqs; 1251 } 1252 1253 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915, 1254 hotplug_enables_func hotplug_enables) 1255 { 1256 struct intel_encoder *encoder; 1257 u32 hotplug = 0; 1258 1259 for_each_intel_encoder(&i915->drm, encoder) 1260 hotplug |= hotplug_enables(i915, encoder->hpd_pin); 1261 1262 return hotplug; 1263 } 1264 1265 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1266 { 1267 wake_up_all(&dev_priv->gmbus_wait_queue); 1268 } 1269 1270 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1271 { 1272 wake_up_all(&dev_priv->gmbus_wait_queue); 1273 } 1274 1275 #if defined(CONFIG_DEBUG_FS) 1276 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1277 enum pipe pipe, 1278 u32 crc0, u32 crc1, 1279 u32 crc2, u32 crc3, 1280 u32 crc4) 1281 { 1282 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1283 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc; 1284 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1285 1286 trace_intel_pipe_crc(crtc, crcs); 1287 1288 spin_lock(&pipe_crc->lock); 1289 /* 1290 * For some not yet identified reason, the first CRC is 1291 * bonkers. So let's just wait for the next vblank and read 1292 * out the buggy result. 1293 * 1294 * On GEN8+ sometimes the second CRC is bonkers as well, so 1295 * don't trust that one either. 1296 */ 1297 if (pipe_crc->skipped <= 0 || 1298 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1299 pipe_crc->skipped++; 1300 spin_unlock(&pipe_crc->lock); 1301 return; 1302 } 1303 spin_unlock(&pipe_crc->lock); 1304 1305 drm_crtc_add_crc_entry(&crtc->base, true, 1306 drm_crtc_accurate_vblank_count(&crtc->base), 1307 crcs); 1308 } 1309 #else 1310 static inline void 1311 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1312 enum pipe pipe, 1313 u32 crc0, u32 crc1, 1314 u32 crc2, u32 crc3, 1315 u32 crc4) {} 1316 #endif 1317 1318 static void flip_done_handler(struct drm_i915_private *i915, 1319 enum pipe pipe) 1320 { 1321 struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe); 1322 struct drm_crtc_state *crtc_state = crtc->base.state; 1323 struct drm_pending_vblank_event *e = crtc_state->event; 1324 struct drm_device *dev = &i915->drm; 1325 unsigned long irqflags; 1326 1327 spin_lock_irqsave(&dev->event_lock, irqflags); 1328 1329 crtc_state->event = NULL; 1330 1331 drm_crtc_send_vblank_event(&crtc->base, e); 1332 1333 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1334 } 1335 1336 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1337 enum pipe pipe) 1338 { 1339 display_pipe_crc_irq_handler(dev_priv, pipe, 1340 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1341 0, 0, 0, 0); 1342 } 1343 1344 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1345 enum pipe pipe) 1346 { 1347 display_pipe_crc_irq_handler(dev_priv, pipe, 1348 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1349 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1350 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1351 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1352 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1353 } 1354 1355 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1356 enum pipe pipe) 1357 { 1358 u32 res1, res2; 1359 1360 if (INTEL_GEN(dev_priv) >= 3) 1361 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1362 else 1363 res1 = 0; 1364 1365 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1366 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1367 else 1368 res2 = 0; 1369 1370 display_pipe_crc_irq_handler(dev_priv, pipe, 1371 I915_READ(PIPE_CRC_RES_RED(pipe)), 1372 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1373 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1374 res1, res2); 1375 } 1376 1377 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1378 { 1379 enum pipe pipe; 1380 1381 for_each_pipe(dev_priv, pipe) { 1382 I915_WRITE(PIPESTAT(pipe), 1383 PIPESTAT_INT_STATUS_MASK | 1384 PIPE_FIFO_UNDERRUN_STATUS); 1385 1386 dev_priv->pipestat_irq_mask[pipe] = 0; 1387 } 1388 } 1389 1390 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1391 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1392 { 1393 enum pipe pipe; 1394 1395 spin_lock(&dev_priv->irq_lock); 1396 1397 if (!dev_priv->display_irqs_enabled) { 1398 spin_unlock(&dev_priv->irq_lock); 1399 return; 1400 } 1401 1402 for_each_pipe(dev_priv, pipe) { 1403 i915_reg_t reg; 1404 u32 status_mask, enable_mask, iir_bit = 0; 1405 1406 /* 1407 * PIPESTAT bits get signalled even when the interrupt is 1408 * disabled with the mask bits, and some of the status bits do 1409 * not generate interrupts at all (like the underrun bit). Hence 1410 * we need to be careful that we only handle what we want to 1411 * handle. 1412 */ 1413 1414 /* fifo underruns are filterered in the underrun handler. */ 1415 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1416 1417 switch (pipe) { 1418 default: 1419 case PIPE_A: 1420 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1421 break; 1422 case PIPE_B: 1423 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1424 break; 1425 case PIPE_C: 1426 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1427 break; 1428 } 1429 if (iir & iir_bit) 1430 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1431 1432 if (!status_mask) 1433 continue; 1434 1435 reg = PIPESTAT(pipe); 1436 pipe_stats[pipe] = I915_READ(reg) & status_mask; 1437 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1438 1439 /* 1440 * Clear the PIPE*STAT regs before the IIR 1441 * 1442 * Toggle the enable bits to make sure we get an 1443 * edge in the ISR pipe event bit if we don't clear 1444 * all the enabled status bits. Otherwise the edge 1445 * triggered IIR on i965/g4x wouldn't notice that 1446 * an interrupt is still pending. 1447 */ 1448 if (pipe_stats[pipe]) { 1449 I915_WRITE(reg, pipe_stats[pipe]); 1450 I915_WRITE(reg, enable_mask); 1451 } 1452 } 1453 spin_unlock(&dev_priv->irq_lock); 1454 } 1455 1456 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1457 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1458 { 1459 enum pipe pipe; 1460 1461 for_each_pipe(dev_priv, pipe) { 1462 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1463 intel_handle_vblank(dev_priv, pipe); 1464 1465 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1466 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1467 1468 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1469 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1470 } 1471 } 1472 1473 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1474 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1475 { 1476 bool blc_event = false; 1477 enum pipe pipe; 1478 1479 for_each_pipe(dev_priv, pipe) { 1480 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1481 intel_handle_vblank(dev_priv, pipe); 1482 1483 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1484 blc_event = true; 1485 1486 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1487 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1488 1489 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1490 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1491 } 1492 1493 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1494 intel_opregion_asle_intr(dev_priv); 1495 } 1496 1497 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1498 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1499 { 1500 bool blc_event = false; 1501 enum pipe pipe; 1502 1503 for_each_pipe(dev_priv, pipe) { 1504 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1505 intel_handle_vblank(dev_priv, pipe); 1506 1507 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1508 blc_event = true; 1509 1510 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1511 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1512 1513 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1514 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1515 } 1516 1517 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1518 intel_opregion_asle_intr(dev_priv); 1519 1520 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1521 gmbus_irq_handler(dev_priv); 1522 } 1523 1524 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1525 u32 pipe_stats[I915_MAX_PIPES]) 1526 { 1527 enum pipe pipe; 1528 1529 for_each_pipe(dev_priv, pipe) { 1530 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1531 intel_handle_vblank(dev_priv, pipe); 1532 1533 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1534 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1535 1536 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1537 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1538 } 1539 1540 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1541 gmbus_irq_handler(dev_priv); 1542 } 1543 1544 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1545 { 1546 u32 hotplug_status = 0, hotplug_status_mask; 1547 int i; 1548 1549 if (IS_G4X(dev_priv) || 1550 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1551 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 1552 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 1553 else 1554 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 1555 1556 /* 1557 * We absolutely have to clear all the pending interrupt 1558 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 1559 * interrupt bit won't have an edge, and the i965/g4x 1560 * edge triggered IIR will not notice that an interrupt 1561 * is still pending. We can't use PORT_HOTPLUG_EN to 1562 * guarantee the edge as the act of toggling the enable 1563 * bits can itself generate a new hotplug interrupt :( 1564 */ 1565 for (i = 0; i < 10; i++) { 1566 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask; 1567 1568 if (tmp == 0) 1569 return hotplug_status; 1570 1571 hotplug_status |= tmp; 1572 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 1573 } 1574 1575 drm_WARN_ONCE(&dev_priv->drm, 1, 1576 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 1577 I915_READ(PORT_HOTPLUG_STAT)); 1578 1579 return hotplug_status; 1580 } 1581 1582 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1583 u32 hotplug_status) 1584 { 1585 u32 pin_mask = 0, long_mask = 0; 1586 u32 hotplug_trigger; 1587 1588 if (IS_G4X(dev_priv) || 1589 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1590 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1591 else 1592 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1593 1594 if (hotplug_trigger) { 1595 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1596 hotplug_trigger, hotplug_trigger, 1597 dev_priv->hotplug.hpd, 1598 i9xx_port_hotplug_long_detect); 1599 1600 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1601 } 1602 1603 if ((IS_G4X(dev_priv) || 1604 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1605 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1606 dp_aux_irq_handler(dev_priv); 1607 } 1608 1609 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1610 { 1611 struct drm_i915_private *dev_priv = arg; 1612 irqreturn_t ret = IRQ_NONE; 1613 1614 if (!intel_irqs_enabled(dev_priv)) 1615 return IRQ_NONE; 1616 1617 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1618 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1619 1620 do { 1621 u32 iir, gt_iir, pm_iir; 1622 u32 pipe_stats[I915_MAX_PIPES] = {}; 1623 u32 hotplug_status = 0; 1624 u32 ier = 0; 1625 1626 gt_iir = I915_READ(GTIIR); 1627 pm_iir = I915_READ(GEN6_PMIIR); 1628 iir = I915_READ(VLV_IIR); 1629 1630 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1631 break; 1632 1633 ret = IRQ_HANDLED; 1634 1635 /* 1636 * Theory on interrupt generation, based on empirical evidence: 1637 * 1638 * x = ((VLV_IIR & VLV_IER) || 1639 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1640 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1641 * 1642 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1643 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1644 * guarantee the CPU interrupt will be raised again even if we 1645 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1646 * bits this time around. 1647 */ 1648 I915_WRITE(VLV_MASTER_IER, 0); 1649 ier = I915_READ(VLV_IER); 1650 I915_WRITE(VLV_IER, 0); 1651 1652 if (gt_iir) 1653 I915_WRITE(GTIIR, gt_iir); 1654 if (pm_iir) 1655 I915_WRITE(GEN6_PMIIR, pm_iir); 1656 1657 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1658 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1659 1660 /* Call regardless, as some status bits might not be 1661 * signalled in iir */ 1662 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1663 1664 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1665 I915_LPE_PIPE_B_INTERRUPT)) 1666 intel_lpe_audio_irq_handler(dev_priv); 1667 1668 /* 1669 * VLV_IIR is single buffered, and reflects the level 1670 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1671 */ 1672 if (iir) 1673 I915_WRITE(VLV_IIR, iir); 1674 1675 I915_WRITE(VLV_IER, ier); 1676 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1677 1678 if (gt_iir) 1679 gen6_gt_irq_handler(&dev_priv->gt, gt_iir); 1680 if (pm_iir) 1681 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir); 1682 1683 if (hotplug_status) 1684 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1685 1686 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1687 } while (0); 1688 1689 pmu_irq_stats(dev_priv, ret); 1690 1691 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1692 1693 return ret; 1694 } 1695 1696 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1697 { 1698 struct drm_i915_private *dev_priv = arg; 1699 irqreturn_t ret = IRQ_NONE; 1700 1701 if (!intel_irqs_enabled(dev_priv)) 1702 return IRQ_NONE; 1703 1704 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1705 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1706 1707 do { 1708 u32 master_ctl, iir; 1709 u32 pipe_stats[I915_MAX_PIPES] = {}; 1710 u32 hotplug_status = 0; 1711 u32 ier = 0; 1712 1713 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1714 iir = I915_READ(VLV_IIR); 1715 1716 if (master_ctl == 0 && iir == 0) 1717 break; 1718 1719 ret = IRQ_HANDLED; 1720 1721 /* 1722 * Theory on interrupt generation, based on empirical evidence: 1723 * 1724 * x = ((VLV_IIR & VLV_IER) || 1725 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1726 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1727 * 1728 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1729 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1730 * guarantee the CPU interrupt will be raised again even if we 1731 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1732 * bits this time around. 1733 */ 1734 I915_WRITE(GEN8_MASTER_IRQ, 0); 1735 ier = I915_READ(VLV_IER); 1736 I915_WRITE(VLV_IER, 0); 1737 1738 gen8_gt_irq_handler(&dev_priv->gt, master_ctl); 1739 1740 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1741 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1742 1743 /* Call regardless, as some status bits might not be 1744 * signalled in iir */ 1745 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1746 1747 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1748 I915_LPE_PIPE_B_INTERRUPT | 1749 I915_LPE_PIPE_C_INTERRUPT)) 1750 intel_lpe_audio_irq_handler(dev_priv); 1751 1752 /* 1753 * VLV_IIR is single buffered, and reflects the level 1754 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1755 */ 1756 if (iir) 1757 I915_WRITE(VLV_IIR, iir); 1758 1759 I915_WRITE(VLV_IER, ier); 1760 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1761 1762 if (hotplug_status) 1763 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1764 1765 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1766 } while (0); 1767 1768 pmu_irq_stats(dev_priv, ret); 1769 1770 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1771 1772 return ret; 1773 } 1774 1775 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1776 u32 hotplug_trigger) 1777 { 1778 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1779 1780 /* 1781 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 1782 * unless we touch the hotplug register, even if hotplug_trigger is 1783 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 1784 * errors. 1785 */ 1786 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 1787 if (!hotplug_trigger) { 1788 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 1789 PORTD_HOTPLUG_STATUS_MASK | 1790 PORTC_HOTPLUG_STATUS_MASK | 1791 PORTB_HOTPLUG_STATUS_MASK; 1792 dig_hotplug_reg &= ~mask; 1793 } 1794 1795 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 1796 if (!hotplug_trigger) 1797 return; 1798 1799 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1800 hotplug_trigger, dig_hotplug_reg, 1801 dev_priv->hotplug.pch_hpd, 1802 pch_port_hotplug_long_detect); 1803 1804 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1805 } 1806 1807 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1808 { 1809 enum pipe pipe; 1810 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 1811 1812 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1813 1814 if (pch_iir & SDE_AUDIO_POWER_MASK) { 1815 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 1816 SDE_AUDIO_POWER_SHIFT); 1817 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n", 1818 port_name(port)); 1819 } 1820 1821 if (pch_iir & SDE_AUX_MASK) 1822 dp_aux_irq_handler(dev_priv); 1823 1824 if (pch_iir & SDE_GMBUS) 1825 gmbus_irq_handler(dev_priv); 1826 1827 if (pch_iir & SDE_AUDIO_HDCP_MASK) 1828 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n"); 1829 1830 if (pch_iir & SDE_AUDIO_TRANS_MASK) 1831 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n"); 1832 1833 if (pch_iir & SDE_POISON) 1834 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1835 1836 if (pch_iir & SDE_FDI_MASK) { 1837 for_each_pipe(dev_priv, pipe) 1838 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1839 pipe_name(pipe), 1840 I915_READ(FDI_RX_IIR(pipe))); 1841 } 1842 1843 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 1844 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n"); 1845 1846 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 1847 drm_dbg(&dev_priv->drm, 1848 "PCH transcoder CRC error interrupt\n"); 1849 1850 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 1851 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 1852 1853 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 1854 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 1855 } 1856 1857 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 1858 { 1859 u32 err_int = I915_READ(GEN7_ERR_INT); 1860 enum pipe pipe; 1861 1862 if (err_int & ERR_INT_POISON) 1863 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1864 1865 for_each_pipe(dev_priv, pipe) { 1866 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 1867 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1868 1869 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 1870 if (IS_IVYBRIDGE(dev_priv)) 1871 ivb_pipe_crc_irq_handler(dev_priv, pipe); 1872 else 1873 hsw_pipe_crc_irq_handler(dev_priv, pipe); 1874 } 1875 } 1876 1877 I915_WRITE(GEN7_ERR_INT, err_int); 1878 } 1879 1880 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 1881 { 1882 u32 serr_int = I915_READ(SERR_INT); 1883 enum pipe pipe; 1884 1885 if (serr_int & SERR_INT_POISON) 1886 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1887 1888 for_each_pipe(dev_priv, pipe) 1889 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 1890 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 1891 1892 I915_WRITE(SERR_INT, serr_int); 1893 } 1894 1895 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1896 { 1897 enum pipe pipe; 1898 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 1899 1900 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1901 1902 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 1903 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 1904 SDE_AUDIO_POWER_SHIFT_CPT); 1905 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n", 1906 port_name(port)); 1907 } 1908 1909 if (pch_iir & SDE_AUX_MASK_CPT) 1910 dp_aux_irq_handler(dev_priv); 1911 1912 if (pch_iir & SDE_GMBUS_CPT) 1913 gmbus_irq_handler(dev_priv); 1914 1915 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 1916 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n"); 1917 1918 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 1919 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n"); 1920 1921 if (pch_iir & SDE_FDI_MASK_CPT) { 1922 for_each_pipe(dev_priv, pipe) 1923 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1924 pipe_name(pipe), 1925 I915_READ(FDI_RX_IIR(pipe))); 1926 } 1927 1928 if (pch_iir & SDE_ERROR_CPT) 1929 cpt_serr_int_handler(dev_priv); 1930 } 1931 1932 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1933 { 1934 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP; 1935 u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP; 1936 u32 pin_mask = 0, long_mask = 0; 1937 1938 if (ddi_hotplug_trigger) { 1939 u32 dig_hotplug_reg; 1940 1941 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); 1942 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); 1943 1944 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1945 ddi_hotplug_trigger, dig_hotplug_reg, 1946 dev_priv->hotplug.pch_hpd, 1947 icp_ddi_port_hotplug_long_detect); 1948 } 1949 1950 if (tc_hotplug_trigger) { 1951 u32 dig_hotplug_reg; 1952 1953 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); 1954 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); 1955 1956 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1957 tc_hotplug_trigger, dig_hotplug_reg, 1958 dev_priv->hotplug.pch_hpd, 1959 icp_tc_port_hotplug_long_detect); 1960 } 1961 1962 if (pin_mask) 1963 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1964 1965 if (pch_iir & SDE_GMBUS_ICP) 1966 gmbus_irq_handler(dev_priv); 1967 } 1968 1969 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1970 { 1971 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 1972 ~SDE_PORTE_HOTPLUG_SPT; 1973 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 1974 u32 pin_mask = 0, long_mask = 0; 1975 1976 if (hotplug_trigger) { 1977 u32 dig_hotplug_reg; 1978 1979 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 1980 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 1981 1982 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1983 hotplug_trigger, dig_hotplug_reg, 1984 dev_priv->hotplug.pch_hpd, 1985 spt_port_hotplug_long_detect); 1986 } 1987 1988 if (hotplug2_trigger) { 1989 u32 dig_hotplug_reg; 1990 1991 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 1992 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 1993 1994 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1995 hotplug2_trigger, dig_hotplug_reg, 1996 dev_priv->hotplug.pch_hpd, 1997 spt_port_hotplug2_long_detect); 1998 } 1999 2000 if (pin_mask) 2001 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2002 2003 if (pch_iir & SDE_GMBUS_CPT) 2004 gmbus_irq_handler(dev_priv); 2005 } 2006 2007 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2008 u32 hotplug_trigger) 2009 { 2010 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2011 2012 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2013 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2014 2015 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2016 hotplug_trigger, dig_hotplug_reg, 2017 dev_priv->hotplug.hpd, 2018 ilk_port_hotplug_long_detect); 2019 2020 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2021 } 2022 2023 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2024 u32 de_iir) 2025 { 2026 enum pipe pipe; 2027 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2028 2029 if (hotplug_trigger) 2030 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2031 2032 if (de_iir & DE_AUX_CHANNEL_A) 2033 dp_aux_irq_handler(dev_priv); 2034 2035 if (de_iir & DE_GSE) 2036 intel_opregion_asle_intr(dev_priv); 2037 2038 if (de_iir & DE_POISON) 2039 drm_err(&dev_priv->drm, "Poison interrupt\n"); 2040 2041 for_each_pipe(dev_priv, pipe) { 2042 if (de_iir & DE_PIPE_VBLANK(pipe)) 2043 intel_handle_vblank(dev_priv, pipe); 2044 2045 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2046 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2047 2048 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2049 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2050 } 2051 2052 /* check event from PCH */ 2053 if (de_iir & DE_PCH_EVENT) { 2054 u32 pch_iir = I915_READ(SDEIIR); 2055 2056 if (HAS_PCH_CPT(dev_priv)) 2057 cpt_irq_handler(dev_priv, pch_iir); 2058 else 2059 ibx_irq_handler(dev_priv, pch_iir); 2060 2061 /* should clear PCH hotplug event before clear CPU irq */ 2062 I915_WRITE(SDEIIR, pch_iir); 2063 } 2064 2065 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT) 2066 gen5_rps_irq_handler(&dev_priv->gt.rps); 2067 } 2068 2069 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2070 u32 de_iir) 2071 { 2072 enum pipe pipe; 2073 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2074 2075 if (hotplug_trigger) 2076 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2077 2078 if (de_iir & DE_ERR_INT_IVB) 2079 ivb_err_int_handler(dev_priv); 2080 2081 if (de_iir & DE_EDP_PSR_INT_HSW) { 2082 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2083 2084 intel_psr_irq_handler(dev_priv, psr_iir); 2085 I915_WRITE(EDP_PSR_IIR, psr_iir); 2086 } 2087 2088 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2089 dp_aux_irq_handler(dev_priv); 2090 2091 if (de_iir & DE_GSE_IVB) 2092 intel_opregion_asle_intr(dev_priv); 2093 2094 for_each_pipe(dev_priv, pipe) { 2095 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2096 intel_handle_vblank(dev_priv, pipe); 2097 } 2098 2099 /* check event from PCH */ 2100 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2101 u32 pch_iir = I915_READ(SDEIIR); 2102 2103 cpt_irq_handler(dev_priv, pch_iir); 2104 2105 /* clear PCH hotplug event before clear CPU irq */ 2106 I915_WRITE(SDEIIR, pch_iir); 2107 } 2108 } 2109 2110 /* 2111 * To handle irqs with the minimum potential races with fresh interrupts, we: 2112 * 1 - Disable Master Interrupt Control. 2113 * 2 - Find the source(s) of the interrupt. 2114 * 3 - Clear the Interrupt Identity bits (IIR). 2115 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2116 * 5 - Re-enable Master Interrupt Control. 2117 */ 2118 static irqreturn_t ilk_irq_handler(int irq, void *arg) 2119 { 2120 struct drm_i915_private *i915 = arg; 2121 void __iomem * const regs = i915->uncore.regs; 2122 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2123 irqreturn_t ret = IRQ_NONE; 2124 2125 if (unlikely(!intel_irqs_enabled(i915))) 2126 return IRQ_NONE; 2127 2128 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2129 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2130 2131 /* disable master interrupt before clearing iir */ 2132 de_ier = raw_reg_read(regs, DEIER); 2133 raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2134 2135 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2136 * interrupts will will be stored on its back queue, and then we'll be 2137 * able to process them after we restore SDEIER (as soon as we restore 2138 * it, we'll get an interrupt if SDEIIR still has something to process 2139 * due to its back queue). */ 2140 if (!HAS_PCH_NOP(i915)) { 2141 sde_ier = raw_reg_read(regs, SDEIER); 2142 raw_reg_write(regs, SDEIER, 0); 2143 } 2144 2145 /* Find, clear, then process each source of interrupt */ 2146 2147 gt_iir = raw_reg_read(regs, GTIIR); 2148 if (gt_iir) { 2149 raw_reg_write(regs, GTIIR, gt_iir); 2150 if (INTEL_GEN(i915) >= 6) 2151 gen6_gt_irq_handler(&i915->gt, gt_iir); 2152 else 2153 gen5_gt_irq_handler(&i915->gt, gt_iir); 2154 ret = IRQ_HANDLED; 2155 } 2156 2157 de_iir = raw_reg_read(regs, DEIIR); 2158 if (de_iir) { 2159 raw_reg_write(regs, DEIIR, de_iir); 2160 if (INTEL_GEN(i915) >= 7) 2161 ivb_display_irq_handler(i915, de_iir); 2162 else 2163 ilk_display_irq_handler(i915, de_iir); 2164 ret = IRQ_HANDLED; 2165 } 2166 2167 if (INTEL_GEN(i915) >= 6) { 2168 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR); 2169 if (pm_iir) { 2170 raw_reg_write(regs, GEN6_PMIIR, pm_iir); 2171 gen6_rps_irq_handler(&i915->gt.rps, pm_iir); 2172 ret = IRQ_HANDLED; 2173 } 2174 } 2175 2176 raw_reg_write(regs, DEIER, de_ier); 2177 if (sde_ier) 2178 raw_reg_write(regs, SDEIER, sde_ier); 2179 2180 pmu_irq_stats(i915, ret); 2181 2182 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2183 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2184 2185 return ret; 2186 } 2187 2188 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2189 u32 hotplug_trigger) 2190 { 2191 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2192 2193 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2194 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2195 2196 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2197 hotplug_trigger, dig_hotplug_reg, 2198 dev_priv->hotplug.hpd, 2199 bxt_port_hotplug_long_detect); 2200 2201 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2202 } 2203 2204 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2205 { 2206 u32 pin_mask = 0, long_mask = 0; 2207 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2208 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2209 2210 if (trigger_tc) { 2211 u32 dig_hotplug_reg; 2212 2213 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL); 2214 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); 2215 2216 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2217 trigger_tc, dig_hotplug_reg, 2218 dev_priv->hotplug.hpd, 2219 gen11_port_hotplug_long_detect); 2220 } 2221 2222 if (trigger_tbt) { 2223 u32 dig_hotplug_reg; 2224 2225 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL); 2226 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); 2227 2228 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2229 trigger_tbt, dig_hotplug_reg, 2230 dev_priv->hotplug.hpd, 2231 gen11_port_hotplug_long_detect); 2232 } 2233 2234 if (pin_mask) 2235 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2236 else 2237 drm_err(&dev_priv->drm, 2238 "Unexpected DE HPD interrupt 0x%08x\n", iir); 2239 } 2240 2241 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2242 { 2243 u32 mask; 2244 2245 if (INTEL_GEN(dev_priv) >= 12) 2246 return TGL_DE_PORT_AUX_DDIA | 2247 TGL_DE_PORT_AUX_DDIB | 2248 TGL_DE_PORT_AUX_DDIC | 2249 TGL_DE_PORT_AUX_USBC1 | 2250 TGL_DE_PORT_AUX_USBC2 | 2251 TGL_DE_PORT_AUX_USBC3 | 2252 TGL_DE_PORT_AUX_USBC4 | 2253 TGL_DE_PORT_AUX_USBC5 | 2254 TGL_DE_PORT_AUX_USBC6; 2255 2256 2257 mask = GEN8_AUX_CHANNEL_A; 2258 if (INTEL_GEN(dev_priv) >= 9) 2259 mask |= GEN9_AUX_CHANNEL_B | 2260 GEN9_AUX_CHANNEL_C | 2261 GEN9_AUX_CHANNEL_D; 2262 2263 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11)) 2264 mask |= CNL_AUX_CHANNEL_F; 2265 2266 if (IS_GEN(dev_priv, 11)) 2267 mask |= ICL_AUX_CHANNEL_E; 2268 2269 return mask; 2270 } 2271 2272 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv) 2273 { 2274 if (IS_ROCKETLAKE(dev_priv)) 2275 return RKL_DE_PIPE_IRQ_FAULT_ERRORS; 2276 else if (INTEL_GEN(dev_priv) >= 11) 2277 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS; 2278 else if (INTEL_GEN(dev_priv) >= 9) 2279 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2280 else 2281 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2282 } 2283 2284 static void 2285 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2286 { 2287 bool found = false; 2288 2289 if (iir & GEN8_DE_MISC_GSE) { 2290 intel_opregion_asle_intr(dev_priv); 2291 found = true; 2292 } 2293 2294 if (iir & GEN8_DE_EDP_PSR) { 2295 u32 psr_iir; 2296 i915_reg_t iir_reg; 2297 2298 if (INTEL_GEN(dev_priv) >= 12) 2299 iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder); 2300 else 2301 iir_reg = EDP_PSR_IIR; 2302 2303 psr_iir = I915_READ(iir_reg); 2304 I915_WRITE(iir_reg, psr_iir); 2305 2306 if (psr_iir) 2307 found = true; 2308 2309 intel_psr_irq_handler(dev_priv, psr_iir); 2310 } 2311 2312 if (!found) 2313 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n"); 2314 } 2315 2316 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv, 2317 u32 te_trigger) 2318 { 2319 enum pipe pipe = INVALID_PIPE; 2320 enum transcoder dsi_trans; 2321 enum port port; 2322 u32 val, tmp; 2323 2324 /* 2325 * Incase of dual link, TE comes from DSI_1 2326 * this is to check if dual link is enabled 2327 */ 2328 val = I915_READ(TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0)); 2329 val &= PORT_SYNC_MODE_ENABLE; 2330 2331 /* 2332 * if dual link is enabled, then read DSI_0 2333 * transcoder registers 2334 */ 2335 port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ? 2336 PORT_A : PORT_B; 2337 dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1; 2338 2339 /* Check if DSI configured in command mode */ 2340 val = I915_READ(DSI_TRANS_FUNC_CONF(dsi_trans)); 2341 val = val & OP_MODE_MASK; 2342 2343 if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) { 2344 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n"); 2345 return; 2346 } 2347 2348 /* Get PIPE for handling VBLANK event */ 2349 val = I915_READ(TRANS_DDI_FUNC_CTL(dsi_trans)); 2350 switch (val & TRANS_DDI_EDP_INPUT_MASK) { 2351 case TRANS_DDI_EDP_INPUT_A_ON: 2352 pipe = PIPE_A; 2353 break; 2354 case TRANS_DDI_EDP_INPUT_B_ONOFF: 2355 pipe = PIPE_B; 2356 break; 2357 case TRANS_DDI_EDP_INPUT_C_ONOFF: 2358 pipe = PIPE_C; 2359 break; 2360 default: 2361 drm_err(&dev_priv->drm, "Invalid PIPE\n"); 2362 return; 2363 } 2364 2365 intel_handle_vblank(dev_priv, pipe); 2366 2367 /* clear TE in dsi IIR */ 2368 port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A; 2369 tmp = I915_READ(DSI_INTR_IDENT_REG(port)); 2370 I915_WRITE(DSI_INTR_IDENT_REG(port), tmp); 2371 } 2372 2373 static irqreturn_t 2374 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2375 { 2376 irqreturn_t ret = IRQ_NONE; 2377 u32 iir; 2378 enum pipe pipe; 2379 2380 if (master_ctl & GEN8_DE_MISC_IRQ) { 2381 iir = I915_READ(GEN8_DE_MISC_IIR); 2382 if (iir) { 2383 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2384 ret = IRQ_HANDLED; 2385 gen8_de_misc_irq_handler(dev_priv, iir); 2386 } else { 2387 drm_err(&dev_priv->drm, 2388 "The master control interrupt lied (DE MISC)!\n"); 2389 } 2390 } 2391 2392 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2393 iir = I915_READ(GEN11_DE_HPD_IIR); 2394 if (iir) { 2395 I915_WRITE(GEN11_DE_HPD_IIR, iir); 2396 ret = IRQ_HANDLED; 2397 gen11_hpd_irq_handler(dev_priv, iir); 2398 } else { 2399 drm_err(&dev_priv->drm, 2400 "The master control interrupt lied, (DE HPD)!\n"); 2401 } 2402 } 2403 2404 if (master_ctl & GEN8_DE_PORT_IRQ) { 2405 iir = I915_READ(GEN8_DE_PORT_IIR); 2406 if (iir) { 2407 bool found = false; 2408 2409 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2410 ret = IRQ_HANDLED; 2411 2412 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2413 dp_aux_irq_handler(dev_priv); 2414 found = true; 2415 } 2416 2417 if (IS_GEN9_LP(dev_priv)) { 2418 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK; 2419 2420 if (hotplug_trigger) { 2421 bxt_hpd_irq_handler(dev_priv, hotplug_trigger); 2422 found = true; 2423 } 2424 } else if (IS_BROADWELL(dev_priv)) { 2425 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK; 2426 2427 if (hotplug_trigger) { 2428 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2429 found = true; 2430 } 2431 } 2432 2433 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2434 gmbus_irq_handler(dev_priv); 2435 found = true; 2436 } 2437 2438 if (INTEL_GEN(dev_priv) >= 11) { 2439 u32 te_trigger = iir & (DSI0_TE | DSI1_TE); 2440 2441 if (te_trigger) { 2442 gen11_dsi_te_interrupt_handler(dev_priv, te_trigger); 2443 found = true; 2444 } 2445 } 2446 2447 if (!found) 2448 drm_err(&dev_priv->drm, 2449 "Unexpected DE Port interrupt\n"); 2450 } 2451 else 2452 drm_err(&dev_priv->drm, 2453 "The master control interrupt lied (DE PORT)!\n"); 2454 } 2455 2456 for_each_pipe(dev_priv, pipe) { 2457 u32 fault_errors; 2458 2459 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2460 continue; 2461 2462 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2463 if (!iir) { 2464 drm_err(&dev_priv->drm, 2465 "The master control interrupt lied (DE PIPE)!\n"); 2466 continue; 2467 } 2468 2469 ret = IRQ_HANDLED; 2470 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2471 2472 if (iir & GEN8_PIPE_VBLANK) 2473 intel_handle_vblank(dev_priv, pipe); 2474 2475 if (iir & GEN9_PIPE_PLANE1_FLIP_DONE) 2476 flip_done_handler(dev_priv, pipe); 2477 2478 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2479 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2480 2481 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2482 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2483 2484 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv); 2485 if (fault_errors) 2486 drm_err(&dev_priv->drm, 2487 "Fault errors on pipe %c: 0x%08x\n", 2488 pipe_name(pipe), 2489 fault_errors); 2490 } 2491 2492 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2493 master_ctl & GEN8_DE_PCH_IRQ) { 2494 /* 2495 * FIXME(BDW): Assume for now that the new interrupt handling 2496 * scheme also closed the SDE interrupt handling race we've seen 2497 * on older pch-split platforms. But this needs testing. 2498 */ 2499 iir = I915_READ(SDEIIR); 2500 if (iir) { 2501 I915_WRITE(SDEIIR, iir); 2502 ret = IRQ_HANDLED; 2503 2504 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2505 icp_irq_handler(dev_priv, iir); 2506 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2507 spt_irq_handler(dev_priv, iir); 2508 else 2509 cpt_irq_handler(dev_priv, iir); 2510 } else { 2511 /* 2512 * Like on previous PCH there seems to be something 2513 * fishy going on with forwarding PCH interrupts. 2514 */ 2515 drm_dbg(&dev_priv->drm, 2516 "The master control interrupt lied (SDE)!\n"); 2517 } 2518 } 2519 2520 return ret; 2521 } 2522 2523 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2524 { 2525 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2526 2527 /* 2528 * Now with master disabled, get a sample of level indications 2529 * for this interrupt. Indications will be cleared on related acks. 2530 * New indications can and will light up during processing, 2531 * and will generate new interrupt after enabling master. 2532 */ 2533 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2534 } 2535 2536 static inline void gen8_master_intr_enable(void __iomem * const regs) 2537 { 2538 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2539 } 2540 2541 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2542 { 2543 struct drm_i915_private *dev_priv = arg; 2544 void __iomem * const regs = dev_priv->uncore.regs; 2545 u32 master_ctl; 2546 2547 if (!intel_irqs_enabled(dev_priv)) 2548 return IRQ_NONE; 2549 2550 master_ctl = gen8_master_intr_disable(regs); 2551 if (!master_ctl) { 2552 gen8_master_intr_enable(regs); 2553 return IRQ_NONE; 2554 } 2555 2556 /* Find, queue (onto bottom-halves), then clear each source */ 2557 gen8_gt_irq_handler(&dev_priv->gt, master_ctl); 2558 2559 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2560 if (master_ctl & ~GEN8_GT_IRQS) { 2561 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2562 gen8_de_irq_handler(dev_priv, master_ctl); 2563 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2564 } 2565 2566 gen8_master_intr_enable(regs); 2567 2568 pmu_irq_stats(dev_priv, IRQ_HANDLED); 2569 2570 return IRQ_HANDLED; 2571 } 2572 2573 static u32 2574 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl) 2575 { 2576 void __iomem * const regs = gt->uncore->regs; 2577 u32 iir; 2578 2579 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 2580 return 0; 2581 2582 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 2583 if (likely(iir)) 2584 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 2585 2586 return iir; 2587 } 2588 2589 static void 2590 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir) 2591 { 2592 if (iir & GEN11_GU_MISC_GSE) 2593 intel_opregion_asle_intr(gt->i915); 2594 } 2595 2596 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 2597 { 2598 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2599 2600 /* 2601 * Now with master disabled, get a sample of level indications 2602 * for this interrupt. Indications will be cleared on related acks. 2603 * New indications can and will light up during processing, 2604 * and will generate new interrupt after enabling master. 2605 */ 2606 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2607 } 2608 2609 static inline void gen11_master_intr_enable(void __iomem * const regs) 2610 { 2611 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 2612 } 2613 2614 static void 2615 gen11_display_irq_handler(struct drm_i915_private *i915) 2616 { 2617 void __iomem * const regs = i915->uncore.regs; 2618 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2619 2620 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2621 /* 2622 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2623 * for the display related bits. 2624 */ 2625 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0); 2626 gen8_de_irq_handler(i915, disp_ctl); 2627 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 2628 GEN11_DISPLAY_IRQ_ENABLE); 2629 2630 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2631 } 2632 2633 static __always_inline irqreturn_t 2634 __gen11_irq_handler(struct drm_i915_private * const i915, 2635 u32 (*intr_disable)(void __iomem * const regs), 2636 void (*intr_enable)(void __iomem * const regs)) 2637 { 2638 void __iomem * const regs = i915->uncore.regs; 2639 struct intel_gt *gt = &i915->gt; 2640 u32 master_ctl; 2641 u32 gu_misc_iir; 2642 2643 if (!intel_irqs_enabled(i915)) 2644 return IRQ_NONE; 2645 2646 master_ctl = intr_disable(regs); 2647 if (!master_ctl) { 2648 intr_enable(regs); 2649 return IRQ_NONE; 2650 } 2651 2652 /* Find, queue (onto bottom-halves), then clear each source */ 2653 gen11_gt_irq_handler(gt, master_ctl); 2654 2655 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2656 if (master_ctl & GEN11_DISPLAY_IRQ) 2657 gen11_display_irq_handler(i915); 2658 2659 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl); 2660 2661 intr_enable(regs); 2662 2663 gen11_gu_misc_irq_handler(gt, gu_misc_iir); 2664 2665 pmu_irq_stats(i915, IRQ_HANDLED); 2666 2667 return IRQ_HANDLED; 2668 } 2669 2670 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2671 { 2672 return __gen11_irq_handler(arg, 2673 gen11_master_intr_disable, 2674 gen11_master_intr_enable); 2675 } 2676 2677 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs) 2678 { 2679 u32 val; 2680 2681 /* First disable interrupts */ 2682 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0); 2683 2684 /* Get the indication levels and ack the master unit */ 2685 val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR); 2686 if (unlikely(!val)) 2687 return 0; 2688 2689 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val); 2690 2691 /* 2692 * Now with master disabled, get a sample of level indications 2693 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ 2694 * out as this bit doesn't exist anymore for DG1 2695 */ 2696 val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ; 2697 if (unlikely(!val)) 2698 return 0; 2699 2700 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val); 2701 2702 return val; 2703 } 2704 2705 static inline void dg1_master_intr_enable(void __iomem * const regs) 2706 { 2707 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ); 2708 } 2709 2710 static irqreturn_t dg1_irq_handler(int irq, void *arg) 2711 { 2712 return __gen11_irq_handler(arg, 2713 dg1_master_intr_disable_and_ack, 2714 dg1_master_intr_enable); 2715 } 2716 2717 /* Called from drm generic code, passed 'crtc' which 2718 * we use as a pipe index 2719 */ 2720 int i8xx_enable_vblank(struct drm_crtc *crtc) 2721 { 2722 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2723 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2724 unsigned long irqflags; 2725 2726 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2727 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2728 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2729 2730 return 0; 2731 } 2732 2733 int i915gm_enable_vblank(struct drm_crtc *crtc) 2734 { 2735 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2736 2737 /* 2738 * Vblank interrupts fail to wake the device up from C2+. 2739 * Disabling render clock gating during C-states avoids 2740 * the problem. There is a small power cost so we do this 2741 * only when vblank interrupts are actually enabled. 2742 */ 2743 if (dev_priv->vblank_enabled++ == 0) 2744 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2745 2746 return i8xx_enable_vblank(crtc); 2747 } 2748 2749 int i965_enable_vblank(struct drm_crtc *crtc) 2750 { 2751 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2752 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2753 unsigned long irqflags; 2754 2755 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2756 i915_enable_pipestat(dev_priv, pipe, 2757 PIPE_START_VBLANK_INTERRUPT_STATUS); 2758 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2759 2760 return 0; 2761 } 2762 2763 int ilk_enable_vblank(struct drm_crtc *crtc) 2764 { 2765 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2766 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2767 unsigned long irqflags; 2768 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 2769 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2770 2771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2772 ilk_enable_display_irq(dev_priv, bit); 2773 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2774 2775 /* Even though there is no DMC, frame counter can get stuck when 2776 * PSR is active as no frames are generated. 2777 */ 2778 if (HAS_PSR(dev_priv)) 2779 drm_crtc_vblank_restore(crtc); 2780 2781 return 0; 2782 } 2783 2784 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc, 2785 bool enable) 2786 { 2787 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 2788 enum port port; 2789 u32 tmp; 2790 2791 if (!(intel_crtc->mode_flags & 2792 (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0))) 2793 return false; 2794 2795 /* for dual link cases we consider TE from slave */ 2796 if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1) 2797 port = PORT_B; 2798 else 2799 port = PORT_A; 2800 2801 tmp = I915_READ(DSI_INTR_MASK_REG(port)); 2802 if (enable) 2803 tmp &= ~DSI_TE_EVENT; 2804 else 2805 tmp |= DSI_TE_EVENT; 2806 2807 I915_WRITE(DSI_INTR_MASK_REG(port), tmp); 2808 2809 tmp = I915_READ(DSI_INTR_IDENT_REG(port)); 2810 I915_WRITE(DSI_INTR_IDENT_REG(port), tmp); 2811 2812 return true; 2813 } 2814 2815 int bdw_enable_vblank(struct drm_crtc *crtc) 2816 { 2817 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2819 enum pipe pipe = intel_crtc->pipe; 2820 unsigned long irqflags; 2821 2822 if (gen11_dsi_configure_te(intel_crtc, true)) 2823 return 0; 2824 2825 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2826 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2827 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2828 2829 /* Even if there is no DMC, frame counter can get stuck when 2830 * PSR is active as no frames are generated, so check only for PSR. 2831 */ 2832 if (HAS_PSR(dev_priv)) 2833 drm_crtc_vblank_restore(crtc); 2834 2835 return 0; 2836 } 2837 2838 void skl_enable_flip_done(struct intel_crtc *crtc) 2839 { 2840 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2841 enum pipe pipe = crtc->pipe; 2842 unsigned long irqflags; 2843 2844 spin_lock_irqsave(&i915->irq_lock, irqflags); 2845 2846 bdw_enable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE); 2847 2848 spin_unlock_irqrestore(&i915->irq_lock, irqflags); 2849 } 2850 2851 /* Called from drm generic code, passed 'crtc' which 2852 * we use as a pipe index 2853 */ 2854 void i8xx_disable_vblank(struct drm_crtc *crtc) 2855 { 2856 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2857 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2858 unsigned long irqflags; 2859 2860 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2861 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2862 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2863 } 2864 2865 void i915gm_disable_vblank(struct drm_crtc *crtc) 2866 { 2867 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2868 2869 i8xx_disable_vblank(crtc); 2870 2871 if (--dev_priv->vblank_enabled == 0) 2872 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2873 } 2874 2875 void i965_disable_vblank(struct drm_crtc *crtc) 2876 { 2877 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2878 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2879 unsigned long irqflags; 2880 2881 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2882 i915_disable_pipestat(dev_priv, pipe, 2883 PIPE_START_VBLANK_INTERRUPT_STATUS); 2884 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2885 } 2886 2887 void ilk_disable_vblank(struct drm_crtc *crtc) 2888 { 2889 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2890 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2891 unsigned long irqflags; 2892 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 2893 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2894 2895 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2896 ilk_disable_display_irq(dev_priv, bit); 2897 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2898 } 2899 2900 void bdw_disable_vblank(struct drm_crtc *crtc) 2901 { 2902 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2903 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2904 enum pipe pipe = intel_crtc->pipe; 2905 unsigned long irqflags; 2906 2907 if (gen11_dsi_configure_te(intel_crtc, false)) 2908 return; 2909 2910 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2911 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2912 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2913 } 2914 2915 void skl_disable_flip_done(struct intel_crtc *crtc) 2916 { 2917 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2918 enum pipe pipe = crtc->pipe; 2919 unsigned long irqflags; 2920 2921 spin_lock_irqsave(&i915->irq_lock, irqflags); 2922 2923 bdw_disable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE); 2924 2925 spin_unlock_irqrestore(&i915->irq_lock, irqflags); 2926 } 2927 2928 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 2929 { 2930 struct intel_uncore *uncore = &dev_priv->uncore; 2931 2932 if (HAS_PCH_NOP(dev_priv)) 2933 return; 2934 2935 GEN3_IRQ_RESET(uncore, SDE); 2936 2937 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 2938 I915_WRITE(SERR_INT, 0xffffffff); 2939 } 2940 2941 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 2942 { 2943 struct intel_uncore *uncore = &dev_priv->uncore; 2944 2945 if (IS_CHERRYVIEW(dev_priv)) 2946 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 2947 else 2948 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK); 2949 2950 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 2951 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 2952 2953 i9xx_pipestat_irq_reset(dev_priv); 2954 2955 GEN3_IRQ_RESET(uncore, VLV_); 2956 dev_priv->irq_mask = ~0u; 2957 } 2958 2959 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 2960 { 2961 struct intel_uncore *uncore = &dev_priv->uncore; 2962 2963 u32 pipestat_mask; 2964 u32 enable_mask; 2965 enum pipe pipe; 2966 2967 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 2968 2969 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 2970 for_each_pipe(dev_priv, pipe) 2971 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 2972 2973 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 2974 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 2975 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 2976 I915_LPE_PIPE_A_INTERRUPT | 2977 I915_LPE_PIPE_B_INTERRUPT; 2978 2979 if (IS_CHERRYVIEW(dev_priv)) 2980 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 2981 I915_LPE_PIPE_C_INTERRUPT; 2982 2983 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u); 2984 2985 dev_priv->irq_mask = ~enable_mask; 2986 2987 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 2988 } 2989 2990 /* drm_dma.h hooks 2991 */ 2992 static void ilk_irq_reset(struct drm_i915_private *dev_priv) 2993 { 2994 struct intel_uncore *uncore = &dev_priv->uncore; 2995 2996 GEN3_IRQ_RESET(uncore, DE); 2997 dev_priv->irq_mask = ~0u; 2998 2999 if (IS_GEN(dev_priv, 7)) 3000 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); 3001 3002 if (IS_HASWELL(dev_priv)) { 3003 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3004 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3005 } 3006 3007 gen5_gt_irq_reset(&dev_priv->gt); 3008 3009 ibx_irq_reset(dev_priv); 3010 } 3011 3012 static void valleyview_irq_reset(struct drm_i915_private *dev_priv) 3013 { 3014 I915_WRITE(VLV_MASTER_IER, 0); 3015 POSTING_READ(VLV_MASTER_IER); 3016 3017 gen5_gt_irq_reset(&dev_priv->gt); 3018 3019 spin_lock_irq(&dev_priv->irq_lock); 3020 if (dev_priv->display_irqs_enabled) 3021 vlv_display_irq_reset(dev_priv); 3022 spin_unlock_irq(&dev_priv->irq_lock); 3023 } 3024 3025 static void gen8_irq_reset(struct drm_i915_private *dev_priv) 3026 { 3027 struct intel_uncore *uncore = &dev_priv->uncore; 3028 enum pipe pipe; 3029 3030 gen8_master_intr_disable(dev_priv->uncore.regs); 3031 3032 gen8_gt_irq_reset(&dev_priv->gt); 3033 3034 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3035 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3036 3037 for_each_pipe(dev_priv, pipe) 3038 if (intel_display_power_is_enabled(dev_priv, 3039 POWER_DOMAIN_PIPE(pipe))) 3040 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3041 3042 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3043 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3044 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3045 3046 if (HAS_PCH_SPLIT(dev_priv)) 3047 ibx_irq_reset(dev_priv); 3048 } 3049 3050 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv) 3051 { 3052 struct intel_uncore *uncore = &dev_priv->uncore; 3053 enum pipe pipe; 3054 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3055 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3056 3057 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0); 3058 3059 if (INTEL_GEN(dev_priv) >= 12) { 3060 enum transcoder trans; 3061 3062 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3063 enum intel_display_power_domain domain; 3064 3065 domain = POWER_DOMAIN_TRANSCODER(trans); 3066 if (!intel_display_power_is_enabled(dev_priv, domain)) 3067 continue; 3068 3069 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff); 3070 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff); 3071 } 3072 } else { 3073 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3074 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3075 } 3076 3077 for_each_pipe(dev_priv, pipe) 3078 if (intel_display_power_is_enabled(dev_priv, 3079 POWER_DOMAIN_PIPE(pipe))) 3080 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3081 3082 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3083 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3084 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 3085 3086 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3087 GEN3_IRQ_RESET(uncore, SDE); 3088 3089 /* Wa_14010685332:cnp/cmp,tgp,adp */ 3090 if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP || 3091 (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && 3092 INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) { 3093 intel_uncore_rmw(uncore, SOUTH_CHICKEN1, 3094 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS); 3095 intel_uncore_rmw(uncore, SOUTH_CHICKEN1, 3096 SBCLK_RUN_REFCLK_DIS, 0); 3097 } 3098 } 3099 3100 static void gen11_irq_reset(struct drm_i915_private *dev_priv) 3101 { 3102 struct intel_uncore *uncore = &dev_priv->uncore; 3103 3104 if (HAS_MASTER_UNIT_IRQ(dev_priv)) 3105 dg1_master_intr_disable_and_ack(dev_priv->uncore.regs); 3106 else 3107 gen11_master_intr_disable(dev_priv->uncore.regs); 3108 3109 gen11_gt_irq_reset(&dev_priv->gt); 3110 gen11_display_irq_reset(dev_priv); 3111 3112 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3113 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3114 } 3115 3116 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3117 u8 pipe_mask) 3118 { 3119 struct intel_uncore *uncore = &dev_priv->uncore; 3120 3121 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3122 enum pipe pipe; 3123 3124 if (INTEL_GEN(dev_priv) >= 9) 3125 extra_ier |= GEN9_PIPE_PLANE1_FLIP_DONE; 3126 3127 spin_lock_irq(&dev_priv->irq_lock); 3128 3129 if (!intel_irqs_enabled(dev_priv)) { 3130 spin_unlock_irq(&dev_priv->irq_lock); 3131 return; 3132 } 3133 3134 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3135 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3136 dev_priv->de_irq_mask[pipe], 3137 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3138 3139 spin_unlock_irq(&dev_priv->irq_lock); 3140 } 3141 3142 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3143 u8 pipe_mask) 3144 { 3145 struct intel_uncore *uncore = &dev_priv->uncore; 3146 enum pipe pipe; 3147 3148 spin_lock_irq(&dev_priv->irq_lock); 3149 3150 if (!intel_irqs_enabled(dev_priv)) { 3151 spin_unlock_irq(&dev_priv->irq_lock); 3152 return; 3153 } 3154 3155 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3156 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3157 3158 spin_unlock_irq(&dev_priv->irq_lock); 3159 3160 /* make sure we're done processing display irqs */ 3161 intel_synchronize_irq(dev_priv); 3162 } 3163 3164 static void cherryview_irq_reset(struct drm_i915_private *dev_priv) 3165 { 3166 struct intel_uncore *uncore = &dev_priv->uncore; 3167 3168 I915_WRITE(GEN8_MASTER_IRQ, 0); 3169 POSTING_READ(GEN8_MASTER_IRQ); 3170 3171 gen8_gt_irq_reset(&dev_priv->gt); 3172 3173 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3174 3175 spin_lock_irq(&dev_priv->irq_lock); 3176 if (dev_priv->display_irqs_enabled) 3177 vlv_display_irq_reset(dev_priv); 3178 spin_unlock_irq(&dev_priv->irq_lock); 3179 } 3180 3181 static u32 ibx_hotplug_enables(struct drm_i915_private *i915, 3182 enum hpd_pin pin) 3183 { 3184 switch (pin) { 3185 case HPD_PORT_A: 3186 /* 3187 * When CPU and PCH are on the same package, port A 3188 * HPD must be enabled in both north and south. 3189 */ 3190 return HAS_PCH_LPT_LP(i915) ? 3191 PORTA_HOTPLUG_ENABLE : 0; 3192 case HPD_PORT_B: 3193 return PORTB_HOTPLUG_ENABLE | 3194 PORTB_PULSE_DURATION_2ms; 3195 case HPD_PORT_C: 3196 return PORTC_HOTPLUG_ENABLE | 3197 PORTC_PULSE_DURATION_2ms; 3198 case HPD_PORT_D: 3199 return PORTD_HOTPLUG_ENABLE | 3200 PORTD_PULSE_DURATION_2ms; 3201 default: 3202 return 0; 3203 } 3204 } 3205 3206 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3207 { 3208 u32 hotplug; 3209 3210 /* 3211 * Enable digital hotplug on the PCH, and configure the DP short pulse 3212 * duration to 2ms (which is the minimum in the Display Port spec). 3213 * The pulse duration bits are reserved on LPT+. 3214 */ 3215 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3216 hotplug &= ~(PORTA_HOTPLUG_ENABLE | 3217 PORTB_HOTPLUG_ENABLE | 3218 PORTC_HOTPLUG_ENABLE | 3219 PORTD_HOTPLUG_ENABLE | 3220 PORTB_PULSE_DURATION_MASK | 3221 PORTC_PULSE_DURATION_MASK | 3222 PORTD_PULSE_DURATION_MASK); 3223 hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables); 3224 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3225 } 3226 3227 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3228 { 3229 u32 hotplug_irqs, enabled_irqs; 3230 3231 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3232 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3233 3234 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3235 3236 ibx_hpd_detection_setup(dev_priv); 3237 } 3238 3239 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915, 3240 enum hpd_pin pin) 3241 { 3242 switch (pin) { 3243 case HPD_PORT_A: 3244 case HPD_PORT_B: 3245 case HPD_PORT_C: 3246 case HPD_PORT_D: 3247 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin); 3248 default: 3249 return 0; 3250 } 3251 } 3252 3253 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915, 3254 enum hpd_pin pin) 3255 { 3256 switch (pin) { 3257 case HPD_PORT_TC1: 3258 case HPD_PORT_TC2: 3259 case HPD_PORT_TC3: 3260 case HPD_PORT_TC4: 3261 case HPD_PORT_TC5: 3262 case HPD_PORT_TC6: 3263 return ICP_TC_HPD_ENABLE(pin); 3264 default: 3265 return 0; 3266 } 3267 } 3268 3269 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv) 3270 { 3271 u32 hotplug; 3272 3273 hotplug = I915_READ(SHOTPLUG_CTL_DDI); 3274 hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) | 3275 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) | 3276 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) | 3277 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D)); 3278 hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables); 3279 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug); 3280 } 3281 3282 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv) 3283 { 3284 u32 hotplug; 3285 3286 hotplug = I915_READ(SHOTPLUG_CTL_TC); 3287 hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) | 3288 ICP_TC_HPD_ENABLE(HPD_PORT_TC2) | 3289 ICP_TC_HPD_ENABLE(HPD_PORT_TC3) | 3290 ICP_TC_HPD_ENABLE(HPD_PORT_TC4) | 3291 ICP_TC_HPD_ENABLE(HPD_PORT_TC5) | 3292 ICP_TC_HPD_ENABLE(HPD_PORT_TC6)); 3293 hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables); 3294 I915_WRITE(SHOTPLUG_CTL_TC, hotplug); 3295 } 3296 3297 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3298 { 3299 u32 hotplug_irqs, enabled_irqs; 3300 3301 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3302 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3303 3304 if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP) 3305 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3306 3307 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3308 3309 icp_ddi_hpd_detection_setup(dev_priv); 3310 icp_tc_hpd_detection_setup(dev_priv); 3311 } 3312 3313 static u32 gen11_hotplug_enables(struct drm_i915_private *i915, 3314 enum hpd_pin pin) 3315 { 3316 switch (pin) { 3317 case HPD_PORT_TC1: 3318 case HPD_PORT_TC2: 3319 case HPD_PORT_TC3: 3320 case HPD_PORT_TC4: 3321 case HPD_PORT_TC5: 3322 case HPD_PORT_TC6: 3323 return GEN11_HOTPLUG_CTL_ENABLE(pin); 3324 default: 3325 return 0; 3326 } 3327 } 3328 3329 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv) 3330 { 3331 u32 val; 3332 3333 val = I915_READ(SOUTH_CHICKEN1); 3334 val |= (INVERT_DDIA_HPD | 3335 INVERT_DDIB_HPD | 3336 INVERT_DDIC_HPD | 3337 INVERT_DDID_HPD); 3338 I915_WRITE(SOUTH_CHICKEN1, val); 3339 3340 icp_hpd_irq_setup(dev_priv); 3341 } 3342 3343 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv) 3344 { 3345 u32 hotplug; 3346 3347 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL); 3348 hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) | 3349 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) | 3350 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) | 3351 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) | 3352 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) | 3353 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6)); 3354 hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables); 3355 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug); 3356 } 3357 3358 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3359 { 3360 u32 hotplug; 3361 3362 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL); 3363 hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) | 3364 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) | 3365 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) | 3366 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) | 3367 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) | 3368 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6)); 3369 hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables); 3370 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug); 3371 } 3372 3373 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3374 { 3375 u32 hotplug_irqs, enabled_irqs; 3376 u32 val; 3377 3378 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3379 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3380 3381 val = I915_READ(GEN11_DE_HPD_IMR); 3382 val &= ~hotplug_irqs; 3383 val |= ~enabled_irqs & hotplug_irqs; 3384 I915_WRITE(GEN11_DE_HPD_IMR, val); 3385 POSTING_READ(GEN11_DE_HPD_IMR); 3386 3387 gen11_tc_hpd_detection_setup(dev_priv); 3388 gen11_tbt_hpd_detection_setup(dev_priv); 3389 3390 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3391 icp_hpd_irq_setup(dev_priv); 3392 } 3393 3394 static u32 spt_hotplug_enables(struct drm_i915_private *i915, 3395 enum hpd_pin pin) 3396 { 3397 switch (pin) { 3398 case HPD_PORT_A: 3399 return PORTA_HOTPLUG_ENABLE; 3400 case HPD_PORT_B: 3401 return PORTB_HOTPLUG_ENABLE; 3402 case HPD_PORT_C: 3403 return PORTC_HOTPLUG_ENABLE; 3404 case HPD_PORT_D: 3405 return PORTD_HOTPLUG_ENABLE; 3406 default: 3407 return 0; 3408 } 3409 } 3410 3411 static u32 spt_hotplug2_enables(struct drm_i915_private *i915, 3412 enum hpd_pin pin) 3413 { 3414 switch (pin) { 3415 case HPD_PORT_E: 3416 return PORTE_HOTPLUG_ENABLE; 3417 default: 3418 return 0; 3419 } 3420 } 3421 3422 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3423 { 3424 u32 val, hotplug; 3425 3426 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3427 if (HAS_PCH_CNP(dev_priv)) { 3428 val = I915_READ(SOUTH_CHICKEN1); 3429 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3430 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3431 I915_WRITE(SOUTH_CHICKEN1, val); 3432 } 3433 3434 /* Enable digital hotplug on the PCH */ 3435 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3436 hotplug &= ~(PORTA_HOTPLUG_ENABLE | 3437 PORTB_HOTPLUG_ENABLE | 3438 PORTC_HOTPLUG_ENABLE | 3439 PORTD_HOTPLUG_ENABLE); 3440 hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables); 3441 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3442 3443 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3444 hotplug &= ~PORTE_HOTPLUG_ENABLE; 3445 hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables); 3446 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3447 } 3448 3449 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3450 { 3451 u32 hotplug_irqs, enabled_irqs; 3452 3453 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3454 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3455 3456 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3457 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3458 3459 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3460 3461 spt_hpd_detection_setup(dev_priv); 3462 } 3463 3464 static u32 ilk_hotplug_enables(struct drm_i915_private *i915, 3465 enum hpd_pin pin) 3466 { 3467 switch (pin) { 3468 case HPD_PORT_A: 3469 return DIGITAL_PORTA_HOTPLUG_ENABLE | 3470 DIGITAL_PORTA_PULSE_DURATION_2ms; 3471 default: 3472 return 0; 3473 } 3474 } 3475 3476 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3477 { 3478 u32 hotplug; 3479 3480 /* 3481 * Enable digital hotplug on the CPU, and configure the DP short pulse 3482 * duration to 2ms (which is the minimum in the Display Port spec) 3483 * The pulse duration bits are reserved on HSW+. 3484 */ 3485 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3486 hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE | 3487 DIGITAL_PORTA_PULSE_DURATION_MASK); 3488 hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables); 3489 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3490 } 3491 3492 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3493 { 3494 u32 hotplug_irqs, enabled_irqs; 3495 3496 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3497 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3498 3499 if (INTEL_GEN(dev_priv) >= 8) 3500 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3501 else 3502 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3503 3504 ilk_hpd_detection_setup(dev_priv); 3505 3506 ibx_hpd_irq_setup(dev_priv); 3507 } 3508 3509 static u32 bxt_hotplug_enables(struct drm_i915_private *i915, 3510 enum hpd_pin pin) 3511 { 3512 u32 hotplug; 3513 3514 switch (pin) { 3515 case HPD_PORT_A: 3516 hotplug = PORTA_HOTPLUG_ENABLE; 3517 if (intel_bios_is_port_hpd_inverted(i915, PORT_A)) 3518 hotplug |= BXT_DDIA_HPD_INVERT; 3519 return hotplug; 3520 case HPD_PORT_B: 3521 hotplug = PORTB_HOTPLUG_ENABLE; 3522 if (intel_bios_is_port_hpd_inverted(i915, PORT_B)) 3523 hotplug |= BXT_DDIB_HPD_INVERT; 3524 return hotplug; 3525 case HPD_PORT_C: 3526 hotplug = PORTC_HOTPLUG_ENABLE; 3527 if (intel_bios_is_port_hpd_inverted(i915, PORT_C)) 3528 hotplug |= BXT_DDIC_HPD_INVERT; 3529 return hotplug; 3530 default: 3531 return 0; 3532 } 3533 } 3534 3535 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3536 { 3537 u32 hotplug; 3538 3539 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3540 hotplug &= ~(PORTA_HOTPLUG_ENABLE | 3541 PORTB_HOTPLUG_ENABLE | 3542 PORTC_HOTPLUG_ENABLE | 3543 BXT_DDIA_HPD_INVERT | 3544 BXT_DDIB_HPD_INVERT | 3545 BXT_DDIC_HPD_INVERT); 3546 hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables); 3547 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3548 } 3549 3550 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3551 { 3552 u32 hotplug_irqs, enabled_irqs; 3553 3554 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3555 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3556 3557 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3558 3559 bxt_hpd_detection_setup(dev_priv); 3560 } 3561 3562 /* 3563 * SDEIER is also touched by the interrupt handler to work around missed PCH 3564 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3565 * instead we unconditionally enable all PCH interrupt sources here, but then 3566 * only unmask them as needed with SDEIMR. 3567 * 3568 * Note that we currently do this after installing the interrupt handler, 3569 * but before we enable the master interrupt. That should be sufficient 3570 * to avoid races with the irq handler, assuming we have MSI. Shared legacy 3571 * interrupts could still race. 3572 */ 3573 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv) 3574 { 3575 struct intel_uncore *uncore = &dev_priv->uncore; 3576 u32 mask; 3577 3578 if (HAS_PCH_NOP(dev_priv)) 3579 return; 3580 3581 if (HAS_PCH_IBX(dev_priv)) 3582 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3583 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3584 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3585 else 3586 mask = SDE_GMBUS_CPT; 3587 3588 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff); 3589 } 3590 3591 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv) 3592 { 3593 struct intel_uncore *uncore = &dev_priv->uncore; 3594 u32 display_mask, extra_mask; 3595 3596 if (INTEL_GEN(dev_priv) >= 7) { 3597 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3598 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3599 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3600 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3601 DE_DP_A_HOTPLUG_IVB); 3602 } else { 3603 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3604 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3605 DE_PIPEA_CRC_DONE | DE_POISON); 3606 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | 3607 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3608 DE_DP_A_HOTPLUG); 3609 } 3610 3611 if (IS_HASWELL(dev_priv)) { 3612 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3613 display_mask |= DE_EDP_PSR_INT_HSW; 3614 } 3615 3616 if (IS_IRONLAKE_M(dev_priv)) 3617 extra_mask |= DE_PCU_EVENT; 3618 3619 dev_priv->irq_mask = ~display_mask; 3620 3621 ibx_irq_postinstall(dev_priv); 3622 3623 gen5_gt_irq_postinstall(&dev_priv->gt); 3624 3625 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 3626 display_mask | extra_mask); 3627 } 3628 3629 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3630 { 3631 lockdep_assert_held(&dev_priv->irq_lock); 3632 3633 if (dev_priv->display_irqs_enabled) 3634 return; 3635 3636 dev_priv->display_irqs_enabled = true; 3637 3638 if (intel_irqs_enabled(dev_priv)) { 3639 vlv_display_irq_reset(dev_priv); 3640 vlv_display_irq_postinstall(dev_priv); 3641 } 3642 } 3643 3644 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3645 { 3646 lockdep_assert_held(&dev_priv->irq_lock); 3647 3648 if (!dev_priv->display_irqs_enabled) 3649 return; 3650 3651 dev_priv->display_irqs_enabled = false; 3652 3653 if (intel_irqs_enabled(dev_priv)) 3654 vlv_display_irq_reset(dev_priv); 3655 } 3656 3657 3658 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) 3659 { 3660 gen5_gt_irq_postinstall(&dev_priv->gt); 3661 3662 spin_lock_irq(&dev_priv->irq_lock); 3663 if (dev_priv->display_irqs_enabled) 3664 vlv_display_irq_postinstall(dev_priv); 3665 spin_unlock_irq(&dev_priv->irq_lock); 3666 3667 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3668 POSTING_READ(VLV_MASTER_IER); 3669 } 3670 3671 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3672 { 3673 struct intel_uncore *uncore = &dev_priv->uncore; 3674 3675 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) | 3676 GEN8_PIPE_CDCLK_CRC_DONE; 3677 u32 de_pipe_enables; 3678 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv); 3679 u32 de_port_enables; 3680 u32 de_misc_masked = GEN8_DE_EDP_PSR; 3681 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3682 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3683 enum pipe pipe; 3684 3685 if (INTEL_GEN(dev_priv) <= 10) 3686 de_misc_masked |= GEN8_DE_MISC_GSE; 3687 3688 if (IS_GEN9_LP(dev_priv)) 3689 de_port_masked |= BXT_DE_PORT_GMBUS; 3690 3691 if (INTEL_GEN(dev_priv) >= 11) { 3692 enum port port; 3693 3694 if (intel_bios_is_dsi_present(dev_priv, &port)) 3695 de_port_masked |= DSI0_TE | DSI1_TE; 3696 } 3697 3698 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3699 GEN8_PIPE_FIFO_UNDERRUN; 3700 3701 if (INTEL_GEN(dev_priv) >= 9) 3702 de_pipe_enables |= GEN9_PIPE_PLANE1_FLIP_DONE; 3703 3704 de_port_enables = de_port_masked; 3705 if (IS_GEN9_LP(dev_priv)) 3706 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3707 else if (IS_BROADWELL(dev_priv)) 3708 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK; 3709 3710 if (INTEL_GEN(dev_priv) >= 12) { 3711 enum transcoder trans; 3712 3713 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3714 enum intel_display_power_domain domain; 3715 3716 domain = POWER_DOMAIN_TRANSCODER(trans); 3717 if (!intel_display_power_is_enabled(dev_priv, domain)) 3718 continue; 3719 3720 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans)); 3721 } 3722 } else { 3723 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3724 } 3725 3726 for_each_pipe(dev_priv, pipe) { 3727 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3728 3729 if (intel_display_power_is_enabled(dev_priv, 3730 POWER_DOMAIN_PIPE(pipe))) 3731 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3732 dev_priv->de_irq_mask[pipe], 3733 de_pipe_enables); 3734 } 3735 3736 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3737 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3738 3739 if (INTEL_GEN(dev_priv) >= 11) { 3740 u32 de_hpd_masked = 0; 3741 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 3742 GEN11_DE_TBT_HOTPLUG_MASK; 3743 3744 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 3745 de_hpd_enables); 3746 } 3747 } 3748 3749 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) 3750 { 3751 if (HAS_PCH_SPLIT(dev_priv)) 3752 ibx_irq_postinstall(dev_priv); 3753 3754 gen8_gt_irq_postinstall(&dev_priv->gt); 3755 gen8_de_irq_postinstall(dev_priv); 3756 3757 gen8_master_intr_enable(dev_priv->uncore.regs); 3758 } 3759 3760 static void icp_irq_postinstall(struct drm_i915_private *dev_priv) 3761 { 3762 struct intel_uncore *uncore = &dev_priv->uncore; 3763 u32 mask = SDE_GMBUS_ICP; 3764 3765 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff); 3766 } 3767 3768 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) 3769 { 3770 struct intel_uncore *uncore = &dev_priv->uncore; 3771 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3772 3773 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3774 icp_irq_postinstall(dev_priv); 3775 3776 gen11_gt_irq_postinstall(&dev_priv->gt); 3777 gen8_de_irq_postinstall(dev_priv); 3778 3779 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3780 3781 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 3782 3783 if (HAS_MASTER_UNIT_IRQ(dev_priv)) { 3784 dg1_master_intr_enable(uncore->regs); 3785 POSTING_READ(DG1_MSTR_UNIT_INTR); 3786 } else { 3787 gen11_master_intr_enable(uncore->regs); 3788 POSTING_READ(GEN11_GFX_MSTR_IRQ); 3789 } 3790 } 3791 3792 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) 3793 { 3794 gen8_gt_irq_postinstall(&dev_priv->gt); 3795 3796 spin_lock_irq(&dev_priv->irq_lock); 3797 if (dev_priv->display_irqs_enabled) 3798 vlv_display_irq_postinstall(dev_priv); 3799 spin_unlock_irq(&dev_priv->irq_lock); 3800 3801 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3802 POSTING_READ(GEN8_MASTER_IRQ); 3803 } 3804 3805 static void i8xx_irq_reset(struct drm_i915_private *dev_priv) 3806 { 3807 struct intel_uncore *uncore = &dev_priv->uncore; 3808 3809 i9xx_pipestat_irq_reset(dev_priv); 3810 3811 GEN2_IRQ_RESET(uncore); 3812 dev_priv->irq_mask = ~0u; 3813 } 3814 3815 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) 3816 { 3817 struct intel_uncore *uncore = &dev_priv->uncore; 3818 u16 enable_mask; 3819 3820 intel_uncore_write16(uncore, 3821 EMR, 3822 ~(I915_ERROR_PAGE_TABLE | 3823 I915_ERROR_MEMORY_REFRESH)); 3824 3825 /* Unmask the interrupts that we always want on. */ 3826 dev_priv->irq_mask = 3827 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3828 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3829 I915_MASTER_ERROR_INTERRUPT); 3830 3831 enable_mask = 3832 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3833 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3834 I915_MASTER_ERROR_INTERRUPT | 3835 I915_USER_INTERRUPT; 3836 3837 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); 3838 3839 /* Interrupt setup is already guaranteed to be single-threaded, this is 3840 * just to make the assert_spin_locked check happy. */ 3841 spin_lock_irq(&dev_priv->irq_lock); 3842 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3843 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3844 spin_unlock_irq(&dev_priv->irq_lock); 3845 } 3846 3847 static void i8xx_error_irq_ack(struct drm_i915_private *i915, 3848 u16 *eir, u16 *eir_stuck) 3849 { 3850 struct intel_uncore *uncore = &i915->uncore; 3851 u16 emr; 3852 3853 *eir = intel_uncore_read16(uncore, EIR); 3854 3855 if (*eir) 3856 intel_uncore_write16(uncore, EIR, *eir); 3857 3858 *eir_stuck = intel_uncore_read16(uncore, EIR); 3859 if (*eir_stuck == 0) 3860 return; 3861 3862 /* 3863 * Toggle all EMR bits to make sure we get an edge 3864 * in the ISR master error bit if we don't clear 3865 * all the EIR bits. Otherwise the edge triggered 3866 * IIR on i965/g4x wouldn't notice that an interrupt 3867 * is still pending. Also some EIR bits can't be 3868 * cleared except by handling the underlying error 3869 * (or by a GPU reset) so we mask any bit that 3870 * remains set. 3871 */ 3872 emr = intel_uncore_read16(uncore, EMR); 3873 intel_uncore_write16(uncore, EMR, 0xffff); 3874 intel_uncore_write16(uncore, EMR, emr | *eir_stuck); 3875 } 3876 3877 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 3878 u16 eir, u16 eir_stuck) 3879 { 3880 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 3881 3882 if (eir_stuck) 3883 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n", 3884 eir_stuck); 3885 } 3886 3887 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 3888 u32 *eir, u32 *eir_stuck) 3889 { 3890 u32 emr; 3891 3892 *eir = I915_READ(EIR); 3893 3894 I915_WRITE(EIR, *eir); 3895 3896 *eir_stuck = I915_READ(EIR); 3897 if (*eir_stuck == 0) 3898 return; 3899 3900 /* 3901 * Toggle all EMR bits to make sure we get an edge 3902 * in the ISR master error bit if we don't clear 3903 * all the EIR bits. Otherwise the edge triggered 3904 * IIR on i965/g4x wouldn't notice that an interrupt 3905 * is still pending. Also some EIR bits can't be 3906 * cleared except by handling the underlying error 3907 * (or by a GPU reset) so we mask any bit that 3908 * remains set. 3909 */ 3910 emr = I915_READ(EMR); 3911 I915_WRITE(EMR, 0xffffffff); 3912 I915_WRITE(EMR, emr | *eir_stuck); 3913 } 3914 3915 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 3916 u32 eir, u32 eir_stuck) 3917 { 3918 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 3919 3920 if (eir_stuck) 3921 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n", 3922 eir_stuck); 3923 } 3924 3925 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 3926 { 3927 struct drm_i915_private *dev_priv = arg; 3928 irqreturn_t ret = IRQ_NONE; 3929 3930 if (!intel_irqs_enabled(dev_priv)) 3931 return IRQ_NONE; 3932 3933 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3934 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3935 3936 do { 3937 u32 pipe_stats[I915_MAX_PIPES] = {}; 3938 u16 eir = 0, eir_stuck = 0; 3939 u16 iir; 3940 3941 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); 3942 if (iir == 0) 3943 break; 3944 3945 ret = IRQ_HANDLED; 3946 3947 /* Call regardless, as some status bits might not be 3948 * signalled in iir */ 3949 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3950 3951 if (iir & I915_MASTER_ERROR_INTERRUPT) 3952 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3953 3954 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); 3955 3956 if (iir & I915_USER_INTERRUPT) 3957 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]); 3958 3959 if (iir & I915_MASTER_ERROR_INTERRUPT) 3960 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 3961 3962 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3963 } while (0); 3964 3965 pmu_irq_stats(dev_priv, ret); 3966 3967 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3968 3969 return ret; 3970 } 3971 3972 static void i915_irq_reset(struct drm_i915_private *dev_priv) 3973 { 3974 struct intel_uncore *uncore = &dev_priv->uncore; 3975 3976 if (I915_HAS_HOTPLUG(dev_priv)) { 3977 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3978 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3979 } 3980 3981 i9xx_pipestat_irq_reset(dev_priv); 3982 3983 GEN3_IRQ_RESET(uncore, GEN2_); 3984 dev_priv->irq_mask = ~0u; 3985 } 3986 3987 static void i915_irq_postinstall(struct drm_i915_private *dev_priv) 3988 { 3989 struct intel_uncore *uncore = &dev_priv->uncore; 3990 u32 enable_mask; 3991 3992 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 3993 I915_ERROR_MEMORY_REFRESH)); 3994 3995 /* Unmask the interrupts that we always want on. */ 3996 dev_priv->irq_mask = 3997 ~(I915_ASLE_INTERRUPT | 3998 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3999 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4000 I915_MASTER_ERROR_INTERRUPT); 4001 4002 enable_mask = 4003 I915_ASLE_INTERRUPT | 4004 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4005 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4006 I915_MASTER_ERROR_INTERRUPT | 4007 I915_USER_INTERRUPT; 4008 4009 if (I915_HAS_HOTPLUG(dev_priv)) { 4010 /* Enable in IER... */ 4011 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4012 /* and unmask in IMR */ 4013 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4014 } 4015 4016 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4017 4018 /* Interrupt setup is already guaranteed to be single-threaded, this is 4019 * just to make the assert_spin_locked check happy. */ 4020 spin_lock_irq(&dev_priv->irq_lock); 4021 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4022 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4023 spin_unlock_irq(&dev_priv->irq_lock); 4024 4025 i915_enable_asle_pipestat(dev_priv); 4026 } 4027 4028 static irqreturn_t i915_irq_handler(int irq, void *arg) 4029 { 4030 struct drm_i915_private *dev_priv = arg; 4031 irqreturn_t ret = IRQ_NONE; 4032 4033 if (!intel_irqs_enabled(dev_priv)) 4034 return IRQ_NONE; 4035 4036 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4037 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4038 4039 do { 4040 u32 pipe_stats[I915_MAX_PIPES] = {}; 4041 u32 eir = 0, eir_stuck = 0; 4042 u32 hotplug_status = 0; 4043 u32 iir; 4044 4045 iir = I915_READ(GEN2_IIR); 4046 if (iir == 0) 4047 break; 4048 4049 ret = IRQ_HANDLED; 4050 4051 if (I915_HAS_HOTPLUG(dev_priv) && 4052 iir & I915_DISPLAY_PORT_INTERRUPT) 4053 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4054 4055 /* Call regardless, as some status bits might not be 4056 * signalled in iir */ 4057 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4058 4059 if (iir & I915_MASTER_ERROR_INTERRUPT) 4060 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4061 4062 I915_WRITE(GEN2_IIR, iir); 4063 4064 if (iir & I915_USER_INTERRUPT) 4065 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]); 4066 4067 if (iir & I915_MASTER_ERROR_INTERRUPT) 4068 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4069 4070 if (hotplug_status) 4071 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4072 4073 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4074 } while (0); 4075 4076 pmu_irq_stats(dev_priv, ret); 4077 4078 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4079 4080 return ret; 4081 } 4082 4083 static void i965_irq_reset(struct drm_i915_private *dev_priv) 4084 { 4085 struct intel_uncore *uncore = &dev_priv->uncore; 4086 4087 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4088 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4089 4090 i9xx_pipestat_irq_reset(dev_priv); 4091 4092 GEN3_IRQ_RESET(uncore, GEN2_); 4093 dev_priv->irq_mask = ~0u; 4094 } 4095 4096 static void i965_irq_postinstall(struct drm_i915_private *dev_priv) 4097 { 4098 struct intel_uncore *uncore = &dev_priv->uncore; 4099 u32 enable_mask; 4100 u32 error_mask; 4101 4102 /* 4103 * Enable some error detection, note the instruction error mask 4104 * bit is reserved, so we leave it masked. 4105 */ 4106 if (IS_G4X(dev_priv)) { 4107 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4108 GM45_ERROR_MEM_PRIV | 4109 GM45_ERROR_CP_PRIV | 4110 I915_ERROR_MEMORY_REFRESH); 4111 } else { 4112 error_mask = ~(I915_ERROR_PAGE_TABLE | 4113 I915_ERROR_MEMORY_REFRESH); 4114 } 4115 I915_WRITE(EMR, error_mask); 4116 4117 /* Unmask the interrupts that we always want on. */ 4118 dev_priv->irq_mask = 4119 ~(I915_ASLE_INTERRUPT | 4120 I915_DISPLAY_PORT_INTERRUPT | 4121 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4122 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4123 I915_MASTER_ERROR_INTERRUPT); 4124 4125 enable_mask = 4126 I915_ASLE_INTERRUPT | 4127 I915_DISPLAY_PORT_INTERRUPT | 4128 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4129 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4130 I915_MASTER_ERROR_INTERRUPT | 4131 I915_USER_INTERRUPT; 4132 4133 if (IS_G4X(dev_priv)) 4134 enable_mask |= I915_BSD_USER_INTERRUPT; 4135 4136 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4137 4138 /* Interrupt setup is already guaranteed to be single-threaded, this is 4139 * just to make the assert_spin_locked check happy. */ 4140 spin_lock_irq(&dev_priv->irq_lock); 4141 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4142 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4143 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4144 spin_unlock_irq(&dev_priv->irq_lock); 4145 4146 i915_enable_asle_pipestat(dev_priv); 4147 } 4148 4149 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4150 { 4151 u32 hotplug_en; 4152 4153 lockdep_assert_held(&dev_priv->irq_lock); 4154 4155 /* Note HDMI and DP share hotplug bits */ 4156 /* enable bits are the same for all generations */ 4157 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4158 /* Programming the CRT detection parameters tends 4159 to generate a spurious hotplug event about three 4160 seconds later. So just do it once. 4161 */ 4162 if (IS_G4X(dev_priv)) 4163 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4164 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4165 4166 /* Ignore TV since it's buggy */ 4167 i915_hotplug_interrupt_update_locked(dev_priv, 4168 HOTPLUG_INT_EN_MASK | 4169 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4170 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4171 hotplug_en); 4172 } 4173 4174 static irqreturn_t i965_irq_handler(int irq, void *arg) 4175 { 4176 struct drm_i915_private *dev_priv = arg; 4177 irqreturn_t ret = IRQ_NONE; 4178 4179 if (!intel_irqs_enabled(dev_priv)) 4180 return IRQ_NONE; 4181 4182 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4183 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4184 4185 do { 4186 u32 pipe_stats[I915_MAX_PIPES] = {}; 4187 u32 eir = 0, eir_stuck = 0; 4188 u32 hotplug_status = 0; 4189 u32 iir; 4190 4191 iir = I915_READ(GEN2_IIR); 4192 if (iir == 0) 4193 break; 4194 4195 ret = IRQ_HANDLED; 4196 4197 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4198 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4199 4200 /* Call regardless, as some status bits might not be 4201 * signalled in iir */ 4202 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4203 4204 if (iir & I915_MASTER_ERROR_INTERRUPT) 4205 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4206 4207 I915_WRITE(GEN2_IIR, iir); 4208 4209 if (iir & I915_USER_INTERRUPT) 4210 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]); 4211 4212 if (iir & I915_BSD_USER_INTERRUPT) 4213 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]); 4214 4215 if (iir & I915_MASTER_ERROR_INTERRUPT) 4216 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4217 4218 if (hotplug_status) 4219 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4220 4221 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4222 } while (0); 4223 4224 pmu_irq_stats(dev_priv, IRQ_HANDLED); 4225 4226 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4227 4228 return ret; 4229 } 4230 4231 /** 4232 * intel_irq_init - initializes irq support 4233 * @dev_priv: i915 device instance 4234 * 4235 * This function initializes all the irq support including work items, timers 4236 * and all the vtables. It does not setup the interrupt itself though. 4237 */ 4238 void intel_irq_init(struct drm_i915_private *dev_priv) 4239 { 4240 struct drm_device *dev = &dev_priv->drm; 4241 int i; 4242 4243 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work); 4244 for (i = 0; i < MAX_L3_SLICES; ++i) 4245 dev_priv->l3_parity.remap_info[i] = NULL; 4246 4247 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ 4248 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11) 4249 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16; 4250 4251 if (!HAS_DISPLAY(dev_priv)) 4252 return; 4253 4254 intel_hpd_init_pins(dev_priv); 4255 4256 intel_hpd_init_work(dev_priv); 4257 4258 dev->vblank_disable_immediate = true; 4259 4260 /* Most platforms treat the display irq block as an always-on 4261 * power domain. vlv/chv can disable it at runtime and need 4262 * special care to avoid writing any of the display block registers 4263 * outside of the power domain. We defer setting up the display irqs 4264 * in this case to the runtime pm. 4265 */ 4266 dev_priv->display_irqs_enabled = true; 4267 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4268 dev_priv->display_irqs_enabled = false; 4269 4270 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 4271 /* If we have MST support, we want to avoid doing short HPD IRQ storm 4272 * detection, as short HPD storms will occur as a natural part of 4273 * sideband messaging with MST. 4274 * On older platforms however, IRQ storms can occur with both long and 4275 * short pulses, as seen on some G4x systems. 4276 */ 4277 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); 4278 4279 if (HAS_GMCH(dev_priv)) { 4280 if (I915_HAS_HOTPLUG(dev_priv)) 4281 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4282 } else { 4283 if (HAS_PCH_DG1(dev_priv)) 4284 dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup; 4285 else if (INTEL_GEN(dev_priv) >= 11) 4286 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup; 4287 else if (IS_GEN9_LP(dev_priv)) 4288 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4289 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 4290 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4291 else 4292 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4293 } 4294 } 4295 4296 /** 4297 * intel_irq_fini - deinitializes IRQ support 4298 * @i915: i915 device instance 4299 * 4300 * This function deinitializes all the IRQ support. 4301 */ 4302 void intel_irq_fini(struct drm_i915_private *i915) 4303 { 4304 int i; 4305 4306 for (i = 0; i < MAX_L3_SLICES; ++i) 4307 kfree(i915->l3_parity.remap_info[i]); 4308 } 4309 4310 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) 4311 { 4312 if (HAS_GMCH(dev_priv)) { 4313 if (IS_CHERRYVIEW(dev_priv)) 4314 return cherryview_irq_handler; 4315 else if (IS_VALLEYVIEW(dev_priv)) 4316 return valleyview_irq_handler; 4317 else if (IS_GEN(dev_priv, 4)) 4318 return i965_irq_handler; 4319 else if (IS_GEN(dev_priv, 3)) 4320 return i915_irq_handler; 4321 else 4322 return i8xx_irq_handler; 4323 } else { 4324 if (HAS_MASTER_UNIT_IRQ(dev_priv)) 4325 return dg1_irq_handler; 4326 if (INTEL_GEN(dev_priv) >= 11) 4327 return gen11_irq_handler; 4328 else if (INTEL_GEN(dev_priv) >= 8) 4329 return gen8_irq_handler; 4330 else 4331 return ilk_irq_handler; 4332 } 4333 } 4334 4335 static void intel_irq_reset(struct drm_i915_private *dev_priv) 4336 { 4337 if (HAS_GMCH(dev_priv)) { 4338 if (IS_CHERRYVIEW(dev_priv)) 4339 cherryview_irq_reset(dev_priv); 4340 else if (IS_VALLEYVIEW(dev_priv)) 4341 valleyview_irq_reset(dev_priv); 4342 else if (IS_GEN(dev_priv, 4)) 4343 i965_irq_reset(dev_priv); 4344 else if (IS_GEN(dev_priv, 3)) 4345 i915_irq_reset(dev_priv); 4346 else 4347 i8xx_irq_reset(dev_priv); 4348 } else { 4349 if (INTEL_GEN(dev_priv) >= 11) 4350 gen11_irq_reset(dev_priv); 4351 else if (INTEL_GEN(dev_priv) >= 8) 4352 gen8_irq_reset(dev_priv); 4353 else 4354 ilk_irq_reset(dev_priv); 4355 } 4356 } 4357 4358 static void intel_irq_postinstall(struct drm_i915_private *dev_priv) 4359 { 4360 if (HAS_GMCH(dev_priv)) { 4361 if (IS_CHERRYVIEW(dev_priv)) 4362 cherryview_irq_postinstall(dev_priv); 4363 else if (IS_VALLEYVIEW(dev_priv)) 4364 valleyview_irq_postinstall(dev_priv); 4365 else if (IS_GEN(dev_priv, 4)) 4366 i965_irq_postinstall(dev_priv); 4367 else if (IS_GEN(dev_priv, 3)) 4368 i915_irq_postinstall(dev_priv); 4369 else 4370 i8xx_irq_postinstall(dev_priv); 4371 } else { 4372 if (INTEL_GEN(dev_priv) >= 11) 4373 gen11_irq_postinstall(dev_priv); 4374 else if (INTEL_GEN(dev_priv) >= 8) 4375 gen8_irq_postinstall(dev_priv); 4376 else 4377 ilk_irq_postinstall(dev_priv); 4378 } 4379 } 4380 4381 /** 4382 * intel_irq_install - enables the hardware interrupt 4383 * @dev_priv: i915 device instance 4384 * 4385 * This function enables the hardware interrupt handling, but leaves the hotplug 4386 * handling still disabled. It is called after intel_irq_init(). 4387 * 4388 * In the driver load and resume code we need working interrupts in a few places 4389 * but don't want to deal with the hassle of concurrent probe and hotplug 4390 * workers. Hence the split into this two-stage approach. 4391 */ 4392 int intel_irq_install(struct drm_i915_private *dev_priv) 4393 { 4394 int irq = dev_priv->drm.pdev->irq; 4395 int ret; 4396 4397 /* 4398 * We enable some interrupt sources in our postinstall hooks, so mark 4399 * interrupts as enabled _before_ actually enabling them to avoid 4400 * special cases in our ordering checks. 4401 */ 4402 dev_priv->runtime_pm.irqs_enabled = true; 4403 4404 dev_priv->drm.irq_enabled = true; 4405 4406 intel_irq_reset(dev_priv); 4407 4408 ret = request_irq(irq, intel_irq_handler(dev_priv), 4409 IRQF_SHARED, DRIVER_NAME, dev_priv); 4410 if (ret < 0) { 4411 dev_priv->drm.irq_enabled = false; 4412 return ret; 4413 } 4414 4415 intel_irq_postinstall(dev_priv); 4416 4417 return ret; 4418 } 4419 4420 /** 4421 * intel_irq_uninstall - finilizes all irq handling 4422 * @dev_priv: i915 device instance 4423 * 4424 * This stops interrupt and hotplug handling and unregisters and frees all 4425 * resources acquired in the init functions. 4426 */ 4427 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4428 { 4429 int irq = dev_priv->drm.pdev->irq; 4430 4431 /* 4432 * FIXME we can get called twice during driver probe 4433 * error handling as well as during driver remove due to 4434 * intel_modeset_driver_remove() calling us out of sequence. 4435 * Would be nice if it didn't do that... 4436 */ 4437 if (!dev_priv->drm.irq_enabled) 4438 return; 4439 4440 dev_priv->drm.irq_enabled = false; 4441 4442 intel_irq_reset(dev_priv); 4443 4444 free_irq(irq, dev_priv); 4445 4446 intel_hpd_cancel_work(dev_priv); 4447 dev_priv->runtime_pm.irqs_enabled = false; 4448 } 4449 4450 /** 4451 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4452 * @dev_priv: i915 device instance 4453 * 4454 * This function is used to disable interrupts at runtime, both in the runtime 4455 * pm and the system suspend/resume code. 4456 */ 4457 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4458 { 4459 intel_irq_reset(dev_priv); 4460 dev_priv->runtime_pm.irqs_enabled = false; 4461 intel_synchronize_irq(dev_priv); 4462 } 4463 4464 /** 4465 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4466 * @dev_priv: i915 device instance 4467 * 4468 * This function is used to enable interrupts at runtime, both in the runtime 4469 * pm and the system suspend/resume code. 4470 */ 4471 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4472 { 4473 dev_priv->runtime_pm.irqs_enabled = true; 4474 intel_irq_reset(dev_priv); 4475 intel_irq_postinstall(dev_priv); 4476 } 4477 4478 bool intel_irqs_enabled(struct drm_i915_private *dev_priv) 4479 { 4480 /* 4481 * We only use drm_irq_uninstall() at unload and VT switch, so 4482 * this is the only thing we need to check. 4483 */ 4484 return dev_priv->runtime_pm.irqs_enabled; 4485 } 4486 4487 void intel_synchronize_irq(struct drm_i915_private *i915) 4488 { 4489 synchronize_irq(i915->drm.pdev->irq); 4490 } 4491