1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/slab.h> 33 #include <linux/sysrq.h> 34 35 #include <drm/drm_drv.h> 36 37 #include "display/icl_dsi_regs.h" 38 #include "display/intel_de.h" 39 #include "display/intel_display_trace.h" 40 #include "display/intel_display_types.h" 41 #include "display/intel_fifo_underrun.h" 42 #include "display/intel_hotplug.h" 43 #include "display/intel_lpe_audio.h" 44 #include "display/intel_psr.h" 45 46 #include "gt/intel_breadcrumbs.h" 47 #include "gt/intel_gt.h" 48 #include "gt/intel_gt_irq.h" 49 #include "gt/intel_gt_pm_irq.h" 50 #include "gt/intel_gt_regs.h" 51 #include "gt/intel_rps.h" 52 53 #include "i915_driver.h" 54 #include "i915_drv.h" 55 #include "i915_irq.h" 56 #include "intel_pm.h" 57 58 /** 59 * DOC: interrupt handling 60 * 61 * These functions provide the basic support for enabling and disabling the 62 * interrupt handling support. There's a lot more functionality in i915_irq.c 63 * and related files, but that will be described in separate chapters. 64 */ 65 66 /* 67 * Interrupt statistic for PMU. Increments the counter only if the 68 * interrupt originated from the GPU so interrupts from a device which 69 * shares the interrupt line are not accounted. 70 */ 71 static inline void pmu_irq_stats(struct drm_i915_private *i915, 72 irqreturn_t res) 73 { 74 if (unlikely(res != IRQ_HANDLED)) 75 return; 76 77 /* 78 * A clever compiler translates that into INC. A not so clever one 79 * should at least prevent store tearing. 80 */ 81 WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1); 82 } 83 84 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val); 85 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915, 86 enum hpd_pin pin); 87 88 static const u32 hpd_ilk[HPD_NUM_PINS] = { 89 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 90 }; 91 92 static const u32 hpd_ivb[HPD_NUM_PINS] = { 93 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 94 }; 95 96 static const u32 hpd_bdw[HPD_NUM_PINS] = { 97 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A), 98 }; 99 100 static const u32 hpd_ibx[HPD_NUM_PINS] = { 101 [HPD_CRT] = SDE_CRT_HOTPLUG, 102 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 103 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 104 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 105 [HPD_PORT_D] = SDE_PORTD_HOTPLUG, 106 }; 107 108 static const u32 hpd_cpt[HPD_NUM_PINS] = { 109 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 110 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 111 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 112 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 113 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 114 }; 115 116 static const u32 hpd_spt[HPD_NUM_PINS] = { 117 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 118 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 119 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 120 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 121 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT, 122 }; 123 124 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 125 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 126 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 127 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 128 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 129 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 130 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN, 131 }; 132 133 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 134 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 135 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 136 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 137 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 138 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 139 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 140 }; 141 142 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 143 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 144 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 145 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 146 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 147 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 148 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 149 }; 150 151 static const u32 hpd_bxt[HPD_NUM_PINS] = { 152 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A), 153 [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B), 154 [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C), 155 }; 156 157 static const u32 hpd_gen11[HPD_NUM_PINS] = { 158 [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1), 159 [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2), 160 [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3), 161 [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4), 162 [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5), 163 [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6), 164 }; 165 166 static const u32 hpd_icp[HPD_NUM_PINS] = { 167 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A), 168 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B), 169 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C), 170 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1), 171 [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2), 172 [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3), 173 [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4), 174 [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5), 175 [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6), 176 }; 177 178 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = { 179 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A), 180 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B), 181 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C), 182 [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D), 183 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_DG2(HPD_PORT_TC1), 184 }; 185 186 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv) 187 { 188 struct intel_hotplug *hpd = &dev_priv->display.hotplug; 189 190 if (HAS_GMCH(dev_priv)) { 191 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 192 IS_CHERRYVIEW(dev_priv)) 193 hpd->hpd = hpd_status_g4x; 194 else 195 hpd->hpd = hpd_status_i915; 196 return; 197 } 198 199 if (DISPLAY_VER(dev_priv) >= 11) 200 hpd->hpd = hpd_gen11; 201 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 202 hpd->hpd = hpd_bxt; 203 else if (DISPLAY_VER(dev_priv) >= 8) 204 hpd->hpd = hpd_bdw; 205 else if (DISPLAY_VER(dev_priv) >= 7) 206 hpd->hpd = hpd_ivb; 207 else 208 hpd->hpd = hpd_ilk; 209 210 if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) && 211 (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))) 212 return; 213 214 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 215 hpd->pch_hpd = hpd_sde_dg1; 216 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 217 hpd->pch_hpd = hpd_icp; 218 else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv)) 219 hpd->pch_hpd = hpd_spt; 220 else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv)) 221 hpd->pch_hpd = hpd_cpt; 222 else if (HAS_PCH_IBX(dev_priv)) 223 hpd->pch_hpd = hpd_ibx; 224 else 225 MISSING_CASE(INTEL_PCH_TYPE(dev_priv)); 226 } 227 228 static void 229 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) 230 { 231 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); 232 233 drm_crtc_handle_vblank(&crtc->base); 234 } 235 236 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 237 i915_reg_t iir, i915_reg_t ier) 238 { 239 intel_uncore_write(uncore, imr, 0xffffffff); 240 intel_uncore_posting_read(uncore, imr); 241 242 intel_uncore_write(uncore, ier, 0); 243 244 /* IIR can theoretically queue up two events. Be paranoid. */ 245 intel_uncore_write(uncore, iir, 0xffffffff); 246 intel_uncore_posting_read(uncore, iir); 247 intel_uncore_write(uncore, iir, 0xffffffff); 248 intel_uncore_posting_read(uncore, iir); 249 } 250 251 static void gen2_irq_reset(struct intel_uncore *uncore) 252 { 253 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 254 intel_uncore_posting_read16(uncore, GEN2_IMR); 255 256 intel_uncore_write16(uncore, GEN2_IER, 0); 257 258 /* IIR can theoretically queue up two events. Be paranoid. */ 259 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 260 intel_uncore_posting_read16(uncore, GEN2_IIR); 261 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 262 intel_uncore_posting_read16(uncore, GEN2_IIR); 263 } 264 265 /* 266 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 267 */ 268 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 269 { 270 u32 val = intel_uncore_read(uncore, reg); 271 272 if (val == 0) 273 return; 274 275 drm_WARN(&uncore->i915->drm, 1, 276 "Interrupt register 0x%x is not zero: 0x%08x\n", 277 i915_mmio_reg_offset(reg), val); 278 intel_uncore_write(uncore, reg, 0xffffffff); 279 intel_uncore_posting_read(uncore, reg); 280 intel_uncore_write(uncore, reg, 0xffffffff); 281 intel_uncore_posting_read(uncore, reg); 282 } 283 284 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 285 { 286 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 287 288 if (val == 0) 289 return; 290 291 drm_WARN(&uncore->i915->drm, 1, 292 "Interrupt register 0x%x is not zero: 0x%08x\n", 293 i915_mmio_reg_offset(GEN2_IIR), val); 294 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 295 intel_uncore_posting_read16(uncore, GEN2_IIR); 296 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 297 intel_uncore_posting_read16(uncore, GEN2_IIR); 298 } 299 300 void gen3_irq_init(struct intel_uncore *uncore, 301 i915_reg_t imr, u32 imr_val, 302 i915_reg_t ier, u32 ier_val, 303 i915_reg_t iir) 304 { 305 gen3_assert_iir_is_zero(uncore, iir); 306 307 intel_uncore_write(uncore, ier, ier_val); 308 intel_uncore_write(uncore, imr, imr_val); 309 intel_uncore_posting_read(uncore, imr); 310 } 311 312 static void gen2_irq_init(struct intel_uncore *uncore, 313 u32 imr_val, u32 ier_val) 314 { 315 gen2_assert_iir_is_zero(uncore); 316 317 intel_uncore_write16(uncore, GEN2_IER, ier_val); 318 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 319 intel_uncore_posting_read16(uncore, GEN2_IMR); 320 } 321 322 /* For display hotplug interrupt */ 323 static inline void 324 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 325 u32 mask, 326 u32 bits) 327 { 328 lockdep_assert_held(&dev_priv->irq_lock); 329 drm_WARN_ON(&dev_priv->drm, bits & ~mask); 330 331 intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_EN, mask, bits); 332 } 333 334 /** 335 * i915_hotplug_interrupt_update - update hotplug interrupt enable 336 * @dev_priv: driver private 337 * @mask: bits to update 338 * @bits: bits to enable 339 * NOTE: the HPD enable bits are modified both inside and outside 340 * of an interrupt context. To avoid that read-modify-write cycles 341 * interfer, these bits are protected by a spinlock. Since this 342 * function is usually not called from a context where the lock is 343 * held already, this function acquires the lock itself. A non-locking 344 * version is also available. 345 */ 346 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 347 u32 mask, 348 u32 bits) 349 { 350 spin_lock_irq(&dev_priv->irq_lock); 351 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 352 spin_unlock_irq(&dev_priv->irq_lock); 353 } 354 355 /** 356 * ilk_update_display_irq - update DEIMR 357 * @dev_priv: driver private 358 * @interrupt_mask: mask of interrupt bits to update 359 * @enabled_irq_mask: mask of interrupt bits to enable 360 */ 361 static void ilk_update_display_irq(struct drm_i915_private *dev_priv, 362 u32 interrupt_mask, u32 enabled_irq_mask) 363 { 364 u32 new_val; 365 366 lockdep_assert_held(&dev_priv->irq_lock); 367 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 368 369 new_val = dev_priv->irq_mask; 370 new_val &= ~interrupt_mask; 371 new_val |= (~enabled_irq_mask & interrupt_mask); 372 373 if (new_val != dev_priv->irq_mask && 374 !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) { 375 dev_priv->irq_mask = new_val; 376 intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask); 377 intel_uncore_posting_read(&dev_priv->uncore, DEIMR); 378 } 379 } 380 381 void ilk_enable_display_irq(struct drm_i915_private *i915, u32 bits) 382 { 383 ilk_update_display_irq(i915, bits, bits); 384 } 385 386 void ilk_disable_display_irq(struct drm_i915_private *i915, u32 bits) 387 { 388 ilk_update_display_irq(i915, bits, 0); 389 } 390 391 /** 392 * bdw_update_port_irq - update DE port interrupt 393 * @dev_priv: driver private 394 * @interrupt_mask: mask of interrupt bits to update 395 * @enabled_irq_mask: mask of interrupt bits to enable 396 */ 397 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 398 u32 interrupt_mask, 399 u32 enabled_irq_mask) 400 { 401 u32 new_val; 402 u32 old_val; 403 404 lockdep_assert_held(&dev_priv->irq_lock); 405 406 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 407 408 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 409 return; 410 411 old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR); 412 413 new_val = old_val; 414 new_val &= ~interrupt_mask; 415 new_val |= (~enabled_irq_mask & interrupt_mask); 416 417 if (new_val != old_val) { 418 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val); 419 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR); 420 } 421 } 422 423 /** 424 * bdw_update_pipe_irq - update DE pipe interrupt 425 * @dev_priv: driver private 426 * @pipe: pipe whose interrupt to update 427 * @interrupt_mask: mask of interrupt bits to update 428 * @enabled_irq_mask: mask of interrupt bits to enable 429 */ 430 static void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 431 enum pipe pipe, u32 interrupt_mask, 432 u32 enabled_irq_mask) 433 { 434 u32 new_val; 435 436 lockdep_assert_held(&dev_priv->irq_lock); 437 438 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 439 440 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 441 return; 442 443 new_val = dev_priv->de_irq_mask[pipe]; 444 new_val &= ~interrupt_mask; 445 new_val |= (~enabled_irq_mask & interrupt_mask); 446 447 if (new_val != dev_priv->de_irq_mask[pipe]) { 448 dev_priv->de_irq_mask[pipe] = new_val; 449 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 450 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe)); 451 } 452 } 453 454 void bdw_enable_pipe_irq(struct drm_i915_private *i915, 455 enum pipe pipe, u32 bits) 456 { 457 bdw_update_pipe_irq(i915, pipe, bits, bits); 458 } 459 460 void bdw_disable_pipe_irq(struct drm_i915_private *i915, 461 enum pipe pipe, u32 bits) 462 { 463 bdw_update_pipe_irq(i915, pipe, bits, 0); 464 } 465 466 /** 467 * ibx_display_interrupt_update - update SDEIMR 468 * @dev_priv: driver private 469 * @interrupt_mask: mask of interrupt bits to update 470 * @enabled_irq_mask: mask of interrupt bits to enable 471 */ 472 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 473 u32 interrupt_mask, 474 u32 enabled_irq_mask) 475 { 476 u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR); 477 sdeimr &= ~interrupt_mask; 478 sdeimr |= (~enabled_irq_mask & interrupt_mask); 479 480 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 481 482 lockdep_assert_held(&dev_priv->irq_lock); 483 484 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 485 return; 486 487 intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr); 488 intel_uncore_posting_read(&dev_priv->uncore, SDEIMR); 489 } 490 491 void ibx_enable_display_interrupt(struct drm_i915_private *i915, u32 bits) 492 { 493 ibx_display_interrupt_update(i915, bits, bits); 494 } 495 496 void ibx_disable_display_interrupt(struct drm_i915_private *i915, u32 bits) 497 { 498 ibx_display_interrupt_update(i915, bits, 0); 499 } 500 501 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 502 enum pipe pipe) 503 { 504 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 505 u32 enable_mask = status_mask << 16; 506 507 lockdep_assert_held(&dev_priv->irq_lock); 508 509 if (DISPLAY_VER(dev_priv) < 5) 510 goto out; 511 512 /* 513 * On pipe A we don't support the PSR interrupt yet, 514 * on pipe B and C the same bit MBZ. 515 */ 516 if (drm_WARN_ON_ONCE(&dev_priv->drm, 517 status_mask & PIPE_A_PSR_STATUS_VLV)) 518 return 0; 519 /* 520 * On pipe B and C we don't support the PSR interrupt yet, on pipe 521 * A the same bit is for perf counters which we don't use either. 522 */ 523 if (drm_WARN_ON_ONCE(&dev_priv->drm, 524 status_mask & PIPE_B_PSR_STATUS_VLV)) 525 return 0; 526 527 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 528 SPRITE0_FLIP_DONE_INT_EN_VLV | 529 SPRITE1_FLIP_DONE_INT_EN_VLV); 530 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 531 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 532 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 533 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 534 535 out: 536 drm_WARN_ONCE(&dev_priv->drm, 537 enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 538 status_mask & ~PIPESTAT_INT_STATUS_MASK, 539 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 540 pipe_name(pipe), enable_mask, status_mask); 541 542 return enable_mask; 543 } 544 545 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 546 enum pipe pipe, u32 status_mask) 547 { 548 i915_reg_t reg = PIPESTAT(pipe); 549 u32 enable_mask; 550 551 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 552 "pipe %c: status_mask=0x%x\n", 553 pipe_name(pipe), status_mask); 554 555 lockdep_assert_held(&dev_priv->irq_lock); 556 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 557 558 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 559 return; 560 561 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 562 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 563 564 intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask); 565 intel_uncore_posting_read(&dev_priv->uncore, reg); 566 } 567 568 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 569 enum pipe pipe, u32 status_mask) 570 { 571 i915_reg_t reg = PIPESTAT(pipe); 572 u32 enable_mask; 573 574 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 575 "pipe %c: status_mask=0x%x\n", 576 pipe_name(pipe), status_mask); 577 578 lockdep_assert_held(&dev_priv->irq_lock); 579 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 580 581 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 582 return; 583 584 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 585 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 586 587 intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask); 588 intel_uncore_posting_read(&dev_priv->uncore, reg); 589 } 590 591 static bool i915_has_asle(struct drm_i915_private *dev_priv) 592 { 593 if (!dev_priv->display.opregion.asle) 594 return false; 595 596 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 597 } 598 599 /** 600 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 601 * @dev_priv: i915 device private 602 */ 603 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 604 { 605 if (!i915_has_asle(dev_priv)) 606 return; 607 608 spin_lock_irq(&dev_priv->irq_lock); 609 610 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 611 if (DISPLAY_VER(dev_priv) >= 4) 612 i915_enable_pipestat(dev_priv, PIPE_A, 613 PIPE_LEGACY_BLC_EVENT_STATUS); 614 615 spin_unlock_irq(&dev_priv->irq_lock); 616 } 617 618 /* 619 * This timing diagram depicts the video signal in and 620 * around the vertical blanking period. 621 * 622 * Assumptions about the fictitious mode used in this example: 623 * vblank_start >= 3 624 * vsync_start = vblank_start + 1 625 * vsync_end = vblank_start + 2 626 * vtotal = vblank_start + 3 627 * 628 * start of vblank: 629 * latch double buffered registers 630 * increment frame counter (ctg+) 631 * generate start of vblank interrupt (gen4+) 632 * | 633 * | frame start: 634 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 635 * | may be shifted forward 1-3 extra lines via PIPECONF 636 * | | 637 * | | start of vsync: 638 * | | generate vsync interrupt 639 * | | | 640 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 641 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 642 * ----va---> <-----------------vb--------------------> <--------va------------- 643 * | | <----vs-----> | 644 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 645 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 646 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 647 * | | | 648 * last visible pixel first visible pixel 649 * | increment frame counter (gen3/4) 650 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 651 * 652 * x = horizontal active 653 * _ = horizontal blanking 654 * hs = horizontal sync 655 * va = vertical active 656 * vb = vertical blanking 657 * vs = vertical sync 658 * vbs = vblank_start (number) 659 * 660 * Summary: 661 * - most events happen at the start of horizontal sync 662 * - frame start happens at the start of horizontal blank, 1-4 lines 663 * (depending on PIPECONF settings) after the start of vblank 664 * - gen3/4 pixel and frame counter are synchronized with the start 665 * of horizontal active on the first line of vertical active 666 */ 667 668 /* Called from drm generic code, passed a 'crtc', which 669 * we use as a pipe index 670 */ 671 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 672 { 673 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 674 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 675 const struct drm_display_mode *mode = &vblank->hwmode; 676 enum pipe pipe = to_intel_crtc(crtc)->pipe; 677 i915_reg_t high_frame, low_frame; 678 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 679 unsigned long irqflags; 680 681 /* 682 * On i965gm TV output the frame counter only works up to 683 * the point when we enable the TV encoder. After that the 684 * frame counter ceases to work and reads zero. We need a 685 * vblank wait before enabling the TV encoder and so we 686 * have to enable vblank interrupts while the frame counter 687 * is still in a working state. However the core vblank code 688 * does not like us returning non-zero frame counter values 689 * when we've told it that we don't have a working frame 690 * counter. Thus we must stop non-zero values leaking out. 691 */ 692 if (!vblank->max_vblank_count) 693 return 0; 694 695 htotal = mode->crtc_htotal; 696 hsync_start = mode->crtc_hsync_start; 697 vbl_start = mode->crtc_vblank_start; 698 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 699 vbl_start = DIV_ROUND_UP(vbl_start, 2); 700 701 /* Convert to pixel count */ 702 vbl_start *= htotal; 703 704 /* Start of vblank event occurs at start of hsync */ 705 vbl_start -= htotal - hsync_start; 706 707 high_frame = PIPEFRAME(pipe); 708 low_frame = PIPEFRAMEPIXEL(pipe); 709 710 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 711 712 /* 713 * High & low register fields aren't synchronized, so make sure 714 * we get a low value that's stable across two reads of the high 715 * register. 716 */ 717 do { 718 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 719 low = intel_de_read_fw(dev_priv, low_frame); 720 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 721 } while (high1 != high2); 722 723 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 724 725 high1 >>= PIPE_FRAME_HIGH_SHIFT; 726 pixel = low & PIPE_PIXEL_MASK; 727 low >>= PIPE_FRAME_LOW_SHIFT; 728 729 /* 730 * The frame counter increments at beginning of active. 731 * Cook up a vblank counter by also checking the pixel 732 * counter against vblank start. 733 */ 734 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 735 } 736 737 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 738 { 739 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 740 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 741 enum pipe pipe = to_intel_crtc(crtc)->pipe; 742 743 if (!vblank->max_vblank_count) 744 return 0; 745 746 return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe)); 747 } 748 749 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 750 { 751 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 752 struct drm_vblank_crtc *vblank = 753 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 754 const struct drm_display_mode *mode = &vblank->hwmode; 755 u32 htotal = mode->crtc_htotal; 756 u32 clock = mode->crtc_clock; 757 u32 scan_prev_time, scan_curr_time, scan_post_time; 758 759 /* 760 * To avoid the race condition where we might cross into the 761 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 762 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 763 * during the same frame. 764 */ 765 do { 766 /* 767 * This field provides read back of the display 768 * pipe frame time stamp. The time stamp value 769 * is sampled at every start of vertical blank. 770 */ 771 scan_prev_time = intel_de_read_fw(dev_priv, 772 PIPE_FRMTMSTMP(crtc->pipe)); 773 774 /* 775 * The TIMESTAMP_CTR register has the current 776 * time stamp value. 777 */ 778 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 779 780 scan_post_time = intel_de_read_fw(dev_priv, 781 PIPE_FRMTMSTMP(crtc->pipe)); 782 } while (scan_post_time != scan_prev_time); 783 784 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 785 clock), 1000 * htotal); 786 } 787 788 /* 789 * On certain encoders on certain platforms, pipe 790 * scanline register will not work to get the scanline, 791 * since the timings are driven from the PORT or issues 792 * with scanline register updates. 793 * This function will use Framestamp and current 794 * timestamp registers to calculate the scanline. 795 */ 796 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 797 { 798 struct drm_vblank_crtc *vblank = 799 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 800 const struct drm_display_mode *mode = &vblank->hwmode; 801 u32 vblank_start = mode->crtc_vblank_start; 802 u32 vtotal = mode->crtc_vtotal; 803 u32 scanline; 804 805 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 806 scanline = min(scanline, vtotal - 1); 807 scanline = (scanline + vblank_start) % vtotal; 808 809 return scanline; 810 } 811 812 /* 813 * intel_de_read_fw(), only for fast reads of display block, no need for 814 * forcewake etc. 815 */ 816 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 817 { 818 struct drm_device *dev = crtc->base.dev; 819 struct drm_i915_private *dev_priv = to_i915(dev); 820 const struct drm_display_mode *mode; 821 struct drm_vblank_crtc *vblank; 822 enum pipe pipe = crtc->pipe; 823 int position, vtotal; 824 825 if (!crtc->active) 826 return 0; 827 828 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 829 mode = &vblank->hwmode; 830 831 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 832 return __intel_get_crtc_scanline_from_timestamp(crtc); 833 834 vtotal = mode->crtc_vtotal; 835 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 836 vtotal /= 2; 837 838 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK; 839 840 /* 841 * On HSW, the DSL reg (0x70000) appears to return 0 if we 842 * read it just before the start of vblank. So try it again 843 * so we don't accidentally end up spanning a vblank frame 844 * increment, causing the pipe_update_end() code to squak at us. 845 * 846 * The nature of this problem means we can't simply check the ISR 847 * bit and return the vblank start value; nor can we use the scanline 848 * debug register in the transcoder as it appears to have the same 849 * problem. We may need to extend this to include other platforms, 850 * but so far testing only shows the problem on HSW. 851 */ 852 if (HAS_DDI(dev_priv) && !position) { 853 int i, temp; 854 855 for (i = 0; i < 100; i++) { 856 udelay(1); 857 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK; 858 if (temp != position) { 859 position = temp; 860 break; 861 } 862 } 863 } 864 865 /* 866 * See update_scanline_offset() for the details on the 867 * scanline_offset adjustment. 868 */ 869 return (position + crtc->scanline_offset) % vtotal; 870 } 871 872 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 873 bool in_vblank_irq, 874 int *vpos, int *hpos, 875 ktime_t *stime, ktime_t *etime, 876 const struct drm_display_mode *mode) 877 { 878 struct drm_device *dev = _crtc->dev; 879 struct drm_i915_private *dev_priv = to_i915(dev); 880 struct intel_crtc *crtc = to_intel_crtc(_crtc); 881 enum pipe pipe = crtc->pipe; 882 int position; 883 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 884 unsigned long irqflags; 885 bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 || 886 IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 || 887 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 888 889 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 890 drm_dbg(&dev_priv->drm, 891 "trying to get scanoutpos for disabled " 892 "pipe %c\n", pipe_name(pipe)); 893 return false; 894 } 895 896 htotal = mode->crtc_htotal; 897 hsync_start = mode->crtc_hsync_start; 898 vtotal = mode->crtc_vtotal; 899 vbl_start = mode->crtc_vblank_start; 900 vbl_end = mode->crtc_vblank_end; 901 902 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 903 vbl_start = DIV_ROUND_UP(vbl_start, 2); 904 vbl_end /= 2; 905 vtotal /= 2; 906 } 907 908 /* 909 * Lock uncore.lock, as we will do multiple timing critical raw 910 * register reads, potentially with preemption disabled, so the 911 * following code must not block on uncore.lock. 912 */ 913 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 914 915 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 916 917 /* Get optional system timestamp before query. */ 918 if (stime) 919 *stime = ktime_get(); 920 921 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 922 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 923 924 position = __intel_get_crtc_scanline(crtc); 925 926 /* 927 * Already exiting vblank? If so, shift our position 928 * so it looks like we're already apporaching the full 929 * vblank end. This should make the generated timestamp 930 * more or less match when the active portion will start. 931 */ 932 if (position >= vbl_start && scanlines < position) 933 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 934 } else if (use_scanline_counter) { 935 /* No obvious pixelcount register. Only query vertical 936 * scanout position from Display scan line register. 937 */ 938 position = __intel_get_crtc_scanline(crtc); 939 } else { 940 /* Have access to pixelcount since start of frame. 941 * We can split this into vertical and horizontal 942 * scanout position. 943 */ 944 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 945 946 /* convert to pixel counts */ 947 vbl_start *= htotal; 948 vbl_end *= htotal; 949 vtotal *= htotal; 950 951 /* 952 * In interlaced modes, the pixel counter counts all pixels, 953 * so one field will have htotal more pixels. In order to avoid 954 * the reported position from jumping backwards when the pixel 955 * counter is beyond the length of the shorter field, just 956 * clamp the position the length of the shorter field. This 957 * matches how the scanline counter based position works since 958 * the scanline counter doesn't count the two half lines. 959 */ 960 if (position >= vtotal) 961 position = vtotal - 1; 962 963 /* 964 * Start of vblank interrupt is triggered at start of hsync, 965 * just prior to the first active line of vblank. However we 966 * consider lines to start at the leading edge of horizontal 967 * active. So, should we get here before we've crossed into 968 * the horizontal active of the first line in vblank, we would 969 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 970 * always add htotal-hsync_start to the current pixel position. 971 */ 972 position = (position + htotal - hsync_start) % vtotal; 973 } 974 975 /* Get optional system timestamp after query. */ 976 if (etime) 977 *etime = ktime_get(); 978 979 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 980 981 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 982 983 /* 984 * While in vblank, position will be negative 985 * counting up towards 0 at vbl_end. And outside 986 * vblank, position will be positive counting 987 * up since vbl_end. 988 */ 989 if (position >= vbl_start) 990 position -= vbl_end; 991 else 992 position += vtotal - vbl_end; 993 994 if (use_scanline_counter) { 995 *vpos = position; 996 *hpos = 0; 997 } else { 998 *vpos = position / htotal; 999 *hpos = position - (*vpos * htotal); 1000 } 1001 1002 return true; 1003 } 1004 1005 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 1006 ktime_t *vblank_time, bool in_vblank_irq) 1007 { 1008 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 1009 crtc, max_error, vblank_time, in_vblank_irq, 1010 i915_get_crtc_scanoutpos); 1011 } 1012 1013 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1014 { 1015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1016 unsigned long irqflags; 1017 int position; 1018 1019 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1020 position = __intel_get_crtc_scanline(crtc); 1021 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1022 1023 return position; 1024 } 1025 1026 /** 1027 * ivb_parity_work - Workqueue called when a parity error interrupt 1028 * occurred. 1029 * @work: workqueue struct 1030 * 1031 * Doesn't actually do anything except notify userspace. As a consequence of 1032 * this event, userspace should try to remap the bad rows since statistically 1033 * it is likely the same row is more likely to go bad again. 1034 */ 1035 static void ivb_parity_work(struct work_struct *work) 1036 { 1037 struct drm_i915_private *dev_priv = 1038 container_of(work, typeof(*dev_priv), l3_parity.error_work); 1039 struct intel_gt *gt = to_gt(dev_priv); 1040 u32 error_status, row, bank, subbank; 1041 char *parity_event[6]; 1042 u32 misccpctl; 1043 u8 slice = 0; 1044 1045 /* We must turn off DOP level clock gating to access the L3 registers. 1046 * In order to prevent a get/put style interface, acquire struct mutex 1047 * any time we access those registers. 1048 */ 1049 mutex_lock(&dev_priv->drm.struct_mutex); 1050 1051 /* If we've screwed up tracking, just let the interrupt fire again */ 1052 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice)) 1053 goto out; 1054 1055 misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL, 1056 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 1057 intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL); 1058 1059 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1060 i915_reg_t reg; 1061 1062 slice--; 1063 if (drm_WARN_ON_ONCE(&dev_priv->drm, 1064 slice >= NUM_L3_SLICES(dev_priv))) 1065 break; 1066 1067 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1068 1069 reg = GEN7_L3CDERRST1(slice); 1070 1071 error_status = intel_uncore_read(&dev_priv->uncore, reg); 1072 row = GEN7_PARITY_ERROR_ROW(error_status); 1073 bank = GEN7_PARITY_ERROR_BANK(error_status); 1074 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1075 1076 intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1077 intel_uncore_posting_read(&dev_priv->uncore, reg); 1078 1079 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1080 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1081 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1082 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1083 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1084 parity_event[5] = NULL; 1085 1086 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1087 KOBJ_CHANGE, parity_event); 1088 1089 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1090 slice, row, bank, subbank); 1091 1092 kfree(parity_event[4]); 1093 kfree(parity_event[3]); 1094 kfree(parity_event[2]); 1095 kfree(parity_event[1]); 1096 } 1097 1098 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl); 1099 1100 out: 1101 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice); 1102 spin_lock_irq(>->irq_lock); 1103 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv)); 1104 spin_unlock_irq(>->irq_lock); 1105 1106 mutex_unlock(&dev_priv->drm.struct_mutex); 1107 } 1108 1109 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1110 { 1111 switch (pin) { 1112 case HPD_PORT_TC1: 1113 case HPD_PORT_TC2: 1114 case HPD_PORT_TC3: 1115 case HPD_PORT_TC4: 1116 case HPD_PORT_TC5: 1117 case HPD_PORT_TC6: 1118 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin); 1119 default: 1120 return false; 1121 } 1122 } 1123 1124 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1125 { 1126 switch (pin) { 1127 case HPD_PORT_A: 1128 return val & PORTA_HOTPLUG_LONG_DETECT; 1129 case HPD_PORT_B: 1130 return val & PORTB_HOTPLUG_LONG_DETECT; 1131 case HPD_PORT_C: 1132 return val & PORTC_HOTPLUG_LONG_DETECT; 1133 default: 1134 return false; 1135 } 1136 } 1137 1138 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1139 { 1140 switch (pin) { 1141 case HPD_PORT_A: 1142 case HPD_PORT_B: 1143 case HPD_PORT_C: 1144 case HPD_PORT_D: 1145 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin); 1146 default: 1147 return false; 1148 } 1149 } 1150 1151 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1152 { 1153 switch (pin) { 1154 case HPD_PORT_TC1: 1155 case HPD_PORT_TC2: 1156 case HPD_PORT_TC3: 1157 case HPD_PORT_TC4: 1158 case HPD_PORT_TC5: 1159 case HPD_PORT_TC6: 1160 return val & ICP_TC_HPD_LONG_DETECT(pin); 1161 default: 1162 return false; 1163 } 1164 } 1165 1166 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1167 { 1168 switch (pin) { 1169 case HPD_PORT_E: 1170 return val & PORTE_HOTPLUG_LONG_DETECT; 1171 default: 1172 return false; 1173 } 1174 } 1175 1176 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1177 { 1178 switch (pin) { 1179 case HPD_PORT_A: 1180 return val & PORTA_HOTPLUG_LONG_DETECT; 1181 case HPD_PORT_B: 1182 return val & PORTB_HOTPLUG_LONG_DETECT; 1183 case HPD_PORT_C: 1184 return val & PORTC_HOTPLUG_LONG_DETECT; 1185 case HPD_PORT_D: 1186 return val & PORTD_HOTPLUG_LONG_DETECT; 1187 default: 1188 return false; 1189 } 1190 } 1191 1192 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1193 { 1194 switch (pin) { 1195 case HPD_PORT_A: 1196 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1197 default: 1198 return false; 1199 } 1200 } 1201 1202 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1203 { 1204 switch (pin) { 1205 case HPD_PORT_B: 1206 return val & PORTB_HOTPLUG_LONG_DETECT; 1207 case HPD_PORT_C: 1208 return val & PORTC_HOTPLUG_LONG_DETECT; 1209 case HPD_PORT_D: 1210 return val & PORTD_HOTPLUG_LONG_DETECT; 1211 default: 1212 return false; 1213 } 1214 } 1215 1216 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1217 { 1218 switch (pin) { 1219 case HPD_PORT_B: 1220 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1221 case HPD_PORT_C: 1222 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1223 case HPD_PORT_D: 1224 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1225 default: 1226 return false; 1227 } 1228 } 1229 1230 /* 1231 * Get a bit mask of pins that have triggered, and which ones may be long. 1232 * This can be called multiple times with the same masks to accumulate 1233 * hotplug detection results from several registers. 1234 * 1235 * Note that the caller is expected to zero out the masks initially. 1236 */ 1237 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1238 u32 *pin_mask, u32 *long_mask, 1239 u32 hotplug_trigger, u32 dig_hotplug_reg, 1240 const u32 hpd[HPD_NUM_PINS], 1241 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1242 { 1243 enum hpd_pin pin; 1244 1245 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS); 1246 1247 for_each_hpd_pin(pin) { 1248 if ((hpd[pin] & hotplug_trigger) == 0) 1249 continue; 1250 1251 *pin_mask |= BIT(pin); 1252 1253 if (long_pulse_detect(pin, dig_hotplug_reg)) 1254 *long_mask |= BIT(pin); 1255 } 1256 1257 drm_dbg(&dev_priv->drm, 1258 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1259 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1260 1261 } 1262 1263 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 1264 const u32 hpd[HPD_NUM_PINS]) 1265 { 1266 struct intel_encoder *encoder; 1267 u32 enabled_irqs = 0; 1268 1269 for_each_intel_encoder(&dev_priv->drm, encoder) 1270 if (dev_priv->display.hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 1271 enabled_irqs |= hpd[encoder->hpd_pin]; 1272 1273 return enabled_irqs; 1274 } 1275 1276 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv, 1277 const u32 hpd[HPD_NUM_PINS]) 1278 { 1279 struct intel_encoder *encoder; 1280 u32 hotplug_irqs = 0; 1281 1282 for_each_intel_encoder(&dev_priv->drm, encoder) 1283 hotplug_irqs |= hpd[encoder->hpd_pin]; 1284 1285 return hotplug_irqs; 1286 } 1287 1288 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915, 1289 hotplug_enables_func hotplug_enables) 1290 { 1291 struct intel_encoder *encoder; 1292 u32 hotplug = 0; 1293 1294 for_each_intel_encoder(&i915->drm, encoder) 1295 hotplug |= hotplug_enables(i915, encoder->hpd_pin); 1296 1297 return hotplug; 1298 } 1299 1300 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1301 { 1302 wake_up_all(&dev_priv->display.gmbus.wait_queue); 1303 } 1304 1305 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1306 { 1307 wake_up_all(&dev_priv->display.gmbus.wait_queue); 1308 } 1309 1310 #if defined(CONFIG_DEBUG_FS) 1311 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1312 enum pipe pipe, 1313 u32 crc0, u32 crc1, 1314 u32 crc2, u32 crc3, 1315 u32 crc4) 1316 { 1317 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); 1318 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc; 1319 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1320 1321 trace_intel_pipe_crc(crtc, crcs); 1322 1323 spin_lock(&pipe_crc->lock); 1324 /* 1325 * For some not yet identified reason, the first CRC is 1326 * bonkers. So let's just wait for the next vblank and read 1327 * out the buggy result. 1328 * 1329 * On GEN8+ sometimes the second CRC is bonkers as well, so 1330 * don't trust that one either. 1331 */ 1332 if (pipe_crc->skipped <= 0 || 1333 (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1334 pipe_crc->skipped++; 1335 spin_unlock(&pipe_crc->lock); 1336 return; 1337 } 1338 spin_unlock(&pipe_crc->lock); 1339 1340 drm_crtc_add_crc_entry(&crtc->base, true, 1341 drm_crtc_accurate_vblank_count(&crtc->base), 1342 crcs); 1343 } 1344 #else 1345 static inline void 1346 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1347 enum pipe pipe, 1348 u32 crc0, u32 crc1, 1349 u32 crc2, u32 crc3, 1350 u32 crc4) {} 1351 #endif 1352 1353 static void flip_done_handler(struct drm_i915_private *i915, 1354 enum pipe pipe) 1355 { 1356 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); 1357 struct drm_crtc_state *crtc_state = crtc->base.state; 1358 struct drm_pending_vblank_event *e = crtc_state->event; 1359 struct drm_device *dev = &i915->drm; 1360 unsigned long irqflags; 1361 1362 spin_lock_irqsave(&dev->event_lock, irqflags); 1363 1364 crtc_state->event = NULL; 1365 1366 drm_crtc_send_vblank_event(&crtc->base, e); 1367 1368 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1369 } 1370 1371 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1372 enum pipe pipe) 1373 { 1374 display_pipe_crc_irq_handler(dev_priv, pipe, 1375 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)), 1376 0, 0, 0, 0); 1377 } 1378 1379 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1380 enum pipe pipe) 1381 { 1382 display_pipe_crc_irq_handler(dev_priv, pipe, 1383 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)), 1384 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)), 1385 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)), 1386 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)), 1387 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe))); 1388 } 1389 1390 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1391 enum pipe pipe) 1392 { 1393 u32 res1, res2; 1394 1395 if (DISPLAY_VER(dev_priv) >= 3) 1396 res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe)); 1397 else 1398 res1 = 0; 1399 1400 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) 1401 res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe)); 1402 else 1403 res2 = 0; 1404 1405 display_pipe_crc_irq_handler(dev_priv, pipe, 1406 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)), 1407 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)), 1408 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)), 1409 res1, res2); 1410 } 1411 1412 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1413 { 1414 enum pipe pipe; 1415 1416 for_each_pipe(dev_priv, pipe) { 1417 intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe), 1418 PIPESTAT_INT_STATUS_MASK | 1419 PIPE_FIFO_UNDERRUN_STATUS); 1420 1421 dev_priv->pipestat_irq_mask[pipe] = 0; 1422 } 1423 } 1424 1425 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1426 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1427 { 1428 enum pipe pipe; 1429 1430 spin_lock(&dev_priv->irq_lock); 1431 1432 if (!dev_priv->display_irqs_enabled) { 1433 spin_unlock(&dev_priv->irq_lock); 1434 return; 1435 } 1436 1437 for_each_pipe(dev_priv, pipe) { 1438 i915_reg_t reg; 1439 u32 status_mask, enable_mask, iir_bit = 0; 1440 1441 /* 1442 * PIPESTAT bits get signalled even when the interrupt is 1443 * disabled with the mask bits, and some of the status bits do 1444 * not generate interrupts at all (like the underrun bit). Hence 1445 * we need to be careful that we only handle what we want to 1446 * handle. 1447 */ 1448 1449 /* fifo underruns are filterered in the underrun handler. */ 1450 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1451 1452 switch (pipe) { 1453 default: 1454 case PIPE_A: 1455 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1456 break; 1457 case PIPE_B: 1458 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1459 break; 1460 case PIPE_C: 1461 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1462 break; 1463 } 1464 if (iir & iir_bit) 1465 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1466 1467 if (!status_mask) 1468 continue; 1469 1470 reg = PIPESTAT(pipe); 1471 pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask; 1472 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1473 1474 /* 1475 * Clear the PIPE*STAT regs before the IIR 1476 * 1477 * Toggle the enable bits to make sure we get an 1478 * edge in the ISR pipe event bit if we don't clear 1479 * all the enabled status bits. Otherwise the edge 1480 * triggered IIR on i965/g4x wouldn't notice that 1481 * an interrupt is still pending. 1482 */ 1483 if (pipe_stats[pipe]) { 1484 intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]); 1485 intel_uncore_write(&dev_priv->uncore, reg, enable_mask); 1486 } 1487 } 1488 spin_unlock(&dev_priv->irq_lock); 1489 } 1490 1491 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1492 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1493 { 1494 enum pipe pipe; 1495 1496 for_each_pipe(dev_priv, pipe) { 1497 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1498 intel_handle_vblank(dev_priv, pipe); 1499 1500 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1501 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1502 1503 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1504 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1505 } 1506 } 1507 1508 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1509 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1510 { 1511 bool blc_event = false; 1512 enum pipe pipe; 1513 1514 for_each_pipe(dev_priv, pipe) { 1515 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1516 intel_handle_vblank(dev_priv, pipe); 1517 1518 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1519 blc_event = true; 1520 1521 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1522 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1523 1524 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1525 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1526 } 1527 1528 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1529 intel_opregion_asle_intr(dev_priv); 1530 } 1531 1532 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1533 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1534 { 1535 bool blc_event = false; 1536 enum pipe pipe; 1537 1538 for_each_pipe(dev_priv, pipe) { 1539 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1540 intel_handle_vblank(dev_priv, pipe); 1541 1542 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1543 blc_event = true; 1544 1545 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1546 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1547 1548 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1549 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1550 } 1551 1552 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1553 intel_opregion_asle_intr(dev_priv); 1554 1555 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1556 gmbus_irq_handler(dev_priv); 1557 } 1558 1559 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1560 u32 pipe_stats[I915_MAX_PIPES]) 1561 { 1562 enum pipe pipe; 1563 1564 for_each_pipe(dev_priv, pipe) { 1565 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1566 intel_handle_vblank(dev_priv, pipe); 1567 1568 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) 1569 flip_done_handler(dev_priv, pipe); 1570 1571 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1572 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1573 1574 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1575 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1576 } 1577 1578 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1579 gmbus_irq_handler(dev_priv); 1580 } 1581 1582 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1583 { 1584 u32 hotplug_status = 0, hotplug_status_mask; 1585 int i; 1586 1587 if (IS_G4X(dev_priv) || 1588 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1589 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 1590 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 1591 else 1592 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 1593 1594 /* 1595 * We absolutely have to clear all the pending interrupt 1596 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 1597 * interrupt bit won't have an edge, and the i965/g4x 1598 * edge triggered IIR will not notice that an interrupt 1599 * is still pending. We can't use PORT_HOTPLUG_EN to 1600 * guarantee the edge as the act of toggling the enable 1601 * bits can itself generate a new hotplug interrupt :( 1602 */ 1603 for (i = 0; i < 10; i++) { 1604 u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask; 1605 1606 if (tmp == 0) 1607 return hotplug_status; 1608 1609 hotplug_status |= tmp; 1610 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status); 1611 } 1612 1613 drm_WARN_ONCE(&dev_priv->drm, 1, 1614 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 1615 intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT)); 1616 1617 return hotplug_status; 1618 } 1619 1620 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1621 u32 hotplug_status) 1622 { 1623 u32 pin_mask = 0, long_mask = 0; 1624 u32 hotplug_trigger; 1625 1626 if (IS_G4X(dev_priv) || 1627 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1628 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1629 else 1630 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1631 1632 if (hotplug_trigger) { 1633 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1634 hotplug_trigger, hotplug_trigger, 1635 dev_priv->display.hotplug.hpd, 1636 i9xx_port_hotplug_long_detect); 1637 1638 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1639 } 1640 1641 if ((IS_G4X(dev_priv) || 1642 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1643 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1644 dp_aux_irq_handler(dev_priv); 1645 } 1646 1647 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1648 { 1649 struct drm_i915_private *dev_priv = arg; 1650 irqreturn_t ret = IRQ_NONE; 1651 1652 if (!intel_irqs_enabled(dev_priv)) 1653 return IRQ_NONE; 1654 1655 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1656 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1657 1658 do { 1659 u32 iir, gt_iir, pm_iir; 1660 u32 pipe_stats[I915_MAX_PIPES] = {}; 1661 u32 hotplug_status = 0; 1662 u32 ier = 0; 1663 1664 gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR); 1665 pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR); 1666 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR); 1667 1668 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1669 break; 1670 1671 ret = IRQ_HANDLED; 1672 1673 /* 1674 * Theory on interrupt generation, based on empirical evidence: 1675 * 1676 * x = ((VLV_IIR & VLV_IER) || 1677 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1678 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1679 * 1680 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1681 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1682 * guarantee the CPU interrupt will be raised again even if we 1683 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1684 * bits this time around. 1685 */ 1686 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0); 1687 ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0); 1688 1689 if (gt_iir) 1690 intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir); 1691 if (pm_iir) 1692 intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir); 1693 1694 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1695 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1696 1697 /* Call regardless, as some status bits might not be 1698 * signalled in iir */ 1699 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1700 1701 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1702 I915_LPE_PIPE_B_INTERRUPT)) 1703 intel_lpe_audio_irq_handler(dev_priv); 1704 1705 /* 1706 * VLV_IIR is single buffered, and reflects the level 1707 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1708 */ 1709 if (iir) 1710 intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir); 1711 1712 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier); 1713 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1714 1715 if (gt_iir) 1716 gen6_gt_irq_handler(to_gt(dev_priv), gt_iir); 1717 if (pm_iir) 1718 gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir); 1719 1720 if (hotplug_status) 1721 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1722 1723 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1724 } while (0); 1725 1726 pmu_irq_stats(dev_priv, ret); 1727 1728 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1729 1730 return ret; 1731 } 1732 1733 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1734 { 1735 struct drm_i915_private *dev_priv = arg; 1736 irqreturn_t ret = IRQ_NONE; 1737 1738 if (!intel_irqs_enabled(dev_priv)) 1739 return IRQ_NONE; 1740 1741 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1742 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1743 1744 do { 1745 u32 master_ctl, iir; 1746 u32 pipe_stats[I915_MAX_PIPES] = {}; 1747 u32 hotplug_status = 0; 1748 u32 ier = 0; 1749 1750 master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1751 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR); 1752 1753 if (master_ctl == 0 && iir == 0) 1754 break; 1755 1756 ret = IRQ_HANDLED; 1757 1758 /* 1759 * Theory on interrupt generation, based on empirical evidence: 1760 * 1761 * x = ((VLV_IIR & VLV_IER) || 1762 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1763 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1764 * 1765 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1766 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1767 * guarantee the CPU interrupt will be raised again even if we 1768 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1769 * bits this time around. 1770 */ 1771 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0); 1772 ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0); 1773 1774 gen8_gt_irq_handler(to_gt(dev_priv), master_ctl); 1775 1776 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1777 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1778 1779 /* Call regardless, as some status bits might not be 1780 * signalled in iir */ 1781 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1782 1783 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1784 I915_LPE_PIPE_B_INTERRUPT | 1785 I915_LPE_PIPE_C_INTERRUPT)) 1786 intel_lpe_audio_irq_handler(dev_priv); 1787 1788 /* 1789 * VLV_IIR is single buffered, and reflects the level 1790 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1791 */ 1792 if (iir) 1793 intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir); 1794 1795 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier); 1796 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1797 1798 if (hotplug_status) 1799 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1800 1801 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1802 } while (0); 1803 1804 pmu_irq_stats(dev_priv, ret); 1805 1806 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1807 1808 return ret; 1809 } 1810 1811 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1812 u32 hotplug_trigger) 1813 { 1814 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1815 1816 /* 1817 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 1818 * unless we touch the hotplug register, even if hotplug_trigger is 1819 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 1820 * errors. 1821 */ 1822 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG); 1823 if (!hotplug_trigger) { 1824 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 1825 PORTD_HOTPLUG_STATUS_MASK | 1826 PORTC_HOTPLUG_STATUS_MASK | 1827 PORTB_HOTPLUG_STATUS_MASK; 1828 dig_hotplug_reg &= ~mask; 1829 } 1830 1831 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg); 1832 if (!hotplug_trigger) 1833 return; 1834 1835 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1836 hotplug_trigger, dig_hotplug_reg, 1837 dev_priv->display.hotplug.pch_hpd, 1838 pch_port_hotplug_long_detect); 1839 1840 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1841 } 1842 1843 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1844 { 1845 enum pipe pipe; 1846 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 1847 1848 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1849 1850 if (pch_iir & SDE_AUDIO_POWER_MASK) { 1851 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 1852 SDE_AUDIO_POWER_SHIFT); 1853 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n", 1854 port_name(port)); 1855 } 1856 1857 if (pch_iir & SDE_AUX_MASK) 1858 dp_aux_irq_handler(dev_priv); 1859 1860 if (pch_iir & SDE_GMBUS) 1861 gmbus_irq_handler(dev_priv); 1862 1863 if (pch_iir & SDE_AUDIO_HDCP_MASK) 1864 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n"); 1865 1866 if (pch_iir & SDE_AUDIO_TRANS_MASK) 1867 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n"); 1868 1869 if (pch_iir & SDE_POISON) 1870 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1871 1872 if (pch_iir & SDE_FDI_MASK) { 1873 for_each_pipe(dev_priv, pipe) 1874 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1875 pipe_name(pipe), 1876 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe))); 1877 } 1878 1879 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 1880 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n"); 1881 1882 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 1883 drm_dbg(&dev_priv->drm, 1884 "PCH transcoder CRC error interrupt\n"); 1885 1886 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 1887 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 1888 1889 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 1890 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 1891 } 1892 1893 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 1894 { 1895 u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT); 1896 enum pipe pipe; 1897 1898 if (err_int & ERR_INT_POISON) 1899 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1900 1901 for_each_pipe(dev_priv, pipe) { 1902 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 1903 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1904 1905 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 1906 if (IS_IVYBRIDGE(dev_priv)) 1907 ivb_pipe_crc_irq_handler(dev_priv, pipe); 1908 else 1909 hsw_pipe_crc_irq_handler(dev_priv, pipe); 1910 } 1911 } 1912 1913 intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int); 1914 } 1915 1916 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 1917 { 1918 u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT); 1919 enum pipe pipe; 1920 1921 if (serr_int & SERR_INT_POISON) 1922 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1923 1924 for_each_pipe(dev_priv, pipe) 1925 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 1926 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 1927 1928 intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int); 1929 } 1930 1931 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1932 { 1933 enum pipe pipe; 1934 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 1935 1936 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1937 1938 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 1939 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 1940 SDE_AUDIO_POWER_SHIFT_CPT); 1941 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n", 1942 port_name(port)); 1943 } 1944 1945 if (pch_iir & SDE_AUX_MASK_CPT) 1946 dp_aux_irq_handler(dev_priv); 1947 1948 if (pch_iir & SDE_GMBUS_CPT) 1949 gmbus_irq_handler(dev_priv); 1950 1951 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 1952 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n"); 1953 1954 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 1955 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n"); 1956 1957 if (pch_iir & SDE_FDI_MASK_CPT) { 1958 for_each_pipe(dev_priv, pipe) 1959 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1960 pipe_name(pipe), 1961 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe))); 1962 } 1963 1964 if (pch_iir & SDE_ERROR_CPT) 1965 cpt_serr_int_handler(dev_priv); 1966 } 1967 1968 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1969 { 1970 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP; 1971 u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP; 1972 u32 pin_mask = 0, long_mask = 0; 1973 1974 if (ddi_hotplug_trigger) { 1975 u32 dig_hotplug_reg; 1976 1977 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_DDI, 0, 0); 1978 1979 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1980 ddi_hotplug_trigger, dig_hotplug_reg, 1981 dev_priv->display.hotplug.pch_hpd, 1982 icp_ddi_port_hotplug_long_detect); 1983 } 1984 1985 if (tc_hotplug_trigger) { 1986 u32 dig_hotplug_reg; 1987 1988 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_TC, 0, 0); 1989 1990 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1991 tc_hotplug_trigger, dig_hotplug_reg, 1992 dev_priv->display.hotplug.pch_hpd, 1993 icp_tc_port_hotplug_long_detect); 1994 } 1995 1996 if (pin_mask) 1997 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1998 1999 if (pch_iir & SDE_GMBUS_ICP) 2000 gmbus_irq_handler(dev_priv); 2001 } 2002 2003 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2004 { 2005 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2006 ~SDE_PORTE_HOTPLUG_SPT; 2007 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2008 u32 pin_mask = 0, long_mask = 0; 2009 2010 if (hotplug_trigger) { 2011 u32 dig_hotplug_reg; 2012 2013 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 0, 0); 2014 2015 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2016 hotplug_trigger, dig_hotplug_reg, 2017 dev_priv->display.hotplug.pch_hpd, 2018 spt_port_hotplug_long_detect); 2019 } 2020 2021 if (hotplug2_trigger) { 2022 u32 dig_hotplug_reg; 2023 2024 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG2, 0, 0); 2025 2026 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2027 hotplug2_trigger, dig_hotplug_reg, 2028 dev_priv->display.hotplug.pch_hpd, 2029 spt_port_hotplug2_long_detect); 2030 } 2031 2032 if (pin_mask) 2033 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2034 2035 if (pch_iir & SDE_GMBUS_CPT) 2036 gmbus_irq_handler(dev_priv); 2037 } 2038 2039 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2040 u32 hotplug_trigger) 2041 { 2042 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2043 2044 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, 0, 0); 2045 2046 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2047 hotplug_trigger, dig_hotplug_reg, 2048 dev_priv->display.hotplug.hpd, 2049 ilk_port_hotplug_long_detect); 2050 2051 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2052 } 2053 2054 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2055 u32 de_iir) 2056 { 2057 enum pipe pipe; 2058 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2059 2060 if (hotplug_trigger) 2061 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2062 2063 if (de_iir & DE_AUX_CHANNEL_A) 2064 dp_aux_irq_handler(dev_priv); 2065 2066 if (de_iir & DE_GSE) 2067 intel_opregion_asle_intr(dev_priv); 2068 2069 if (de_iir & DE_POISON) 2070 drm_err(&dev_priv->drm, "Poison interrupt\n"); 2071 2072 for_each_pipe(dev_priv, pipe) { 2073 if (de_iir & DE_PIPE_VBLANK(pipe)) 2074 intel_handle_vblank(dev_priv, pipe); 2075 2076 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) 2077 flip_done_handler(dev_priv, pipe); 2078 2079 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2080 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2081 2082 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2083 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2084 } 2085 2086 /* check event from PCH */ 2087 if (de_iir & DE_PCH_EVENT) { 2088 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR); 2089 2090 if (HAS_PCH_CPT(dev_priv)) 2091 cpt_irq_handler(dev_priv, pch_iir); 2092 else 2093 ibx_irq_handler(dev_priv, pch_iir); 2094 2095 /* should clear PCH hotplug event before clear CPU irq */ 2096 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir); 2097 } 2098 2099 if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT) 2100 gen5_rps_irq_handler(&to_gt(dev_priv)->rps); 2101 } 2102 2103 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2104 u32 de_iir) 2105 { 2106 enum pipe pipe; 2107 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2108 2109 if (hotplug_trigger) 2110 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2111 2112 if (de_iir & DE_ERR_INT_IVB) 2113 ivb_err_int_handler(dev_priv); 2114 2115 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2116 dp_aux_irq_handler(dev_priv); 2117 2118 if (de_iir & DE_GSE_IVB) 2119 intel_opregion_asle_intr(dev_priv); 2120 2121 for_each_pipe(dev_priv, pipe) { 2122 if (de_iir & DE_PIPE_VBLANK_IVB(pipe)) 2123 intel_handle_vblank(dev_priv, pipe); 2124 2125 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) 2126 flip_done_handler(dev_priv, pipe); 2127 } 2128 2129 /* check event from PCH */ 2130 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2131 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR); 2132 2133 cpt_irq_handler(dev_priv, pch_iir); 2134 2135 /* clear PCH hotplug event before clear CPU irq */ 2136 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir); 2137 } 2138 } 2139 2140 /* 2141 * To handle irqs with the minimum potential races with fresh interrupts, we: 2142 * 1 - Disable Master Interrupt Control. 2143 * 2 - Find the source(s) of the interrupt. 2144 * 3 - Clear the Interrupt Identity bits (IIR). 2145 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2146 * 5 - Re-enable Master Interrupt Control. 2147 */ 2148 static irqreturn_t ilk_irq_handler(int irq, void *arg) 2149 { 2150 struct drm_i915_private *i915 = arg; 2151 void __iomem * const regs = i915->uncore.regs; 2152 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2153 irqreturn_t ret = IRQ_NONE; 2154 2155 if (unlikely(!intel_irqs_enabled(i915))) 2156 return IRQ_NONE; 2157 2158 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2159 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2160 2161 /* disable master interrupt before clearing iir */ 2162 de_ier = raw_reg_read(regs, DEIER); 2163 raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2164 2165 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2166 * interrupts will will be stored on its back queue, and then we'll be 2167 * able to process them after we restore SDEIER (as soon as we restore 2168 * it, we'll get an interrupt if SDEIIR still has something to process 2169 * due to its back queue). */ 2170 if (!HAS_PCH_NOP(i915)) { 2171 sde_ier = raw_reg_read(regs, SDEIER); 2172 raw_reg_write(regs, SDEIER, 0); 2173 } 2174 2175 /* Find, clear, then process each source of interrupt */ 2176 2177 gt_iir = raw_reg_read(regs, GTIIR); 2178 if (gt_iir) { 2179 raw_reg_write(regs, GTIIR, gt_iir); 2180 if (GRAPHICS_VER(i915) >= 6) 2181 gen6_gt_irq_handler(to_gt(i915), gt_iir); 2182 else 2183 gen5_gt_irq_handler(to_gt(i915), gt_iir); 2184 ret = IRQ_HANDLED; 2185 } 2186 2187 de_iir = raw_reg_read(regs, DEIIR); 2188 if (de_iir) { 2189 raw_reg_write(regs, DEIIR, de_iir); 2190 if (DISPLAY_VER(i915) >= 7) 2191 ivb_display_irq_handler(i915, de_iir); 2192 else 2193 ilk_display_irq_handler(i915, de_iir); 2194 ret = IRQ_HANDLED; 2195 } 2196 2197 if (GRAPHICS_VER(i915) >= 6) { 2198 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR); 2199 if (pm_iir) { 2200 raw_reg_write(regs, GEN6_PMIIR, pm_iir); 2201 gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir); 2202 ret = IRQ_HANDLED; 2203 } 2204 } 2205 2206 raw_reg_write(regs, DEIER, de_ier); 2207 if (sde_ier) 2208 raw_reg_write(regs, SDEIER, sde_ier); 2209 2210 pmu_irq_stats(i915, ret); 2211 2212 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2213 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2214 2215 return ret; 2216 } 2217 2218 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2219 u32 hotplug_trigger) 2220 { 2221 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2222 2223 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 0, 0); 2224 2225 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2226 hotplug_trigger, dig_hotplug_reg, 2227 dev_priv->display.hotplug.hpd, 2228 bxt_port_hotplug_long_detect); 2229 2230 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2231 } 2232 2233 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2234 { 2235 u32 pin_mask = 0, long_mask = 0; 2236 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2237 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2238 2239 if (trigger_tc) { 2240 u32 dig_hotplug_reg; 2241 2242 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, 0, 0); 2243 2244 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2245 trigger_tc, dig_hotplug_reg, 2246 dev_priv->display.hotplug.hpd, 2247 gen11_port_hotplug_long_detect); 2248 } 2249 2250 if (trigger_tbt) { 2251 u32 dig_hotplug_reg; 2252 2253 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, 0, 0); 2254 2255 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2256 trigger_tbt, dig_hotplug_reg, 2257 dev_priv->display.hotplug.hpd, 2258 gen11_port_hotplug_long_detect); 2259 } 2260 2261 if (pin_mask) 2262 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2263 else 2264 drm_err(&dev_priv->drm, 2265 "Unexpected DE HPD interrupt 0x%08x\n", iir); 2266 } 2267 2268 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2269 { 2270 u32 mask; 2271 2272 if (DISPLAY_VER(dev_priv) >= 13) 2273 return TGL_DE_PORT_AUX_DDIA | 2274 TGL_DE_PORT_AUX_DDIB | 2275 TGL_DE_PORT_AUX_DDIC | 2276 XELPD_DE_PORT_AUX_DDID | 2277 XELPD_DE_PORT_AUX_DDIE | 2278 TGL_DE_PORT_AUX_USBC1 | 2279 TGL_DE_PORT_AUX_USBC2 | 2280 TGL_DE_PORT_AUX_USBC3 | 2281 TGL_DE_PORT_AUX_USBC4; 2282 else if (DISPLAY_VER(dev_priv) >= 12) 2283 return TGL_DE_PORT_AUX_DDIA | 2284 TGL_DE_PORT_AUX_DDIB | 2285 TGL_DE_PORT_AUX_DDIC | 2286 TGL_DE_PORT_AUX_USBC1 | 2287 TGL_DE_PORT_AUX_USBC2 | 2288 TGL_DE_PORT_AUX_USBC3 | 2289 TGL_DE_PORT_AUX_USBC4 | 2290 TGL_DE_PORT_AUX_USBC5 | 2291 TGL_DE_PORT_AUX_USBC6; 2292 2293 2294 mask = GEN8_AUX_CHANNEL_A; 2295 if (DISPLAY_VER(dev_priv) >= 9) 2296 mask |= GEN9_AUX_CHANNEL_B | 2297 GEN9_AUX_CHANNEL_C | 2298 GEN9_AUX_CHANNEL_D; 2299 2300 if (DISPLAY_VER(dev_priv) == 11) { 2301 mask |= ICL_AUX_CHANNEL_F; 2302 mask |= ICL_AUX_CHANNEL_E; 2303 } 2304 2305 return mask; 2306 } 2307 2308 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv) 2309 { 2310 if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv)) 2311 return RKL_DE_PIPE_IRQ_FAULT_ERRORS; 2312 else if (DISPLAY_VER(dev_priv) >= 11) 2313 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS; 2314 else if (DISPLAY_VER(dev_priv) >= 9) 2315 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2316 else 2317 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2318 } 2319 2320 static void 2321 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2322 { 2323 bool found = false; 2324 2325 if (iir & GEN8_DE_MISC_GSE) { 2326 intel_opregion_asle_intr(dev_priv); 2327 found = true; 2328 } 2329 2330 if (iir & GEN8_DE_EDP_PSR) { 2331 struct intel_encoder *encoder; 2332 u32 psr_iir; 2333 i915_reg_t iir_reg; 2334 2335 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2336 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2337 2338 if (DISPLAY_VER(dev_priv) >= 12) 2339 iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder); 2340 else 2341 iir_reg = EDP_PSR_IIR; 2342 2343 psr_iir = intel_uncore_rmw(&dev_priv->uncore, iir_reg, 0, 0); 2344 2345 if (psr_iir) 2346 found = true; 2347 2348 intel_psr_irq_handler(intel_dp, psr_iir); 2349 2350 /* prior GEN12 only have one EDP PSR */ 2351 if (DISPLAY_VER(dev_priv) < 12) 2352 break; 2353 } 2354 } 2355 2356 if (!found) 2357 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n"); 2358 } 2359 2360 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv, 2361 u32 te_trigger) 2362 { 2363 enum pipe pipe = INVALID_PIPE; 2364 enum transcoder dsi_trans; 2365 enum port port; 2366 u32 val, tmp; 2367 2368 /* 2369 * Incase of dual link, TE comes from DSI_1 2370 * this is to check if dual link is enabled 2371 */ 2372 val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0)); 2373 val &= PORT_SYNC_MODE_ENABLE; 2374 2375 /* 2376 * if dual link is enabled, then read DSI_0 2377 * transcoder registers 2378 */ 2379 port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ? 2380 PORT_A : PORT_B; 2381 dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1; 2382 2383 /* Check if DSI configured in command mode */ 2384 val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans)); 2385 val = val & OP_MODE_MASK; 2386 2387 if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) { 2388 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n"); 2389 return; 2390 } 2391 2392 /* Get PIPE for handling VBLANK event */ 2393 val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans)); 2394 switch (val & TRANS_DDI_EDP_INPUT_MASK) { 2395 case TRANS_DDI_EDP_INPUT_A_ON: 2396 pipe = PIPE_A; 2397 break; 2398 case TRANS_DDI_EDP_INPUT_B_ONOFF: 2399 pipe = PIPE_B; 2400 break; 2401 case TRANS_DDI_EDP_INPUT_C_ONOFF: 2402 pipe = PIPE_C; 2403 break; 2404 default: 2405 drm_err(&dev_priv->drm, "Invalid PIPE\n"); 2406 return; 2407 } 2408 2409 intel_handle_vblank(dev_priv, pipe); 2410 2411 /* clear TE in dsi IIR */ 2412 port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A; 2413 tmp = intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), 0, 0); 2414 } 2415 2416 static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915) 2417 { 2418 if (DISPLAY_VER(i915) >= 9) 2419 return GEN9_PIPE_PLANE1_FLIP_DONE; 2420 else 2421 return GEN8_PIPE_PRIMARY_FLIP_DONE; 2422 } 2423 2424 u32 gen8_de_pipe_underrun_mask(struct drm_i915_private *dev_priv) 2425 { 2426 u32 mask = GEN8_PIPE_FIFO_UNDERRUN; 2427 2428 if (DISPLAY_VER(dev_priv) >= 13) 2429 mask |= XELPD_PIPE_SOFT_UNDERRUN | 2430 XELPD_PIPE_HARD_UNDERRUN; 2431 2432 return mask; 2433 } 2434 2435 static irqreturn_t 2436 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2437 { 2438 irqreturn_t ret = IRQ_NONE; 2439 u32 iir; 2440 enum pipe pipe; 2441 2442 drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv)); 2443 2444 if (master_ctl & GEN8_DE_MISC_IRQ) { 2445 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR); 2446 if (iir) { 2447 intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir); 2448 ret = IRQ_HANDLED; 2449 gen8_de_misc_irq_handler(dev_priv, iir); 2450 } else { 2451 drm_err(&dev_priv->drm, 2452 "The master control interrupt lied (DE MISC)!\n"); 2453 } 2454 } 2455 2456 if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2457 iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR); 2458 if (iir) { 2459 intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir); 2460 ret = IRQ_HANDLED; 2461 gen11_hpd_irq_handler(dev_priv, iir); 2462 } else { 2463 drm_err(&dev_priv->drm, 2464 "The master control interrupt lied, (DE HPD)!\n"); 2465 } 2466 } 2467 2468 if (master_ctl & GEN8_DE_PORT_IRQ) { 2469 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR); 2470 if (iir) { 2471 bool found = false; 2472 2473 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir); 2474 ret = IRQ_HANDLED; 2475 2476 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2477 dp_aux_irq_handler(dev_priv); 2478 found = true; 2479 } 2480 2481 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 2482 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK; 2483 2484 if (hotplug_trigger) { 2485 bxt_hpd_irq_handler(dev_priv, hotplug_trigger); 2486 found = true; 2487 } 2488 } else if (IS_BROADWELL(dev_priv)) { 2489 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK; 2490 2491 if (hotplug_trigger) { 2492 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2493 found = true; 2494 } 2495 } 2496 2497 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 2498 (iir & BXT_DE_PORT_GMBUS)) { 2499 gmbus_irq_handler(dev_priv); 2500 found = true; 2501 } 2502 2503 if (DISPLAY_VER(dev_priv) >= 11) { 2504 u32 te_trigger = iir & (DSI0_TE | DSI1_TE); 2505 2506 if (te_trigger) { 2507 gen11_dsi_te_interrupt_handler(dev_priv, te_trigger); 2508 found = true; 2509 } 2510 } 2511 2512 if (!found) 2513 drm_err(&dev_priv->drm, 2514 "Unexpected DE Port interrupt\n"); 2515 } 2516 else 2517 drm_err(&dev_priv->drm, 2518 "The master control interrupt lied (DE PORT)!\n"); 2519 } 2520 2521 for_each_pipe(dev_priv, pipe) { 2522 u32 fault_errors; 2523 2524 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2525 continue; 2526 2527 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe)); 2528 if (!iir) { 2529 drm_err(&dev_priv->drm, 2530 "The master control interrupt lied (DE PIPE)!\n"); 2531 continue; 2532 } 2533 2534 ret = IRQ_HANDLED; 2535 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir); 2536 2537 if (iir & GEN8_PIPE_VBLANK) 2538 intel_handle_vblank(dev_priv, pipe); 2539 2540 if (iir & gen8_de_pipe_flip_done_mask(dev_priv)) 2541 flip_done_handler(dev_priv, pipe); 2542 2543 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2544 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2545 2546 if (iir & gen8_de_pipe_underrun_mask(dev_priv)) 2547 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2548 2549 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv); 2550 if (fault_errors) 2551 drm_err(&dev_priv->drm, 2552 "Fault errors on pipe %c: 0x%08x\n", 2553 pipe_name(pipe), 2554 fault_errors); 2555 } 2556 2557 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2558 master_ctl & GEN8_DE_PCH_IRQ) { 2559 /* 2560 * FIXME(BDW): Assume for now that the new interrupt handling 2561 * scheme also closed the SDE interrupt handling race we've seen 2562 * on older pch-split platforms. But this needs testing. 2563 */ 2564 iir = intel_uncore_read(&dev_priv->uncore, SDEIIR); 2565 if (iir) { 2566 intel_uncore_write(&dev_priv->uncore, SDEIIR, iir); 2567 ret = IRQ_HANDLED; 2568 2569 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2570 icp_irq_handler(dev_priv, iir); 2571 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2572 spt_irq_handler(dev_priv, iir); 2573 else 2574 cpt_irq_handler(dev_priv, iir); 2575 } else { 2576 /* 2577 * Like on previous PCH there seems to be something 2578 * fishy going on with forwarding PCH interrupts. 2579 */ 2580 drm_dbg(&dev_priv->drm, 2581 "The master control interrupt lied (SDE)!\n"); 2582 } 2583 } 2584 2585 return ret; 2586 } 2587 2588 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2589 { 2590 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2591 2592 /* 2593 * Now with master disabled, get a sample of level indications 2594 * for this interrupt. Indications will be cleared on related acks. 2595 * New indications can and will light up during processing, 2596 * and will generate new interrupt after enabling master. 2597 */ 2598 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2599 } 2600 2601 static inline void gen8_master_intr_enable(void __iomem * const regs) 2602 { 2603 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2604 } 2605 2606 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2607 { 2608 struct drm_i915_private *dev_priv = arg; 2609 void __iomem * const regs = dev_priv->uncore.regs; 2610 u32 master_ctl; 2611 2612 if (!intel_irqs_enabled(dev_priv)) 2613 return IRQ_NONE; 2614 2615 master_ctl = gen8_master_intr_disable(regs); 2616 if (!master_ctl) { 2617 gen8_master_intr_enable(regs); 2618 return IRQ_NONE; 2619 } 2620 2621 /* Find, queue (onto bottom-halves), then clear each source */ 2622 gen8_gt_irq_handler(to_gt(dev_priv), master_ctl); 2623 2624 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2625 if (master_ctl & ~GEN8_GT_IRQS) { 2626 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2627 gen8_de_irq_handler(dev_priv, master_ctl); 2628 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2629 } 2630 2631 gen8_master_intr_enable(regs); 2632 2633 pmu_irq_stats(dev_priv, IRQ_HANDLED); 2634 2635 return IRQ_HANDLED; 2636 } 2637 2638 static u32 2639 gen11_gu_misc_irq_ack(struct drm_i915_private *i915, const u32 master_ctl) 2640 { 2641 void __iomem * const regs = i915->uncore.regs; 2642 u32 iir; 2643 2644 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 2645 return 0; 2646 2647 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 2648 if (likely(iir)) 2649 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 2650 2651 return iir; 2652 } 2653 2654 static void 2655 gen11_gu_misc_irq_handler(struct drm_i915_private *i915, const u32 iir) 2656 { 2657 if (iir & GEN11_GU_MISC_GSE) 2658 intel_opregion_asle_intr(i915); 2659 } 2660 2661 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 2662 { 2663 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2664 2665 /* 2666 * Now with master disabled, get a sample of level indications 2667 * for this interrupt. Indications will be cleared on related acks. 2668 * New indications can and will light up during processing, 2669 * and will generate new interrupt after enabling master. 2670 */ 2671 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2672 } 2673 2674 static inline void gen11_master_intr_enable(void __iomem * const regs) 2675 { 2676 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 2677 } 2678 2679 static void 2680 gen11_display_irq_handler(struct drm_i915_private *i915) 2681 { 2682 void __iomem * const regs = i915->uncore.regs; 2683 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2684 2685 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2686 /* 2687 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2688 * for the display related bits. 2689 */ 2690 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0); 2691 gen8_de_irq_handler(i915, disp_ctl); 2692 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 2693 GEN11_DISPLAY_IRQ_ENABLE); 2694 2695 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2696 } 2697 2698 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2699 { 2700 struct drm_i915_private *i915 = arg; 2701 void __iomem * const regs = i915->uncore.regs; 2702 struct intel_gt *gt = to_gt(i915); 2703 u32 master_ctl; 2704 u32 gu_misc_iir; 2705 2706 if (!intel_irqs_enabled(i915)) 2707 return IRQ_NONE; 2708 2709 master_ctl = gen11_master_intr_disable(regs); 2710 if (!master_ctl) { 2711 gen11_master_intr_enable(regs); 2712 return IRQ_NONE; 2713 } 2714 2715 /* Find, queue (onto bottom-halves), then clear each source */ 2716 gen11_gt_irq_handler(gt, master_ctl); 2717 2718 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2719 if (master_ctl & GEN11_DISPLAY_IRQ) 2720 gen11_display_irq_handler(i915); 2721 2722 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl); 2723 2724 gen11_master_intr_enable(regs); 2725 2726 gen11_gu_misc_irq_handler(i915, gu_misc_iir); 2727 2728 pmu_irq_stats(i915, IRQ_HANDLED); 2729 2730 return IRQ_HANDLED; 2731 } 2732 2733 static inline u32 dg1_master_intr_disable(void __iomem * const regs) 2734 { 2735 u32 val; 2736 2737 /* First disable interrupts */ 2738 raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0); 2739 2740 /* Get the indication levels and ack the master unit */ 2741 val = raw_reg_read(regs, DG1_MSTR_TILE_INTR); 2742 if (unlikely(!val)) 2743 return 0; 2744 2745 raw_reg_write(regs, DG1_MSTR_TILE_INTR, val); 2746 2747 return val; 2748 } 2749 2750 static inline void dg1_master_intr_enable(void __iomem * const regs) 2751 { 2752 raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); 2753 } 2754 2755 static irqreturn_t dg1_irq_handler(int irq, void *arg) 2756 { 2757 struct drm_i915_private * const i915 = arg; 2758 struct intel_gt *gt = to_gt(i915); 2759 void __iomem * const regs = gt->uncore->regs; 2760 u32 master_tile_ctl, master_ctl; 2761 u32 gu_misc_iir; 2762 2763 if (!intel_irqs_enabled(i915)) 2764 return IRQ_NONE; 2765 2766 master_tile_ctl = dg1_master_intr_disable(regs); 2767 if (!master_tile_ctl) { 2768 dg1_master_intr_enable(regs); 2769 return IRQ_NONE; 2770 } 2771 2772 /* FIXME: we only support tile 0 for now. */ 2773 if (master_tile_ctl & DG1_MSTR_TILE(0)) { 2774 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2775 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl); 2776 } else { 2777 DRM_ERROR("Tile not supported: 0x%08x\n", master_tile_ctl); 2778 dg1_master_intr_enable(regs); 2779 return IRQ_NONE; 2780 } 2781 2782 gen11_gt_irq_handler(gt, master_ctl); 2783 2784 if (master_ctl & GEN11_DISPLAY_IRQ) 2785 gen11_display_irq_handler(i915); 2786 2787 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl); 2788 2789 dg1_master_intr_enable(regs); 2790 2791 gen11_gu_misc_irq_handler(i915, gu_misc_iir); 2792 2793 pmu_irq_stats(i915, IRQ_HANDLED); 2794 2795 return IRQ_HANDLED; 2796 } 2797 2798 /* Called from drm generic code, passed 'crtc' which 2799 * we use as a pipe index 2800 */ 2801 int i8xx_enable_vblank(struct drm_crtc *crtc) 2802 { 2803 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2804 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2805 unsigned long irqflags; 2806 2807 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2808 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2809 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2810 2811 return 0; 2812 } 2813 2814 int i915gm_enable_vblank(struct drm_crtc *crtc) 2815 { 2816 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2817 2818 /* 2819 * Vblank interrupts fail to wake the device up from C2+. 2820 * Disabling render clock gating during C-states avoids 2821 * the problem. There is a small power cost so we do this 2822 * only when vblank interrupts are actually enabled. 2823 */ 2824 if (dev_priv->vblank_enabled++ == 0) 2825 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2826 2827 return i8xx_enable_vblank(crtc); 2828 } 2829 2830 int i965_enable_vblank(struct drm_crtc *crtc) 2831 { 2832 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2833 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2834 unsigned long irqflags; 2835 2836 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2837 i915_enable_pipestat(dev_priv, pipe, 2838 PIPE_START_VBLANK_INTERRUPT_STATUS); 2839 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2840 2841 return 0; 2842 } 2843 2844 int ilk_enable_vblank(struct drm_crtc *crtc) 2845 { 2846 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2847 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2848 unsigned long irqflags; 2849 u32 bit = DISPLAY_VER(dev_priv) >= 7 ? 2850 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2851 2852 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2853 ilk_enable_display_irq(dev_priv, bit); 2854 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2855 2856 /* Even though there is no DMC, frame counter can get stuck when 2857 * PSR is active as no frames are generated. 2858 */ 2859 if (HAS_PSR(dev_priv)) 2860 drm_crtc_vblank_restore(crtc); 2861 2862 return 0; 2863 } 2864 2865 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc, 2866 bool enable) 2867 { 2868 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 2869 enum port port; 2870 2871 if (!(intel_crtc->mode_flags & 2872 (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0))) 2873 return false; 2874 2875 /* for dual link cases we consider TE from slave */ 2876 if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1) 2877 port = PORT_B; 2878 else 2879 port = PORT_A; 2880 2881 intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_MASK_REG(port), DSI_TE_EVENT, 2882 enable ? 0 : DSI_TE_EVENT); 2883 2884 intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), 0, 0); 2885 2886 return true; 2887 } 2888 2889 int bdw_enable_vblank(struct drm_crtc *_crtc) 2890 { 2891 struct intel_crtc *crtc = to_intel_crtc(_crtc); 2892 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2893 enum pipe pipe = crtc->pipe; 2894 unsigned long irqflags; 2895 2896 if (gen11_dsi_configure_te(crtc, true)) 2897 return 0; 2898 2899 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2900 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2901 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2902 2903 /* Even if there is no DMC, frame counter can get stuck when 2904 * PSR is active as no frames are generated, so check only for PSR. 2905 */ 2906 if (HAS_PSR(dev_priv)) 2907 drm_crtc_vblank_restore(&crtc->base); 2908 2909 return 0; 2910 } 2911 2912 /* Called from drm generic code, passed 'crtc' which 2913 * we use as a pipe index 2914 */ 2915 void i8xx_disable_vblank(struct drm_crtc *crtc) 2916 { 2917 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2918 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2919 unsigned long irqflags; 2920 2921 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2922 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2923 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2924 } 2925 2926 void i915gm_disable_vblank(struct drm_crtc *crtc) 2927 { 2928 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2929 2930 i8xx_disable_vblank(crtc); 2931 2932 if (--dev_priv->vblank_enabled == 0) 2933 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2934 } 2935 2936 void i965_disable_vblank(struct drm_crtc *crtc) 2937 { 2938 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2939 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2940 unsigned long irqflags; 2941 2942 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2943 i915_disable_pipestat(dev_priv, pipe, 2944 PIPE_START_VBLANK_INTERRUPT_STATUS); 2945 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2946 } 2947 2948 void ilk_disable_vblank(struct drm_crtc *crtc) 2949 { 2950 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2951 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2952 unsigned long irqflags; 2953 u32 bit = DISPLAY_VER(dev_priv) >= 7 ? 2954 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2955 2956 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2957 ilk_disable_display_irq(dev_priv, bit); 2958 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2959 } 2960 2961 void bdw_disable_vblank(struct drm_crtc *_crtc) 2962 { 2963 struct intel_crtc *crtc = to_intel_crtc(_crtc); 2964 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2965 enum pipe pipe = crtc->pipe; 2966 unsigned long irqflags; 2967 2968 if (gen11_dsi_configure_te(crtc, false)) 2969 return; 2970 2971 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2972 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2973 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2974 } 2975 2976 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 2977 { 2978 struct intel_uncore *uncore = &dev_priv->uncore; 2979 2980 if (HAS_PCH_NOP(dev_priv)) 2981 return; 2982 2983 GEN3_IRQ_RESET(uncore, SDE); 2984 2985 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 2986 intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff); 2987 } 2988 2989 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 2990 { 2991 struct intel_uncore *uncore = &dev_priv->uncore; 2992 2993 if (IS_CHERRYVIEW(dev_priv)) 2994 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 2995 else 2996 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_VLV); 2997 2998 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 2999 intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0); 3000 3001 i9xx_pipestat_irq_reset(dev_priv); 3002 3003 GEN3_IRQ_RESET(uncore, VLV_); 3004 dev_priv->irq_mask = ~0u; 3005 } 3006 3007 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 3008 { 3009 struct intel_uncore *uncore = &dev_priv->uncore; 3010 3011 u32 pipestat_mask; 3012 u32 enable_mask; 3013 enum pipe pipe; 3014 3015 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 3016 3017 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3018 for_each_pipe(dev_priv, pipe) 3019 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 3020 3021 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3022 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3023 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3024 I915_LPE_PIPE_A_INTERRUPT | 3025 I915_LPE_PIPE_B_INTERRUPT; 3026 3027 if (IS_CHERRYVIEW(dev_priv)) 3028 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 3029 I915_LPE_PIPE_C_INTERRUPT; 3030 3031 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u); 3032 3033 dev_priv->irq_mask = ~enable_mask; 3034 3035 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 3036 } 3037 3038 /* drm_dma.h hooks 3039 */ 3040 static void ilk_irq_reset(struct drm_i915_private *dev_priv) 3041 { 3042 struct intel_uncore *uncore = &dev_priv->uncore; 3043 3044 GEN3_IRQ_RESET(uncore, DE); 3045 dev_priv->irq_mask = ~0u; 3046 3047 if (GRAPHICS_VER(dev_priv) == 7) 3048 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); 3049 3050 if (IS_HASWELL(dev_priv)) { 3051 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3052 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3053 } 3054 3055 gen5_gt_irq_reset(to_gt(dev_priv)); 3056 3057 ibx_irq_reset(dev_priv); 3058 } 3059 3060 static void valleyview_irq_reset(struct drm_i915_private *dev_priv) 3061 { 3062 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0); 3063 intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER); 3064 3065 gen5_gt_irq_reset(to_gt(dev_priv)); 3066 3067 spin_lock_irq(&dev_priv->irq_lock); 3068 if (dev_priv->display_irqs_enabled) 3069 vlv_display_irq_reset(dev_priv); 3070 spin_unlock_irq(&dev_priv->irq_lock); 3071 } 3072 3073 static void gen8_display_irq_reset(struct drm_i915_private *dev_priv) 3074 { 3075 struct intel_uncore *uncore = &dev_priv->uncore; 3076 enum pipe pipe; 3077 3078 if (!HAS_DISPLAY(dev_priv)) 3079 return; 3080 3081 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3082 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3083 3084 for_each_pipe(dev_priv, pipe) 3085 if (intel_display_power_is_enabled(dev_priv, 3086 POWER_DOMAIN_PIPE(pipe))) 3087 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3088 3089 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3090 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3091 } 3092 3093 static void gen8_irq_reset(struct drm_i915_private *dev_priv) 3094 { 3095 struct intel_uncore *uncore = &dev_priv->uncore; 3096 3097 gen8_master_intr_disable(uncore->regs); 3098 3099 gen8_gt_irq_reset(to_gt(dev_priv)); 3100 gen8_display_irq_reset(dev_priv); 3101 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3102 3103 if (HAS_PCH_SPLIT(dev_priv)) 3104 ibx_irq_reset(dev_priv); 3105 3106 } 3107 3108 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv) 3109 { 3110 struct intel_uncore *uncore = &dev_priv->uncore; 3111 enum pipe pipe; 3112 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3113 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3114 3115 if (!HAS_DISPLAY(dev_priv)) 3116 return; 3117 3118 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0); 3119 3120 if (DISPLAY_VER(dev_priv) >= 12) { 3121 enum transcoder trans; 3122 3123 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3124 enum intel_display_power_domain domain; 3125 3126 domain = POWER_DOMAIN_TRANSCODER(trans); 3127 if (!intel_display_power_is_enabled(dev_priv, domain)) 3128 continue; 3129 3130 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff); 3131 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff); 3132 } 3133 } else { 3134 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 3135 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 3136 } 3137 3138 for_each_pipe(dev_priv, pipe) 3139 if (intel_display_power_is_enabled(dev_priv, 3140 POWER_DOMAIN_PIPE(pipe))) 3141 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3142 3143 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3144 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3145 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 3146 3147 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3148 GEN3_IRQ_RESET(uncore, SDE); 3149 } 3150 3151 static void gen11_irq_reset(struct drm_i915_private *dev_priv) 3152 { 3153 struct intel_gt *gt = to_gt(dev_priv); 3154 struct intel_uncore *uncore = gt->uncore; 3155 3156 gen11_master_intr_disable(dev_priv->uncore.regs); 3157 3158 gen11_gt_irq_reset(gt); 3159 gen11_display_irq_reset(dev_priv); 3160 3161 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3162 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3163 } 3164 3165 static void dg1_irq_reset(struct drm_i915_private *dev_priv) 3166 { 3167 struct intel_gt *gt = to_gt(dev_priv); 3168 struct intel_uncore *uncore = gt->uncore; 3169 3170 dg1_master_intr_disable(dev_priv->uncore.regs); 3171 3172 gen11_gt_irq_reset(gt); 3173 gen11_display_irq_reset(dev_priv); 3174 3175 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3176 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3177 } 3178 3179 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3180 u8 pipe_mask) 3181 { 3182 struct intel_uncore *uncore = &dev_priv->uncore; 3183 u32 extra_ier = GEN8_PIPE_VBLANK | 3184 gen8_de_pipe_underrun_mask(dev_priv) | 3185 gen8_de_pipe_flip_done_mask(dev_priv); 3186 enum pipe pipe; 3187 3188 spin_lock_irq(&dev_priv->irq_lock); 3189 3190 if (!intel_irqs_enabled(dev_priv)) { 3191 spin_unlock_irq(&dev_priv->irq_lock); 3192 return; 3193 } 3194 3195 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3196 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3197 dev_priv->de_irq_mask[pipe], 3198 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3199 3200 spin_unlock_irq(&dev_priv->irq_lock); 3201 } 3202 3203 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3204 u8 pipe_mask) 3205 { 3206 struct intel_uncore *uncore = &dev_priv->uncore; 3207 enum pipe pipe; 3208 3209 spin_lock_irq(&dev_priv->irq_lock); 3210 3211 if (!intel_irqs_enabled(dev_priv)) { 3212 spin_unlock_irq(&dev_priv->irq_lock); 3213 return; 3214 } 3215 3216 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3217 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3218 3219 spin_unlock_irq(&dev_priv->irq_lock); 3220 3221 /* make sure we're done processing display irqs */ 3222 intel_synchronize_irq(dev_priv); 3223 } 3224 3225 static void cherryview_irq_reset(struct drm_i915_private *dev_priv) 3226 { 3227 struct intel_uncore *uncore = &dev_priv->uncore; 3228 3229 intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0); 3230 intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ); 3231 3232 gen8_gt_irq_reset(to_gt(dev_priv)); 3233 3234 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3235 3236 spin_lock_irq(&dev_priv->irq_lock); 3237 if (dev_priv->display_irqs_enabled) 3238 vlv_display_irq_reset(dev_priv); 3239 spin_unlock_irq(&dev_priv->irq_lock); 3240 } 3241 3242 static u32 ibx_hotplug_enables(struct drm_i915_private *i915, 3243 enum hpd_pin pin) 3244 { 3245 switch (pin) { 3246 case HPD_PORT_A: 3247 /* 3248 * When CPU and PCH are on the same package, port A 3249 * HPD must be enabled in both north and south. 3250 */ 3251 return HAS_PCH_LPT_LP(i915) ? 3252 PORTA_HOTPLUG_ENABLE : 0; 3253 case HPD_PORT_B: 3254 return PORTB_HOTPLUG_ENABLE | 3255 PORTB_PULSE_DURATION_2ms; 3256 case HPD_PORT_C: 3257 return PORTC_HOTPLUG_ENABLE | 3258 PORTC_PULSE_DURATION_2ms; 3259 case HPD_PORT_D: 3260 return PORTD_HOTPLUG_ENABLE | 3261 PORTD_PULSE_DURATION_2ms; 3262 default: 3263 return 0; 3264 } 3265 } 3266 3267 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3268 { 3269 /* 3270 * Enable digital hotplug on the PCH, and configure the DP short pulse 3271 * duration to 2ms (which is the minimum in the Display Port spec). 3272 * The pulse duration bits are reserved on LPT+. 3273 */ 3274 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 3275 PORTA_HOTPLUG_ENABLE | 3276 PORTB_HOTPLUG_ENABLE | 3277 PORTC_HOTPLUG_ENABLE | 3278 PORTD_HOTPLUG_ENABLE | 3279 PORTB_PULSE_DURATION_MASK | 3280 PORTC_PULSE_DURATION_MASK | 3281 PORTD_PULSE_DURATION_MASK, 3282 intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables)); 3283 } 3284 3285 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3286 { 3287 u32 hotplug_irqs, enabled_irqs; 3288 3289 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd); 3290 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd); 3291 3292 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3293 3294 ibx_hpd_detection_setup(dev_priv); 3295 } 3296 3297 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915, 3298 enum hpd_pin pin) 3299 { 3300 switch (pin) { 3301 case HPD_PORT_A: 3302 case HPD_PORT_B: 3303 case HPD_PORT_C: 3304 case HPD_PORT_D: 3305 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin); 3306 default: 3307 return 0; 3308 } 3309 } 3310 3311 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915, 3312 enum hpd_pin pin) 3313 { 3314 switch (pin) { 3315 case HPD_PORT_TC1: 3316 case HPD_PORT_TC2: 3317 case HPD_PORT_TC3: 3318 case HPD_PORT_TC4: 3319 case HPD_PORT_TC5: 3320 case HPD_PORT_TC6: 3321 return ICP_TC_HPD_ENABLE(pin); 3322 default: 3323 return 0; 3324 } 3325 } 3326 3327 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv) 3328 { 3329 intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_DDI, 3330 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) | 3331 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) | 3332 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) | 3333 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D), 3334 intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables)); 3335 } 3336 3337 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv) 3338 { 3339 intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_TC, 3340 ICP_TC_HPD_ENABLE(HPD_PORT_TC1) | 3341 ICP_TC_HPD_ENABLE(HPD_PORT_TC2) | 3342 ICP_TC_HPD_ENABLE(HPD_PORT_TC3) | 3343 ICP_TC_HPD_ENABLE(HPD_PORT_TC4) | 3344 ICP_TC_HPD_ENABLE(HPD_PORT_TC5) | 3345 ICP_TC_HPD_ENABLE(HPD_PORT_TC6), 3346 intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables)); 3347 } 3348 3349 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3350 { 3351 u32 hotplug_irqs, enabled_irqs; 3352 3353 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd); 3354 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd); 3355 3356 if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP) 3357 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3358 3359 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3360 3361 icp_ddi_hpd_detection_setup(dev_priv); 3362 icp_tc_hpd_detection_setup(dev_priv); 3363 } 3364 3365 static u32 gen11_hotplug_enables(struct drm_i915_private *i915, 3366 enum hpd_pin pin) 3367 { 3368 switch (pin) { 3369 case HPD_PORT_TC1: 3370 case HPD_PORT_TC2: 3371 case HPD_PORT_TC3: 3372 case HPD_PORT_TC4: 3373 case HPD_PORT_TC5: 3374 case HPD_PORT_TC6: 3375 return GEN11_HOTPLUG_CTL_ENABLE(pin); 3376 default: 3377 return 0; 3378 } 3379 } 3380 3381 static void dg1_hpd_invert(struct drm_i915_private *i915) 3382 { 3383 u32 val = (INVERT_DDIA_HPD | 3384 INVERT_DDIB_HPD | 3385 INVERT_DDIC_HPD | 3386 INVERT_DDID_HPD); 3387 intel_uncore_rmw(&i915->uncore, SOUTH_CHICKEN1, 0, val); 3388 } 3389 3390 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv) 3391 { 3392 dg1_hpd_invert(dev_priv); 3393 icp_hpd_irq_setup(dev_priv); 3394 } 3395 3396 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv) 3397 { 3398 intel_uncore_rmw(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, 3399 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) | 3400 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) | 3401 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) | 3402 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) | 3403 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) | 3404 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6), 3405 intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables)); 3406 } 3407 3408 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3409 { 3410 intel_uncore_rmw(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, 3411 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) | 3412 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) | 3413 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) | 3414 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) | 3415 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) | 3416 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6), 3417 intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables)); 3418 } 3419 3420 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3421 { 3422 u32 hotplug_irqs, enabled_irqs; 3423 3424 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd); 3425 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd); 3426 3427 intel_uncore_rmw(&dev_priv->uncore, GEN11_DE_HPD_IMR, hotplug_irqs, 3428 ~enabled_irqs & hotplug_irqs); 3429 intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR); 3430 3431 gen11_tc_hpd_detection_setup(dev_priv); 3432 gen11_tbt_hpd_detection_setup(dev_priv); 3433 3434 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3435 icp_hpd_irq_setup(dev_priv); 3436 } 3437 3438 static u32 spt_hotplug_enables(struct drm_i915_private *i915, 3439 enum hpd_pin pin) 3440 { 3441 switch (pin) { 3442 case HPD_PORT_A: 3443 return PORTA_HOTPLUG_ENABLE; 3444 case HPD_PORT_B: 3445 return PORTB_HOTPLUG_ENABLE; 3446 case HPD_PORT_C: 3447 return PORTC_HOTPLUG_ENABLE; 3448 case HPD_PORT_D: 3449 return PORTD_HOTPLUG_ENABLE; 3450 default: 3451 return 0; 3452 } 3453 } 3454 3455 static u32 spt_hotplug2_enables(struct drm_i915_private *i915, 3456 enum hpd_pin pin) 3457 { 3458 switch (pin) { 3459 case HPD_PORT_E: 3460 return PORTE_HOTPLUG_ENABLE; 3461 default: 3462 return 0; 3463 } 3464 } 3465 3466 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3467 { 3468 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3469 if (HAS_PCH_CNP(dev_priv)) { 3470 intel_uncore_rmw(&dev_priv->uncore, SOUTH_CHICKEN1, CHASSIS_CLK_REQ_DURATION_MASK, 3471 CHASSIS_CLK_REQ_DURATION(0xf)); 3472 } 3473 3474 /* Enable digital hotplug on the PCH */ 3475 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 3476 PORTA_HOTPLUG_ENABLE | 3477 PORTB_HOTPLUG_ENABLE | 3478 PORTC_HOTPLUG_ENABLE | 3479 PORTD_HOTPLUG_ENABLE, 3480 intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables)); 3481 3482 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG2, PORTE_HOTPLUG_ENABLE, 3483 intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables)); 3484 } 3485 3486 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3487 { 3488 u32 hotplug_irqs, enabled_irqs; 3489 3490 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3491 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3492 3493 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd); 3494 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd); 3495 3496 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3497 3498 spt_hpd_detection_setup(dev_priv); 3499 } 3500 3501 static u32 ilk_hotplug_enables(struct drm_i915_private *i915, 3502 enum hpd_pin pin) 3503 { 3504 switch (pin) { 3505 case HPD_PORT_A: 3506 return DIGITAL_PORTA_HOTPLUG_ENABLE | 3507 DIGITAL_PORTA_PULSE_DURATION_2ms; 3508 default: 3509 return 0; 3510 } 3511 } 3512 3513 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3514 { 3515 /* 3516 * Enable digital hotplug on the CPU, and configure the DP short pulse 3517 * duration to 2ms (which is the minimum in the Display Port spec) 3518 * The pulse duration bits are reserved on HSW+. 3519 */ 3520 intel_uncore_rmw(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, 3521 DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_MASK, 3522 intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables)); 3523 } 3524 3525 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3526 { 3527 u32 hotplug_irqs, enabled_irqs; 3528 3529 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd); 3530 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd); 3531 3532 if (DISPLAY_VER(dev_priv) >= 8) 3533 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3534 else 3535 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3536 3537 ilk_hpd_detection_setup(dev_priv); 3538 3539 ibx_hpd_irq_setup(dev_priv); 3540 } 3541 3542 static u32 bxt_hotplug_enables(struct drm_i915_private *i915, 3543 enum hpd_pin pin) 3544 { 3545 u32 hotplug; 3546 3547 switch (pin) { 3548 case HPD_PORT_A: 3549 hotplug = PORTA_HOTPLUG_ENABLE; 3550 if (intel_bios_is_port_hpd_inverted(i915, PORT_A)) 3551 hotplug |= BXT_DDIA_HPD_INVERT; 3552 return hotplug; 3553 case HPD_PORT_B: 3554 hotplug = PORTB_HOTPLUG_ENABLE; 3555 if (intel_bios_is_port_hpd_inverted(i915, PORT_B)) 3556 hotplug |= BXT_DDIB_HPD_INVERT; 3557 return hotplug; 3558 case HPD_PORT_C: 3559 hotplug = PORTC_HOTPLUG_ENABLE; 3560 if (intel_bios_is_port_hpd_inverted(i915, PORT_C)) 3561 hotplug |= BXT_DDIC_HPD_INVERT; 3562 return hotplug; 3563 default: 3564 return 0; 3565 } 3566 } 3567 3568 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3569 { 3570 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 3571 PORTA_HOTPLUG_ENABLE | 3572 PORTB_HOTPLUG_ENABLE | 3573 PORTC_HOTPLUG_ENABLE | 3574 BXT_DDI_HPD_INVERT_MASK, 3575 intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables)); 3576 } 3577 3578 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3579 { 3580 u32 hotplug_irqs, enabled_irqs; 3581 3582 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd); 3583 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd); 3584 3585 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3586 3587 bxt_hpd_detection_setup(dev_priv); 3588 } 3589 3590 /* 3591 * SDEIER is also touched by the interrupt handler to work around missed PCH 3592 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3593 * instead we unconditionally enable all PCH interrupt sources here, but then 3594 * only unmask them as needed with SDEIMR. 3595 * 3596 * Note that we currently do this after installing the interrupt handler, 3597 * but before we enable the master interrupt. That should be sufficient 3598 * to avoid races with the irq handler, assuming we have MSI. Shared legacy 3599 * interrupts could still race. 3600 */ 3601 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv) 3602 { 3603 struct intel_uncore *uncore = &dev_priv->uncore; 3604 u32 mask; 3605 3606 if (HAS_PCH_NOP(dev_priv)) 3607 return; 3608 3609 if (HAS_PCH_IBX(dev_priv)) 3610 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3611 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3612 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3613 else 3614 mask = SDE_GMBUS_CPT; 3615 3616 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff); 3617 } 3618 3619 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv) 3620 { 3621 struct intel_uncore *uncore = &dev_priv->uncore; 3622 u32 display_mask, extra_mask; 3623 3624 if (GRAPHICS_VER(dev_priv) >= 7) { 3625 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3626 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3627 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3628 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3629 DE_PLANE_FLIP_DONE_IVB(PLANE_C) | 3630 DE_PLANE_FLIP_DONE_IVB(PLANE_B) | 3631 DE_PLANE_FLIP_DONE_IVB(PLANE_A) | 3632 DE_DP_A_HOTPLUG_IVB); 3633 } else { 3634 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3635 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3636 DE_PIPEA_CRC_DONE | DE_POISON); 3637 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | 3638 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3639 DE_PLANE_FLIP_DONE(PLANE_A) | 3640 DE_PLANE_FLIP_DONE(PLANE_B) | 3641 DE_DP_A_HOTPLUG); 3642 } 3643 3644 if (IS_HASWELL(dev_priv)) { 3645 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3646 display_mask |= DE_EDP_PSR_INT_HSW; 3647 } 3648 3649 if (IS_IRONLAKE_M(dev_priv)) 3650 extra_mask |= DE_PCU_EVENT; 3651 3652 dev_priv->irq_mask = ~display_mask; 3653 3654 ibx_irq_postinstall(dev_priv); 3655 3656 gen5_gt_irq_postinstall(to_gt(dev_priv)); 3657 3658 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 3659 display_mask | extra_mask); 3660 } 3661 3662 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3663 { 3664 lockdep_assert_held(&dev_priv->irq_lock); 3665 3666 if (dev_priv->display_irqs_enabled) 3667 return; 3668 3669 dev_priv->display_irqs_enabled = true; 3670 3671 if (intel_irqs_enabled(dev_priv)) { 3672 vlv_display_irq_reset(dev_priv); 3673 vlv_display_irq_postinstall(dev_priv); 3674 } 3675 } 3676 3677 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3678 { 3679 lockdep_assert_held(&dev_priv->irq_lock); 3680 3681 if (!dev_priv->display_irqs_enabled) 3682 return; 3683 3684 dev_priv->display_irqs_enabled = false; 3685 3686 if (intel_irqs_enabled(dev_priv)) 3687 vlv_display_irq_reset(dev_priv); 3688 } 3689 3690 3691 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) 3692 { 3693 gen5_gt_irq_postinstall(to_gt(dev_priv)); 3694 3695 spin_lock_irq(&dev_priv->irq_lock); 3696 if (dev_priv->display_irqs_enabled) 3697 vlv_display_irq_postinstall(dev_priv); 3698 spin_unlock_irq(&dev_priv->irq_lock); 3699 3700 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3701 intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER); 3702 } 3703 3704 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3705 { 3706 struct intel_uncore *uncore = &dev_priv->uncore; 3707 3708 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) | 3709 GEN8_PIPE_CDCLK_CRC_DONE; 3710 u32 de_pipe_enables; 3711 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv); 3712 u32 de_port_enables; 3713 u32 de_misc_masked = GEN8_DE_EDP_PSR; 3714 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3715 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3716 enum pipe pipe; 3717 3718 if (!HAS_DISPLAY(dev_priv)) 3719 return; 3720 3721 if (DISPLAY_VER(dev_priv) <= 10) 3722 de_misc_masked |= GEN8_DE_MISC_GSE; 3723 3724 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 3725 de_port_masked |= BXT_DE_PORT_GMBUS; 3726 3727 if (DISPLAY_VER(dev_priv) >= 11) { 3728 enum port port; 3729 3730 if (intel_bios_is_dsi_present(dev_priv, &port)) 3731 de_port_masked |= DSI0_TE | DSI1_TE; 3732 } 3733 3734 de_pipe_enables = de_pipe_masked | 3735 GEN8_PIPE_VBLANK | 3736 gen8_de_pipe_underrun_mask(dev_priv) | 3737 gen8_de_pipe_flip_done_mask(dev_priv); 3738 3739 de_port_enables = de_port_masked; 3740 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 3741 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3742 else if (IS_BROADWELL(dev_priv)) 3743 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK; 3744 3745 if (DISPLAY_VER(dev_priv) >= 12) { 3746 enum transcoder trans; 3747 3748 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3749 enum intel_display_power_domain domain; 3750 3751 domain = POWER_DOMAIN_TRANSCODER(trans); 3752 if (!intel_display_power_is_enabled(dev_priv, domain)) 3753 continue; 3754 3755 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans)); 3756 } 3757 } else { 3758 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3759 } 3760 3761 for_each_pipe(dev_priv, pipe) { 3762 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3763 3764 if (intel_display_power_is_enabled(dev_priv, 3765 POWER_DOMAIN_PIPE(pipe))) 3766 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3767 dev_priv->de_irq_mask[pipe], 3768 de_pipe_enables); 3769 } 3770 3771 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3772 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3773 3774 if (DISPLAY_VER(dev_priv) >= 11) { 3775 u32 de_hpd_masked = 0; 3776 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 3777 GEN11_DE_TBT_HOTPLUG_MASK; 3778 3779 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 3780 de_hpd_enables); 3781 } 3782 } 3783 3784 static void icp_irq_postinstall(struct drm_i915_private *dev_priv) 3785 { 3786 struct intel_uncore *uncore = &dev_priv->uncore; 3787 u32 mask = SDE_GMBUS_ICP; 3788 3789 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff); 3790 } 3791 3792 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) 3793 { 3794 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3795 icp_irq_postinstall(dev_priv); 3796 else if (HAS_PCH_SPLIT(dev_priv)) 3797 ibx_irq_postinstall(dev_priv); 3798 3799 gen8_gt_irq_postinstall(to_gt(dev_priv)); 3800 gen8_de_irq_postinstall(dev_priv); 3801 3802 gen8_master_intr_enable(dev_priv->uncore.regs); 3803 } 3804 3805 static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv) 3806 { 3807 if (!HAS_DISPLAY(dev_priv)) 3808 return; 3809 3810 gen8_de_irq_postinstall(dev_priv); 3811 3812 intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, 3813 GEN11_DISPLAY_IRQ_ENABLE); 3814 } 3815 3816 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) 3817 { 3818 struct intel_gt *gt = to_gt(dev_priv); 3819 struct intel_uncore *uncore = gt->uncore; 3820 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3821 3822 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3823 icp_irq_postinstall(dev_priv); 3824 3825 gen11_gt_irq_postinstall(gt); 3826 gen11_de_irq_postinstall(dev_priv); 3827 3828 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3829 3830 gen11_master_intr_enable(uncore->regs); 3831 intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ); 3832 } 3833 3834 static void dg1_irq_postinstall(struct drm_i915_private *dev_priv) 3835 { 3836 struct intel_gt *gt = to_gt(dev_priv); 3837 struct intel_uncore *uncore = gt->uncore; 3838 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3839 3840 gen11_gt_irq_postinstall(gt); 3841 3842 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3843 3844 if (HAS_DISPLAY(dev_priv)) { 3845 icp_irq_postinstall(dev_priv); 3846 gen8_de_irq_postinstall(dev_priv); 3847 intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, 3848 GEN11_DISPLAY_IRQ_ENABLE); 3849 } 3850 3851 dg1_master_intr_enable(uncore->regs); 3852 intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR); 3853 } 3854 3855 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) 3856 { 3857 gen8_gt_irq_postinstall(to_gt(dev_priv)); 3858 3859 spin_lock_irq(&dev_priv->irq_lock); 3860 if (dev_priv->display_irqs_enabled) 3861 vlv_display_irq_postinstall(dev_priv); 3862 spin_unlock_irq(&dev_priv->irq_lock); 3863 3864 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3865 intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ); 3866 } 3867 3868 static void i8xx_irq_reset(struct drm_i915_private *dev_priv) 3869 { 3870 struct intel_uncore *uncore = &dev_priv->uncore; 3871 3872 i9xx_pipestat_irq_reset(dev_priv); 3873 3874 gen2_irq_reset(uncore); 3875 dev_priv->irq_mask = ~0u; 3876 } 3877 3878 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) 3879 { 3880 struct intel_uncore *uncore = &dev_priv->uncore; 3881 u16 enable_mask; 3882 3883 intel_uncore_write16(uncore, 3884 EMR, 3885 ~(I915_ERROR_PAGE_TABLE | 3886 I915_ERROR_MEMORY_REFRESH)); 3887 3888 /* Unmask the interrupts that we always want on. */ 3889 dev_priv->irq_mask = 3890 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3891 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3892 I915_MASTER_ERROR_INTERRUPT); 3893 3894 enable_mask = 3895 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3896 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3897 I915_MASTER_ERROR_INTERRUPT | 3898 I915_USER_INTERRUPT; 3899 3900 gen2_irq_init(uncore, dev_priv->irq_mask, enable_mask); 3901 3902 /* Interrupt setup is already guaranteed to be single-threaded, this is 3903 * just to make the assert_spin_locked check happy. */ 3904 spin_lock_irq(&dev_priv->irq_lock); 3905 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3906 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3907 spin_unlock_irq(&dev_priv->irq_lock); 3908 } 3909 3910 static void i8xx_error_irq_ack(struct drm_i915_private *i915, 3911 u16 *eir, u16 *eir_stuck) 3912 { 3913 struct intel_uncore *uncore = &i915->uncore; 3914 u16 emr; 3915 3916 *eir = intel_uncore_read16(uncore, EIR); 3917 3918 if (*eir) 3919 intel_uncore_write16(uncore, EIR, *eir); 3920 3921 *eir_stuck = intel_uncore_read16(uncore, EIR); 3922 if (*eir_stuck == 0) 3923 return; 3924 3925 /* 3926 * Toggle all EMR bits to make sure we get an edge 3927 * in the ISR master error bit if we don't clear 3928 * all the EIR bits. Otherwise the edge triggered 3929 * IIR on i965/g4x wouldn't notice that an interrupt 3930 * is still pending. Also some EIR bits can't be 3931 * cleared except by handling the underlying error 3932 * (or by a GPU reset) so we mask any bit that 3933 * remains set. 3934 */ 3935 emr = intel_uncore_read16(uncore, EMR); 3936 intel_uncore_write16(uncore, EMR, 0xffff); 3937 intel_uncore_write16(uncore, EMR, emr | *eir_stuck); 3938 } 3939 3940 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 3941 u16 eir, u16 eir_stuck) 3942 { 3943 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 3944 3945 if (eir_stuck) 3946 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n", 3947 eir_stuck); 3948 } 3949 3950 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 3951 u32 *eir, u32 *eir_stuck) 3952 { 3953 u32 emr; 3954 3955 *eir = intel_uncore_rmw(&dev_priv->uncore, EIR, 0, 0); 3956 3957 *eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR); 3958 if (*eir_stuck == 0) 3959 return; 3960 3961 /* 3962 * Toggle all EMR bits to make sure we get an edge 3963 * in the ISR master error bit if we don't clear 3964 * all the EIR bits. Otherwise the edge triggered 3965 * IIR on i965/g4x wouldn't notice that an interrupt 3966 * is still pending. Also some EIR bits can't be 3967 * cleared except by handling the underlying error 3968 * (or by a GPU reset) so we mask any bit that 3969 * remains set. 3970 */ 3971 emr = intel_uncore_rmw(&dev_priv->uncore, EMR, ~0, 0xffffffff); 3972 intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck); 3973 } 3974 3975 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 3976 u32 eir, u32 eir_stuck) 3977 { 3978 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 3979 3980 if (eir_stuck) 3981 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n", 3982 eir_stuck); 3983 } 3984 3985 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 3986 { 3987 struct drm_i915_private *dev_priv = arg; 3988 irqreturn_t ret = IRQ_NONE; 3989 3990 if (!intel_irqs_enabled(dev_priv)) 3991 return IRQ_NONE; 3992 3993 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3994 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3995 3996 do { 3997 u32 pipe_stats[I915_MAX_PIPES] = {}; 3998 u16 eir = 0, eir_stuck = 0; 3999 u16 iir; 4000 4001 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); 4002 if (iir == 0) 4003 break; 4004 4005 ret = IRQ_HANDLED; 4006 4007 /* Call regardless, as some status bits might not be 4008 * signalled in iir */ 4009 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4010 4011 if (iir & I915_MASTER_ERROR_INTERRUPT) 4012 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4013 4014 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); 4015 4016 if (iir & I915_USER_INTERRUPT) 4017 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); 4018 4019 if (iir & I915_MASTER_ERROR_INTERRUPT) 4020 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 4021 4022 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4023 } while (0); 4024 4025 pmu_irq_stats(dev_priv, ret); 4026 4027 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4028 4029 return ret; 4030 } 4031 4032 static void i915_irq_reset(struct drm_i915_private *dev_priv) 4033 { 4034 struct intel_uncore *uncore = &dev_priv->uncore; 4035 4036 if (I915_HAS_HOTPLUG(dev_priv)) { 4037 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4038 intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_STAT, 0, 0); 4039 } 4040 4041 i9xx_pipestat_irq_reset(dev_priv); 4042 4043 GEN3_IRQ_RESET(uncore, GEN2_); 4044 dev_priv->irq_mask = ~0u; 4045 } 4046 4047 static void i915_irq_postinstall(struct drm_i915_private *dev_priv) 4048 { 4049 struct intel_uncore *uncore = &dev_priv->uncore; 4050 u32 enable_mask; 4051 4052 intel_uncore_write(uncore, EMR, ~(I915_ERROR_PAGE_TABLE | 4053 I915_ERROR_MEMORY_REFRESH)); 4054 4055 /* Unmask the interrupts that we always want on. */ 4056 dev_priv->irq_mask = 4057 ~(I915_ASLE_INTERRUPT | 4058 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4059 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4060 I915_MASTER_ERROR_INTERRUPT); 4061 4062 enable_mask = 4063 I915_ASLE_INTERRUPT | 4064 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4065 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4066 I915_MASTER_ERROR_INTERRUPT | 4067 I915_USER_INTERRUPT; 4068 4069 if (I915_HAS_HOTPLUG(dev_priv)) { 4070 /* Enable in IER... */ 4071 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4072 /* and unmask in IMR */ 4073 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4074 } 4075 4076 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4077 4078 /* Interrupt setup is already guaranteed to be single-threaded, this is 4079 * just to make the assert_spin_locked check happy. */ 4080 spin_lock_irq(&dev_priv->irq_lock); 4081 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4082 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4083 spin_unlock_irq(&dev_priv->irq_lock); 4084 4085 i915_enable_asle_pipestat(dev_priv); 4086 } 4087 4088 static irqreturn_t i915_irq_handler(int irq, void *arg) 4089 { 4090 struct drm_i915_private *dev_priv = arg; 4091 irqreturn_t ret = IRQ_NONE; 4092 4093 if (!intel_irqs_enabled(dev_priv)) 4094 return IRQ_NONE; 4095 4096 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4097 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4098 4099 do { 4100 u32 pipe_stats[I915_MAX_PIPES] = {}; 4101 u32 eir = 0, eir_stuck = 0; 4102 u32 hotplug_status = 0; 4103 u32 iir; 4104 4105 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR); 4106 if (iir == 0) 4107 break; 4108 4109 ret = IRQ_HANDLED; 4110 4111 if (I915_HAS_HOTPLUG(dev_priv) && 4112 iir & I915_DISPLAY_PORT_INTERRUPT) 4113 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4114 4115 /* Call regardless, as some status bits might not be 4116 * signalled in iir */ 4117 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4118 4119 if (iir & I915_MASTER_ERROR_INTERRUPT) 4120 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4121 4122 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir); 4123 4124 if (iir & I915_USER_INTERRUPT) 4125 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); 4126 4127 if (iir & I915_MASTER_ERROR_INTERRUPT) 4128 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4129 4130 if (hotplug_status) 4131 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4132 4133 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4134 } while (0); 4135 4136 pmu_irq_stats(dev_priv, ret); 4137 4138 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4139 4140 return ret; 4141 } 4142 4143 static void i965_irq_reset(struct drm_i915_private *dev_priv) 4144 { 4145 struct intel_uncore *uncore = &dev_priv->uncore; 4146 4147 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4148 intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0); 4149 4150 i9xx_pipestat_irq_reset(dev_priv); 4151 4152 GEN3_IRQ_RESET(uncore, GEN2_); 4153 dev_priv->irq_mask = ~0u; 4154 } 4155 4156 static void i965_irq_postinstall(struct drm_i915_private *dev_priv) 4157 { 4158 struct intel_uncore *uncore = &dev_priv->uncore; 4159 u32 enable_mask; 4160 u32 error_mask; 4161 4162 /* 4163 * Enable some error detection, note the instruction error mask 4164 * bit is reserved, so we leave it masked. 4165 */ 4166 if (IS_G4X(dev_priv)) { 4167 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4168 GM45_ERROR_MEM_PRIV | 4169 GM45_ERROR_CP_PRIV | 4170 I915_ERROR_MEMORY_REFRESH); 4171 } else { 4172 error_mask = ~(I915_ERROR_PAGE_TABLE | 4173 I915_ERROR_MEMORY_REFRESH); 4174 } 4175 intel_uncore_write(uncore, EMR, error_mask); 4176 4177 /* Unmask the interrupts that we always want on. */ 4178 dev_priv->irq_mask = 4179 ~(I915_ASLE_INTERRUPT | 4180 I915_DISPLAY_PORT_INTERRUPT | 4181 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4182 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4183 I915_MASTER_ERROR_INTERRUPT); 4184 4185 enable_mask = 4186 I915_ASLE_INTERRUPT | 4187 I915_DISPLAY_PORT_INTERRUPT | 4188 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4189 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4190 I915_MASTER_ERROR_INTERRUPT | 4191 I915_USER_INTERRUPT; 4192 4193 if (IS_G4X(dev_priv)) 4194 enable_mask |= I915_BSD_USER_INTERRUPT; 4195 4196 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4197 4198 /* Interrupt setup is already guaranteed to be single-threaded, this is 4199 * just to make the assert_spin_locked check happy. */ 4200 spin_lock_irq(&dev_priv->irq_lock); 4201 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4202 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4203 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4204 spin_unlock_irq(&dev_priv->irq_lock); 4205 4206 i915_enable_asle_pipestat(dev_priv); 4207 } 4208 4209 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4210 { 4211 u32 hotplug_en; 4212 4213 lockdep_assert_held(&dev_priv->irq_lock); 4214 4215 /* Note HDMI and DP share hotplug bits */ 4216 /* enable bits are the same for all generations */ 4217 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4218 /* Programming the CRT detection parameters tends 4219 to generate a spurious hotplug event about three 4220 seconds later. So just do it once. 4221 */ 4222 if (IS_G4X(dev_priv)) 4223 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4224 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4225 4226 /* Ignore TV since it's buggy */ 4227 i915_hotplug_interrupt_update_locked(dev_priv, 4228 HOTPLUG_INT_EN_MASK | 4229 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4230 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4231 hotplug_en); 4232 } 4233 4234 static irqreturn_t i965_irq_handler(int irq, void *arg) 4235 { 4236 struct drm_i915_private *dev_priv = arg; 4237 irqreturn_t ret = IRQ_NONE; 4238 4239 if (!intel_irqs_enabled(dev_priv)) 4240 return IRQ_NONE; 4241 4242 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4243 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4244 4245 do { 4246 u32 pipe_stats[I915_MAX_PIPES] = {}; 4247 u32 eir = 0, eir_stuck = 0; 4248 u32 hotplug_status = 0; 4249 u32 iir; 4250 4251 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR); 4252 if (iir == 0) 4253 break; 4254 4255 ret = IRQ_HANDLED; 4256 4257 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4258 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4259 4260 /* Call regardless, as some status bits might not be 4261 * signalled in iir */ 4262 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4263 4264 if (iir & I915_MASTER_ERROR_INTERRUPT) 4265 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4266 4267 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir); 4268 4269 if (iir & I915_USER_INTERRUPT) 4270 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], 4271 iir); 4272 4273 if (iir & I915_BSD_USER_INTERRUPT) 4274 intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0], 4275 iir >> 25); 4276 4277 if (iir & I915_MASTER_ERROR_INTERRUPT) 4278 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4279 4280 if (hotplug_status) 4281 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4282 4283 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4284 } while (0); 4285 4286 pmu_irq_stats(dev_priv, IRQ_HANDLED); 4287 4288 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 4289 4290 return ret; 4291 } 4292 4293 struct intel_hotplug_funcs { 4294 void (*hpd_irq_setup)(struct drm_i915_private *i915); 4295 }; 4296 4297 #define HPD_FUNCS(platform) \ 4298 static const struct intel_hotplug_funcs platform##_hpd_funcs = { \ 4299 .hpd_irq_setup = platform##_hpd_irq_setup, \ 4300 } 4301 4302 HPD_FUNCS(i915); 4303 HPD_FUNCS(dg1); 4304 HPD_FUNCS(gen11); 4305 HPD_FUNCS(bxt); 4306 HPD_FUNCS(icp); 4307 HPD_FUNCS(spt); 4308 HPD_FUNCS(ilk); 4309 #undef HPD_FUNCS 4310 4311 void intel_hpd_irq_setup(struct drm_i915_private *i915) 4312 { 4313 if (i915->display_irqs_enabled && i915->display.funcs.hotplug) 4314 i915->display.funcs.hotplug->hpd_irq_setup(i915); 4315 } 4316 4317 /** 4318 * intel_irq_init - initializes irq support 4319 * @dev_priv: i915 device instance 4320 * 4321 * This function initializes all the irq support including work items, timers 4322 * and all the vtables. It does not setup the interrupt itself though. 4323 */ 4324 void intel_irq_init(struct drm_i915_private *dev_priv) 4325 { 4326 int i; 4327 4328 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work); 4329 for (i = 0; i < MAX_L3_SLICES; ++i) 4330 dev_priv->l3_parity.remap_info[i] = NULL; 4331 4332 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ 4333 if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11) 4334 to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16; 4335 4336 if (!HAS_DISPLAY(dev_priv)) 4337 return; 4338 4339 intel_hpd_init_pins(dev_priv); 4340 4341 intel_hpd_init_early(dev_priv); 4342 4343 dev_priv->drm.vblank_disable_immediate = true; 4344 4345 /* Most platforms treat the display irq block as an always-on 4346 * power domain. vlv/chv can disable it at runtime and need 4347 * special care to avoid writing any of the display block registers 4348 * outside of the power domain. We defer setting up the display irqs 4349 * in this case to the runtime pm. 4350 */ 4351 dev_priv->display_irqs_enabled = true; 4352 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4353 dev_priv->display_irqs_enabled = false; 4354 4355 if (HAS_GMCH(dev_priv)) { 4356 if (I915_HAS_HOTPLUG(dev_priv)) 4357 dev_priv->display.funcs.hotplug = &i915_hpd_funcs; 4358 } else { 4359 if (HAS_PCH_DG2(dev_priv)) 4360 dev_priv->display.funcs.hotplug = &icp_hpd_funcs; 4361 else if (HAS_PCH_DG1(dev_priv)) 4362 dev_priv->display.funcs.hotplug = &dg1_hpd_funcs; 4363 else if (DISPLAY_VER(dev_priv) >= 11) 4364 dev_priv->display.funcs.hotplug = &gen11_hpd_funcs; 4365 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 4366 dev_priv->display.funcs.hotplug = &bxt_hpd_funcs; 4367 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 4368 dev_priv->display.funcs.hotplug = &icp_hpd_funcs; 4369 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 4370 dev_priv->display.funcs.hotplug = &spt_hpd_funcs; 4371 else 4372 dev_priv->display.funcs.hotplug = &ilk_hpd_funcs; 4373 } 4374 } 4375 4376 /** 4377 * intel_irq_fini - deinitializes IRQ support 4378 * @i915: i915 device instance 4379 * 4380 * This function deinitializes all the IRQ support. 4381 */ 4382 void intel_irq_fini(struct drm_i915_private *i915) 4383 { 4384 int i; 4385 4386 for (i = 0; i < MAX_L3_SLICES; ++i) 4387 kfree(i915->l3_parity.remap_info[i]); 4388 } 4389 4390 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) 4391 { 4392 if (HAS_GMCH(dev_priv)) { 4393 if (IS_CHERRYVIEW(dev_priv)) 4394 return cherryview_irq_handler; 4395 else if (IS_VALLEYVIEW(dev_priv)) 4396 return valleyview_irq_handler; 4397 else if (GRAPHICS_VER(dev_priv) == 4) 4398 return i965_irq_handler; 4399 else if (GRAPHICS_VER(dev_priv) == 3) 4400 return i915_irq_handler; 4401 else 4402 return i8xx_irq_handler; 4403 } else { 4404 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) 4405 return dg1_irq_handler; 4406 else if (GRAPHICS_VER(dev_priv) >= 11) 4407 return gen11_irq_handler; 4408 else if (GRAPHICS_VER(dev_priv) >= 8) 4409 return gen8_irq_handler; 4410 else 4411 return ilk_irq_handler; 4412 } 4413 } 4414 4415 static void intel_irq_reset(struct drm_i915_private *dev_priv) 4416 { 4417 if (HAS_GMCH(dev_priv)) { 4418 if (IS_CHERRYVIEW(dev_priv)) 4419 cherryview_irq_reset(dev_priv); 4420 else if (IS_VALLEYVIEW(dev_priv)) 4421 valleyview_irq_reset(dev_priv); 4422 else if (GRAPHICS_VER(dev_priv) == 4) 4423 i965_irq_reset(dev_priv); 4424 else if (GRAPHICS_VER(dev_priv) == 3) 4425 i915_irq_reset(dev_priv); 4426 else 4427 i8xx_irq_reset(dev_priv); 4428 } else { 4429 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) 4430 dg1_irq_reset(dev_priv); 4431 else if (GRAPHICS_VER(dev_priv) >= 11) 4432 gen11_irq_reset(dev_priv); 4433 else if (GRAPHICS_VER(dev_priv) >= 8) 4434 gen8_irq_reset(dev_priv); 4435 else 4436 ilk_irq_reset(dev_priv); 4437 } 4438 } 4439 4440 static void intel_irq_postinstall(struct drm_i915_private *dev_priv) 4441 { 4442 if (HAS_GMCH(dev_priv)) { 4443 if (IS_CHERRYVIEW(dev_priv)) 4444 cherryview_irq_postinstall(dev_priv); 4445 else if (IS_VALLEYVIEW(dev_priv)) 4446 valleyview_irq_postinstall(dev_priv); 4447 else if (GRAPHICS_VER(dev_priv) == 4) 4448 i965_irq_postinstall(dev_priv); 4449 else if (GRAPHICS_VER(dev_priv) == 3) 4450 i915_irq_postinstall(dev_priv); 4451 else 4452 i8xx_irq_postinstall(dev_priv); 4453 } else { 4454 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) 4455 dg1_irq_postinstall(dev_priv); 4456 else if (GRAPHICS_VER(dev_priv) >= 11) 4457 gen11_irq_postinstall(dev_priv); 4458 else if (GRAPHICS_VER(dev_priv) >= 8) 4459 gen8_irq_postinstall(dev_priv); 4460 else 4461 ilk_irq_postinstall(dev_priv); 4462 } 4463 } 4464 4465 /** 4466 * intel_irq_install - enables the hardware interrupt 4467 * @dev_priv: i915 device instance 4468 * 4469 * This function enables the hardware interrupt handling, but leaves the hotplug 4470 * handling still disabled. It is called after intel_irq_init(). 4471 * 4472 * In the driver load and resume code we need working interrupts in a few places 4473 * but don't want to deal with the hassle of concurrent probe and hotplug 4474 * workers. Hence the split into this two-stage approach. 4475 */ 4476 int intel_irq_install(struct drm_i915_private *dev_priv) 4477 { 4478 int irq = to_pci_dev(dev_priv->drm.dev)->irq; 4479 int ret; 4480 4481 /* 4482 * We enable some interrupt sources in our postinstall hooks, so mark 4483 * interrupts as enabled _before_ actually enabling them to avoid 4484 * special cases in our ordering checks. 4485 */ 4486 dev_priv->runtime_pm.irqs_enabled = true; 4487 4488 dev_priv->irq_enabled = true; 4489 4490 intel_irq_reset(dev_priv); 4491 4492 ret = request_irq(irq, intel_irq_handler(dev_priv), 4493 IRQF_SHARED, DRIVER_NAME, dev_priv); 4494 if (ret < 0) { 4495 dev_priv->irq_enabled = false; 4496 return ret; 4497 } 4498 4499 intel_irq_postinstall(dev_priv); 4500 4501 return ret; 4502 } 4503 4504 /** 4505 * intel_irq_uninstall - finilizes all irq handling 4506 * @dev_priv: i915 device instance 4507 * 4508 * This stops interrupt and hotplug handling and unregisters and frees all 4509 * resources acquired in the init functions. 4510 */ 4511 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4512 { 4513 int irq = to_pci_dev(dev_priv->drm.dev)->irq; 4514 4515 /* 4516 * FIXME we can get called twice during driver probe 4517 * error handling as well as during driver remove due to 4518 * intel_modeset_driver_remove() calling us out of sequence. 4519 * Would be nice if it didn't do that... 4520 */ 4521 if (!dev_priv->irq_enabled) 4522 return; 4523 4524 dev_priv->irq_enabled = false; 4525 4526 intel_irq_reset(dev_priv); 4527 4528 free_irq(irq, dev_priv); 4529 4530 intel_hpd_cancel_work(dev_priv); 4531 dev_priv->runtime_pm.irqs_enabled = false; 4532 } 4533 4534 /** 4535 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4536 * @dev_priv: i915 device instance 4537 * 4538 * This function is used to disable interrupts at runtime, both in the runtime 4539 * pm and the system suspend/resume code. 4540 */ 4541 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4542 { 4543 intel_irq_reset(dev_priv); 4544 dev_priv->runtime_pm.irqs_enabled = false; 4545 intel_synchronize_irq(dev_priv); 4546 } 4547 4548 /** 4549 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4550 * @dev_priv: i915 device instance 4551 * 4552 * This function is used to enable interrupts at runtime, both in the runtime 4553 * pm and the system suspend/resume code. 4554 */ 4555 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4556 { 4557 dev_priv->runtime_pm.irqs_enabled = true; 4558 intel_irq_reset(dev_priv); 4559 intel_irq_postinstall(dev_priv); 4560 } 4561 4562 bool intel_irqs_enabled(struct drm_i915_private *dev_priv) 4563 { 4564 return dev_priv->runtime_pm.irqs_enabled; 4565 } 4566 4567 void intel_synchronize_irq(struct drm_i915_private *i915) 4568 { 4569 synchronize_irq(to_pci_dev(i915->drm.dev)->irq); 4570 } 4571 4572 void intel_synchronize_hardirq(struct drm_i915_private *i915) 4573 { 4574 synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq); 4575 } 4576