xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 62e7ca52)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IMR(which)); \
87 	I915_WRITE(GEN8_##type##_IER(which), 0); \
88 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 	POSTING_READ(GEN8_##type##_IIR(which)); \
90 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 	POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93 
94 #define GEN5_IRQ_RESET(type) do { \
95 	I915_WRITE(type##IMR, 0xffffffff); \
96 	POSTING_READ(type##IMR); \
97 	I915_WRITE(type##IER, 0); \
98 	I915_WRITE(type##IIR, 0xffffffff); \
99 	POSTING_READ(type##IIR); \
100 	I915_WRITE(type##IIR, 0xffffffff); \
101 	POSTING_READ(type##IIR); \
102 } while (0)
103 
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 	u32 val = I915_READ(reg); \
109 	if (val) { \
110 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 		     (reg), val); \
112 		I915_WRITE((reg), 0xffffffff); \
113 		POSTING_READ(reg); \
114 		I915_WRITE((reg), 0xffffffff); \
115 		POSTING_READ(reg); \
116 	} \
117 } while (0)
118 
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 	POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125 
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 	I915_WRITE(type##IMR, (imr_val)); \
129 	I915_WRITE(type##IER, (ier_val)); \
130 	POSTING_READ(type##IER); \
131 } while (0)
132 
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 	assert_spin_locked(&dev_priv->irq_lock);
138 
139 	if (WARN_ON(dev_priv->pm.irqs_disabled))
140 		return;
141 
142 	if ((dev_priv->irq_mask & mask) != 0) {
143 		dev_priv->irq_mask &= ~mask;
144 		I915_WRITE(DEIMR, dev_priv->irq_mask);
145 		POSTING_READ(DEIMR);
146 	}
147 }
148 
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 	assert_spin_locked(&dev_priv->irq_lock);
153 
154 	if (WARN_ON(dev_priv->pm.irqs_disabled))
155 		return;
156 
157 	if ((dev_priv->irq_mask & mask) != mask) {
158 		dev_priv->irq_mask |= mask;
159 		I915_WRITE(DEIMR, dev_priv->irq_mask);
160 		POSTING_READ(DEIMR);
161 	}
162 }
163 
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 			      uint32_t interrupt_mask,
172 			      uint32_t enabled_irq_mask)
173 {
174 	assert_spin_locked(&dev_priv->irq_lock);
175 
176 	if (WARN_ON(dev_priv->pm.irqs_disabled))
177 		return;
178 
179 	dev_priv->gt_irq_mask &= ~interrupt_mask;
180 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 	POSTING_READ(GTIMR);
183 }
184 
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189 
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 	ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194 
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 			      uint32_t interrupt_mask,
203 			      uint32_t enabled_irq_mask)
204 {
205 	uint32_t new_val;
206 
207 	assert_spin_locked(&dev_priv->irq_lock);
208 
209 	if (WARN_ON(dev_priv->pm.irqs_disabled))
210 		return;
211 
212 	new_val = dev_priv->pm_irq_mask;
213 	new_val &= ~interrupt_mask;
214 	new_val |= (~enabled_irq_mask & interrupt_mask);
215 
216 	if (new_val != dev_priv->pm_irq_mask) {
217 		dev_priv->pm_irq_mask = new_val;
218 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 		POSTING_READ(GEN6_PMIMR);
220 	}
221 }
222 
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, mask);
226 }
227 
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 	snb_update_pm_irq(dev_priv, mask, 0);
231 }
232 
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 	struct drm_i915_private *dev_priv = dev->dev_private;
236 	struct intel_crtc *crtc;
237 	enum pipe pipe;
238 
239 	assert_spin_locked(&dev_priv->irq_lock);
240 
241 	for_each_pipe(pipe) {
242 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243 
244 		if (crtc->cpu_fifo_underrun_disabled)
245 			return false;
246 	}
247 
248 	return true;
249 }
250 
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	uint32_t new_val;
264 
265 	assert_spin_locked(&dev_priv->irq_lock);
266 
267 	if (WARN_ON(dev_priv->pm.irqs_disabled))
268 		return;
269 
270 	new_val = dev_priv->pm_irq_mask;
271 	new_val &= ~interrupt_mask;
272 	new_val |= (~enabled_irq_mask & interrupt_mask);
273 
274 	if (new_val != dev_priv->pm_irq_mask) {
275 		dev_priv->pm_irq_mask = new_val;
276 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 		POSTING_READ(GEN8_GT_IMR(2));
278 	}
279 }
280 
281 void bdw_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285 
286 void bdw_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 	bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290 
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 	struct drm_i915_private *dev_priv = dev->dev_private;
294 	enum pipe pipe;
295 	struct intel_crtc *crtc;
296 
297 	assert_spin_locked(&dev_priv->irq_lock);
298 
299 	for_each_pipe(pipe) {
300 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301 
302 		if (crtc->pch_fifo_underrun_disabled)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 	struct drm_i915_private *dev_priv = dev->dev_private;
312 	struct intel_crtc *crtc;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
316 
317 	for_each_intel_crtc(dev, crtc) {
318 		u32 reg = PIPESTAT(crtc->pipe);
319 		u32 pipestat;
320 
321 		if (crtc->cpu_fifo_underrun_disabled)
322 			continue;
323 
324 		pipestat = I915_READ(reg) & 0xffff0000;
325 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 			continue;
327 
328 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 		POSTING_READ(reg);
330 
331 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 	}
333 
334 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336 
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 					     enum pipe pipe,
339 					     bool enable, bool old)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	u32 reg = PIPESTAT(pipe);
343 	u32 pipestat = I915_READ(reg) & 0xffff0000;
344 
345 	assert_spin_locked(&dev_priv->irq_lock);
346 
347 	if (enable) {
348 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 		POSTING_READ(reg);
350 	} else {
351 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 	}
354 }
355 
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 						 enum pipe pipe, bool enable)
358 {
359 	struct drm_i915_private *dev_priv = dev->dev_private;
360 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 					  DE_PIPEB_FIFO_UNDERRUN;
362 
363 	if (enable)
364 		ironlake_enable_display_irq(dev_priv, bit);
365 	else
366 		ironlake_disable_display_irq(dev_priv, bit);
367 }
368 
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 						  enum pipe pipe,
371 						  bool enable, bool old)
372 {
373 	struct drm_i915_private *dev_priv = dev->dev_private;
374 	if (enable) {
375 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376 
377 		if (!ivb_can_enable_err_int(dev))
378 			return;
379 
380 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 	} else {
382 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383 
384 		if (old &&
385 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 				  pipe_name(pipe));
388 		}
389 	}
390 }
391 
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 						  enum pipe pipe, bool enable)
394 {
395 	struct drm_i915_private *dev_priv = dev->dev_private;
396 
397 	assert_spin_locked(&dev_priv->irq_lock);
398 
399 	if (enable)
400 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 	else
402 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406 
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 					 uint32_t interrupt_mask,
415 					 uint32_t enabled_irq_mask)
416 {
417 	uint32_t sdeimr = I915_READ(SDEIMR);
418 	sdeimr &= ~interrupt_mask;
419 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	if (WARN_ON(dev_priv->pm.irqs_disabled))
424 		return;
425 
426 	I915_WRITE(SDEIMR, sdeimr);
427 	POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 	ibx_display_interrupt_update((dev_priv), (bits), 0)
433 
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 					    enum transcoder pch_transcoder,
436 					    bool enable)
437 {
438 	struct drm_i915_private *dev_priv = dev->dev_private;
439 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441 
442 	if (enable)
443 		ibx_enable_display_interrupt(dev_priv, bit);
444 	else
445 		ibx_disable_display_interrupt(dev_priv, bit);
446 }
447 
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 					    enum transcoder pch_transcoder,
450 					    bool enable, bool old)
451 {
452 	struct drm_i915_private *dev_priv = dev->dev_private;
453 
454 	if (enable) {
455 		I915_WRITE(SERR_INT,
456 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457 
458 		if (!cpt_can_enable_serr_int(dev))
459 			return;
460 
461 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 	} else {
463 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464 
465 		if (old && I915_READ(SERR_INT) &
466 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 				  transcoder_name(pch_transcoder));
469 		}
470 	}
471 }
472 
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 						    enum pipe pipe, bool enable)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 	bool old;
494 
495 	assert_spin_locked(&dev_priv->irq_lock);
496 
497 	old = !intel_crtc->cpu_fifo_underrun_disabled;
498 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
499 
500 	if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 	else if (IS_GEN5(dev) || IS_GEN6(dev))
503 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 	else if (IS_GEN7(dev))
505 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 	else if (IS_GEN8(dev))
507 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508 
509 	return old;
510 }
511 
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 					   enum pipe pipe, bool enable)
514 {
515 	struct drm_i915_private *dev_priv = dev->dev_private;
516 	unsigned long flags;
517 	bool ret;
518 
519 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522 
523 	return ret;
524 }
525 
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 						  enum pipe pipe)
528 {
529 	struct drm_i915_private *dev_priv = dev->dev_private;
530 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532 
533 	return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535 
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 					   enum transcoder pch_transcoder,
552 					   bool enable)
553 {
554 	struct drm_i915_private *dev_priv = dev->dev_private;
555 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 	unsigned long flags;
558 	bool old;
559 
560 	/*
561 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 	 * has only one pch transcoder A that all pipes can use. To avoid racy
563 	 * pch transcoder -> pipe lookups from interrupt code simply store the
564 	 * underrun statistics in crtc A. Since we never expose this anywhere
565 	 * nor use it outside of the fifo underrun code here using the "wrong"
566 	 * crtc on LPT won't cause issues.
567 	 */
568 
569 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
570 
571 	old = !intel_crtc->pch_fifo_underrun_disabled;
572 	intel_crtc->pch_fifo_underrun_disabled = !enable;
573 
574 	if (HAS_PCH_IBX(dev))
575 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 	else
577 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578 
579 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 	return old;
581 }
582 
583 
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 		       u32 enable_mask, u32 status_mask)
587 {
588 	u32 reg = PIPESTAT(pipe);
589 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590 
591 	assert_spin_locked(&dev_priv->irq_lock);
592 
593 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 		      pipe_name(pipe), enable_mask, status_mask))
597 		return;
598 
599 	if ((pipestat & enable_mask) == enable_mask)
600 		return;
601 
602 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603 
604 	/* Enable the interrupt, clear any pending status */
605 	pipestat |= enable_mask | status_mask;
606 	I915_WRITE(reg, pipestat);
607 	POSTING_READ(reg);
608 }
609 
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 		        u32 enable_mask, u32 status_mask)
613 {
614 	u32 reg = PIPESTAT(pipe);
615 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616 
617 	assert_spin_locked(&dev_priv->irq_lock);
618 
619 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 		      pipe_name(pipe), enable_mask, status_mask))
623 		return;
624 
625 	if ((pipestat & enable_mask) == 0)
626 		return;
627 
628 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629 
630 	pipestat &= ~enable_mask;
631 	I915_WRITE(reg, pipestat);
632 	POSTING_READ(reg);
633 }
634 
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 	u32 enable_mask = status_mask << 16;
638 
639 	/*
640 	 * On pipe A we don't support the PSR interrupt yet,
641 	 * on pipe B and C the same bit MBZ.
642 	 */
643 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 		return 0;
645 	/*
646 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 	 * A the same bit is for perf counters which we don't use either.
648 	 */
649 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 		return 0;
651 
652 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659 
660 	return enable_mask;
661 }
662 
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 		     u32 status_mask)
666 {
667 	u32 enable_mask;
668 
669 	if (IS_VALLEYVIEW(dev_priv->dev))
670 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 							   status_mask);
672 	else
673 		enable_mask = status_mask << 16;
674 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676 
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 		      u32 status_mask)
680 {
681 	u32 enable_mask;
682 
683 	if (IS_VALLEYVIEW(dev_priv->dev))
684 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 							   status_mask);
686 	else
687 		enable_mask = status_mask << 16;
688 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690 
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 	struct drm_i915_private *dev_priv = dev->dev_private;
697 	unsigned long irqflags;
698 
699 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 		return;
701 
702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703 
704 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 	if (INTEL_INFO(dev)->gen >= 4)
706 		i915_enable_pipestat(dev_priv, PIPE_A,
707 				     PIPE_LEGACY_BLC_EVENT_STATUS);
708 
709 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711 
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 
726 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 		/* Locking is horribly broken here, but whatever. */
728 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730 
731 		return intel_crtc->active;
732 	} else {
733 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 	}
735 }
736 
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786 
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 	/* Gen2 doesn't have a hardware frame counter */
790 	return 0;
791 }
792 
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	unsigned long high_frame;
800 	unsigned long low_frame;
801 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802 
803 	if (!i915_pipe_enabled(dev, pipe)) {
804 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 				"pipe %c\n", pipe_name(pipe));
806 		return 0;
807 	}
808 
809 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 		struct intel_crtc *intel_crtc =
811 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 		const struct drm_display_mode *mode =
813 			&intel_crtc->config.adjusted_mode;
814 
815 		htotal = mode->crtc_htotal;
816 		hsync_start = mode->crtc_hsync_start;
817 		vbl_start = mode->crtc_vblank_start;
818 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 	} else {
821 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
822 
823 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 	}
830 
831 	/* Convert to pixel count */
832 	vbl_start *= htotal;
833 
834 	/* Start of vblank event occurs at start of hsync */
835 	vbl_start -= htotal - hsync_start;
836 
837 	high_frame = PIPEFRAME(pipe);
838 	low_frame = PIPEFRAMEPIXEL(pipe);
839 
840 	/*
841 	 * High & low register fields aren't synchronized, so make sure
842 	 * we get a low value that's stable across two reads of the high
843 	 * register.
844 	 */
845 	do {
846 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 		low   = I915_READ(low_frame);
848 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 	} while (high1 != high2);
850 
851 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 	pixel = low & PIPE_PIXEL_MASK;
853 	low >>= PIPE_FRAME_LOW_SHIFT;
854 
855 	/*
856 	 * The frame counter increments at beginning of active.
857 	 * Cook up a vblank counter by also checking the pixel
858 	 * counter against vblank start.
859 	 */
860 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862 
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 	struct drm_i915_private *dev_priv = dev->dev_private;
866 	int reg = PIPE_FRMCOUNT_GM45(pipe);
867 
868 	if (!i915_pipe_enabled(dev, pipe)) {
869 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 				 "pipe %c\n", pipe_name(pipe));
871 		return 0;
872 	}
873 
874 	return I915_READ(reg);
875 }
876 
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879 
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 	struct drm_device *dev = crtc->base.dev;
883 	struct drm_i915_private *dev_priv = dev->dev_private;
884 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 	enum pipe pipe = crtc->pipe;
886 	int position, vtotal;
887 
888 	vtotal = mode->crtc_vtotal;
889 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 		vtotal /= 2;
891 
892 	if (IS_GEN2(dev))
893 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 	else
895 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896 
897 	/*
898 	 * See update_scanline_offset() for the details on the
899 	 * scanline_offset adjustment.
900 	 */
901 	return (position + crtc->scanline_offset) % vtotal;
902 }
903 
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 				    unsigned int flags, int *vpos, int *hpos,
906 				    ktime_t *stime, ktime_t *etime)
907 {
908 	struct drm_i915_private *dev_priv = dev->dev_private;
909 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 	int position;
913 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 	bool in_vbl = true;
915 	int ret = 0;
916 	unsigned long irqflags;
917 
918 	if (!intel_crtc->active) {
919 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 				 "pipe %c\n", pipe_name(pipe));
921 		return 0;
922 	}
923 
924 	htotal = mode->crtc_htotal;
925 	hsync_start = mode->crtc_hsync_start;
926 	vtotal = mode->crtc_vtotal;
927 	vbl_start = mode->crtc_vblank_start;
928 	vbl_end = mode->crtc_vblank_end;
929 
930 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 		vbl_end /= 2;
933 		vtotal /= 2;
934 	}
935 
936 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937 
938 	/*
939 	 * Lock uncore.lock, as we will do multiple timing critical raw
940 	 * register reads, potentially with preemption disabled, so the
941 	 * following code must not block on uncore.lock.
942 	 */
943 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944 
945 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946 
947 	/* Get optional system timestamp before query. */
948 	if (stime)
949 		*stime = ktime_get();
950 
951 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 		/* No obvious pixelcount register. Only query vertical
953 		 * scanout position from Display scan line register.
954 		 */
955 		position = __intel_get_crtc_scanline(intel_crtc);
956 	} else {
957 		/* Have access to pixelcount since start of frame.
958 		 * We can split this into vertical and horizontal
959 		 * scanout position.
960 		 */
961 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962 
963 		/* convert to pixel counts */
964 		vbl_start *= htotal;
965 		vbl_end *= htotal;
966 		vtotal *= htotal;
967 
968 		/*
969 		 * In interlaced modes, the pixel counter counts all pixels,
970 		 * so one field will have htotal more pixels. In order to avoid
971 		 * the reported position from jumping backwards when the pixel
972 		 * counter is beyond the length of the shorter field, just
973 		 * clamp the position the length of the shorter field. This
974 		 * matches how the scanline counter based position works since
975 		 * the scanline counter doesn't count the two half lines.
976 		 */
977 		if (position >= vtotal)
978 			position = vtotal - 1;
979 
980 		/*
981 		 * Start of vblank interrupt is triggered at start of hsync,
982 		 * just prior to the first active line of vblank. However we
983 		 * consider lines to start at the leading edge of horizontal
984 		 * active. So, should we get here before we've crossed into
985 		 * the horizontal active of the first line in vblank, we would
986 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 		 * always add htotal-hsync_start to the current pixel position.
988 		 */
989 		position = (position + htotal - hsync_start) % vtotal;
990 	}
991 
992 	/* Get optional system timestamp after query. */
993 	if (etime)
994 		*etime = ktime_get();
995 
996 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997 
998 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999 
1000 	in_vbl = position >= vbl_start && position < vbl_end;
1001 
1002 	/*
1003 	 * While in vblank, position will be negative
1004 	 * counting up towards 0 at vbl_end. And outside
1005 	 * vblank, position will be positive counting
1006 	 * up since vbl_end.
1007 	 */
1008 	if (position >= vbl_start)
1009 		position -= vbl_end;
1010 	else
1011 		position += vtotal - vbl_end;
1012 
1013 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 		*vpos = position;
1015 		*hpos = 0;
1016 	} else {
1017 		*vpos = position / htotal;
1018 		*hpos = position - (*vpos * htotal);
1019 	}
1020 
1021 	/* In vblank? */
1022 	if (in_vbl)
1023 		ret |= DRM_SCANOUTPOS_INVBL;
1024 
1025 	return ret;
1026 }
1027 
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 	unsigned long irqflags;
1032 	int position;
1033 
1034 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 	position = __intel_get_crtc_scanline(crtc);
1036 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037 
1038 	return position;
1039 }
1040 
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 			      int *max_error,
1043 			      struct timeval *vblank_time,
1044 			      unsigned flags)
1045 {
1046 	struct drm_crtc *crtc;
1047 
1048 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 		DRM_ERROR("Invalid crtc %d\n", pipe);
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* Get drm_crtc to timestamp: */
1054 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 	if (crtc == NULL) {
1056 		DRM_ERROR("Invalid crtc %d\n", pipe);
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (!crtc->enabled) {
1061 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 		return -EBUSY;
1063 	}
1064 
1065 	/* Helper routine in DRM core does all the work: */
1066 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 						     vblank_time, flags,
1068 						     crtc,
1069 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071 
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 				struct drm_connector *connector)
1074 {
1075 	enum drm_connector_status old_status;
1076 
1077 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 	old_status = connector->status;
1079 
1080 	connector->status = connector->funcs->detect(connector, false);
1081 	if (old_status == connector->status)
1082 		return false;
1083 
1084 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 		      connector->base.id,
1086 		      connector->name,
1087 		      drm_get_connector_status_name(old_status),
1088 		      drm_get_connector_status_name(connector->status));
1089 
1090 	return true;
1091 }
1092 
1093 /*
1094  * Handle hotplug events outside the interrupt handler proper.
1095  */
1096 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1097 
1098 static void i915_hotplug_work_func(struct work_struct *work)
1099 {
1100 	struct drm_i915_private *dev_priv =
1101 		container_of(work, struct drm_i915_private, hotplug_work);
1102 	struct drm_device *dev = dev_priv->dev;
1103 	struct drm_mode_config *mode_config = &dev->mode_config;
1104 	struct intel_connector *intel_connector;
1105 	struct intel_encoder *intel_encoder;
1106 	struct drm_connector *connector;
1107 	unsigned long irqflags;
1108 	bool hpd_disabled = false;
1109 	bool changed = false;
1110 	u32 hpd_event_bits;
1111 
1112 	/* HPD irq before everything is fully set up. */
1113 	if (!dev_priv->enable_hotplug_processing)
1114 		return;
1115 
1116 	mutex_lock(&mode_config->mutex);
1117 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1118 
1119 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1120 
1121 	hpd_event_bits = dev_priv->hpd_event_bits;
1122 	dev_priv->hpd_event_bits = 0;
1123 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1124 		intel_connector = to_intel_connector(connector);
1125 		intel_encoder = intel_connector->encoder;
1126 		if (intel_encoder->hpd_pin > HPD_NONE &&
1127 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1128 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1129 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1130 				 "switching from hotplug detection to polling\n",
1131 				connector->name);
1132 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1133 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1134 				| DRM_CONNECTOR_POLL_DISCONNECT;
1135 			hpd_disabled = true;
1136 		}
1137 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1138 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1139 				      connector->name, intel_encoder->hpd_pin);
1140 		}
1141 	}
1142 	 /* if there were no outputs to poll, poll was disabled,
1143 	  * therefore make sure it's enabled when disabling HPD on
1144 	  * some connectors */
1145 	if (hpd_disabled) {
1146 		drm_kms_helper_poll_enable(dev);
1147 		mod_timer(&dev_priv->hotplug_reenable_timer,
1148 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1149 	}
1150 
1151 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1152 
1153 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1154 		intel_connector = to_intel_connector(connector);
1155 		intel_encoder = intel_connector->encoder;
1156 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1157 			if (intel_encoder->hot_plug)
1158 				intel_encoder->hot_plug(intel_encoder);
1159 			if (intel_hpd_irq_event(dev, connector))
1160 				changed = true;
1161 		}
1162 	}
1163 	mutex_unlock(&mode_config->mutex);
1164 
1165 	if (changed)
1166 		drm_kms_helper_hotplug_event(dev);
1167 }
1168 
1169 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1170 {
1171 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
1172 }
1173 
1174 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1175 {
1176 	struct drm_i915_private *dev_priv = dev->dev_private;
1177 	u32 busy_up, busy_down, max_avg, min_avg;
1178 	u8 new_delay;
1179 
1180 	spin_lock(&mchdev_lock);
1181 
1182 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1183 
1184 	new_delay = dev_priv->ips.cur_delay;
1185 
1186 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1187 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1188 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1189 	max_avg = I915_READ(RCBMAXAVG);
1190 	min_avg = I915_READ(RCBMINAVG);
1191 
1192 	/* Handle RCS change request from hw */
1193 	if (busy_up > max_avg) {
1194 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1195 			new_delay = dev_priv->ips.cur_delay - 1;
1196 		if (new_delay < dev_priv->ips.max_delay)
1197 			new_delay = dev_priv->ips.max_delay;
1198 	} else if (busy_down < min_avg) {
1199 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1200 			new_delay = dev_priv->ips.cur_delay + 1;
1201 		if (new_delay > dev_priv->ips.min_delay)
1202 			new_delay = dev_priv->ips.min_delay;
1203 	}
1204 
1205 	if (ironlake_set_drps(dev, new_delay))
1206 		dev_priv->ips.cur_delay = new_delay;
1207 
1208 	spin_unlock(&mchdev_lock);
1209 
1210 	return;
1211 }
1212 
1213 static void notify_ring(struct drm_device *dev,
1214 			struct intel_engine_cs *ring)
1215 {
1216 	if (!intel_ring_initialized(ring))
1217 		return;
1218 
1219 	trace_i915_gem_request_complete(ring);
1220 
1221 	wake_up_all(&ring->irq_queue);
1222 	i915_queue_hangcheck(dev);
1223 }
1224 
1225 static void gen6_pm_rps_work(struct work_struct *work)
1226 {
1227 	struct drm_i915_private *dev_priv =
1228 		container_of(work, struct drm_i915_private, rps.work);
1229 	u32 pm_iir;
1230 	int new_delay, adj;
1231 
1232 	spin_lock_irq(&dev_priv->irq_lock);
1233 	pm_iir = dev_priv->rps.pm_iir;
1234 	dev_priv->rps.pm_iir = 0;
1235 	if (IS_BROADWELL(dev_priv->dev))
1236 		bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1237 	else {
1238 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1239 		snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1240 	}
1241 	spin_unlock_irq(&dev_priv->irq_lock);
1242 
1243 	/* Make sure we didn't queue anything we're not going to process. */
1244 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1245 
1246 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1247 		return;
1248 
1249 	mutex_lock(&dev_priv->rps.hw_lock);
1250 
1251 	adj = dev_priv->rps.last_adj;
1252 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1253 		if (adj > 0)
1254 			adj *= 2;
1255 		else
1256 			adj = 1;
1257 		new_delay = dev_priv->rps.cur_freq + adj;
1258 
1259 		/*
1260 		 * For better performance, jump directly
1261 		 * to RPe if we're below it.
1262 		 */
1263 		if (new_delay < dev_priv->rps.efficient_freq)
1264 			new_delay = dev_priv->rps.efficient_freq;
1265 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1266 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1267 			new_delay = dev_priv->rps.efficient_freq;
1268 		else
1269 			new_delay = dev_priv->rps.min_freq_softlimit;
1270 		adj = 0;
1271 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1272 		if (adj < 0)
1273 			adj *= 2;
1274 		else
1275 			adj = -1;
1276 		new_delay = dev_priv->rps.cur_freq + adj;
1277 	} else { /* unknown event */
1278 		new_delay = dev_priv->rps.cur_freq;
1279 	}
1280 
1281 	/* sysfs frequency interfaces may have snuck in while servicing the
1282 	 * interrupt
1283 	 */
1284 	new_delay = clamp_t(int, new_delay,
1285 			    dev_priv->rps.min_freq_softlimit,
1286 			    dev_priv->rps.max_freq_softlimit);
1287 
1288 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1289 
1290 	if (IS_VALLEYVIEW(dev_priv->dev))
1291 		valleyview_set_rps(dev_priv->dev, new_delay);
1292 	else
1293 		gen6_set_rps(dev_priv->dev, new_delay);
1294 
1295 	mutex_unlock(&dev_priv->rps.hw_lock);
1296 }
1297 
1298 
1299 /**
1300  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1301  * occurred.
1302  * @work: workqueue struct
1303  *
1304  * Doesn't actually do anything except notify userspace. As a consequence of
1305  * this event, userspace should try to remap the bad rows since statistically
1306  * it is likely the same row is more likely to go bad again.
1307  */
1308 static void ivybridge_parity_work(struct work_struct *work)
1309 {
1310 	struct drm_i915_private *dev_priv =
1311 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1312 	u32 error_status, row, bank, subbank;
1313 	char *parity_event[6];
1314 	uint32_t misccpctl;
1315 	unsigned long flags;
1316 	uint8_t slice = 0;
1317 
1318 	/* We must turn off DOP level clock gating to access the L3 registers.
1319 	 * In order to prevent a get/put style interface, acquire struct mutex
1320 	 * any time we access those registers.
1321 	 */
1322 	mutex_lock(&dev_priv->dev->struct_mutex);
1323 
1324 	/* If we've screwed up tracking, just let the interrupt fire again */
1325 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1326 		goto out;
1327 
1328 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1329 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1330 	POSTING_READ(GEN7_MISCCPCTL);
1331 
1332 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1333 		u32 reg;
1334 
1335 		slice--;
1336 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1337 			break;
1338 
1339 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1340 
1341 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1342 
1343 		error_status = I915_READ(reg);
1344 		row = GEN7_PARITY_ERROR_ROW(error_status);
1345 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1346 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1347 
1348 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1349 		POSTING_READ(reg);
1350 
1351 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1352 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1353 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1354 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1355 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1356 		parity_event[5] = NULL;
1357 
1358 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1359 				   KOBJ_CHANGE, parity_event);
1360 
1361 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1362 			  slice, row, bank, subbank);
1363 
1364 		kfree(parity_event[4]);
1365 		kfree(parity_event[3]);
1366 		kfree(parity_event[2]);
1367 		kfree(parity_event[1]);
1368 	}
1369 
1370 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1371 
1372 out:
1373 	WARN_ON(dev_priv->l3_parity.which_slice);
1374 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1375 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1376 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1377 
1378 	mutex_unlock(&dev_priv->dev->struct_mutex);
1379 }
1380 
1381 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1382 {
1383 	struct drm_i915_private *dev_priv = dev->dev_private;
1384 
1385 	if (!HAS_L3_DPF(dev))
1386 		return;
1387 
1388 	spin_lock(&dev_priv->irq_lock);
1389 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1390 	spin_unlock(&dev_priv->irq_lock);
1391 
1392 	iir &= GT_PARITY_ERROR(dev);
1393 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1394 		dev_priv->l3_parity.which_slice |= 1 << 1;
1395 
1396 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1397 		dev_priv->l3_parity.which_slice |= 1 << 0;
1398 
1399 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1400 }
1401 
1402 static void ilk_gt_irq_handler(struct drm_device *dev,
1403 			       struct drm_i915_private *dev_priv,
1404 			       u32 gt_iir)
1405 {
1406 	if (gt_iir &
1407 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1408 		notify_ring(dev, &dev_priv->ring[RCS]);
1409 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1410 		notify_ring(dev, &dev_priv->ring[VCS]);
1411 }
1412 
1413 static void snb_gt_irq_handler(struct drm_device *dev,
1414 			       struct drm_i915_private *dev_priv,
1415 			       u32 gt_iir)
1416 {
1417 
1418 	if (gt_iir &
1419 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1420 		notify_ring(dev, &dev_priv->ring[RCS]);
1421 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1422 		notify_ring(dev, &dev_priv->ring[VCS]);
1423 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1424 		notify_ring(dev, &dev_priv->ring[BCS]);
1425 
1426 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1427 		      GT_BSD_CS_ERROR_INTERRUPT |
1428 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1429 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1430 				  gt_iir);
1431 	}
1432 
1433 	if (gt_iir & GT_PARITY_ERROR(dev))
1434 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1435 }
1436 
1437 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1438 {
1439 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1440 		return;
1441 
1442 	spin_lock(&dev_priv->irq_lock);
1443 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1444 	bdw_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1445 	spin_unlock(&dev_priv->irq_lock);
1446 
1447 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1448 }
1449 
1450 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1451 				       struct drm_i915_private *dev_priv,
1452 				       u32 master_ctl)
1453 {
1454 	u32 rcs, bcs, vcs;
1455 	uint32_t tmp = 0;
1456 	irqreturn_t ret = IRQ_NONE;
1457 
1458 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1459 		tmp = I915_READ(GEN8_GT_IIR(0));
1460 		if (tmp) {
1461 			ret = IRQ_HANDLED;
1462 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1463 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1464 			if (rcs & GT_RENDER_USER_INTERRUPT)
1465 				notify_ring(dev, &dev_priv->ring[RCS]);
1466 			if (bcs & GT_RENDER_USER_INTERRUPT)
1467 				notify_ring(dev, &dev_priv->ring[BCS]);
1468 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1469 		} else
1470 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1471 	}
1472 
1473 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1474 		tmp = I915_READ(GEN8_GT_IIR(1));
1475 		if (tmp) {
1476 			ret = IRQ_HANDLED;
1477 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1478 			if (vcs & GT_RENDER_USER_INTERRUPT)
1479 				notify_ring(dev, &dev_priv->ring[VCS]);
1480 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1481 			if (vcs & GT_RENDER_USER_INTERRUPT)
1482 				notify_ring(dev, &dev_priv->ring[VCS2]);
1483 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1484 		} else
1485 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1486 	}
1487 
1488 	if (master_ctl & GEN8_GT_PM_IRQ) {
1489 		tmp = I915_READ(GEN8_GT_IIR(2));
1490 		if (tmp & dev_priv->pm_rps_events) {
1491 			ret = IRQ_HANDLED;
1492 			gen8_rps_irq_handler(dev_priv, tmp);
1493 			I915_WRITE(GEN8_GT_IIR(2),
1494 				   tmp & dev_priv->pm_rps_events);
1495 		} else
1496 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1497 	}
1498 
1499 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1500 		tmp = I915_READ(GEN8_GT_IIR(3));
1501 		if (tmp) {
1502 			ret = IRQ_HANDLED;
1503 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1504 			if (vcs & GT_RENDER_USER_INTERRUPT)
1505 				notify_ring(dev, &dev_priv->ring[VECS]);
1506 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1507 		} else
1508 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1509 	}
1510 
1511 	return ret;
1512 }
1513 
1514 #define HPD_STORM_DETECT_PERIOD 1000
1515 #define HPD_STORM_THRESHOLD 5
1516 
1517 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1518 					 u32 hotplug_trigger,
1519 					 const u32 *hpd)
1520 {
1521 	struct drm_i915_private *dev_priv = dev->dev_private;
1522 	int i;
1523 	bool storm_detected = false;
1524 
1525 	if (!hotplug_trigger)
1526 		return;
1527 
1528 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1529 			  hotplug_trigger);
1530 
1531 	spin_lock(&dev_priv->irq_lock);
1532 	for (i = 1; i < HPD_NUM_PINS; i++) {
1533 
1534 		if (hpd[i] & hotplug_trigger &&
1535 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1536 			/*
1537 			 * On GMCH platforms the interrupt mask bits only
1538 			 * prevent irq generation, not the setting of the
1539 			 * hotplug bits itself. So only WARN about unexpected
1540 			 * interrupts on saner platforms.
1541 			 */
1542 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1543 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1544 				  hotplug_trigger, i, hpd[i]);
1545 
1546 			continue;
1547 		}
1548 
1549 		if (!(hpd[i] & hotplug_trigger) ||
1550 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1551 			continue;
1552 
1553 		dev_priv->hpd_event_bits |= (1 << i);
1554 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1555 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1556 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1557 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1558 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1559 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1560 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1561 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1562 			dev_priv->hpd_event_bits &= ~(1 << i);
1563 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1564 			storm_detected = true;
1565 		} else {
1566 			dev_priv->hpd_stats[i].hpd_cnt++;
1567 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1568 				      dev_priv->hpd_stats[i].hpd_cnt);
1569 		}
1570 	}
1571 
1572 	if (storm_detected)
1573 		dev_priv->display.hpd_irq_setup(dev);
1574 	spin_unlock(&dev_priv->irq_lock);
1575 
1576 	/*
1577 	 * Our hotplug handler can grab modeset locks (by calling down into the
1578 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1579 	 * queue for otherwise the flush_work in the pageflip code will
1580 	 * deadlock.
1581 	 */
1582 	schedule_work(&dev_priv->hotplug_work);
1583 }
1584 
1585 static void gmbus_irq_handler(struct drm_device *dev)
1586 {
1587 	struct drm_i915_private *dev_priv = dev->dev_private;
1588 
1589 	wake_up_all(&dev_priv->gmbus_wait_queue);
1590 }
1591 
1592 static void dp_aux_irq_handler(struct drm_device *dev)
1593 {
1594 	struct drm_i915_private *dev_priv = dev->dev_private;
1595 
1596 	wake_up_all(&dev_priv->gmbus_wait_queue);
1597 }
1598 
1599 #if defined(CONFIG_DEBUG_FS)
1600 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1601 					 uint32_t crc0, uint32_t crc1,
1602 					 uint32_t crc2, uint32_t crc3,
1603 					 uint32_t crc4)
1604 {
1605 	struct drm_i915_private *dev_priv = dev->dev_private;
1606 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1607 	struct intel_pipe_crc_entry *entry;
1608 	int head, tail;
1609 
1610 	spin_lock(&pipe_crc->lock);
1611 
1612 	if (!pipe_crc->entries) {
1613 		spin_unlock(&pipe_crc->lock);
1614 		DRM_ERROR("spurious interrupt\n");
1615 		return;
1616 	}
1617 
1618 	head = pipe_crc->head;
1619 	tail = pipe_crc->tail;
1620 
1621 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1622 		spin_unlock(&pipe_crc->lock);
1623 		DRM_ERROR("CRC buffer overflowing\n");
1624 		return;
1625 	}
1626 
1627 	entry = &pipe_crc->entries[head];
1628 
1629 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1630 	entry->crc[0] = crc0;
1631 	entry->crc[1] = crc1;
1632 	entry->crc[2] = crc2;
1633 	entry->crc[3] = crc3;
1634 	entry->crc[4] = crc4;
1635 
1636 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1637 	pipe_crc->head = head;
1638 
1639 	spin_unlock(&pipe_crc->lock);
1640 
1641 	wake_up_interruptible(&pipe_crc->wq);
1642 }
1643 #else
1644 static inline void
1645 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1646 			     uint32_t crc0, uint32_t crc1,
1647 			     uint32_t crc2, uint32_t crc3,
1648 			     uint32_t crc4) {}
1649 #endif
1650 
1651 
1652 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1653 {
1654 	struct drm_i915_private *dev_priv = dev->dev_private;
1655 
1656 	display_pipe_crc_irq_handler(dev, pipe,
1657 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1658 				     0, 0, 0, 0);
1659 }
1660 
1661 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1662 {
1663 	struct drm_i915_private *dev_priv = dev->dev_private;
1664 
1665 	display_pipe_crc_irq_handler(dev, pipe,
1666 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672 
1673 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1674 {
1675 	struct drm_i915_private *dev_priv = dev->dev_private;
1676 	uint32_t res1, res2;
1677 
1678 	if (INTEL_INFO(dev)->gen >= 3)
1679 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680 	else
1681 		res1 = 0;
1682 
1683 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1684 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685 	else
1686 		res2 = 0;
1687 
1688 	display_pipe_crc_irq_handler(dev, pipe,
1689 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1690 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692 				     res1, res2);
1693 }
1694 
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696  * IMR bits until the work is done. Other interrupts can be processed without
1697  * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700 	if (pm_iir & dev_priv->pm_rps_events) {
1701 		spin_lock(&dev_priv->irq_lock);
1702 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1703 		snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1704 		spin_unlock(&dev_priv->irq_lock);
1705 
1706 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1707 	}
1708 
1709 	if (HAS_VEBOX(dev_priv->dev)) {
1710 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1711 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1712 
1713 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1714 			i915_handle_error(dev_priv->dev, false,
1715 					  "VEBOX CS error interrupt 0x%08x",
1716 					  pm_iir);
1717 		}
1718 	}
1719 }
1720 
1721 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1722 {
1723 	struct intel_crtc *crtc;
1724 
1725 	if (!drm_handle_vblank(dev, pipe))
1726 		return false;
1727 
1728 	crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1729 	wake_up(&crtc->vbl_wait);
1730 
1731 	return true;
1732 }
1733 
1734 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1735 {
1736 	struct drm_i915_private *dev_priv = dev->dev_private;
1737 	u32 pipe_stats[I915_MAX_PIPES] = { };
1738 	int pipe;
1739 
1740 	spin_lock(&dev_priv->irq_lock);
1741 	for_each_pipe(pipe) {
1742 		int reg;
1743 		u32 mask, iir_bit = 0;
1744 
1745 		/*
1746 		 * PIPESTAT bits get signalled even when the interrupt is
1747 		 * disabled with the mask bits, and some of the status bits do
1748 		 * not generate interrupts at all (like the underrun bit). Hence
1749 		 * we need to be careful that we only handle what we want to
1750 		 * handle.
1751 		 */
1752 		mask = 0;
1753 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1754 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
1755 
1756 		switch (pipe) {
1757 		case PIPE_A:
1758 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1759 			break;
1760 		case PIPE_B:
1761 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1762 			break;
1763 		case PIPE_C:
1764 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1765 			break;
1766 		}
1767 		if (iir & iir_bit)
1768 			mask |= dev_priv->pipestat_irq_mask[pipe];
1769 
1770 		if (!mask)
1771 			continue;
1772 
1773 		reg = PIPESTAT(pipe);
1774 		mask |= PIPESTAT_INT_ENABLE_MASK;
1775 		pipe_stats[pipe] = I915_READ(reg) & mask;
1776 
1777 		/*
1778 		 * Clear the PIPE*STAT regs before the IIR
1779 		 */
1780 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1781 					PIPESTAT_INT_STATUS_MASK))
1782 			I915_WRITE(reg, pipe_stats[pipe]);
1783 	}
1784 	spin_unlock(&dev_priv->irq_lock);
1785 
1786 	for_each_pipe(pipe) {
1787 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1788 			intel_pipe_handle_vblank(dev, pipe);
1789 
1790 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1791 			intel_prepare_page_flip(dev, pipe);
1792 			intel_finish_page_flip(dev, pipe);
1793 		}
1794 
1795 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1796 			i9xx_pipe_crc_irq_handler(dev, pipe);
1797 
1798 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1799 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1800 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1801 	}
1802 
1803 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1804 		gmbus_irq_handler(dev);
1805 }
1806 
1807 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1808 {
1809 	struct drm_i915_private *dev_priv = dev->dev_private;
1810 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1811 
1812 	if (IS_G4X(dev)) {
1813 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1814 
1815 		intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1816 	} else {
1817 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1818 
1819 		intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1820 	}
1821 
1822 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1823 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1824 		dp_aux_irq_handler(dev);
1825 
1826 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1827 	/*
1828 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1829 	 * may miss hotplug events.
1830 	 */
1831 	POSTING_READ(PORT_HOTPLUG_STAT);
1832 }
1833 
1834 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1835 {
1836 	struct drm_device *dev = arg;
1837 	struct drm_i915_private *dev_priv = dev->dev_private;
1838 	u32 iir, gt_iir, pm_iir;
1839 	irqreturn_t ret = IRQ_NONE;
1840 
1841 	while (true) {
1842 		iir = I915_READ(VLV_IIR);
1843 		gt_iir = I915_READ(GTIIR);
1844 		pm_iir = I915_READ(GEN6_PMIIR);
1845 
1846 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1847 			goto out;
1848 
1849 		ret = IRQ_HANDLED;
1850 
1851 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1852 
1853 		valleyview_pipestat_irq_handler(dev, iir);
1854 
1855 		/* Consume port.  Then clear IIR or we'll miss events */
1856 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1857 			i9xx_hpd_irq_handler(dev);
1858 
1859 		if (pm_iir)
1860 			gen6_rps_irq_handler(dev_priv, pm_iir);
1861 
1862 		I915_WRITE(GTIIR, gt_iir);
1863 		I915_WRITE(GEN6_PMIIR, pm_iir);
1864 		I915_WRITE(VLV_IIR, iir);
1865 	}
1866 
1867 out:
1868 	return ret;
1869 }
1870 
1871 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1872 {
1873 	struct drm_device *dev = arg;
1874 	struct drm_i915_private *dev_priv = dev->dev_private;
1875 	u32 master_ctl, iir;
1876 	irqreturn_t ret = IRQ_NONE;
1877 
1878 	for (;;) {
1879 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1880 		iir = I915_READ(VLV_IIR);
1881 
1882 		if (master_ctl == 0 && iir == 0)
1883 			break;
1884 
1885 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1886 
1887 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1888 
1889 		valleyview_pipestat_irq_handler(dev, iir);
1890 
1891 		/* Consume port.  Then clear IIR or we'll miss events */
1892 		i9xx_hpd_irq_handler(dev);
1893 
1894 		I915_WRITE(VLV_IIR, iir);
1895 
1896 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1897 		POSTING_READ(GEN8_MASTER_IRQ);
1898 
1899 		ret = IRQ_HANDLED;
1900 	}
1901 
1902 	return ret;
1903 }
1904 
1905 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1906 {
1907 	struct drm_i915_private *dev_priv = dev->dev_private;
1908 	int pipe;
1909 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1910 
1911 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1912 
1913 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1914 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1915 			       SDE_AUDIO_POWER_SHIFT);
1916 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1917 				 port_name(port));
1918 	}
1919 
1920 	if (pch_iir & SDE_AUX_MASK)
1921 		dp_aux_irq_handler(dev);
1922 
1923 	if (pch_iir & SDE_GMBUS)
1924 		gmbus_irq_handler(dev);
1925 
1926 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1927 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1928 
1929 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1930 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1931 
1932 	if (pch_iir & SDE_POISON)
1933 		DRM_ERROR("PCH poison interrupt\n");
1934 
1935 	if (pch_iir & SDE_FDI_MASK)
1936 		for_each_pipe(pipe)
1937 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1938 					 pipe_name(pipe),
1939 					 I915_READ(FDI_RX_IIR(pipe)));
1940 
1941 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1942 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1943 
1944 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1945 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1946 
1947 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1948 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1949 							  false))
1950 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1951 
1952 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1953 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1954 							  false))
1955 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1956 }
1957 
1958 static void ivb_err_int_handler(struct drm_device *dev)
1959 {
1960 	struct drm_i915_private *dev_priv = dev->dev_private;
1961 	u32 err_int = I915_READ(GEN7_ERR_INT);
1962 	enum pipe pipe;
1963 
1964 	if (err_int & ERR_INT_POISON)
1965 		DRM_ERROR("Poison interrupt\n");
1966 
1967 	for_each_pipe(pipe) {
1968 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1969 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1970 								  false))
1971 				DRM_ERROR("Pipe %c FIFO underrun\n",
1972 					  pipe_name(pipe));
1973 		}
1974 
1975 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1976 			if (IS_IVYBRIDGE(dev))
1977 				ivb_pipe_crc_irq_handler(dev, pipe);
1978 			else
1979 				hsw_pipe_crc_irq_handler(dev, pipe);
1980 		}
1981 	}
1982 
1983 	I915_WRITE(GEN7_ERR_INT, err_int);
1984 }
1985 
1986 static void cpt_serr_int_handler(struct drm_device *dev)
1987 {
1988 	struct drm_i915_private *dev_priv = dev->dev_private;
1989 	u32 serr_int = I915_READ(SERR_INT);
1990 
1991 	if (serr_int & SERR_INT_POISON)
1992 		DRM_ERROR("PCH poison interrupt\n");
1993 
1994 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1995 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1996 							  false))
1997 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1998 
1999 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2000 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2001 							  false))
2002 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2003 
2004 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2005 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2006 							  false))
2007 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2008 
2009 	I915_WRITE(SERR_INT, serr_int);
2010 }
2011 
2012 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2013 {
2014 	struct drm_i915_private *dev_priv = dev->dev_private;
2015 	int pipe;
2016 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2017 
2018 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2019 
2020 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2021 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2022 			       SDE_AUDIO_POWER_SHIFT_CPT);
2023 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2024 				 port_name(port));
2025 	}
2026 
2027 	if (pch_iir & SDE_AUX_MASK_CPT)
2028 		dp_aux_irq_handler(dev);
2029 
2030 	if (pch_iir & SDE_GMBUS_CPT)
2031 		gmbus_irq_handler(dev);
2032 
2033 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2034 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2035 
2036 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2037 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2038 
2039 	if (pch_iir & SDE_FDI_MASK_CPT)
2040 		for_each_pipe(pipe)
2041 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2042 					 pipe_name(pipe),
2043 					 I915_READ(FDI_RX_IIR(pipe)));
2044 
2045 	if (pch_iir & SDE_ERROR_CPT)
2046 		cpt_serr_int_handler(dev);
2047 }
2048 
2049 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2050 {
2051 	struct drm_i915_private *dev_priv = dev->dev_private;
2052 	enum pipe pipe;
2053 
2054 	if (de_iir & DE_AUX_CHANNEL_A)
2055 		dp_aux_irq_handler(dev);
2056 
2057 	if (de_iir & DE_GSE)
2058 		intel_opregion_asle_intr(dev);
2059 
2060 	if (de_iir & DE_POISON)
2061 		DRM_ERROR("Poison interrupt\n");
2062 
2063 	for_each_pipe(pipe) {
2064 		if (de_iir & DE_PIPE_VBLANK(pipe))
2065 			intel_pipe_handle_vblank(dev, pipe);
2066 
2067 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2068 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2069 				DRM_ERROR("Pipe %c FIFO underrun\n",
2070 					  pipe_name(pipe));
2071 
2072 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2073 			i9xx_pipe_crc_irq_handler(dev, pipe);
2074 
2075 		/* plane/pipes map 1:1 on ilk+ */
2076 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2077 			intel_prepare_page_flip(dev, pipe);
2078 			intel_finish_page_flip_plane(dev, pipe);
2079 		}
2080 	}
2081 
2082 	/* check event from PCH */
2083 	if (de_iir & DE_PCH_EVENT) {
2084 		u32 pch_iir = I915_READ(SDEIIR);
2085 
2086 		if (HAS_PCH_CPT(dev))
2087 			cpt_irq_handler(dev, pch_iir);
2088 		else
2089 			ibx_irq_handler(dev, pch_iir);
2090 
2091 		/* should clear PCH hotplug event before clear CPU irq */
2092 		I915_WRITE(SDEIIR, pch_iir);
2093 	}
2094 
2095 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2096 		ironlake_rps_change_irq_handler(dev);
2097 }
2098 
2099 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2100 {
2101 	struct drm_i915_private *dev_priv = dev->dev_private;
2102 	enum pipe pipe;
2103 
2104 	if (de_iir & DE_ERR_INT_IVB)
2105 		ivb_err_int_handler(dev);
2106 
2107 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2108 		dp_aux_irq_handler(dev);
2109 
2110 	if (de_iir & DE_GSE_IVB)
2111 		intel_opregion_asle_intr(dev);
2112 
2113 	for_each_pipe(pipe) {
2114 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2115 			intel_pipe_handle_vblank(dev, pipe);
2116 
2117 		/* plane/pipes map 1:1 on ilk+ */
2118 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2119 			intel_prepare_page_flip(dev, pipe);
2120 			intel_finish_page_flip_plane(dev, pipe);
2121 		}
2122 	}
2123 
2124 	/* check event from PCH */
2125 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2126 		u32 pch_iir = I915_READ(SDEIIR);
2127 
2128 		cpt_irq_handler(dev, pch_iir);
2129 
2130 		/* clear PCH hotplug event before clear CPU irq */
2131 		I915_WRITE(SDEIIR, pch_iir);
2132 	}
2133 }
2134 
2135 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2136 {
2137 	struct drm_device *dev = arg;
2138 	struct drm_i915_private *dev_priv = dev->dev_private;
2139 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2140 	irqreturn_t ret = IRQ_NONE;
2141 
2142 	/* We get interrupts on unclaimed registers, so check for this before we
2143 	 * do any I915_{READ,WRITE}. */
2144 	intel_uncore_check_errors(dev);
2145 
2146 	/* disable master interrupt before clearing iir  */
2147 	de_ier = I915_READ(DEIER);
2148 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2149 	POSTING_READ(DEIER);
2150 
2151 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2152 	 * interrupts will will be stored on its back queue, and then we'll be
2153 	 * able to process them after we restore SDEIER (as soon as we restore
2154 	 * it, we'll get an interrupt if SDEIIR still has something to process
2155 	 * due to its back queue). */
2156 	if (!HAS_PCH_NOP(dev)) {
2157 		sde_ier = I915_READ(SDEIER);
2158 		I915_WRITE(SDEIER, 0);
2159 		POSTING_READ(SDEIER);
2160 	}
2161 
2162 	gt_iir = I915_READ(GTIIR);
2163 	if (gt_iir) {
2164 		if (INTEL_INFO(dev)->gen >= 6)
2165 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2166 		else
2167 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2168 		I915_WRITE(GTIIR, gt_iir);
2169 		ret = IRQ_HANDLED;
2170 	}
2171 
2172 	de_iir = I915_READ(DEIIR);
2173 	if (de_iir) {
2174 		if (INTEL_INFO(dev)->gen >= 7)
2175 			ivb_display_irq_handler(dev, de_iir);
2176 		else
2177 			ilk_display_irq_handler(dev, de_iir);
2178 		I915_WRITE(DEIIR, de_iir);
2179 		ret = IRQ_HANDLED;
2180 	}
2181 
2182 	if (INTEL_INFO(dev)->gen >= 6) {
2183 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2184 		if (pm_iir) {
2185 			gen6_rps_irq_handler(dev_priv, pm_iir);
2186 			I915_WRITE(GEN6_PMIIR, pm_iir);
2187 			ret = IRQ_HANDLED;
2188 		}
2189 	}
2190 
2191 	I915_WRITE(DEIER, de_ier);
2192 	POSTING_READ(DEIER);
2193 	if (!HAS_PCH_NOP(dev)) {
2194 		I915_WRITE(SDEIER, sde_ier);
2195 		POSTING_READ(SDEIER);
2196 	}
2197 
2198 	return ret;
2199 }
2200 
2201 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2202 {
2203 	struct drm_device *dev = arg;
2204 	struct drm_i915_private *dev_priv = dev->dev_private;
2205 	u32 master_ctl;
2206 	irqreturn_t ret = IRQ_NONE;
2207 	uint32_t tmp = 0;
2208 	enum pipe pipe;
2209 
2210 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2211 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2212 	if (!master_ctl)
2213 		return IRQ_NONE;
2214 
2215 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2216 	POSTING_READ(GEN8_MASTER_IRQ);
2217 
2218 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2219 
2220 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2221 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2222 		if (tmp & GEN8_DE_MISC_GSE)
2223 			intel_opregion_asle_intr(dev);
2224 		else if (tmp)
2225 			DRM_ERROR("Unexpected DE Misc interrupt\n");
2226 		else
2227 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2228 
2229 		if (tmp) {
2230 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2231 			ret = IRQ_HANDLED;
2232 		}
2233 	}
2234 
2235 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2236 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2237 		if (tmp & GEN8_AUX_CHANNEL_A)
2238 			dp_aux_irq_handler(dev);
2239 		else if (tmp)
2240 			DRM_ERROR("Unexpected DE Port interrupt\n");
2241 		else
2242 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2243 
2244 		if (tmp) {
2245 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2246 			ret = IRQ_HANDLED;
2247 		}
2248 	}
2249 
2250 	for_each_pipe(pipe) {
2251 		uint32_t pipe_iir;
2252 
2253 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2254 			continue;
2255 
2256 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2257 		if (pipe_iir & GEN8_PIPE_VBLANK)
2258 			intel_pipe_handle_vblank(dev, pipe);
2259 
2260 		if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2261 			intel_prepare_page_flip(dev, pipe);
2262 			intel_finish_page_flip_plane(dev, pipe);
2263 		}
2264 
2265 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2266 			hsw_pipe_crc_irq_handler(dev, pipe);
2267 
2268 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2269 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2270 								  false))
2271 				DRM_ERROR("Pipe %c FIFO underrun\n",
2272 					  pipe_name(pipe));
2273 		}
2274 
2275 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2276 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2277 				  pipe_name(pipe),
2278 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2279 		}
2280 
2281 		if (pipe_iir) {
2282 			ret = IRQ_HANDLED;
2283 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2284 		} else
2285 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2286 	}
2287 
2288 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2289 		/*
2290 		 * FIXME(BDW): Assume for now that the new interrupt handling
2291 		 * scheme also closed the SDE interrupt handling race we've seen
2292 		 * on older pch-split platforms. But this needs testing.
2293 		 */
2294 		u32 pch_iir = I915_READ(SDEIIR);
2295 
2296 		cpt_irq_handler(dev, pch_iir);
2297 
2298 		if (pch_iir) {
2299 			I915_WRITE(SDEIIR, pch_iir);
2300 			ret = IRQ_HANDLED;
2301 		}
2302 	}
2303 
2304 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2305 	POSTING_READ(GEN8_MASTER_IRQ);
2306 
2307 	return ret;
2308 }
2309 
2310 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2311 			       bool reset_completed)
2312 {
2313 	struct intel_engine_cs *ring;
2314 	int i;
2315 
2316 	/*
2317 	 * Notify all waiters for GPU completion events that reset state has
2318 	 * been changed, and that they need to restart their wait after
2319 	 * checking for potential errors (and bail out to drop locks if there is
2320 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2321 	 */
2322 
2323 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2324 	for_each_ring(ring, dev_priv, i)
2325 		wake_up_all(&ring->irq_queue);
2326 
2327 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2328 	wake_up_all(&dev_priv->pending_flip_queue);
2329 
2330 	/*
2331 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2332 	 * reset state is cleared.
2333 	 */
2334 	if (reset_completed)
2335 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2336 }
2337 
2338 /**
2339  * i915_error_work_func - do process context error handling work
2340  * @work: work struct
2341  *
2342  * Fire an error uevent so userspace can see that a hang or error
2343  * was detected.
2344  */
2345 static void i915_error_work_func(struct work_struct *work)
2346 {
2347 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2348 						    work);
2349 	struct drm_i915_private *dev_priv =
2350 		container_of(error, struct drm_i915_private, gpu_error);
2351 	struct drm_device *dev = dev_priv->dev;
2352 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2353 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2354 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2355 	int ret;
2356 
2357 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2358 
2359 	/*
2360 	 * Note that there's only one work item which does gpu resets, so we
2361 	 * need not worry about concurrent gpu resets potentially incrementing
2362 	 * error->reset_counter twice. We only need to take care of another
2363 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2364 	 * quick check for that is good enough: schedule_work ensures the
2365 	 * correct ordering between hang detection and this work item, and since
2366 	 * the reset in-progress bit is only ever set by code outside of this
2367 	 * work we don't need to worry about any other races.
2368 	 */
2369 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2370 		DRM_DEBUG_DRIVER("resetting chip\n");
2371 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2372 				   reset_event);
2373 
2374 		/*
2375 		 * In most cases it's guaranteed that we get here with an RPM
2376 		 * reference held, for example because there is a pending GPU
2377 		 * request that won't finish until the reset is done. This
2378 		 * isn't the case at least when we get here by doing a
2379 		 * simulated reset via debugs, so get an RPM reference.
2380 		 */
2381 		intel_runtime_pm_get(dev_priv);
2382 		/*
2383 		 * All state reset _must_ be completed before we update the
2384 		 * reset counter, for otherwise waiters might miss the reset
2385 		 * pending state and not properly drop locks, resulting in
2386 		 * deadlocks with the reset work.
2387 		 */
2388 		ret = i915_reset(dev);
2389 
2390 		intel_display_handle_reset(dev);
2391 
2392 		intel_runtime_pm_put(dev_priv);
2393 
2394 		if (ret == 0) {
2395 			/*
2396 			 * After all the gem state is reset, increment the reset
2397 			 * counter and wake up everyone waiting for the reset to
2398 			 * complete.
2399 			 *
2400 			 * Since unlock operations are a one-sided barrier only,
2401 			 * we need to insert a barrier here to order any seqno
2402 			 * updates before
2403 			 * the counter increment.
2404 			 */
2405 			smp_mb__before_atomic();
2406 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2407 
2408 			kobject_uevent_env(&dev->primary->kdev->kobj,
2409 					   KOBJ_CHANGE, reset_done_event);
2410 		} else {
2411 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2412 		}
2413 
2414 		/*
2415 		 * Note: The wake_up also serves as a memory barrier so that
2416 		 * waiters see the update value of the reset counter atomic_t.
2417 		 */
2418 		i915_error_wake_up(dev_priv, true);
2419 	}
2420 }
2421 
2422 static void i915_report_and_clear_eir(struct drm_device *dev)
2423 {
2424 	struct drm_i915_private *dev_priv = dev->dev_private;
2425 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2426 	u32 eir = I915_READ(EIR);
2427 	int pipe, i;
2428 
2429 	if (!eir)
2430 		return;
2431 
2432 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2433 
2434 	i915_get_extra_instdone(dev, instdone);
2435 
2436 	if (IS_G4X(dev)) {
2437 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2438 			u32 ipeir = I915_READ(IPEIR_I965);
2439 
2440 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2441 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2442 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2443 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2444 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2445 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2446 			I915_WRITE(IPEIR_I965, ipeir);
2447 			POSTING_READ(IPEIR_I965);
2448 		}
2449 		if (eir & GM45_ERROR_PAGE_TABLE) {
2450 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2451 			pr_err("page table error\n");
2452 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2453 			I915_WRITE(PGTBL_ER, pgtbl_err);
2454 			POSTING_READ(PGTBL_ER);
2455 		}
2456 	}
2457 
2458 	if (!IS_GEN2(dev)) {
2459 		if (eir & I915_ERROR_PAGE_TABLE) {
2460 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2461 			pr_err("page table error\n");
2462 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2463 			I915_WRITE(PGTBL_ER, pgtbl_err);
2464 			POSTING_READ(PGTBL_ER);
2465 		}
2466 	}
2467 
2468 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2469 		pr_err("memory refresh error:\n");
2470 		for_each_pipe(pipe)
2471 			pr_err("pipe %c stat: 0x%08x\n",
2472 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2473 		/* pipestat has already been acked */
2474 	}
2475 	if (eir & I915_ERROR_INSTRUCTION) {
2476 		pr_err("instruction error\n");
2477 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2478 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2479 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2480 		if (INTEL_INFO(dev)->gen < 4) {
2481 			u32 ipeir = I915_READ(IPEIR);
2482 
2483 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2484 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2485 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2486 			I915_WRITE(IPEIR, ipeir);
2487 			POSTING_READ(IPEIR);
2488 		} else {
2489 			u32 ipeir = I915_READ(IPEIR_I965);
2490 
2491 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2492 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2493 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2494 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2495 			I915_WRITE(IPEIR_I965, ipeir);
2496 			POSTING_READ(IPEIR_I965);
2497 		}
2498 	}
2499 
2500 	I915_WRITE(EIR, eir);
2501 	POSTING_READ(EIR);
2502 	eir = I915_READ(EIR);
2503 	if (eir) {
2504 		/*
2505 		 * some errors might have become stuck,
2506 		 * mask them.
2507 		 */
2508 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2509 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2510 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2511 	}
2512 }
2513 
2514 /**
2515  * i915_handle_error - handle an error interrupt
2516  * @dev: drm device
2517  *
2518  * Do some basic checking of regsiter state at error interrupt time and
2519  * dump it to the syslog.  Also call i915_capture_error_state() to make
2520  * sure we get a record and make it available in debugfs.  Fire a uevent
2521  * so userspace knows something bad happened (should trigger collection
2522  * of a ring dump etc.).
2523  */
2524 void i915_handle_error(struct drm_device *dev, bool wedged,
2525 		       const char *fmt, ...)
2526 {
2527 	struct drm_i915_private *dev_priv = dev->dev_private;
2528 	va_list args;
2529 	char error_msg[80];
2530 
2531 	va_start(args, fmt);
2532 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2533 	va_end(args);
2534 
2535 	i915_capture_error_state(dev, wedged, error_msg);
2536 	i915_report_and_clear_eir(dev);
2537 
2538 	if (wedged) {
2539 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2540 				&dev_priv->gpu_error.reset_counter);
2541 
2542 		/*
2543 		 * Wakeup waiting processes so that the reset work function
2544 		 * i915_error_work_func doesn't deadlock trying to grab various
2545 		 * locks. By bumping the reset counter first, the woken
2546 		 * processes will see a reset in progress and back off,
2547 		 * releasing their locks and then wait for the reset completion.
2548 		 * We must do this for _all_ gpu waiters that might hold locks
2549 		 * that the reset work needs to acquire.
2550 		 *
2551 		 * Note: The wake_up serves as the required memory barrier to
2552 		 * ensure that the waiters see the updated value of the reset
2553 		 * counter atomic_t.
2554 		 */
2555 		i915_error_wake_up(dev_priv, false);
2556 	}
2557 
2558 	/*
2559 	 * Our reset work can grab modeset locks (since it needs to reset the
2560 	 * state of outstanding pagelips). Hence it must not be run on our own
2561 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2562 	 * code will deadlock.
2563 	 */
2564 	schedule_work(&dev_priv->gpu_error.work);
2565 }
2566 
2567 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2568 {
2569 	struct drm_i915_private *dev_priv = dev->dev_private;
2570 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2571 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572 	struct drm_i915_gem_object *obj;
2573 	struct intel_unpin_work *work;
2574 	unsigned long flags;
2575 	bool stall_detected;
2576 
2577 	/* Ignore early vblank irqs */
2578 	if (intel_crtc == NULL)
2579 		return;
2580 
2581 	spin_lock_irqsave(&dev->event_lock, flags);
2582 	work = intel_crtc->unpin_work;
2583 
2584 	if (work == NULL ||
2585 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2586 	    !work->enable_stall_check) {
2587 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2588 		spin_unlock_irqrestore(&dev->event_lock, flags);
2589 		return;
2590 	}
2591 
2592 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2593 	obj = work->pending_flip_obj;
2594 	if (INTEL_INFO(dev)->gen >= 4) {
2595 		int dspsurf = DSPSURF(intel_crtc->plane);
2596 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2597 					i915_gem_obj_ggtt_offset(obj);
2598 	} else {
2599 		int dspaddr = DSPADDR(intel_crtc->plane);
2600 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2601 							crtc->y * crtc->primary->fb->pitches[0] +
2602 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2603 	}
2604 
2605 	spin_unlock_irqrestore(&dev->event_lock, flags);
2606 
2607 	if (stall_detected) {
2608 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2609 		intel_prepare_page_flip(dev, intel_crtc->plane);
2610 	}
2611 }
2612 
2613 /* Called from drm generic code, passed 'crtc' which
2614  * we use as a pipe index
2615  */
2616 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2617 {
2618 	struct drm_i915_private *dev_priv = dev->dev_private;
2619 	unsigned long irqflags;
2620 
2621 	if (!i915_pipe_enabled(dev, pipe))
2622 		return -EINVAL;
2623 
2624 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2625 	if (INTEL_INFO(dev)->gen >= 4)
2626 		i915_enable_pipestat(dev_priv, pipe,
2627 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2628 	else
2629 		i915_enable_pipestat(dev_priv, pipe,
2630 				     PIPE_VBLANK_INTERRUPT_STATUS);
2631 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2632 
2633 	return 0;
2634 }
2635 
2636 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2637 {
2638 	struct drm_i915_private *dev_priv = dev->dev_private;
2639 	unsigned long irqflags;
2640 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2641 						     DE_PIPE_VBLANK(pipe);
2642 
2643 	if (!i915_pipe_enabled(dev, pipe))
2644 		return -EINVAL;
2645 
2646 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647 	ironlake_enable_display_irq(dev_priv, bit);
2648 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649 
2650 	return 0;
2651 }
2652 
2653 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2654 {
2655 	struct drm_i915_private *dev_priv = dev->dev_private;
2656 	unsigned long irqflags;
2657 
2658 	if (!i915_pipe_enabled(dev, pipe))
2659 		return -EINVAL;
2660 
2661 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2662 	i915_enable_pipestat(dev_priv, pipe,
2663 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2664 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665 
2666 	return 0;
2667 }
2668 
2669 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2670 {
2671 	struct drm_i915_private *dev_priv = dev->dev_private;
2672 	unsigned long irqflags;
2673 
2674 	if (!i915_pipe_enabled(dev, pipe))
2675 		return -EINVAL;
2676 
2677 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2679 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2680 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2681 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682 	return 0;
2683 }
2684 
2685 /* Called from drm generic code, passed 'crtc' which
2686  * we use as a pipe index
2687  */
2688 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2689 {
2690 	struct drm_i915_private *dev_priv = dev->dev_private;
2691 	unsigned long irqflags;
2692 
2693 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2694 	i915_disable_pipestat(dev_priv, pipe,
2695 			      PIPE_VBLANK_INTERRUPT_STATUS |
2696 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2697 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2698 }
2699 
2700 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2701 {
2702 	struct drm_i915_private *dev_priv = dev->dev_private;
2703 	unsigned long irqflags;
2704 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2705 						     DE_PIPE_VBLANK(pipe);
2706 
2707 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708 	ironlake_disable_display_irq(dev_priv, bit);
2709 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710 }
2711 
2712 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2713 {
2714 	struct drm_i915_private *dev_priv = dev->dev_private;
2715 	unsigned long irqflags;
2716 
2717 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718 	i915_disable_pipestat(dev_priv, pipe,
2719 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2720 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2721 }
2722 
2723 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2724 {
2725 	struct drm_i915_private *dev_priv = dev->dev_private;
2726 	unsigned long irqflags;
2727 
2728 	if (!i915_pipe_enabled(dev, pipe))
2729 		return;
2730 
2731 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2733 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2734 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2735 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736 }
2737 
2738 static u32
2739 ring_last_seqno(struct intel_engine_cs *ring)
2740 {
2741 	return list_entry(ring->request_list.prev,
2742 			  struct drm_i915_gem_request, list)->seqno;
2743 }
2744 
2745 static bool
2746 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2747 {
2748 	return (list_empty(&ring->request_list) ||
2749 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2750 }
2751 
2752 static bool
2753 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2754 {
2755 	if (INTEL_INFO(dev)->gen >= 8) {
2756 		/*
2757 		 * FIXME: gen8 semaphore support - currently we don't emit
2758 		 * semaphores on bdw anyway, but this needs to be addressed when
2759 		 * we merge that code.
2760 		 */
2761 		return false;
2762 	} else {
2763 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2764 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2765 				 MI_SEMAPHORE_REGISTER);
2766 	}
2767 }
2768 
2769 static struct intel_engine_cs *
2770 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr)
2771 {
2772 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2773 	struct intel_engine_cs *signaller;
2774 	int i;
2775 
2776 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2777 		/*
2778 		 * FIXME: gen8 semaphore support - currently we don't emit
2779 		 * semaphores on bdw anyway, but this needs to be addressed when
2780 		 * we merge that code.
2781 		 */
2782 		return NULL;
2783 	} else {
2784 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2785 
2786 		for_each_ring(signaller, dev_priv, i) {
2787 			if(ring == signaller)
2788 				continue;
2789 
2790 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2791 				return signaller;
2792 		}
2793 	}
2794 
2795 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2796 		  ring->id, ipehr);
2797 
2798 	return NULL;
2799 }
2800 
2801 static struct intel_engine_cs *
2802 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2803 {
2804 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2805 	u32 cmd, ipehr, head;
2806 	int i;
2807 
2808 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2809 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2810 		return NULL;
2811 
2812 	/*
2813 	 * HEAD is likely pointing to the dword after the actual command,
2814 	 * so scan backwards until we find the MBOX. But limit it to just 3
2815 	 * dwords. Note that we don't care about ACTHD here since that might
2816 	 * point at at batch, and semaphores are always emitted into the
2817 	 * ringbuffer itself.
2818 	 */
2819 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2820 
2821 	for (i = 4; i; --i) {
2822 		/*
2823 		 * Be paranoid and presume the hw has gone off into the wild -
2824 		 * our ring is smaller than what the hardware (and hence
2825 		 * HEAD_ADDR) allows. Also handles wrap-around.
2826 		 */
2827 		head &= ring->buffer->size - 1;
2828 
2829 		/* This here seems to blow up */
2830 		cmd = ioread32(ring->buffer->virtual_start + head);
2831 		if (cmd == ipehr)
2832 			break;
2833 
2834 		head -= 4;
2835 	}
2836 
2837 	if (!i)
2838 		return NULL;
2839 
2840 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2841 	return semaphore_wait_to_signaller_ring(ring, ipehr);
2842 }
2843 
2844 static int semaphore_passed(struct intel_engine_cs *ring)
2845 {
2846 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2847 	struct intel_engine_cs *signaller;
2848 	u32 seqno;
2849 
2850 	ring->hangcheck.deadlock++;
2851 
2852 	signaller = semaphore_waits_for(ring, &seqno);
2853 	if (signaller == NULL)
2854 		return -1;
2855 
2856 	/* Prevent pathological recursion due to driver bugs */
2857 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2858 		return -1;
2859 
2860 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2861 		return 1;
2862 
2863 	/* cursory check for an unkickable deadlock */
2864 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2865 	    semaphore_passed(signaller) < 0)
2866 		return -1;
2867 
2868 	return 0;
2869 }
2870 
2871 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2872 {
2873 	struct intel_engine_cs *ring;
2874 	int i;
2875 
2876 	for_each_ring(ring, dev_priv, i)
2877 		ring->hangcheck.deadlock = 0;
2878 }
2879 
2880 static enum intel_ring_hangcheck_action
2881 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2882 {
2883 	struct drm_device *dev = ring->dev;
2884 	struct drm_i915_private *dev_priv = dev->dev_private;
2885 	u32 tmp;
2886 
2887 	if (ring->hangcheck.acthd != acthd)
2888 		return HANGCHECK_ACTIVE;
2889 
2890 	if (IS_GEN2(dev))
2891 		return HANGCHECK_HUNG;
2892 
2893 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2894 	 * If so we can simply poke the RB_WAIT bit
2895 	 * and break the hang. This should work on
2896 	 * all but the second generation chipsets.
2897 	 */
2898 	tmp = I915_READ_CTL(ring);
2899 	if (tmp & RING_WAIT) {
2900 		i915_handle_error(dev, false,
2901 				  "Kicking stuck wait on %s",
2902 				  ring->name);
2903 		I915_WRITE_CTL(ring, tmp);
2904 		return HANGCHECK_KICK;
2905 	}
2906 
2907 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2908 		switch (semaphore_passed(ring)) {
2909 		default:
2910 			return HANGCHECK_HUNG;
2911 		case 1:
2912 			i915_handle_error(dev, false,
2913 					  "Kicking stuck semaphore on %s",
2914 					  ring->name);
2915 			I915_WRITE_CTL(ring, tmp);
2916 			return HANGCHECK_KICK;
2917 		case 0:
2918 			return HANGCHECK_WAIT;
2919 		}
2920 	}
2921 
2922 	return HANGCHECK_HUNG;
2923 }
2924 
2925 /**
2926  * This is called when the chip hasn't reported back with completed
2927  * batchbuffers in a long time. We keep track per ring seqno progress and
2928  * if there are no progress, hangcheck score for that ring is increased.
2929  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2930  * we kick the ring. If we see no progress on three subsequent calls
2931  * we assume chip is wedged and try to fix it by resetting the chip.
2932  */
2933 static void i915_hangcheck_elapsed(unsigned long data)
2934 {
2935 	struct drm_device *dev = (struct drm_device *)data;
2936 	struct drm_i915_private *dev_priv = dev->dev_private;
2937 	struct intel_engine_cs *ring;
2938 	int i;
2939 	int busy_count = 0, rings_hung = 0;
2940 	bool stuck[I915_NUM_RINGS] = { 0 };
2941 #define BUSY 1
2942 #define KICK 5
2943 #define HUNG 20
2944 
2945 	if (!i915.enable_hangcheck)
2946 		return;
2947 
2948 	for_each_ring(ring, dev_priv, i) {
2949 		u64 acthd;
2950 		u32 seqno;
2951 		bool busy = true;
2952 
2953 		semaphore_clear_deadlocks(dev_priv);
2954 
2955 		seqno = ring->get_seqno(ring, false);
2956 		acthd = intel_ring_get_active_head(ring);
2957 
2958 		if (ring->hangcheck.seqno == seqno) {
2959 			if (ring_idle(ring, seqno)) {
2960 				ring->hangcheck.action = HANGCHECK_IDLE;
2961 
2962 				if (waitqueue_active(&ring->irq_queue)) {
2963 					/* Issue a wake-up to catch stuck h/w. */
2964 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2965 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2966 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2967 								  ring->name);
2968 						else
2969 							DRM_INFO("Fake missed irq on %s\n",
2970 								 ring->name);
2971 						wake_up_all(&ring->irq_queue);
2972 					}
2973 					/* Safeguard against driver failure */
2974 					ring->hangcheck.score += BUSY;
2975 				} else
2976 					busy = false;
2977 			} else {
2978 				/* We always increment the hangcheck score
2979 				 * if the ring is busy and still processing
2980 				 * the same request, so that no single request
2981 				 * can run indefinitely (such as a chain of
2982 				 * batches). The only time we do not increment
2983 				 * the hangcheck score on this ring, if this
2984 				 * ring is in a legitimate wait for another
2985 				 * ring. In that case the waiting ring is a
2986 				 * victim and we want to be sure we catch the
2987 				 * right culprit. Then every time we do kick
2988 				 * the ring, add a small increment to the
2989 				 * score so that we can catch a batch that is
2990 				 * being repeatedly kicked and so responsible
2991 				 * for stalling the machine.
2992 				 */
2993 				ring->hangcheck.action = ring_stuck(ring,
2994 								    acthd);
2995 
2996 				switch (ring->hangcheck.action) {
2997 				case HANGCHECK_IDLE:
2998 				case HANGCHECK_WAIT:
2999 					break;
3000 				case HANGCHECK_ACTIVE:
3001 					ring->hangcheck.score += BUSY;
3002 					break;
3003 				case HANGCHECK_KICK:
3004 					ring->hangcheck.score += KICK;
3005 					break;
3006 				case HANGCHECK_HUNG:
3007 					ring->hangcheck.score += HUNG;
3008 					stuck[i] = true;
3009 					break;
3010 				}
3011 			}
3012 		} else {
3013 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3014 
3015 			/* Gradually reduce the count so that we catch DoS
3016 			 * attempts across multiple batches.
3017 			 */
3018 			if (ring->hangcheck.score > 0)
3019 				ring->hangcheck.score--;
3020 		}
3021 
3022 		ring->hangcheck.seqno = seqno;
3023 		ring->hangcheck.acthd = acthd;
3024 		busy_count += busy;
3025 	}
3026 
3027 	for_each_ring(ring, dev_priv, i) {
3028 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3029 			DRM_INFO("%s on %s\n",
3030 				 stuck[i] ? "stuck" : "no progress",
3031 				 ring->name);
3032 			rings_hung++;
3033 		}
3034 	}
3035 
3036 	if (rings_hung)
3037 		return i915_handle_error(dev, true, "Ring hung");
3038 
3039 	if (busy_count)
3040 		/* Reset timer case chip hangs without another request
3041 		 * being added */
3042 		i915_queue_hangcheck(dev);
3043 }
3044 
3045 void i915_queue_hangcheck(struct drm_device *dev)
3046 {
3047 	struct drm_i915_private *dev_priv = dev->dev_private;
3048 	if (!i915.enable_hangcheck)
3049 		return;
3050 
3051 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3052 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3053 }
3054 
3055 static void ibx_irq_reset(struct drm_device *dev)
3056 {
3057 	struct drm_i915_private *dev_priv = dev->dev_private;
3058 
3059 	if (HAS_PCH_NOP(dev))
3060 		return;
3061 
3062 	GEN5_IRQ_RESET(SDE);
3063 
3064 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3065 		I915_WRITE(SERR_INT, 0xffffffff);
3066 }
3067 
3068 /*
3069  * SDEIER is also touched by the interrupt handler to work around missed PCH
3070  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3071  * instead we unconditionally enable all PCH interrupt sources here, but then
3072  * only unmask them as needed with SDEIMR.
3073  *
3074  * This function needs to be called before interrupts are enabled.
3075  */
3076 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3077 {
3078 	struct drm_i915_private *dev_priv = dev->dev_private;
3079 
3080 	if (HAS_PCH_NOP(dev))
3081 		return;
3082 
3083 	WARN_ON(I915_READ(SDEIER) != 0);
3084 	I915_WRITE(SDEIER, 0xffffffff);
3085 	POSTING_READ(SDEIER);
3086 }
3087 
3088 static void gen5_gt_irq_reset(struct drm_device *dev)
3089 {
3090 	struct drm_i915_private *dev_priv = dev->dev_private;
3091 
3092 	GEN5_IRQ_RESET(GT);
3093 	if (INTEL_INFO(dev)->gen >= 6)
3094 		GEN5_IRQ_RESET(GEN6_PM);
3095 }
3096 
3097 /* drm_dma.h hooks
3098 */
3099 static void ironlake_irq_reset(struct drm_device *dev)
3100 {
3101 	struct drm_i915_private *dev_priv = dev->dev_private;
3102 
3103 	I915_WRITE(HWSTAM, 0xffffffff);
3104 
3105 	GEN5_IRQ_RESET(DE);
3106 	if (IS_GEN7(dev))
3107 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3108 
3109 	gen5_gt_irq_reset(dev);
3110 
3111 	ibx_irq_reset(dev);
3112 }
3113 
3114 static void valleyview_irq_preinstall(struct drm_device *dev)
3115 {
3116 	struct drm_i915_private *dev_priv = dev->dev_private;
3117 	int pipe;
3118 
3119 	/* VLV magic */
3120 	I915_WRITE(VLV_IMR, 0);
3121 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3122 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3123 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3124 
3125 	/* and GT */
3126 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3127 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3128 
3129 	gen5_gt_irq_reset(dev);
3130 
3131 	I915_WRITE(DPINVGTT, 0xff);
3132 
3133 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3134 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3135 	for_each_pipe(pipe)
3136 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3137 	I915_WRITE(VLV_IIR, 0xffffffff);
3138 	I915_WRITE(VLV_IMR, 0xffffffff);
3139 	I915_WRITE(VLV_IER, 0x0);
3140 	POSTING_READ(VLV_IER);
3141 }
3142 
3143 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3144 {
3145 	GEN8_IRQ_RESET_NDX(GT, 0);
3146 	GEN8_IRQ_RESET_NDX(GT, 1);
3147 	GEN8_IRQ_RESET_NDX(GT, 2);
3148 	GEN8_IRQ_RESET_NDX(GT, 3);
3149 }
3150 
3151 static void gen8_irq_reset(struct drm_device *dev)
3152 {
3153 	struct drm_i915_private *dev_priv = dev->dev_private;
3154 	int pipe;
3155 
3156 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3157 	POSTING_READ(GEN8_MASTER_IRQ);
3158 
3159 	gen8_gt_irq_reset(dev_priv);
3160 
3161 	for_each_pipe(pipe)
3162 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3163 
3164 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3165 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3166 	GEN5_IRQ_RESET(GEN8_PCU_);
3167 
3168 	ibx_irq_reset(dev);
3169 }
3170 
3171 static void cherryview_irq_preinstall(struct drm_device *dev)
3172 {
3173 	struct drm_i915_private *dev_priv = dev->dev_private;
3174 	int pipe;
3175 
3176 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3177 	POSTING_READ(GEN8_MASTER_IRQ);
3178 
3179 	gen8_gt_irq_reset(dev_priv);
3180 
3181 	GEN5_IRQ_RESET(GEN8_PCU_);
3182 
3183 	POSTING_READ(GEN8_PCU_IIR);
3184 
3185 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3186 
3187 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3188 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3189 
3190 	for_each_pipe(pipe)
3191 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3192 
3193 	I915_WRITE(VLV_IMR, 0xffffffff);
3194 	I915_WRITE(VLV_IER, 0x0);
3195 	I915_WRITE(VLV_IIR, 0xffffffff);
3196 	POSTING_READ(VLV_IIR);
3197 }
3198 
3199 static void ibx_hpd_irq_setup(struct drm_device *dev)
3200 {
3201 	struct drm_i915_private *dev_priv = dev->dev_private;
3202 	struct drm_mode_config *mode_config = &dev->mode_config;
3203 	struct intel_encoder *intel_encoder;
3204 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3205 
3206 	if (HAS_PCH_IBX(dev)) {
3207 		hotplug_irqs = SDE_HOTPLUG_MASK;
3208 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3209 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3210 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3211 	} else {
3212 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3213 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3214 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3215 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3216 	}
3217 
3218 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3219 
3220 	/*
3221 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3222 	 * duration to 2ms (which is the minimum in the Display Port spec)
3223 	 *
3224 	 * This register is the same on all known PCH chips.
3225 	 */
3226 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3227 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3228 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3229 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3230 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3231 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3232 }
3233 
3234 static void ibx_irq_postinstall(struct drm_device *dev)
3235 {
3236 	struct drm_i915_private *dev_priv = dev->dev_private;
3237 	u32 mask;
3238 
3239 	if (HAS_PCH_NOP(dev))
3240 		return;
3241 
3242 	if (HAS_PCH_IBX(dev))
3243 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3244 	else
3245 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3246 
3247 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3248 	I915_WRITE(SDEIMR, ~mask);
3249 }
3250 
3251 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3252 {
3253 	struct drm_i915_private *dev_priv = dev->dev_private;
3254 	u32 pm_irqs, gt_irqs;
3255 
3256 	pm_irqs = gt_irqs = 0;
3257 
3258 	dev_priv->gt_irq_mask = ~0;
3259 	if (HAS_L3_DPF(dev)) {
3260 		/* L3 parity interrupt is always unmasked. */
3261 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3262 		gt_irqs |= GT_PARITY_ERROR(dev);
3263 	}
3264 
3265 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3266 	if (IS_GEN5(dev)) {
3267 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3268 			   ILK_BSD_USER_INTERRUPT;
3269 	} else {
3270 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3271 	}
3272 
3273 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3274 
3275 	if (INTEL_INFO(dev)->gen >= 6) {
3276 		pm_irqs |= dev_priv->pm_rps_events;
3277 
3278 		if (HAS_VEBOX(dev))
3279 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3280 
3281 		dev_priv->pm_irq_mask = 0xffffffff;
3282 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3283 	}
3284 }
3285 
3286 static int ironlake_irq_postinstall(struct drm_device *dev)
3287 {
3288 	unsigned long irqflags;
3289 	struct drm_i915_private *dev_priv = dev->dev_private;
3290 	u32 display_mask, extra_mask;
3291 
3292 	if (INTEL_INFO(dev)->gen >= 7) {
3293 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3294 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3295 				DE_PLANEB_FLIP_DONE_IVB |
3296 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3297 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3298 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3299 	} else {
3300 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3301 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3302 				DE_AUX_CHANNEL_A |
3303 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3304 				DE_POISON);
3305 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3306 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3307 	}
3308 
3309 	dev_priv->irq_mask = ~display_mask;
3310 
3311 	I915_WRITE(HWSTAM, 0xeffe);
3312 
3313 	ibx_irq_pre_postinstall(dev);
3314 
3315 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3316 
3317 	gen5_gt_irq_postinstall(dev);
3318 
3319 	ibx_irq_postinstall(dev);
3320 
3321 	if (IS_IRONLAKE_M(dev)) {
3322 		/* Enable PCU event interrupts
3323 		 *
3324 		 * spinlocking not required here for correctness since interrupt
3325 		 * setup is guaranteed to run in single-threaded context. But we
3326 		 * need it to make the assert_spin_locked happy. */
3327 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3329 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3330 	}
3331 
3332 	return 0;
3333 }
3334 
3335 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3336 {
3337 	u32 pipestat_mask;
3338 	u32 iir_mask;
3339 
3340 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3341 			PIPE_FIFO_UNDERRUN_STATUS;
3342 
3343 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3344 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3345 	POSTING_READ(PIPESTAT(PIPE_A));
3346 
3347 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3348 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3349 
3350 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3351 					       PIPE_GMBUS_INTERRUPT_STATUS);
3352 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3353 
3354 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3355 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3356 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3357 	dev_priv->irq_mask &= ~iir_mask;
3358 
3359 	I915_WRITE(VLV_IIR, iir_mask);
3360 	I915_WRITE(VLV_IIR, iir_mask);
3361 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3362 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3363 	POSTING_READ(VLV_IER);
3364 }
3365 
3366 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3367 {
3368 	u32 pipestat_mask;
3369 	u32 iir_mask;
3370 
3371 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3372 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3373 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3374 
3375 	dev_priv->irq_mask |= iir_mask;
3376 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3377 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3378 	I915_WRITE(VLV_IIR, iir_mask);
3379 	I915_WRITE(VLV_IIR, iir_mask);
3380 	POSTING_READ(VLV_IIR);
3381 
3382 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3383 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3384 
3385 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3386 					        PIPE_GMBUS_INTERRUPT_STATUS);
3387 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3388 
3389 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3390 			PIPE_FIFO_UNDERRUN_STATUS;
3391 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3392 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3393 	POSTING_READ(PIPESTAT(PIPE_A));
3394 }
3395 
3396 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3397 {
3398 	assert_spin_locked(&dev_priv->irq_lock);
3399 
3400 	if (dev_priv->display_irqs_enabled)
3401 		return;
3402 
3403 	dev_priv->display_irqs_enabled = true;
3404 
3405 	if (dev_priv->dev->irq_enabled)
3406 		valleyview_display_irqs_install(dev_priv);
3407 }
3408 
3409 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3410 {
3411 	assert_spin_locked(&dev_priv->irq_lock);
3412 
3413 	if (!dev_priv->display_irqs_enabled)
3414 		return;
3415 
3416 	dev_priv->display_irqs_enabled = false;
3417 
3418 	if (dev_priv->dev->irq_enabled)
3419 		valleyview_display_irqs_uninstall(dev_priv);
3420 }
3421 
3422 static int valleyview_irq_postinstall(struct drm_device *dev)
3423 {
3424 	struct drm_i915_private *dev_priv = dev->dev_private;
3425 	unsigned long irqflags;
3426 
3427 	dev_priv->irq_mask = ~0;
3428 
3429 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3430 	POSTING_READ(PORT_HOTPLUG_EN);
3431 
3432 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3433 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3434 	I915_WRITE(VLV_IIR, 0xffffffff);
3435 	POSTING_READ(VLV_IER);
3436 
3437 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3438 	 * just to make the assert_spin_locked check happy. */
3439 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3440 	if (dev_priv->display_irqs_enabled)
3441 		valleyview_display_irqs_install(dev_priv);
3442 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3443 
3444 	I915_WRITE(VLV_IIR, 0xffffffff);
3445 	I915_WRITE(VLV_IIR, 0xffffffff);
3446 
3447 	gen5_gt_irq_postinstall(dev);
3448 
3449 	/* ack & enable invalid PTE error interrupts */
3450 #if 0 /* FIXME: add support to irq handler for checking these bits */
3451 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3452 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3453 #endif
3454 
3455 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3456 
3457 	return 0;
3458 }
3459 
3460 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3461 {
3462 	int i;
3463 
3464 	/* These are interrupts we'll toggle with the ring mask register */
3465 	uint32_t gt_interrupts[] = {
3466 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3467 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3468 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3469 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3470 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3471 		0,
3472 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3473 		};
3474 
3475 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3476 		GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3477 
3478 	dev_priv->pm_irq_mask = 0xffffffff;
3479 }
3480 
3481 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3482 {
3483 	struct drm_device *dev = dev_priv->dev;
3484 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3485 		GEN8_PIPE_CDCLK_CRC_DONE |
3486 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3487 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3488 		GEN8_PIPE_FIFO_UNDERRUN;
3489 	int pipe;
3490 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3491 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3492 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3493 
3494 	for_each_pipe(pipe)
3495 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3496 				  de_pipe_enables);
3497 
3498 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3499 }
3500 
3501 static int gen8_irq_postinstall(struct drm_device *dev)
3502 {
3503 	struct drm_i915_private *dev_priv = dev->dev_private;
3504 
3505 	ibx_irq_pre_postinstall(dev);
3506 
3507 	gen8_gt_irq_postinstall(dev_priv);
3508 	gen8_de_irq_postinstall(dev_priv);
3509 
3510 	ibx_irq_postinstall(dev);
3511 
3512 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3513 	POSTING_READ(GEN8_MASTER_IRQ);
3514 
3515 	return 0;
3516 }
3517 
3518 static int cherryview_irq_postinstall(struct drm_device *dev)
3519 {
3520 	struct drm_i915_private *dev_priv = dev->dev_private;
3521 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3522 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3523 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3524 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3525 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3526 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3527 	unsigned long irqflags;
3528 	int pipe;
3529 
3530 	/*
3531 	 * Leave vblank interrupts masked initially.  enable/disable will
3532 	 * toggle them based on usage.
3533 	 */
3534 	dev_priv->irq_mask = ~enable_mask;
3535 
3536 	for_each_pipe(pipe)
3537 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3538 
3539 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3540 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3541 	for_each_pipe(pipe)
3542 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3543 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3544 
3545 	I915_WRITE(VLV_IIR, 0xffffffff);
3546 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3547 	I915_WRITE(VLV_IER, enable_mask);
3548 
3549 	gen8_gt_irq_postinstall(dev_priv);
3550 
3551 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3552 	POSTING_READ(GEN8_MASTER_IRQ);
3553 
3554 	return 0;
3555 }
3556 
3557 static void gen8_irq_uninstall(struct drm_device *dev)
3558 {
3559 	struct drm_i915_private *dev_priv = dev->dev_private;
3560 
3561 	if (!dev_priv)
3562 		return;
3563 
3564 	intel_hpd_irq_uninstall(dev_priv);
3565 
3566 	gen8_irq_reset(dev);
3567 }
3568 
3569 static void valleyview_irq_uninstall(struct drm_device *dev)
3570 {
3571 	struct drm_i915_private *dev_priv = dev->dev_private;
3572 	unsigned long irqflags;
3573 	int pipe;
3574 
3575 	if (!dev_priv)
3576 		return;
3577 
3578 	I915_WRITE(VLV_MASTER_IER, 0);
3579 
3580 	intel_hpd_irq_uninstall(dev_priv);
3581 
3582 	for_each_pipe(pipe)
3583 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3584 
3585 	I915_WRITE(HWSTAM, 0xffffffff);
3586 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3587 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3588 
3589 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3590 	if (dev_priv->display_irqs_enabled)
3591 		valleyview_display_irqs_uninstall(dev_priv);
3592 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3593 
3594 	dev_priv->irq_mask = 0;
3595 
3596 	I915_WRITE(VLV_IIR, 0xffffffff);
3597 	I915_WRITE(VLV_IMR, 0xffffffff);
3598 	I915_WRITE(VLV_IER, 0x0);
3599 	POSTING_READ(VLV_IER);
3600 }
3601 
3602 static void cherryview_irq_uninstall(struct drm_device *dev)
3603 {
3604 	struct drm_i915_private *dev_priv = dev->dev_private;
3605 	int pipe;
3606 
3607 	if (!dev_priv)
3608 		return;
3609 
3610 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3611 	POSTING_READ(GEN8_MASTER_IRQ);
3612 
3613 #define GEN8_IRQ_FINI_NDX(type, which)				\
3614 do {								\
3615 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3616 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3617 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3618 	POSTING_READ(GEN8_##type##_IIR(which));			\
3619 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3620 } while (0)
3621 
3622 #define GEN8_IRQ_FINI(type)				\
3623 do {							\
3624 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3625 	I915_WRITE(GEN8_##type##_IER, 0);		\
3626 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3627 	POSTING_READ(GEN8_##type##_IIR);		\
3628 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3629 } while (0)
3630 
3631 	GEN8_IRQ_FINI_NDX(GT, 0);
3632 	GEN8_IRQ_FINI_NDX(GT, 1);
3633 	GEN8_IRQ_FINI_NDX(GT, 2);
3634 	GEN8_IRQ_FINI_NDX(GT, 3);
3635 
3636 	GEN8_IRQ_FINI(PCU);
3637 
3638 #undef GEN8_IRQ_FINI
3639 #undef GEN8_IRQ_FINI_NDX
3640 
3641 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3642 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3643 
3644 	for_each_pipe(pipe)
3645 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3646 
3647 	I915_WRITE(VLV_IMR, 0xffffffff);
3648 	I915_WRITE(VLV_IER, 0x0);
3649 	I915_WRITE(VLV_IIR, 0xffffffff);
3650 	POSTING_READ(VLV_IIR);
3651 }
3652 
3653 static void ironlake_irq_uninstall(struct drm_device *dev)
3654 {
3655 	struct drm_i915_private *dev_priv = dev->dev_private;
3656 
3657 	if (!dev_priv)
3658 		return;
3659 
3660 	intel_hpd_irq_uninstall(dev_priv);
3661 
3662 	ironlake_irq_reset(dev);
3663 }
3664 
3665 static void i8xx_irq_preinstall(struct drm_device * dev)
3666 {
3667 	struct drm_i915_private *dev_priv = dev->dev_private;
3668 	int pipe;
3669 
3670 	for_each_pipe(pipe)
3671 		I915_WRITE(PIPESTAT(pipe), 0);
3672 	I915_WRITE16(IMR, 0xffff);
3673 	I915_WRITE16(IER, 0x0);
3674 	POSTING_READ16(IER);
3675 }
3676 
3677 static int i8xx_irq_postinstall(struct drm_device *dev)
3678 {
3679 	struct drm_i915_private *dev_priv = dev->dev_private;
3680 	unsigned long irqflags;
3681 
3682 	I915_WRITE16(EMR,
3683 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3684 
3685 	/* Unmask the interrupts that we always want on. */
3686 	dev_priv->irq_mask =
3687 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3688 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3689 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3690 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3691 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3692 	I915_WRITE16(IMR, dev_priv->irq_mask);
3693 
3694 	I915_WRITE16(IER,
3695 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3697 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3698 		     I915_USER_INTERRUPT);
3699 	POSTING_READ16(IER);
3700 
3701 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3702 	 * just to make the assert_spin_locked check happy. */
3703 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3704 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3705 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3707 
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Returns true when a page flip has completed.
3713  */
3714 static bool i8xx_handle_vblank(struct drm_device *dev,
3715 			       int plane, int pipe, u32 iir)
3716 {
3717 	struct drm_i915_private *dev_priv = dev->dev_private;
3718 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3719 
3720 	if (!intel_pipe_handle_vblank(dev, pipe))
3721 		return false;
3722 
3723 	if ((iir & flip_pending) == 0)
3724 		return false;
3725 
3726 	intel_prepare_page_flip(dev, plane);
3727 
3728 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3729 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3730 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3731 	 * the flip is completed (no longer pending). Since this doesn't raise
3732 	 * an interrupt per se, we watch for the change at vblank.
3733 	 */
3734 	if (I915_READ16(ISR) & flip_pending)
3735 		return false;
3736 
3737 	intel_finish_page_flip(dev, pipe);
3738 
3739 	return true;
3740 }
3741 
3742 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3743 {
3744 	struct drm_device *dev = arg;
3745 	struct drm_i915_private *dev_priv = dev->dev_private;
3746 	u16 iir, new_iir;
3747 	u32 pipe_stats[2];
3748 	unsigned long irqflags;
3749 	int pipe;
3750 	u16 flip_mask =
3751 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3752 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3753 
3754 	iir = I915_READ16(IIR);
3755 	if (iir == 0)
3756 		return IRQ_NONE;
3757 
3758 	while (iir & ~flip_mask) {
3759 		/* Can't rely on pipestat interrupt bit in iir as it might
3760 		 * have been cleared after the pipestat interrupt was received.
3761 		 * It doesn't set the bit in iir again, but it still produces
3762 		 * interrupts (for non-MSI).
3763 		 */
3764 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3765 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3766 			i915_handle_error(dev, false,
3767 					  "Command parser error, iir 0x%08x",
3768 					  iir);
3769 
3770 		for_each_pipe(pipe) {
3771 			int reg = PIPESTAT(pipe);
3772 			pipe_stats[pipe] = I915_READ(reg);
3773 
3774 			/*
3775 			 * Clear the PIPE*STAT regs before the IIR
3776 			 */
3777 			if (pipe_stats[pipe] & 0x8000ffff)
3778 				I915_WRITE(reg, pipe_stats[pipe]);
3779 		}
3780 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3781 
3782 		I915_WRITE16(IIR, iir & ~flip_mask);
3783 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3784 
3785 		i915_update_dri1_breadcrumb(dev);
3786 
3787 		if (iir & I915_USER_INTERRUPT)
3788 			notify_ring(dev, &dev_priv->ring[RCS]);
3789 
3790 		for_each_pipe(pipe) {
3791 			int plane = pipe;
3792 			if (HAS_FBC(dev))
3793 				plane = !plane;
3794 
3795 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3796 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3797 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3798 
3799 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3800 				i9xx_pipe_crc_irq_handler(dev, pipe);
3801 
3802 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3803 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3804 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3805 		}
3806 
3807 		iir = new_iir;
3808 	}
3809 
3810 	return IRQ_HANDLED;
3811 }
3812 
3813 static void i8xx_irq_uninstall(struct drm_device * dev)
3814 {
3815 	struct drm_i915_private *dev_priv = dev->dev_private;
3816 	int pipe;
3817 
3818 	for_each_pipe(pipe) {
3819 		/* Clear enable bits; then clear status bits */
3820 		I915_WRITE(PIPESTAT(pipe), 0);
3821 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3822 	}
3823 	I915_WRITE16(IMR, 0xffff);
3824 	I915_WRITE16(IER, 0x0);
3825 	I915_WRITE16(IIR, I915_READ16(IIR));
3826 }
3827 
3828 static void i915_irq_preinstall(struct drm_device * dev)
3829 {
3830 	struct drm_i915_private *dev_priv = dev->dev_private;
3831 	int pipe;
3832 
3833 	if (I915_HAS_HOTPLUG(dev)) {
3834 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3835 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3836 	}
3837 
3838 	I915_WRITE16(HWSTAM, 0xeffe);
3839 	for_each_pipe(pipe)
3840 		I915_WRITE(PIPESTAT(pipe), 0);
3841 	I915_WRITE(IMR, 0xffffffff);
3842 	I915_WRITE(IER, 0x0);
3843 	POSTING_READ(IER);
3844 }
3845 
3846 static int i915_irq_postinstall(struct drm_device *dev)
3847 {
3848 	struct drm_i915_private *dev_priv = dev->dev_private;
3849 	u32 enable_mask;
3850 	unsigned long irqflags;
3851 
3852 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3853 
3854 	/* Unmask the interrupts that we always want on. */
3855 	dev_priv->irq_mask =
3856 		~(I915_ASLE_INTERRUPT |
3857 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3858 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3859 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3860 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3861 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3862 
3863 	enable_mask =
3864 		I915_ASLE_INTERRUPT |
3865 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3866 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3867 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3868 		I915_USER_INTERRUPT;
3869 
3870 	if (I915_HAS_HOTPLUG(dev)) {
3871 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3872 		POSTING_READ(PORT_HOTPLUG_EN);
3873 
3874 		/* Enable in IER... */
3875 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3876 		/* and unmask in IMR */
3877 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3878 	}
3879 
3880 	I915_WRITE(IMR, dev_priv->irq_mask);
3881 	I915_WRITE(IER, enable_mask);
3882 	POSTING_READ(IER);
3883 
3884 	i915_enable_asle_pipestat(dev);
3885 
3886 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3887 	 * just to make the assert_spin_locked check happy. */
3888 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3889 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3890 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3891 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3892 
3893 	return 0;
3894 }
3895 
3896 /*
3897  * Returns true when a page flip has completed.
3898  */
3899 static bool i915_handle_vblank(struct drm_device *dev,
3900 			       int plane, int pipe, u32 iir)
3901 {
3902 	struct drm_i915_private *dev_priv = dev->dev_private;
3903 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3904 
3905 	if (!intel_pipe_handle_vblank(dev, pipe))
3906 		return false;
3907 
3908 	if ((iir & flip_pending) == 0)
3909 		return false;
3910 
3911 	intel_prepare_page_flip(dev, plane);
3912 
3913 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3914 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3915 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3916 	 * the flip is completed (no longer pending). Since this doesn't raise
3917 	 * an interrupt per se, we watch for the change at vblank.
3918 	 */
3919 	if (I915_READ(ISR) & flip_pending)
3920 		return false;
3921 
3922 	intel_finish_page_flip(dev, pipe);
3923 
3924 	return true;
3925 }
3926 
3927 static irqreturn_t i915_irq_handler(int irq, void *arg)
3928 {
3929 	struct drm_device *dev = arg;
3930 	struct drm_i915_private *dev_priv = dev->dev_private;
3931 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3932 	unsigned long irqflags;
3933 	u32 flip_mask =
3934 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3935 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3936 	int pipe, ret = IRQ_NONE;
3937 
3938 	iir = I915_READ(IIR);
3939 	do {
3940 		bool irq_received = (iir & ~flip_mask) != 0;
3941 		bool blc_event = false;
3942 
3943 		/* Can't rely on pipestat interrupt bit in iir as it might
3944 		 * have been cleared after the pipestat interrupt was received.
3945 		 * It doesn't set the bit in iir again, but it still produces
3946 		 * interrupts (for non-MSI).
3947 		 */
3948 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3949 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3950 			i915_handle_error(dev, false,
3951 					  "Command parser error, iir 0x%08x",
3952 					  iir);
3953 
3954 		for_each_pipe(pipe) {
3955 			int reg = PIPESTAT(pipe);
3956 			pipe_stats[pipe] = I915_READ(reg);
3957 
3958 			/* Clear the PIPE*STAT regs before the IIR */
3959 			if (pipe_stats[pipe] & 0x8000ffff) {
3960 				I915_WRITE(reg, pipe_stats[pipe]);
3961 				irq_received = true;
3962 			}
3963 		}
3964 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3965 
3966 		if (!irq_received)
3967 			break;
3968 
3969 		/* Consume port.  Then clear IIR or we'll miss events */
3970 		if (I915_HAS_HOTPLUG(dev) &&
3971 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3972 			i9xx_hpd_irq_handler(dev);
3973 
3974 		I915_WRITE(IIR, iir & ~flip_mask);
3975 		new_iir = I915_READ(IIR); /* Flush posted writes */
3976 
3977 		if (iir & I915_USER_INTERRUPT)
3978 			notify_ring(dev, &dev_priv->ring[RCS]);
3979 
3980 		for_each_pipe(pipe) {
3981 			int plane = pipe;
3982 			if (HAS_FBC(dev))
3983 				plane = !plane;
3984 
3985 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3986 			    i915_handle_vblank(dev, plane, pipe, iir))
3987 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3988 
3989 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3990 				blc_event = true;
3991 
3992 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3993 				i9xx_pipe_crc_irq_handler(dev, pipe);
3994 
3995 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3996 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3997 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3998 		}
3999 
4000 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4001 			intel_opregion_asle_intr(dev);
4002 
4003 		/* With MSI, interrupts are only generated when iir
4004 		 * transitions from zero to nonzero.  If another bit got
4005 		 * set while we were handling the existing iir bits, then
4006 		 * we would never get another interrupt.
4007 		 *
4008 		 * This is fine on non-MSI as well, as if we hit this path
4009 		 * we avoid exiting the interrupt handler only to generate
4010 		 * another one.
4011 		 *
4012 		 * Note that for MSI this could cause a stray interrupt report
4013 		 * if an interrupt landed in the time between writing IIR and
4014 		 * the posting read.  This should be rare enough to never
4015 		 * trigger the 99% of 100,000 interrupts test for disabling
4016 		 * stray interrupts.
4017 		 */
4018 		ret = IRQ_HANDLED;
4019 		iir = new_iir;
4020 	} while (iir & ~flip_mask);
4021 
4022 	i915_update_dri1_breadcrumb(dev);
4023 
4024 	return ret;
4025 }
4026 
4027 static void i915_irq_uninstall(struct drm_device * dev)
4028 {
4029 	struct drm_i915_private *dev_priv = dev->dev_private;
4030 	int pipe;
4031 
4032 	intel_hpd_irq_uninstall(dev_priv);
4033 
4034 	if (I915_HAS_HOTPLUG(dev)) {
4035 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4036 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4037 	}
4038 
4039 	I915_WRITE16(HWSTAM, 0xffff);
4040 	for_each_pipe(pipe) {
4041 		/* Clear enable bits; then clear status bits */
4042 		I915_WRITE(PIPESTAT(pipe), 0);
4043 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4044 	}
4045 	I915_WRITE(IMR, 0xffffffff);
4046 	I915_WRITE(IER, 0x0);
4047 
4048 	I915_WRITE(IIR, I915_READ(IIR));
4049 }
4050 
4051 static void i965_irq_preinstall(struct drm_device * dev)
4052 {
4053 	struct drm_i915_private *dev_priv = dev->dev_private;
4054 	int pipe;
4055 
4056 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4057 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4058 
4059 	I915_WRITE(HWSTAM, 0xeffe);
4060 	for_each_pipe(pipe)
4061 		I915_WRITE(PIPESTAT(pipe), 0);
4062 	I915_WRITE(IMR, 0xffffffff);
4063 	I915_WRITE(IER, 0x0);
4064 	POSTING_READ(IER);
4065 }
4066 
4067 static int i965_irq_postinstall(struct drm_device *dev)
4068 {
4069 	struct drm_i915_private *dev_priv = dev->dev_private;
4070 	u32 enable_mask;
4071 	u32 error_mask;
4072 	unsigned long irqflags;
4073 
4074 	/* Unmask the interrupts that we always want on. */
4075 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4076 			       I915_DISPLAY_PORT_INTERRUPT |
4077 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4078 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4079 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4080 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4081 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4082 
4083 	enable_mask = ~dev_priv->irq_mask;
4084 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4085 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4086 	enable_mask |= I915_USER_INTERRUPT;
4087 
4088 	if (IS_G4X(dev))
4089 		enable_mask |= I915_BSD_USER_INTERRUPT;
4090 
4091 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4092 	 * just to make the assert_spin_locked check happy. */
4093 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4094 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4095 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4096 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4097 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4098 
4099 	/*
4100 	 * Enable some error detection, note the instruction error mask
4101 	 * bit is reserved, so we leave it masked.
4102 	 */
4103 	if (IS_G4X(dev)) {
4104 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4105 			       GM45_ERROR_MEM_PRIV |
4106 			       GM45_ERROR_CP_PRIV |
4107 			       I915_ERROR_MEMORY_REFRESH);
4108 	} else {
4109 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4110 			       I915_ERROR_MEMORY_REFRESH);
4111 	}
4112 	I915_WRITE(EMR, error_mask);
4113 
4114 	I915_WRITE(IMR, dev_priv->irq_mask);
4115 	I915_WRITE(IER, enable_mask);
4116 	POSTING_READ(IER);
4117 
4118 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4119 	POSTING_READ(PORT_HOTPLUG_EN);
4120 
4121 	i915_enable_asle_pipestat(dev);
4122 
4123 	return 0;
4124 }
4125 
4126 static void i915_hpd_irq_setup(struct drm_device *dev)
4127 {
4128 	struct drm_i915_private *dev_priv = dev->dev_private;
4129 	struct drm_mode_config *mode_config = &dev->mode_config;
4130 	struct intel_encoder *intel_encoder;
4131 	u32 hotplug_en;
4132 
4133 	assert_spin_locked(&dev_priv->irq_lock);
4134 
4135 	if (I915_HAS_HOTPLUG(dev)) {
4136 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4137 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4138 		/* Note HDMI and DP share hotplug bits */
4139 		/* enable bits are the same for all generations */
4140 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4141 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4142 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4143 		/* Programming the CRT detection parameters tends
4144 		   to generate a spurious hotplug event about three
4145 		   seconds later.  So just do it once.
4146 		*/
4147 		if (IS_G4X(dev))
4148 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4149 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4150 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4151 
4152 		/* Ignore TV since it's buggy */
4153 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4154 	}
4155 }
4156 
4157 static irqreturn_t i965_irq_handler(int irq, void *arg)
4158 {
4159 	struct drm_device *dev = arg;
4160 	struct drm_i915_private *dev_priv = dev->dev_private;
4161 	u32 iir, new_iir;
4162 	u32 pipe_stats[I915_MAX_PIPES];
4163 	unsigned long irqflags;
4164 	int ret = IRQ_NONE, pipe;
4165 	u32 flip_mask =
4166 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4167 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4168 
4169 	iir = I915_READ(IIR);
4170 
4171 	for (;;) {
4172 		bool irq_received = (iir & ~flip_mask) != 0;
4173 		bool blc_event = false;
4174 
4175 		/* Can't rely on pipestat interrupt bit in iir as it might
4176 		 * have been cleared after the pipestat interrupt was received.
4177 		 * It doesn't set the bit in iir again, but it still produces
4178 		 * interrupts (for non-MSI).
4179 		 */
4180 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4181 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4182 			i915_handle_error(dev, false,
4183 					  "Command parser error, iir 0x%08x",
4184 					  iir);
4185 
4186 		for_each_pipe(pipe) {
4187 			int reg = PIPESTAT(pipe);
4188 			pipe_stats[pipe] = I915_READ(reg);
4189 
4190 			/*
4191 			 * Clear the PIPE*STAT regs before the IIR
4192 			 */
4193 			if (pipe_stats[pipe] & 0x8000ffff) {
4194 				I915_WRITE(reg, pipe_stats[pipe]);
4195 				irq_received = true;
4196 			}
4197 		}
4198 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4199 
4200 		if (!irq_received)
4201 			break;
4202 
4203 		ret = IRQ_HANDLED;
4204 
4205 		/* Consume port.  Then clear IIR or we'll miss events */
4206 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4207 			i9xx_hpd_irq_handler(dev);
4208 
4209 		I915_WRITE(IIR, iir & ~flip_mask);
4210 		new_iir = I915_READ(IIR); /* Flush posted writes */
4211 
4212 		if (iir & I915_USER_INTERRUPT)
4213 			notify_ring(dev, &dev_priv->ring[RCS]);
4214 		if (iir & I915_BSD_USER_INTERRUPT)
4215 			notify_ring(dev, &dev_priv->ring[VCS]);
4216 
4217 		for_each_pipe(pipe) {
4218 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4219 			    i915_handle_vblank(dev, pipe, pipe, iir))
4220 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4221 
4222 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4223 				blc_event = true;
4224 
4225 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4226 				i9xx_pipe_crc_irq_handler(dev, pipe);
4227 
4228 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4229 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4230 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4231 		}
4232 
4233 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4234 			intel_opregion_asle_intr(dev);
4235 
4236 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4237 			gmbus_irq_handler(dev);
4238 
4239 		/* With MSI, interrupts are only generated when iir
4240 		 * transitions from zero to nonzero.  If another bit got
4241 		 * set while we were handling the existing iir bits, then
4242 		 * we would never get another interrupt.
4243 		 *
4244 		 * This is fine on non-MSI as well, as if we hit this path
4245 		 * we avoid exiting the interrupt handler only to generate
4246 		 * another one.
4247 		 *
4248 		 * Note that for MSI this could cause a stray interrupt report
4249 		 * if an interrupt landed in the time between writing IIR and
4250 		 * the posting read.  This should be rare enough to never
4251 		 * trigger the 99% of 100,000 interrupts test for disabling
4252 		 * stray interrupts.
4253 		 */
4254 		iir = new_iir;
4255 	}
4256 
4257 	i915_update_dri1_breadcrumb(dev);
4258 
4259 	return ret;
4260 }
4261 
4262 static void i965_irq_uninstall(struct drm_device * dev)
4263 {
4264 	struct drm_i915_private *dev_priv = dev->dev_private;
4265 	int pipe;
4266 
4267 	if (!dev_priv)
4268 		return;
4269 
4270 	intel_hpd_irq_uninstall(dev_priv);
4271 
4272 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4273 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4274 
4275 	I915_WRITE(HWSTAM, 0xffffffff);
4276 	for_each_pipe(pipe)
4277 		I915_WRITE(PIPESTAT(pipe), 0);
4278 	I915_WRITE(IMR, 0xffffffff);
4279 	I915_WRITE(IER, 0x0);
4280 
4281 	for_each_pipe(pipe)
4282 		I915_WRITE(PIPESTAT(pipe),
4283 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4284 	I915_WRITE(IIR, I915_READ(IIR));
4285 }
4286 
4287 static void intel_hpd_irq_reenable(unsigned long data)
4288 {
4289 	struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4290 	struct drm_device *dev = dev_priv->dev;
4291 	struct drm_mode_config *mode_config = &dev->mode_config;
4292 	unsigned long irqflags;
4293 	int i;
4294 
4295 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4296 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4297 		struct drm_connector *connector;
4298 
4299 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4300 			continue;
4301 
4302 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4303 
4304 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4305 			struct intel_connector *intel_connector = to_intel_connector(connector);
4306 
4307 			if (intel_connector->encoder->hpd_pin == i) {
4308 				if (connector->polled != intel_connector->polled)
4309 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4310 							 connector->name);
4311 				connector->polled = intel_connector->polled;
4312 				if (!connector->polled)
4313 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4314 			}
4315 		}
4316 	}
4317 	if (dev_priv->display.hpd_irq_setup)
4318 		dev_priv->display.hpd_irq_setup(dev);
4319 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4320 }
4321 
4322 void intel_irq_init(struct drm_device *dev)
4323 {
4324 	struct drm_i915_private *dev_priv = dev->dev_private;
4325 
4326 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4327 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4328 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4329 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4330 
4331 	/* Let's track the enabled rps events */
4332 	dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4333 
4334 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4335 		    i915_hangcheck_elapsed,
4336 		    (unsigned long) dev);
4337 	setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4338 		    (unsigned long) dev_priv);
4339 
4340 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4341 
4342 	if (IS_GEN2(dev)) {
4343 		dev->max_vblank_count = 0;
4344 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4345 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4346 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4347 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4348 	} else {
4349 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4350 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4351 	}
4352 
4353 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4354 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4355 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4356 	}
4357 
4358 	if (IS_CHERRYVIEW(dev)) {
4359 		dev->driver->irq_handler = cherryview_irq_handler;
4360 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4361 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4362 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4363 		dev->driver->enable_vblank = valleyview_enable_vblank;
4364 		dev->driver->disable_vblank = valleyview_disable_vblank;
4365 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4366 	} else if (IS_VALLEYVIEW(dev)) {
4367 		dev->driver->irq_handler = valleyview_irq_handler;
4368 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4369 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4370 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4371 		dev->driver->enable_vblank = valleyview_enable_vblank;
4372 		dev->driver->disable_vblank = valleyview_disable_vblank;
4373 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4374 	} else if (IS_GEN8(dev)) {
4375 		dev->driver->irq_handler = gen8_irq_handler;
4376 		dev->driver->irq_preinstall = gen8_irq_reset;
4377 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4378 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4379 		dev->driver->enable_vblank = gen8_enable_vblank;
4380 		dev->driver->disable_vblank = gen8_disable_vblank;
4381 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4382 	} else if (HAS_PCH_SPLIT(dev)) {
4383 		dev->driver->irq_handler = ironlake_irq_handler;
4384 		dev->driver->irq_preinstall = ironlake_irq_reset;
4385 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4386 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4387 		dev->driver->enable_vblank = ironlake_enable_vblank;
4388 		dev->driver->disable_vblank = ironlake_disable_vblank;
4389 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390 	} else {
4391 		if (INTEL_INFO(dev)->gen == 2) {
4392 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4393 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4394 			dev->driver->irq_handler = i8xx_irq_handler;
4395 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4396 		} else if (INTEL_INFO(dev)->gen == 3) {
4397 			dev->driver->irq_preinstall = i915_irq_preinstall;
4398 			dev->driver->irq_postinstall = i915_irq_postinstall;
4399 			dev->driver->irq_uninstall = i915_irq_uninstall;
4400 			dev->driver->irq_handler = i915_irq_handler;
4401 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4402 		} else {
4403 			dev->driver->irq_preinstall = i965_irq_preinstall;
4404 			dev->driver->irq_postinstall = i965_irq_postinstall;
4405 			dev->driver->irq_uninstall = i965_irq_uninstall;
4406 			dev->driver->irq_handler = i965_irq_handler;
4407 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408 		}
4409 		dev->driver->enable_vblank = i915_enable_vblank;
4410 		dev->driver->disable_vblank = i915_disable_vblank;
4411 	}
4412 }
4413 
4414 void intel_hpd_init(struct drm_device *dev)
4415 {
4416 	struct drm_i915_private *dev_priv = dev->dev_private;
4417 	struct drm_mode_config *mode_config = &dev->mode_config;
4418 	struct drm_connector *connector;
4419 	unsigned long irqflags;
4420 	int i;
4421 
4422 	for (i = 1; i < HPD_NUM_PINS; i++) {
4423 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4424 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4425 	}
4426 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4427 		struct intel_connector *intel_connector = to_intel_connector(connector);
4428 		connector->polled = intel_connector->polled;
4429 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4430 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4431 	}
4432 
4433 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4434 	 * just to make the assert_spin_locked checks happy. */
4435 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4436 	if (dev_priv->display.hpd_irq_setup)
4437 		dev_priv->display.hpd_irq_setup(dev);
4438 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4439 }
4440 
4441 /* Disable interrupts so we can allow runtime PM. */
4442 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4443 {
4444 	struct drm_i915_private *dev_priv = dev->dev_private;
4445 
4446 	dev->driver->irq_uninstall(dev);
4447 	dev_priv->pm.irqs_disabled = true;
4448 }
4449 
4450 /* Restore interrupts so we can recover from runtime PM. */
4451 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4452 {
4453 	struct drm_i915_private *dev_priv = dev->dev_private;
4454 
4455 	dev_priv->pm.irqs_disabled = false;
4456 	dev->driver->irq_preinstall(dev);
4457 	dev->driver->irq_postinstall(dev);
4458 }
4459