xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 6189f1b0)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55 
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63 
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72 
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81 
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
83 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90 
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96 
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100 	POSTING_READ(GEN8_##type##_IMR(which)); \
101 	I915_WRITE(GEN8_##type##_IER(which), 0); \
102 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103 	POSTING_READ(GEN8_##type##_IIR(which)); \
104 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 	POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107 
108 #define GEN5_IRQ_RESET(type) do { \
109 	I915_WRITE(type##IMR, 0xffffffff); \
110 	POSTING_READ(type##IMR); \
111 	I915_WRITE(type##IER, 0); \
112 	I915_WRITE(type##IIR, 0xffffffff); \
113 	POSTING_READ(type##IIR); \
114 	I915_WRITE(type##IIR, 0xffffffff); \
115 	POSTING_READ(type##IIR); \
116 } while (0)
117 
118 /*
119  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120  */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122 	u32 val = I915_READ(reg); \
123 	if (val) { \
124 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125 		     (reg), val); \
126 		I915_WRITE((reg), 0xffffffff); \
127 		POSTING_READ(reg); \
128 		I915_WRITE((reg), 0xffffffff); \
129 		POSTING_READ(reg); \
130 	} \
131 } while (0)
132 
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137 	POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139 
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142 	I915_WRITE(type##IER, (ier_val)); \
143 	I915_WRITE(type##IMR, (imr_val)); \
144 	POSTING_READ(type##IMR); \
145 } while (0)
146 
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148 
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153 	assert_spin_locked(&dev_priv->irq_lock);
154 
155 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156 		return;
157 
158 	if ((dev_priv->irq_mask & mask) != 0) {
159 		dev_priv->irq_mask &= ~mask;
160 		I915_WRITE(DEIMR, dev_priv->irq_mask);
161 		POSTING_READ(DEIMR);
162 	}
163 }
164 
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168 	assert_spin_locked(&dev_priv->irq_lock);
169 
170 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171 		return;
172 
173 	if ((dev_priv->irq_mask & mask) != mask) {
174 		dev_priv->irq_mask |= mask;
175 		I915_WRITE(DEIMR, dev_priv->irq_mask);
176 		POSTING_READ(DEIMR);
177 	}
178 }
179 
180 /**
181  * ilk_update_gt_irq - update GTIMR
182  * @dev_priv: driver private
183  * @interrupt_mask: mask of interrupt bits to update
184  * @enabled_irq_mask: mask of interrupt bits to enable
185  */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187 			      uint32_t interrupt_mask,
188 			      uint32_t enabled_irq_mask)
189 {
190 	assert_spin_locked(&dev_priv->irq_lock);
191 
192 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
193 
194 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195 		return;
196 
197 	dev_priv->gt_irq_mask &= ~interrupt_mask;
198 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200 	POSTING_READ(GTIMR);
201 }
202 
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 	ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207 
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210 	ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212 
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217 
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222 
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227 
228 /**
229   * snb_update_pm_irq - update GEN6_PMIMR
230   * @dev_priv: driver private
231   * @interrupt_mask: mask of interrupt bits to update
232   * @enabled_irq_mask: mask of interrupt bits to enable
233   */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235 			      uint32_t interrupt_mask,
236 			      uint32_t enabled_irq_mask)
237 {
238 	uint32_t new_val;
239 
240 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
241 
242 	assert_spin_locked(&dev_priv->irq_lock);
243 
244 	new_val = dev_priv->pm_irq_mask;
245 	new_val &= ~interrupt_mask;
246 	new_val |= (~enabled_irq_mask & interrupt_mask);
247 
248 	if (new_val != dev_priv->pm_irq_mask) {
249 		dev_priv->pm_irq_mask = new_val;
250 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251 		POSTING_READ(gen6_pm_imr(dev_priv));
252 	}
253 }
254 
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	snb_update_pm_irq(dev_priv, mask, mask);
261 }
262 
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264 				  uint32_t mask)
265 {
266 	snb_update_pm_irq(dev_priv, mask, 0);
267 }
268 
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272 		return;
273 
274 	__gen6_disable_pm_irq(dev_priv, mask);
275 }
276 
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279 	struct drm_i915_private *dev_priv = dev->dev_private;
280 	uint32_t reg = gen6_pm_iir(dev_priv);
281 
282 	spin_lock_irq(&dev_priv->irq_lock);
283 	I915_WRITE(reg, dev_priv->pm_rps_events);
284 	I915_WRITE(reg, dev_priv->pm_rps_events);
285 	POSTING_READ(reg);
286 	dev_priv->rps.pm_iir = 0;
287 	spin_unlock_irq(&dev_priv->irq_lock);
288 }
289 
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292 	struct drm_i915_private *dev_priv = dev->dev_private;
293 
294 	spin_lock_irq(&dev_priv->irq_lock);
295 
296 	WARN_ON(dev_priv->rps.pm_iir);
297 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298 	dev_priv->rps.interrupts_enabled = true;
299 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300 				dev_priv->pm_rps_events);
301 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302 
303 	spin_unlock_irq(&dev_priv->irq_lock);
304 }
305 
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308 	/*
309 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
311 	 *
312 	 * TODO: verify if this can be reproduced on VLV,CHV.
313 	 */
314 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316 
317 	if (INTEL_INFO(dev_priv)->gen >= 8)
318 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319 
320 	return mask;
321 }
322 
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325 	struct drm_i915_private *dev_priv = dev->dev_private;
326 
327 	spin_lock_irq(&dev_priv->irq_lock);
328 	dev_priv->rps.interrupts_enabled = false;
329 	spin_unlock_irq(&dev_priv->irq_lock);
330 
331 	cancel_work_sync(&dev_priv->rps.work);
332 
333 	spin_lock_irq(&dev_priv->irq_lock);
334 
335 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336 
337 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339 				~dev_priv->pm_rps_events);
340 
341 	spin_unlock_irq(&dev_priv->irq_lock);
342 
343 	synchronize_irq(dev->irq);
344 }
345 
346 /**
347  * ibx_display_interrupt_update - update SDEIMR
348  * @dev_priv: driver private
349  * @interrupt_mask: mask of interrupt bits to update
350  * @enabled_irq_mask: mask of interrupt bits to enable
351  */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353 				  uint32_t interrupt_mask,
354 				  uint32_t enabled_irq_mask)
355 {
356 	uint32_t sdeimr = I915_READ(SDEIMR);
357 	sdeimr &= ~interrupt_mask;
358 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
359 
360 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
361 
362 	assert_spin_locked(&dev_priv->irq_lock);
363 
364 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365 		return;
366 
367 	I915_WRITE(SDEIMR, sdeimr);
368 	POSTING_READ(SDEIMR);
369 }
370 
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 		       u32 enable_mask, u32 status_mask)
374 {
375 	u32 reg = PIPESTAT(pipe);
376 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377 
378 	assert_spin_locked(&dev_priv->irq_lock);
379 	WARN_ON(!intel_irqs_enabled(dev_priv));
380 
381 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 		      pipe_name(pipe), enable_mask, status_mask))
385 		return;
386 
387 	if ((pipestat & enable_mask) == enable_mask)
388 		return;
389 
390 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391 
392 	/* Enable the interrupt, clear any pending status */
393 	pipestat |= enable_mask | status_mask;
394 	I915_WRITE(reg, pipestat);
395 	POSTING_READ(reg);
396 }
397 
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400 		        u32 enable_mask, u32 status_mask)
401 {
402 	u32 reg = PIPESTAT(pipe);
403 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404 
405 	assert_spin_locked(&dev_priv->irq_lock);
406 	WARN_ON(!intel_irqs_enabled(dev_priv));
407 
408 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
410 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411 		      pipe_name(pipe), enable_mask, status_mask))
412 		return;
413 
414 	if ((pipestat & enable_mask) == 0)
415 		return;
416 
417 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418 
419 	pipestat &= ~enable_mask;
420 	I915_WRITE(reg, pipestat);
421 	POSTING_READ(reg);
422 }
423 
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426 	u32 enable_mask = status_mask << 16;
427 
428 	/*
429 	 * On pipe A we don't support the PSR interrupt yet,
430 	 * on pipe B and C the same bit MBZ.
431 	 */
432 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433 		return 0;
434 	/*
435 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
436 	 * A the same bit is for perf counters which we don't use either.
437 	 */
438 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439 		return 0;
440 
441 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
443 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
444 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448 
449 	return enable_mask;
450 }
451 
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454 		     u32 status_mask)
455 {
456 	u32 enable_mask;
457 
458 	if (IS_VALLEYVIEW(dev_priv->dev))
459 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460 							   status_mask);
461 	else
462 		enable_mask = status_mask << 16;
463 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465 
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468 		      u32 status_mask)
469 {
470 	u32 enable_mask;
471 
472 	if (IS_VALLEYVIEW(dev_priv->dev))
473 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474 							   status_mask);
475 	else
476 		enable_mask = status_mask << 16;
477 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479 
480 /**
481  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482  */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485 	struct drm_i915_private *dev_priv = dev->dev_private;
486 
487 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488 		return;
489 
490 	spin_lock_irq(&dev_priv->irq_lock);
491 
492 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493 	if (INTEL_INFO(dev)->gen >= 4)
494 		i915_enable_pipestat(dev_priv, PIPE_A,
495 				     PIPE_LEGACY_BLC_EVENT_STATUS);
496 
497 	spin_unlock_irq(&dev_priv->irq_lock);
498 }
499 
500 /*
501  * This timing diagram depicts the video signal in and
502  * around the vertical blanking period.
503  *
504  * Assumptions about the fictitious mode used in this example:
505  *  vblank_start >= 3
506  *  vsync_start = vblank_start + 1
507  *  vsync_end = vblank_start + 2
508  *  vtotal = vblank_start + 3
509  *
510  *           start of vblank:
511  *           latch double buffered registers
512  *           increment frame counter (ctg+)
513  *           generate start of vblank interrupt (gen4+)
514  *           |
515  *           |          frame start:
516  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
517  *           |          may be shifted forward 1-3 extra lines via PIPECONF
518  *           |          |
519  *           |          |  start of vsync:
520  *           |          |  generate vsync interrupt
521  *           |          |  |
522  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
523  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
524  * ----va---> <-----------------vb--------------------> <--------va-------------
525  *       |          |       <----vs----->                     |
526  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529  *       |          |                                         |
530  *       last visible pixel                                   first visible pixel
531  *                  |                                         increment frame counter (gen3/4)
532  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
533  *
534  * x  = horizontal active
535  * _  = horizontal blanking
536  * hs = horizontal sync
537  * va = vertical active
538  * vb = vertical blanking
539  * vs = vertical sync
540  * vbs = vblank_start (number)
541  *
542  * Summary:
543  * - most events happen at the start of horizontal sync
544  * - frame start happens at the start of horizontal blank, 1-4 lines
545  *   (depending on PIPECONF settings) after the start of vblank
546  * - gen3/4 pixel and frame counter are synchronized with the start
547  *   of horizontal active on the first line of vertical active
548  */
549 
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552 	/* Gen2 doesn't have a hardware frame counter */
553 	return 0;
554 }
555 
556 /* Called from drm generic code, passed a 'crtc', which
557  * we use as a pipe index
558  */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561 	struct drm_i915_private *dev_priv = dev->dev_private;
562 	unsigned long high_frame;
563 	unsigned long low_frame;
564 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565 	struct intel_crtc *intel_crtc =
566 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
568 
569 	htotal = mode->crtc_htotal;
570 	hsync_start = mode->crtc_hsync_start;
571 	vbl_start = mode->crtc_vblank_start;
572 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
573 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
574 
575 	/* Convert to pixel count */
576 	vbl_start *= htotal;
577 
578 	/* Start of vblank event occurs at start of hsync */
579 	vbl_start -= htotal - hsync_start;
580 
581 	high_frame = PIPEFRAME(pipe);
582 	low_frame = PIPEFRAMEPIXEL(pipe);
583 
584 	/*
585 	 * High & low register fields aren't synchronized, so make sure
586 	 * we get a low value that's stable across two reads of the high
587 	 * register.
588 	 */
589 	do {
590 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
591 		low   = I915_READ(low_frame);
592 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
593 	} while (high1 != high2);
594 
595 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
596 	pixel = low & PIPE_PIXEL_MASK;
597 	low >>= PIPE_FRAME_LOW_SHIFT;
598 
599 	/*
600 	 * The frame counter increments at beginning of active.
601 	 * Cook up a vblank counter by also checking the pixel
602 	 * counter against vblank start.
603 	 */
604 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
605 }
606 
607 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
608 {
609 	struct drm_i915_private *dev_priv = dev->dev_private;
610 	int reg = PIPE_FRMCOUNT_GM45(pipe);
611 
612 	return I915_READ(reg);
613 }
614 
615 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
616 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
617 
618 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
619 {
620 	struct drm_device *dev = crtc->base.dev;
621 	struct drm_i915_private *dev_priv = dev->dev_private;
622 	const struct drm_display_mode *mode = &crtc->base.hwmode;
623 	enum pipe pipe = crtc->pipe;
624 	int position, vtotal;
625 
626 	vtotal = mode->crtc_vtotal;
627 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
628 		vtotal /= 2;
629 
630 	if (IS_GEN2(dev))
631 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
632 	else
633 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
634 
635 	/*
636 	 * See update_scanline_offset() for the details on the
637 	 * scanline_offset adjustment.
638 	 */
639 	return (position + crtc->scanline_offset) % vtotal;
640 }
641 
642 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
643 				    unsigned int flags, int *vpos, int *hpos,
644 				    ktime_t *stime, ktime_t *etime)
645 {
646 	struct drm_i915_private *dev_priv = dev->dev_private;
647 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
648 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
649 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
650 	int position;
651 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
652 	bool in_vbl = true;
653 	int ret = 0;
654 	unsigned long irqflags;
655 
656 	if (WARN_ON(!mode->crtc_clock)) {
657 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
658 				 "pipe %c\n", pipe_name(pipe));
659 		return 0;
660 	}
661 
662 	htotal = mode->crtc_htotal;
663 	hsync_start = mode->crtc_hsync_start;
664 	vtotal = mode->crtc_vtotal;
665 	vbl_start = mode->crtc_vblank_start;
666 	vbl_end = mode->crtc_vblank_end;
667 
668 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
669 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
670 		vbl_end /= 2;
671 		vtotal /= 2;
672 	}
673 
674 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
675 
676 	/*
677 	 * Lock uncore.lock, as we will do multiple timing critical raw
678 	 * register reads, potentially with preemption disabled, so the
679 	 * following code must not block on uncore.lock.
680 	 */
681 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
682 
683 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
684 
685 	/* Get optional system timestamp before query. */
686 	if (stime)
687 		*stime = ktime_get();
688 
689 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
690 		/* No obvious pixelcount register. Only query vertical
691 		 * scanout position from Display scan line register.
692 		 */
693 		position = __intel_get_crtc_scanline(intel_crtc);
694 	} else {
695 		/* Have access to pixelcount since start of frame.
696 		 * We can split this into vertical and horizontal
697 		 * scanout position.
698 		 */
699 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
700 
701 		/* convert to pixel counts */
702 		vbl_start *= htotal;
703 		vbl_end *= htotal;
704 		vtotal *= htotal;
705 
706 		/*
707 		 * In interlaced modes, the pixel counter counts all pixels,
708 		 * so one field will have htotal more pixels. In order to avoid
709 		 * the reported position from jumping backwards when the pixel
710 		 * counter is beyond the length of the shorter field, just
711 		 * clamp the position the length of the shorter field. This
712 		 * matches how the scanline counter based position works since
713 		 * the scanline counter doesn't count the two half lines.
714 		 */
715 		if (position >= vtotal)
716 			position = vtotal - 1;
717 
718 		/*
719 		 * Start of vblank interrupt is triggered at start of hsync,
720 		 * just prior to the first active line of vblank. However we
721 		 * consider lines to start at the leading edge of horizontal
722 		 * active. So, should we get here before we've crossed into
723 		 * the horizontal active of the first line in vblank, we would
724 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
725 		 * always add htotal-hsync_start to the current pixel position.
726 		 */
727 		position = (position + htotal - hsync_start) % vtotal;
728 	}
729 
730 	/* Get optional system timestamp after query. */
731 	if (etime)
732 		*etime = ktime_get();
733 
734 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
735 
736 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
737 
738 	in_vbl = position >= vbl_start && position < vbl_end;
739 
740 	/*
741 	 * While in vblank, position will be negative
742 	 * counting up towards 0 at vbl_end. And outside
743 	 * vblank, position will be positive counting
744 	 * up since vbl_end.
745 	 */
746 	if (position >= vbl_start)
747 		position -= vbl_end;
748 	else
749 		position += vtotal - vbl_end;
750 
751 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
752 		*vpos = position;
753 		*hpos = 0;
754 	} else {
755 		*vpos = position / htotal;
756 		*hpos = position - (*vpos * htotal);
757 	}
758 
759 	/* In vblank? */
760 	if (in_vbl)
761 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
762 
763 	return ret;
764 }
765 
766 int intel_get_crtc_scanline(struct intel_crtc *crtc)
767 {
768 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
769 	unsigned long irqflags;
770 	int position;
771 
772 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
773 	position = __intel_get_crtc_scanline(crtc);
774 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
775 
776 	return position;
777 }
778 
779 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
780 			      int *max_error,
781 			      struct timeval *vblank_time,
782 			      unsigned flags)
783 {
784 	struct drm_crtc *crtc;
785 
786 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
787 		DRM_ERROR("Invalid crtc %d\n", pipe);
788 		return -EINVAL;
789 	}
790 
791 	/* Get drm_crtc to timestamp: */
792 	crtc = intel_get_crtc_for_pipe(dev, pipe);
793 	if (crtc == NULL) {
794 		DRM_ERROR("Invalid crtc %d\n", pipe);
795 		return -EINVAL;
796 	}
797 
798 	if (!crtc->hwmode.crtc_clock) {
799 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
800 		return -EBUSY;
801 	}
802 
803 	/* Helper routine in DRM core does all the work: */
804 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
805 						     vblank_time, flags,
806 						     crtc,
807 						     &crtc->hwmode);
808 }
809 
810 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
811 {
812 	struct drm_i915_private *dev_priv = dev->dev_private;
813 	u32 busy_up, busy_down, max_avg, min_avg;
814 	u8 new_delay;
815 
816 	spin_lock(&mchdev_lock);
817 
818 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
819 
820 	new_delay = dev_priv->ips.cur_delay;
821 
822 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
823 	busy_up = I915_READ(RCPREVBSYTUPAVG);
824 	busy_down = I915_READ(RCPREVBSYTDNAVG);
825 	max_avg = I915_READ(RCBMAXAVG);
826 	min_avg = I915_READ(RCBMINAVG);
827 
828 	/* Handle RCS change request from hw */
829 	if (busy_up > max_avg) {
830 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
831 			new_delay = dev_priv->ips.cur_delay - 1;
832 		if (new_delay < dev_priv->ips.max_delay)
833 			new_delay = dev_priv->ips.max_delay;
834 	} else if (busy_down < min_avg) {
835 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
836 			new_delay = dev_priv->ips.cur_delay + 1;
837 		if (new_delay > dev_priv->ips.min_delay)
838 			new_delay = dev_priv->ips.min_delay;
839 	}
840 
841 	if (ironlake_set_drps(dev, new_delay))
842 		dev_priv->ips.cur_delay = new_delay;
843 
844 	spin_unlock(&mchdev_lock);
845 
846 	return;
847 }
848 
849 static void notify_ring(struct intel_engine_cs *ring)
850 {
851 	if (!intel_ring_initialized(ring))
852 		return;
853 
854 	trace_i915_gem_request_notify(ring);
855 
856 	wake_up_all(&ring->irq_queue);
857 }
858 
859 static void vlv_c0_read(struct drm_i915_private *dev_priv,
860 			struct intel_rps_ei *ei)
861 {
862 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
863 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
864 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
865 }
866 
867 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
868 			 const struct intel_rps_ei *old,
869 			 const struct intel_rps_ei *now,
870 			 int threshold)
871 {
872 	u64 time, c0;
873 
874 	if (old->cz_clock == 0)
875 		return false;
876 
877 	time = now->cz_clock - old->cz_clock;
878 	time *= threshold * dev_priv->mem_freq;
879 
880 	/* Workload can be split between render + media, e.g. SwapBuffers
881 	 * being blitted in X after being rendered in mesa. To account for
882 	 * this we need to combine both engines into our activity counter.
883 	 */
884 	c0 = now->render_c0 - old->render_c0;
885 	c0 += now->media_c0 - old->media_c0;
886 	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
887 
888 	return c0 >= time;
889 }
890 
891 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
892 {
893 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
894 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
895 }
896 
897 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
898 {
899 	struct intel_rps_ei now;
900 	u32 events = 0;
901 
902 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
903 		return 0;
904 
905 	vlv_c0_read(dev_priv, &now);
906 	if (now.cz_clock == 0)
907 		return 0;
908 
909 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
910 		if (!vlv_c0_above(dev_priv,
911 				  &dev_priv->rps.down_ei, &now,
912 				  dev_priv->rps.down_threshold))
913 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
914 		dev_priv->rps.down_ei = now;
915 	}
916 
917 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
918 		if (vlv_c0_above(dev_priv,
919 				 &dev_priv->rps.up_ei, &now,
920 				 dev_priv->rps.up_threshold))
921 			events |= GEN6_PM_RP_UP_THRESHOLD;
922 		dev_priv->rps.up_ei = now;
923 	}
924 
925 	return events;
926 }
927 
928 static bool any_waiters(struct drm_i915_private *dev_priv)
929 {
930 	struct intel_engine_cs *ring;
931 	int i;
932 
933 	for_each_ring(ring, dev_priv, i)
934 		if (ring->irq_refcount)
935 			return true;
936 
937 	return false;
938 }
939 
940 static void gen6_pm_rps_work(struct work_struct *work)
941 {
942 	struct drm_i915_private *dev_priv =
943 		container_of(work, struct drm_i915_private, rps.work);
944 	bool client_boost;
945 	int new_delay, adj, min, max;
946 	u32 pm_iir;
947 
948 	spin_lock_irq(&dev_priv->irq_lock);
949 	/* Speed up work cancelation during disabling rps interrupts. */
950 	if (!dev_priv->rps.interrupts_enabled) {
951 		spin_unlock_irq(&dev_priv->irq_lock);
952 		return;
953 	}
954 	pm_iir = dev_priv->rps.pm_iir;
955 	dev_priv->rps.pm_iir = 0;
956 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
957 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
958 	client_boost = dev_priv->rps.client_boost;
959 	dev_priv->rps.client_boost = false;
960 	spin_unlock_irq(&dev_priv->irq_lock);
961 
962 	/* Make sure we didn't queue anything we're not going to process. */
963 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
964 
965 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
966 		return;
967 
968 	mutex_lock(&dev_priv->rps.hw_lock);
969 
970 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
971 
972 	adj = dev_priv->rps.last_adj;
973 	new_delay = dev_priv->rps.cur_freq;
974 	min = dev_priv->rps.min_freq_softlimit;
975 	max = dev_priv->rps.max_freq_softlimit;
976 
977 	if (client_boost) {
978 		new_delay = dev_priv->rps.max_freq_softlimit;
979 		adj = 0;
980 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
981 		if (adj > 0)
982 			adj *= 2;
983 		else /* CHV needs even encode values */
984 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
985 		/*
986 		 * For better performance, jump directly
987 		 * to RPe if we're below it.
988 		 */
989 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
990 			new_delay = dev_priv->rps.efficient_freq;
991 			adj = 0;
992 		}
993 	} else if (any_waiters(dev_priv)) {
994 		adj = 0;
995 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
996 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
997 			new_delay = dev_priv->rps.efficient_freq;
998 		else
999 			new_delay = dev_priv->rps.min_freq_softlimit;
1000 		adj = 0;
1001 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1002 		if (adj < 0)
1003 			adj *= 2;
1004 		else /* CHV needs even encode values */
1005 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1006 	} else { /* unknown event */
1007 		adj = 0;
1008 	}
1009 
1010 	dev_priv->rps.last_adj = adj;
1011 
1012 	/* sysfs frequency interfaces may have snuck in while servicing the
1013 	 * interrupt
1014 	 */
1015 	new_delay += adj;
1016 	new_delay = clamp_t(int, new_delay, min, max);
1017 
1018 	intel_set_rps(dev_priv->dev, new_delay);
1019 
1020 	mutex_unlock(&dev_priv->rps.hw_lock);
1021 }
1022 
1023 
1024 /**
1025  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1026  * occurred.
1027  * @work: workqueue struct
1028  *
1029  * Doesn't actually do anything except notify userspace. As a consequence of
1030  * this event, userspace should try to remap the bad rows since statistically
1031  * it is likely the same row is more likely to go bad again.
1032  */
1033 static void ivybridge_parity_work(struct work_struct *work)
1034 {
1035 	struct drm_i915_private *dev_priv =
1036 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1037 	u32 error_status, row, bank, subbank;
1038 	char *parity_event[6];
1039 	uint32_t misccpctl;
1040 	uint8_t slice = 0;
1041 
1042 	/* We must turn off DOP level clock gating to access the L3 registers.
1043 	 * In order to prevent a get/put style interface, acquire struct mutex
1044 	 * any time we access those registers.
1045 	 */
1046 	mutex_lock(&dev_priv->dev->struct_mutex);
1047 
1048 	/* If we've screwed up tracking, just let the interrupt fire again */
1049 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1050 		goto out;
1051 
1052 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1053 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1054 	POSTING_READ(GEN7_MISCCPCTL);
1055 
1056 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1057 		u32 reg;
1058 
1059 		slice--;
1060 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1061 			break;
1062 
1063 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1064 
1065 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1066 
1067 		error_status = I915_READ(reg);
1068 		row = GEN7_PARITY_ERROR_ROW(error_status);
1069 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1070 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1071 
1072 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1073 		POSTING_READ(reg);
1074 
1075 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1076 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1077 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1078 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1079 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1080 		parity_event[5] = NULL;
1081 
1082 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1083 				   KOBJ_CHANGE, parity_event);
1084 
1085 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1086 			  slice, row, bank, subbank);
1087 
1088 		kfree(parity_event[4]);
1089 		kfree(parity_event[3]);
1090 		kfree(parity_event[2]);
1091 		kfree(parity_event[1]);
1092 	}
1093 
1094 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1095 
1096 out:
1097 	WARN_ON(dev_priv->l3_parity.which_slice);
1098 	spin_lock_irq(&dev_priv->irq_lock);
1099 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1100 	spin_unlock_irq(&dev_priv->irq_lock);
1101 
1102 	mutex_unlock(&dev_priv->dev->struct_mutex);
1103 }
1104 
1105 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1106 {
1107 	struct drm_i915_private *dev_priv = dev->dev_private;
1108 
1109 	if (!HAS_L3_DPF(dev))
1110 		return;
1111 
1112 	spin_lock(&dev_priv->irq_lock);
1113 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1114 	spin_unlock(&dev_priv->irq_lock);
1115 
1116 	iir &= GT_PARITY_ERROR(dev);
1117 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1118 		dev_priv->l3_parity.which_slice |= 1 << 1;
1119 
1120 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1121 		dev_priv->l3_parity.which_slice |= 1 << 0;
1122 
1123 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1124 }
1125 
1126 static void ilk_gt_irq_handler(struct drm_device *dev,
1127 			       struct drm_i915_private *dev_priv,
1128 			       u32 gt_iir)
1129 {
1130 	if (gt_iir &
1131 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1132 		notify_ring(&dev_priv->ring[RCS]);
1133 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1134 		notify_ring(&dev_priv->ring[VCS]);
1135 }
1136 
1137 static void snb_gt_irq_handler(struct drm_device *dev,
1138 			       struct drm_i915_private *dev_priv,
1139 			       u32 gt_iir)
1140 {
1141 
1142 	if (gt_iir &
1143 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1144 		notify_ring(&dev_priv->ring[RCS]);
1145 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1146 		notify_ring(&dev_priv->ring[VCS]);
1147 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1148 		notify_ring(&dev_priv->ring[BCS]);
1149 
1150 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1151 		      GT_BSD_CS_ERROR_INTERRUPT |
1152 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1153 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1154 
1155 	if (gt_iir & GT_PARITY_ERROR(dev))
1156 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1157 }
1158 
1159 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1160 				       u32 master_ctl)
1161 {
1162 	irqreturn_t ret = IRQ_NONE;
1163 
1164 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1165 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1166 		if (tmp) {
1167 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1168 			ret = IRQ_HANDLED;
1169 
1170 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1171 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1172 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1173 				notify_ring(&dev_priv->ring[RCS]);
1174 
1175 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1176 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1177 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1178 				notify_ring(&dev_priv->ring[BCS]);
1179 		} else
1180 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1181 	}
1182 
1183 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1184 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1185 		if (tmp) {
1186 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1187 			ret = IRQ_HANDLED;
1188 
1189 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1190 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1191 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1192 				notify_ring(&dev_priv->ring[VCS]);
1193 
1194 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1195 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1196 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1197 				notify_ring(&dev_priv->ring[VCS2]);
1198 		} else
1199 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1200 	}
1201 
1202 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1203 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1204 		if (tmp) {
1205 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1206 			ret = IRQ_HANDLED;
1207 
1208 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1209 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1210 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1211 				notify_ring(&dev_priv->ring[VECS]);
1212 		} else
1213 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1214 	}
1215 
1216 	if (master_ctl & GEN8_GT_PM_IRQ) {
1217 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1218 		if (tmp & dev_priv->pm_rps_events) {
1219 			I915_WRITE_FW(GEN8_GT_IIR(2),
1220 				      tmp & dev_priv->pm_rps_events);
1221 			ret = IRQ_HANDLED;
1222 			gen6_rps_irq_handler(dev_priv, tmp);
1223 		} else
1224 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1225 	}
1226 
1227 	return ret;
1228 }
1229 
1230 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1231 {
1232 	switch (port) {
1233 	case PORT_A:
1234 		return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1235 	case PORT_B:
1236 		return val & PORTB_HOTPLUG_LONG_DETECT;
1237 	case PORT_C:
1238 		return val & PORTC_HOTPLUG_LONG_DETECT;
1239 	case PORT_D:
1240 		return val & PORTD_HOTPLUG_LONG_DETECT;
1241 	default:
1242 		return false;
1243 	}
1244 }
1245 
1246 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1247 {
1248 	switch (port) {
1249 	case PORT_B:
1250 		return val & PORTB_HOTPLUG_LONG_DETECT;
1251 	case PORT_C:
1252 		return val & PORTC_HOTPLUG_LONG_DETECT;
1253 	case PORT_D:
1254 		return val & PORTD_HOTPLUG_LONG_DETECT;
1255 	default:
1256 		return false;
1257 	}
1258 }
1259 
1260 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1261 {
1262 	switch (port) {
1263 	case PORT_B:
1264 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1265 	case PORT_C:
1266 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1267 	case PORT_D:
1268 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1269 	default:
1270 		return false;
1271 	}
1272 }
1273 
1274 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1275 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1276 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1277 			     const u32 hpd[HPD_NUM_PINS],
1278 			     bool long_pulse_detect(enum port port, u32 val))
1279 {
1280 	enum port port;
1281 	int i;
1282 
1283 	*pin_mask = 0;
1284 	*long_mask = 0;
1285 
1286 	for_each_hpd_pin(i) {
1287 		if ((hpd[i] & hotplug_trigger) == 0)
1288 			continue;
1289 
1290 		*pin_mask |= BIT(i);
1291 
1292 		if (!intel_hpd_pin_to_port(i, &port))
1293 			continue;
1294 
1295 		if (long_pulse_detect(port, dig_hotplug_reg))
1296 			*long_mask |= BIT(i);
1297 	}
1298 
1299 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1300 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1301 
1302 }
1303 
1304 static void gmbus_irq_handler(struct drm_device *dev)
1305 {
1306 	struct drm_i915_private *dev_priv = dev->dev_private;
1307 
1308 	wake_up_all(&dev_priv->gmbus_wait_queue);
1309 }
1310 
1311 static void dp_aux_irq_handler(struct drm_device *dev)
1312 {
1313 	struct drm_i915_private *dev_priv = dev->dev_private;
1314 
1315 	wake_up_all(&dev_priv->gmbus_wait_queue);
1316 }
1317 
1318 #if defined(CONFIG_DEBUG_FS)
1319 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1320 					 uint32_t crc0, uint32_t crc1,
1321 					 uint32_t crc2, uint32_t crc3,
1322 					 uint32_t crc4)
1323 {
1324 	struct drm_i915_private *dev_priv = dev->dev_private;
1325 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1326 	struct intel_pipe_crc_entry *entry;
1327 	int head, tail;
1328 
1329 	spin_lock(&pipe_crc->lock);
1330 
1331 	if (!pipe_crc->entries) {
1332 		spin_unlock(&pipe_crc->lock);
1333 		DRM_DEBUG_KMS("spurious interrupt\n");
1334 		return;
1335 	}
1336 
1337 	head = pipe_crc->head;
1338 	tail = pipe_crc->tail;
1339 
1340 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1341 		spin_unlock(&pipe_crc->lock);
1342 		DRM_ERROR("CRC buffer overflowing\n");
1343 		return;
1344 	}
1345 
1346 	entry = &pipe_crc->entries[head];
1347 
1348 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1349 	entry->crc[0] = crc0;
1350 	entry->crc[1] = crc1;
1351 	entry->crc[2] = crc2;
1352 	entry->crc[3] = crc3;
1353 	entry->crc[4] = crc4;
1354 
1355 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1356 	pipe_crc->head = head;
1357 
1358 	spin_unlock(&pipe_crc->lock);
1359 
1360 	wake_up_interruptible(&pipe_crc->wq);
1361 }
1362 #else
1363 static inline void
1364 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1365 			     uint32_t crc0, uint32_t crc1,
1366 			     uint32_t crc2, uint32_t crc3,
1367 			     uint32_t crc4) {}
1368 #endif
1369 
1370 
1371 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1372 {
1373 	struct drm_i915_private *dev_priv = dev->dev_private;
1374 
1375 	display_pipe_crc_irq_handler(dev, pipe,
1376 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1377 				     0, 0, 0, 0);
1378 }
1379 
1380 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1381 {
1382 	struct drm_i915_private *dev_priv = dev->dev_private;
1383 
1384 	display_pipe_crc_irq_handler(dev, pipe,
1385 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1386 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1387 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1388 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1389 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1390 }
1391 
1392 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1393 {
1394 	struct drm_i915_private *dev_priv = dev->dev_private;
1395 	uint32_t res1, res2;
1396 
1397 	if (INTEL_INFO(dev)->gen >= 3)
1398 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1399 	else
1400 		res1 = 0;
1401 
1402 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1403 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1404 	else
1405 		res2 = 0;
1406 
1407 	display_pipe_crc_irq_handler(dev, pipe,
1408 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1409 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1410 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1411 				     res1, res2);
1412 }
1413 
1414 /* The RPS events need forcewake, so we add them to a work queue and mask their
1415  * IMR bits until the work is done. Other interrupts can be processed without
1416  * the work queue. */
1417 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1418 {
1419 	if (pm_iir & dev_priv->pm_rps_events) {
1420 		spin_lock(&dev_priv->irq_lock);
1421 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1422 		if (dev_priv->rps.interrupts_enabled) {
1423 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1424 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1425 		}
1426 		spin_unlock(&dev_priv->irq_lock);
1427 	}
1428 
1429 	if (INTEL_INFO(dev_priv)->gen >= 8)
1430 		return;
1431 
1432 	if (HAS_VEBOX(dev_priv->dev)) {
1433 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1434 			notify_ring(&dev_priv->ring[VECS]);
1435 
1436 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1437 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1438 	}
1439 }
1440 
1441 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1442 {
1443 	if (!drm_handle_vblank(dev, pipe))
1444 		return false;
1445 
1446 	return true;
1447 }
1448 
1449 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1450 {
1451 	struct drm_i915_private *dev_priv = dev->dev_private;
1452 	u32 pipe_stats[I915_MAX_PIPES] = { };
1453 	int pipe;
1454 
1455 	spin_lock(&dev_priv->irq_lock);
1456 	for_each_pipe(dev_priv, pipe) {
1457 		int reg;
1458 		u32 mask, iir_bit = 0;
1459 
1460 		/*
1461 		 * PIPESTAT bits get signalled even when the interrupt is
1462 		 * disabled with the mask bits, and some of the status bits do
1463 		 * not generate interrupts at all (like the underrun bit). Hence
1464 		 * we need to be careful that we only handle what we want to
1465 		 * handle.
1466 		 */
1467 
1468 		/* fifo underruns are filterered in the underrun handler. */
1469 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1470 
1471 		switch (pipe) {
1472 		case PIPE_A:
1473 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1474 			break;
1475 		case PIPE_B:
1476 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1477 			break;
1478 		case PIPE_C:
1479 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1480 			break;
1481 		}
1482 		if (iir & iir_bit)
1483 			mask |= dev_priv->pipestat_irq_mask[pipe];
1484 
1485 		if (!mask)
1486 			continue;
1487 
1488 		reg = PIPESTAT(pipe);
1489 		mask |= PIPESTAT_INT_ENABLE_MASK;
1490 		pipe_stats[pipe] = I915_READ(reg) & mask;
1491 
1492 		/*
1493 		 * Clear the PIPE*STAT regs before the IIR
1494 		 */
1495 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1496 					PIPESTAT_INT_STATUS_MASK))
1497 			I915_WRITE(reg, pipe_stats[pipe]);
1498 	}
1499 	spin_unlock(&dev_priv->irq_lock);
1500 
1501 	for_each_pipe(dev_priv, pipe) {
1502 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1503 		    intel_pipe_handle_vblank(dev, pipe))
1504 			intel_check_page_flip(dev, pipe);
1505 
1506 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1507 			intel_prepare_page_flip(dev, pipe);
1508 			intel_finish_page_flip(dev, pipe);
1509 		}
1510 
1511 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1512 			i9xx_pipe_crc_irq_handler(dev, pipe);
1513 
1514 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1515 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1516 	}
1517 
1518 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1519 		gmbus_irq_handler(dev);
1520 }
1521 
1522 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1523 {
1524 	struct drm_i915_private *dev_priv = dev->dev_private;
1525 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1526 	u32 pin_mask, long_mask;
1527 
1528 	if (!hotplug_status)
1529 		return;
1530 
1531 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1532 	/*
1533 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1534 	 * may miss hotplug events.
1535 	 */
1536 	POSTING_READ(PORT_HOTPLUG_STAT);
1537 
1538 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1539 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1540 
1541 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1542 				   hotplug_trigger, hpd_status_g4x,
1543 				   i9xx_port_hotplug_long_detect);
1544 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1545 
1546 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1547 			dp_aux_irq_handler(dev);
1548 	} else {
1549 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1550 
1551 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1552 				   hotplug_trigger, hpd_status_g4x,
1553 				   i9xx_port_hotplug_long_detect);
1554 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1555 	}
1556 }
1557 
1558 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1559 {
1560 	struct drm_device *dev = arg;
1561 	struct drm_i915_private *dev_priv = dev->dev_private;
1562 	u32 iir, gt_iir, pm_iir;
1563 	irqreturn_t ret = IRQ_NONE;
1564 
1565 	if (!intel_irqs_enabled(dev_priv))
1566 		return IRQ_NONE;
1567 
1568 	while (true) {
1569 		/* Find, clear, then process each source of interrupt */
1570 
1571 		gt_iir = I915_READ(GTIIR);
1572 		if (gt_iir)
1573 			I915_WRITE(GTIIR, gt_iir);
1574 
1575 		pm_iir = I915_READ(GEN6_PMIIR);
1576 		if (pm_iir)
1577 			I915_WRITE(GEN6_PMIIR, pm_iir);
1578 
1579 		iir = I915_READ(VLV_IIR);
1580 		if (iir) {
1581 			/* Consume port before clearing IIR or we'll miss events */
1582 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1583 				i9xx_hpd_irq_handler(dev);
1584 			I915_WRITE(VLV_IIR, iir);
1585 		}
1586 
1587 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1588 			goto out;
1589 
1590 		ret = IRQ_HANDLED;
1591 
1592 		if (gt_iir)
1593 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1594 		if (pm_iir)
1595 			gen6_rps_irq_handler(dev_priv, pm_iir);
1596 		/* Call regardless, as some status bits might not be
1597 		 * signalled in iir */
1598 		valleyview_pipestat_irq_handler(dev, iir);
1599 	}
1600 
1601 out:
1602 	return ret;
1603 }
1604 
1605 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1606 {
1607 	struct drm_device *dev = arg;
1608 	struct drm_i915_private *dev_priv = dev->dev_private;
1609 	u32 master_ctl, iir;
1610 	irqreturn_t ret = IRQ_NONE;
1611 
1612 	if (!intel_irqs_enabled(dev_priv))
1613 		return IRQ_NONE;
1614 
1615 	for (;;) {
1616 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1617 		iir = I915_READ(VLV_IIR);
1618 
1619 		if (master_ctl == 0 && iir == 0)
1620 			break;
1621 
1622 		ret = IRQ_HANDLED;
1623 
1624 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1625 
1626 		/* Find, clear, then process each source of interrupt */
1627 
1628 		if (iir) {
1629 			/* Consume port before clearing IIR or we'll miss events */
1630 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1631 				i9xx_hpd_irq_handler(dev);
1632 			I915_WRITE(VLV_IIR, iir);
1633 		}
1634 
1635 		gen8_gt_irq_handler(dev_priv, master_ctl);
1636 
1637 		/* Call regardless, as some status bits might not be
1638 		 * signalled in iir */
1639 		valleyview_pipestat_irq_handler(dev, iir);
1640 
1641 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1642 		POSTING_READ(GEN8_MASTER_IRQ);
1643 	}
1644 
1645 	return ret;
1646 }
1647 
1648 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1649 {
1650 	struct drm_i915_private *dev_priv = dev->dev_private;
1651 	int pipe;
1652 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1653 
1654 	if (hotplug_trigger) {
1655 		u32 dig_hotplug_reg, pin_mask, long_mask;
1656 
1657 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1658 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1659 
1660 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1661 				   dig_hotplug_reg, hpd_ibx,
1662 				   pch_port_hotplug_long_detect);
1663 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1664 	}
1665 
1666 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1667 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1668 			       SDE_AUDIO_POWER_SHIFT);
1669 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1670 				 port_name(port));
1671 	}
1672 
1673 	if (pch_iir & SDE_AUX_MASK)
1674 		dp_aux_irq_handler(dev);
1675 
1676 	if (pch_iir & SDE_GMBUS)
1677 		gmbus_irq_handler(dev);
1678 
1679 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1680 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1681 
1682 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1683 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1684 
1685 	if (pch_iir & SDE_POISON)
1686 		DRM_ERROR("PCH poison interrupt\n");
1687 
1688 	if (pch_iir & SDE_FDI_MASK)
1689 		for_each_pipe(dev_priv, pipe)
1690 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1691 					 pipe_name(pipe),
1692 					 I915_READ(FDI_RX_IIR(pipe)));
1693 
1694 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1695 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1696 
1697 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1698 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1699 
1700 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1701 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1702 
1703 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1704 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1705 }
1706 
1707 static void ivb_err_int_handler(struct drm_device *dev)
1708 {
1709 	struct drm_i915_private *dev_priv = dev->dev_private;
1710 	u32 err_int = I915_READ(GEN7_ERR_INT);
1711 	enum pipe pipe;
1712 
1713 	if (err_int & ERR_INT_POISON)
1714 		DRM_ERROR("Poison interrupt\n");
1715 
1716 	for_each_pipe(dev_priv, pipe) {
1717 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1718 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1719 
1720 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1721 			if (IS_IVYBRIDGE(dev))
1722 				ivb_pipe_crc_irq_handler(dev, pipe);
1723 			else
1724 				hsw_pipe_crc_irq_handler(dev, pipe);
1725 		}
1726 	}
1727 
1728 	I915_WRITE(GEN7_ERR_INT, err_int);
1729 }
1730 
1731 static void cpt_serr_int_handler(struct drm_device *dev)
1732 {
1733 	struct drm_i915_private *dev_priv = dev->dev_private;
1734 	u32 serr_int = I915_READ(SERR_INT);
1735 
1736 	if (serr_int & SERR_INT_POISON)
1737 		DRM_ERROR("PCH poison interrupt\n");
1738 
1739 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1740 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1741 
1742 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1743 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1744 
1745 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1746 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1747 
1748 	I915_WRITE(SERR_INT, serr_int);
1749 }
1750 
1751 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1752 {
1753 	struct drm_i915_private *dev_priv = dev->dev_private;
1754 	int pipe;
1755 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1756 
1757 	if (hotplug_trigger) {
1758 		u32 dig_hotplug_reg, pin_mask, long_mask;
1759 
1760 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1761 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1762 
1763 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1764 				   dig_hotplug_reg, hpd_cpt,
1765 				   pch_port_hotplug_long_detect);
1766 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1767 	}
1768 
1769 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1770 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1771 			       SDE_AUDIO_POWER_SHIFT_CPT);
1772 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1773 				 port_name(port));
1774 	}
1775 
1776 	if (pch_iir & SDE_AUX_MASK_CPT)
1777 		dp_aux_irq_handler(dev);
1778 
1779 	if (pch_iir & SDE_GMBUS_CPT)
1780 		gmbus_irq_handler(dev);
1781 
1782 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1783 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1784 
1785 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1786 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1787 
1788 	if (pch_iir & SDE_FDI_MASK_CPT)
1789 		for_each_pipe(dev_priv, pipe)
1790 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1791 					 pipe_name(pipe),
1792 					 I915_READ(FDI_RX_IIR(pipe)));
1793 
1794 	if (pch_iir & SDE_ERROR_CPT)
1795 		cpt_serr_int_handler(dev);
1796 }
1797 
1798 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1799 {
1800 	struct drm_i915_private *dev_priv = dev->dev_private;
1801 	enum pipe pipe;
1802 
1803 	if (de_iir & DE_AUX_CHANNEL_A)
1804 		dp_aux_irq_handler(dev);
1805 
1806 	if (de_iir & DE_GSE)
1807 		intel_opregion_asle_intr(dev);
1808 
1809 	if (de_iir & DE_POISON)
1810 		DRM_ERROR("Poison interrupt\n");
1811 
1812 	for_each_pipe(dev_priv, pipe) {
1813 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
1814 		    intel_pipe_handle_vblank(dev, pipe))
1815 			intel_check_page_flip(dev, pipe);
1816 
1817 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1818 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1819 
1820 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1821 			i9xx_pipe_crc_irq_handler(dev, pipe);
1822 
1823 		/* plane/pipes map 1:1 on ilk+ */
1824 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1825 			intel_prepare_page_flip(dev, pipe);
1826 			intel_finish_page_flip_plane(dev, pipe);
1827 		}
1828 	}
1829 
1830 	/* check event from PCH */
1831 	if (de_iir & DE_PCH_EVENT) {
1832 		u32 pch_iir = I915_READ(SDEIIR);
1833 
1834 		if (HAS_PCH_CPT(dev))
1835 			cpt_irq_handler(dev, pch_iir);
1836 		else
1837 			ibx_irq_handler(dev, pch_iir);
1838 
1839 		/* should clear PCH hotplug event before clear CPU irq */
1840 		I915_WRITE(SDEIIR, pch_iir);
1841 	}
1842 
1843 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1844 		ironlake_rps_change_irq_handler(dev);
1845 }
1846 
1847 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1848 {
1849 	struct drm_i915_private *dev_priv = dev->dev_private;
1850 	enum pipe pipe;
1851 
1852 	if (de_iir & DE_ERR_INT_IVB)
1853 		ivb_err_int_handler(dev);
1854 
1855 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1856 		dp_aux_irq_handler(dev);
1857 
1858 	if (de_iir & DE_GSE_IVB)
1859 		intel_opregion_asle_intr(dev);
1860 
1861 	for_each_pipe(dev_priv, pipe) {
1862 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1863 		    intel_pipe_handle_vblank(dev, pipe))
1864 			intel_check_page_flip(dev, pipe);
1865 
1866 		/* plane/pipes map 1:1 on ilk+ */
1867 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1868 			intel_prepare_page_flip(dev, pipe);
1869 			intel_finish_page_flip_plane(dev, pipe);
1870 		}
1871 	}
1872 
1873 	/* check event from PCH */
1874 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1875 		u32 pch_iir = I915_READ(SDEIIR);
1876 
1877 		cpt_irq_handler(dev, pch_iir);
1878 
1879 		/* clear PCH hotplug event before clear CPU irq */
1880 		I915_WRITE(SDEIIR, pch_iir);
1881 	}
1882 }
1883 
1884 /*
1885  * To handle irqs with the minimum potential races with fresh interrupts, we:
1886  * 1 - Disable Master Interrupt Control.
1887  * 2 - Find the source(s) of the interrupt.
1888  * 3 - Clear the Interrupt Identity bits (IIR).
1889  * 4 - Process the interrupt(s) that had bits set in the IIRs.
1890  * 5 - Re-enable Master Interrupt Control.
1891  */
1892 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1893 {
1894 	struct drm_device *dev = arg;
1895 	struct drm_i915_private *dev_priv = dev->dev_private;
1896 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1897 	irqreturn_t ret = IRQ_NONE;
1898 
1899 	if (!intel_irqs_enabled(dev_priv))
1900 		return IRQ_NONE;
1901 
1902 	/* We get interrupts on unclaimed registers, so check for this before we
1903 	 * do any I915_{READ,WRITE}. */
1904 	intel_uncore_check_errors(dev);
1905 
1906 	/* disable master interrupt before clearing iir  */
1907 	de_ier = I915_READ(DEIER);
1908 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1909 	POSTING_READ(DEIER);
1910 
1911 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1912 	 * interrupts will will be stored on its back queue, and then we'll be
1913 	 * able to process them after we restore SDEIER (as soon as we restore
1914 	 * it, we'll get an interrupt if SDEIIR still has something to process
1915 	 * due to its back queue). */
1916 	if (!HAS_PCH_NOP(dev)) {
1917 		sde_ier = I915_READ(SDEIER);
1918 		I915_WRITE(SDEIER, 0);
1919 		POSTING_READ(SDEIER);
1920 	}
1921 
1922 	/* Find, clear, then process each source of interrupt */
1923 
1924 	gt_iir = I915_READ(GTIIR);
1925 	if (gt_iir) {
1926 		I915_WRITE(GTIIR, gt_iir);
1927 		ret = IRQ_HANDLED;
1928 		if (INTEL_INFO(dev)->gen >= 6)
1929 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1930 		else
1931 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1932 	}
1933 
1934 	de_iir = I915_READ(DEIIR);
1935 	if (de_iir) {
1936 		I915_WRITE(DEIIR, de_iir);
1937 		ret = IRQ_HANDLED;
1938 		if (INTEL_INFO(dev)->gen >= 7)
1939 			ivb_display_irq_handler(dev, de_iir);
1940 		else
1941 			ilk_display_irq_handler(dev, de_iir);
1942 	}
1943 
1944 	if (INTEL_INFO(dev)->gen >= 6) {
1945 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1946 		if (pm_iir) {
1947 			I915_WRITE(GEN6_PMIIR, pm_iir);
1948 			ret = IRQ_HANDLED;
1949 			gen6_rps_irq_handler(dev_priv, pm_iir);
1950 		}
1951 	}
1952 
1953 	I915_WRITE(DEIER, de_ier);
1954 	POSTING_READ(DEIER);
1955 	if (!HAS_PCH_NOP(dev)) {
1956 		I915_WRITE(SDEIER, sde_ier);
1957 		POSTING_READ(SDEIER);
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
1964 {
1965 	struct drm_i915_private *dev_priv = dev->dev_private;
1966 	u32 hp_control, hp_trigger;
1967 	u32 pin_mask, long_mask;
1968 
1969 	/* Get the status */
1970 	hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
1971 	hp_control = I915_READ(BXT_HOTPLUG_CTL);
1972 
1973 	/* Hotplug not enabled ? */
1974 	if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
1975 		DRM_ERROR("Interrupt when HPD disabled\n");
1976 		return;
1977 	}
1978 
1979 	/* Clear sticky bits in hpd status */
1980 	I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
1981 
1982 	intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
1983 			   hpd_bxt, bxt_port_hotplug_long_detect);
1984 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1985 }
1986 
1987 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1988 {
1989 	struct drm_device *dev = arg;
1990 	struct drm_i915_private *dev_priv = dev->dev_private;
1991 	u32 master_ctl;
1992 	irqreturn_t ret = IRQ_NONE;
1993 	uint32_t tmp = 0;
1994 	enum pipe pipe;
1995 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
1996 
1997 	if (!intel_irqs_enabled(dev_priv))
1998 		return IRQ_NONE;
1999 
2000 	if (IS_GEN9(dev))
2001 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2002 			GEN9_AUX_CHANNEL_D;
2003 
2004 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2005 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2006 	if (!master_ctl)
2007 		return IRQ_NONE;
2008 
2009 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2010 
2011 	/* Find, clear, then process each source of interrupt */
2012 
2013 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2014 
2015 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2016 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2017 		if (tmp) {
2018 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2019 			ret = IRQ_HANDLED;
2020 			if (tmp & GEN8_DE_MISC_GSE)
2021 				intel_opregion_asle_intr(dev);
2022 			else
2023 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2024 		}
2025 		else
2026 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2027 	}
2028 
2029 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2030 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2031 		if (tmp) {
2032 			bool found = false;
2033 
2034 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2035 			ret = IRQ_HANDLED;
2036 
2037 			if (tmp & aux_mask) {
2038 				dp_aux_irq_handler(dev);
2039 				found = true;
2040 			}
2041 
2042 			if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2043 				bxt_hpd_handler(dev, tmp);
2044 				found = true;
2045 			}
2046 
2047 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2048 				gmbus_irq_handler(dev);
2049 				found = true;
2050 			}
2051 
2052 			if (!found)
2053 				DRM_ERROR("Unexpected DE Port interrupt\n");
2054 		}
2055 		else
2056 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2057 	}
2058 
2059 	for_each_pipe(dev_priv, pipe) {
2060 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2061 
2062 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2063 			continue;
2064 
2065 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2066 		if (pipe_iir) {
2067 			ret = IRQ_HANDLED;
2068 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2069 
2070 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2071 			    intel_pipe_handle_vblank(dev, pipe))
2072 				intel_check_page_flip(dev, pipe);
2073 
2074 			if (IS_GEN9(dev))
2075 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2076 			else
2077 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2078 
2079 			if (flip_done) {
2080 				intel_prepare_page_flip(dev, pipe);
2081 				intel_finish_page_flip_plane(dev, pipe);
2082 			}
2083 
2084 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2085 				hsw_pipe_crc_irq_handler(dev, pipe);
2086 
2087 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2088 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2089 								    pipe);
2090 
2091 
2092 			if (IS_GEN9(dev))
2093 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2094 			else
2095 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2096 
2097 			if (fault_errors)
2098 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2099 					  pipe_name(pipe),
2100 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2101 		} else
2102 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2103 	}
2104 
2105 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2106 	    master_ctl & GEN8_DE_PCH_IRQ) {
2107 		/*
2108 		 * FIXME(BDW): Assume for now that the new interrupt handling
2109 		 * scheme also closed the SDE interrupt handling race we've seen
2110 		 * on older pch-split platforms. But this needs testing.
2111 		 */
2112 		u32 pch_iir = I915_READ(SDEIIR);
2113 		if (pch_iir) {
2114 			I915_WRITE(SDEIIR, pch_iir);
2115 			ret = IRQ_HANDLED;
2116 			cpt_irq_handler(dev, pch_iir);
2117 		} else
2118 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2119 
2120 	}
2121 
2122 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2123 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2124 
2125 	return ret;
2126 }
2127 
2128 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2129 			       bool reset_completed)
2130 {
2131 	struct intel_engine_cs *ring;
2132 	int i;
2133 
2134 	/*
2135 	 * Notify all waiters for GPU completion events that reset state has
2136 	 * been changed, and that they need to restart their wait after
2137 	 * checking for potential errors (and bail out to drop locks if there is
2138 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2139 	 */
2140 
2141 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2142 	for_each_ring(ring, dev_priv, i)
2143 		wake_up_all(&ring->irq_queue);
2144 
2145 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2146 	wake_up_all(&dev_priv->pending_flip_queue);
2147 
2148 	/*
2149 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2150 	 * reset state is cleared.
2151 	 */
2152 	if (reset_completed)
2153 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2154 }
2155 
2156 /**
2157  * i915_reset_and_wakeup - do process context error handling work
2158  *
2159  * Fire an error uevent so userspace can see that a hang or error
2160  * was detected.
2161  */
2162 static void i915_reset_and_wakeup(struct drm_device *dev)
2163 {
2164 	struct drm_i915_private *dev_priv = to_i915(dev);
2165 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2166 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2167 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2168 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2169 	int ret;
2170 
2171 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2172 
2173 	/*
2174 	 * Note that there's only one work item which does gpu resets, so we
2175 	 * need not worry about concurrent gpu resets potentially incrementing
2176 	 * error->reset_counter twice. We only need to take care of another
2177 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2178 	 * quick check for that is good enough: schedule_work ensures the
2179 	 * correct ordering between hang detection and this work item, and since
2180 	 * the reset in-progress bit is only ever set by code outside of this
2181 	 * work we don't need to worry about any other races.
2182 	 */
2183 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2184 		DRM_DEBUG_DRIVER("resetting chip\n");
2185 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2186 				   reset_event);
2187 
2188 		/*
2189 		 * In most cases it's guaranteed that we get here with an RPM
2190 		 * reference held, for example because there is a pending GPU
2191 		 * request that won't finish until the reset is done. This
2192 		 * isn't the case at least when we get here by doing a
2193 		 * simulated reset via debugs, so get an RPM reference.
2194 		 */
2195 		intel_runtime_pm_get(dev_priv);
2196 
2197 		intel_prepare_reset(dev);
2198 
2199 		/*
2200 		 * All state reset _must_ be completed before we update the
2201 		 * reset counter, for otherwise waiters might miss the reset
2202 		 * pending state and not properly drop locks, resulting in
2203 		 * deadlocks with the reset work.
2204 		 */
2205 		ret = i915_reset(dev);
2206 
2207 		intel_finish_reset(dev);
2208 
2209 		intel_runtime_pm_put(dev_priv);
2210 
2211 		if (ret == 0) {
2212 			/*
2213 			 * After all the gem state is reset, increment the reset
2214 			 * counter and wake up everyone waiting for the reset to
2215 			 * complete.
2216 			 *
2217 			 * Since unlock operations are a one-sided barrier only,
2218 			 * we need to insert a barrier here to order any seqno
2219 			 * updates before
2220 			 * the counter increment.
2221 			 */
2222 			smp_mb__before_atomic();
2223 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2224 
2225 			kobject_uevent_env(&dev->primary->kdev->kobj,
2226 					   KOBJ_CHANGE, reset_done_event);
2227 		} else {
2228 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2229 		}
2230 
2231 		/*
2232 		 * Note: The wake_up also serves as a memory barrier so that
2233 		 * waiters see the update value of the reset counter atomic_t.
2234 		 */
2235 		i915_error_wake_up(dev_priv, true);
2236 	}
2237 }
2238 
2239 static void i915_report_and_clear_eir(struct drm_device *dev)
2240 {
2241 	struct drm_i915_private *dev_priv = dev->dev_private;
2242 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2243 	u32 eir = I915_READ(EIR);
2244 	int pipe, i;
2245 
2246 	if (!eir)
2247 		return;
2248 
2249 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2250 
2251 	i915_get_extra_instdone(dev, instdone);
2252 
2253 	if (IS_G4X(dev)) {
2254 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2255 			u32 ipeir = I915_READ(IPEIR_I965);
2256 
2257 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2258 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2259 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2260 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2261 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2262 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2263 			I915_WRITE(IPEIR_I965, ipeir);
2264 			POSTING_READ(IPEIR_I965);
2265 		}
2266 		if (eir & GM45_ERROR_PAGE_TABLE) {
2267 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2268 			pr_err("page table error\n");
2269 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2270 			I915_WRITE(PGTBL_ER, pgtbl_err);
2271 			POSTING_READ(PGTBL_ER);
2272 		}
2273 	}
2274 
2275 	if (!IS_GEN2(dev)) {
2276 		if (eir & I915_ERROR_PAGE_TABLE) {
2277 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2278 			pr_err("page table error\n");
2279 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2280 			I915_WRITE(PGTBL_ER, pgtbl_err);
2281 			POSTING_READ(PGTBL_ER);
2282 		}
2283 	}
2284 
2285 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2286 		pr_err("memory refresh error:\n");
2287 		for_each_pipe(dev_priv, pipe)
2288 			pr_err("pipe %c stat: 0x%08x\n",
2289 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2290 		/* pipestat has already been acked */
2291 	}
2292 	if (eir & I915_ERROR_INSTRUCTION) {
2293 		pr_err("instruction error\n");
2294 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2295 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2296 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2297 		if (INTEL_INFO(dev)->gen < 4) {
2298 			u32 ipeir = I915_READ(IPEIR);
2299 
2300 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2301 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2302 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2303 			I915_WRITE(IPEIR, ipeir);
2304 			POSTING_READ(IPEIR);
2305 		} else {
2306 			u32 ipeir = I915_READ(IPEIR_I965);
2307 
2308 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2309 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2310 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2311 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2312 			I915_WRITE(IPEIR_I965, ipeir);
2313 			POSTING_READ(IPEIR_I965);
2314 		}
2315 	}
2316 
2317 	I915_WRITE(EIR, eir);
2318 	POSTING_READ(EIR);
2319 	eir = I915_READ(EIR);
2320 	if (eir) {
2321 		/*
2322 		 * some errors might have become stuck,
2323 		 * mask them.
2324 		 */
2325 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2326 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2327 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2328 	}
2329 }
2330 
2331 /**
2332  * i915_handle_error - handle a gpu error
2333  * @dev: drm device
2334  *
2335  * Do some basic checking of regsiter state at error time and
2336  * dump it to the syslog.  Also call i915_capture_error_state() to make
2337  * sure we get a record and make it available in debugfs.  Fire a uevent
2338  * so userspace knows something bad happened (should trigger collection
2339  * of a ring dump etc.).
2340  */
2341 void i915_handle_error(struct drm_device *dev, bool wedged,
2342 		       const char *fmt, ...)
2343 {
2344 	struct drm_i915_private *dev_priv = dev->dev_private;
2345 	va_list args;
2346 	char error_msg[80];
2347 
2348 	va_start(args, fmt);
2349 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2350 	va_end(args);
2351 
2352 	i915_capture_error_state(dev, wedged, error_msg);
2353 	i915_report_and_clear_eir(dev);
2354 
2355 	if (wedged) {
2356 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2357 				&dev_priv->gpu_error.reset_counter);
2358 
2359 		/*
2360 		 * Wakeup waiting processes so that the reset function
2361 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2362 		 * various locks. By bumping the reset counter first, the woken
2363 		 * processes will see a reset in progress and back off,
2364 		 * releasing their locks and then wait for the reset completion.
2365 		 * We must do this for _all_ gpu waiters that might hold locks
2366 		 * that the reset work needs to acquire.
2367 		 *
2368 		 * Note: The wake_up serves as the required memory barrier to
2369 		 * ensure that the waiters see the updated value of the reset
2370 		 * counter atomic_t.
2371 		 */
2372 		i915_error_wake_up(dev_priv, false);
2373 	}
2374 
2375 	i915_reset_and_wakeup(dev);
2376 }
2377 
2378 /* Called from drm generic code, passed 'crtc' which
2379  * we use as a pipe index
2380  */
2381 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2382 {
2383 	struct drm_i915_private *dev_priv = dev->dev_private;
2384 	unsigned long irqflags;
2385 
2386 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2387 	if (INTEL_INFO(dev)->gen >= 4)
2388 		i915_enable_pipestat(dev_priv, pipe,
2389 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2390 	else
2391 		i915_enable_pipestat(dev_priv, pipe,
2392 				     PIPE_VBLANK_INTERRUPT_STATUS);
2393 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2394 
2395 	return 0;
2396 }
2397 
2398 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2399 {
2400 	struct drm_i915_private *dev_priv = dev->dev_private;
2401 	unsigned long irqflags;
2402 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2403 						     DE_PIPE_VBLANK(pipe);
2404 
2405 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2406 	ironlake_enable_display_irq(dev_priv, bit);
2407 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2408 
2409 	return 0;
2410 }
2411 
2412 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2413 {
2414 	struct drm_i915_private *dev_priv = dev->dev_private;
2415 	unsigned long irqflags;
2416 
2417 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2418 	i915_enable_pipestat(dev_priv, pipe,
2419 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2420 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2421 
2422 	return 0;
2423 }
2424 
2425 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2426 {
2427 	struct drm_i915_private *dev_priv = dev->dev_private;
2428 	unsigned long irqflags;
2429 
2430 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2431 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2432 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2433 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2434 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2435 	return 0;
2436 }
2437 
2438 /* Called from drm generic code, passed 'crtc' which
2439  * we use as a pipe index
2440  */
2441 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2442 {
2443 	struct drm_i915_private *dev_priv = dev->dev_private;
2444 	unsigned long irqflags;
2445 
2446 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2447 	i915_disable_pipestat(dev_priv, pipe,
2448 			      PIPE_VBLANK_INTERRUPT_STATUS |
2449 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2450 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2451 }
2452 
2453 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2454 {
2455 	struct drm_i915_private *dev_priv = dev->dev_private;
2456 	unsigned long irqflags;
2457 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2458 						     DE_PIPE_VBLANK(pipe);
2459 
2460 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2461 	ironlake_disable_display_irq(dev_priv, bit);
2462 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2463 }
2464 
2465 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2466 {
2467 	struct drm_i915_private *dev_priv = dev->dev_private;
2468 	unsigned long irqflags;
2469 
2470 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2471 	i915_disable_pipestat(dev_priv, pipe,
2472 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2473 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2474 }
2475 
2476 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2477 {
2478 	struct drm_i915_private *dev_priv = dev->dev_private;
2479 	unsigned long irqflags;
2480 
2481 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2482 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2483 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2484 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2485 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2486 }
2487 
2488 static bool
2489 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2490 {
2491 	return (list_empty(&ring->request_list) ||
2492 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2493 }
2494 
2495 static bool
2496 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2497 {
2498 	if (INTEL_INFO(dev)->gen >= 8) {
2499 		return (ipehr >> 23) == 0x1c;
2500 	} else {
2501 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2502 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2503 				 MI_SEMAPHORE_REGISTER);
2504 	}
2505 }
2506 
2507 static struct intel_engine_cs *
2508 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2509 {
2510 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2511 	struct intel_engine_cs *signaller;
2512 	int i;
2513 
2514 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2515 		for_each_ring(signaller, dev_priv, i) {
2516 			if (ring == signaller)
2517 				continue;
2518 
2519 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2520 				return signaller;
2521 		}
2522 	} else {
2523 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2524 
2525 		for_each_ring(signaller, dev_priv, i) {
2526 			if(ring == signaller)
2527 				continue;
2528 
2529 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2530 				return signaller;
2531 		}
2532 	}
2533 
2534 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2535 		  ring->id, ipehr, offset);
2536 
2537 	return NULL;
2538 }
2539 
2540 static struct intel_engine_cs *
2541 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2542 {
2543 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2544 	u32 cmd, ipehr, head;
2545 	u64 offset = 0;
2546 	int i, backwards;
2547 
2548 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2549 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2550 		return NULL;
2551 
2552 	/*
2553 	 * HEAD is likely pointing to the dword after the actual command,
2554 	 * so scan backwards until we find the MBOX. But limit it to just 3
2555 	 * or 4 dwords depending on the semaphore wait command size.
2556 	 * Note that we don't care about ACTHD here since that might
2557 	 * point at at batch, and semaphores are always emitted into the
2558 	 * ringbuffer itself.
2559 	 */
2560 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2561 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2562 
2563 	for (i = backwards; i; --i) {
2564 		/*
2565 		 * Be paranoid and presume the hw has gone off into the wild -
2566 		 * our ring is smaller than what the hardware (and hence
2567 		 * HEAD_ADDR) allows. Also handles wrap-around.
2568 		 */
2569 		head &= ring->buffer->size - 1;
2570 
2571 		/* This here seems to blow up */
2572 		cmd = ioread32(ring->buffer->virtual_start + head);
2573 		if (cmd == ipehr)
2574 			break;
2575 
2576 		head -= 4;
2577 	}
2578 
2579 	if (!i)
2580 		return NULL;
2581 
2582 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2583 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2584 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2585 		offset <<= 32;
2586 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2587 	}
2588 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2589 }
2590 
2591 static int semaphore_passed(struct intel_engine_cs *ring)
2592 {
2593 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2594 	struct intel_engine_cs *signaller;
2595 	u32 seqno;
2596 
2597 	ring->hangcheck.deadlock++;
2598 
2599 	signaller = semaphore_waits_for(ring, &seqno);
2600 	if (signaller == NULL)
2601 		return -1;
2602 
2603 	/* Prevent pathological recursion due to driver bugs */
2604 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2605 		return -1;
2606 
2607 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2608 		return 1;
2609 
2610 	/* cursory check for an unkickable deadlock */
2611 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2612 	    semaphore_passed(signaller) < 0)
2613 		return -1;
2614 
2615 	return 0;
2616 }
2617 
2618 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2619 {
2620 	struct intel_engine_cs *ring;
2621 	int i;
2622 
2623 	for_each_ring(ring, dev_priv, i)
2624 		ring->hangcheck.deadlock = 0;
2625 }
2626 
2627 static enum intel_ring_hangcheck_action
2628 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2629 {
2630 	struct drm_device *dev = ring->dev;
2631 	struct drm_i915_private *dev_priv = dev->dev_private;
2632 	u32 tmp;
2633 
2634 	if (acthd != ring->hangcheck.acthd) {
2635 		if (acthd > ring->hangcheck.max_acthd) {
2636 			ring->hangcheck.max_acthd = acthd;
2637 			return HANGCHECK_ACTIVE;
2638 		}
2639 
2640 		return HANGCHECK_ACTIVE_LOOP;
2641 	}
2642 
2643 	if (IS_GEN2(dev))
2644 		return HANGCHECK_HUNG;
2645 
2646 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2647 	 * If so we can simply poke the RB_WAIT bit
2648 	 * and break the hang. This should work on
2649 	 * all but the second generation chipsets.
2650 	 */
2651 	tmp = I915_READ_CTL(ring);
2652 	if (tmp & RING_WAIT) {
2653 		i915_handle_error(dev, false,
2654 				  "Kicking stuck wait on %s",
2655 				  ring->name);
2656 		I915_WRITE_CTL(ring, tmp);
2657 		return HANGCHECK_KICK;
2658 	}
2659 
2660 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2661 		switch (semaphore_passed(ring)) {
2662 		default:
2663 			return HANGCHECK_HUNG;
2664 		case 1:
2665 			i915_handle_error(dev, false,
2666 					  "Kicking stuck semaphore on %s",
2667 					  ring->name);
2668 			I915_WRITE_CTL(ring, tmp);
2669 			return HANGCHECK_KICK;
2670 		case 0:
2671 			return HANGCHECK_WAIT;
2672 		}
2673 	}
2674 
2675 	return HANGCHECK_HUNG;
2676 }
2677 
2678 /*
2679  * This is called when the chip hasn't reported back with completed
2680  * batchbuffers in a long time. We keep track per ring seqno progress and
2681  * if there are no progress, hangcheck score for that ring is increased.
2682  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2683  * we kick the ring. If we see no progress on three subsequent calls
2684  * we assume chip is wedged and try to fix it by resetting the chip.
2685  */
2686 static void i915_hangcheck_elapsed(struct work_struct *work)
2687 {
2688 	struct drm_i915_private *dev_priv =
2689 		container_of(work, typeof(*dev_priv),
2690 			     gpu_error.hangcheck_work.work);
2691 	struct drm_device *dev = dev_priv->dev;
2692 	struct intel_engine_cs *ring;
2693 	int i;
2694 	int busy_count = 0, rings_hung = 0;
2695 	bool stuck[I915_NUM_RINGS] = { 0 };
2696 #define BUSY 1
2697 #define KICK 5
2698 #define HUNG 20
2699 
2700 	if (!i915.enable_hangcheck)
2701 		return;
2702 
2703 	for_each_ring(ring, dev_priv, i) {
2704 		u64 acthd;
2705 		u32 seqno;
2706 		bool busy = true;
2707 
2708 		semaphore_clear_deadlocks(dev_priv);
2709 
2710 		seqno = ring->get_seqno(ring, false);
2711 		acthd = intel_ring_get_active_head(ring);
2712 
2713 		if (ring->hangcheck.seqno == seqno) {
2714 			if (ring_idle(ring, seqno)) {
2715 				ring->hangcheck.action = HANGCHECK_IDLE;
2716 
2717 				if (waitqueue_active(&ring->irq_queue)) {
2718 					/* Issue a wake-up to catch stuck h/w. */
2719 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2720 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2721 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2722 								  ring->name);
2723 						else
2724 							DRM_INFO("Fake missed irq on %s\n",
2725 								 ring->name);
2726 						wake_up_all(&ring->irq_queue);
2727 					}
2728 					/* Safeguard against driver failure */
2729 					ring->hangcheck.score += BUSY;
2730 				} else
2731 					busy = false;
2732 			} else {
2733 				/* We always increment the hangcheck score
2734 				 * if the ring is busy and still processing
2735 				 * the same request, so that no single request
2736 				 * can run indefinitely (such as a chain of
2737 				 * batches). The only time we do not increment
2738 				 * the hangcheck score on this ring, if this
2739 				 * ring is in a legitimate wait for another
2740 				 * ring. In that case the waiting ring is a
2741 				 * victim and we want to be sure we catch the
2742 				 * right culprit. Then every time we do kick
2743 				 * the ring, add a small increment to the
2744 				 * score so that we can catch a batch that is
2745 				 * being repeatedly kicked and so responsible
2746 				 * for stalling the machine.
2747 				 */
2748 				ring->hangcheck.action = ring_stuck(ring,
2749 								    acthd);
2750 
2751 				switch (ring->hangcheck.action) {
2752 				case HANGCHECK_IDLE:
2753 				case HANGCHECK_WAIT:
2754 				case HANGCHECK_ACTIVE:
2755 					break;
2756 				case HANGCHECK_ACTIVE_LOOP:
2757 					ring->hangcheck.score += BUSY;
2758 					break;
2759 				case HANGCHECK_KICK:
2760 					ring->hangcheck.score += KICK;
2761 					break;
2762 				case HANGCHECK_HUNG:
2763 					ring->hangcheck.score += HUNG;
2764 					stuck[i] = true;
2765 					break;
2766 				}
2767 			}
2768 		} else {
2769 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2770 
2771 			/* Gradually reduce the count so that we catch DoS
2772 			 * attempts across multiple batches.
2773 			 */
2774 			if (ring->hangcheck.score > 0)
2775 				ring->hangcheck.score--;
2776 
2777 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2778 		}
2779 
2780 		ring->hangcheck.seqno = seqno;
2781 		ring->hangcheck.acthd = acthd;
2782 		busy_count += busy;
2783 	}
2784 
2785 	for_each_ring(ring, dev_priv, i) {
2786 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2787 			DRM_INFO("%s on %s\n",
2788 				 stuck[i] ? "stuck" : "no progress",
2789 				 ring->name);
2790 			rings_hung++;
2791 		}
2792 	}
2793 
2794 	if (rings_hung)
2795 		return i915_handle_error(dev, true, "Ring hung");
2796 
2797 	if (busy_count)
2798 		/* Reset timer case chip hangs without another request
2799 		 * being added */
2800 		i915_queue_hangcheck(dev);
2801 }
2802 
2803 void i915_queue_hangcheck(struct drm_device *dev)
2804 {
2805 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2806 
2807 	if (!i915.enable_hangcheck)
2808 		return;
2809 
2810 	/* Don't continually defer the hangcheck so that it is always run at
2811 	 * least once after work has been scheduled on any ring. Otherwise,
2812 	 * we will ignore a hung ring if a second ring is kept busy.
2813 	 */
2814 
2815 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2816 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2817 }
2818 
2819 static void ibx_irq_reset(struct drm_device *dev)
2820 {
2821 	struct drm_i915_private *dev_priv = dev->dev_private;
2822 
2823 	if (HAS_PCH_NOP(dev))
2824 		return;
2825 
2826 	GEN5_IRQ_RESET(SDE);
2827 
2828 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2829 		I915_WRITE(SERR_INT, 0xffffffff);
2830 }
2831 
2832 /*
2833  * SDEIER is also touched by the interrupt handler to work around missed PCH
2834  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2835  * instead we unconditionally enable all PCH interrupt sources here, but then
2836  * only unmask them as needed with SDEIMR.
2837  *
2838  * This function needs to be called before interrupts are enabled.
2839  */
2840 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2841 {
2842 	struct drm_i915_private *dev_priv = dev->dev_private;
2843 
2844 	if (HAS_PCH_NOP(dev))
2845 		return;
2846 
2847 	WARN_ON(I915_READ(SDEIER) != 0);
2848 	I915_WRITE(SDEIER, 0xffffffff);
2849 	POSTING_READ(SDEIER);
2850 }
2851 
2852 static void gen5_gt_irq_reset(struct drm_device *dev)
2853 {
2854 	struct drm_i915_private *dev_priv = dev->dev_private;
2855 
2856 	GEN5_IRQ_RESET(GT);
2857 	if (INTEL_INFO(dev)->gen >= 6)
2858 		GEN5_IRQ_RESET(GEN6_PM);
2859 }
2860 
2861 /* drm_dma.h hooks
2862 */
2863 static void ironlake_irq_reset(struct drm_device *dev)
2864 {
2865 	struct drm_i915_private *dev_priv = dev->dev_private;
2866 
2867 	I915_WRITE(HWSTAM, 0xffffffff);
2868 
2869 	GEN5_IRQ_RESET(DE);
2870 	if (IS_GEN7(dev))
2871 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2872 
2873 	gen5_gt_irq_reset(dev);
2874 
2875 	ibx_irq_reset(dev);
2876 }
2877 
2878 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2879 {
2880 	enum pipe pipe;
2881 
2882 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2883 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2884 
2885 	for_each_pipe(dev_priv, pipe)
2886 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2887 
2888 	GEN5_IRQ_RESET(VLV_);
2889 }
2890 
2891 static void valleyview_irq_preinstall(struct drm_device *dev)
2892 {
2893 	struct drm_i915_private *dev_priv = dev->dev_private;
2894 
2895 	/* VLV magic */
2896 	I915_WRITE(VLV_IMR, 0);
2897 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2898 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2899 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2900 
2901 	gen5_gt_irq_reset(dev);
2902 
2903 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2904 
2905 	vlv_display_irq_reset(dev_priv);
2906 }
2907 
2908 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2909 {
2910 	GEN8_IRQ_RESET_NDX(GT, 0);
2911 	GEN8_IRQ_RESET_NDX(GT, 1);
2912 	GEN8_IRQ_RESET_NDX(GT, 2);
2913 	GEN8_IRQ_RESET_NDX(GT, 3);
2914 }
2915 
2916 static void gen8_irq_reset(struct drm_device *dev)
2917 {
2918 	struct drm_i915_private *dev_priv = dev->dev_private;
2919 	int pipe;
2920 
2921 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2922 	POSTING_READ(GEN8_MASTER_IRQ);
2923 
2924 	gen8_gt_irq_reset(dev_priv);
2925 
2926 	for_each_pipe(dev_priv, pipe)
2927 		if (intel_display_power_is_enabled(dev_priv,
2928 						   POWER_DOMAIN_PIPE(pipe)))
2929 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2930 
2931 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
2932 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
2933 	GEN5_IRQ_RESET(GEN8_PCU_);
2934 
2935 	if (HAS_PCH_SPLIT(dev))
2936 		ibx_irq_reset(dev);
2937 }
2938 
2939 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2940 				     unsigned int pipe_mask)
2941 {
2942 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2943 
2944 	spin_lock_irq(&dev_priv->irq_lock);
2945 	if (pipe_mask & 1 << PIPE_A)
2946 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
2947 				  dev_priv->de_irq_mask[PIPE_A],
2948 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
2949 	if (pipe_mask & 1 << PIPE_B)
2950 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
2951 				  dev_priv->de_irq_mask[PIPE_B],
2952 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
2953 	if (pipe_mask & 1 << PIPE_C)
2954 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
2955 				  dev_priv->de_irq_mask[PIPE_C],
2956 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
2957 	spin_unlock_irq(&dev_priv->irq_lock);
2958 }
2959 
2960 static void cherryview_irq_preinstall(struct drm_device *dev)
2961 {
2962 	struct drm_i915_private *dev_priv = dev->dev_private;
2963 
2964 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2965 	POSTING_READ(GEN8_MASTER_IRQ);
2966 
2967 	gen8_gt_irq_reset(dev_priv);
2968 
2969 	GEN5_IRQ_RESET(GEN8_PCU_);
2970 
2971 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2972 
2973 	vlv_display_irq_reset(dev_priv);
2974 }
2975 
2976 static void ibx_hpd_irq_setup(struct drm_device *dev)
2977 {
2978 	struct drm_i915_private *dev_priv = dev->dev_private;
2979 	struct intel_encoder *intel_encoder;
2980 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2981 
2982 	if (HAS_PCH_IBX(dev)) {
2983 		hotplug_irqs = SDE_HOTPLUG_MASK;
2984 		for_each_intel_encoder(dev, intel_encoder)
2985 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
2986 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2987 	} else {
2988 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2989 		for_each_intel_encoder(dev, intel_encoder)
2990 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
2991 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2992 	}
2993 
2994 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2995 
2996 	/*
2997 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2998 	 * duration to 2ms (which is the minimum in the Display Port spec)
2999 	 *
3000 	 * This register is the same on all known PCH chips.
3001 	 */
3002 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3003 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3004 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3005 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3006 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3007 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3008 }
3009 
3010 static void bxt_hpd_irq_setup(struct drm_device *dev)
3011 {
3012 	struct drm_i915_private *dev_priv = dev->dev_private;
3013 	struct intel_encoder *intel_encoder;
3014 	u32 hotplug_port = 0;
3015 	u32 hotplug_ctrl;
3016 
3017 	/* Now, enable HPD */
3018 	for_each_intel_encoder(dev, intel_encoder) {
3019 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3020 				== HPD_ENABLED)
3021 			hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3022 	}
3023 
3024 	/* Mask all HPD control bits */
3025 	hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3026 
3027 	/* Enable requested port in hotplug control */
3028 	/* TODO: implement (short) HPD support on port A */
3029 	WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3030 	if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3031 		hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3032 	if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3033 		hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3034 	I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3035 
3036 	/* Unmask DDI hotplug in IMR */
3037 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3038 	I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3039 
3040 	/* Enable DDI hotplug in IER */
3041 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3042 	I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3043 	POSTING_READ(GEN8_DE_PORT_IER);
3044 }
3045 
3046 static void ibx_irq_postinstall(struct drm_device *dev)
3047 {
3048 	struct drm_i915_private *dev_priv = dev->dev_private;
3049 	u32 mask;
3050 
3051 	if (HAS_PCH_NOP(dev))
3052 		return;
3053 
3054 	if (HAS_PCH_IBX(dev))
3055 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3056 	else
3057 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3058 
3059 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3060 	I915_WRITE(SDEIMR, ~mask);
3061 }
3062 
3063 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3064 {
3065 	struct drm_i915_private *dev_priv = dev->dev_private;
3066 	u32 pm_irqs, gt_irqs;
3067 
3068 	pm_irqs = gt_irqs = 0;
3069 
3070 	dev_priv->gt_irq_mask = ~0;
3071 	if (HAS_L3_DPF(dev)) {
3072 		/* L3 parity interrupt is always unmasked. */
3073 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3074 		gt_irqs |= GT_PARITY_ERROR(dev);
3075 	}
3076 
3077 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3078 	if (IS_GEN5(dev)) {
3079 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3080 			   ILK_BSD_USER_INTERRUPT;
3081 	} else {
3082 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3083 	}
3084 
3085 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3086 
3087 	if (INTEL_INFO(dev)->gen >= 6) {
3088 		/*
3089 		 * RPS interrupts will get enabled/disabled on demand when RPS
3090 		 * itself is enabled/disabled.
3091 		 */
3092 		if (HAS_VEBOX(dev))
3093 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3094 
3095 		dev_priv->pm_irq_mask = 0xffffffff;
3096 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3097 	}
3098 }
3099 
3100 static int ironlake_irq_postinstall(struct drm_device *dev)
3101 {
3102 	struct drm_i915_private *dev_priv = dev->dev_private;
3103 	u32 display_mask, extra_mask;
3104 
3105 	if (INTEL_INFO(dev)->gen >= 7) {
3106 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3107 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3108 				DE_PLANEB_FLIP_DONE_IVB |
3109 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3110 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3111 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3112 	} else {
3113 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3114 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3115 				DE_AUX_CHANNEL_A |
3116 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3117 				DE_POISON);
3118 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3119 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3120 	}
3121 
3122 	dev_priv->irq_mask = ~display_mask;
3123 
3124 	I915_WRITE(HWSTAM, 0xeffe);
3125 
3126 	ibx_irq_pre_postinstall(dev);
3127 
3128 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3129 
3130 	gen5_gt_irq_postinstall(dev);
3131 
3132 	ibx_irq_postinstall(dev);
3133 
3134 	if (IS_IRONLAKE_M(dev)) {
3135 		/* Enable PCU event interrupts
3136 		 *
3137 		 * spinlocking not required here for correctness since interrupt
3138 		 * setup is guaranteed to run in single-threaded context. But we
3139 		 * need it to make the assert_spin_locked happy. */
3140 		spin_lock_irq(&dev_priv->irq_lock);
3141 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3142 		spin_unlock_irq(&dev_priv->irq_lock);
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3149 {
3150 	u32 pipestat_mask;
3151 	u32 iir_mask;
3152 	enum pipe pipe;
3153 
3154 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3155 			PIPE_FIFO_UNDERRUN_STATUS;
3156 
3157 	for_each_pipe(dev_priv, pipe)
3158 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3159 	POSTING_READ(PIPESTAT(PIPE_A));
3160 
3161 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3162 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3163 
3164 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3165 	for_each_pipe(dev_priv, pipe)
3166 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3167 
3168 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3169 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3170 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3171 	if (IS_CHERRYVIEW(dev_priv))
3172 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3173 	dev_priv->irq_mask &= ~iir_mask;
3174 
3175 	I915_WRITE(VLV_IIR, iir_mask);
3176 	I915_WRITE(VLV_IIR, iir_mask);
3177 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3178 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3179 	POSTING_READ(VLV_IMR);
3180 }
3181 
3182 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3183 {
3184 	u32 pipestat_mask;
3185 	u32 iir_mask;
3186 	enum pipe pipe;
3187 
3188 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3189 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3190 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3191 	if (IS_CHERRYVIEW(dev_priv))
3192 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3193 
3194 	dev_priv->irq_mask |= iir_mask;
3195 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3196 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3197 	I915_WRITE(VLV_IIR, iir_mask);
3198 	I915_WRITE(VLV_IIR, iir_mask);
3199 	POSTING_READ(VLV_IIR);
3200 
3201 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3202 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3203 
3204 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3205 	for_each_pipe(dev_priv, pipe)
3206 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3207 
3208 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3209 			PIPE_FIFO_UNDERRUN_STATUS;
3210 
3211 	for_each_pipe(dev_priv, pipe)
3212 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3213 	POSTING_READ(PIPESTAT(PIPE_A));
3214 }
3215 
3216 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3217 {
3218 	assert_spin_locked(&dev_priv->irq_lock);
3219 
3220 	if (dev_priv->display_irqs_enabled)
3221 		return;
3222 
3223 	dev_priv->display_irqs_enabled = true;
3224 
3225 	if (intel_irqs_enabled(dev_priv))
3226 		valleyview_display_irqs_install(dev_priv);
3227 }
3228 
3229 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3230 {
3231 	assert_spin_locked(&dev_priv->irq_lock);
3232 
3233 	if (!dev_priv->display_irqs_enabled)
3234 		return;
3235 
3236 	dev_priv->display_irqs_enabled = false;
3237 
3238 	if (intel_irqs_enabled(dev_priv))
3239 		valleyview_display_irqs_uninstall(dev_priv);
3240 }
3241 
3242 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3243 {
3244 	dev_priv->irq_mask = ~0;
3245 
3246 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3247 	POSTING_READ(PORT_HOTPLUG_EN);
3248 
3249 	I915_WRITE(VLV_IIR, 0xffffffff);
3250 	I915_WRITE(VLV_IIR, 0xffffffff);
3251 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3252 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3253 	POSTING_READ(VLV_IMR);
3254 
3255 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3256 	 * just to make the assert_spin_locked check happy. */
3257 	spin_lock_irq(&dev_priv->irq_lock);
3258 	if (dev_priv->display_irqs_enabled)
3259 		valleyview_display_irqs_install(dev_priv);
3260 	spin_unlock_irq(&dev_priv->irq_lock);
3261 }
3262 
3263 static int valleyview_irq_postinstall(struct drm_device *dev)
3264 {
3265 	struct drm_i915_private *dev_priv = dev->dev_private;
3266 
3267 	vlv_display_irq_postinstall(dev_priv);
3268 
3269 	gen5_gt_irq_postinstall(dev);
3270 
3271 	/* ack & enable invalid PTE error interrupts */
3272 #if 0 /* FIXME: add support to irq handler for checking these bits */
3273 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3274 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3275 #endif
3276 
3277 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3278 
3279 	return 0;
3280 }
3281 
3282 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3283 {
3284 	/* These are interrupts we'll toggle with the ring mask register */
3285 	uint32_t gt_interrupts[] = {
3286 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3287 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3288 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3289 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3290 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3291 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3292 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3293 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3294 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3295 		0,
3296 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3297 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3298 		};
3299 
3300 	dev_priv->pm_irq_mask = 0xffffffff;
3301 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3302 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3303 	/*
3304 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3305 	 * is enabled/disabled.
3306 	 */
3307 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3308 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3309 }
3310 
3311 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3312 {
3313 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3314 	uint32_t de_pipe_enables;
3315 	int pipe;
3316 	u32 de_port_en = GEN8_AUX_CHANNEL_A;
3317 
3318 	if (IS_GEN9(dev_priv)) {
3319 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3320 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3321 		de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3322 			GEN9_AUX_CHANNEL_D;
3323 
3324 		if (IS_BROXTON(dev_priv))
3325 			de_port_en |= BXT_DE_PORT_GMBUS;
3326 	} else
3327 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3328 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3329 
3330 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3331 					   GEN8_PIPE_FIFO_UNDERRUN;
3332 
3333 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3334 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3335 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3336 
3337 	for_each_pipe(dev_priv, pipe)
3338 		if (intel_display_power_is_enabled(dev_priv,
3339 				POWER_DOMAIN_PIPE(pipe)))
3340 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3341 					  dev_priv->de_irq_mask[pipe],
3342 					  de_pipe_enables);
3343 
3344 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3345 }
3346 
3347 static int gen8_irq_postinstall(struct drm_device *dev)
3348 {
3349 	struct drm_i915_private *dev_priv = dev->dev_private;
3350 
3351 	if (HAS_PCH_SPLIT(dev))
3352 		ibx_irq_pre_postinstall(dev);
3353 
3354 	gen8_gt_irq_postinstall(dev_priv);
3355 	gen8_de_irq_postinstall(dev_priv);
3356 
3357 	if (HAS_PCH_SPLIT(dev))
3358 		ibx_irq_postinstall(dev);
3359 
3360 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3361 	POSTING_READ(GEN8_MASTER_IRQ);
3362 
3363 	return 0;
3364 }
3365 
3366 static int cherryview_irq_postinstall(struct drm_device *dev)
3367 {
3368 	struct drm_i915_private *dev_priv = dev->dev_private;
3369 
3370 	vlv_display_irq_postinstall(dev_priv);
3371 
3372 	gen8_gt_irq_postinstall(dev_priv);
3373 
3374 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3375 	POSTING_READ(GEN8_MASTER_IRQ);
3376 
3377 	return 0;
3378 }
3379 
3380 static void gen8_irq_uninstall(struct drm_device *dev)
3381 {
3382 	struct drm_i915_private *dev_priv = dev->dev_private;
3383 
3384 	if (!dev_priv)
3385 		return;
3386 
3387 	gen8_irq_reset(dev);
3388 }
3389 
3390 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3391 {
3392 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3393 	 * just to make the assert_spin_locked check happy. */
3394 	spin_lock_irq(&dev_priv->irq_lock);
3395 	if (dev_priv->display_irqs_enabled)
3396 		valleyview_display_irqs_uninstall(dev_priv);
3397 	spin_unlock_irq(&dev_priv->irq_lock);
3398 
3399 	vlv_display_irq_reset(dev_priv);
3400 
3401 	dev_priv->irq_mask = ~0;
3402 }
3403 
3404 static void valleyview_irq_uninstall(struct drm_device *dev)
3405 {
3406 	struct drm_i915_private *dev_priv = dev->dev_private;
3407 
3408 	if (!dev_priv)
3409 		return;
3410 
3411 	I915_WRITE(VLV_MASTER_IER, 0);
3412 
3413 	gen5_gt_irq_reset(dev);
3414 
3415 	I915_WRITE(HWSTAM, 0xffffffff);
3416 
3417 	vlv_display_irq_uninstall(dev_priv);
3418 }
3419 
3420 static void cherryview_irq_uninstall(struct drm_device *dev)
3421 {
3422 	struct drm_i915_private *dev_priv = dev->dev_private;
3423 
3424 	if (!dev_priv)
3425 		return;
3426 
3427 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3428 	POSTING_READ(GEN8_MASTER_IRQ);
3429 
3430 	gen8_gt_irq_reset(dev_priv);
3431 
3432 	GEN5_IRQ_RESET(GEN8_PCU_);
3433 
3434 	vlv_display_irq_uninstall(dev_priv);
3435 }
3436 
3437 static void ironlake_irq_uninstall(struct drm_device *dev)
3438 {
3439 	struct drm_i915_private *dev_priv = dev->dev_private;
3440 
3441 	if (!dev_priv)
3442 		return;
3443 
3444 	ironlake_irq_reset(dev);
3445 }
3446 
3447 static void i8xx_irq_preinstall(struct drm_device * dev)
3448 {
3449 	struct drm_i915_private *dev_priv = dev->dev_private;
3450 	int pipe;
3451 
3452 	for_each_pipe(dev_priv, pipe)
3453 		I915_WRITE(PIPESTAT(pipe), 0);
3454 	I915_WRITE16(IMR, 0xffff);
3455 	I915_WRITE16(IER, 0x0);
3456 	POSTING_READ16(IER);
3457 }
3458 
3459 static int i8xx_irq_postinstall(struct drm_device *dev)
3460 {
3461 	struct drm_i915_private *dev_priv = dev->dev_private;
3462 
3463 	I915_WRITE16(EMR,
3464 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3465 
3466 	/* Unmask the interrupts that we always want on. */
3467 	dev_priv->irq_mask =
3468 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3469 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3470 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3471 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3472 	I915_WRITE16(IMR, dev_priv->irq_mask);
3473 
3474 	I915_WRITE16(IER,
3475 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3476 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3477 		     I915_USER_INTERRUPT);
3478 	POSTING_READ16(IER);
3479 
3480 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3481 	 * just to make the assert_spin_locked check happy. */
3482 	spin_lock_irq(&dev_priv->irq_lock);
3483 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3484 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3485 	spin_unlock_irq(&dev_priv->irq_lock);
3486 
3487 	return 0;
3488 }
3489 
3490 /*
3491  * Returns true when a page flip has completed.
3492  */
3493 static bool i8xx_handle_vblank(struct drm_device *dev,
3494 			       int plane, int pipe, u32 iir)
3495 {
3496 	struct drm_i915_private *dev_priv = dev->dev_private;
3497 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3498 
3499 	if (!intel_pipe_handle_vblank(dev, pipe))
3500 		return false;
3501 
3502 	if ((iir & flip_pending) == 0)
3503 		goto check_page_flip;
3504 
3505 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3506 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3507 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3508 	 * the flip is completed (no longer pending). Since this doesn't raise
3509 	 * an interrupt per se, we watch for the change at vblank.
3510 	 */
3511 	if (I915_READ16(ISR) & flip_pending)
3512 		goto check_page_flip;
3513 
3514 	intel_prepare_page_flip(dev, plane);
3515 	intel_finish_page_flip(dev, pipe);
3516 	return true;
3517 
3518 check_page_flip:
3519 	intel_check_page_flip(dev, pipe);
3520 	return false;
3521 }
3522 
3523 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3524 {
3525 	struct drm_device *dev = arg;
3526 	struct drm_i915_private *dev_priv = dev->dev_private;
3527 	u16 iir, new_iir;
3528 	u32 pipe_stats[2];
3529 	int pipe;
3530 	u16 flip_mask =
3531 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3532 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3533 
3534 	if (!intel_irqs_enabled(dev_priv))
3535 		return IRQ_NONE;
3536 
3537 	iir = I915_READ16(IIR);
3538 	if (iir == 0)
3539 		return IRQ_NONE;
3540 
3541 	while (iir & ~flip_mask) {
3542 		/* Can't rely on pipestat interrupt bit in iir as it might
3543 		 * have been cleared after the pipestat interrupt was received.
3544 		 * It doesn't set the bit in iir again, but it still produces
3545 		 * interrupts (for non-MSI).
3546 		 */
3547 		spin_lock(&dev_priv->irq_lock);
3548 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3549 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3550 
3551 		for_each_pipe(dev_priv, pipe) {
3552 			int reg = PIPESTAT(pipe);
3553 			pipe_stats[pipe] = I915_READ(reg);
3554 
3555 			/*
3556 			 * Clear the PIPE*STAT regs before the IIR
3557 			 */
3558 			if (pipe_stats[pipe] & 0x8000ffff)
3559 				I915_WRITE(reg, pipe_stats[pipe]);
3560 		}
3561 		spin_unlock(&dev_priv->irq_lock);
3562 
3563 		I915_WRITE16(IIR, iir & ~flip_mask);
3564 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3565 
3566 		if (iir & I915_USER_INTERRUPT)
3567 			notify_ring(&dev_priv->ring[RCS]);
3568 
3569 		for_each_pipe(dev_priv, pipe) {
3570 			int plane = pipe;
3571 			if (HAS_FBC(dev))
3572 				plane = !plane;
3573 
3574 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3575 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3576 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3577 
3578 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3579 				i9xx_pipe_crc_irq_handler(dev, pipe);
3580 
3581 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3582 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3583 								    pipe);
3584 		}
3585 
3586 		iir = new_iir;
3587 	}
3588 
3589 	return IRQ_HANDLED;
3590 }
3591 
3592 static void i8xx_irq_uninstall(struct drm_device * dev)
3593 {
3594 	struct drm_i915_private *dev_priv = dev->dev_private;
3595 	int pipe;
3596 
3597 	for_each_pipe(dev_priv, pipe) {
3598 		/* Clear enable bits; then clear status bits */
3599 		I915_WRITE(PIPESTAT(pipe), 0);
3600 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3601 	}
3602 	I915_WRITE16(IMR, 0xffff);
3603 	I915_WRITE16(IER, 0x0);
3604 	I915_WRITE16(IIR, I915_READ16(IIR));
3605 }
3606 
3607 static void i915_irq_preinstall(struct drm_device * dev)
3608 {
3609 	struct drm_i915_private *dev_priv = dev->dev_private;
3610 	int pipe;
3611 
3612 	if (I915_HAS_HOTPLUG(dev)) {
3613 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3614 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3615 	}
3616 
3617 	I915_WRITE16(HWSTAM, 0xeffe);
3618 	for_each_pipe(dev_priv, pipe)
3619 		I915_WRITE(PIPESTAT(pipe), 0);
3620 	I915_WRITE(IMR, 0xffffffff);
3621 	I915_WRITE(IER, 0x0);
3622 	POSTING_READ(IER);
3623 }
3624 
3625 static int i915_irq_postinstall(struct drm_device *dev)
3626 {
3627 	struct drm_i915_private *dev_priv = dev->dev_private;
3628 	u32 enable_mask;
3629 
3630 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3631 
3632 	/* Unmask the interrupts that we always want on. */
3633 	dev_priv->irq_mask =
3634 		~(I915_ASLE_INTERRUPT |
3635 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3636 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3637 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3638 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3639 
3640 	enable_mask =
3641 		I915_ASLE_INTERRUPT |
3642 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3643 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3644 		I915_USER_INTERRUPT;
3645 
3646 	if (I915_HAS_HOTPLUG(dev)) {
3647 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3648 		POSTING_READ(PORT_HOTPLUG_EN);
3649 
3650 		/* Enable in IER... */
3651 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3652 		/* and unmask in IMR */
3653 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3654 	}
3655 
3656 	I915_WRITE(IMR, dev_priv->irq_mask);
3657 	I915_WRITE(IER, enable_mask);
3658 	POSTING_READ(IER);
3659 
3660 	i915_enable_asle_pipestat(dev);
3661 
3662 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3663 	 * just to make the assert_spin_locked check happy. */
3664 	spin_lock_irq(&dev_priv->irq_lock);
3665 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3666 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3667 	spin_unlock_irq(&dev_priv->irq_lock);
3668 
3669 	return 0;
3670 }
3671 
3672 /*
3673  * Returns true when a page flip has completed.
3674  */
3675 static bool i915_handle_vblank(struct drm_device *dev,
3676 			       int plane, int pipe, u32 iir)
3677 {
3678 	struct drm_i915_private *dev_priv = dev->dev_private;
3679 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3680 
3681 	if (!intel_pipe_handle_vblank(dev, pipe))
3682 		return false;
3683 
3684 	if ((iir & flip_pending) == 0)
3685 		goto check_page_flip;
3686 
3687 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3688 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3689 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3690 	 * the flip is completed (no longer pending). Since this doesn't raise
3691 	 * an interrupt per se, we watch for the change at vblank.
3692 	 */
3693 	if (I915_READ(ISR) & flip_pending)
3694 		goto check_page_flip;
3695 
3696 	intel_prepare_page_flip(dev, plane);
3697 	intel_finish_page_flip(dev, pipe);
3698 	return true;
3699 
3700 check_page_flip:
3701 	intel_check_page_flip(dev, pipe);
3702 	return false;
3703 }
3704 
3705 static irqreturn_t i915_irq_handler(int irq, void *arg)
3706 {
3707 	struct drm_device *dev = arg;
3708 	struct drm_i915_private *dev_priv = dev->dev_private;
3709 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3710 	u32 flip_mask =
3711 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3712 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3713 	int pipe, ret = IRQ_NONE;
3714 
3715 	if (!intel_irqs_enabled(dev_priv))
3716 		return IRQ_NONE;
3717 
3718 	iir = I915_READ(IIR);
3719 	do {
3720 		bool irq_received = (iir & ~flip_mask) != 0;
3721 		bool blc_event = false;
3722 
3723 		/* Can't rely on pipestat interrupt bit in iir as it might
3724 		 * have been cleared after the pipestat interrupt was received.
3725 		 * It doesn't set the bit in iir again, but it still produces
3726 		 * interrupts (for non-MSI).
3727 		 */
3728 		spin_lock(&dev_priv->irq_lock);
3729 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3730 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3731 
3732 		for_each_pipe(dev_priv, pipe) {
3733 			int reg = PIPESTAT(pipe);
3734 			pipe_stats[pipe] = I915_READ(reg);
3735 
3736 			/* Clear the PIPE*STAT regs before the IIR */
3737 			if (pipe_stats[pipe] & 0x8000ffff) {
3738 				I915_WRITE(reg, pipe_stats[pipe]);
3739 				irq_received = true;
3740 			}
3741 		}
3742 		spin_unlock(&dev_priv->irq_lock);
3743 
3744 		if (!irq_received)
3745 			break;
3746 
3747 		/* Consume port.  Then clear IIR or we'll miss events */
3748 		if (I915_HAS_HOTPLUG(dev) &&
3749 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3750 			i9xx_hpd_irq_handler(dev);
3751 
3752 		I915_WRITE(IIR, iir & ~flip_mask);
3753 		new_iir = I915_READ(IIR); /* Flush posted writes */
3754 
3755 		if (iir & I915_USER_INTERRUPT)
3756 			notify_ring(&dev_priv->ring[RCS]);
3757 
3758 		for_each_pipe(dev_priv, pipe) {
3759 			int plane = pipe;
3760 			if (HAS_FBC(dev))
3761 				plane = !plane;
3762 
3763 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3764 			    i915_handle_vblank(dev, plane, pipe, iir))
3765 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3766 
3767 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3768 				blc_event = true;
3769 
3770 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3771 				i9xx_pipe_crc_irq_handler(dev, pipe);
3772 
3773 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3774 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3775 								    pipe);
3776 		}
3777 
3778 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3779 			intel_opregion_asle_intr(dev);
3780 
3781 		/* With MSI, interrupts are only generated when iir
3782 		 * transitions from zero to nonzero.  If another bit got
3783 		 * set while we were handling the existing iir bits, then
3784 		 * we would never get another interrupt.
3785 		 *
3786 		 * This is fine on non-MSI as well, as if we hit this path
3787 		 * we avoid exiting the interrupt handler only to generate
3788 		 * another one.
3789 		 *
3790 		 * Note that for MSI this could cause a stray interrupt report
3791 		 * if an interrupt landed in the time between writing IIR and
3792 		 * the posting read.  This should be rare enough to never
3793 		 * trigger the 99% of 100,000 interrupts test for disabling
3794 		 * stray interrupts.
3795 		 */
3796 		ret = IRQ_HANDLED;
3797 		iir = new_iir;
3798 	} while (iir & ~flip_mask);
3799 
3800 	return ret;
3801 }
3802 
3803 static void i915_irq_uninstall(struct drm_device * dev)
3804 {
3805 	struct drm_i915_private *dev_priv = dev->dev_private;
3806 	int pipe;
3807 
3808 	if (I915_HAS_HOTPLUG(dev)) {
3809 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3810 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3811 	}
3812 
3813 	I915_WRITE16(HWSTAM, 0xffff);
3814 	for_each_pipe(dev_priv, pipe) {
3815 		/* Clear enable bits; then clear status bits */
3816 		I915_WRITE(PIPESTAT(pipe), 0);
3817 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3818 	}
3819 	I915_WRITE(IMR, 0xffffffff);
3820 	I915_WRITE(IER, 0x0);
3821 
3822 	I915_WRITE(IIR, I915_READ(IIR));
3823 }
3824 
3825 static void i965_irq_preinstall(struct drm_device * dev)
3826 {
3827 	struct drm_i915_private *dev_priv = dev->dev_private;
3828 	int pipe;
3829 
3830 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3831 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3832 
3833 	I915_WRITE(HWSTAM, 0xeffe);
3834 	for_each_pipe(dev_priv, pipe)
3835 		I915_WRITE(PIPESTAT(pipe), 0);
3836 	I915_WRITE(IMR, 0xffffffff);
3837 	I915_WRITE(IER, 0x0);
3838 	POSTING_READ(IER);
3839 }
3840 
3841 static int i965_irq_postinstall(struct drm_device *dev)
3842 {
3843 	struct drm_i915_private *dev_priv = dev->dev_private;
3844 	u32 enable_mask;
3845 	u32 error_mask;
3846 
3847 	/* Unmask the interrupts that we always want on. */
3848 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3849 			       I915_DISPLAY_PORT_INTERRUPT |
3850 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3851 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3852 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3853 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3854 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3855 
3856 	enable_mask = ~dev_priv->irq_mask;
3857 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3858 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3859 	enable_mask |= I915_USER_INTERRUPT;
3860 
3861 	if (IS_G4X(dev))
3862 		enable_mask |= I915_BSD_USER_INTERRUPT;
3863 
3864 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3865 	 * just to make the assert_spin_locked check happy. */
3866 	spin_lock_irq(&dev_priv->irq_lock);
3867 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3868 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3869 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3870 	spin_unlock_irq(&dev_priv->irq_lock);
3871 
3872 	/*
3873 	 * Enable some error detection, note the instruction error mask
3874 	 * bit is reserved, so we leave it masked.
3875 	 */
3876 	if (IS_G4X(dev)) {
3877 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3878 			       GM45_ERROR_MEM_PRIV |
3879 			       GM45_ERROR_CP_PRIV |
3880 			       I915_ERROR_MEMORY_REFRESH);
3881 	} else {
3882 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3883 			       I915_ERROR_MEMORY_REFRESH);
3884 	}
3885 	I915_WRITE(EMR, error_mask);
3886 
3887 	I915_WRITE(IMR, dev_priv->irq_mask);
3888 	I915_WRITE(IER, enable_mask);
3889 	POSTING_READ(IER);
3890 
3891 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3892 	POSTING_READ(PORT_HOTPLUG_EN);
3893 
3894 	i915_enable_asle_pipestat(dev);
3895 
3896 	return 0;
3897 }
3898 
3899 static void i915_hpd_irq_setup(struct drm_device *dev)
3900 {
3901 	struct drm_i915_private *dev_priv = dev->dev_private;
3902 	struct intel_encoder *intel_encoder;
3903 	u32 hotplug_en;
3904 
3905 	assert_spin_locked(&dev_priv->irq_lock);
3906 
3907 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3908 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3909 	/* Note HDMI and DP share hotplug bits */
3910 	/* enable bits are the same for all generations */
3911 	for_each_intel_encoder(dev, intel_encoder)
3912 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3913 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3914 	/* Programming the CRT detection parameters tends
3915 	   to generate a spurious hotplug event about three
3916 	   seconds later.  So just do it once.
3917 	*/
3918 	if (IS_G4X(dev))
3919 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3920 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3921 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3922 
3923 	/* Ignore TV since it's buggy */
3924 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3925 }
3926 
3927 static irqreturn_t i965_irq_handler(int irq, void *arg)
3928 {
3929 	struct drm_device *dev = arg;
3930 	struct drm_i915_private *dev_priv = dev->dev_private;
3931 	u32 iir, new_iir;
3932 	u32 pipe_stats[I915_MAX_PIPES];
3933 	int ret = IRQ_NONE, pipe;
3934 	u32 flip_mask =
3935 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3936 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3937 
3938 	if (!intel_irqs_enabled(dev_priv))
3939 		return IRQ_NONE;
3940 
3941 	iir = I915_READ(IIR);
3942 
3943 	for (;;) {
3944 		bool irq_received = (iir & ~flip_mask) != 0;
3945 		bool blc_event = false;
3946 
3947 		/* Can't rely on pipestat interrupt bit in iir as it might
3948 		 * have been cleared after the pipestat interrupt was received.
3949 		 * It doesn't set the bit in iir again, but it still produces
3950 		 * interrupts (for non-MSI).
3951 		 */
3952 		spin_lock(&dev_priv->irq_lock);
3953 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3954 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3955 
3956 		for_each_pipe(dev_priv, pipe) {
3957 			int reg = PIPESTAT(pipe);
3958 			pipe_stats[pipe] = I915_READ(reg);
3959 
3960 			/*
3961 			 * Clear the PIPE*STAT regs before the IIR
3962 			 */
3963 			if (pipe_stats[pipe] & 0x8000ffff) {
3964 				I915_WRITE(reg, pipe_stats[pipe]);
3965 				irq_received = true;
3966 			}
3967 		}
3968 		spin_unlock(&dev_priv->irq_lock);
3969 
3970 		if (!irq_received)
3971 			break;
3972 
3973 		ret = IRQ_HANDLED;
3974 
3975 		/* Consume port.  Then clear IIR or we'll miss events */
3976 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3977 			i9xx_hpd_irq_handler(dev);
3978 
3979 		I915_WRITE(IIR, iir & ~flip_mask);
3980 		new_iir = I915_READ(IIR); /* Flush posted writes */
3981 
3982 		if (iir & I915_USER_INTERRUPT)
3983 			notify_ring(&dev_priv->ring[RCS]);
3984 		if (iir & I915_BSD_USER_INTERRUPT)
3985 			notify_ring(&dev_priv->ring[VCS]);
3986 
3987 		for_each_pipe(dev_priv, pipe) {
3988 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3989 			    i915_handle_vblank(dev, pipe, pipe, iir))
3990 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3991 
3992 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3993 				blc_event = true;
3994 
3995 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3996 				i9xx_pipe_crc_irq_handler(dev, pipe);
3997 
3998 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3999 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4000 		}
4001 
4002 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4003 			intel_opregion_asle_intr(dev);
4004 
4005 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4006 			gmbus_irq_handler(dev);
4007 
4008 		/* With MSI, interrupts are only generated when iir
4009 		 * transitions from zero to nonzero.  If another bit got
4010 		 * set while we were handling the existing iir bits, then
4011 		 * we would never get another interrupt.
4012 		 *
4013 		 * This is fine on non-MSI as well, as if we hit this path
4014 		 * we avoid exiting the interrupt handler only to generate
4015 		 * another one.
4016 		 *
4017 		 * Note that for MSI this could cause a stray interrupt report
4018 		 * if an interrupt landed in the time between writing IIR and
4019 		 * the posting read.  This should be rare enough to never
4020 		 * trigger the 99% of 100,000 interrupts test for disabling
4021 		 * stray interrupts.
4022 		 */
4023 		iir = new_iir;
4024 	}
4025 
4026 	return ret;
4027 }
4028 
4029 static void i965_irq_uninstall(struct drm_device * dev)
4030 {
4031 	struct drm_i915_private *dev_priv = dev->dev_private;
4032 	int pipe;
4033 
4034 	if (!dev_priv)
4035 		return;
4036 
4037 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4038 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039 
4040 	I915_WRITE(HWSTAM, 0xffffffff);
4041 	for_each_pipe(dev_priv, pipe)
4042 		I915_WRITE(PIPESTAT(pipe), 0);
4043 	I915_WRITE(IMR, 0xffffffff);
4044 	I915_WRITE(IER, 0x0);
4045 
4046 	for_each_pipe(dev_priv, pipe)
4047 		I915_WRITE(PIPESTAT(pipe),
4048 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4049 	I915_WRITE(IIR, I915_READ(IIR));
4050 }
4051 
4052 /**
4053  * intel_irq_init - initializes irq support
4054  * @dev_priv: i915 device instance
4055  *
4056  * This function initializes all the irq support including work items, timers
4057  * and all the vtables. It does not setup the interrupt itself though.
4058  */
4059 void intel_irq_init(struct drm_i915_private *dev_priv)
4060 {
4061 	struct drm_device *dev = dev_priv->dev;
4062 
4063 	intel_hpd_init_work(dev_priv);
4064 
4065 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4066 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4067 
4068 	/* Let's track the enabled rps events */
4069 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4070 		/* WaGsvRC0ResidencyMethod:vlv */
4071 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4072 	else
4073 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4074 
4075 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4076 			  i915_hangcheck_elapsed);
4077 
4078 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4079 
4080 	if (IS_GEN2(dev_priv)) {
4081 		dev->max_vblank_count = 0;
4082 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4083 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4084 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4085 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4086 	} else {
4087 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4088 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4089 	}
4090 
4091 	/*
4092 	 * Opt out of the vblank disable timer on everything except gen2.
4093 	 * Gen2 doesn't have a hardware frame counter and so depends on
4094 	 * vblank interrupts to produce sane vblank seuquence numbers.
4095 	 */
4096 	if (!IS_GEN2(dev_priv))
4097 		dev->vblank_disable_immediate = true;
4098 
4099 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4100 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4101 
4102 	if (IS_CHERRYVIEW(dev_priv)) {
4103 		dev->driver->irq_handler = cherryview_irq_handler;
4104 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4105 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4106 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4107 		dev->driver->enable_vblank = valleyview_enable_vblank;
4108 		dev->driver->disable_vblank = valleyview_disable_vblank;
4109 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4110 	} else if (IS_VALLEYVIEW(dev_priv)) {
4111 		dev->driver->irq_handler = valleyview_irq_handler;
4112 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4113 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4114 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4115 		dev->driver->enable_vblank = valleyview_enable_vblank;
4116 		dev->driver->disable_vblank = valleyview_disable_vblank;
4117 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4118 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4119 		dev->driver->irq_handler = gen8_irq_handler;
4120 		dev->driver->irq_preinstall = gen8_irq_reset;
4121 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4122 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4123 		dev->driver->enable_vblank = gen8_enable_vblank;
4124 		dev->driver->disable_vblank = gen8_disable_vblank;
4125 		if (HAS_PCH_SPLIT(dev))
4126 			dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4127 		else
4128 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4129 	} else if (HAS_PCH_SPLIT(dev)) {
4130 		dev->driver->irq_handler = ironlake_irq_handler;
4131 		dev->driver->irq_preinstall = ironlake_irq_reset;
4132 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4133 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4134 		dev->driver->enable_vblank = ironlake_enable_vblank;
4135 		dev->driver->disable_vblank = ironlake_disable_vblank;
4136 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4137 	} else {
4138 		if (INTEL_INFO(dev_priv)->gen == 2) {
4139 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4140 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4141 			dev->driver->irq_handler = i8xx_irq_handler;
4142 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4143 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4144 			dev->driver->irq_preinstall = i915_irq_preinstall;
4145 			dev->driver->irq_postinstall = i915_irq_postinstall;
4146 			dev->driver->irq_uninstall = i915_irq_uninstall;
4147 			dev->driver->irq_handler = i915_irq_handler;
4148 		} else {
4149 			dev->driver->irq_preinstall = i965_irq_preinstall;
4150 			dev->driver->irq_postinstall = i965_irq_postinstall;
4151 			dev->driver->irq_uninstall = i965_irq_uninstall;
4152 			dev->driver->irq_handler = i965_irq_handler;
4153 		}
4154 		if (I915_HAS_HOTPLUG(dev_priv))
4155 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4156 		dev->driver->enable_vblank = i915_enable_vblank;
4157 		dev->driver->disable_vblank = i915_disable_vblank;
4158 	}
4159 }
4160 
4161 /**
4162  * intel_irq_install - enables the hardware interrupt
4163  * @dev_priv: i915 device instance
4164  *
4165  * This function enables the hardware interrupt handling, but leaves the hotplug
4166  * handling still disabled. It is called after intel_irq_init().
4167  *
4168  * In the driver load and resume code we need working interrupts in a few places
4169  * but don't want to deal with the hassle of concurrent probe and hotplug
4170  * workers. Hence the split into this two-stage approach.
4171  */
4172 int intel_irq_install(struct drm_i915_private *dev_priv)
4173 {
4174 	/*
4175 	 * We enable some interrupt sources in our postinstall hooks, so mark
4176 	 * interrupts as enabled _before_ actually enabling them to avoid
4177 	 * special cases in our ordering checks.
4178 	 */
4179 	dev_priv->pm.irqs_enabled = true;
4180 
4181 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4182 }
4183 
4184 /**
4185  * intel_irq_uninstall - finilizes all irq handling
4186  * @dev_priv: i915 device instance
4187  *
4188  * This stops interrupt and hotplug handling and unregisters and frees all
4189  * resources acquired in the init functions.
4190  */
4191 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4192 {
4193 	drm_irq_uninstall(dev_priv->dev);
4194 	intel_hpd_cancel_work(dev_priv);
4195 	dev_priv->pm.irqs_enabled = false;
4196 }
4197 
4198 /**
4199  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4200  * @dev_priv: i915 device instance
4201  *
4202  * This function is used to disable interrupts at runtime, both in the runtime
4203  * pm and the system suspend/resume code.
4204  */
4205 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4206 {
4207 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4208 	dev_priv->pm.irqs_enabled = false;
4209 	synchronize_irq(dev_priv->dev->irq);
4210 }
4211 
4212 /**
4213  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4214  * @dev_priv: i915 device instance
4215  *
4216  * This function is used to enable interrupts at runtime, both in the runtime
4217  * pm and the system suspend/resume code.
4218  */
4219 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4220 {
4221 	dev_priv->pm.irqs_enabled = true;
4222 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4223 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4224 }
4225