xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 5f32c314)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 	assert_spin_locked(&dev_priv->irq_lock);
88 
89 	if (dev_priv->pc8.irqs_disabled) {
90 		WARN(1, "IRQs disabled\n");
91 		dev_priv->pc8.regsave.deimr &= ~mask;
92 		return;
93 	}
94 
95 	if ((dev_priv->irq_mask & mask) != 0) {
96 		dev_priv->irq_mask &= ~mask;
97 		I915_WRITE(DEIMR, dev_priv->irq_mask);
98 		POSTING_READ(DEIMR);
99 	}
100 }
101 
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 	assert_spin_locked(&dev_priv->irq_lock);
106 
107 	if (dev_priv->pc8.irqs_disabled) {
108 		WARN(1, "IRQs disabled\n");
109 		dev_priv->pc8.regsave.deimr |= mask;
110 		return;
111 	}
112 
113 	if ((dev_priv->irq_mask & mask) != mask) {
114 		dev_priv->irq_mask |= mask;
115 		I915_WRITE(DEIMR, dev_priv->irq_mask);
116 		POSTING_READ(DEIMR);
117 	}
118 }
119 
120 /**
121  * ilk_update_gt_irq - update GTIMR
122  * @dev_priv: driver private
123  * @interrupt_mask: mask of interrupt bits to update
124  * @enabled_irq_mask: mask of interrupt bits to enable
125  */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 			      uint32_t interrupt_mask,
128 			      uint32_t enabled_irq_mask)
129 {
130 	assert_spin_locked(&dev_priv->irq_lock);
131 
132 	if (dev_priv->pc8.irqs_disabled) {
133 		WARN(1, "IRQs disabled\n");
134 		dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
135 		dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
136 						interrupt_mask);
137 		return;
138 	}
139 
140 	dev_priv->gt_irq_mask &= ~interrupt_mask;
141 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 	POSTING_READ(GTIMR);
144 }
145 
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 	ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150 
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 	ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155 
156 /**
157   * snb_update_pm_irq - update GEN6_PMIMR
158   * @dev_priv: driver private
159   * @interrupt_mask: mask of interrupt bits to update
160   * @enabled_irq_mask: mask of interrupt bits to enable
161   */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 			      uint32_t interrupt_mask,
164 			      uint32_t enabled_irq_mask)
165 {
166 	uint32_t new_val;
167 
168 	assert_spin_locked(&dev_priv->irq_lock);
169 
170 	if (dev_priv->pc8.irqs_disabled) {
171 		WARN(1, "IRQs disabled\n");
172 		dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
173 		dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 						     interrupt_mask);
175 		return;
176 	}
177 
178 	new_val = dev_priv->pm_irq_mask;
179 	new_val &= ~interrupt_mask;
180 	new_val |= (~enabled_irq_mask & interrupt_mask);
181 
182 	if (new_val != dev_priv->pm_irq_mask) {
183 		dev_priv->pm_irq_mask = new_val;
184 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 		POSTING_READ(GEN6_PMIMR);
186 	}
187 }
188 
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 	snb_update_pm_irq(dev_priv, mask, mask);
192 }
193 
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 	snb_update_pm_irq(dev_priv, mask, 0);
197 }
198 
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 	struct drm_i915_private *dev_priv = dev->dev_private;
202 	struct intel_crtc *crtc;
203 	enum pipe pipe;
204 
205 	assert_spin_locked(&dev_priv->irq_lock);
206 
207 	for_each_pipe(pipe) {
208 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209 
210 		if (crtc->cpu_fifo_underrun_disabled)
211 			return false;
212 	}
213 
214 	return true;
215 }
216 
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 	struct drm_i915_private *dev_priv = dev->dev_private;
220 	enum pipe pipe;
221 	struct intel_crtc *crtc;
222 
223 	assert_spin_locked(&dev_priv->irq_lock);
224 
225 	for_each_pipe(pipe) {
226 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227 
228 		if (crtc->pch_fifo_underrun_disabled)
229 			return false;
230 	}
231 
232 	return true;
233 }
234 
235 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
236 						 enum pipe pipe, bool enable)
237 {
238 	struct drm_i915_private *dev_priv = dev->dev_private;
239 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
240 					  DE_PIPEB_FIFO_UNDERRUN;
241 
242 	if (enable)
243 		ironlake_enable_display_irq(dev_priv, bit);
244 	else
245 		ironlake_disable_display_irq(dev_priv, bit);
246 }
247 
248 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
249 						  enum pipe pipe, bool enable)
250 {
251 	struct drm_i915_private *dev_priv = dev->dev_private;
252 	if (enable) {
253 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
254 
255 		if (!ivb_can_enable_err_int(dev))
256 			return;
257 
258 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 	} else {
260 		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
261 
262 		/* Change the state _after_ we've read out the current one. */
263 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
264 
265 		if (!was_enabled &&
266 		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
267 			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
268 				      pipe_name(pipe));
269 		}
270 	}
271 }
272 
273 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
274 						  enum pipe pipe, bool enable)
275 {
276 	struct drm_i915_private *dev_priv = dev->dev_private;
277 
278 	assert_spin_locked(&dev_priv->irq_lock);
279 
280 	if (enable)
281 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
282 	else
283 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
284 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
285 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
286 }
287 
288 /**
289  * ibx_display_interrupt_update - update SDEIMR
290  * @dev_priv: driver private
291  * @interrupt_mask: mask of interrupt bits to update
292  * @enabled_irq_mask: mask of interrupt bits to enable
293  */
294 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
295 					 uint32_t interrupt_mask,
296 					 uint32_t enabled_irq_mask)
297 {
298 	uint32_t sdeimr = I915_READ(SDEIMR);
299 	sdeimr &= ~interrupt_mask;
300 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
301 
302 	assert_spin_locked(&dev_priv->irq_lock);
303 
304 	if (dev_priv->pc8.irqs_disabled &&
305 	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
306 		WARN(1, "IRQs disabled\n");
307 		dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
308 		dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
309 						 interrupt_mask);
310 		return;
311 	}
312 
313 	I915_WRITE(SDEIMR, sdeimr);
314 	POSTING_READ(SDEIMR);
315 }
316 #define ibx_enable_display_interrupt(dev_priv, bits) \
317 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
318 #define ibx_disable_display_interrupt(dev_priv, bits) \
319 	ibx_display_interrupt_update((dev_priv), (bits), 0)
320 
321 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
322 					    enum transcoder pch_transcoder,
323 					    bool enable)
324 {
325 	struct drm_i915_private *dev_priv = dev->dev_private;
326 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
327 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
328 
329 	if (enable)
330 		ibx_enable_display_interrupt(dev_priv, bit);
331 	else
332 		ibx_disable_display_interrupt(dev_priv, bit);
333 }
334 
335 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
336 					    enum transcoder pch_transcoder,
337 					    bool enable)
338 {
339 	struct drm_i915_private *dev_priv = dev->dev_private;
340 
341 	if (enable) {
342 		I915_WRITE(SERR_INT,
343 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
344 
345 		if (!cpt_can_enable_serr_int(dev))
346 			return;
347 
348 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
349 	} else {
350 		uint32_t tmp = I915_READ(SERR_INT);
351 		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
352 
353 		/* Change the state _after_ we've read out the current one. */
354 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
355 
356 		if (!was_enabled &&
357 		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
358 			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
359 				      transcoder_name(pch_transcoder));
360 		}
361 	}
362 }
363 
364 /**
365  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
366  * @dev: drm device
367  * @pipe: pipe
368  * @enable: true if we want to report FIFO underrun errors, false otherwise
369  *
370  * This function makes us disable or enable CPU fifo underruns for a specific
371  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
372  * reporting for one pipe may also disable all the other CPU error interruts for
373  * the other pipes, due to the fact that there's just one interrupt mask/enable
374  * bit for all the pipes.
375  *
376  * Returns the previous state of underrun reporting.
377  */
378 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
379 					   enum pipe pipe, bool enable)
380 {
381 	struct drm_i915_private *dev_priv = dev->dev_private;
382 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
383 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
384 	unsigned long flags;
385 	bool ret;
386 
387 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
388 
389 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
390 
391 	if (enable == ret)
392 		goto done;
393 
394 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
395 
396 	if (IS_GEN5(dev) || IS_GEN6(dev))
397 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
398 	else if (IS_GEN7(dev))
399 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
400 	else if (IS_GEN8(dev))
401 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
402 
403 done:
404 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
405 	return ret;
406 }
407 
408 /**
409  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
410  * @dev: drm device
411  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
412  * @enable: true if we want to report FIFO underrun errors, false otherwise
413  *
414  * This function makes us disable or enable PCH fifo underruns for a specific
415  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
416  * underrun reporting for one transcoder may also disable all the other PCH
417  * error interruts for the other transcoders, due to the fact that there's just
418  * one interrupt mask/enable bit for all the transcoders.
419  *
420  * Returns the previous state of underrun reporting.
421  */
422 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
423 					   enum transcoder pch_transcoder,
424 					   bool enable)
425 {
426 	struct drm_i915_private *dev_priv = dev->dev_private;
427 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
428 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
429 	unsigned long flags;
430 	bool ret;
431 
432 	/*
433 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
434 	 * has only one pch transcoder A that all pipes can use. To avoid racy
435 	 * pch transcoder -> pipe lookups from interrupt code simply store the
436 	 * underrun statistics in crtc A. Since we never expose this anywhere
437 	 * nor use it outside of the fifo underrun code here using the "wrong"
438 	 * crtc on LPT won't cause issues.
439 	 */
440 
441 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
442 
443 	ret = !intel_crtc->pch_fifo_underrun_disabled;
444 
445 	if (enable == ret)
446 		goto done;
447 
448 	intel_crtc->pch_fifo_underrun_disabled = !enable;
449 
450 	if (HAS_PCH_IBX(dev))
451 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
452 	else
453 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
454 
455 done:
456 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
457 	return ret;
458 }
459 
460 
461 void
462 i915_enable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
463 {
464 	u32 reg = PIPESTAT(pipe);
465 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
466 
467 	assert_spin_locked(&dev_priv->irq_lock);
468 
469 	if ((pipestat & mask) == mask)
470 		return;
471 
472 	/* Enable the interrupt, clear any pending status */
473 	pipestat |= mask | (mask >> 16);
474 	I915_WRITE(reg, pipestat);
475 	POSTING_READ(reg);
476 }
477 
478 void
479 i915_disable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
480 {
481 	u32 reg = PIPESTAT(pipe);
482 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
483 
484 	assert_spin_locked(&dev_priv->irq_lock);
485 
486 	if ((pipestat & mask) == 0)
487 		return;
488 
489 	pipestat &= ~mask;
490 	I915_WRITE(reg, pipestat);
491 	POSTING_READ(reg);
492 }
493 
494 /**
495  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
496  */
497 static void i915_enable_asle_pipestat(struct drm_device *dev)
498 {
499 	drm_i915_private_t *dev_priv = dev->dev_private;
500 	unsigned long irqflags;
501 
502 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
503 		return;
504 
505 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
506 
507 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE);
508 	if (INTEL_INFO(dev)->gen >= 4)
509 		i915_enable_pipestat(dev_priv, PIPE_A,
510 				     PIPE_LEGACY_BLC_EVENT_ENABLE);
511 
512 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
513 }
514 
515 /**
516  * i915_pipe_enabled - check if a pipe is enabled
517  * @dev: DRM device
518  * @pipe: pipe to check
519  *
520  * Reading certain registers when the pipe is disabled can hang the chip.
521  * Use this routine to make sure the PLL is running and the pipe is active
522  * before reading such registers if unsure.
523  */
524 static int
525 i915_pipe_enabled(struct drm_device *dev, int pipe)
526 {
527 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
528 
529 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
530 		/* Locking is horribly broken here, but whatever. */
531 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
532 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
533 
534 		return intel_crtc->active;
535 	} else {
536 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
537 	}
538 }
539 
540 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
541 {
542 	/* Gen2 doesn't have a hardware frame counter */
543 	return 0;
544 }
545 
546 /* Called from drm generic code, passed a 'crtc', which
547  * we use as a pipe index
548  */
549 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
550 {
551 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
552 	unsigned long high_frame;
553 	unsigned long low_frame;
554 	u32 high1, high2, low, pixel, vbl_start;
555 
556 	if (!i915_pipe_enabled(dev, pipe)) {
557 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
558 				"pipe %c\n", pipe_name(pipe));
559 		return 0;
560 	}
561 
562 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
563 		struct intel_crtc *intel_crtc =
564 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
565 		const struct drm_display_mode *mode =
566 			&intel_crtc->config.adjusted_mode;
567 
568 		vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
569 	} else {
570 		enum transcoder cpu_transcoder =
571 			intel_pipe_to_cpu_transcoder(dev_priv, pipe);
572 		u32 htotal;
573 
574 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
575 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
576 
577 		vbl_start *= htotal;
578 	}
579 
580 	high_frame = PIPEFRAME(pipe);
581 	low_frame = PIPEFRAMEPIXEL(pipe);
582 
583 	/*
584 	 * High & low register fields aren't synchronized, so make sure
585 	 * we get a low value that's stable across two reads of the high
586 	 * register.
587 	 */
588 	do {
589 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
590 		low   = I915_READ(low_frame);
591 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 	} while (high1 != high2);
593 
594 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
595 	pixel = low & PIPE_PIXEL_MASK;
596 	low >>= PIPE_FRAME_LOW_SHIFT;
597 
598 	/*
599 	 * The frame counter increments at beginning of active.
600 	 * Cook up a vblank counter by also checking the pixel
601 	 * counter against vblank start.
602 	 */
603 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
604 }
605 
606 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
607 {
608 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
609 	int reg = PIPE_FRMCOUNT_GM45(pipe);
610 
611 	if (!i915_pipe_enabled(dev, pipe)) {
612 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
613 				 "pipe %c\n", pipe_name(pipe));
614 		return 0;
615 	}
616 
617 	return I915_READ(reg);
618 }
619 
620 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
621 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
622 #define __raw_i915_read16(dev_priv__, reg__) readw((dev_priv__)->regs + (reg__))
623 
624 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
625 {
626 	struct drm_i915_private *dev_priv = dev->dev_private;
627 	uint32_t status;
628 
629 	if (INTEL_INFO(dev)->gen < 7) {
630 		status = pipe == PIPE_A ?
631 			DE_PIPEA_VBLANK :
632 			DE_PIPEB_VBLANK;
633 	} else {
634 		switch (pipe) {
635 		default:
636 		case PIPE_A:
637 			status = DE_PIPEA_VBLANK_IVB;
638 			break;
639 		case PIPE_B:
640 			status = DE_PIPEB_VBLANK_IVB;
641 			break;
642 		case PIPE_C:
643 			status = DE_PIPEC_VBLANK_IVB;
644 			break;
645 		}
646 	}
647 
648 	return __raw_i915_read32(dev_priv, DEISR) & status;
649 }
650 
651 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
652 				    unsigned int flags, int *vpos, int *hpos,
653 				    ktime_t *stime, ktime_t *etime)
654 {
655 	struct drm_i915_private *dev_priv = dev->dev_private;
656 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
657 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
658 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
659 	int position;
660 	int vbl_start, vbl_end, htotal, vtotal;
661 	bool in_vbl = true;
662 	int ret = 0;
663 	unsigned long irqflags;
664 
665 	if (!intel_crtc->active) {
666 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
667 				 "pipe %c\n", pipe_name(pipe));
668 		return 0;
669 	}
670 
671 	htotal = mode->crtc_htotal;
672 	vtotal = mode->crtc_vtotal;
673 	vbl_start = mode->crtc_vblank_start;
674 	vbl_end = mode->crtc_vblank_end;
675 
676 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
677 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
678 		vbl_end /= 2;
679 		vtotal /= 2;
680 	}
681 
682 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
683 
684 	/*
685 	 * Lock uncore.lock, as we will do multiple timing critical raw
686 	 * register reads, potentially with preemption disabled, so the
687 	 * following code must not block on uncore.lock.
688 	 */
689 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
690 
691 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
692 
693 	/* Get optional system timestamp before query. */
694 	if (stime)
695 		*stime = ktime_get();
696 
697 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
698 		/* No obvious pixelcount register. Only query vertical
699 		 * scanout position from Display scan line register.
700 		 */
701 		if (IS_GEN2(dev))
702 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
703 		else
704 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
705 
706 		if (HAS_PCH_SPLIT(dev)) {
707 			/*
708 			 * The scanline counter increments at the leading edge
709 			 * of hsync, ie. it completely misses the active portion
710 			 * of the line. Fix up the counter at both edges of vblank
711 			 * to get a more accurate picture whether we're in vblank
712 			 * or not.
713 			 */
714 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
715 			if ((in_vbl && position == vbl_start - 1) ||
716 			    (!in_vbl && position == vbl_end - 1))
717 				position = (position + 1) % vtotal;
718 		} else {
719 			/*
720 			 * ISR vblank status bits don't work the way we'd want
721 			 * them to work on non-PCH platforms (for
722 			 * ilk_pipe_in_vblank_locked()), and there doesn't
723 			 * appear any other way to determine if we're currently
724 			 * in vblank.
725 			 *
726 			 * Instead let's assume that we're already in vblank if
727 			 * we got called from the vblank interrupt and the
728 			 * scanline counter value indicates that we're on the
729 			 * line just prior to vblank start. This should result
730 			 * in the correct answer, unless the vblank interrupt
731 			 * delivery really got delayed for almost exactly one
732 			 * full frame/field.
733 			 */
734 			if (flags & DRM_CALLED_FROM_VBLIRQ &&
735 			    position == vbl_start - 1) {
736 				position = (position + 1) % vtotal;
737 
738 				/* Signal this correction as "applied". */
739 				ret |= 0x8;
740 			}
741 		}
742 	} else {
743 		/* Have access to pixelcount since start of frame.
744 		 * We can split this into vertical and horizontal
745 		 * scanout position.
746 		 */
747 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
748 
749 		/* convert to pixel counts */
750 		vbl_start *= htotal;
751 		vbl_end *= htotal;
752 		vtotal *= htotal;
753 	}
754 
755 	/* Get optional system timestamp after query. */
756 	if (etime)
757 		*etime = ktime_get();
758 
759 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
760 
761 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
762 
763 	in_vbl = position >= vbl_start && position < vbl_end;
764 
765 	/*
766 	 * While in vblank, position will be negative
767 	 * counting up towards 0 at vbl_end. And outside
768 	 * vblank, position will be positive counting
769 	 * up since vbl_end.
770 	 */
771 	if (position >= vbl_start)
772 		position -= vbl_end;
773 	else
774 		position += vtotal - vbl_end;
775 
776 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
777 		*vpos = position;
778 		*hpos = 0;
779 	} else {
780 		*vpos = position / htotal;
781 		*hpos = position - (*vpos * htotal);
782 	}
783 
784 	/* In vblank? */
785 	if (in_vbl)
786 		ret |= DRM_SCANOUTPOS_INVBL;
787 
788 	return ret;
789 }
790 
791 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
792 			      int *max_error,
793 			      struct timeval *vblank_time,
794 			      unsigned flags)
795 {
796 	struct drm_crtc *crtc;
797 
798 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
799 		DRM_ERROR("Invalid crtc %d\n", pipe);
800 		return -EINVAL;
801 	}
802 
803 	/* Get drm_crtc to timestamp: */
804 	crtc = intel_get_crtc_for_pipe(dev, pipe);
805 	if (crtc == NULL) {
806 		DRM_ERROR("Invalid crtc %d\n", pipe);
807 		return -EINVAL;
808 	}
809 
810 	if (!crtc->enabled) {
811 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
812 		return -EBUSY;
813 	}
814 
815 	/* Helper routine in DRM core does all the work: */
816 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
817 						     vblank_time, flags,
818 						     crtc,
819 						     &to_intel_crtc(crtc)->config.adjusted_mode);
820 }
821 
822 static bool intel_hpd_irq_event(struct drm_device *dev,
823 				struct drm_connector *connector)
824 {
825 	enum drm_connector_status old_status;
826 
827 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
828 	old_status = connector->status;
829 
830 	connector->status = connector->funcs->detect(connector, false);
831 	if (old_status == connector->status)
832 		return false;
833 
834 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
835 		      connector->base.id,
836 		      drm_get_connector_name(connector),
837 		      drm_get_connector_status_name(old_status),
838 		      drm_get_connector_status_name(connector->status));
839 
840 	return true;
841 }
842 
843 /*
844  * Handle hotplug events outside the interrupt handler proper.
845  */
846 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
847 
848 static void i915_hotplug_work_func(struct work_struct *work)
849 {
850 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
851 						    hotplug_work);
852 	struct drm_device *dev = dev_priv->dev;
853 	struct drm_mode_config *mode_config = &dev->mode_config;
854 	struct intel_connector *intel_connector;
855 	struct intel_encoder *intel_encoder;
856 	struct drm_connector *connector;
857 	unsigned long irqflags;
858 	bool hpd_disabled = false;
859 	bool changed = false;
860 	u32 hpd_event_bits;
861 
862 	/* HPD irq before everything is fully set up. */
863 	if (!dev_priv->enable_hotplug_processing)
864 		return;
865 
866 	mutex_lock(&mode_config->mutex);
867 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
868 
869 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
870 
871 	hpd_event_bits = dev_priv->hpd_event_bits;
872 	dev_priv->hpd_event_bits = 0;
873 	list_for_each_entry(connector, &mode_config->connector_list, head) {
874 		intel_connector = to_intel_connector(connector);
875 		intel_encoder = intel_connector->encoder;
876 		if (intel_encoder->hpd_pin > HPD_NONE &&
877 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
878 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
879 			DRM_INFO("HPD interrupt storm detected on connector %s: "
880 				 "switching from hotplug detection to polling\n",
881 				drm_get_connector_name(connector));
882 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
883 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
884 				| DRM_CONNECTOR_POLL_DISCONNECT;
885 			hpd_disabled = true;
886 		}
887 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
888 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
889 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
890 		}
891 	}
892 	 /* if there were no outputs to poll, poll was disabled,
893 	  * therefore make sure it's enabled when disabling HPD on
894 	  * some connectors */
895 	if (hpd_disabled) {
896 		drm_kms_helper_poll_enable(dev);
897 		mod_timer(&dev_priv->hotplug_reenable_timer,
898 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
899 	}
900 
901 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
902 
903 	list_for_each_entry(connector, &mode_config->connector_list, head) {
904 		intel_connector = to_intel_connector(connector);
905 		intel_encoder = intel_connector->encoder;
906 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
907 			if (intel_encoder->hot_plug)
908 				intel_encoder->hot_plug(intel_encoder);
909 			if (intel_hpd_irq_event(dev, connector))
910 				changed = true;
911 		}
912 	}
913 	mutex_unlock(&mode_config->mutex);
914 
915 	if (changed)
916 		drm_kms_helper_hotplug_event(dev);
917 }
918 
919 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
920 {
921 	drm_i915_private_t *dev_priv = dev->dev_private;
922 	u32 busy_up, busy_down, max_avg, min_avg;
923 	u8 new_delay;
924 
925 	spin_lock(&mchdev_lock);
926 
927 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
928 
929 	new_delay = dev_priv->ips.cur_delay;
930 
931 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
932 	busy_up = I915_READ(RCPREVBSYTUPAVG);
933 	busy_down = I915_READ(RCPREVBSYTDNAVG);
934 	max_avg = I915_READ(RCBMAXAVG);
935 	min_avg = I915_READ(RCBMINAVG);
936 
937 	/* Handle RCS change request from hw */
938 	if (busy_up > max_avg) {
939 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
940 			new_delay = dev_priv->ips.cur_delay - 1;
941 		if (new_delay < dev_priv->ips.max_delay)
942 			new_delay = dev_priv->ips.max_delay;
943 	} else if (busy_down < min_avg) {
944 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
945 			new_delay = dev_priv->ips.cur_delay + 1;
946 		if (new_delay > dev_priv->ips.min_delay)
947 			new_delay = dev_priv->ips.min_delay;
948 	}
949 
950 	if (ironlake_set_drps(dev, new_delay))
951 		dev_priv->ips.cur_delay = new_delay;
952 
953 	spin_unlock(&mchdev_lock);
954 
955 	return;
956 }
957 
958 static void notify_ring(struct drm_device *dev,
959 			struct intel_ring_buffer *ring)
960 {
961 	if (ring->obj == NULL)
962 		return;
963 
964 	trace_i915_gem_request_complete(ring);
965 
966 	wake_up_all(&ring->irq_queue);
967 	i915_queue_hangcheck(dev);
968 }
969 
970 static void gen6_pm_rps_work(struct work_struct *work)
971 {
972 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
973 						    rps.work);
974 	u32 pm_iir;
975 	int new_delay, adj;
976 
977 	spin_lock_irq(&dev_priv->irq_lock);
978 	pm_iir = dev_priv->rps.pm_iir;
979 	dev_priv->rps.pm_iir = 0;
980 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
981 	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
982 	spin_unlock_irq(&dev_priv->irq_lock);
983 
984 	/* Make sure we didn't queue anything we're not going to process. */
985 	WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
986 
987 	if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
988 		return;
989 
990 	mutex_lock(&dev_priv->rps.hw_lock);
991 
992 	adj = dev_priv->rps.last_adj;
993 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
994 		if (adj > 0)
995 			adj *= 2;
996 		else
997 			adj = 1;
998 		new_delay = dev_priv->rps.cur_delay + adj;
999 
1000 		/*
1001 		 * For better performance, jump directly
1002 		 * to RPe if we're below it.
1003 		 */
1004 		if (new_delay < dev_priv->rps.rpe_delay)
1005 			new_delay = dev_priv->rps.rpe_delay;
1006 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1007 		if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
1008 			new_delay = dev_priv->rps.rpe_delay;
1009 		else
1010 			new_delay = dev_priv->rps.min_delay;
1011 		adj = 0;
1012 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1013 		if (adj < 0)
1014 			adj *= 2;
1015 		else
1016 			adj = -1;
1017 		new_delay = dev_priv->rps.cur_delay + adj;
1018 	} else { /* unknown event */
1019 		new_delay = dev_priv->rps.cur_delay;
1020 	}
1021 
1022 	/* sysfs frequency interfaces may have snuck in while servicing the
1023 	 * interrupt
1024 	 */
1025 	new_delay = clamp_t(int, new_delay,
1026 			    dev_priv->rps.min_delay, dev_priv->rps.max_delay);
1027 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
1028 
1029 	if (IS_VALLEYVIEW(dev_priv->dev))
1030 		valleyview_set_rps(dev_priv->dev, new_delay);
1031 	else
1032 		gen6_set_rps(dev_priv->dev, new_delay);
1033 
1034 	mutex_unlock(&dev_priv->rps.hw_lock);
1035 }
1036 
1037 
1038 /**
1039  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1040  * occurred.
1041  * @work: workqueue struct
1042  *
1043  * Doesn't actually do anything except notify userspace. As a consequence of
1044  * this event, userspace should try to remap the bad rows since statistically
1045  * it is likely the same row is more likely to go bad again.
1046  */
1047 static void ivybridge_parity_work(struct work_struct *work)
1048 {
1049 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1050 						    l3_parity.error_work);
1051 	u32 error_status, row, bank, subbank;
1052 	char *parity_event[6];
1053 	uint32_t misccpctl;
1054 	unsigned long flags;
1055 	uint8_t slice = 0;
1056 
1057 	/* We must turn off DOP level clock gating to access the L3 registers.
1058 	 * In order to prevent a get/put style interface, acquire struct mutex
1059 	 * any time we access those registers.
1060 	 */
1061 	mutex_lock(&dev_priv->dev->struct_mutex);
1062 
1063 	/* If we've screwed up tracking, just let the interrupt fire again */
1064 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1065 		goto out;
1066 
1067 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1068 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1069 	POSTING_READ(GEN7_MISCCPCTL);
1070 
1071 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1072 		u32 reg;
1073 
1074 		slice--;
1075 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1076 			break;
1077 
1078 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1079 
1080 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1081 
1082 		error_status = I915_READ(reg);
1083 		row = GEN7_PARITY_ERROR_ROW(error_status);
1084 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1085 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1086 
1087 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1088 		POSTING_READ(reg);
1089 
1090 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1091 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1092 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1093 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1094 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1095 		parity_event[5] = NULL;
1096 
1097 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1098 				   KOBJ_CHANGE, parity_event);
1099 
1100 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1101 			  slice, row, bank, subbank);
1102 
1103 		kfree(parity_event[4]);
1104 		kfree(parity_event[3]);
1105 		kfree(parity_event[2]);
1106 		kfree(parity_event[1]);
1107 	}
1108 
1109 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1110 
1111 out:
1112 	WARN_ON(dev_priv->l3_parity.which_slice);
1113 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1114 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1115 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1116 
1117 	mutex_unlock(&dev_priv->dev->struct_mutex);
1118 }
1119 
1120 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1121 {
1122 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1123 
1124 	if (!HAS_L3_DPF(dev))
1125 		return;
1126 
1127 	spin_lock(&dev_priv->irq_lock);
1128 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1129 	spin_unlock(&dev_priv->irq_lock);
1130 
1131 	iir &= GT_PARITY_ERROR(dev);
1132 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1133 		dev_priv->l3_parity.which_slice |= 1 << 1;
1134 
1135 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1136 		dev_priv->l3_parity.which_slice |= 1 << 0;
1137 
1138 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1139 }
1140 
1141 static void ilk_gt_irq_handler(struct drm_device *dev,
1142 			       struct drm_i915_private *dev_priv,
1143 			       u32 gt_iir)
1144 {
1145 	if (gt_iir &
1146 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1147 		notify_ring(dev, &dev_priv->ring[RCS]);
1148 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1149 		notify_ring(dev, &dev_priv->ring[VCS]);
1150 }
1151 
1152 static void snb_gt_irq_handler(struct drm_device *dev,
1153 			       struct drm_i915_private *dev_priv,
1154 			       u32 gt_iir)
1155 {
1156 
1157 	if (gt_iir &
1158 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1159 		notify_ring(dev, &dev_priv->ring[RCS]);
1160 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1161 		notify_ring(dev, &dev_priv->ring[VCS]);
1162 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1163 		notify_ring(dev, &dev_priv->ring[BCS]);
1164 
1165 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1166 		      GT_BSD_CS_ERROR_INTERRUPT |
1167 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1168 		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1169 		i915_handle_error(dev, false);
1170 	}
1171 
1172 	if (gt_iir & GT_PARITY_ERROR(dev))
1173 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1174 }
1175 
1176 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1177 				       struct drm_i915_private *dev_priv,
1178 				       u32 master_ctl)
1179 {
1180 	u32 rcs, bcs, vcs;
1181 	uint32_t tmp = 0;
1182 	irqreturn_t ret = IRQ_NONE;
1183 
1184 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1185 		tmp = I915_READ(GEN8_GT_IIR(0));
1186 		if (tmp) {
1187 			ret = IRQ_HANDLED;
1188 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1189 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1190 			if (rcs & GT_RENDER_USER_INTERRUPT)
1191 				notify_ring(dev, &dev_priv->ring[RCS]);
1192 			if (bcs & GT_RENDER_USER_INTERRUPT)
1193 				notify_ring(dev, &dev_priv->ring[BCS]);
1194 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1195 		} else
1196 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1197 	}
1198 
1199 	if (master_ctl & GEN8_GT_VCS1_IRQ) {
1200 		tmp = I915_READ(GEN8_GT_IIR(1));
1201 		if (tmp) {
1202 			ret = IRQ_HANDLED;
1203 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1204 			if (vcs & GT_RENDER_USER_INTERRUPT)
1205 				notify_ring(dev, &dev_priv->ring[VCS]);
1206 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1207 		} else
1208 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1209 	}
1210 
1211 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1212 		tmp = I915_READ(GEN8_GT_IIR(3));
1213 		if (tmp) {
1214 			ret = IRQ_HANDLED;
1215 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1216 			if (vcs & GT_RENDER_USER_INTERRUPT)
1217 				notify_ring(dev, &dev_priv->ring[VECS]);
1218 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1219 		} else
1220 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 #define HPD_STORM_DETECT_PERIOD 1000
1227 #define HPD_STORM_THRESHOLD 5
1228 
1229 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1230 					 u32 hotplug_trigger,
1231 					 const u32 *hpd)
1232 {
1233 	drm_i915_private_t *dev_priv = dev->dev_private;
1234 	int i;
1235 	bool storm_detected = false;
1236 
1237 	if (!hotplug_trigger)
1238 		return;
1239 
1240 	spin_lock(&dev_priv->irq_lock);
1241 	for (i = 1; i < HPD_NUM_PINS; i++) {
1242 
1243 		WARN_ONCE(hpd[i] & hotplug_trigger &&
1244 			  dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1245 			  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1246 			  hotplug_trigger, i, hpd[i]);
1247 
1248 		if (!(hpd[i] & hotplug_trigger) ||
1249 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1250 			continue;
1251 
1252 		dev_priv->hpd_event_bits |= (1 << i);
1253 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1254 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1255 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1256 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1257 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1258 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1259 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1260 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1261 			dev_priv->hpd_event_bits &= ~(1 << i);
1262 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1263 			storm_detected = true;
1264 		} else {
1265 			dev_priv->hpd_stats[i].hpd_cnt++;
1266 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1267 				      dev_priv->hpd_stats[i].hpd_cnt);
1268 		}
1269 	}
1270 
1271 	if (storm_detected)
1272 		dev_priv->display.hpd_irq_setup(dev);
1273 	spin_unlock(&dev_priv->irq_lock);
1274 
1275 	/*
1276 	 * Our hotplug handler can grab modeset locks (by calling down into the
1277 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1278 	 * queue for otherwise the flush_work in the pageflip code will
1279 	 * deadlock.
1280 	 */
1281 	schedule_work(&dev_priv->hotplug_work);
1282 }
1283 
1284 static void gmbus_irq_handler(struct drm_device *dev)
1285 {
1286 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1287 
1288 	wake_up_all(&dev_priv->gmbus_wait_queue);
1289 }
1290 
1291 static void dp_aux_irq_handler(struct drm_device *dev)
1292 {
1293 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1294 
1295 	wake_up_all(&dev_priv->gmbus_wait_queue);
1296 }
1297 
1298 #if defined(CONFIG_DEBUG_FS)
1299 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1300 					 uint32_t crc0, uint32_t crc1,
1301 					 uint32_t crc2, uint32_t crc3,
1302 					 uint32_t crc4)
1303 {
1304 	struct drm_i915_private *dev_priv = dev->dev_private;
1305 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1306 	struct intel_pipe_crc_entry *entry;
1307 	int head, tail;
1308 
1309 	spin_lock(&pipe_crc->lock);
1310 
1311 	if (!pipe_crc->entries) {
1312 		spin_unlock(&pipe_crc->lock);
1313 		DRM_ERROR("spurious interrupt\n");
1314 		return;
1315 	}
1316 
1317 	head = pipe_crc->head;
1318 	tail = pipe_crc->tail;
1319 
1320 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1321 		spin_unlock(&pipe_crc->lock);
1322 		DRM_ERROR("CRC buffer overflowing\n");
1323 		return;
1324 	}
1325 
1326 	entry = &pipe_crc->entries[head];
1327 
1328 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1329 	entry->crc[0] = crc0;
1330 	entry->crc[1] = crc1;
1331 	entry->crc[2] = crc2;
1332 	entry->crc[3] = crc3;
1333 	entry->crc[4] = crc4;
1334 
1335 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1336 	pipe_crc->head = head;
1337 
1338 	spin_unlock(&pipe_crc->lock);
1339 
1340 	wake_up_interruptible(&pipe_crc->wq);
1341 }
1342 #else
1343 static inline void
1344 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1345 			     uint32_t crc0, uint32_t crc1,
1346 			     uint32_t crc2, uint32_t crc3,
1347 			     uint32_t crc4) {}
1348 #endif
1349 
1350 
1351 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1352 {
1353 	struct drm_i915_private *dev_priv = dev->dev_private;
1354 
1355 	display_pipe_crc_irq_handler(dev, pipe,
1356 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1357 				     0, 0, 0, 0);
1358 }
1359 
1360 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1361 {
1362 	struct drm_i915_private *dev_priv = dev->dev_private;
1363 
1364 	display_pipe_crc_irq_handler(dev, pipe,
1365 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1366 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1367 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1368 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1369 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1370 }
1371 
1372 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1373 {
1374 	struct drm_i915_private *dev_priv = dev->dev_private;
1375 	uint32_t res1, res2;
1376 
1377 	if (INTEL_INFO(dev)->gen >= 3)
1378 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1379 	else
1380 		res1 = 0;
1381 
1382 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1383 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1384 	else
1385 		res2 = 0;
1386 
1387 	display_pipe_crc_irq_handler(dev, pipe,
1388 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1389 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1390 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1391 				     res1, res2);
1392 }
1393 
1394 /* The RPS events need forcewake, so we add them to a work queue and mask their
1395  * IMR bits until the work is done. Other interrupts can be processed without
1396  * the work queue. */
1397 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1398 {
1399 	if (pm_iir & GEN6_PM_RPS_EVENTS) {
1400 		spin_lock(&dev_priv->irq_lock);
1401 		dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1402 		snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1403 		spin_unlock(&dev_priv->irq_lock);
1404 
1405 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1406 	}
1407 
1408 	if (HAS_VEBOX(dev_priv->dev)) {
1409 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1410 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1411 
1412 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1413 			DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1414 			i915_handle_error(dev_priv->dev, false);
1415 		}
1416 	}
1417 }
1418 
1419 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1420 {
1421 	struct drm_device *dev = (struct drm_device *) arg;
1422 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1423 	u32 iir, gt_iir, pm_iir;
1424 	irqreturn_t ret = IRQ_NONE;
1425 	unsigned long irqflags;
1426 	int pipe;
1427 	u32 pipe_stats[I915_MAX_PIPES];
1428 
1429 	atomic_inc(&dev_priv->irq_received);
1430 
1431 	while (true) {
1432 		iir = I915_READ(VLV_IIR);
1433 		gt_iir = I915_READ(GTIIR);
1434 		pm_iir = I915_READ(GEN6_PMIIR);
1435 
1436 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1437 			goto out;
1438 
1439 		ret = IRQ_HANDLED;
1440 
1441 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1442 
1443 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1444 		for_each_pipe(pipe) {
1445 			int reg = PIPESTAT(pipe);
1446 			pipe_stats[pipe] = I915_READ(reg);
1447 
1448 			/*
1449 			 * Clear the PIPE*STAT regs before the IIR
1450 			 */
1451 			if (pipe_stats[pipe] & 0x8000ffff) {
1452 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1454 							 pipe_name(pipe));
1455 				I915_WRITE(reg, pipe_stats[pipe]);
1456 			}
1457 		}
1458 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1459 
1460 		for_each_pipe(pipe) {
1461 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1462 				drm_handle_vblank(dev, pipe);
1463 
1464 			if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1465 				intel_prepare_page_flip(dev, pipe);
1466 				intel_finish_page_flip(dev, pipe);
1467 			}
1468 
1469 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1470 				i9xx_pipe_crc_irq_handler(dev, pipe);
1471 		}
1472 
1473 		/* Consume port.  Then clear IIR or we'll miss events */
1474 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1475 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1476 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1477 
1478 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1479 					 hotplug_status);
1480 
1481 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1482 
1483 			if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1484 				dp_aux_irq_handler(dev);
1485 
1486 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1487 			I915_READ(PORT_HOTPLUG_STAT);
1488 		}
1489 
1490 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1491 			gmbus_irq_handler(dev);
1492 
1493 		if (pm_iir)
1494 			gen6_rps_irq_handler(dev_priv, pm_iir);
1495 
1496 		I915_WRITE(GTIIR, gt_iir);
1497 		I915_WRITE(GEN6_PMIIR, pm_iir);
1498 		I915_WRITE(VLV_IIR, iir);
1499 	}
1500 
1501 out:
1502 	return ret;
1503 }
1504 
1505 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1506 {
1507 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1508 	int pipe;
1509 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1510 
1511 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1512 
1513 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1514 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1515 			       SDE_AUDIO_POWER_SHIFT);
1516 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1517 				 port_name(port));
1518 	}
1519 
1520 	if (pch_iir & SDE_AUX_MASK)
1521 		dp_aux_irq_handler(dev);
1522 
1523 	if (pch_iir & SDE_GMBUS)
1524 		gmbus_irq_handler(dev);
1525 
1526 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1527 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1528 
1529 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1530 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1531 
1532 	if (pch_iir & SDE_POISON)
1533 		DRM_ERROR("PCH poison interrupt\n");
1534 
1535 	if (pch_iir & SDE_FDI_MASK)
1536 		for_each_pipe(pipe)
1537 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1538 					 pipe_name(pipe),
1539 					 I915_READ(FDI_RX_IIR(pipe)));
1540 
1541 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1542 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1543 
1544 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1545 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1546 
1547 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1548 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1549 							  false))
1550 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1551 
1552 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1553 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1554 							  false))
1555 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1556 }
1557 
1558 static void ivb_err_int_handler(struct drm_device *dev)
1559 {
1560 	struct drm_i915_private *dev_priv = dev->dev_private;
1561 	u32 err_int = I915_READ(GEN7_ERR_INT);
1562 	enum pipe pipe;
1563 
1564 	if (err_int & ERR_INT_POISON)
1565 		DRM_ERROR("Poison interrupt\n");
1566 
1567 	for_each_pipe(pipe) {
1568 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1569 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1570 								  false))
1571 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1572 						 pipe_name(pipe));
1573 		}
1574 
1575 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1576 			if (IS_IVYBRIDGE(dev))
1577 				ivb_pipe_crc_irq_handler(dev, pipe);
1578 			else
1579 				hsw_pipe_crc_irq_handler(dev, pipe);
1580 		}
1581 	}
1582 
1583 	I915_WRITE(GEN7_ERR_INT, err_int);
1584 }
1585 
1586 static void cpt_serr_int_handler(struct drm_device *dev)
1587 {
1588 	struct drm_i915_private *dev_priv = dev->dev_private;
1589 	u32 serr_int = I915_READ(SERR_INT);
1590 
1591 	if (serr_int & SERR_INT_POISON)
1592 		DRM_ERROR("PCH poison interrupt\n");
1593 
1594 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1595 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1596 							  false))
1597 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1598 
1599 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1600 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1601 							  false))
1602 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1603 
1604 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1605 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1606 							  false))
1607 			DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1608 
1609 	I915_WRITE(SERR_INT, serr_int);
1610 }
1611 
1612 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1613 {
1614 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1615 	int pipe;
1616 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1617 
1618 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1619 
1620 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1621 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1622 			       SDE_AUDIO_POWER_SHIFT_CPT);
1623 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1624 				 port_name(port));
1625 	}
1626 
1627 	if (pch_iir & SDE_AUX_MASK_CPT)
1628 		dp_aux_irq_handler(dev);
1629 
1630 	if (pch_iir & SDE_GMBUS_CPT)
1631 		gmbus_irq_handler(dev);
1632 
1633 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1634 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1635 
1636 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1637 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1638 
1639 	if (pch_iir & SDE_FDI_MASK_CPT)
1640 		for_each_pipe(pipe)
1641 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1642 					 pipe_name(pipe),
1643 					 I915_READ(FDI_RX_IIR(pipe)));
1644 
1645 	if (pch_iir & SDE_ERROR_CPT)
1646 		cpt_serr_int_handler(dev);
1647 }
1648 
1649 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1650 {
1651 	struct drm_i915_private *dev_priv = dev->dev_private;
1652 	enum pipe pipe;
1653 
1654 	if (de_iir & DE_AUX_CHANNEL_A)
1655 		dp_aux_irq_handler(dev);
1656 
1657 	if (de_iir & DE_GSE)
1658 		intel_opregion_asle_intr(dev);
1659 
1660 	if (de_iir & DE_POISON)
1661 		DRM_ERROR("Poison interrupt\n");
1662 
1663 	for_each_pipe(pipe) {
1664 		if (de_iir & DE_PIPE_VBLANK(pipe))
1665 			drm_handle_vblank(dev, pipe);
1666 
1667 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1668 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1669 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1670 						 pipe_name(pipe));
1671 
1672 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1673 			i9xx_pipe_crc_irq_handler(dev, pipe);
1674 
1675 		/* plane/pipes map 1:1 on ilk+ */
1676 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1677 			intel_prepare_page_flip(dev, pipe);
1678 			intel_finish_page_flip_plane(dev, pipe);
1679 		}
1680 	}
1681 
1682 	/* check event from PCH */
1683 	if (de_iir & DE_PCH_EVENT) {
1684 		u32 pch_iir = I915_READ(SDEIIR);
1685 
1686 		if (HAS_PCH_CPT(dev))
1687 			cpt_irq_handler(dev, pch_iir);
1688 		else
1689 			ibx_irq_handler(dev, pch_iir);
1690 
1691 		/* should clear PCH hotplug event before clear CPU irq */
1692 		I915_WRITE(SDEIIR, pch_iir);
1693 	}
1694 
1695 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1696 		ironlake_rps_change_irq_handler(dev);
1697 }
1698 
1699 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1700 {
1701 	struct drm_i915_private *dev_priv = dev->dev_private;
1702 	enum pipe i;
1703 
1704 	if (de_iir & DE_ERR_INT_IVB)
1705 		ivb_err_int_handler(dev);
1706 
1707 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1708 		dp_aux_irq_handler(dev);
1709 
1710 	if (de_iir & DE_GSE_IVB)
1711 		intel_opregion_asle_intr(dev);
1712 
1713 	for_each_pipe(i) {
1714 		if (de_iir & (DE_PIPE_VBLANK_IVB(i)))
1715 			drm_handle_vblank(dev, i);
1716 
1717 		/* plane/pipes map 1:1 on ilk+ */
1718 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(i)) {
1719 			intel_prepare_page_flip(dev, i);
1720 			intel_finish_page_flip_plane(dev, i);
1721 		}
1722 	}
1723 
1724 	/* check event from PCH */
1725 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1726 		u32 pch_iir = I915_READ(SDEIIR);
1727 
1728 		cpt_irq_handler(dev, pch_iir);
1729 
1730 		/* clear PCH hotplug event before clear CPU irq */
1731 		I915_WRITE(SDEIIR, pch_iir);
1732 	}
1733 }
1734 
1735 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1736 {
1737 	struct drm_device *dev = (struct drm_device *) arg;
1738 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1739 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1740 	irqreturn_t ret = IRQ_NONE;
1741 
1742 	atomic_inc(&dev_priv->irq_received);
1743 
1744 	/* We get interrupts on unclaimed registers, so check for this before we
1745 	 * do any I915_{READ,WRITE}. */
1746 	intel_uncore_check_errors(dev);
1747 
1748 	/* disable master interrupt before clearing iir  */
1749 	de_ier = I915_READ(DEIER);
1750 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1751 	POSTING_READ(DEIER);
1752 
1753 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1754 	 * interrupts will will be stored on its back queue, and then we'll be
1755 	 * able to process them after we restore SDEIER (as soon as we restore
1756 	 * it, we'll get an interrupt if SDEIIR still has something to process
1757 	 * due to its back queue). */
1758 	if (!HAS_PCH_NOP(dev)) {
1759 		sde_ier = I915_READ(SDEIER);
1760 		I915_WRITE(SDEIER, 0);
1761 		POSTING_READ(SDEIER);
1762 	}
1763 
1764 	gt_iir = I915_READ(GTIIR);
1765 	if (gt_iir) {
1766 		if (INTEL_INFO(dev)->gen >= 6)
1767 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1768 		else
1769 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1770 		I915_WRITE(GTIIR, gt_iir);
1771 		ret = IRQ_HANDLED;
1772 	}
1773 
1774 	de_iir = I915_READ(DEIIR);
1775 	if (de_iir) {
1776 		if (INTEL_INFO(dev)->gen >= 7)
1777 			ivb_display_irq_handler(dev, de_iir);
1778 		else
1779 			ilk_display_irq_handler(dev, de_iir);
1780 		I915_WRITE(DEIIR, de_iir);
1781 		ret = IRQ_HANDLED;
1782 	}
1783 
1784 	if (INTEL_INFO(dev)->gen >= 6) {
1785 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1786 		if (pm_iir) {
1787 			gen6_rps_irq_handler(dev_priv, pm_iir);
1788 			I915_WRITE(GEN6_PMIIR, pm_iir);
1789 			ret = IRQ_HANDLED;
1790 		}
1791 	}
1792 
1793 	I915_WRITE(DEIER, de_ier);
1794 	POSTING_READ(DEIER);
1795 	if (!HAS_PCH_NOP(dev)) {
1796 		I915_WRITE(SDEIER, sde_ier);
1797 		POSTING_READ(SDEIER);
1798 	}
1799 
1800 	return ret;
1801 }
1802 
1803 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1804 {
1805 	struct drm_device *dev = arg;
1806 	struct drm_i915_private *dev_priv = dev->dev_private;
1807 	u32 master_ctl;
1808 	irqreturn_t ret = IRQ_NONE;
1809 	uint32_t tmp = 0;
1810 	enum pipe pipe;
1811 
1812 	atomic_inc(&dev_priv->irq_received);
1813 
1814 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
1815 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1816 	if (!master_ctl)
1817 		return IRQ_NONE;
1818 
1819 	I915_WRITE(GEN8_MASTER_IRQ, 0);
1820 	POSTING_READ(GEN8_MASTER_IRQ);
1821 
1822 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1823 
1824 	if (master_ctl & GEN8_DE_MISC_IRQ) {
1825 		tmp = I915_READ(GEN8_DE_MISC_IIR);
1826 		if (tmp & GEN8_DE_MISC_GSE)
1827 			intel_opregion_asle_intr(dev);
1828 		else if (tmp)
1829 			DRM_ERROR("Unexpected DE Misc interrupt\n");
1830 		else
1831 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1832 
1833 		if (tmp) {
1834 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1835 			ret = IRQ_HANDLED;
1836 		}
1837 	}
1838 
1839 	if (master_ctl & GEN8_DE_PORT_IRQ) {
1840 		tmp = I915_READ(GEN8_DE_PORT_IIR);
1841 		if (tmp & GEN8_AUX_CHANNEL_A)
1842 			dp_aux_irq_handler(dev);
1843 		else if (tmp)
1844 			DRM_ERROR("Unexpected DE Port interrupt\n");
1845 		else
1846 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1847 
1848 		if (tmp) {
1849 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
1850 			ret = IRQ_HANDLED;
1851 		}
1852 	}
1853 
1854 	for_each_pipe(pipe) {
1855 		uint32_t pipe_iir;
1856 
1857 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
1858 			continue;
1859 
1860 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
1861 		if (pipe_iir & GEN8_PIPE_VBLANK)
1862 			drm_handle_vblank(dev, pipe);
1863 
1864 		if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
1865 			intel_prepare_page_flip(dev, pipe);
1866 			intel_finish_page_flip_plane(dev, pipe);
1867 		}
1868 
1869 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
1870 			hsw_pipe_crc_irq_handler(dev, pipe);
1871 
1872 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
1873 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1874 								  false))
1875 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1876 						 pipe_name(pipe));
1877 		}
1878 
1879 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
1880 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
1881 				  pipe_name(pipe),
1882 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
1883 		}
1884 
1885 		if (pipe_iir) {
1886 			ret = IRQ_HANDLED;
1887 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
1888 		} else
1889 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
1890 	}
1891 
1892 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
1893 		/*
1894 		 * FIXME(BDW): Assume for now that the new interrupt handling
1895 		 * scheme also closed the SDE interrupt handling race we've seen
1896 		 * on older pch-split platforms. But this needs testing.
1897 		 */
1898 		u32 pch_iir = I915_READ(SDEIIR);
1899 
1900 		cpt_irq_handler(dev, pch_iir);
1901 
1902 		if (pch_iir) {
1903 			I915_WRITE(SDEIIR, pch_iir);
1904 			ret = IRQ_HANDLED;
1905 		}
1906 	}
1907 
1908 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1909 	POSTING_READ(GEN8_MASTER_IRQ);
1910 
1911 	return ret;
1912 }
1913 
1914 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1915 			       bool reset_completed)
1916 {
1917 	struct intel_ring_buffer *ring;
1918 	int i;
1919 
1920 	/*
1921 	 * Notify all waiters for GPU completion events that reset state has
1922 	 * been changed, and that they need to restart their wait after
1923 	 * checking for potential errors (and bail out to drop locks if there is
1924 	 * a gpu reset pending so that i915_error_work_func can acquire them).
1925 	 */
1926 
1927 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1928 	for_each_ring(ring, dev_priv, i)
1929 		wake_up_all(&ring->irq_queue);
1930 
1931 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1932 	wake_up_all(&dev_priv->pending_flip_queue);
1933 
1934 	/*
1935 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1936 	 * reset state is cleared.
1937 	 */
1938 	if (reset_completed)
1939 		wake_up_all(&dev_priv->gpu_error.reset_queue);
1940 }
1941 
1942 /**
1943  * i915_error_work_func - do process context error handling work
1944  * @work: work struct
1945  *
1946  * Fire an error uevent so userspace can see that a hang or error
1947  * was detected.
1948  */
1949 static void i915_error_work_func(struct work_struct *work)
1950 {
1951 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1952 						    work);
1953 	drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1954 						    gpu_error);
1955 	struct drm_device *dev = dev_priv->dev;
1956 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1957 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1958 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1959 	int ret;
1960 
1961 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
1962 
1963 	/*
1964 	 * Note that there's only one work item which does gpu resets, so we
1965 	 * need not worry about concurrent gpu resets potentially incrementing
1966 	 * error->reset_counter twice. We only need to take care of another
1967 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
1968 	 * quick check for that is good enough: schedule_work ensures the
1969 	 * correct ordering between hang detection and this work item, and since
1970 	 * the reset in-progress bit is only ever set by code outside of this
1971 	 * work we don't need to worry about any other races.
1972 	 */
1973 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1974 		DRM_DEBUG_DRIVER("resetting chip\n");
1975 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
1976 				   reset_event);
1977 
1978 		/*
1979 		 * All state reset _must_ be completed before we update the
1980 		 * reset counter, for otherwise waiters might miss the reset
1981 		 * pending state and not properly drop locks, resulting in
1982 		 * deadlocks with the reset work.
1983 		 */
1984 		ret = i915_reset(dev);
1985 
1986 		intel_display_handle_reset(dev);
1987 
1988 		if (ret == 0) {
1989 			/*
1990 			 * After all the gem state is reset, increment the reset
1991 			 * counter and wake up everyone waiting for the reset to
1992 			 * complete.
1993 			 *
1994 			 * Since unlock operations are a one-sided barrier only,
1995 			 * we need to insert a barrier here to order any seqno
1996 			 * updates before
1997 			 * the counter increment.
1998 			 */
1999 			smp_mb__before_atomic_inc();
2000 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2001 
2002 			kobject_uevent_env(&dev->primary->kdev->kobj,
2003 					   KOBJ_CHANGE, reset_done_event);
2004 		} else {
2005 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2006 		}
2007 
2008 		/*
2009 		 * Note: The wake_up also serves as a memory barrier so that
2010 		 * waiters see the update value of the reset counter atomic_t.
2011 		 */
2012 		i915_error_wake_up(dev_priv, true);
2013 	}
2014 }
2015 
2016 static void i915_report_and_clear_eir(struct drm_device *dev)
2017 {
2018 	struct drm_i915_private *dev_priv = dev->dev_private;
2019 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2020 	u32 eir = I915_READ(EIR);
2021 	int pipe, i;
2022 
2023 	if (!eir)
2024 		return;
2025 
2026 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2027 
2028 	i915_get_extra_instdone(dev, instdone);
2029 
2030 	if (IS_G4X(dev)) {
2031 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2032 			u32 ipeir = I915_READ(IPEIR_I965);
2033 
2034 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2035 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2036 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2037 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2038 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2039 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2040 			I915_WRITE(IPEIR_I965, ipeir);
2041 			POSTING_READ(IPEIR_I965);
2042 		}
2043 		if (eir & GM45_ERROR_PAGE_TABLE) {
2044 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2045 			pr_err("page table error\n");
2046 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2047 			I915_WRITE(PGTBL_ER, pgtbl_err);
2048 			POSTING_READ(PGTBL_ER);
2049 		}
2050 	}
2051 
2052 	if (!IS_GEN2(dev)) {
2053 		if (eir & I915_ERROR_PAGE_TABLE) {
2054 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2055 			pr_err("page table error\n");
2056 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2057 			I915_WRITE(PGTBL_ER, pgtbl_err);
2058 			POSTING_READ(PGTBL_ER);
2059 		}
2060 	}
2061 
2062 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2063 		pr_err("memory refresh error:\n");
2064 		for_each_pipe(pipe)
2065 			pr_err("pipe %c stat: 0x%08x\n",
2066 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2067 		/* pipestat has already been acked */
2068 	}
2069 	if (eir & I915_ERROR_INSTRUCTION) {
2070 		pr_err("instruction error\n");
2071 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2072 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2073 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2074 		if (INTEL_INFO(dev)->gen < 4) {
2075 			u32 ipeir = I915_READ(IPEIR);
2076 
2077 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2078 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2079 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2080 			I915_WRITE(IPEIR, ipeir);
2081 			POSTING_READ(IPEIR);
2082 		} else {
2083 			u32 ipeir = I915_READ(IPEIR_I965);
2084 
2085 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2086 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2087 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2088 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2089 			I915_WRITE(IPEIR_I965, ipeir);
2090 			POSTING_READ(IPEIR_I965);
2091 		}
2092 	}
2093 
2094 	I915_WRITE(EIR, eir);
2095 	POSTING_READ(EIR);
2096 	eir = I915_READ(EIR);
2097 	if (eir) {
2098 		/*
2099 		 * some errors might have become stuck,
2100 		 * mask them.
2101 		 */
2102 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2103 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2104 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2105 	}
2106 }
2107 
2108 /**
2109  * i915_handle_error - handle an error interrupt
2110  * @dev: drm device
2111  *
2112  * Do some basic checking of regsiter state at error interrupt time and
2113  * dump it to the syslog.  Also call i915_capture_error_state() to make
2114  * sure we get a record and make it available in debugfs.  Fire a uevent
2115  * so userspace knows something bad happened (should trigger collection
2116  * of a ring dump etc.).
2117  */
2118 void i915_handle_error(struct drm_device *dev, bool wedged)
2119 {
2120 	struct drm_i915_private *dev_priv = dev->dev_private;
2121 
2122 	i915_capture_error_state(dev);
2123 	i915_report_and_clear_eir(dev);
2124 
2125 	if (wedged) {
2126 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2127 				&dev_priv->gpu_error.reset_counter);
2128 
2129 		/*
2130 		 * Wakeup waiting processes so that the reset work function
2131 		 * i915_error_work_func doesn't deadlock trying to grab various
2132 		 * locks. By bumping the reset counter first, the woken
2133 		 * processes will see a reset in progress and back off,
2134 		 * releasing their locks and then wait for the reset completion.
2135 		 * We must do this for _all_ gpu waiters that might hold locks
2136 		 * that the reset work needs to acquire.
2137 		 *
2138 		 * Note: The wake_up serves as the required memory barrier to
2139 		 * ensure that the waiters see the updated value of the reset
2140 		 * counter atomic_t.
2141 		 */
2142 		i915_error_wake_up(dev_priv, false);
2143 	}
2144 
2145 	/*
2146 	 * Our reset work can grab modeset locks (since it needs to reset the
2147 	 * state of outstanding pagelips). Hence it must not be run on our own
2148 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2149 	 * code will deadlock.
2150 	 */
2151 	schedule_work(&dev_priv->gpu_error.work);
2152 }
2153 
2154 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2155 {
2156 	drm_i915_private_t *dev_priv = dev->dev_private;
2157 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2158 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159 	struct drm_i915_gem_object *obj;
2160 	struct intel_unpin_work *work;
2161 	unsigned long flags;
2162 	bool stall_detected;
2163 
2164 	/* Ignore early vblank irqs */
2165 	if (intel_crtc == NULL)
2166 		return;
2167 
2168 	spin_lock_irqsave(&dev->event_lock, flags);
2169 	work = intel_crtc->unpin_work;
2170 
2171 	if (work == NULL ||
2172 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2173 	    !work->enable_stall_check) {
2174 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2175 		spin_unlock_irqrestore(&dev->event_lock, flags);
2176 		return;
2177 	}
2178 
2179 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2180 	obj = work->pending_flip_obj;
2181 	if (INTEL_INFO(dev)->gen >= 4) {
2182 		int dspsurf = DSPSURF(intel_crtc->plane);
2183 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2184 					i915_gem_obj_ggtt_offset(obj);
2185 	} else {
2186 		int dspaddr = DSPADDR(intel_crtc->plane);
2187 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2188 							crtc->y * crtc->fb->pitches[0] +
2189 							crtc->x * crtc->fb->bits_per_pixel/8);
2190 	}
2191 
2192 	spin_unlock_irqrestore(&dev->event_lock, flags);
2193 
2194 	if (stall_detected) {
2195 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2196 		intel_prepare_page_flip(dev, intel_crtc->plane);
2197 	}
2198 }
2199 
2200 /* Called from drm generic code, passed 'crtc' which
2201  * we use as a pipe index
2202  */
2203 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2204 {
2205 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2206 	unsigned long irqflags;
2207 
2208 	if (!i915_pipe_enabled(dev, pipe))
2209 		return -EINVAL;
2210 
2211 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2212 	if (INTEL_INFO(dev)->gen >= 4)
2213 		i915_enable_pipestat(dev_priv, pipe,
2214 				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2215 	else
2216 		i915_enable_pipestat(dev_priv, pipe,
2217 				     PIPE_VBLANK_INTERRUPT_ENABLE);
2218 
2219 	/* maintain vblank delivery even in deep C-states */
2220 	if (dev_priv->info->gen == 3)
2221 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2222 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2223 
2224 	return 0;
2225 }
2226 
2227 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2228 {
2229 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2230 	unsigned long irqflags;
2231 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2232 						     DE_PIPE_VBLANK(pipe);
2233 
2234 	if (!i915_pipe_enabled(dev, pipe))
2235 		return -EINVAL;
2236 
2237 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2238 	ironlake_enable_display_irq(dev_priv, bit);
2239 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2240 
2241 	return 0;
2242 }
2243 
2244 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2245 {
2246 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2247 	unsigned long irqflags;
2248 	u32 imr;
2249 
2250 	if (!i915_pipe_enabled(dev, pipe))
2251 		return -EINVAL;
2252 
2253 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2254 	imr = I915_READ(VLV_IMR);
2255 	if (pipe == PIPE_A)
2256 		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2257 	else
2258 		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2259 	I915_WRITE(VLV_IMR, imr);
2260 	i915_enable_pipestat(dev_priv, pipe,
2261 			     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2262 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2263 
2264 	return 0;
2265 }
2266 
2267 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2268 {
2269 	struct drm_i915_private *dev_priv = dev->dev_private;
2270 	unsigned long irqflags;
2271 
2272 	if (!i915_pipe_enabled(dev, pipe))
2273 		return -EINVAL;
2274 
2275 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2276 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2277 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2278 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2279 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2280 	return 0;
2281 }
2282 
2283 /* Called from drm generic code, passed 'crtc' which
2284  * we use as a pipe index
2285  */
2286 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2287 {
2288 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2289 	unsigned long irqflags;
2290 
2291 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2292 	if (dev_priv->info->gen == 3)
2293 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2294 
2295 	i915_disable_pipestat(dev_priv, pipe,
2296 			      PIPE_VBLANK_INTERRUPT_ENABLE |
2297 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2298 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2299 }
2300 
2301 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2302 {
2303 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2304 	unsigned long irqflags;
2305 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2306 						     DE_PIPE_VBLANK(pipe);
2307 
2308 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2309 	ironlake_disable_display_irq(dev_priv, bit);
2310 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2311 }
2312 
2313 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2314 {
2315 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2316 	unsigned long irqflags;
2317 	u32 imr;
2318 
2319 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2320 	i915_disable_pipestat(dev_priv, pipe,
2321 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2322 	imr = I915_READ(VLV_IMR);
2323 	if (pipe == PIPE_A)
2324 		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2325 	else
2326 		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2327 	I915_WRITE(VLV_IMR, imr);
2328 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2329 }
2330 
2331 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2332 {
2333 	struct drm_i915_private *dev_priv = dev->dev_private;
2334 	unsigned long irqflags;
2335 
2336 	if (!i915_pipe_enabled(dev, pipe))
2337 		return;
2338 
2339 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2340 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2341 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2342 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2343 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2344 }
2345 
2346 static u32
2347 ring_last_seqno(struct intel_ring_buffer *ring)
2348 {
2349 	return list_entry(ring->request_list.prev,
2350 			  struct drm_i915_gem_request, list)->seqno;
2351 }
2352 
2353 static bool
2354 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2355 {
2356 	return (list_empty(&ring->request_list) ||
2357 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2358 }
2359 
2360 static struct intel_ring_buffer *
2361 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2362 {
2363 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2364 	u32 cmd, ipehr, acthd, acthd_min;
2365 
2366 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2367 	if ((ipehr & ~(0x3 << 16)) !=
2368 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2369 		return NULL;
2370 
2371 	/* ACTHD is likely pointing to the dword after the actual command,
2372 	 * so scan backwards until we find the MBOX.
2373 	 */
2374 	acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2375 	acthd_min = max((int)acthd - 3 * 4, 0);
2376 	do {
2377 		cmd = ioread32(ring->virtual_start + acthd);
2378 		if (cmd == ipehr)
2379 			break;
2380 
2381 		acthd -= 4;
2382 		if (acthd < acthd_min)
2383 			return NULL;
2384 	} while (1);
2385 
2386 	*seqno = ioread32(ring->virtual_start+acthd+4)+1;
2387 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2388 }
2389 
2390 static int semaphore_passed(struct intel_ring_buffer *ring)
2391 {
2392 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2393 	struct intel_ring_buffer *signaller;
2394 	u32 seqno, ctl;
2395 
2396 	ring->hangcheck.deadlock = true;
2397 
2398 	signaller = semaphore_waits_for(ring, &seqno);
2399 	if (signaller == NULL || signaller->hangcheck.deadlock)
2400 		return -1;
2401 
2402 	/* cursory check for an unkickable deadlock */
2403 	ctl = I915_READ_CTL(signaller);
2404 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2405 		return -1;
2406 
2407 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2408 }
2409 
2410 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2411 {
2412 	struct intel_ring_buffer *ring;
2413 	int i;
2414 
2415 	for_each_ring(ring, dev_priv, i)
2416 		ring->hangcheck.deadlock = false;
2417 }
2418 
2419 static enum intel_ring_hangcheck_action
2420 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2421 {
2422 	struct drm_device *dev = ring->dev;
2423 	struct drm_i915_private *dev_priv = dev->dev_private;
2424 	u32 tmp;
2425 
2426 	if (ring->hangcheck.acthd != acthd)
2427 		return HANGCHECK_ACTIVE;
2428 
2429 	if (IS_GEN2(dev))
2430 		return HANGCHECK_HUNG;
2431 
2432 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2433 	 * If so we can simply poke the RB_WAIT bit
2434 	 * and break the hang. This should work on
2435 	 * all but the second generation chipsets.
2436 	 */
2437 	tmp = I915_READ_CTL(ring);
2438 	if (tmp & RING_WAIT) {
2439 		DRM_ERROR("Kicking stuck wait on %s\n",
2440 			  ring->name);
2441 		i915_handle_error(dev, false);
2442 		I915_WRITE_CTL(ring, tmp);
2443 		return HANGCHECK_KICK;
2444 	}
2445 
2446 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2447 		switch (semaphore_passed(ring)) {
2448 		default:
2449 			return HANGCHECK_HUNG;
2450 		case 1:
2451 			DRM_ERROR("Kicking stuck semaphore on %s\n",
2452 				  ring->name);
2453 			i915_handle_error(dev, false);
2454 			I915_WRITE_CTL(ring, tmp);
2455 			return HANGCHECK_KICK;
2456 		case 0:
2457 			return HANGCHECK_WAIT;
2458 		}
2459 	}
2460 
2461 	return HANGCHECK_HUNG;
2462 }
2463 
2464 /**
2465  * This is called when the chip hasn't reported back with completed
2466  * batchbuffers in a long time. We keep track per ring seqno progress and
2467  * if there are no progress, hangcheck score for that ring is increased.
2468  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2469  * we kick the ring. If we see no progress on three subsequent calls
2470  * we assume chip is wedged and try to fix it by resetting the chip.
2471  */
2472 static void i915_hangcheck_elapsed(unsigned long data)
2473 {
2474 	struct drm_device *dev = (struct drm_device *)data;
2475 	drm_i915_private_t *dev_priv = dev->dev_private;
2476 	struct intel_ring_buffer *ring;
2477 	int i;
2478 	int busy_count = 0, rings_hung = 0;
2479 	bool stuck[I915_NUM_RINGS] = { 0 };
2480 #define BUSY 1
2481 #define KICK 5
2482 #define HUNG 20
2483 #define FIRE 30
2484 
2485 	if (!i915_enable_hangcheck)
2486 		return;
2487 
2488 	for_each_ring(ring, dev_priv, i) {
2489 		u32 seqno, acthd;
2490 		bool busy = true;
2491 
2492 		semaphore_clear_deadlocks(dev_priv);
2493 
2494 		seqno = ring->get_seqno(ring, false);
2495 		acthd = intel_ring_get_active_head(ring);
2496 
2497 		if (ring->hangcheck.seqno == seqno) {
2498 			if (ring_idle(ring, seqno)) {
2499 				ring->hangcheck.action = HANGCHECK_IDLE;
2500 
2501 				if (waitqueue_active(&ring->irq_queue)) {
2502 					/* Issue a wake-up to catch stuck h/w. */
2503 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2504 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2505 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2506 								  ring->name);
2507 						else
2508 							DRM_INFO("Fake missed irq on %s\n",
2509 								 ring->name);
2510 						wake_up_all(&ring->irq_queue);
2511 					}
2512 					/* Safeguard against driver failure */
2513 					ring->hangcheck.score += BUSY;
2514 				} else
2515 					busy = false;
2516 			} else {
2517 				/* We always increment the hangcheck score
2518 				 * if the ring is busy and still processing
2519 				 * the same request, so that no single request
2520 				 * can run indefinitely (such as a chain of
2521 				 * batches). The only time we do not increment
2522 				 * the hangcheck score on this ring, if this
2523 				 * ring is in a legitimate wait for another
2524 				 * ring. In that case the waiting ring is a
2525 				 * victim and we want to be sure we catch the
2526 				 * right culprit. Then every time we do kick
2527 				 * the ring, add a small increment to the
2528 				 * score so that we can catch a batch that is
2529 				 * being repeatedly kicked and so responsible
2530 				 * for stalling the machine.
2531 				 */
2532 				ring->hangcheck.action = ring_stuck(ring,
2533 								    acthd);
2534 
2535 				switch (ring->hangcheck.action) {
2536 				case HANGCHECK_IDLE:
2537 				case HANGCHECK_WAIT:
2538 					break;
2539 				case HANGCHECK_ACTIVE:
2540 					ring->hangcheck.score += BUSY;
2541 					break;
2542 				case HANGCHECK_KICK:
2543 					ring->hangcheck.score += KICK;
2544 					break;
2545 				case HANGCHECK_HUNG:
2546 					ring->hangcheck.score += HUNG;
2547 					stuck[i] = true;
2548 					break;
2549 				}
2550 			}
2551 		} else {
2552 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2553 
2554 			/* Gradually reduce the count so that we catch DoS
2555 			 * attempts across multiple batches.
2556 			 */
2557 			if (ring->hangcheck.score > 0)
2558 				ring->hangcheck.score--;
2559 		}
2560 
2561 		ring->hangcheck.seqno = seqno;
2562 		ring->hangcheck.acthd = acthd;
2563 		busy_count += busy;
2564 	}
2565 
2566 	for_each_ring(ring, dev_priv, i) {
2567 		if (ring->hangcheck.score > FIRE) {
2568 			DRM_INFO("%s on %s\n",
2569 				 stuck[i] ? "stuck" : "no progress",
2570 				 ring->name);
2571 			rings_hung++;
2572 		}
2573 	}
2574 
2575 	if (rings_hung)
2576 		return i915_handle_error(dev, true);
2577 
2578 	if (busy_count)
2579 		/* Reset timer case chip hangs without another request
2580 		 * being added */
2581 		i915_queue_hangcheck(dev);
2582 }
2583 
2584 void i915_queue_hangcheck(struct drm_device *dev)
2585 {
2586 	struct drm_i915_private *dev_priv = dev->dev_private;
2587 	if (!i915_enable_hangcheck)
2588 		return;
2589 
2590 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2591 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2592 }
2593 
2594 static void ibx_irq_preinstall(struct drm_device *dev)
2595 {
2596 	struct drm_i915_private *dev_priv = dev->dev_private;
2597 
2598 	if (HAS_PCH_NOP(dev))
2599 		return;
2600 
2601 	/* south display irq */
2602 	I915_WRITE(SDEIMR, 0xffffffff);
2603 	/*
2604 	 * SDEIER is also touched by the interrupt handler to work around missed
2605 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2606 	 * is enabled - instead we unconditionally enable all PCH interrupt
2607 	 * sources here, but then only unmask them as needed with SDEIMR.
2608 	 */
2609 	I915_WRITE(SDEIER, 0xffffffff);
2610 	POSTING_READ(SDEIER);
2611 }
2612 
2613 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2614 {
2615 	struct drm_i915_private *dev_priv = dev->dev_private;
2616 
2617 	/* and GT */
2618 	I915_WRITE(GTIMR, 0xffffffff);
2619 	I915_WRITE(GTIER, 0x0);
2620 	POSTING_READ(GTIER);
2621 
2622 	if (INTEL_INFO(dev)->gen >= 6) {
2623 		/* and PM */
2624 		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2625 		I915_WRITE(GEN6_PMIER, 0x0);
2626 		POSTING_READ(GEN6_PMIER);
2627 	}
2628 }
2629 
2630 /* drm_dma.h hooks
2631 */
2632 static void ironlake_irq_preinstall(struct drm_device *dev)
2633 {
2634 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2635 
2636 	atomic_set(&dev_priv->irq_received, 0);
2637 
2638 	I915_WRITE(HWSTAM, 0xeffe);
2639 
2640 	I915_WRITE(DEIMR, 0xffffffff);
2641 	I915_WRITE(DEIER, 0x0);
2642 	POSTING_READ(DEIER);
2643 
2644 	gen5_gt_irq_preinstall(dev);
2645 
2646 	ibx_irq_preinstall(dev);
2647 }
2648 
2649 static void valleyview_irq_preinstall(struct drm_device *dev)
2650 {
2651 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2652 	int pipe;
2653 
2654 	atomic_set(&dev_priv->irq_received, 0);
2655 
2656 	/* VLV magic */
2657 	I915_WRITE(VLV_IMR, 0);
2658 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2659 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2660 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2661 
2662 	/* and GT */
2663 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2664 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2665 
2666 	gen5_gt_irq_preinstall(dev);
2667 
2668 	I915_WRITE(DPINVGTT, 0xff);
2669 
2670 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2671 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2672 	for_each_pipe(pipe)
2673 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2674 	I915_WRITE(VLV_IIR, 0xffffffff);
2675 	I915_WRITE(VLV_IMR, 0xffffffff);
2676 	I915_WRITE(VLV_IER, 0x0);
2677 	POSTING_READ(VLV_IER);
2678 }
2679 
2680 static void gen8_irq_preinstall(struct drm_device *dev)
2681 {
2682 	struct drm_i915_private *dev_priv = dev->dev_private;
2683 	int pipe;
2684 
2685 	atomic_set(&dev_priv->irq_received, 0);
2686 
2687 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2688 	POSTING_READ(GEN8_MASTER_IRQ);
2689 
2690 	/* IIR can theoretically queue up two events. Be paranoid */
2691 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2692 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2693 		POSTING_READ(GEN8_##type##_IMR(which)); \
2694 		I915_WRITE(GEN8_##type##_IER(which), 0); \
2695 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2696 		POSTING_READ(GEN8_##type##_IIR(which)); \
2697 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2698 	} while (0)
2699 
2700 #define GEN8_IRQ_INIT(type) do { \
2701 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2702 		POSTING_READ(GEN8_##type##_IMR); \
2703 		I915_WRITE(GEN8_##type##_IER, 0); \
2704 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2705 		POSTING_READ(GEN8_##type##_IIR); \
2706 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2707 	} while (0)
2708 
2709 	GEN8_IRQ_INIT_NDX(GT, 0);
2710 	GEN8_IRQ_INIT_NDX(GT, 1);
2711 	GEN8_IRQ_INIT_NDX(GT, 2);
2712 	GEN8_IRQ_INIT_NDX(GT, 3);
2713 
2714 	for_each_pipe(pipe) {
2715 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2716 	}
2717 
2718 	GEN8_IRQ_INIT(DE_PORT);
2719 	GEN8_IRQ_INIT(DE_MISC);
2720 	GEN8_IRQ_INIT(PCU);
2721 #undef GEN8_IRQ_INIT
2722 #undef GEN8_IRQ_INIT_NDX
2723 
2724 	POSTING_READ(GEN8_PCU_IIR);
2725 
2726 	ibx_irq_preinstall(dev);
2727 }
2728 
2729 static void ibx_hpd_irq_setup(struct drm_device *dev)
2730 {
2731 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2732 	struct drm_mode_config *mode_config = &dev->mode_config;
2733 	struct intel_encoder *intel_encoder;
2734 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2735 
2736 	if (HAS_PCH_IBX(dev)) {
2737 		hotplug_irqs = SDE_HOTPLUG_MASK;
2738 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2739 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2740 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2741 	} else {
2742 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2743 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2744 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2745 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2746 	}
2747 
2748 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2749 
2750 	/*
2751 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2752 	 * duration to 2ms (which is the minimum in the Display Port spec)
2753 	 *
2754 	 * This register is the same on all known PCH chips.
2755 	 */
2756 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2757 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2758 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2759 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2760 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2761 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2762 }
2763 
2764 static void ibx_irq_postinstall(struct drm_device *dev)
2765 {
2766 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2767 	u32 mask;
2768 
2769 	if (HAS_PCH_NOP(dev))
2770 		return;
2771 
2772 	if (HAS_PCH_IBX(dev)) {
2773 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2774 		       SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2775 	} else {
2776 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2777 
2778 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2779 	}
2780 
2781 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2782 	I915_WRITE(SDEIMR, ~mask);
2783 }
2784 
2785 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2786 {
2787 	struct drm_i915_private *dev_priv = dev->dev_private;
2788 	u32 pm_irqs, gt_irqs;
2789 
2790 	pm_irqs = gt_irqs = 0;
2791 
2792 	dev_priv->gt_irq_mask = ~0;
2793 	if (HAS_L3_DPF(dev)) {
2794 		/* L3 parity interrupt is always unmasked. */
2795 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2796 		gt_irqs |= GT_PARITY_ERROR(dev);
2797 	}
2798 
2799 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2800 	if (IS_GEN5(dev)) {
2801 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2802 			   ILK_BSD_USER_INTERRUPT;
2803 	} else {
2804 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2805 	}
2806 
2807 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2808 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2809 	I915_WRITE(GTIER, gt_irqs);
2810 	POSTING_READ(GTIER);
2811 
2812 	if (INTEL_INFO(dev)->gen >= 6) {
2813 		pm_irqs |= GEN6_PM_RPS_EVENTS;
2814 
2815 		if (HAS_VEBOX(dev))
2816 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2817 
2818 		dev_priv->pm_irq_mask = 0xffffffff;
2819 		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2820 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2821 		I915_WRITE(GEN6_PMIER, pm_irqs);
2822 		POSTING_READ(GEN6_PMIER);
2823 	}
2824 }
2825 
2826 static int ironlake_irq_postinstall(struct drm_device *dev)
2827 {
2828 	unsigned long irqflags;
2829 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2830 	u32 display_mask, extra_mask;
2831 
2832 	if (INTEL_INFO(dev)->gen >= 7) {
2833 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2834 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2835 				DE_PLANEB_FLIP_DONE_IVB |
2836 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2837 				DE_ERR_INT_IVB);
2838 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2839 			      DE_PIPEA_VBLANK_IVB);
2840 
2841 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2842 	} else {
2843 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2844 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2845 				DE_AUX_CHANNEL_A |
2846 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
2847 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2848 				DE_POISON);
2849 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2850 	}
2851 
2852 	dev_priv->irq_mask = ~display_mask;
2853 
2854 	/* should always can generate irq */
2855 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2856 	I915_WRITE(DEIMR, dev_priv->irq_mask);
2857 	I915_WRITE(DEIER, display_mask | extra_mask);
2858 	POSTING_READ(DEIER);
2859 
2860 	gen5_gt_irq_postinstall(dev);
2861 
2862 	ibx_irq_postinstall(dev);
2863 
2864 	if (IS_IRONLAKE_M(dev)) {
2865 		/* Enable PCU event interrupts
2866 		 *
2867 		 * spinlocking not required here for correctness since interrupt
2868 		 * setup is guaranteed to run in single-threaded context. But we
2869 		 * need it to make the assert_spin_locked happy. */
2870 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2871 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2872 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static int valleyview_irq_postinstall(struct drm_device *dev)
2879 {
2880 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2881 	u32 enable_mask;
2882 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV |
2883 		PIPE_CRC_DONE_ENABLE;
2884 	unsigned long irqflags;
2885 
2886 	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2887 	enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2888 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2889 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2890 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2891 
2892 	/*
2893 	 *Leave vblank interrupts masked initially.  enable/disable will
2894 	 * toggle them based on usage.
2895 	 */
2896 	dev_priv->irq_mask = (~enable_mask) |
2897 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2898 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2899 
2900 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2901 	POSTING_READ(PORT_HOTPLUG_EN);
2902 
2903 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2904 	I915_WRITE(VLV_IER, enable_mask);
2905 	I915_WRITE(VLV_IIR, 0xffffffff);
2906 	I915_WRITE(PIPESTAT(0), 0xffff);
2907 	I915_WRITE(PIPESTAT(1), 0xffff);
2908 	POSTING_READ(VLV_IER);
2909 
2910 	/* Interrupt setup is already guaranteed to be single-threaded, this is
2911 	 * just to make the assert_spin_locked check happy. */
2912 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2913 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable);
2914 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
2915 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable);
2916 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2917 
2918 	I915_WRITE(VLV_IIR, 0xffffffff);
2919 	I915_WRITE(VLV_IIR, 0xffffffff);
2920 
2921 	gen5_gt_irq_postinstall(dev);
2922 
2923 	/* ack & enable invalid PTE error interrupts */
2924 #if 0 /* FIXME: add support to irq handler for checking these bits */
2925 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2926 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2927 #endif
2928 
2929 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2930 
2931 	return 0;
2932 }
2933 
2934 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
2935 {
2936 	int i;
2937 
2938 	/* These are interrupts we'll toggle with the ring mask register */
2939 	uint32_t gt_interrupts[] = {
2940 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
2941 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
2942 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
2943 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
2944 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
2945 		0,
2946 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
2947 		};
2948 
2949 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
2950 		u32 tmp = I915_READ(GEN8_GT_IIR(i));
2951 		if (tmp)
2952 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2953 				  i, tmp);
2954 		I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
2955 		I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
2956 	}
2957 	POSTING_READ(GEN8_GT_IER(0));
2958 }
2959 
2960 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
2961 {
2962 	struct drm_device *dev = dev_priv->dev;
2963 	uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
2964 		GEN8_PIPE_CDCLK_CRC_DONE |
2965 		GEN8_PIPE_FIFO_UNDERRUN |
2966 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2967 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK;
2968 	int pipe;
2969 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
2970 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
2971 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
2972 
2973 	for_each_pipe(pipe) {
2974 		u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2975 		if (tmp)
2976 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2977 				  pipe, tmp);
2978 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2979 		I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
2980 	}
2981 	POSTING_READ(GEN8_DE_PIPE_ISR(0));
2982 
2983 	I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
2984 	I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
2985 	POSTING_READ(GEN8_DE_PORT_IER);
2986 }
2987 
2988 static int gen8_irq_postinstall(struct drm_device *dev)
2989 {
2990 	struct drm_i915_private *dev_priv = dev->dev_private;
2991 
2992 	gen8_gt_irq_postinstall(dev_priv);
2993 	gen8_de_irq_postinstall(dev_priv);
2994 
2995 	ibx_irq_postinstall(dev);
2996 
2997 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2998 	POSTING_READ(GEN8_MASTER_IRQ);
2999 
3000 	return 0;
3001 }
3002 
3003 static void gen8_irq_uninstall(struct drm_device *dev)
3004 {
3005 	struct drm_i915_private *dev_priv = dev->dev_private;
3006 	int pipe;
3007 
3008 	if (!dev_priv)
3009 		return;
3010 
3011 	atomic_set(&dev_priv->irq_received, 0);
3012 
3013 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3014 
3015 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3016 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3017 		I915_WRITE(GEN8_##type##_IER(which), 0); \
3018 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3019 	} while (0)
3020 
3021 #define GEN8_IRQ_FINI(type) do { \
3022 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3023 		I915_WRITE(GEN8_##type##_IER, 0); \
3024 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3025 	} while (0)
3026 
3027 	GEN8_IRQ_FINI_NDX(GT, 0);
3028 	GEN8_IRQ_FINI_NDX(GT, 1);
3029 	GEN8_IRQ_FINI_NDX(GT, 2);
3030 	GEN8_IRQ_FINI_NDX(GT, 3);
3031 
3032 	for_each_pipe(pipe) {
3033 		GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3034 	}
3035 
3036 	GEN8_IRQ_FINI(DE_PORT);
3037 	GEN8_IRQ_FINI(DE_MISC);
3038 	GEN8_IRQ_FINI(PCU);
3039 #undef GEN8_IRQ_FINI
3040 #undef GEN8_IRQ_FINI_NDX
3041 
3042 	POSTING_READ(GEN8_PCU_IIR);
3043 }
3044 
3045 static void valleyview_irq_uninstall(struct drm_device *dev)
3046 {
3047 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3048 	int pipe;
3049 
3050 	if (!dev_priv)
3051 		return;
3052 
3053 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3054 
3055 	for_each_pipe(pipe)
3056 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3057 
3058 	I915_WRITE(HWSTAM, 0xffffffff);
3059 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3060 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3061 	for_each_pipe(pipe)
3062 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3063 	I915_WRITE(VLV_IIR, 0xffffffff);
3064 	I915_WRITE(VLV_IMR, 0xffffffff);
3065 	I915_WRITE(VLV_IER, 0x0);
3066 	POSTING_READ(VLV_IER);
3067 }
3068 
3069 static void ironlake_irq_uninstall(struct drm_device *dev)
3070 {
3071 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3072 
3073 	if (!dev_priv)
3074 		return;
3075 
3076 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3077 
3078 	I915_WRITE(HWSTAM, 0xffffffff);
3079 
3080 	I915_WRITE(DEIMR, 0xffffffff);
3081 	I915_WRITE(DEIER, 0x0);
3082 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3083 	if (IS_GEN7(dev))
3084 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3085 
3086 	I915_WRITE(GTIMR, 0xffffffff);
3087 	I915_WRITE(GTIER, 0x0);
3088 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3089 
3090 	if (HAS_PCH_NOP(dev))
3091 		return;
3092 
3093 	I915_WRITE(SDEIMR, 0xffffffff);
3094 	I915_WRITE(SDEIER, 0x0);
3095 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3096 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3097 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3098 }
3099 
3100 static void i8xx_irq_preinstall(struct drm_device * dev)
3101 {
3102 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3103 	int pipe;
3104 
3105 	atomic_set(&dev_priv->irq_received, 0);
3106 
3107 	for_each_pipe(pipe)
3108 		I915_WRITE(PIPESTAT(pipe), 0);
3109 	I915_WRITE16(IMR, 0xffff);
3110 	I915_WRITE16(IER, 0x0);
3111 	POSTING_READ16(IER);
3112 }
3113 
3114 static int i8xx_irq_postinstall(struct drm_device *dev)
3115 {
3116 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3117 	unsigned long irqflags;
3118 
3119 	I915_WRITE16(EMR,
3120 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3121 
3122 	/* Unmask the interrupts that we always want on. */
3123 	dev_priv->irq_mask =
3124 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3125 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3126 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3127 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3128 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3129 	I915_WRITE16(IMR, dev_priv->irq_mask);
3130 
3131 	I915_WRITE16(IER,
3132 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3133 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3134 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3135 		     I915_USER_INTERRUPT);
3136 	POSTING_READ16(IER);
3137 
3138 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3139 	 * just to make the assert_spin_locked check happy. */
3140 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3141 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3142 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3143 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3144 
3145 	return 0;
3146 }
3147 
3148 /*
3149  * Returns true when a page flip has completed.
3150  */
3151 static bool i8xx_handle_vblank(struct drm_device *dev,
3152 			       int plane, int pipe, u32 iir)
3153 {
3154 	drm_i915_private_t *dev_priv = dev->dev_private;
3155 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3156 
3157 	if (!drm_handle_vblank(dev, pipe))
3158 		return false;
3159 
3160 	if ((iir & flip_pending) == 0)
3161 		return false;
3162 
3163 	intel_prepare_page_flip(dev, plane);
3164 
3165 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3166 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3167 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3168 	 * the flip is completed (no longer pending). Since this doesn't raise
3169 	 * an interrupt per se, we watch for the change at vblank.
3170 	 */
3171 	if (I915_READ16(ISR) & flip_pending)
3172 		return false;
3173 
3174 	intel_finish_page_flip(dev, pipe);
3175 
3176 	return true;
3177 }
3178 
3179 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3180 {
3181 	struct drm_device *dev = (struct drm_device *) arg;
3182 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3183 	u16 iir, new_iir;
3184 	u32 pipe_stats[2];
3185 	unsigned long irqflags;
3186 	int pipe;
3187 	u16 flip_mask =
3188 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3189 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3190 
3191 	atomic_inc(&dev_priv->irq_received);
3192 
3193 	iir = I915_READ16(IIR);
3194 	if (iir == 0)
3195 		return IRQ_NONE;
3196 
3197 	while (iir & ~flip_mask) {
3198 		/* Can't rely on pipestat interrupt bit in iir as it might
3199 		 * have been cleared after the pipestat interrupt was received.
3200 		 * It doesn't set the bit in iir again, but it still produces
3201 		 * interrupts (for non-MSI).
3202 		 */
3203 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3204 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3205 			i915_handle_error(dev, false);
3206 
3207 		for_each_pipe(pipe) {
3208 			int reg = PIPESTAT(pipe);
3209 			pipe_stats[pipe] = I915_READ(reg);
3210 
3211 			/*
3212 			 * Clear the PIPE*STAT regs before the IIR
3213 			 */
3214 			if (pipe_stats[pipe] & 0x8000ffff) {
3215 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3216 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3217 							 pipe_name(pipe));
3218 				I915_WRITE(reg, pipe_stats[pipe]);
3219 			}
3220 		}
3221 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3222 
3223 		I915_WRITE16(IIR, iir & ~flip_mask);
3224 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3225 
3226 		i915_update_dri1_breadcrumb(dev);
3227 
3228 		if (iir & I915_USER_INTERRUPT)
3229 			notify_ring(dev, &dev_priv->ring[RCS]);
3230 
3231 		for_each_pipe(pipe) {
3232 			int plane = pipe;
3233 			if (HAS_FBC(dev))
3234 				plane = !plane;
3235 
3236 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3237 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3238 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3239 
3240 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3241 				i9xx_pipe_crc_irq_handler(dev, pipe);
3242 		}
3243 
3244 		iir = new_iir;
3245 	}
3246 
3247 	return IRQ_HANDLED;
3248 }
3249 
3250 static void i8xx_irq_uninstall(struct drm_device * dev)
3251 {
3252 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3253 	int pipe;
3254 
3255 	for_each_pipe(pipe) {
3256 		/* Clear enable bits; then clear status bits */
3257 		I915_WRITE(PIPESTAT(pipe), 0);
3258 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3259 	}
3260 	I915_WRITE16(IMR, 0xffff);
3261 	I915_WRITE16(IER, 0x0);
3262 	I915_WRITE16(IIR, I915_READ16(IIR));
3263 }
3264 
3265 static void i915_irq_preinstall(struct drm_device * dev)
3266 {
3267 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3268 	int pipe;
3269 
3270 	atomic_set(&dev_priv->irq_received, 0);
3271 
3272 	if (I915_HAS_HOTPLUG(dev)) {
3273 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3274 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3275 	}
3276 
3277 	I915_WRITE16(HWSTAM, 0xeffe);
3278 	for_each_pipe(pipe)
3279 		I915_WRITE(PIPESTAT(pipe), 0);
3280 	I915_WRITE(IMR, 0xffffffff);
3281 	I915_WRITE(IER, 0x0);
3282 	POSTING_READ(IER);
3283 }
3284 
3285 static int i915_irq_postinstall(struct drm_device *dev)
3286 {
3287 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3288 	u32 enable_mask;
3289 	unsigned long irqflags;
3290 
3291 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3292 
3293 	/* Unmask the interrupts that we always want on. */
3294 	dev_priv->irq_mask =
3295 		~(I915_ASLE_INTERRUPT |
3296 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3297 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3298 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3299 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3300 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3301 
3302 	enable_mask =
3303 		I915_ASLE_INTERRUPT |
3304 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3305 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3306 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3307 		I915_USER_INTERRUPT;
3308 
3309 	if (I915_HAS_HOTPLUG(dev)) {
3310 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3311 		POSTING_READ(PORT_HOTPLUG_EN);
3312 
3313 		/* Enable in IER... */
3314 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3315 		/* and unmask in IMR */
3316 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3317 	}
3318 
3319 	I915_WRITE(IMR, dev_priv->irq_mask);
3320 	I915_WRITE(IER, enable_mask);
3321 	POSTING_READ(IER);
3322 
3323 	i915_enable_asle_pipestat(dev);
3324 
3325 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3326 	 * just to make the assert_spin_locked check happy. */
3327 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3329 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3330 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3331 
3332 	return 0;
3333 }
3334 
3335 /*
3336  * Returns true when a page flip has completed.
3337  */
3338 static bool i915_handle_vblank(struct drm_device *dev,
3339 			       int plane, int pipe, u32 iir)
3340 {
3341 	drm_i915_private_t *dev_priv = dev->dev_private;
3342 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3343 
3344 	if (!drm_handle_vblank(dev, pipe))
3345 		return false;
3346 
3347 	if ((iir & flip_pending) == 0)
3348 		return false;
3349 
3350 	intel_prepare_page_flip(dev, plane);
3351 
3352 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3353 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3354 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3355 	 * the flip is completed (no longer pending). Since this doesn't raise
3356 	 * an interrupt per se, we watch for the change at vblank.
3357 	 */
3358 	if (I915_READ(ISR) & flip_pending)
3359 		return false;
3360 
3361 	intel_finish_page_flip(dev, pipe);
3362 
3363 	return true;
3364 }
3365 
3366 static irqreturn_t i915_irq_handler(int irq, void *arg)
3367 {
3368 	struct drm_device *dev = (struct drm_device *) arg;
3369 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3370 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3371 	unsigned long irqflags;
3372 	u32 flip_mask =
3373 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3374 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3375 	int pipe, ret = IRQ_NONE;
3376 
3377 	atomic_inc(&dev_priv->irq_received);
3378 
3379 	iir = I915_READ(IIR);
3380 	do {
3381 		bool irq_received = (iir & ~flip_mask) != 0;
3382 		bool blc_event = false;
3383 
3384 		/* Can't rely on pipestat interrupt bit in iir as it might
3385 		 * have been cleared after the pipestat interrupt was received.
3386 		 * It doesn't set the bit in iir again, but it still produces
3387 		 * interrupts (for non-MSI).
3388 		 */
3389 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3390 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3391 			i915_handle_error(dev, false);
3392 
3393 		for_each_pipe(pipe) {
3394 			int reg = PIPESTAT(pipe);
3395 			pipe_stats[pipe] = I915_READ(reg);
3396 
3397 			/* Clear the PIPE*STAT regs before the IIR */
3398 			if (pipe_stats[pipe] & 0x8000ffff) {
3399 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3400 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3401 							 pipe_name(pipe));
3402 				I915_WRITE(reg, pipe_stats[pipe]);
3403 				irq_received = true;
3404 			}
3405 		}
3406 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3407 
3408 		if (!irq_received)
3409 			break;
3410 
3411 		/* Consume port.  Then clear IIR or we'll miss events */
3412 		if ((I915_HAS_HOTPLUG(dev)) &&
3413 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3414 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3415 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3416 
3417 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3418 				  hotplug_status);
3419 
3420 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3421 
3422 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3423 			POSTING_READ(PORT_HOTPLUG_STAT);
3424 		}
3425 
3426 		I915_WRITE(IIR, iir & ~flip_mask);
3427 		new_iir = I915_READ(IIR); /* Flush posted writes */
3428 
3429 		if (iir & I915_USER_INTERRUPT)
3430 			notify_ring(dev, &dev_priv->ring[RCS]);
3431 
3432 		for_each_pipe(pipe) {
3433 			int plane = pipe;
3434 			if (HAS_FBC(dev))
3435 				plane = !plane;
3436 
3437 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3438 			    i915_handle_vblank(dev, plane, pipe, iir))
3439 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3440 
3441 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3442 				blc_event = true;
3443 
3444 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3445 				i9xx_pipe_crc_irq_handler(dev, pipe);
3446 		}
3447 
3448 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3449 			intel_opregion_asle_intr(dev);
3450 
3451 		/* With MSI, interrupts are only generated when iir
3452 		 * transitions from zero to nonzero.  If another bit got
3453 		 * set while we were handling the existing iir bits, then
3454 		 * we would never get another interrupt.
3455 		 *
3456 		 * This is fine on non-MSI as well, as if we hit this path
3457 		 * we avoid exiting the interrupt handler only to generate
3458 		 * another one.
3459 		 *
3460 		 * Note that for MSI this could cause a stray interrupt report
3461 		 * if an interrupt landed in the time between writing IIR and
3462 		 * the posting read.  This should be rare enough to never
3463 		 * trigger the 99% of 100,000 interrupts test for disabling
3464 		 * stray interrupts.
3465 		 */
3466 		ret = IRQ_HANDLED;
3467 		iir = new_iir;
3468 	} while (iir & ~flip_mask);
3469 
3470 	i915_update_dri1_breadcrumb(dev);
3471 
3472 	return ret;
3473 }
3474 
3475 static void i915_irq_uninstall(struct drm_device * dev)
3476 {
3477 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3478 	int pipe;
3479 
3480 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3481 
3482 	if (I915_HAS_HOTPLUG(dev)) {
3483 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3484 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3485 	}
3486 
3487 	I915_WRITE16(HWSTAM, 0xffff);
3488 	for_each_pipe(pipe) {
3489 		/* Clear enable bits; then clear status bits */
3490 		I915_WRITE(PIPESTAT(pipe), 0);
3491 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3492 	}
3493 	I915_WRITE(IMR, 0xffffffff);
3494 	I915_WRITE(IER, 0x0);
3495 
3496 	I915_WRITE(IIR, I915_READ(IIR));
3497 }
3498 
3499 static void i965_irq_preinstall(struct drm_device * dev)
3500 {
3501 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3502 	int pipe;
3503 
3504 	atomic_set(&dev_priv->irq_received, 0);
3505 
3506 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3507 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3508 
3509 	I915_WRITE(HWSTAM, 0xeffe);
3510 	for_each_pipe(pipe)
3511 		I915_WRITE(PIPESTAT(pipe), 0);
3512 	I915_WRITE(IMR, 0xffffffff);
3513 	I915_WRITE(IER, 0x0);
3514 	POSTING_READ(IER);
3515 }
3516 
3517 static int i965_irq_postinstall(struct drm_device *dev)
3518 {
3519 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3520 	u32 enable_mask;
3521 	u32 error_mask;
3522 	unsigned long irqflags;
3523 
3524 	/* Unmask the interrupts that we always want on. */
3525 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3526 			       I915_DISPLAY_PORT_INTERRUPT |
3527 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3528 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3529 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3530 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3531 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3532 
3533 	enable_mask = ~dev_priv->irq_mask;
3534 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3535 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3536 	enable_mask |= I915_USER_INTERRUPT;
3537 
3538 	if (IS_G4X(dev))
3539 		enable_mask |= I915_BSD_USER_INTERRUPT;
3540 
3541 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3542 	 * just to make the assert_spin_locked check happy. */
3543 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3544 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
3545 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3546 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3547 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3548 
3549 	/*
3550 	 * Enable some error detection, note the instruction error mask
3551 	 * bit is reserved, so we leave it masked.
3552 	 */
3553 	if (IS_G4X(dev)) {
3554 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3555 			       GM45_ERROR_MEM_PRIV |
3556 			       GM45_ERROR_CP_PRIV |
3557 			       I915_ERROR_MEMORY_REFRESH);
3558 	} else {
3559 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3560 			       I915_ERROR_MEMORY_REFRESH);
3561 	}
3562 	I915_WRITE(EMR, error_mask);
3563 
3564 	I915_WRITE(IMR, dev_priv->irq_mask);
3565 	I915_WRITE(IER, enable_mask);
3566 	POSTING_READ(IER);
3567 
3568 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3569 	POSTING_READ(PORT_HOTPLUG_EN);
3570 
3571 	i915_enable_asle_pipestat(dev);
3572 
3573 	return 0;
3574 }
3575 
3576 static void i915_hpd_irq_setup(struct drm_device *dev)
3577 {
3578 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3579 	struct drm_mode_config *mode_config = &dev->mode_config;
3580 	struct intel_encoder *intel_encoder;
3581 	u32 hotplug_en;
3582 
3583 	assert_spin_locked(&dev_priv->irq_lock);
3584 
3585 	if (I915_HAS_HOTPLUG(dev)) {
3586 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3587 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3588 		/* Note HDMI and DP share hotplug bits */
3589 		/* enable bits are the same for all generations */
3590 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3591 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3592 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3593 		/* Programming the CRT detection parameters tends
3594 		   to generate a spurious hotplug event about three
3595 		   seconds later.  So just do it once.
3596 		*/
3597 		if (IS_G4X(dev))
3598 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3599 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3600 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3601 
3602 		/* Ignore TV since it's buggy */
3603 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3604 	}
3605 }
3606 
3607 static irqreturn_t i965_irq_handler(int irq, void *arg)
3608 {
3609 	struct drm_device *dev = (struct drm_device *) arg;
3610 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3611 	u32 iir, new_iir;
3612 	u32 pipe_stats[I915_MAX_PIPES];
3613 	unsigned long irqflags;
3614 	int irq_received;
3615 	int ret = IRQ_NONE, pipe;
3616 	u32 flip_mask =
3617 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3618 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3619 
3620 	atomic_inc(&dev_priv->irq_received);
3621 
3622 	iir = I915_READ(IIR);
3623 
3624 	for (;;) {
3625 		bool blc_event = false;
3626 
3627 		irq_received = (iir & ~flip_mask) != 0;
3628 
3629 		/* Can't rely on pipestat interrupt bit in iir as it might
3630 		 * have been cleared after the pipestat interrupt was received.
3631 		 * It doesn't set the bit in iir again, but it still produces
3632 		 * interrupts (for non-MSI).
3633 		 */
3634 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3635 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3636 			i915_handle_error(dev, false);
3637 
3638 		for_each_pipe(pipe) {
3639 			int reg = PIPESTAT(pipe);
3640 			pipe_stats[pipe] = I915_READ(reg);
3641 
3642 			/*
3643 			 * Clear the PIPE*STAT regs before the IIR
3644 			 */
3645 			if (pipe_stats[pipe] & 0x8000ffff) {
3646 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3647 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3648 							 pipe_name(pipe));
3649 				I915_WRITE(reg, pipe_stats[pipe]);
3650 				irq_received = 1;
3651 			}
3652 		}
3653 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3654 
3655 		if (!irq_received)
3656 			break;
3657 
3658 		ret = IRQ_HANDLED;
3659 
3660 		/* Consume port.  Then clear IIR or we'll miss events */
3661 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3662 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3663 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3664 								  HOTPLUG_INT_STATUS_G4X :
3665 								  HOTPLUG_INT_STATUS_I915);
3666 
3667 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3668 				  hotplug_status);
3669 
3670 			intel_hpd_irq_handler(dev, hotplug_trigger,
3671 					      IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3672 
3673 			if (IS_G4X(dev) &&
3674 			    (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3675 				dp_aux_irq_handler(dev);
3676 
3677 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3678 			I915_READ(PORT_HOTPLUG_STAT);
3679 		}
3680 
3681 		I915_WRITE(IIR, iir & ~flip_mask);
3682 		new_iir = I915_READ(IIR); /* Flush posted writes */
3683 
3684 		if (iir & I915_USER_INTERRUPT)
3685 			notify_ring(dev, &dev_priv->ring[RCS]);
3686 		if (iir & I915_BSD_USER_INTERRUPT)
3687 			notify_ring(dev, &dev_priv->ring[VCS]);
3688 
3689 		for_each_pipe(pipe) {
3690 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3691 			    i915_handle_vblank(dev, pipe, pipe, iir))
3692 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3693 
3694 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3695 				blc_event = true;
3696 
3697 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3698 				i9xx_pipe_crc_irq_handler(dev, pipe);
3699 		}
3700 
3701 
3702 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3703 			intel_opregion_asle_intr(dev);
3704 
3705 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3706 			gmbus_irq_handler(dev);
3707 
3708 		/* With MSI, interrupts are only generated when iir
3709 		 * transitions from zero to nonzero.  If another bit got
3710 		 * set while we were handling the existing iir bits, then
3711 		 * we would never get another interrupt.
3712 		 *
3713 		 * This is fine on non-MSI as well, as if we hit this path
3714 		 * we avoid exiting the interrupt handler only to generate
3715 		 * another one.
3716 		 *
3717 		 * Note that for MSI this could cause a stray interrupt report
3718 		 * if an interrupt landed in the time between writing IIR and
3719 		 * the posting read.  This should be rare enough to never
3720 		 * trigger the 99% of 100,000 interrupts test for disabling
3721 		 * stray interrupts.
3722 		 */
3723 		iir = new_iir;
3724 	}
3725 
3726 	i915_update_dri1_breadcrumb(dev);
3727 
3728 	return ret;
3729 }
3730 
3731 static void i965_irq_uninstall(struct drm_device * dev)
3732 {
3733 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3734 	int pipe;
3735 
3736 	if (!dev_priv)
3737 		return;
3738 
3739 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3740 
3741 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3742 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3743 
3744 	I915_WRITE(HWSTAM, 0xffffffff);
3745 	for_each_pipe(pipe)
3746 		I915_WRITE(PIPESTAT(pipe), 0);
3747 	I915_WRITE(IMR, 0xffffffff);
3748 	I915_WRITE(IER, 0x0);
3749 
3750 	for_each_pipe(pipe)
3751 		I915_WRITE(PIPESTAT(pipe),
3752 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3753 	I915_WRITE(IIR, I915_READ(IIR));
3754 }
3755 
3756 static void i915_reenable_hotplug_timer_func(unsigned long data)
3757 {
3758 	drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3759 	struct drm_device *dev = dev_priv->dev;
3760 	struct drm_mode_config *mode_config = &dev->mode_config;
3761 	unsigned long irqflags;
3762 	int i;
3763 
3764 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3765 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3766 		struct drm_connector *connector;
3767 
3768 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3769 			continue;
3770 
3771 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3772 
3773 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3774 			struct intel_connector *intel_connector = to_intel_connector(connector);
3775 
3776 			if (intel_connector->encoder->hpd_pin == i) {
3777 				if (connector->polled != intel_connector->polled)
3778 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3779 							 drm_get_connector_name(connector));
3780 				connector->polled = intel_connector->polled;
3781 				if (!connector->polled)
3782 					connector->polled = DRM_CONNECTOR_POLL_HPD;
3783 			}
3784 		}
3785 	}
3786 	if (dev_priv->display.hpd_irq_setup)
3787 		dev_priv->display.hpd_irq_setup(dev);
3788 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3789 }
3790 
3791 void intel_irq_init(struct drm_device *dev)
3792 {
3793 	struct drm_i915_private *dev_priv = dev->dev_private;
3794 
3795 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3796 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3797 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3798 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3799 
3800 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3801 		    i915_hangcheck_elapsed,
3802 		    (unsigned long) dev);
3803 	setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3804 		    (unsigned long) dev_priv);
3805 
3806 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3807 
3808 	if (IS_GEN2(dev)) {
3809 		dev->max_vblank_count = 0;
3810 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3811 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3812 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3813 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3814 	} else {
3815 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
3816 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3817 	}
3818 
3819 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3820 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3821 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3822 	}
3823 
3824 	if (IS_VALLEYVIEW(dev)) {
3825 		dev->driver->irq_handler = valleyview_irq_handler;
3826 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
3827 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
3828 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
3829 		dev->driver->enable_vblank = valleyview_enable_vblank;
3830 		dev->driver->disable_vblank = valleyview_disable_vblank;
3831 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3832 	} else if (IS_GEN8(dev)) {
3833 		dev->driver->irq_handler = gen8_irq_handler;
3834 		dev->driver->irq_preinstall = gen8_irq_preinstall;
3835 		dev->driver->irq_postinstall = gen8_irq_postinstall;
3836 		dev->driver->irq_uninstall = gen8_irq_uninstall;
3837 		dev->driver->enable_vblank = gen8_enable_vblank;
3838 		dev->driver->disable_vblank = gen8_disable_vblank;
3839 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3840 	} else if (HAS_PCH_SPLIT(dev)) {
3841 		dev->driver->irq_handler = ironlake_irq_handler;
3842 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
3843 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
3844 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
3845 		dev->driver->enable_vblank = ironlake_enable_vblank;
3846 		dev->driver->disable_vblank = ironlake_disable_vblank;
3847 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3848 	} else {
3849 		if (INTEL_INFO(dev)->gen == 2) {
3850 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
3851 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
3852 			dev->driver->irq_handler = i8xx_irq_handler;
3853 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
3854 		} else if (INTEL_INFO(dev)->gen == 3) {
3855 			dev->driver->irq_preinstall = i915_irq_preinstall;
3856 			dev->driver->irq_postinstall = i915_irq_postinstall;
3857 			dev->driver->irq_uninstall = i915_irq_uninstall;
3858 			dev->driver->irq_handler = i915_irq_handler;
3859 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3860 		} else {
3861 			dev->driver->irq_preinstall = i965_irq_preinstall;
3862 			dev->driver->irq_postinstall = i965_irq_postinstall;
3863 			dev->driver->irq_uninstall = i965_irq_uninstall;
3864 			dev->driver->irq_handler = i965_irq_handler;
3865 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3866 		}
3867 		dev->driver->enable_vblank = i915_enable_vblank;
3868 		dev->driver->disable_vblank = i915_disable_vblank;
3869 	}
3870 }
3871 
3872 void intel_hpd_init(struct drm_device *dev)
3873 {
3874 	struct drm_i915_private *dev_priv = dev->dev_private;
3875 	struct drm_mode_config *mode_config = &dev->mode_config;
3876 	struct drm_connector *connector;
3877 	unsigned long irqflags;
3878 	int i;
3879 
3880 	for (i = 1; i < HPD_NUM_PINS; i++) {
3881 		dev_priv->hpd_stats[i].hpd_cnt = 0;
3882 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3883 	}
3884 	list_for_each_entry(connector, &mode_config->connector_list, head) {
3885 		struct intel_connector *intel_connector = to_intel_connector(connector);
3886 		connector->polled = intel_connector->polled;
3887 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3888 			connector->polled = DRM_CONNECTOR_POLL_HPD;
3889 	}
3890 
3891 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3892 	 * just to make the assert_spin_locked checks happy. */
3893 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3894 	if (dev_priv->display.hpd_irq_setup)
3895 		dev_priv->display.hpd_irq_setup(dev);
3896 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3897 }
3898 
3899 /* Disable interrupts so we can allow Package C8+. */
3900 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3901 {
3902 	struct drm_i915_private *dev_priv = dev->dev_private;
3903 	unsigned long irqflags;
3904 
3905 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3906 
3907 	dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3908 	dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3909 	dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3910 	dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3911 	dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3912 
3913 	ironlake_disable_display_irq(dev_priv, 0xffffffff);
3914 	ibx_disable_display_interrupt(dev_priv, 0xffffffff);
3915 	ilk_disable_gt_irq(dev_priv, 0xffffffff);
3916 	snb_disable_pm_irq(dev_priv, 0xffffffff);
3917 
3918 	dev_priv->pc8.irqs_disabled = true;
3919 
3920 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3921 }
3922 
3923 /* Restore interrupts so we can recover from Package C8+. */
3924 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3925 {
3926 	struct drm_i915_private *dev_priv = dev->dev_private;
3927 	unsigned long irqflags;
3928 	uint32_t val;
3929 
3930 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3931 
3932 	val = I915_READ(DEIMR);
3933 	WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
3934 
3935 	val = I915_READ(SDEIMR);
3936 	WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
3937 
3938 	val = I915_READ(GTIMR);
3939 	WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
3940 
3941 	val = I915_READ(GEN6_PMIMR);
3942 	WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
3943 
3944 	dev_priv->pc8.irqs_disabled = false;
3945 
3946 	ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3947 	ibx_enable_display_interrupt(dev_priv, ~dev_priv->pc8.regsave.sdeimr);
3948 	ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3949 	snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3950 	I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3951 
3952 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3953 }
3954