xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 5bd8e16d)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38 
39 static const u32 hpd_ibx[] = {
40 	[HPD_CRT] = SDE_CRT_HOTPLUG,
41 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46 
47 static const u32 hpd_cpt[] = {
48 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54 
55 static const u32 hpd_mask_i915[] = {
56 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63 
64 static const u32 hpd_status_gen4[] = {
65 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72 
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81 
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 	assert_spin_locked(&dev_priv->irq_lock);
87 
88 	if (dev_priv->pc8.irqs_disabled) {
89 		WARN(1, "IRQs disabled\n");
90 		dev_priv->pc8.regsave.deimr &= ~mask;
91 		return;
92 	}
93 
94 	if ((dev_priv->irq_mask & mask) != 0) {
95 		dev_priv->irq_mask &= ~mask;
96 		I915_WRITE(DEIMR, dev_priv->irq_mask);
97 		POSTING_READ(DEIMR);
98 	}
99 }
100 
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 	assert_spin_locked(&dev_priv->irq_lock);
105 
106 	if (dev_priv->pc8.irqs_disabled) {
107 		WARN(1, "IRQs disabled\n");
108 		dev_priv->pc8.regsave.deimr |= mask;
109 		return;
110 	}
111 
112 	if ((dev_priv->irq_mask & mask) != mask) {
113 		dev_priv->irq_mask |= mask;
114 		I915_WRITE(DEIMR, dev_priv->irq_mask);
115 		POSTING_READ(DEIMR);
116 	}
117 }
118 
119 /**
120  * ilk_update_gt_irq - update GTIMR
121  * @dev_priv: driver private
122  * @interrupt_mask: mask of interrupt bits to update
123  * @enabled_irq_mask: mask of interrupt bits to enable
124  */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 			      uint32_t interrupt_mask,
127 			      uint32_t enabled_irq_mask)
128 {
129 	assert_spin_locked(&dev_priv->irq_lock);
130 
131 	if (dev_priv->pc8.irqs_disabled) {
132 		WARN(1, "IRQs disabled\n");
133 		dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 		dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 						interrupt_mask);
136 		return;
137 	}
138 
139 	dev_priv->gt_irq_mask &= ~interrupt_mask;
140 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 	POSTING_READ(GTIMR);
143 }
144 
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 	ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149 
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 	ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154 
155 /**
156   * snb_update_pm_irq - update GEN6_PMIMR
157   * @dev_priv: driver private
158   * @interrupt_mask: mask of interrupt bits to update
159   * @enabled_irq_mask: mask of interrupt bits to enable
160   */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 			      uint32_t interrupt_mask,
163 			      uint32_t enabled_irq_mask)
164 {
165 	uint32_t new_val;
166 
167 	assert_spin_locked(&dev_priv->irq_lock);
168 
169 	if (dev_priv->pc8.irqs_disabled) {
170 		WARN(1, "IRQs disabled\n");
171 		dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 		dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 						     interrupt_mask);
174 		return;
175 	}
176 
177 	new_val = dev_priv->pm_irq_mask;
178 	new_val &= ~interrupt_mask;
179 	new_val |= (~enabled_irq_mask & interrupt_mask);
180 
181 	if (new_val != dev_priv->pm_irq_mask) {
182 		dev_priv->pm_irq_mask = new_val;
183 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 		POSTING_READ(GEN6_PMIMR);
185 	}
186 }
187 
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 	snb_update_pm_irq(dev_priv, mask, mask);
191 }
192 
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 	snb_update_pm_irq(dev_priv, mask, 0);
196 }
197 
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 	struct drm_i915_private *dev_priv = dev->dev_private;
201 	struct intel_crtc *crtc;
202 	enum pipe pipe;
203 
204 	assert_spin_locked(&dev_priv->irq_lock);
205 
206 	for_each_pipe(pipe) {
207 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208 
209 		if (crtc->cpu_fifo_underrun_disabled)
210 			return false;
211 	}
212 
213 	return true;
214 }
215 
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 	struct drm_i915_private *dev_priv = dev->dev_private;
219 	enum pipe pipe;
220 	struct intel_crtc *crtc;
221 
222 	assert_spin_locked(&dev_priv->irq_lock);
223 
224 	for_each_pipe(pipe) {
225 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226 
227 		if (crtc->pch_fifo_underrun_disabled)
228 			return false;
229 	}
230 
231 	return true;
232 }
233 
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 						 enum pipe pipe, bool enable)
236 {
237 	struct drm_i915_private *dev_priv = dev->dev_private;
238 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 					  DE_PIPEB_FIFO_UNDERRUN;
240 
241 	if (enable)
242 		ironlake_enable_display_irq(dev_priv, bit);
243 	else
244 		ironlake_disable_display_irq(dev_priv, bit);
245 }
246 
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 						  enum pipe pipe, bool enable)
249 {
250 	struct drm_i915_private *dev_priv = dev->dev_private;
251 	if (enable) {
252 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253 
254 		if (!ivb_can_enable_err_int(dev))
255 			return;
256 
257 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 	} else {
259 		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260 
261 		/* Change the state _after_ we've read out the current one. */
262 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263 
264 		if (!was_enabled &&
265 		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 				      pipe_name(pipe));
268 		}
269 	}
270 }
271 
272 /**
273  * ibx_display_interrupt_update - update SDEIMR
274  * @dev_priv: driver private
275  * @interrupt_mask: mask of interrupt bits to update
276  * @enabled_irq_mask: mask of interrupt bits to enable
277  */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 					 uint32_t interrupt_mask,
280 					 uint32_t enabled_irq_mask)
281 {
282 	uint32_t sdeimr = I915_READ(SDEIMR);
283 	sdeimr &= ~interrupt_mask;
284 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
285 
286 	assert_spin_locked(&dev_priv->irq_lock);
287 
288 	if (dev_priv->pc8.irqs_disabled &&
289 	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 		WARN(1, "IRQs disabled\n");
291 		dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 		dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 						 interrupt_mask);
294 		return;
295 	}
296 
297 	I915_WRITE(SDEIMR, sdeimr);
298 	POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 	ibx_display_interrupt_update((dev_priv), (bits), 0)
304 
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 					    enum transcoder pch_transcoder,
307 					    bool enable)
308 {
309 	struct drm_i915_private *dev_priv = dev->dev_private;
310 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312 
313 	if (enable)
314 		ibx_enable_display_interrupt(dev_priv, bit);
315 	else
316 		ibx_disable_display_interrupt(dev_priv, bit);
317 }
318 
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 					    enum transcoder pch_transcoder,
321 					    bool enable)
322 {
323 	struct drm_i915_private *dev_priv = dev->dev_private;
324 
325 	if (enable) {
326 		I915_WRITE(SERR_INT,
327 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328 
329 		if (!cpt_can_enable_serr_int(dev))
330 			return;
331 
332 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 	} else {
334 		uint32_t tmp = I915_READ(SERR_INT);
335 		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336 
337 		/* Change the state _after_ we've read out the current one. */
338 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339 
340 		if (!was_enabled &&
341 		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 				      transcoder_name(pch_transcoder));
344 		}
345 	}
346 }
347 
348 /**
349  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350  * @dev: drm device
351  * @pipe: pipe
352  * @enable: true if we want to report FIFO underrun errors, false otherwise
353  *
354  * This function makes us disable or enable CPU fifo underruns for a specific
355  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356  * reporting for one pipe may also disable all the other CPU error interruts for
357  * the other pipes, due to the fact that there's just one interrupt mask/enable
358  * bit for all the pipes.
359  *
360  * Returns the previous state of underrun reporting.
361  */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 					   enum pipe pipe, bool enable)
364 {
365 	struct drm_i915_private *dev_priv = dev->dev_private;
366 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 	unsigned long flags;
369 	bool ret;
370 
371 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
372 
373 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
374 
375 	if (enable == ret)
376 		goto done;
377 
378 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
379 
380 	if (IS_GEN5(dev) || IS_GEN6(dev))
381 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 	else if (IS_GEN7(dev))
383 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384 
385 done:
386 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 	return ret;
388 }
389 
390 /**
391  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392  * @dev: drm device
393  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394  * @enable: true if we want to report FIFO underrun errors, false otherwise
395  *
396  * This function makes us disable or enable PCH fifo underruns for a specific
397  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398  * underrun reporting for one transcoder may also disable all the other PCH
399  * error interruts for the other transcoders, due to the fact that there's just
400  * one interrupt mask/enable bit for all the transcoders.
401  *
402  * Returns the previous state of underrun reporting.
403  */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 					   enum transcoder pch_transcoder,
406 					   bool enable)
407 {
408 	struct drm_i915_private *dev_priv = dev->dev_private;
409 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 	unsigned long flags;
412 	bool ret;
413 
414 	/*
415 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 	 * has only one pch transcoder A that all pipes can use. To avoid racy
417 	 * pch transcoder -> pipe lookups from interrupt code simply store the
418 	 * underrun statistics in crtc A. Since we never expose this anywhere
419 	 * nor use it outside of the fifo underrun code here using the "wrong"
420 	 * crtc on LPT won't cause issues.
421 	 */
422 
423 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
424 
425 	ret = !intel_crtc->pch_fifo_underrun_disabled;
426 
427 	if (enable == ret)
428 		goto done;
429 
430 	intel_crtc->pch_fifo_underrun_disabled = !enable;
431 
432 	if (HAS_PCH_IBX(dev))
433 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 	else
435 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436 
437 done:
438 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 	return ret;
440 }
441 
442 
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 	u32 reg = PIPESTAT(pipe);
447 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
448 
449 	assert_spin_locked(&dev_priv->irq_lock);
450 
451 	if ((pipestat & mask) == mask)
452 		return;
453 
454 	/* Enable the interrupt, clear any pending status */
455 	pipestat |= mask | (mask >> 16);
456 	I915_WRITE(reg, pipestat);
457 	POSTING_READ(reg);
458 }
459 
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 	u32 reg = PIPESTAT(pipe);
464 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
465 
466 	assert_spin_locked(&dev_priv->irq_lock);
467 
468 	if ((pipestat & mask) == 0)
469 		return;
470 
471 	pipestat &= ~mask;
472 	I915_WRITE(reg, pipestat);
473 	POSTING_READ(reg);
474 }
475 
476 /**
477  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478  */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 	drm_i915_private_t *dev_priv = dev->dev_private;
482 	unsigned long irqflags;
483 
484 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 		return;
486 
487 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488 
489 	i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 	if (INTEL_INFO(dev)->gen >= 4)
491 		i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492 
493 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495 
496 /**
497  * i915_pipe_enabled - check if a pipe is enabled
498  * @dev: DRM device
499  * @pipe: pipe to check
500  *
501  * Reading certain registers when the pipe is disabled can hang the chip.
502  * Use this routine to make sure the PLL is running and the pipe is active
503  * before reading such registers if unsure.
504  */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509 
510 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 		/* Locking is horribly broken here, but whatever. */
512 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514 
515 		return intel_crtc->active;
516 	} else {
517 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 	}
519 }
520 
521 /* Called from drm generic code, passed a 'crtc', which
522  * we use as a pipe index
523  */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 	unsigned long high_frame;
528 	unsigned long low_frame;
529 	u32 high1, high2, low;
530 
531 	if (!i915_pipe_enabled(dev, pipe)) {
532 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 				"pipe %c\n", pipe_name(pipe));
534 		return 0;
535 	}
536 
537 	high_frame = PIPEFRAME(pipe);
538 	low_frame = PIPEFRAMEPIXEL(pipe);
539 
540 	/*
541 	 * High & low register fields aren't synchronized, so make sure
542 	 * we get a low value that's stable across two reads of the high
543 	 * register.
544 	 */
545 	do {
546 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547 		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
548 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549 	} while (high1 != high2);
550 
551 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
552 	low >>= PIPE_FRAME_LOW_SHIFT;
553 	return (high1 << 8) | low;
554 }
555 
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559 	int reg = PIPE_FRMCOUNT_GM45(pipe);
560 
561 	if (!i915_pipe_enabled(dev, pipe)) {
562 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563 				 "pipe %c\n", pipe_name(pipe));
564 		return 0;
565 	}
566 
567 	return I915_READ(reg);
568 }
569 
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571 			     int *vpos, int *hpos)
572 {
573 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574 	u32 vbl = 0, position = 0;
575 	int vbl_start, vbl_end, htotal, vtotal;
576 	bool in_vbl = true;
577 	int ret = 0;
578 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579 								      pipe);
580 
581 	if (!i915_pipe_enabled(dev, pipe)) {
582 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583 				 "pipe %c\n", pipe_name(pipe));
584 		return 0;
585 	}
586 
587 	/* Get vtotal. */
588 	vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589 
590 	if (INTEL_INFO(dev)->gen >= 4) {
591 		/* No obvious pixelcount register. Only query vertical
592 		 * scanout position from Display scan line register.
593 		 */
594 		position = I915_READ(PIPEDSL(pipe));
595 
596 		/* Decode into vertical scanout position. Don't have
597 		 * horizontal scanout position.
598 		 */
599 		*vpos = position & 0x1fff;
600 		*hpos = 0;
601 	} else {
602 		/* Have access to pixelcount since start of frame.
603 		 * We can split this into vertical and horizontal
604 		 * scanout position.
605 		 */
606 		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607 
608 		htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609 		*vpos = position / htotal;
610 		*hpos = position - (*vpos * htotal);
611 	}
612 
613 	/* Query vblank area. */
614 	vbl = I915_READ(VBLANK(cpu_transcoder));
615 
616 	/* Test position against vblank region. */
617 	vbl_start = vbl & 0x1fff;
618 	vbl_end = (vbl >> 16) & 0x1fff;
619 
620 	if ((*vpos < vbl_start) || (*vpos > vbl_end))
621 		in_vbl = false;
622 
623 	/* Inside "upper part" of vblank area? Apply corrective offset: */
624 	if (in_vbl && (*vpos >= vbl_start))
625 		*vpos = *vpos - vtotal;
626 
627 	/* Readouts valid? */
628 	if (vbl > 0)
629 		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630 
631 	/* In vblank? */
632 	if (in_vbl)
633 		ret |= DRM_SCANOUTPOS_INVBL;
634 
635 	return ret;
636 }
637 
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639 			      int *max_error,
640 			      struct timeval *vblank_time,
641 			      unsigned flags)
642 {
643 	struct drm_crtc *crtc;
644 
645 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646 		DRM_ERROR("Invalid crtc %d\n", pipe);
647 		return -EINVAL;
648 	}
649 
650 	/* Get drm_crtc to timestamp: */
651 	crtc = intel_get_crtc_for_pipe(dev, pipe);
652 	if (crtc == NULL) {
653 		DRM_ERROR("Invalid crtc %d\n", pipe);
654 		return -EINVAL;
655 	}
656 
657 	if (!crtc->enabled) {
658 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659 		return -EBUSY;
660 	}
661 
662 	/* Helper routine in DRM core does all the work: */
663 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664 						     vblank_time, flags,
665 						     crtc);
666 }
667 
668 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
669 {
670 	enum drm_connector_status old_status;
671 
672 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
673 	old_status = connector->status;
674 
675 	connector->status = connector->funcs->detect(connector, false);
676 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
677 		      connector->base.id,
678 		      drm_get_connector_name(connector),
679 		      old_status, connector->status);
680 	return (old_status != connector->status);
681 }
682 
683 /*
684  * Handle hotplug events outside the interrupt handler proper.
685  */
686 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
687 
688 static void i915_hotplug_work_func(struct work_struct *work)
689 {
690 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
691 						    hotplug_work);
692 	struct drm_device *dev = dev_priv->dev;
693 	struct drm_mode_config *mode_config = &dev->mode_config;
694 	struct intel_connector *intel_connector;
695 	struct intel_encoder *intel_encoder;
696 	struct drm_connector *connector;
697 	unsigned long irqflags;
698 	bool hpd_disabled = false;
699 	bool changed = false;
700 	u32 hpd_event_bits;
701 
702 	/* HPD irq before everything is fully set up. */
703 	if (!dev_priv->enable_hotplug_processing)
704 		return;
705 
706 	mutex_lock(&mode_config->mutex);
707 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
708 
709 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
710 
711 	hpd_event_bits = dev_priv->hpd_event_bits;
712 	dev_priv->hpd_event_bits = 0;
713 	list_for_each_entry(connector, &mode_config->connector_list, head) {
714 		intel_connector = to_intel_connector(connector);
715 		intel_encoder = intel_connector->encoder;
716 		if (intel_encoder->hpd_pin > HPD_NONE &&
717 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
718 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
719 			DRM_INFO("HPD interrupt storm detected on connector %s: "
720 				 "switching from hotplug detection to polling\n",
721 				drm_get_connector_name(connector));
722 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
723 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
724 				| DRM_CONNECTOR_POLL_DISCONNECT;
725 			hpd_disabled = true;
726 		}
727 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
728 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
729 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
730 		}
731 	}
732 	 /* if there were no outputs to poll, poll was disabled,
733 	  * therefore make sure it's enabled when disabling HPD on
734 	  * some connectors */
735 	if (hpd_disabled) {
736 		drm_kms_helper_poll_enable(dev);
737 		mod_timer(&dev_priv->hotplug_reenable_timer,
738 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
739 	}
740 
741 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
742 
743 	list_for_each_entry(connector, &mode_config->connector_list, head) {
744 		intel_connector = to_intel_connector(connector);
745 		intel_encoder = intel_connector->encoder;
746 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
747 			if (intel_encoder->hot_plug)
748 				intel_encoder->hot_plug(intel_encoder);
749 			if (intel_hpd_irq_event(dev, connector))
750 				changed = true;
751 		}
752 	}
753 	mutex_unlock(&mode_config->mutex);
754 
755 	if (changed)
756 		drm_kms_helper_hotplug_event(dev);
757 }
758 
759 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
760 {
761 	drm_i915_private_t *dev_priv = dev->dev_private;
762 	u32 busy_up, busy_down, max_avg, min_avg;
763 	u8 new_delay;
764 
765 	spin_lock(&mchdev_lock);
766 
767 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
768 
769 	new_delay = dev_priv->ips.cur_delay;
770 
771 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
772 	busy_up = I915_READ(RCPREVBSYTUPAVG);
773 	busy_down = I915_READ(RCPREVBSYTDNAVG);
774 	max_avg = I915_READ(RCBMAXAVG);
775 	min_avg = I915_READ(RCBMINAVG);
776 
777 	/* Handle RCS change request from hw */
778 	if (busy_up > max_avg) {
779 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
780 			new_delay = dev_priv->ips.cur_delay - 1;
781 		if (new_delay < dev_priv->ips.max_delay)
782 			new_delay = dev_priv->ips.max_delay;
783 	} else if (busy_down < min_avg) {
784 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
785 			new_delay = dev_priv->ips.cur_delay + 1;
786 		if (new_delay > dev_priv->ips.min_delay)
787 			new_delay = dev_priv->ips.min_delay;
788 	}
789 
790 	if (ironlake_set_drps(dev, new_delay))
791 		dev_priv->ips.cur_delay = new_delay;
792 
793 	spin_unlock(&mchdev_lock);
794 
795 	return;
796 }
797 
798 static void notify_ring(struct drm_device *dev,
799 			struct intel_ring_buffer *ring)
800 {
801 	if (ring->obj == NULL)
802 		return;
803 
804 	trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
805 
806 	wake_up_all(&ring->irq_queue);
807 	i915_queue_hangcheck(dev);
808 }
809 
810 static void gen6_pm_rps_work(struct work_struct *work)
811 {
812 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
813 						    rps.work);
814 	u32 pm_iir;
815 	u8 new_delay;
816 
817 	spin_lock_irq(&dev_priv->irq_lock);
818 	pm_iir = dev_priv->rps.pm_iir;
819 	dev_priv->rps.pm_iir = 0;
820 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
821 	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
822 	spin_unlock_irq(&dev_priv->irq_lock);
823 
824 	/* Make sure we didn't queue anything we're not going to process. */
825 	WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
826 
827 	if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
828 		return;
829 
830 	mutex_lock(&dev_priv->rps.hw_lock);
831 
832 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
833 		new_delay = dev_priv->rps.cur_delay + 1;
834 
835 		/*
836 		 * For better performance, jump directly
837 		 * to RPe if we're below it.
838 		 */
839 		if (IS_VALLEYVIEW(dev_priv->dev) &&
840 		    dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
841 			new_delay = dev_priv->rps.rpe_delay;
842 	} else
843 		new_delay = dev_priv->rps.cur_delay - 1;
844 
845 	/* sysfs frequency interfaces may have snuck in while servicing the
846 	 * interrupt
847 	 */
848 	if (new_delay >= dev_priv->rps.min_delay &&
849 	    new_delay <= dev_priv->rps.max_delay) {
850 		if (IS_VALLEYVIEW(dev_priv->dev))
851 			valleyview_set_rps(dev_priv->dev, new_delay);
852 		else
853 			gen6_set_rps(dev_priv->dev, new_delay);
854 	}
855 
856 	if (IS_VALLEYVIEW(dev_priv->dev)) {
857 		/*
858 		 * On VLV, when we enter RC6 we may not be at the minimum
859 		 * voltage level, so arm a timer to check.  It should only
860 		 * fire when there's activity or once after we've entered
861 		 * RC6, and then won't be re-armed until the next RPS interrupt.
862 		 */
863 		mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
864 				 msecs_to_jiffies(100));
865 	}
866 
867 	mutex_unlock(&dev_priv->rps.hw_lock);
868 }
869 
870 
871 /**
872  * ivybridge_parity_work - Workqueue called when a parity error interrupt
873  * occurred.
874  * @work: workqueue struct
875  *
876  * Doesn't actually do anything except notify userspace. As a consequence of
877  * this event, userspace should try to remap the bad rows since statistically
878  * it is likely the same row is more likely to go bad again.
879  */
880 static void ivybridge_parity_work(struct work_struct *work)
881 {
882 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
883 						    l3_parity.error_work);
884 	u32 error_status, row, bank, subbank;
885 	char *parity_event[5];
886 	uint32_t misccpctl;
887 	unsigned long flags;
888 
889 	/* We must turn off DOP level clock gating to access the L3 registers.
890 	 * In order to prevent a get/put style interface, acquire struct mutex
891 	 * any time we access those registers.
892 	 */
893 	mutex_lock(&dev_priv->dev->struct_mutex);
894 
895 	misccpctl = I915_READ(GEN7_MISCCPCTL);
896 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
897 	POSTING_READ(GEN7_MISCCPCTL);
898 
899 	error_status = I915_READ(GEN7_L3CDERRST1);
900 	row = GEN7_PARITY_ERROR_ROW(error_status);
901 	bank = GEN7_PARITY_ERROR_BANK(error_status);
902 	subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
903 
904 	I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
905 				    GEN7_L3CDERRST1_ENABLE);
906 	POSTING_READ(GEN7_L3CDERRST1);
907 
908 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
909 
910 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
911 	ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
912 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
913 
914 	mutex_unlock(&dev_priv->dev->struct_mutex);
915 
916 	parity_event[0] = I915_L3_PARITY_UEVENT "=1";
917 	parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
918 	parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
919 	parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
920 	parity_event[4] = NULL;
921 
922 	kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
923 			   KOBJ_CHANGE, parity_event);
924 
925 	DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
926 		  row, bank, subbank);
927 
928 	kfree(parity_event[3]);
929 	kfree(parity_event[2]);
930 	kfree(parity_event[1]);
931 }
932 
933 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
934 {
935 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
936 
937 	if (!HAS_L3_GPU_CACHE(dev))
938 		return;
939 
940 	spin_lock(&dev_priv->irq_lock);
941 	ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
942 	spin_unlock(&dev_priv->irq_lock);
943 
944 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
945 }
946 
947 static void ilk_gt_irq_handler(struct drm_device *dev,
948 			       struct drm_i915_private *dev_priv,
949 			       u32 gt_iir)
950 {
951 	if (gt_iir &
952 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
953 		notify_ring(dev, &dev_priv->ring[RCS]);
954 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
955 		notify_ring(dev, &dev_priv->ring[VCS]);
956 }
957 
958 static void snb_gt_irq_handler(struct drm_device *dev,
959 			       struct drm_i915_private *dev_priv,
960 			       u32 gt_iir)
961 {
962 
963 	if (gt_iir &
964 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
965 		notify_ring(dev, &dev_priv->ring[RCS]);
966 	if (gt_iir & GT_BSD_USER_INTERRUPT)
967 		notify_ring(dev, &dev_priv->ring[VCS]);
968 	if (gt_iir & GT_BLT_USER_INTERRUPT)
969 		notify_ring(dev, &dev_priv->ring[BCS]);
970 
971 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
972 		      GT_BSD_CS_ERROR_INTERRUPT |
973 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
974 		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
975 		i915_handle_error(dev, false);
976 	}
977 
978 	if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
979 		ivybridge_parity_error_irq_handler(dev);
980 }
981 
982 #define HPD_STORM_DETECT_PERIOD 1000
983 #define HPD_STORM_THRESHOLD 5
984 
985 static inline void intel_hpd_irq_handler(struct drm_device *dev,
986 					 u32 hotplug_trigger,
987 					 const u32 *hpd)
988 {
989 	drm_i915_private_t *dev_priv = dev->dev_private;
990 	int i;
991 	bool storm_detected = false;
992 
993 	if (!hotplug_trigger)
994 		return;
995 
996 	spin_lock(&dev_priv->irq_lock);
997 	for (i = 1; i < HPD_NUM_PINS; i++) {
998 
999 		WARN(((hpd[i] & hotplug_trigger) &&
1000 		      dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1001 		     "Received HPD interrupt although disabled\n");
1002 
1003 		if (!(hpd[i] & hotplug_trigger) ||
1004 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1005 			continue;
1006 
1007 		dev_priv->hpd_event_bits |= (1 << i);
1008 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1009 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1010 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1011 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1012 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1013 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1014 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1015 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1016 			dev_priv->hpd_event_bits &= ~(1 << i);
1017 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1018 			storm_detected = true;
1019 		} else {
1020 			dev_priv->hpd_stats[i].hpd_cnt++;
1021 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1022 				      dev_priv->hpd_stats[i].hpd_cnt);
1023 		}
1024 	}
1025 
1026 	if (storm_detected)
1027 		dev_priv->display.hpd_irq_setup(dev);
1028 	spin_unlock(&dev_priv->irq_lock);
1029 
1030 	/*
1031 	 * Our hotplug handler can grab modeset locks (by calling down into the
1032 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1033 	 * queue for otherwise the flush_work in the pageflip code will
1034 	 * deadlock.
1035 	 */
1036 	schedule_work(&dev_priv->hotplug_work);
1037 }
1038 
1039 static void gmbus_irq_handler(struct drm_device *dev)
1040 {
1041 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1042 
1043 	wake_up_all(&dev_priv->gmbus_wait_queue);
1044 }
1045 
1046 static void dp_aux_irq_handler(struct drm_device *dev)
1047 {
1048 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1049 
1050 	wake_up_all(&dev_priv->gmbus_wait_queue);
1051 }
1052 
1053 /* The RPS events need forcewake, so we add them to a work queue and mask their
1054  * IMR bits until the work is done. Other interrupts can be processed without
1055  * the work queue. */
1056 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1057 {
1058 	if (pm_iir & GEN6_PM_RPS_EVENTS) {
1059 		spin_lock(&dev_priv->irq_lock);
1060 		dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1061 		snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1062 		spin_unlock(&dev_priv->irq_lock);
1063 
1064 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1065 	}
1066 
1067 	if (HAS_VEBOX(dev_priv->dev)) {
1068 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1069 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1070 
1071 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1072 			DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1073 			i915_handle_error(dev_priv->dev, false);
1074 		}
1075 	}
1076 }
1077 
1078 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1079 {
1080 	struct drm_device *dev = (struct drm_device *) arg;
1081 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1082 	u32 iir, gt_iir, pm_iir;
1083 	irqreturn_t ret = IRQ_NONE;
1084 	unsigned long irqflags;
1085 	int pipe;
1086 	u32 pipe_stats[I915_MAX_PIPES];
1087 
1088 	atomic_inc(&dev_priv->irq_received);
1089 
1090 	while (true) {
1091 		iir = I915_READ(VLV_IIR);
1092 		gt_iir = I915_READ(GTIIR);
1093 		pm_iir = I915_READ(GEN6_PMIIR);
1094 
1095 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1096 			goto out;
1097 
1098 		ret = IRQ_HANDLED;
1099 
1100 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1101 
1102 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1103 		for_each_pipe(pipe) {
1104 			int reg = PIPESTAT(pipe);
1105 			pipe_stats[pipe] = I915_READ(reg);
1106 
1107 			/*
1108 			 * Clear the PIPE*STAT regs before the IIR
1109 			 */
1110 			if (pipe_stats[pipe] & 0x8000ffff) {
1111 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1112 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1113 							 pipe_name(pipe));
1114 				I915_WRITE(reg, pipe_stats[pipe]);
1115 			}
1116 		}
1117 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1118 
1119 		for_each_pipe(pipe) {
1120 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1121 				drm_handle_vblank(dev, pipe);
1122 
1123 			if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1124 				intel_prepare_page_flip(dev, pipe);
1125 				intel_finish_page_flip(dev, pipe);
1126 			}
1127 		}
1128 
1129 		/* Consume port.  Then clear IIR or we'll miss events */
1130 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1131 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1132 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1133 
1134 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1135 					 hotplug_status);
1136 
1137 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1138 
1139 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1140 			I915_READ(PORT_HOTPLUG_STAT);
1141 		}
1142 
1143 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1144 			gmbus_irq_handler(dev);
1145 
1146 		if (pm_iir)
1147 			gen6_rps_irq_handler(dev_priv, pm_iir);
1148 
1149 		I915_WRITE(GTIIR, gt_iir);
1150 		I915_WRITE(GEN6_PMIIR, pm_iir);
1151 		I915_WRITE(VLV_IIR, iir);
1152 	}
1153 
1154 out:
1155 	return ret;
1156 }
1157 
1158 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1159 {
1160 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1161 	int pipe;
1162 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1163 
1164 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1165 
1166 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1167 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1168 			       SDE_AUDIO_POWER_SHIFT);
1169 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1170 				 port_name(port));
1171 	}
1172 
1173 	if (pch_iir & SDE_AUX_MASK)
1174 		dp_aux_irq_handler(dev);
1175 
1176 	if (pch_iir & SDE_GMBUS)
1177 		gmbus_irq_handler(dev);
1178 
1179 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1180 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1181 
1182 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1183 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1184 
1185 	if (pch_iir & SDE_POISON)
1186 		DRM_ERROR("PCH poison interrupt\n");
1187 
1188 	if (pch_iir & SDE_FDI_MASK)
1189 		for_each_pipe(pipe)
1190 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1191 					 pipe_name(pipe),
1192 					 I915_READ(FDI_RX_IIR(pipe)));
1193 
1194 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1195 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1196 
1197 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1198 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1199 
1200 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1201 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1202 							  false))
1203 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1204 
1205 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1206 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1207 							  false))
1208 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1209 }
1210 
1211 static void ivb_err_int_handler(struct drm_device *dev)
1212 {
1213 	struct drm_i915_private *dev_priv = dev->dev_private;
1214 	u32 err_int = I915_READ(GEN7_ERR_INT);
1215 
1216 	if (err_int & ERR_INT_POISON)
1217 		DRM_ERROR("Poison interrupt\n");
1218 
1219 	if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1220 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1221 			DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1222 
1223 	if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1224 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1225 			DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1226 
1227 	if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1228 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1229 			DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1230 
1231 	I915_WRITE(GEN7_ERR_INT, err_int);
1232 }
1233 
1234 static void cpt_serr_int_handler(struct drm_device *dev)
1235 {
1236 	struct drm_i915_private *dev_priv = dev->dev_private;
1237 	u32 serr_int = I915_READ(SERR_INT);
1238 
1239 	if (serr_int & SERR_INT_POISON)
1240 		DRM_ERROR("PCH poison interrupt\n");
1241 
1242 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1243 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1244 							  false))
1245 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1246 
1247 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1248 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1249 							  false))
1250 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1251 
1252 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1253 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1254 							  false))
1255 			DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1256 
1257 	I915_WRITE(SERR_INT, serr_int);
1258 }
1259 
1260 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1261 {
1262 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1263 	int pipe;
1264 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1265 
1266 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1267 
1268 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1269 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1270 			       SDE_AUDIO_POWER_SHIFT_CPT);
1271 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1272 				 port_name(port));
1273 	}
1274 
1275 	if (pch_iir & SDE_AUX_MASK_CPT)
1276 		dp_aux_irq_handler(dev);
1277 
1278 	if (pch_iir & SDE_GMBUS_CPT)
1279 		gmbus_irq_handler(dev);
1280 
1281 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1282 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1283 
1284 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1285 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1286 
1287 	if (pch_iir & SDE_FDI_MASK_CPT)
1288 		for_each_pipe(pipe)
1289 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1290 					 pipe_name(pipe),
1291 					 I915_READ(FDI_RX_IIR(pipe)));
1292 
1293 	if (pch_iir & SDE_ERROR_CPT)
1294 		cpt_serr_int_handler(dev);
1295 }
1296 
1297 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1298 {
1299 	struct drm_i915_private *dev_priv = dev->dev_private;
1300 
1301 	if (de_iir & DE_AUX_CHANNEL_A)
1302 		dp_aux_irq_handler(dev);
1303 
1304 	if (de_iir & DE_GSE)
1305 		intel_opregion_asle_intr(dev);
1306 
1307 	if (de_iir & DE_PIPEA_VBLANK)
1308 		drm_handle_vblank(dev, 0);
1309 
1310 	if (de_iir & DE_PIPEB_VBLANK)
1311 		drm_handle_vblank(dev, 1);
1312 
1313 	if (de_iir & DE_POISON)
1314 		DRM_ERROR("Poison interrupt\n");
1315 
1316 	if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1317 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1318 			DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1319 
1320 	if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1321 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1322 			DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1323 
1324 	if (de_iir & DE_PLANEA_FLIP_DONE) {
1325 		intel_prepare_page_flip(dev, 0);
1326 		intel_finish_page_flip_plane(dev, 0);
1327 	}
1328 
1329 	if (de_iir & DE_PLANEB_FLIP_DONE) {
1330 		intel_prepare_page_flip(dev, 1);
1331 		intel_finish_page_flip_plane(dev, 1);
1332 	}
1333 
1334 	/* check event from PCH */
1335 	if (de_iir & DE_PCH_EVENT) {
1336 		u32 pch_iir = I915_READ(SDEIIR);
1337 
1338 		if (HAS_PCH_CPT(dev))
1339 			cpt_irq_handler(dev, pch_iir);
1340 		else
1341 			ibx_irq_handler(dev, pch_iir);
1342 
1343 		/* should clear PCH hotplug event before clear CPU irq */
1344 		I915_WRITE(SDEIIR, pch_iir);
1345 	}
1346 
1347 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1348 		ironlake_rps_change_irq_handler(dev);
1349 }
1350 
1351 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1352 {
1353 	struct drm_i915_private *dev_priv = dev->dev_private;
1354 	int i;
1355 
1356 	if (de_iir & DE_ERR_INT_IVB)
1357 		ivb_err_int_handler(dev);
1358 
1359 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1360 		dp_aux_irq_handler(dev);
1361 
1362 	if (de_iir & DE_GSE_IVB)
1363 		intel_opregion_asle_intr(dev);
1364 
1365 	for (i = 0; i < 3; i++) {
1366 		if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1367 			drm_handle_vblank(dev, i);
1368 		if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1369 			intel_prepare_page_flip(dev, i);
1370 			intel_finish_page_flip_plane(dev, i);
1371 		}
1372 	}
1373 
1374 	/* check event from PCH */
1375 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1376 		u32 pch_iir = I915_READ(SDEIIR);
1377 
1378 		cpt_irq_handler(dev, pch_iir);
1379 
1380 		/* clear PCH hotplug event before clear CPU irq */
1381 		I915_WRITE(SDEIIR, pch_iir);
1382 	}
1383 }
1384 
1385 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1386 {
1387 	struct drm_device *dev = (struct drm_device *) arg;
1388 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1389 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1390 	irqreturn_t ret = IRQ_NONE;
1391 	bool err_int_reenable = false;
1392 
1393 	atomic_inc(&dev_priv->irq_received);
1394 
1395 	/* We get interrupts on unclaimed registers, so check for this before we
1396 	 * do any I915_{READ,WRITE}. */
1397 	intel_uncore_check_errors(dev);
1398 
1399 	/* disable master interrupt before clearing iir  */
1400 	de_ier = I915_READ(DEIER);
1401 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1402 	POSTING_READ(DEIER);
1403 
1404 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1405 	 * interrupts will will be stored on its back queue, and then we'll be
1406 	 * able to process them after we restore SDEIER (as soon as we restore
1407 	 * it, we'll get an interrupt if SDEIIR still has something to process
1408 	 * due to its back queue). */
1409 	if (!HAS_PCH_NOP(dev)) {
1410 		sde_ier = I915_READ(SDEIER);
1411 		I915_WRITE(SDEIER, 0);
1412 		POSTING_READ(SDEIER);
1413 	}
1414 
1415 	/* On Haswell, also mask ERR_INT because we don't want to risk
1416 	 * generating "unclaimed register" interrupts from inside the interrupt
1417 	 * handler. */
1418 	if (IS_HASWELL(dev)) {
1419 		spin_lock(&dev_priv->irq_lock);
1420 		err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1421 		if (err_int_reenable)
1422 			ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1423 		spin_unlock(&dev_priv->irq_lock);
1424 	}
1425 
1426 	gt_iir = I915_READ(GTIIR);
1427 	if (gt_iir) {
1428 		if (INTEL_INFO(dev)->gen >= 6)
1429 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1430 		else
1431 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1432 		I915_WRITE(GTIIR, gt_iir);
1433 		ret = IRQ_HANDLED;
1434 	}
1435 
1436 	de_iir = I915_READ(DEIIR);
1437 	if (de_iir) {
1438 		if (INTEL_INFO(dev)->gen >= 7)
1439 			ivb_display_irq_handler(dev, de_iir);
1440 		else
1441 			ilk_display_irq_handler(dev, de_iir);
1442 		I915_WRITE(DEIIR, de_iir);
1443 		ret = IRQ_HANDLED;
1444 	}
1445 
1446 	if (INTEL_INFO(dev)->gen >= 6) {
1447 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1448 		if (pm_iir) {
1449 			gen6_rps_irq_handler(dev_priv, pm_iir);
1450 			I915_WRITE(GEN6_PMIIR, pm_iir);
1451 			ret = IRQ_HANDLED;
1452 		}
1453 	}
1454 
1455 	if (err_int_reenable) {
1456 		spin_lock(&dev_priv->irq_lock);
1457 		if (ivb_can_enable_err_int(dev))
1458 			ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1459 		spin_unlock(&dev_priv->irq_lock);
1460 	}
1461 
1462 	I915_WRITE(DEIER, de_ier);
1463 	POSTING_READ(DEIER);
1464 	if (!HAS_PCH_NOP(dev)) {
1465 		I915_WRITE(SDEIER, sde_ier);
1466 		POSTING_READ(SDEIER);
1467 	}
1468 
1469 	return ret;
1470 }
1471 
1472 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1473 			       bool reset_completed)
1474 {
1475 	struct intel_ring_buffer *ring;
1476 	int i;
1477 
1478 	/*
1479 	 * Notify all waiters for GPU completion events that reset state has
1480 	 * been changed, and that they need to restart their wait after
1481 	 * checking for potential errors (and bail out to drop locks if there is
1482 	 * a gpu reset pending so that i915_error_work_func can acquire them).
1483 	 */
1484 
1485 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1486 	for_each_ring(ring, dev_priv, i)
1487 		wake_up_all(&ring->irq_queue);
1488 
1489 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1490 	wake_up_all(&dev_priv->pending_flip_queue);
1491 
1492 	/*
1493 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1494 	 * reset state is cleared.
1495 	 */
1496 	if (reset_completed)
1497 		wake_up_all(&dev_priv->gpu_error.reset_queue);
1498 }
1499 
1500 /**
1501  * i915_error_work_func - do process context error handling work
1502  * @work: work struct
1503  *
1504  * Fire an error uevent so userspace can see that a hang or error
1505  * was detected.
1506  */
1507 static void i915_error_work_func(struct work_struct *work)
1508 {
1509 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1510 						    work);
1511 	drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1512 						    gpu_error);
1513 	struct drm_device *dev = dev_priv->dev;
1514 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1515 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1516 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1517 	int ret;
1518 
1519 	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1520 
1521 	/*
1522 	 * Note that there's only one work item which does gpu resets, so we
1523 	 * need not worry about concurrent gpu resets potentially incrementing
1524 	 * error->reset_counter twice. We only need to take care of another
1525 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
1526 	 * quick check for that is good enough: schedule_work ensures the
1527 	 * correct ordering between hang detection and this work item, and since
1528 	 * the reset in-progress bit is only ever set by code outside of this
1529 	 * work we don't need to worry about any other races.
1530 	 */
1531 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1532 		DRM_DEBUG_DRIVER("resetting chip\n");
1533 		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1534 				   reset_event);
1535 
1536 		/*
1537 		 * All state reset _must_ be completed before we update the
1538 		 * reset counter, for otherwise waiters might miss the reset
1539 		 * pending state and not properly drop locks, resulting in
1540 		 * deadlocks with the reset work.
1541 		 */
1542 		ret = i915_reset(dev);
1543 
1544 		intel_display_handle_reset(dev);
1545 
1546 		if (ret == 0) {
1547 			/*
1548 			 * After all the gem state is reset, increment the reset
1549 			 * counter and wake up everyone waiting for the reset to
1550 			 * complete.
1551 			 *
1552 			 * Since unlock operations are a one-sided barrier only,
1553 			 * we need to insert a barrier here to order any seqno
1554 			 * updates before
1555 			 * the counter increment.
1556 			 */
1557 			smp_mb__before_atomic_inc();
1558 			atomic_inc(&dev_priv->gpu_error.reset_counter);
1559 
1560 			kobject_uevent_env(&dev->primary->kdev.kobj,
1561 					   KOBJ_CHANGE, reset_done_event);
1562 		} else {
1563 			atomic_set(&error->reset_counter, I915_WEDGED);
1564 		}
1565 
1566 		/*
1567 		 * Note: The wake_up also serves as a memory barrier so that
1568 		 * waiters see the update value of the reset counter atomic_t.
1569 		 */
1570 		i915_error_wake_up(dev_priv, true);
1571 	}
1572 }
1573 
1574 static void i915_report_and_clear_eir(struct drm_device *dev)
1575 {
1576 	struct drm_i915_private *dev_priv = dev->dev_private;
1577 	uint32_t instdone[I915_NUM_INSTDONE_REG];
1578 	u32 eir = I915_READ(EIR);
1579 	int pipe, i;
1580 
1581 	if (!eir)
1582 		return;
1583 
1584 	pr_err("render error detected, EIR: 0x%08x\n", eir);
1585 
1586 	i915_get_extra_instdone(dev, instdone);
1587 
1588 	if (IS_G4X(dev)) {
1589 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1590 			u32 ipeir = I915_READ(IPEIR_I965);
1591 
1592 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1593 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1594 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
1595 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1596 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1597 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1598 			I915_WRITE(IPEIR_I965, ipeir);
1599 			POSTING_READ(IPEIR_I965);
1600 		}
1601 		if (eir & GM45_ERROR_PAGE_TABLE) {
1602 			u32 pgtbl_err = I915_READ(PGTBL_ER);
1603 			pr_err("page table error\n");
1604 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1605 			I915_WRITE(PGTBL_ER, pgtbl_err);
1606 			POSTING_READ(PGTBL_ER);
1607 		}
1608 	}
1609 
1610 	if (!IS_GEN2(dev)) {
1611 		if (eir & I915_ERROR_PAGE_TABLE) {
1612 			u32 pgtbl_err = I915_READ(PGTBL_ER);
1613 			pr_err("page table error\n");
1614 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1615 			I915_WRITE(PGTBL_ER, pgtbl_err);
1616 			POSTING_READ(PGTBL_ER);
1617 		}
1618 	}
1619 
1620 	if (eir & I915_ERROR_MEMORY_REFRESH) {
1621 		pr_err("memory refresh error:\n");
1622 		for_each_pipe(pipe)
1623 			pr_err("pipe %c stat: 0x%08x\n",
1624 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1625 		/* pipestat has already been acked */
1626 	}
1627 	if (eir & I915_ERROR_INSTRUCTION) {
1628 		pr_err("instruction error\n");
1629 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
1630 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
1631 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1632 		if (INTEL_INFO(dev)->gen < 4) {
1633 			u32 ipeir = I915_READ(IPEIR);
1634 
1635 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
1636 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
1637 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
1638 			I915_WRITE(IPEIR, ipeir);
1639 			POSTING_READ(IPEIR);
1640 		} else {
1641 			u32 ipeir = I915_READ(IPEIR_I965);
1642 
1643 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1644 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1645 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1646 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1647 			I915_WRITE(IPEIR_I965, ipeir);
1648 			POSTING_READ(IPEIR_I965);
1649 		}
1650 	}
1651 
1652 	I915_WRITE(EIR, eir);
1653 	POSTING_READ(EIR);
1654 	eir = I915_READ(EIR);
1655 	if (eir) {
1656 		/*
1657 		 * some errors might have become stuck,
1658 		 * mask them.
1659 		 */
1660 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1661 		I915_WRITE(EMR, I915_READ(EMR) | eir);
1662 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1663 	}
1664 }
1665 
1666 /**
1667  * i915_handle_error - handle an error interrupt
1668  * @dev: drm device
1669  *
1670  * Do some basic checking of regsiter state at error interrupt time and
1671  * dump it to the syslog.  Also call i915_capture_error_state() to make
1672  * sure we get a record and make it available in debugfs.  Fire a uevent
1673  * so userspace knows something bad happened (should trigger collection
1674  * of a ring dump etc.).
1675  */
1676 void i915_handle_error(struct drm_device *dev, bool wedged)
1677 {
1678 	struct drm_i915_private *dev_priv = dev->dev_private;
1679 
1680 	i915_capture_error_state(dev);
1681 	i915_report_and_clear_eir(dev);
1682 
1683 	if (wedged) {
1684 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1685 				&dev_priv->gpu_error.reset_counter);
1686 
1687 		/*
1688 		 * Wakeup waiting processes so that the reset work function
1689 		 * i915_error_work_func doesn't deadlock trying to grab various
1690 		 * locks. By bumping the reset counter first, the woken
1691 		 * processes will see a reset in progress and back off,
1692 		 * releasing their locks and then wait for the reset completion.
1693 		 * We must do this for _all_ gpu waiters that might hold locks
1694 		 * that the reset work needs to acquire.
1695 		 *
1696 		 * Note: The wake_up serves as the required memory barrier to
1697 		 * ensure that the waiters see the updated value of the reset
1698 		 * counter atomic_t.
1699 		 */
1700 		i915_error_wake_up(dev_priv, false);
1701 	}
1702 
1703 	/*
1704 	 * Our reset work can grab modeset locks (since it needs to reset the
1705 	 * state of outstanding pagelips). Hence it must not be run on our own
1706 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1707 	 * code will deadlock.
1708 	 */
1709 	schedule_work(&dev_priv->gpu_error.work);
1710 }
1711 
1712 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1713 {
1714 	drm_i915_private_t *dev_priv = dev->dev_private;
1715 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1716 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1717 	struct drm_i915_gem_object *obj;
1718 	struct intel_unpin_work *work;
1719 	unsigned long flags;
1720 	bool stall_detected;
1721 
1722 	/* Ignore early vblank irqs */
1723 	if (intel_crtc == NULL)
1724 		return;
1725 
1726 	spin_lock_irqsave(&dev->event_lock, flags);
1727 	work = intel_crtc->unpin_work;
1728 
1729 	if (work == NULL ||
1730 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1731 	    !work->enable_stall_check) {
1732 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
1733 		spin_unlock_irqrestore(&dev->event_lock, flags);
1734 		return;
1735 	}
1736 
1737 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1738 	obj = work->pending_flip_obj;
1739 	if (INTEL_INFO(dev)->gen >= 4) {
1740 		int dspsurf = DSPSURF(intel_crtc->plane);
1741 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1742 					i915_gem_obj_ggtt_offset(obj);
1743 	} else {
1744 		int dspaddr = DSPADDR(intel_crtc->plane);
1745 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1746 							crtc->y * crtc->fb->pitches[0] +
1747 							crtc->x * crtc->fb->bits_per_pixel/8);
1748 	}
1749 
1750 	spin_unlock_irqrestore(&dev->event_lock, flags);
1751 
1752 	if (stall_detected) {
1753 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1754 		intel_prepare_page_flip(dev, intel_crtc->plane);
1755 	}
1756 }
1757 
1758 /* Called from drm generic code, passed 'crtc' which
1759  * we use as a pipe index
1760  */
1761 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1762 {
1763 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1764 	unsigned long irqflags;
1765 
1766 	if (!i915_pipe_enabled(dev, pipe))
1767 		return -EINVAL;
1768 
1769 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1770 	if (INTEL_INFO(dev)->gen >= 4)
1771 		i915_enable_pipestat(dev_priv, pipe,
1772 				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1773 	else
1774 		i915_enable_pipestat(dev_priv, pipe,
1775 				     PIPE_VBLANK_INTERRUPT_ENABLE);
1776 
1777 	/* maintain vblank delivery even in deep C-states */
1778 	if (dev_priv->info->gen == 3)
1779 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1780 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1781 
1782 	return 0;
1783 }
1784 
1785 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1786 {
1787 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1788 	unsigned long irqflags;
1789 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1790 						     DE_PIPE_VBLANK_ILK(pipe);
1791 
1792 	if (!i915_pipe_enabled(dev, pipe))
1793 		return -EINVAL;
1794 
1795 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1796 	ironlake_enable_display_irq(dev_priv, bit);
1797 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1798 
1799 	return 0;
1800 }
1801 
1802 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1803 {
1804 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1805 	unsigned long irqflags;
1806 	u32 imr;
1807 
1808 	if (!i915_pipe_enabled(dev, pipe))
1809 		return -EINVAL;
1810 
1811 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1812 	imr = I915_READ(VLV_IMR);
1813 	if (pipe == 0)
1814 		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1815 	else
1816 		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1817 	I915_WRITE(VLV_IMR, imr);
1818 	i915_enable_pipestat(dev_priv, pipe,
1819 			     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1820 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1821 
1822 	return 0;
1823 }
1824 
1825 /* Called from drm generic code, passed 'crtc' which
1826  * we use as a pipe index
1827  */
1828 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1829 {
1830 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1831 	unsigned long irqflags;
1832 
1833 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1834 	if (dev_priv->info->gen == 3)
1835 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1836 
1837 	i915_disable_pipestat(dev_priv, pipe,
1838 			      PIPE_VBLANK_INTERRUPT_ENABLE |
1839 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1840 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1841 }
1842 
1843 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1844 {
1845 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1846 	unsigned long irqflags;
1847 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1848 						     DE_PIPE_VBLANK_ILK(pipe);
1849 
1850 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1851 	ironlake_disable_display_irq(dev_priv, bit);
1852 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1853 }
1854 
1855 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1856 {
1857 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1858 	unsigned long irqflags;
1859 	u32 imr;
1860 
1861 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1862 	i915_disable_pipestat(dev_priv, pipe,
1863 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1864 	imr = I915_READ(VLV_IMR);
1865 	if (pipe == 0)
1866 		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1867 	else
1868 		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1869 	I915_WRITE(VLV_IMR, imr);
1870 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1871 }
1872 
1873 static u32
1874 ring_last_seqno(struct intel_ring_buffer *ring)
1875 {
1876 	return list_entry(ring->request_list.prev,
1877 			  struct drm_i915_gem_request, list)->seqno;
1878 }
1879 
1880 static bool
1881 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1882 {
1883 	return (list_empty(&ring->request_list) ||
1884 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
1885 }
1886 
1887 static struct intel_ring_buffer *
1888 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1889 {
1890 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1891 	u32 cmd, ipehr, acthd, acthd_min;
1892 
1893 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1894 	if ((ipehr & ~(0x3 << 16)) !=
1895 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1896 		return NULL;
1897 
1898 	/* ACTHD is likely pointing to the dword after the actual command,
1899 	 * so scan backwards until we find the MBOX.
1900 	 */
1901 	acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1902 	acthd_min = max((int)acthd - 3 * 4, 0);
1903 	do {
1904 		cmd = ioread32(ring->virtual_start + acthd);
1905 		if (cmd == ipehr)
1906 			break;
1907 
1908 		acthd -= 4;
1909 		if (acthd < acthd_min)
1910 			return NULL;
1911 	} while (1);
1912 
1913 	*seqno = ioread32(ring->virtual_start+acthd+4)+1;
1914 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1915 }
1916 
1917 static int semaphore_passed(struct intel_ring_buffer *ring)
1918 {
1919 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1920 	struct intel_ring_buffer *signaller;
1921 	u32 seqno, ctl;
1922 
1923 	ring->hangcheck.deadlock = true;
1924 
1925 	signaller = semaphore_waits_for(ring, &seqno);
1926 	if (signaller == NULL || signaller->hangcheck.deadlock)
1927 		return -1;
1928 
1929 	/* cursory check for an unkickable deadlock */
1930 	ctl = I915_READ_CTL(signaller);
1931 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1932 		return -1;
1933 
1934 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1935 }
1936 
1937 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1938 {
1939 	struct intel_ring_buffer *ring;
1940 	int i;
1941 
1942 	for_each_ring(ring, dev_priv, i)
1943 		ring->hangcheck.deadlock = false;
1944 }
1945 
1946 static enum intel_ring_hangcheck_action
1947 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1948 {
1949 	struct drm_device *dev = ring->dev;
1950 	struct drm_i915_private *dev_priv = dev->dev_private;
1951 	u32 tmp;
1952 
1953 	if (ring->hangcheck.acthd != acthd)
1954 		return HANGCHECK_ACTIVE;
1955 
1956 	if (IS_GEN2(dev))
1957 		return HANGCHECK_HUNG;
1958 
1959 	/* Is the chip hanging on a WAIT_FOR_EVENT?
1960 	 * If so we can simply poke the RB_WAIT bit
1961 	 * and break the hang. This should work on
1962 	 * all but the second generation chipsets.
1963 	 */
1964 	tmp = I915_READ_CTL(ring);
1965 	if (tmp & RING_WAIT) {
1966 		DRM_ERROR("Kicking stuck wait on %s\n",
1967 			  ring->name);
1968 		I915_WRITE_CTL(ring, tmp);
1969 		return HANGCHECK_KICK;
1970 	}
1971 
1972 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1973 		switch (semaphore_passed(ring)) {
1974 		default:
1975 			return HANGCHECK_HUNG;
1976 		case 1:
1977 			DRM_ERROR("Kicking stuck semaphore on %s\n",
1978 				  ring->name);
1979 			I915_WRITE_CTL(ring, tmp);
1980 			return HANGCHECK_KICK;
1981 		case 0:
1982 			return HANGCHECK_WAIT;
1983 		}
1984 	}
1985 
1986 	return HANGCHECK_HUNG;
1987 }
1988 
1989 /**
1990  * This is called when the chip hasn't reported back with completed
1991  * batchbuffers in a long time. We keep track per ring seqno progress and
1992  * if there are no progress, hangcheck score for that ring is increased.
1993  * Further, acthd is inspected to see if the ring is stuck. On stuck case
1994  * we kick the ring. If we see no progress on three subsequent calls
1995  * we assume chip is wedged and try to fix it by resetting the chip.
1996  */
1997 static void i915_hangcheck_elapsed(unsigned long data)
1998 {
1999 	struct drm_device *dev = (struct drm_device *)data;
2000 	drm_i915_private_t *dev_priv = dev->dev_private;
2001 	struct intel_ring_buffer *ring;
2002 	int i;
2003 	int busy_count = 0, rings_hung = 0;
2004 	bool stuck[I915_NUM_RINGS] = { 0 };
2005 #define BUSY 1
2006 #define KICK 5
2007 #define HUNG 20
2008 #define FIRE 30
2009 
2010 	if (!i915_enable_hangcheck)
2011 		return;
2012 
2013 	for_each_ring(ring, dev_priv, i) {
2014 		u32 seqno, acthd;
2015 		bool busy = true;
2016 
2017 		semaphore_clear_deadlocks(dev_priv);
2018 
2019 		seqno = ring->get_seqno(ring, false);
2020 		acthd = intel_ring_get_active_head(ring);
2021 
2022 		if (ring->hangcheck.seqno == seqno) {
2023 			if (ring_idle(ring, seqno)) {
2024 				if (waitqueue_active(&ring->irq_queue)) {
2025 					/* Issue a wake-up to catch stuck h/w. */
2026 					DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2027 						  ring->name);
2028 					wake_up_all(&ring->irq_queue);
2029 					ring->hangcheck.score += HUNG;
2030 				} else
2031 					busy = false;
2032 			} else {
2033 				/* We always increment the hangcheck score
2034 				 * if the ring is busy and still processing
2035 				 * the same request, so that no single request
2036 				 * can run indefinitely (such as a chain of
2037 				 * batches). The only time we do not increment
2038 				 * the hangcheck score on this ring, if this
2039 				 * ring is in a legitimate wait for another
2040 				 * ring. In that case the waiting ring is a
2041 				 * victim and we want to be sure we catch the
2042 				 * right culprit. Then every time we do kick
2043 				 * the ring, add a small increment to the
2044 				 * score so that we can catch a batch that is
2045 				 * being repeatedly kicked and so responsible
2046 				 * for stalling the machine.
2047 				 */
2048 				ring->hangcheck.action = ring_stuck(ring,
2049 								    acthd);
2050 
2051 				switch (ring->hangcheck.action) {
2052 				case HANGCHECK_WAIT:
2053 					break;
2054 				case HANGCHECK_ACTIVE:
2055 					ring->hangcheck.score += BUSY;
2056 					break;
2057 				case HANGCHECK_KICK:
2058 					ring->hangcheck.score += KICK;
2059 					break;
2060 				case HANGCHECK_HUNG:
2061 					ring->hangcheck.score += HUNG;
2062 					stuck[i] = true;
2063 					break;
2064 				}
2065 			}
2066 		} else {
2067 			/* Gradually reduce the count so that we catch DoS
2068 			 * attempts across multiple batches.
2069 			 */
2070 			if (ring->hangcheck.score > 0)
2071 				ring->hangcheck.score--;
2072 		}
2073 
2074 		ring->hangcheck.seqno = seqno;
2075 		ring->hangcheck.acthd = acthd;
2076 		busy_count += busy;
2077 	}
2078 
2079 	for_each_ring(ring, dev_priv, i) {
2080 		if (ring->hangcheck.score > FIRE) {
2081 			DRM_INFO("%s on %s\n",
2082 				 stuck[i] ? "stuck" : "no progress",
2083 				 ring->name);
2084 			rings_hung++;
2085 		}
2086 	}
2087 
2088 	if (rings_hung)
2089 		return i915_handle_error(dev, true);
2090 
2091 	if (busy_count)
2092 		/* Reset timer case chip hangs without another request
2093 		 * being added */
2094 		i915_queue_hangcheck(dev);
2095 }
2096 
2097 void i915_queue_hangcheck(struct drm_device *dev)
2098 {
2099 	struct drm_i915_private *dev_priv = dev->dev_private;
2100 	if (!i915_enable_hangcheck)
2101 		return;
2102 
2103 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2104 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2105 }
2106 
2107 static void ibx_irq_preinstall(struct drm_device *dev)
2108 {
2109 	struct drm_i915_private *dev_priv = dev->dev_private;
2110 
2111 	if (HAS_PCH_NOP(dev))
2112 		return;
2113 
2114 	/* south display irq */
2115 	I915_WRITE(SDEIMR, 0xffffffff);
2116 	/*
2117 	 * SDEIER is also touched by the interrupt handler to work around missed
2118 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2119 	 * is enabled - instead we unconditionally enable all PCH interrupt
2120 	 * sources here, but then only unmask them as needed with SDEIMR.
2121 	 */
2122 	I915_WRITE(SDEIER, 0xffffffff);
2123 	POSTING_READ(SDEIER);
2124 }
2125 
2126 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2127 {
2128 	struct drm_i915_private *dev_priv = dev->dev_private;
2129 
2130 	/* and GT */
2131 	I915_WRITE(GTIMR, 0xffffffff);
2132 	I915_WRITE(GTIER, 0x0);
2133 	POSTING_READ(GTIER);
2134 
2135 	if (INTEL_INFO(dev)->gen >= 6) {
2136 		/* and PM */
2137 		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2138 		I915_WRITE(GEN6_PMIER, 0x0);
2139 		POSTING_READ(GEN6_PMIER);
2140 	}
2141 }
2142 
2143 /* drm_dma.h hooks
2144 */
2145 static void ironlake_irq_preinstall(struct drm_device *dev)
2146 {
2147 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2148 
2149 	atomic_set(&dev_priv->irq_received, 0);
2150 
2151 	I915_WRITE(HWSTAM, 0xeffe);
2152 
2153 	I915_WRITE(DEIMR, 0xffffffff);
2154 	I915_WRITE(DEIER, 0x0);
2155 	POSTING_READ(DEIER);
2156 
2157 	gen5_gt_irq_preinstall(dev);
2158 
2159 	ibx_irq_preinstall(dev);
2160 }
2161 
2162 static void valleyview_irq_preinstall(struct drm_device *dev)
2163 {
2164 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2165 	int pipe;
2166 
2167 	atomic_set(&dev_priv->irq_received, 0);
2168 
2169 	/* VLV magic */
2170 	I915_WRITE(VLV_IMR, 0);
2171 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2172 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2173 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2174 
2175 	/* and GT */
2176 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2177 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2178 
2179 	gen5_gt_irq_preinstall(dev);
2180 
2181 	I915_WRITE(DPINVGTT, 0xff);
2182 
2183 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2184 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2185 	for_each_pipe(pipe)
2186 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2187 	I915_WRITE(VLV_IIR, 0xffffffff);
2188 	I915_WRITE(VLV_IMR, 0xffffffff);
2189 	I915_WRITE(VLV_IER, 0x0);
2190 	POSTING_READ(VLV_IER);
2191 }
2192 
2193 static void ibx_hpd_irq_setup(struct drm_device *dev)
2194 {
2195 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2196 	struct drm_mode_config *mode_config = &dev->mode_config;
2197 	struct intel_encoder *intel_encoder;
2198 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2199 
2200 	if (HAS_PCH_IBX(dev)) {
2201 		hotplug_irqs = SDE_HOTPLUG_MASK;
2202 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2203 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2204 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2205 	} else {
2206 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2207 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2208 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2209 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2210 	}
2211 
2212 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2213 
2214 	/*
2215 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2216 	 * duration to 2ms (which is the minimum in the Display Port spec)
2217 	 *
2218 	 * This register is the same on all known PCH chips.
2219 	 */
2220 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2221 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2222 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2223 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2224 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2225 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2226 }
2227 
2228 static void ibx_irq_postinstall(struct drm_device *dev)
2229 {
2230 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2231 	u32 mask;
2232 
2233 	if (HAS_PCH_NOP(dev))
2234 		return;
2235 
2236 	if (HAS_PCH_IBX(dev)) {
2237 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2238 		       SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2239 	} else {
2240 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2241 
2242 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2243 	}
2244 
2245 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2246 	I915_WRITE(SDEIMR, ~mask);
2247 }
2248 
2249 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2250 {
2251 	struct drm_i915_private *dev_priv = dev->dev_private;
2252 	u32 pm_irqs, gt_irqs;
2253 
2254 	pm_irqs = gt_irqs = 0;
2255 
2256 	dev_priv->gt_irq_mask = ~0;
2257 	if (HAS_L3_GPU_CACHE(dev)) {
2258 		/* L3 parity interrupt is always unmasked. */
2259 		dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2260 		gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2261 	}
2262 
2263 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2264 	if (IS_GEN5(dev)) {
2265 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2266 			   ILK_BSD_USER_INTERRUPT;
2267 	} else {
2268 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2269 	}
2270 
2271 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2272 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2273 	I915_WRITE(GTIER, gt_irqs);
2274 	POSTING_READ(GTIER);
2275 
2276 	if (INTEL_INFO(dev)->gen >= 6) {
2277 		pm_irqs |= GEN6_PM_RPS_EVENTS;
2278 
2279 		if (HAS_VEBOX(dev))
2280 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2281 
2282 		dev_priv->pm_irq_mask = 0xffffffff;
2283 		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2284 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2285 		I915_WRITE(GEN6_PMIER, pm_irqs);
2286 		POSTING_READ(GEN6_PMIER);
2287 	}
2288 }
2289 
2290 static int ironlake_irq_postinstall(struct drm_device *dev)
2291 {
2292 	unsigned long irqflags;
2293 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2294 	u32 display_mask, extra_mask;
2295 
2296 	if (INTEL_INFO(dev)->gen >= 7) {
2297 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2298 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2299 				DE_PLANEB_FLIP_DONE_IVB |
2300 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2301 				DE_ERR_INT_IVB);
2302 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2303 			      DE_PIPEA_VBLANK_IVB);
2304 
2305 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2306 	} else {
2307 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2308 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2309 				DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2310 				DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2311 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2312 	}
2313 
2314 	dev_priv->irq_mask = ~display_mask;
2315 
2316 	/* should always can generate irq */
2317 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2318 	I915_WRITE(DEIMR, dev_priv->irq_mask);
2319 	I915_WRITE(DEIER, display_mask | extra_mask);
2320 	POSTING_READ(DEIER);
2321 
2322 	gen5_gt_irq_postinstall(dev);
2323 
2324 	ibx_irq_postinstall(dev);
2325 
2326 	if (IS_IRONLAKE_M(dev)) {
2327 		/* Enable PCU event interrupts
2328 		 *
2329 		 * spinlocking not required here for correctness since interrupt
2330 		 * setup is guaranteed to run in single-threaded context. But we
2331 		 * need it to make the assert_spin_locked happy. */
2332 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2333 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2334 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static int valleyview_irq_postinstall(struct drm_device *dev)
2341 {
2342 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2343 	u32 enable_mask;
2344 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2345 	unsigned long irqflags;
2346 
2347 	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2348 	enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2349 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2350 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2351 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2352 
2353 	/*
2354 	 *Leave vblank interrupts masked initially.  enable/disable will
2355 	 * toggle them based on usage.
2356 	 */
2357 	dev_priv->irq_mask = (~enable_mask) |
2358 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2359 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2360 
2361 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2362 	POSTING_READ(PORT_HOTPLUG_EN);
2363 
2364 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2365 	I915_WRITE(VLV_IER, enable_mask);
2366 	I915_WRITE(VLV_IIR, 0xffffffff);
2367 	I915_WRITE(PIPESTAT(0), 0xffff);
2368 	I915_WRITE(PIPESTAT(1), 0xffff);
2369 	POSTING_READ(VLV_IER);
2370 
2371 	/* Interrupt setup is already guaranteed to be single-threaded, this is
2372 	 * just to make the assert_spin_locked check happy. */
2373 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2374 	i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2375 	i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2376 	i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2377 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2378 
2379 	I915_WRITE(VLV_IIR, 0xffffffff);
2380 	I915_WRITE(VLV_IIR, 0xffffffff);
2381 
2382 	gen5_gt_irq_postinstall(dev);
2383 
2384 	/* ack & enable invalid PTE error interrupts */
2385 #if 0 /* FIXME: add support to irq handler for checking these bits */
2386 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2387 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2388 #endif
2389 
2390 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2391 
2392 	return 0;
2393 }
2394 
2395 static void valleyview_irq_uninstall(struct drm_device *dev)
2396 {
2397 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2398 	int pipe;
2399 
2400 	if (!dev_priv)
2401 		return;
2402 
2403 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
2404 
2405 	for_each_pipe(pipe)
2406 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2407 
2408 	I915_WRITE(HWSTAM, 0xffffffff);
2409 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2410 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2411 	for_each_pipe(pipe)
2412 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2413 	I915_WRITE(VLV_IIR, 0xffffffff);
2414 	I915_WRITE(VLV_IMR, 0xffffffff);
2415 	I915_WRITE(VLV_IER, 0x0);
2416 	POSTING_READ(VLV_IER);
2417 }
2418 
2419 static void ironlake_irq_uninstall(struct drm_device *dev)
2420 {
2421 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2422 
2423 	if (!dev_priv)
2424 		return;
2425 
2426 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
2427 
2428 	I915_WRITE(HWSTAM, 0xffffffff);
2429 
2430 	I915_WRITE(DEIMR, 0xffffffff);
2431 	I915_WRITE(DEIER, 0x0);
2432 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2433 	if (IS_GEN7(dev))
2434 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2435 
2436 	I915_WRITE(GTIMR, 0xffffffff);
2437 	I915_WRITE(GTIER, 0x0);
2438 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2439 
2440 	if (HAS_PCH_NOP(dev))
2441 		return;
2442 
2443 	I915_WRITE(SDEIMR, 0xffffffff);
2444 	I915_WRITE(SDEIER, 0x0);
2445 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2446 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2447 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2448 }
2449 
2450 static void i8xx_irq_preinstall(struct drm_device * dev)
2451 {
2452 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2453 	int pipe;
2454 
2455 	atomic_set(&dev_priv->irq_received, 0);
2456 
2457 	for_each_pipe(pipe)
2458 		I915_WRITE(PIPESTAT(pipe), 0);
2459 	I915_WRITE16(IMR, 0xffff);
2460 	I915_WRITE16(IER, 0x0);
2461 	POSTING_READ16(IER);
2462 }
2463 
2464 static int i8xx_irq_postinstall(struct drm_device *dev)
2465 {
2466 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2467 
2468 	I915_WRITE16(EMR,
2469 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2470 
2471 	/* Unmask the interrupts that we always want on. */
2472 	dev_priv->irq_mask =
2473 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2474 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2475 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2476 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2477 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2478 	I915_WRITE16(IMR, dev_priv->irq_mask);
2479 
2480 	I915_WRITE16(IER,
2481 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2482 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2483 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2484 		     I915_USER_INTERRUPT);
2485 	POSTING_READ16(IER);
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * Returns true when a page flip has completed.
2492  */
2493 static bool i8xx_handle_vblank(struct drm_device *dev,
2494 			       int pipe, u16 iir)
2495 {
2496 	drm_i915_private_t *dev_priv = dev->dev_private;
2497 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2498 
2499 	if (!drm_handle_vblank(dev, pipe))
2500 		return false;
2501 
2502 	if ((iir & flip_pending) == 0)
2503 		return false;
2504 
2505 	intel_prepare_page_flip(dev, pipe);
2506 
2507 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
2508 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2509 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2510 	 * the flip is completed (no longer pending). Since this doesn't raise
2511 	 * an interrupt per se, we watch for the change at vblank.
2512 	 */
2513 	if (I915_READ16(ISR) & flip_pending)
2514 		return false;
2515 
2516 	intel_finish_page_flip(dev, pipe);
2517 
2518 	return true;
2519 }
2520 
2521 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2522 {
2523 	struct drm_device *dev = (struct drm_device *) arg;
2524 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2525 	u16 iir, new_iir;
2526 	u32 pipe_stats[2];
2527 	unsigned long irqflags;
2528 	int pipe;
2529 	u16 flip_mask =
2530 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2531 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2532 
2533 	atomic_inc(&dev_priv->irq_received);
2534 
2535 	iir = I915_READ16(IIR);
2536 	if (iir == 0)
2537 		return IRQ_NONE;
2538 
2539 	while (iir & ~flip_mask) {
2540 		/* Can't rely on pipestat interrupt bit in iir as it might
2541 		 * have been cleared after the pipestat interrupt was received.
2542 		 * It doesn't set the bit in iir again, but it still produces
2543 		 * interrupts (for non-MSI).
2544 		 */
2545 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2546 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2547 			i915_handle_error(dev, false);
2548 
2549 		for_each_pipe(pipe) {
2550 			int reg = PIPESTAT(pipe);
2551 			pipe_stats[pipe] = I915_READ(reg);
2552 
2553 			/*
2554 			 * Clear the PIPE*STAT regs before the IIR
2555 			 */
2556 			if (pipe_stats[pipe] & 0x8000ffff) {
2557 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2558 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2559 							 pipe_name(pipe));
2560 				I915_WRITE(reg, pipe_stats[pipe]);
2561 			}
2562 		}
2563 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2564 
2565 		I915_WRITE16(IIR, iir & ~flip_mask);
2566 		new_iir = I915_READ16(IIR); /* Flush posted writes */
2567 
2568 		i915_update_dri1_breadcrumb(dev);
2569 
2570 		if (iir & I915_USER_INTERRUPT)
2571 			notify_ring(dev, &dev_priv->ring[RCS]);
2572 
2573 		if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2574 		    i8xx_handle_vblank(dev, 0, iir))
2575 			flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2576 
2577 		if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2578 		    i8xx_handle_vblank(dev, 1, iir))
2579 			flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2580 
2581 		iir = new_iir;
2582 	}
2583 
2584 	return IRQ_HANDLED;
2585 }
2586 
2587 static void i8xx_irq_uninstall(struct drm_device * dev)
2588 {
2589 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2590 	int pipe;
2591 
2592 	for_each_pipe(pipe) {
2593 		/* Clear enable bits; then clear status bits */
2594 		I915_WRITE(PIPESTAT(pipe), 0);
2595 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2596 	}
2597 	I915_WRITE16(IMR, 0xffff);
2598 	I915_WRITE16(IER, 0x0);
2599 	I915_WRITE16(IIR, I915_READ16(IIR));
2600 }
2601 
2602 static void i915_irq_preinstall(struct drm_device * dev)
2603 {
2604 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2605 	int pipe;
2606 
2607 	atomic_set(&dev_priv->irq_received, 0);
2608 
2609 	if (I915_HAS_HOTPLUG(dev)) {
2610 		I915_WRITE(PORT_HOTPLUG_EN, 0);
2611 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2612 	}
2613 
2614 	I915_WRITE16(HWSTAM, 0xeffe);
2615 	for_each_pipe(pipe)
2616 		I915_WRITE(PIPESTAT(pipe), 0);
2617 	I915_WRITE(IMR, 0xffffffff);
2618 	I915_WRITE(IER, 0x0);
2619 	POSTING_READ(IER);
2620 }
2621 
2622 static int i915_irq_postinstall(struct drm_device *dev)
2623 {
2624 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2625 	u32 enable_mask;
2626 
2627 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2628 
2629 	/* Unmask the interrupts that we always want on. */
2630 	dev_priv->irq_mask =
2631 		~(I915_ASLE_INTERRUPT |
2632 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2633 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2634 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2635 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2636 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2637 
2638 	enable_mask =
2639 		I915_ASLE_INTERRUPT |
2640 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2641 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2642 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2643 		I915_USER_INTERRUPT;
2644 
2645 	if (I915_HAS_HOTPLUG(dev)) {
2646 		I915_WRITE(PORT_HOTPLUG_EN, 0);
2647 		POSTING_READ(PORT_HOTPLUG_EN);
2648 
2649 		/* Enable in IER... */
2650 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2651 		/* and unmask in IMR */
2652 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2653 	}
2654 
2655 	I915_WRITE(IMR, dev_priv->irq_mask);
2656 	I915_WRITE(IER, enable_mask);
2657 	POSTING_READ(IER);
2658 
2659 	i915_enable_asle_pipestat(dev);
2660 
2661 	return 0;
2662 }
2663 
2664 /*
2665  * Returns true when a page flip has completed.
2666  */
2667 static bool i915_handle_vblank(struct drm_device *dev,
2668 			       int plane, int pipe, u32 iir)
2669 {
2670 	drm_i915_private_t *dev_priv = dev->dev_private;
2671 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2672 
2673 	if (!drm_handle_vblank(dev, pipe))
2674 		return false;
2675 
2676 	if ((iir & flip_pending) == 0)
2677 		return false;
2678 
2679 	intel_prepare_page_flip(dev, plane);
2680 
2681 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
2682 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2683 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2684 	 * the flip is completed (no longer pending). Since this doesn't raise
2685 	 * an interrupt per se, we watch for the change at vblank.
2686 	 */
2687 	if (I915_READ(ISR) & flip_pending)
2688 		return false;
2689 
2690 	intel_finish_page_flip(dev, pipe);
2691 
2692 	return true;
2693 }
2694 
2695 static irqreturn_t i915_irq_handler(int irq, void *arg)
2696 {
2697 	struct drm_device *dev = (struct drm_device *) arg;
2698 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2699 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2700 	unsigned long irqflags;
2701 	u32 flip_mask =
2702 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2703 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2704 	int pipe, ret = IRQ_NONE;
2705 
2706 	atomic_inc(&dev_priv->irq_received);
2707 
2708 	iir = I915_READ(IIR);
2709 	do {
2710 		bool irq_received = (iir & ~flip_mask) != 0;
2711 		bool blc_event = false;
2712 
2713 		/* Can't rely on pipestat interrupt bit in iir as it might
2714 		 * have been cleared after the pipestat interrupt was received.
2715 		 * It doesn't set the bit in iir again, but it still produces
2716 		 * interrupts (for non-MSI).
2717 		 */
2718 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2719 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2720 			i915_handle_error(dev, false);
2721 
2722 		for_each_pipe(pipe) {
2723 			int reg = PIPESTAT(pipe);
2724 			pipe_stats[pipe] = I915_READ(reg);
2725 
2726 			/* Clear the PIPE*STAT regs before the IIR */
2727 			if (pipe_stats[pipe] & 0x8000ffff) {
2728 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2729 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2730 							 pipe_name(pipe));
2731 				I915_WRITE(reg, pipe_stats[pipe]);
2732 				irq_received = true;
2733 			}
2734 		}
2735 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736 
2737 		if (!irq_received)
2738 			break;
2739 
2740 		/* Consume port.  Then clear IIR or we'll miss events */
2741 		if ((I915_HAS_HOTPLUG(dev)) &&
2742 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2743 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2744 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2745 
2746 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2747 				  hotplug_status);
2748 
2749 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2750 
2751 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2752 			POSTING_READ(PORT_HOTPLUG_STAT);
2753 		}
2754 
2755 		I915_WRITE(IIR, iir & ~flip_mask);
2756 		new_iir = I915_READ(IIR); /* Flush posted writes */
2757 
2758 		if (iir & I915_USER_INTERRUPT)
2759 			notify_ring(dev, &dev_priv->ring[RCS]);
2760 
2761 		for_each_pipe(pipe) {
2762 			int plane = pipe;
2763 			if (IS_MOBILE(dev))
2764 				plane = !plane;
2765 
2766 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2767 			    i915_handle_vblank(dev, plane, pipe, iir))
2768 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2769 
2770 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2771 				blc_event = true;
2772 		}
2773 
2774 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
2775 			intel_opregion_asle_intr(dev);
2776 
2777 		/* With MSI, interrupts are only generated when iir
2778 		 * transitions from zero to nonzero.  If another bit got
2779 		 * set while we were handling the existing iir bits, then
2780 		 * we would never get another interrupt.
2781 		 *
2782 		 * This is fine on non-MSI as well, as if we hit this path
2783 		 * we avoid exiting the interrupt handler only to generate
2784 		 * another one.
2785 		 *
2786 		 * Note that for MSI this could cause a stray interrupt report
2787 		 * if an interrupt landed in the time between writing IIR and
2788 		 * the posting read.  This should be rare enough to never
2789 		 * trigger the 99% of 100,000 interrupts test for disabling
2790 		 * stray interrupts.
2791 		 */
2792 		ret = IRQ_HANDLED;
2793 		iir = new_iir;
2794 	} while (iir & ~flip_mask);
2795 
2796 	i915_update_dri1_breadcrumb(dev);
2797 
2798 	return ret;
2799 }
2800 
2801 static void i915_irq_uninstall(struct drm_device * dev)
2802 {
2803 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2804 	int pipe;
2805 
2806 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
2807 
2808 	if (I915_HAS_HOTPLUG(dev)) {
2809 		I915_WRITE(PORT_HOTPLUG_EN, 0);
2810 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2811 	}
2812 
2813 	I915_WRITE16(HWSTAM, 0xffff);
2814 	for_each_pipe(pipe) {
2815 		/* Clear enable bits; then clear status bits */
2816 		I915_WRITE(PIPESTAT(pipe), 0);
2817 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2818 	}
2819 	I915_WRITE(IMR, 0xffffffff);
2820 	I915_WRITE(IER, 0x0);
2821 
2822 	I915_WRITE(IIR, I915_READ(IIR));
2823 }
2824 
2825 static void i965_irq_preinstall(struct drm_device * dev)
2826 {
2827 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2828 	int pipe;
2829 
2830 	atomic_set(&dev_priv->irq_received, 0);
2831 
2832 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2833 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2834 
2835 	I915_WRITE(HWSTAM, 0xeffe);
2836 	for_each_pipe(pipe)
2837 		I915_WRITE(PIPESTAT(pipe), 0);
2838 	I915_WRITE(IMR, 0xffffffff);
2839 	I915_WRITE(IER, 0x0);
2840 	POSTING_READ(IER);
2841 }
2842 
2843 static int i965_irq_postinstall(struct drm_device *dev)
2844 {
2845 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2846 	u32 enable_mask;
2847 	u32 error_mask;
2848 	unsigned long irqflags;
2849 
2850 	/* Unmask the interrupts that we always want on. */
2851 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2852 			       I915_DISPLAY_PORT_INTERRUPT |
2853 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2854 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2855 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2856 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2857 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2858 
2859 	enable_mask = ~dev_priv->irq_mask;
2860 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2861 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2862 	enable_mask |= I915_USER_INTERRUPT;
2863 
2864 	if (IS_G4X(dev))
2865 		enable_mask |= I915_BSD_USER_INTERRUPT;
2866 
2867 	/* Interrupt setup is already guaranteed to be single-threaded, this is
2868 	 * just to make the assert_spin_locked check happy. */
2869 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2870 	i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2871 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2872 
2873 	/*
2874 	 * Enable some error detection, note the instruction error mask
2875 	 * bit is reserved, so we leave it masked.
2876 	 */
2877 	if (IS_G4X(dev)) {
2878 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
2879 			       GM45_ERROR_MEM_PRIV |
2880 			       GM45_ERROR_CP_PRIV |
2881 			       I915_ERROR_MEMORY_REFRESH);
2882 	} else {
2883 		error_mask = ~(I915_ERROR_PAGE_TABLE |
2884 			       I915_ERROR_MEMORY_REFRESH);
2885 	}
2886 	I915_WRITE(EMR, error_mask);
2887 
2888 	I915_WRITE(IMR, dev_priv->irq_mask);
2889 	I915_WRITE(IER, enable_mask);
2890 	POSTING_READ(IER);
2891 
2892 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2893 	POSTING_READ(PORT_HOTPLUG_EN);
2894 
2895 	i915_enable_asle_pipestat(dev);
2896 
2897 	return 0;
2898 }
2899 
2900 static void i915_hpd_irq_setup(struct drm_device *dev)
2901 {
2902 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2903 	struct drm_mode_config *mode_config = &dev->mode_config;
2904 	struct intel_encoder *intel_encoder;
2905 	u32 hotplug_en;
2906 
2907 	assert_spin_locked(&dev_priv->irq_lock);
2908 
2909 	if (I915_HAS_HOTPLUG(dev)) {
2910 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2911 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2912 		/* Note HDMI and DP share hotplug bits */
2913 		/* enable bits are the same for all generations */
2914 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2915 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2916 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2917 		/* Programming the CRT detection parameters tends
2918 		   to generate a spurious hotplug event about three
2919 		   seconds later.  So just do it once.
2920 		*/
2921 		if (IS_G4X(dev))
2922 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2923 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2924 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2925 
2926 		/* Ignore TV since it's buggy */
2927 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2928 	}
2929 }
2930 
2931 static irqreturn_t i965_irq_handler(int irq, void *arg)
2932 {
2933 	struct drm_device *dev = (struct drm_device *) arg;
2934 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2935 	u32 iir, new_iir;
2936 	u32 pipe_stats[I915_MAX_PIPES];
2937 	unsigned long irqflags;
2938 	int irq_received;
2939 	int ret = IRQ_NONE, pipe;
2940 	u32 flip_mask =
2941 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2942 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2943 
2944 	atomic_inc(&dev_priv->irq_received);
2945 
2946 	iir = I915_READ(IIR);
2947 
2948 	for (;;) {
2949 		bool blc_event = false;
2950 
2951 		irq_received = (iir & ~flip_mask) != 0;
2952 
2953 		/* Can't rely on pipestat interrupt bit in iir as it might
2954 		 * have been cleared after the pipestat interrupt was received.
2955 		 * It doesn't set the bit in iir again, but it still produces
2956 		 * interrupts (for non-MSI).
2957 		 */
2958 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2959 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2960 			i915_handle_error(dev, false);
2961 
2962 		for_each_pipe(pipe) {
2963 			int reg = PIPESTAT(pipe);
2964 			pipe_stats[pipe] = I915_READ(reg);
2965 
2966 			/*
2967 			 * Clear the PIPE*STAT regs before the IIR
2968 			 */
2969 			if (pipe_stats[pipe] & 0x8000ffff) {
2970 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2971 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2972 							 pipe_name(pipe));
2973 				I915_WRITE(reg, pipe_stats[pipe]);
2974 				irq_received = 1;
2975 			}
2976 		}
2977 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978 
2979 		if (!irq_received)
2980 			break;
2981 
2982 		ret = IRQ_HANDLED;
2983 
2984 		/* Consume port.  Then clear IIR or we'll miss events */
2985 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2986 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2987 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2988 								  HOTPLUG_INT_STATUS_G4X :
2989 								  HOTPLUG_INT_STATUS_I915);
2990 
2991 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2992 				  hotplug_status);
2993 
2994 			intel_hpd_irq_handler(dev, hotplug_trigger,
2995 					      IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2996 
2997 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2998 			I915_READ(PORT_HOTPLUG_STAT);
2999 		}
3000 
3001 		I915_WRITE(IIR, iir & ~flip_mask);
3002 		new_iir = I915_READ(IIR); /* Flush posted writes */
3003 
3004 		if (iir & I915_USER_INTERRUPT)
3005 			notify_ring(dev, &dev_priv->ring[RCS]);
3006 		if (iir & I915_BSD_USER_INTERRUPT)
3007 			notify_ring(dev, &dev_priv->ring[VCS]);
3008 
3009 		for_each_pipe(pipe) {
3010 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3011 			    i915_handle_vblank(dev, pipe, pipe, iir))
3012 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3013 
3014 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3015 				blc_event = true;
3016 		}
3017 
3018 
3019 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3020 			intel_opregion_asle_intr(dev);
3021 
3022 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3023 			gmbus_irq_handler(dev);
3024 
3025 		/* With MSI, interrupts are only generated when iir
3026 		 * transitions from zero to nonzero.  If another bit got
3027 		 * set while we were handling the existing iir bits, then
3028 		 * we would never get another interrupt.
3029 		 *
3030 		 * This is fine on non-MSI as well, as if we hit this path
3031 		 * we avoid exiting the interrupt handler only to generate
3032 		 * another one.
3033 		 *
3034 		 * Note that for MSI this could cause a stray interrupt report
3035 		 * if an interrupt landed in the time between writing IIR and
3036 		 * the posting read.  This should be rare enough to never
3037 		 * trigger the 99% of 100,000 interrupts test for disabling
3038 		 * stray interrupts.
3039 		 */
3040 		iir = new_iir;
3041 	}
3042 
3043 	i915_update_dri1_breadcrumb(dev);
3044 
3045 	return ret;
3046 }
3047 
3048 static void i965_irq_uninstall(struct drm_device * dev)
3049 {
3050 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3051 	int pipe;
3052 
3053 	if (!dev_priv)
3054 		return;
3055 
3056 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3057 
3058 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3059 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3060 
3061 	I915_WRITE(HWSTAM, 0xffffffff);
3062 	for_each_pipe(pipe)
3063 		I915_WRITE(PIPESTAT(pipe), 0);
3064 	I915_WRITE(IMR, 0xffffffff);
3065 	I915_WRITE(IER, 0x0);
3066 
3067 	for_each_pipe(pipe)
3068 		I915_WRITE(PIPESTAT(pipe),
3069 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3070 	I915_WRITE(IIR, I915_READ(IIR));
3071 }
3072 
3073 static void i915_reenable_hotplug_timer_func(unsigned long data)
3074 {
3075 	drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3076 	struct drm_device *dev = dev_priv->dev;
3077 	struct drm_mode_config *mode_config = &dev->mode_config;
3078 	unsigned long irqflags;
3079 	int i;
3080 
3081 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3082 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3083 		struct drm_connector *connector;
3084 
3085 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3086 			continue;
3087 
3088 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3089 
3090 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3091 			struct intel_connector *intel_connector = to_intel_connector(connector);
3092 
3093 			if (intel_connector->encoder->hpd_pin == i) {
3094 				if (connector->polled != intel_connector->polled)
3095 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3096 							 drm_get_connector_name(connector));
3097 				connector->polled = intel_connector->polled;
3098 				if (!connector->polled)
3099 					connector->polled = DRM_CONNECTOR_POLL_HPD;
3100 			}
3101 		}
3102 	}
3103 	if (dev_priv->display.hpd_irq_setup)
3104 		dev_priv->display.hpd_irq_setup(dev);
3105 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3106 }
3107 
3108 void intel_irq_init(struct drm_device *dev)
3109 {
3110 	struct drm_i915_private *dev_priv = dev->dev_private;
3111 
3112 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3113 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3114 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3115 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3116 
3117 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3118 		    i915_hangcheck_elapsed,
3119 		    (unsigned long) dev);
3120 	setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3121 		    (unsigned long) dev_priv);
3122 
3123 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3124 
3125 	dev->driver->get_vblank_counter = i915_get_vblank_counter;
3126 	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3127 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3128 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3129 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3130 	}
3131 
3132 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3133 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3134 	else
3135 		dev->driver->get_vblank_timestamp = NULL;
3136 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3137 
3138 	if (IS_VALLEYVIEW(dev)) {
3139 		dev->driver->irq_handler = valleyview_irq_handler;
3140 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
3141 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
3142 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
3143 		dev->driver->enable_vblank = valleyview_enable_vblank;
3144 		dev->driver->disable_vblank = valleyview_disable_vblank;
3145 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3146 	} else if (HAS_PCH_SPLIT(dev)) {
3147 		dev->driver->irq_handler = ironlake_irq_handler;
3148 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
3149 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
3150 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
3151 		dev->driver->enable_vblank = ironlake_enable_vblank;
3152 		dev->driver->disable_vblank = ironlake_disable_vblank;
3153 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3154 	} else {
3155 		if (INTEL_INFO(dev)->gen == 2) {
3156 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
3157 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
3158 			dev->driver->irq_handler = i8xx_irq_handler;
3159 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
3160 		} else if (INTEL_INFO(dev)->gen == 3) {
3161 			dev->driver->irq_preinstall = i915_irq_preinstall;
3162 			dev->driver->irq_postinstall = i915_irq_postinstall;
3163 			dev->driver->irq_uninstall = i915_irq_uninstall;
3164 			dev->driver->irq_handler = i915_irq_handler;
3165 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3166 		} else {
3167 			dev->driver->irq_preinstall = i965_irq_preinstall;
3168 			dev->driver->irq_postinstall = i965_irq_postinstall;
3169 			dev->driver->irq_uninstall = i965_irq_uninstall;
3170 			dev->driver->irq_handler = i965_irq_handler;
3171 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3172 		}
3173 		dev->driver->enable_vblank = i915_enable_vblank;
3174 		dev->driver->disable_vblank = i915_disable_vblank;
3175 	}
3176 }
3177 
3178 void intel_hpd_init(struct drm_device *dev)
3179 {
3180 	struct drm_i915_private *dev_priv = dev->dev_private;
3181 	struct drm_mode_config *mode_config = &dev->mode_config;
3182 	struct drm_connector *connector;
3183 	unsigned long irqflags;
3184 	int i;
3185 
3186 	for (i = 1; i < HPD_NUM_PINS; i++) {
3187 		dev_priv->hpd_stats[i].hpd_cnt = 0;
3188 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3189 	}
3190 	list_for_each_entry(connector, &mode_config->connector_list, head) {
3191 		struct intel_connector *intel_connector = to_intel_connector(connector);
3192 		connector->polled = intel_connector->polled;
3193 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3194 			connector->polled = DRM_CONNECTOR_POLL_HPD;
3195 	}
3196 
3197 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3198 	 * just to make the assert_spin_locked checks happy. */
3199 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3200 	if (dev_priv->display.hpd_irq_setup)
3201 		dev_priv->display.hpd_irq_setup(dev);
3202 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3203 }
3204 
3205 /* Disable interrupts so we can allow Package C8+. */
3206 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3207 {
3208 	struct drm_i915_private *dev_priv = dev->dev_private;
3209 	unsigned long irqflags;
3210 
3211 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3212 
3213 	dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3214 	dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3215 	dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3216 	dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3217 	dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3218 
3219 	ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3220 	ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3221 	ilk_disable_gt_irq(dev_priv, 0xffffffff);
3222 	snb_disable_pm_irq(dev_priv, 0xffffffff);
3223 
3224 	dev_priv->pc8.irqs_disabled = true;
3225 
3226 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3227 }
3228 
3229 /* Restore interrupts so we can recover from Package C8+. */
3230 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3231 {
3232 	struct drm_i915_private *dev_priv = dev->dev_private;
3233 	unsigned long irqflags;
3234 	uint32_t val, expected;
3235 
3236 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3237 
3238 	val = I915_READ(DEIMR);
3239 	expected = ~DE_PCH_EVENT_IVB;
3240 	WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3241 
3242 	val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3243 	expected = ~SDE_HOTPLUG_MASK_CPT;
3244 	WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3245 	     val, expected);
3246 
3247 	val = I915_READ(GTIMR);
3248 	expected = 0xffffffff;
3249 	WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3250 
3251 	val = I915_READ(GEN6_PMIMR);
3252 	expected = 0xffffffff;
3253 	WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3254 	     expected);
3255 
3256 	dev_priv->pc8.irqs_disabled = false;
3257 
3258 	ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3259 	ibx_enable_display_interrupt(dev_priv,
3260 				     ~dev_priv->pc8.regsave.sdeimr &
3261 				     ~SDE_HOTPLUG_MASK_CPT);
3262 	ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3263 	snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3264 	I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3265 
3266 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3267 }
3268