xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 4da722ca)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174 
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 				     uint32_t mask,
179 				     uint32_t bits)
180 {
181 	uint32_t val;
182 
183 	lockdep_assert_held(&dev_priv->irq_lock);
184 	WARN_ON(bits & ~mask);
185 
186 	val = I915_READ(PORT_HOTPLUG_EN);
187 	val &= ~mask;
188 	val |= bits;
189 	I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191 
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 				   uint32_t mask,
206 				   uint32_t bits)
207 {
208 	spin_lock_irq(&dev_priv->irq_lock);
209 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 	spin_unlock_irq(&dev_priv->irq_lock);
211 }
212 
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 			    uint32_t interrupt_mask,
221 			    uint32_t enabled_irq_mask)
222 {
223 	uint32_t new_val;
224 
225 	lockdep_assert_held(&dev_priv->irq_lock);
226 
227 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
228 
229 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 		return;
231 
232 	new_val = dev_priv->irq_mask;
233 	new_val &= ~interrupt_mask;
234 	new_val |= (~enabled_irq_mask & interrupt_mask);
235 
236 	if (new_val != dev_priv->irq_mask) {
237 		dev_priv->irq_mask = new_val;
238 		I915_WRITE(DEIMR, dev_priv->irq_mask);
239 		POSTING_READ(DEIMR);
240 	}
241 }
242 
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 			      uint32_t interrupt_mask,
251 			      uint32_t enabled_irq_mask)
252 {
253 	lockdep_assert_held(&dev_priv->irq_lock);
254 
255 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
256 
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	dev_priv->gt_irq_mask &= ~interrupt_mask;
261 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 	POSTING_READ_FW(GTIMR);
269 }
270 
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275 
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280 
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285 
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290 
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 			      uint32_t interrupt_mask,
299 			      uint32_t enabled_irq_mask)
300 {
301 	uint32_t new_val;
302 
303 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
304 
305 	lockdep_assert_held(&dev_priv->irq_lock);
306 
307 	new_val = dev_priv->pm_imr;
308 	new_val &= ~interrupt_mask;
309 	new_val |= (~enabled_irq_mask & interrupt_mask);
310 
311 	if (new_val != dev_priv->pm_imr) {
312 		dev_priv->pm_imr = new_val;
313 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 		POSTING_READ(gen6_pm_imr(dev_priv));
315 	}
316 }
317 
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 		return;
322 
323 	snb_update_pm_irq(dev_priv, mask, mask);
324 }
325 
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_mask_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	lockdep_assert_held(&dev_priv->irq_lock);
344 
345 	I915_WRITE(reg, reset_mask);
346 	I915_WRITE(reg, reset_mask);
347 	POSTING_READ(reg);
348 }
349 
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 	lockdep_assert_held(&dev_priv->irq_lock);
353 
354 	dev_priv->pm_ier |= enable_mask;
355 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 	gen6_unmask_pm_irq(dev_priv, enable_mask);
357 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359 
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 	lockdep_assert_held(&dev_priv->irq_lock);
363 
364 	dev_priv->pm_ier &= ~disable_mask;
365 	__gen6_mask_pm_irq(dev_priv, disable_mask);
366 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 	/* though a barrier is missing here, but don't really need a one */
368 }
369 
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 	spin_lock_irq(&dev_priv->irq_lock);
373 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 	dev_priv->rps.pm_iir = 0;
375 	spin_unlock_irq(&dev_priv->irq_lock);
376 }
377 
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 		return;
382 
383 	spin_lock_irq(&dev_priv->irq_lock);
384 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 	dev_priv->rps.interrupts_enabled = true;
387 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388 
389 	spin_unlock_irq(&dev_priv->irq_lock);
390 }
391 
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 		return;
396 
397 	spin_lock_irq(&dev_priv->irq_lock);
398 	dev_priv->rps.interrupts_enabled = false;
399 
400 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401 
402 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403 
404 	spin_unlock_irq(&dev_priv->irq_lock);
405 	synchronize_irq(dev_priv->drm.irq);
406 
407 	/* Now that we will not be generating any more work, flush any
408 	 * outsanding tasks. As we are called on the RPS idle path,
409 	 * we will reset the GPU to minimum frequencies, so the current
410 	 * state of the worker can be discarded.
411 	 */
412 	cancel_work_sync(&dev_priv->rps.work);
413 	gen6_reset_rps_interrupts(dev_priv);
414 }
415 
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 	spin_lock_irq(&dev_priv->irq_lock);
419 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 	spin_unlock_irq(&dev_priv->irq_lock);
421 }
422 
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 	spin_lock_irq(&dev_priv->irq_lock);
426 	if (!dev_priv->guc.interrupts_enabled) {
427 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 				       dev_priv->pm_guc_events);
429 		dev_priv->guc.interrupts_enabled = true;
430 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 	}
432 	spin_unlock_irq(&dev_priv->irq_lock);
433 }
434 
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 	spin_lock_irq(&dev_priv->irq_lock);
438 	dev_priv->guc.interrupts_enabled = false;
439 
440 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441 
442 	spin_unlock_irq(&dev_priv->irq_lock);
443 	synchronize_irq(dev_priv->drm.irq);
444 
445 	gen9_reset_guc_interrupts(dev_priv);
446 }
447 
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 				uint32_t interrupt_mask,
456 				uint32_t enabled_irq_mask)
457 {
458 	uint32_t new_val;
459 	uint32_t old_val;
460 
461 	lockdep_assert_held(&dev_priv->irq_lock);
462 
463 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
464 
465 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 		return;
467 
468 	old_val = I915_READ(GEN8_DE_PORT_IMR);
469 
470 	new_val = old_val;
471 	new_val &= ~interrupt_mask;
472 	new_val |= (~enabled_irq_mask & interrupt_mask);
473 
474 	if (new_val != old_val) {
475 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 		POSTING_READ(GEN8_DE_PORT_IMR);
477 	}
478 }
479 
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 			 enum pipe pipe,
489 			 uint32_t interrupt_mask,
490 			 uint32_t enabled_irq_mask)
491 {
492 	uint32_t new_val;
493 
494 	lockdep_assert_held(&dev_priv->irq_lock);
495 
496 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
497 
498 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 		return;
500 
501 	new_val = dev_priv->de_irq_mask[pipe];
502 	new_val &= ~interrupt_mask;
503 	new_val |= (~enabled_irq_mask & interrupt_mask);
504 
505 	if (new_val != dev_priv->de_irq_mask[pipe]) {
506 		dev_priv->de_irq_mask[pipe] = new_val;
507 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 	}
510 }
511 
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 				  uint32_t interrupt_mask,
520 				  uint32_t enabled_irq_mask)
521 {
522 	uint32_t sdeimr = I915_READ(SDEIMR);
523 	sdeimr &= ~interrupt_mask;
524 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
525 
526 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
527 
528 	lockdep_assert_held(&dev_priv->irq_lock);
529 
530 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 		return;
532 
533 	I915_WRITE(SDEIMR, sdeimr);
534 	POSTING_READ(SDEIMR);
535 }
536 
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 		       u32 enable_mask, u32 status_mask)
540 {
541 	i915_reg_t reg = PIPESTAT(pipe);
542 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543 
544 	lockdep_assert_held(&dev_priv->irq_lock);
545 	WARN_ON(!intel_irqs_enabled(dev_priv));
546 
547 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 		      pipe_name(pipe), enable_mask, status_mask))
551 		return;
552 
553 	if ((pipestat & enable_mask) == enable_mask)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557 
558 	/* Enable the interrupt, clear any pending status */
559 	pipestat |= enable_mask | status_mask;
560 	I915_WRITE(reg, pipestat);
561 	POSTING_READ(reg);
562 }
563 
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 		        u32 enable_mask, u32 status_mask)
567 {
568 	i915_reg_t reg = PIPESTAT(pipe);
569 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570 
571 	lockdep_assert_held(&dev_priv->irq_lock);
572 	WARN_ON(!intel_irqs_enabled(dev_priv));
573 
574 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 		      pipe_name(pipe), enable_mask, status_mask))
578 		return;
579 
580 	if ((pipestat & enable_mask) == 0)
581 		return;
582 
583 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584 
585 	pipestat &= ~enable_mask;
586 	I915_WRITE(reg, pipestat);
587 	POSTING_READ(reg);
588 }
589 
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 	u32 enable_mask = status_mask << 16;
593 
594 	/*
595 	 * On pipe A we don't support the PSR interrupt yet,
596 	 * on pipe B and C the same bit MBZ.
597 	 */
598 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 		return 0;
600 	/*
601 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 	 * A the same bit is for perf counters which we don't use either.
603 	 */
604 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 		return 0;
606 
607 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614 
615 	return enable_mask;
616 }
617 
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 		     u32 status_mask)
621 {
622 	u32 enable_mask;
623 
624 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 							   status_mask);
627 	else
628 		enable_mask = status_mask << 16;
629 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631 
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 		      u32 status_mask)
635 {
636 	u32 enable_mask;
637 
638 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 							   status_mask);
641 	else
642 		enable_mask = status_mask << 16;
643 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645 
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 		return;
654 
655 	spin_lock_irq(&dev_priv->irq_lock);
656 
657 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 	if (INTEL_GEN(dev_priv) >= 4)
659 		i915_enable_pipestat(dev_priv, PIPE_A,
660 				     PIPE_LEGACY_BLC_EVENT_STATUS);
661 
662 	spin_unlock_irq(&dev_priv->irq_lock);
663 }
664 
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714 
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 	struct drm_i915_private *dev_priv = to_i915(dev);
721 	i915_reg_t high_frame, low_frame;
722 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 	unsigned long irqflags;
725 
726 	htotal = mode->crtc_htotal;
727 	hsync_start = mode->crtc_hsync_start;
728 	vbl_start = mode->crtc_vblank_start;
729 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
731 
732 	/* Convert to pixel count */
733 	vbl_start *= htotal;
734 
735 	/* Start of vblank event occurs at start of hsync */
736 	vbl_start -= htotal - hsync_start;
737 
738 	high_frame = PIPEFRAME(pipe);
739 	low_frame = PIPEFRAMEPIXEL(pipe);
740 
741 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742 
743 	/*
744 	 * High & low register fields aren't synchronized, so make sure
745 	 * we get a low value that's stable across two reads of the high
746 	 * register.
747 	 */
748 	do {
749 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 		low   = I915_READ_FW(low_frame);
751 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 	} while (high1 != high2);
753 
754 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755 
756 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 	pixel = low & PIPE_PIXEL_MASK;
758 	low >>= PIPE_FRAME_LOW_SHIFT;
759 
760 	/*
761 	 * The frame counter increments at beginning of active.
762 	 * Cook up a vblank counter by also checking the pixel
763 	 * counter against vblank start.
764 	 */
765 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767 
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 	struct drm_i915_private *dev_priv = to_i915(dev);
771 
772 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774 
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 	struct drm_device *dev = crtc->base.dev;
779 	struct drm_i915_private *dev_priv = to_i915(dev);
780 	const struct drm_display_mode *mode;
781 	struct drm_vblank_crtc *vblank;
782 	enum pipe pipe = crtc->pipe;
783 	int position, vtotal;
784 
785 	if (!crtc->active)
786 		return -1;
787 
788 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 	mode = &vblank->hwmode;
790 
791 	vtotal = mode->crtc_vtotal;
792 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 		vtotal /= 2;
794 
795 	if (IS_GEN2(dev_priv))
796 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 	else
798 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799 
800 	/*
801 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 	 * read it just before the start of vblank.  So try it again
803 	 * so we don't accidentally end up spanning a vblank frame
804 	 * increment, causing the pipe_update_end() code to squak at us.
805 	 *
806 	 * The nature of this problem means we can't simply check the ISR
807 	 * bit and return the vblank start value; nor can we use the scanline
808 	 * debug register in the transcoder as it appears to have the same
809 	 * problem.  We may need to extend this to include other platforms,
810 	 * but so far testing only shows the problem on HSW.
811 	 */
812 	if (HAS_DDI(dev_priv) && !position) {
813 		int i, temp;
814 
815 		for (i = 0; i < 100; i++) {
816 			udelay(1);
817 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 			if (temp != position) {
819 				position = temp;
820 				break;
821 			}
822 		}
823 	}
824 
825 	/*
826 	 * See update_scanline_offset() for the details on the
827 	 * scanline_offset adjustment.
828 	 */
829 	return (position + crtc->scanline_offset) % vtotal;
830 }
831 
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 				     bool in_vblank_irq, int *vpos, int *hpos,
834 				     ktime_t *stime, ktime_t *etime,
835 				     const struct drm_display_mode *mode)
836 {
837 	struct drm_i915_private *dev_priv = to_i915(dev);
838 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 								pipe);
840 	int position;
841 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 	bool in_vbl = true;
843 	unsigned long irqflags;
844 
845 	if (WARN_ON(!mode->crtc_clock)) {
846 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847 				 "pipe %c\n", pipe_name(pipe));
848 		return false;
849 	}
850 
851 	htotal = mode->crtc_htotal;
852 	hsync_start = mode->crtc_hsync_start;
853 	vtotal = mode->crtc_vtotal;
854 	vbl_start = mode->crtc_vblank_start;
855 	vbl_end = mode->crtc_vblank_end;
856 
857 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
859 		vbl_end /= 2;
860 		vtotal /= 2;
861 	}
862 
863 	/*
864 	 * Lock uncore.lock, as we will do multiple timing critical raw
865 	 * register reads, potentially with preemption disabled, so the
866 	 * following code must not block on uncore.lock.
867 	 */
868 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869 
870 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871 
872 	/* Get optional system timestamp before query. */
873 	if (stime)
874 		*stime = ktime_get();
875 
876 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877 		/* No obvious pixelcount register. Only query vertical
878 		 * scanout position from Display scan line register.
879 		 */
880 		position = __intel_get_crtc_scanline(intel_crtc);
881 	} else {
882 		/* Have access to pixelcount since start of frame.
883 		 * We can split this into vertical and horizontal
884 		 * scanout position.
885 		 */
886 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887 
888 		/* convert to pixel counts */
889 		vbl_start *= htotal;
890 		vbl_end *= htotal;
891 		vtotal *= htotal;
892 
893 		/*
894 		 * In interlaced modes, the pixel counter counts all pixels,
895 		 * so one field will have htotal more pixels. In order to avoid
896 		 * the reported position from jumping backwards when the pixel
897 		 * counter is beyond the length of the shorter field, just
898 		 * clamp the position the length of the shorter field. This
899 		 * matches how the scanline counter based position works since
900 		 * the scanline counter doesn't count the two half lines.
901 		 */
902 		if (position >= vtotal)
903 			position = vtotal - 1;
904 
905 		/*
906 		 * Start of vblank interrupt is triggered at start of hsync,
907 		 * just prior to the first active line of vblank. However we
908 		 * consider lines to start at the leading edge of horizontal
909 		 * active. So, should we get here before we've crossed into
910 		 * the horizontal active of the first line in vblank, we would
911 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912 		 * always add htotal-hsync_start to the current pixel position.
913 		 */
914 		position = (position + htotal - hsync_start) % vtotal;
915 	}
916 
917 	/* Get optional system timestamp after query. */
918 	if (etime)
919 		*etime = ktime_get();
920 
921 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922 
923 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924 
925 	in_vbl = position >= vbl_start && position < vbl_end;
926 
927 	/*
928 	 * While in vblank, position will be negative
929 	 * counting up towards 0 at vbl_end. And outside
930 	 * vblank, position will be positive counting
931 	 * up since vbl_end.
932 	 */
933 	if (position >= vbl_start)
934 		position -= vbl_end;
935 	else
936 		position += vtotal - vbl_end;
937 
938 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939 		*vpos = position;
940 		*hpos = 0;
941 	} else {
942 		*vpos = position / htotal;
943 		*hpos = position - (*vpos * htotal);
944 	}
945 
946 	return true;
947 }
948 
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952 	unsigned long irqflags;
953 	int position;
954 
955 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956 	position = __intel_get_crtc_scanline(crtc);
957 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958 
959 	return position;
960 }
961 
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964 	u32 busy_up, busy_down, max_avg, min_avg;
965 	u8 new_delay;
966 
967 	spin_lock(&mchdev_lock);
968 
969 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970 
971 	new_delay = dev_priv->ips.cur_delay;
972 
973 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974 	busy_up = I915_READ(RCPREVBSYTUPAVG);
975 	busy_down = I915_READ(RCPREVBSYTDNAVG);
976 	max_avg = I915_READ(RCBMAXAVG);
977 	min_avg = I915_READ(RCBMINAVG);
978 
979 	/* Handle RCS change request from hw */
980 	if (busy_up > max_avg) {
981 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982 			new_delay = dev_priv->ips.cur_delay - 1;
983 		if (new_delay < dev_priv->ips.max_delay)
984 			new_delay = dev_priv->ips.max_delay;
985 	} else if (busy_down < min_avg) {
986 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987 			new_delay = dev_priv->ips.cur_delay + 1;
988 		if (new_delay > dev_priv->ips.min_delay)
989 			new_delay = dev_priv->ips.min_delay;
990 	}
991 
992 	if (ironlake_set_drps(dev_priv, new_delay))
993 		dev_priv->ips.cur_delay = new_delay;
994 
995 	spin_unlock(&mchdev_lock);
996 
997 	return;
998 }
999 
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002 	struct drm_i915_gem_request *rq = NULL;
1003 	struct intel_wait *wait;
1004 
1005 	atomic_inc(&engine->irq_count);
1006 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007 
1008 	spin_lock(&engine->breadcrumbs.irq_lock);
1009 	wait = engine->breadcrumbs.irq_wait;
1010 	if (wait) {
1011 		/* We use a callback from the dma-fence to submit
1012 		 * requests after waiting on our own requests. To
1013 		 * ensure minimum delay in queuing the next request to
1014 		 * hardware, signal the fence now rather than wait for
1015 		 * the signaler to be woken up. We still wake up the
1016 		 * waiter in order to handle the irq-seqno coherency
1017 		 * issues (we may receive the interrupt before the
1018 		 * seqno is written, see __i915_request_irq_complete())
1019 		 * and to handle coalescing of multiple seqno updates
1020 		 * and many waiters.
1021 		 */
1022 		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023 				      wait->seqno) &&
1024 		    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025 			      &wait->request->fence.flags))
1026 			rq = i915_gem_request_get(wait->request);
1027 
1028 		wake_up_process(wait->tsk);
1029 	} else {
1030 		__intel_engine_disarm_breadcrumbs(engine);
1031 	}
1032 	spin_unlock(&engine->breadcrumbs.irq_lock);
1033 
1034 	if (rq) {
1035 		dma_fence_signal(&rq->fence);
1036 		i915_gem_request_put(rq);
1037 	}
1038 
1039 	trace_intel_engine_notify(engine, wait);
1040 }
1041 
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043 			struct intel_rps_ei *ei)
1044 {
1045 	ei->ktime = ktime_get_raw();
1046 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049 
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052 	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054 
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057 	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058 	struct intel_rps_ei now;
1059 	u32 events = 0;
1060 
1061 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062 		return 0;
1063 
1064 	vlv_c0_read(dev_priv, &now);
1065 
1066 	if (prev->ktime) {
1067 		u64 time, c0;
1068 		u32 render, media;
1069 
1070 		time = ktime_us_delta(now.ktime, prev->ktime);
1071 
1072 		time *= dev_priv->czclk_freq;
1073 
1074 		/* Workload can be split between render + media,
1075 		 * e.g. SwapBuffers being blitted in X after being rendered in
1076 		 * mesa. To account for this we need to combine both engines
1077 		 * into our activity counter.
1078 		 */
1079 		render = now.render_c0 - prev->render_c0;
1080 		media = now.media_c0 - prev->media_c0;
1081 		c0 = max(render, media);
1082 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083 
1084 		if (c0 > time * dev_priv->rps.up_threshold)
1085 			events = GEN6_PM_RP_UP_THRESHOLD;
1086 		else if (c0 < time * dev_priv->rps.down_threshold)
1087 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1088 	}
1089 
1090 	dev_priv->rps.ei = now;
1091 	return events;
1092 }
1093 
1094 static bool any_waiters(struct drm_i915_private *dev_priv)
1095 {
1096 	struct intel_engine_cs *engine;
1097 	enum intel_engine_id id;
1098 
1099 	for_each_engine(engine, dev_priv, id)
1100 		if (intel_engine_has_waiter(engine))
1101 			return true;
1102 
1103 	return false;
1104 }
1105 
1106 static void gen6_pm_rps_work(struct work_struct *work)
1107 {
1108 	struct drm_i915_private *dev_priv =
1109 		container_of(work, struct drm_i915_private, rps.work);
1110 	bool client_boost = false;
1111 	int new_delay, adj, min, max;
1112 	u32 pm_iir = 0;
1113 
1114 	spin_lock_irq(&dev_priv->irq_lock);
1115 	if (dev_priv->rps.interrupts_enabled) {
1116 		pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1117 		client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1118 	}
1119 	spin_unlock_irq(&dev_priv->irq_lock);
1120 
1121 	/* Make sure we didn't queue anything we're not going to process. */
1122 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1123 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1124 		goto out;
1125 
1126 	mutex_lock(&dev_priv->rps.hw_lock);
1127 
1128 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1129 
1130 	adj = dev_priv->rps.last_adj;
1131 	new_delay = dev_priv->rps.cur_freq;
1132 	min = dev_priv->rps.min_freq_softlimit;
1133 	max = dev_priv->rps.max_freq_softlimit;
1134 	if (client_boost || any_waiters(dev_priv))
1135 		max = dev_priv->rps.max_freq;
1136 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1137 		new_delay = dev_priv->rps.boost_freq;
1138 		adj = 0;
1139 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1140 		if (adj > 0)
1141 			adj *= 2;
1142 		else /* CHV needs even encode values */
1143 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1144 
1145 		if (new_delay >= dev_priv->rps.max_freq_softlimit)
1146 			adj = 0;
1147 	} else if (client_boost || any_waiters(dev_priv)) {
1148 		adj = 0;
1149 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1150 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1151 			new_delay = dev_priv->rps.efficient_freq;
1152 		else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1153 			new_delay = dev_priv->rps.min_freq_softlimit;
1154 		adj = 0;
1155 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1156 		if (adj < 0)
1157 			adj *= 2;
1158 		else /* CHV needs even encode values */
1159 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1160 
1161 		if (new_delay <= dev_priv->rps.min_freq_softlimit)
1162 			adj = 0;
1163 	} else { /* unknown event */
1164 		adj = 0;
1165 	}
1166 
1167 	dev_priv->rps.last_adj = adj;
1168 
1169 	/* sysfs frequency interfaces may have snuck in while servicing the
1170 	 * interrupt
1171 	 */
1172 	new_delay += adj;
1173 	new_delay = clamp_t(int, new_delay, min, max);
1174 
1175 	if (intel_set_rps(dev_priv, new_delay)) {
1176 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1177 		dev_priv->rps.last_adj = 0;
1178 	}
1179 
1180 	mutex_unlock(&dev_priv->rps.hw_lock);
1181 
1182 out:
1183 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1184 	spin_lock_irq(&dev_priv->irq_lock);
1185 	if (dev_priv->rps.interrupts_enabled)
1186 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1187 	spin_unlock_irq(&dev_priv->irq_lock);
1188 }
1189 
1190 
1191 /**
1192  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1193  * occurred.
1194  * @work: workqueue struct
1195  *
1196  * Doesn't actually do anything except notify userspace. As a consequence of
1197  * this event, userspace should try to remap the bad rows since statistically
1198  * it is likely the same row is more likely to go bad again.
1199  */
1200 static void ivybridge_parity_work(struct work_struct *work)
1201 {
1202 	struct drm_i915_private *dev_priv =
1203 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1204 	u32 error_status, row, bank, subbank;
1205 	char *parity_event[6];
1206 	uint32_t misccpctl;
1207 	uint8_t slice = 0;
1208 
1209 	/* We must turn off DOP level clock gating to access the L3 registers.
1210 	 * In order to prevent a get/put style interface, acquire struct mutex
1211 	 * any time we access those registers.
1212 	 */
1213 	mutex_lock(&dev_priv->drm.struct_mutex);
1214 
1215 	/* If we've screwed up tracking, just let the interrupt fire again */
1216 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1217 		goto out;
1218 
1219 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1220 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1221 	POSTING_READ(GEN7_MISCCPCTL);
1222 
1223 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1224 		i915_reg_t reg;
1225 
1226 		slice--;
1227 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1228 			break;
1229 
1230 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1231 
1232 		reg = GEN7_L3CDERRST1(slice);
1233 
1234 		error_status = I915_READ(reg);
1235 		row = GEN7_PARITY_ERROR_ROW(error_status);
1236 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1237 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1238 
1239 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1240 		POSTING_READ(reg);
1241 
1242 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1243 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1244 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1245 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1246 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1247 		parity_event[5] = NULL;
1248 
1249 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1250 				   KOBJ_CHANGE, parity_event);
1251 
1252 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1253 			  slice, row, bank, subbank);
1254 
1255 		kfree(parity_event[4]);
1256 		kfree(parity_event[3]);
1257 		kfree(parity_event[2]);
1258 		kfree(parity_event[1]);
1259 	}
1260 
1261 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1262 
1263 out:
1264 	WARN_ON(dev_priv->l3_parity.which_slice);
1265 	spin_lock_irq(&dev_priv->irq_lock);
1266 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1267 	spin_unlock_irq(&dev_priv->irq_lock);
1268 
1269 	mutex_unlock(&dev_priv->drm.struct_mutex);
1270 }
1271 
1272 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1273 					       u32 iir)
1274 {
1275 	if (!HAS_L3_DPF(dev_priv))
1276 		return;
1277 
1278 	spin_lock(&dev_priv->irq_lock);
1279 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1280 	spin_unlock(&dev_priv->irq_lock);
1281 
1282 	iir &= GT_PARITY_ERROR(dev_priv);
1283 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1284 		dev_priv->l3_parity.which_slice |= 1 << 1;
1285 
1286 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1287 		dev_priv->l3_parity.which_slice |= 1 << 0;
1288 
1289 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1290 }
1291 
1292 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1293 			       u32 gt_iir)
1294 {
1295 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1296 		notify_ring(dev_priv->engine[RCS]);
1297 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1298 		notify_ring(dev_priv->engine[VCS]);
1299 }
1300 
1301 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1302 			       u32 gt_iir)
1303 {
1304 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1305 		notify_ring(dev_priv->engine[RCS]);
1306 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1307 		notify_ring(dev_priv->engine[VCS]);
1308 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1309 		notify_ring(dev_priv->engine[BCS]);
1310 
1311 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1312 		      GT_BSD_CS_ERROR_INTERRUPT |
1313 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1314 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1315 
1316 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1317 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1318 }
1319 
1320 static void
1321 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1322 {
1323 	bool tasklet = false;
1324 
1325 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1326 		if (port_count(&engine->execlist_port[0])) {
1327 			__set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1328 			tasklet = true;
1329 		}
1330 	}
1331 
1332 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1333 		notify_ring(engine);
1334 		tasklet |= i915.enable_guc_submission;
1335 	}
1336 
1337 	if (tasklet)
1338 		tasklet_hi_schedule(&engine->irq_tasklet);
1339 }
1340 
1341 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1342 				   u32 master_ctl,
1343 				   u32 gt_iir[4])
1344 {
1345 	irqreturn_t ret = IRQ_NONE;
1346 
1347 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1348 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1349 		if (gt_iir[0]) {
1350 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1351 			ret = IRQ_HANDLED;
1352 		} else
1353 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1354 	}
1355 
1356 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1357 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1358 		if (gt_iir[1]) {
1359 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1360 			ret = IRQ_HANDLED;
1361 		} else
1362 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 	}
1364 
1365 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1367 		if (gt_iir[3]) {
1368 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1369 			ret = IRQ_HANDLED;
1370 		} else
1371 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1372 	}
1373 
1374 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1375 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1376 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1377 				 dev_priv->pm_guc_events)) {
1378 			I915_WRITE_FW(GEN8_GT_IIR(2),
1379 				      gt_iir[2] & (dev_priv->pm_rps_events |
1380 						   dev_priv->pm_guc_events));
1381 			ret = IRQ_HANDLED;
1382 		} else
1383 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1384 	}
1385 
1386 	return ret;
1387 }
1388 
1389 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1390 				u32 gt_iir[4])
1391 {
1392 	if (gt_iir[0]) {
1393 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1394 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1395 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1396 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1397 	}
1398 
1399 	if (gt_iir[1]) {
1400 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1401 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1402 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1403 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1404 	}
1405 
1406 	if (gt_iir[3])
1407 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1408 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1409 
1410 	if (gt_iir[2] & dev_priv->pm_rps_events)
1411 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1412 
1413 	if (gt_iir[2] & dev_priv->pm_guc_events)
1414 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1415 }
1416 
1417 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1418 {
1419 	switch (port) {
1420 	case PORT_A:
1421 		return val & PORTA_HOTPLUG_LONG_DETECT;
1422 	case PORT_B:
1423 		return val & PORTB_HOTPLUG_LONG_DETECT;
1424 	case PORT_C:
1425 		return val & PORTC_HOTPLUG_LONG_DETECT;
1426 	default:
1427 		return false;
1428 	}
1429 }
1430 
1431 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1432 {
1433 	switch (port) {
1434 	case PORT_E:
1435 		return val & PORTE_HOTPLUG_LONG_DETECT;
1436 	default:
1437 		return false;
1438 	}
1439 }
1440 
1441 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 	switch (port) {
1444 	case PORT_A:
1445 		return val & PORTA_HOTPLUG_LONG_DETECT;
1446 	case PORT_B:
1447 		return val & PORTB_HOTPLUG_LONG_DETECT;
1448 	case PORT_C:
1449 		return val & PORTC_HOTPLUG_LONG_DETECT;
1450 	case PORT_D:
1451 		return val & PORTD_HOTPLUG_LONG_DETECT;
1452 	default:
1453 		return false;
1454 	}
1455 }
1456 
1457 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1458 {
1459 	switch (port) {
1460 	case PORT_A:
1461 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1462 	default:
1463 		return false;
1464 	}
1465 }
1466 
1467 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1468 {
1469 	switch (port) {
1470 	case PORT_B:
1471 		return val & PORTB_HOTPLUG_LONG_DETECT;
1472 	case PORT_C:
1473 		return val & PORTC_HOTPLUG_LONG_DETECT;
1474 	case PORT_D:
1475 		return val & PORTD_HOTPLUG_LONG_DETECT;
1476 	default:
1477 		return false;
1478 	}
1479 }
1480 
1481 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1482 {
1483 	switch (port) {
1484 	case PORT_B:
1485 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1486 	case PORT_C:
1487 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1488 	case PORT_D:
1489 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1490 	default:
1491 		return false;
1492 	}
1493 }
1494 
1495 /*
1496  * Get a bit mask of pins that have triggered, and which ones may be long.
1497  * This can be called multiple times with the same masks to accumulate
1498  * hotplug detection results from several registers.
1499  *
1500  * Note that the caller is expected to zero out the masks initially.
1501  */
1502 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1503 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1504 			     const u32 hpd[HPD_NUM_PINS],
1505 			     bool long_pulse_detect(enum port port, u32 val))
1506 {
1507 	enum port port;
1508 	int i;
1509 
1510 	for_each_hpd_pin(i) {
1511 		if ((hpd[i] & hotplug_trigger) == 0)
1512 			continue;
1513 
1514 		*pin_mask |= BIT(i);
1515 
1516 		if (!intel_hpd_pin_to_port(i, &port))
1517 			continue;
1518 
1519 		if (long_pulse_detect(port, dig_hotplug_reg))
1520 			*long_mask |= BIT(i);
1521 	}
1522 
1523 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1524 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1525 
1526 }
1527 
1528 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1529 {
1530 	wake_up_all(&dev_priv->gmbus_wait_queue);
1531 }
1532 
1533 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1534 {
1535 	wake_up_all(&dev_priv->gmbus_wait_queue);
1536 }
1537 
1538 #if defined(CONFIG_DEBUG_FS)
1539 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1540 					 enum pipe pipe,
1541 					 uint32_t crc0, uint32_t crc1,
1542 					 uint32_t crc2, uint32_t crc3,
1543 					 uint32_t crc4)
1544 {
1545 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1546 	struct intel_pipe_crc_entry *entry;
1547 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1548 	struct drm_driver *driver = dev_priv->drm.driver;
1549 	uint32_t crcs[5];
1550 	int head, tail;
1551 
1552 	spin_lock(&pipe_crc->lock);
1553 	if (pipe_crc->source) {
1554 		if (!pipe_crc->entries) {
1555 			spin_unlock(&pipe_crc->lock);
1556 			DRM_DEBUG_KMS("spurious interrupt\n");
1557 			return;
1558 		}
1559 
1560 		head = pipe_crc->head;
1561 		tail = pipe_crc->tail;
1562 
1563 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1564 			spin_unlock(&pipe_crc->lock);
1565 			DRM_ERROR("CRC buffer overflowing\n");
1566 			return;
1567 		}
1568 
1569 		entry = &pipe_crc->entries[head];
1570 
1571 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1572 		entry->crc[0] = crc0;
1573 		entry->crc[1] = crc1;
1574 		entry->crc[2] = crc2;
1575 		entry->crc[3] = crc3;
1576 		entry->crc[4] = crc4;
1577 
1578 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1579 		pipe_crc->head = head;
1580 
1581 		spin_unlock(&pipe_crc->lock);
1582 
1583 		wake_up_interruptible(&pipe_crc->wq);
1584 	} else {
1585 		/*
1586 		 * For some not yet identified reason, the first CRC is
1587 		 * bonkers. So let's just wait for the next vblank and read
1588 		 * out the buggy result.
1589 		 *
1590 		 * On CHV sometimes the second CRC is bonkers as well, so
1591 		 * don't trust that one either.
1592 		 */
1593 		if (pipe_crc->skipped == 0 ||
1594 		    (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1595 			pipe_crc->skipped++;
1596 			spin_unlock(&pipe_crc->lock);
1597 			return;
1598 		}
1599 		spin_unlock(&pipe_crc->lock);
1600 		crcs[0] = crc0;
1601 		crcs[1] = crc1;
1602 		crcs[2] = crc2;
1603 		crcs[3] = crc3;
1604 		crcs[4] = crc4;
1605 		drm_crtc_add_crc_entry(&crtc->base, true,
1606 				       drm_accurate_vblank_count(&crtc->base),
1607 				       crcs);
1608 	}
1609 }
1610 #else
1611 static inline void
1612 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1613 			     enum pipe pipe,
1614 			     uint32_t crc0, uint32_t crc1,
1615 			     uint32_t crc2, uint32_t crc3,
1616 			     uint32_t crc4) {}
1617 #endif
1618 
1619 
1620 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1621 				     enum pipe pipe)
1622 {
1623 	display_pipe_crc_irq_handler(dev_priv, pipe,
1624 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1625 				     0, 0, 0, 0);
1626 }
1627 
1628 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1629 				     enum pipe pipe)
1630 {
1631 	display_pipe_crc_irq_handler(dev_priv, pipe,
1632 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1633 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1634 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1635 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1636 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1637 }
1638 
1639 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1640 				      enum pipe pipe)
1641 {
1642 	uint32_t res1, res2;
1643 
1644 	if (INTEL_GEN(dev_priv) >= 3)
1645 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1646 	else
1647 		res1 = 0;
1648 
1649 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1650 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1651 	else
1652 		res2 = 0;
1653 
1654 	display_pipe_crc_irq_handler(dev_priv, pipe,
1655 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1656 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1657 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1658 				     res1, res2);
1659 }
1660 
1661 /* The RPS events need forcewake, so we add them to a work queue and mask their
1662  * IMR bits until the work is done. Other interrupts can be processed without
1663  * the work queue. */
1664 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1665 {
1666 	if (pm_iir & dev_priv->pm_rps_events) {
1667 		spin_lock(&dev_priv->irq_lock);
1668 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1669 		if (dev_priv->rps.interrupts_enabled) {
1670 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1671 			schedule_work(&dev_priv->rps.work);
1672 		}
1673 		spin_unlock(&dev_priv->irq_lock);
1674 	}
1675 
1676 	if (INTEL_INFO(dev_priv)->gen >= 8)
1677 		return;
1678 
1679 	if (HAS_VEBOX(dev_priv)) {
1680 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1681 			notify_ring(dev_priv->engine[VECS]);
1682 
1683 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1684 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1685 	}
1686 }
1687 
1688 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1689 {
1690 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1691 		/* Sample the log buffer flush related bits & clear them out now
1692 		 * itself from the message identity register to minimize the
1693 		 * probability of losing a flush interrupt, when there are back
1694 		 * to back flush interrupts.
1695 		 * There can be a new flush interrupt, for different log buffer
1696 		 * type (like for ISR), whilst Host is handling one (for DPC).
1697 		 * Since same bit is used in message register for ISR & DPC, it
1698 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1699 		 * clears out the bit on handling the 1st interrupt.
1700 		 */
1701 		u32 msg, flush;
1702 
1703 		msg = I915_READ(SOFT_SCRATCH(15));
1704 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1705 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1706 		if (flush) {
1707 			/* Clear the message bits that are handled */
1708 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1709 
1710 			/* Handle flush interrupt in bottom half */
1711 			queue_work(dev_priv->guc.log.runtime.flush_wq,
1712 				   &dev_priv->guc.log.runtime.flush_work);
1713 
1714 			dev_priv->guc.log.flush_interrupt_count++;
1715 		} else {
1716 			/* Not clearing of unhandled event bits won't result in
1717 			 * re-triggering of the interrupt.
1718 			 */
1719 		}
1720 	}
1721 }
1722 
1723 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1724 				     enum pipe pipe)
1725 {
1726 	bool ret;
1727 
1728 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1729 	if (ret)
1730 		intel_finish_page_flip_mmio(dev_priv, pipe);
1731 
1732 	return ret;
1733 }
1734 
1735 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1736 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1737 {
1738 	int pipe;
1739 
1740 	spin_lock(&dev_priv->irq_lock);
1741 
1742 	if (!dev_priv->display_irqs_enabled) {
1743 		spin_unlock(&dev_priv->irq_lock);
1744 		return;
1745 	}
1746 
1747 	for_each_pipe(dev_priv, pipe) {
1748 		i915_reg_t reg;
1749 		u32 mask, iir_bit = 0;
1750 
1751 		/*
1752 		 * PIPESTAT bits get signalled even when the interrupt is
1753 		 * disabled with the mask bits, and some of the status bits do
1754 		 * not generate interrupts at all (like the underrun bit). Hence
1755 		 * we need to be careful that we only handle what we want to
1756 		 * handle.
1757 		 */
1758 
1759 		/* fifo underruns are filterered in the underrun handler. */
1760 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1761 
1762 		switch (pipe) {
1763 		case PIPE_A:
1764 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1765 			break;
1766 		case PIPE_B:
1767 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1768 			break;
1769 		case PIPE_C:
1770 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1771 			break;
1772 		}
1773 		if (iir & iir_bit)
1774 			mask |= dev_priv->pipestat_irq_mask[pipe];
1775 
1776 		if (!mask)
1777 			continue;
1778 
1779 		reg = PIPESTAT(pipe);
1780 		mask |= PIPESTAT_INT_ENABLE_MASK;
1781 		pipe_stats[pipe] = I915_READ(reg) & mask;
1782 
1783 		/*
1784 		 * Clear the PIPE*STAT regs before the IIR
1785 		 */
1786 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1787 					PIPESTAT_INT_STATUS_MASK))
1788 			I915_WRITE(reg, pipe_stats[pipe]);
1789 	}
1790 	spin_unlock(&dev_priv->irq_lock);
1791 }
1792 
1793 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1794 					    u32 pipe_stats[I915_MAX_PIPES])
1795 {
1796 	enum pipe pipe;
1797 
1798 	for_each_pipe(dev_priv, pipe) {
1799 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1800 		    intel_pipe_handle_vblank(dev_priv, pipe))
1801 			intel_check_page_flip(dev_priv, pipe);
1802 
1803 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1804 			intel_finish_page_flip_cs(dev_priv, pipe);
1805 
1806 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1807 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1808 
1809 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1810 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1811 	}
1812 
1813 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1814 		gmbus_irq_handler(dev_priv);
1815 }
1816 
1817 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1818 {
1819 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1820 
1821 	if (hotplug_status)
1822 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1823 
1824 	return hotplug_status;
1825 }
1826 
1827 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1828 				 u32 hotplug_status)
1829 {
1830 	u32 pin_mask = 0, long_mask = 0;
1831 
1832 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1833 	    IS_CHERRYVIEW(dev_priv)) {
1834 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1835 
1836 		if (hotplug_trigger) {
1837 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1838 					   hotplug_trigger, hpd_status_g4x,
1839 					   i9xx_port_hotplug_long_detect);
1840 
1841 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1842 		}
1843 
1844 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1845 			dp_aux_irq_handler(dev_priv);
1846 	} else {
1847 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1848 
1849 		if (hotplug_trigger) {
1850 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1851 					   hotplug_trigger, hpd_status_i915,
1852 					   i9xx_port_hotplug_long_detect);
1853 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1854 		}
1855 	}
1856 }
1857 
1858 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1859 {
1860 	struct drm_device *dev = arg;
1861 	struct drm_i915_private *dev_priv = to_i915(dev);
1862 	irqreturn_t ret = IRQ_NONE;
1863 
1864 	if (!intel_irqs_enabled(dev_priv))
1865 		return IRQ_NONE;
1866 
1867 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1868 	disable_rpm_wakeref_asserts(dev_priv);
1869 
1870 	do {
1871 		u32 iir, gt_iir, pm_iir;
1872 		u32 pipe_stats[I915_MAX_PIPES] = {};
1873 		u32 hotplug_status = 0;
1874 		u32 ier = 0;
1875 
1876 		gt_iir = I915_READ(GTIIR);
1877 		pm_iir = I915_READ(GEN6_PMIIR);
1878 		iir = I915_READ(VLV_IIR);
1879 
1880 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1881 			break;
1882 
1883 		ret = IRQ_HANDLED;
1884 
1885 		/*
1886 		 * Theory on interrupt generation, based on empirical evidence:
1887 		 *
1888 		 * x = ((VLV_IIR & VLV_IER) ||
1889 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1890 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1891 		 *
1892 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1893 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1894 		 * guarantee the CPU interrupt will be raised again even if we
1895 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1896 		 * bits this time around.
1897 		 */
1898 		I915_WRITE(VLV_MASTER_IER, 0);
1899 		ier = I915_READ(VLV_IER);
1900 		I915_WRITE(VLV_IER, 0);
1901 
1902 		if (gt_iir)
1903 			I915_WRITE(GTIIR, gt_iir);
1904 		if (pm_iir)
1905 			I915_WRITE(GEN6_PMIIR, pm_iir);
1906 
1907 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1908 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1909 
1910 		/* Call regardless, as some status bits might not be
1911 		 * signalled in iir */
1912 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1913 
1914 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1915 			   I915_LPE_PIPE_B_INTERRUPT))
1916 			intel_lpe_audio_irq_handler(dev_priv);
1917 
1918 		/*
1919 		 * VLV_IIR is single buffered, and reflects the level
1920 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1921 		 */
1922 		if (iir)
1923 			I915_WRITE(VLV_IIR, iir);
1924 
1925 		I915_WRITE(VLV_IER, ier);
1926 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1927 		POSTING_READ(VLV_MASTER_IER);
1928 
1929 		if (gt_iir)
1930 			snb_gt_irq_handler(dev_priv, gt_iir);
1931 		if (pm_iir)
1932 			gen6_rps_irq_handler(dev_priv, pm_iir);
1933 
1934 		if (hotplug_status)
1935 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1936 
1937 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1938 	} while (0);
1939 
1940 	enable_rpm_wakeref_asserts(dev_priv);
1941 
1942 	return ret;
1943 }
1944 
1945 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1946 {
1947 	struct drm_device *dev = arg;
1948 	struct drm_i915_private *dev_priv = to_i915(dev);
1949 	irqreturn_t ret = IRQ_NONE;
1950 
1951 	if (!intel_irqs_enabled(dev_priv))
1952 		return IRQ_NONE;
1953 
1954 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1955 	disable_rpm_wakeref_asserts(dev_priv);
1956 
1957 	do {
1958 		u32 master_ctl, iir;
1959 		u32 gt_iir[4] = {};
1960 		u32 pipe_stats[I915_MAX_PIPES] = {};
1961 		u32 hotplug_status = 0;
1962 		u32 ier = 0;
1963 
1964 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1965 		iir = I915_READ(VLV_IIR);
1966 
1967 		if (master_ctl == 0 && iir == 0)
1968 			break;
1969 
1970 		ret = IRQ_HANDLED;
1971 
1972 		/*
1973 		 * Theory on interrupt generation, based on empirical evidence:
1974 		 *
1975 		 * x = ((VLV_IIR & VLV_IER) ||
1976 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1977 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1978 		 *
1979 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1980 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1981 		 * guarantee the CPU interrupt will be raised again even if we
1982 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1983 		 * bits this time around.
1984 		 */
1985 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1986 		ier = I915_READ(VLV_IER);
1987 		I915_WRITE(VLV_IER, 0);
1988 
1989 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1990 
1991 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1992 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1993 
1994 		/* Call regardless, as some status bits might not be
1995 		 * signalled in iir */
1996 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1997 
1998 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1999 			   I915_LPE_PIPE_B_INTERRUPT |
2000 			   I915_LPE_PIPE_C_INTERRUPT))
2001 			intel_lpe_audio_irq_handler(dev_priv);
2002 
2003 		/*
2004 		 * VLV_IIR is single buffered, and reflects the level
2005 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2006 		 */
2007 		if (iir)
2008 			I915_WRITE(VLV_IIR, iir);
2009 
2010 		I915_WRITE(VLV_IER, ier);
2011 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2012 		POSTING_READ(GEN8_MASTER_IRQ);
2013 
2014 		gen8_gt_irq_handler(dev_priv, gt_iir);
2015 
2016 		if (hotplug_status)
2017 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2018 
2019 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2020 	} while (0);
2021 
2022 	enable_rpm_wakeref_asserts(dev_priv);
2023 
2024 	return ret;
2025 }
2026 
2027 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2028 				u32 hotplug_trigger,
2029 				const u32 hpd[HPD_NUM_PINS])
2030 {
2031 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2032 
2033 	/*
2034 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2035 	 * unless we touch the hotplug register, even if hotplug_trigger is
2036 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2037 	 * errors.
2038 	 */
2039 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2040 	if (!hotplug_trigger) {
2041 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2042 			PORTD_HOTPLUG_STATUS_MASK |
2043 			PORTC_HOTPLUG_STATUS_MASK |
2044 			PORTB_HOTPLUG_STATUS_MASK;
2045 		dig_hotplug_reg &= ~mask;
2046 	}
2047 
2048 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2049 	if (!hotplug_trigger)
2050 		return;
2051 
2052 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2053 			   dig_hotplug_reg, hpd,
2054 			   pch_port_hotplug_long_detect);
2055 
2056 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2057 }
2058 
2059 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2060 {
2061 	int pipe;
2062 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2063 
2064 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2065 
2066 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2067 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2068 			       SDE_AUDIO_POWER_SHIFT);
2069 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2070 				 port_name(port));
2071 	}
2072 
2073 	if (pch_iir & SDE_AUX_MASK)
2074 		dp_aux_irq_handler(dev_priv);
2075 
2076 	if (pch_iir & SDE_GMBUS)
2077 		gmbus_irq_handler(dev_priv);
2078 
2079 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2080 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2081 
2082 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2083 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2084 
2085 	if (pch_iir & SDE_POISON)
2086 		DRM_ERROR("PCH poison interrupt\n");
2087 
2088 	if (pch_iir & SDE_FDI_MASK)
2089 		for_each_pipe(dev_priv, pipe)
2090 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2091 					 pipe_name(pipe),
2092 					 I915_READ(FDI_RX_IIR(pipe)));
2093 
2094 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2095 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2096 
2097 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2098 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2099 
2100 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2101 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2102 
2103 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2104 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2105 }
2106 
2107 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2108 {
2109 	u32 err_int = I915_READ(GEN7_ERR_INT);
2110 	enum pipe pipe;
2111 
2112 	if (err_int & ERR_INT_POISON)
2113 		DRM_ERROR("Poison interrupt\n");
2114 
2115 	for_each_pipe(dev_priv, pipe) {
2116 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2117 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2118 
2119 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2120 			if (IS_IVYBRIDGE(dev_priv))
2121 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2122 			else
2123 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2124 		}
2125 	}
2126 
2127 	I915_WRITE(GEN7_ERR_INT, err_int);
2128 }
2129 
2130 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2131 {
2132 	u32 serr_int = I915_READ(SERR_INT);
2133 
2134 	if (serr_int & SERR_INT_POISON)
2135 		DRM_ERROR("PCH poison interrupt\n");
2136 
2137 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2138 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2139 
2140 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2141 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2142 
2143 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2144 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2145 
2146 	I915_WRITE(SERR_INT, serr_int);
2147 }
2148 
2149 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2150 {
2151 	int pipe;
2152 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2153 
2154 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2155 
2156 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2157 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2158 			       SDE_AUDIO_POWER_SHIFT_CPT);
2159 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2160 				 port_name(port));
2161 	}
2162 
2163 	if (pch_iir & SDE_AUX_MASK_CPT)
2164 		dp_aux_irq_handler(dev_priv);
2165 
2166 	if (pch_iir & SDE_GMBUS_CPT)
2167 		gmbus_irq_handler(dev_priv);
2168 
2169 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2170 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2171 
2172 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2173 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2174 
2175 	if (pch_iir & SDE_FDI_MASK_CPT)
2176 		for_each_pipe(dev_priv, pipe)
2177 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2178 					 pipe_name(pipe),
2179 					 I915_READ(FDI_RX_IIR(pipe)));
2180 
2181 	if (pch_iir & SDE_ERROR_CPT)
2182 		cpt_serr_int_handler(dev_priv);
2183 }
2184 
2185 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2186 {
2187 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2188 		~SDE_PORTE_HOTPLUG_SPT;
2189 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2190 	u32 pin_mask = 0, long_mask = 0;
2191 
2192 	if (hotplug_trigger) {
2193 		u32 dig_hotplug_reg;
2194 
2195 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2196 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2197 
2198 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2199 				   dig_hotplug_reg, hpd_spt,
2200 				   spt_port_hotplug_long_detect);
2201 	}
2202 
2203 	if (hotplug2_trigger) {
2204 		u32 dig_hotplug_reg;
2205 
2206 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2207 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2208 
2209 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2210 				   dig_hotplug_reg, hpd_spt,
2211 				   spt_port_hotplug2_long_detect);
2212 	}
2213 
2214 	if (pin_mask)
2215 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2216 
2217 	if (pch_iir & SDE_GMBUS_CPT)
2218 		gmbus_irq_handler(dev_priv);
2219 }
2220 
2221 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2222 				u32 hotplug_trigger,
2223 				const u32 hpd[HPD_NUM_PINS])
2224 {
2225 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2226 
2227 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2228 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2229 
2230 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2231 			   dig_hotplug_reg, hpd,
2232 			   ilk_port_hotplug_long_detect);
2233 
2234 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2235 }
2236 
2237 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2238 				    u32 de_iir)
2239 {
2240 	enum pipe pipe;
2241 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2242 
2243 	if (hotplug_trigger)
2244 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2245 
2246 	if (de_iir & DE_AUX_CHANNEL_A)
2247 		dp_aux_irq_handler(dev_priv);
2248 
2249 	if (de_iir & DE_GSE)
2250 		intel_opregion_asle_intr(dev_priv);
2251 
2252 	if (de_iir & DE_POISON)
2253 		DRM_ERROR("Poison interrupt\n");
2254 
2255 	for_each_pipe(dev_priv, pipe) {
2256 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2257 		    intel_pipe_handle_vblank(dev_priv, pipe))
2258 			intel_check_page_flip(dev_priv, pipe);
2259 
2260 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2261 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2262 
2263 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2264 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2265 
2266 		/* plane/pipes map 1:1 on ilk+ */
2267 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2268 			intel_finish_page_flip_cs(dev_priv, pipe);
2269 	}
2270 
2271 	/* check event from PCH */
2272 	if (de_iir & DE_PCH_EVENT) {
2273 		u32 pch_iir = I915_READ(SDEIIR);
2274 
2275 		if (HAS_PCH_CPT(dev_priv))
2276 			cpt_irq_handler(dev_priv, pch_iir);
2277 		else
2278 			ibx_irq_handler(dev_priv, pch_iir);
2279 
2280 		/* should clear PCH hotplug event before clear CPU irq */
2281 		I915_WRITE(SDEIIR, pch_iir);
2282 	}
2283 
2284 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2285 		ironlake_rps_change_irq_handler(dev_priv);
2286 }
2287 
2288 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2289 				    u32 de_iir)
2290 {
2291 	enum pipe pipe;
2292 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2293 
2294 	if (hotplug_trigger)
2295 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2296 
2297 	if (de_iir & DE_ERR_INT_IVB)
2298 		ivb_err_int_handler(dev_priv);
2299 
2300 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2301 		dp_aux_irq_handler(dev_priv);
2302 
2303 	if (de_iir & DE_GSE_IVB)
2304 		intel_opregion_asle_intr(dev_priv);
2305 
2306 	for_each_pipe(dev_priv, pipe) {
2307 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2308 		    intel_pipe_handle_vblank(dev_priv, pipe))
2309 			intel_check_page_flip(dev_priv, pipe);
2310 
2311 		/* plane/pipes map 1:1 on ilk+ */
2312 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2313 			intel_finish_page_flip_cs(dev_priv, pipe);
2314 	}
2315 
2316 	/* check event from PCH */
2317 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2318 		u32 pch_iir = I915_READ(SDEIIR);
2319 
2320 		cpt_irq_handler(dev_priv, pch_iir);
2321 
2322 		/* clear PCH hotplug event before clear CPU irq */
2323 		I915_WRITE(SDEIIR, pch_iir);
2324 	}
2325 }
2326 
2327 /*
2328  * To handle irqs with the minimum potential races with fresh interrupts, we:
2329  * 1 - Disable Master Interrupt Control.
2330  * 2 - Find the source(s) of the interrupt.
2331  * 3 - Clear the Interrupt Identity bits (IIR).
2332  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2333  * 5 - Re-enable Master Interrupt Control.
2334  */
2335 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2336 {
2337 	struct drm_device *dev = arg;
2338 	struct drm_i915_private *dev_priv = to_i915(dev);
2339 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2340 	irqreturn_t ret = IRQ_NONE;
2341 
2342 	if (!intel_irqs_enabled(dev_priv))
2343 		return IRQ_NONE;
2344 
2345 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2346 	disable_rpm_wakeref_asserts(dev_priv);
2347 
2348 	/* disable master interrupt before clearing iir  */
2349 	de_ier = I915_READ(DEIER);
2350 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2351 	POSTING_READ(DEIER);
2352 
2353 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2354 	 * interrupts will will be stored on its back queue, and then we'll be
2355 	 * able to process them after we restore SDEIER (as soon as we restore
2356 	 * it, we'll get an interrupt if SDEIIR still has something to process
2357 	 * due to its back queue). */
2358 	if (!HAS_PCH_NOP(dev_priv)) {
2359 		sde_ier = I915_READ(SDEIER);
2360 		I915_WRITE(SDEIER, 0);
2361 		POSTING_READ(SDEIER);
2362 	}
2363 
2364 	/* Find, clear, then process each source of interrupt */
2365 
2366 	gt_iir = I915_READ(GTIIR);
2367 	if (gt_iir) {
2368 		I915_WRITE(GTIIR, gt_iir);
2369 		ret = IRQ_HANDLED;
2370 		if (INTEL_GEN(dev_priv) >= 6)
2371 			snb_gt_irq_handler(dev_priv, gt_iir);
2372 		else
2373 			ilk_gt_irq_handler(dev_priv, gt_iir);
2374 	}
2375 
2376 	de_iir = I915_READ(DEIIR);
2377 	if (de_iir) {
2378 		I915_WRITE(DEIIR, de_iir);
2379 		ret = IRQ_HANDLED;
2380 		if (INTEL_GEN(dev_priv) >= 7)
2381 			ivb_display_irq_handler(dev_priv, de_iir);
2382 		else
2383 			ilk_display_irq_handler(dev_priv, de_iir);
2384 	}
2385 
2386 	if (INTEL_GEN(dev_priv) >= 6) {
2387 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2388 		if (pm_iir) {
2389 			I915_WRITE(GEN6_PMIIR, pm_iir);
2390 			ret = IRQ_HANDLED;
2391 			gen6_rps_irq_handler(dev_priv, pm_iir);
2392 		}
2393 	}
2394 
2395 	I915_WRITE(DEIER, de_ier);
2396 	POSTING_READ(DEIER);
2397 	if (!HAS_PCH_NOP(dev_priv)) {
2398 		I915_WRITE(SDEIER, sde_ier);
2399 		POSTING_READ(SDEIER);
2400 	}
2401 
2402 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2403 	enable_rpm_wakeref_asserts(dev_priv);
2404 
2405 	return ret;
2406 }
2407 
2408 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2409 				u32 hotplug_trigger,
2410 				const u32 hpd[HPD_NUM_PINS])
2411 {
2412 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2413 
2414 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2415 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2416 
2417 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2418 			   dig_hotplug_reg, hpd,
2419 			   bxt_port_hotplug_long_detect);
2420 
2421 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2422 }
2423 
2424 static irqreturn_t
2425 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2426 {
2427 	irqreturn_t ret = IRQ_NONE;
2428 	u32 iir;
2429 	enum pipe pipe;
2430 
2431 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2432 		iir = I915_READ(GEN8_DE_MISC_IIR);
2433 		if (iir) {
2434 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2435 			ret = IRQ_HANDLED;
2436 			if (iir & GEN8_DE_MISC_GSE)
2437 				intel_opregion_asle_intr(dev_priv);
2438 			else
2439 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2440 		}
2441 		else
2442 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2443 	}
2444 
2445 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2446 		iir = I915_READ(GEN8_DE_PORT_IIR);
2447 		if (iir) {
2448 			u32 tmp_mask;
2449 			bool found = false;
2450 
2451 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2452 			ret = IRQ_HANDLED;
2453 
2454 			tmp_mask = GEN8_AUX_CHANNEL_A;
2455 			if (INTEL_INFO(dev_priv)->gen >= 9)
2456 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2457 					    GEN9_AUX_CHANNEL_C |
2458 					    GEN9_AUX_CHANNEL_D;
2459 
2460 			if (iir & tmp_mask) {
2461 				dp_aux_irq_handler(dev_priv);
2462 				found = true;
2463 			}
2464 
2465 			if (IS_GEN9_LP(dev_priv)) {
2466 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2467 				if (tmp_mask) {
2468 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2469 							    hpd_bxt);
2470 					found = true;
2471 				}
2472 			} else if (IS_BROADWELL(dev_priv)) {
2473 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2474 				if (tmp_mask) {
2475 					ilk_hpd_irq_handler(dev_priv,
2476 							    tmp_mask, hpd_bdw);
2477 					found = true;
2478 				}
2479 			}
2480 
2481 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2482 				gmbus_irq_handler(dev_priv);
2483 				found = true;
2484 			}
2485 
2486 			if (!found)
2487 				DRM_ERROR("Unexpected DE Port interrupt\n");
2488 		}
2489 		else
2490 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2491 	}
2492 
2493 	for_each_pipe(dev_priv, pipe) {
2494 		u32 flip_done, fault_errors;
2495 
2496 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2497 			continue;
2498 
2499 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2500 		if (!iir) {
2501 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2502 			continue;
2503 		}
2504 
2505 		ret = IRQ_HANDLED;
2506 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2507 
2508 		if (iir & GEN8_PIPE_VBLANK &&
2509 		    intel_pipe_handle_vblank(dev_priv, pipe))
2510 			intel_check_page_flip(dev_priv, pipe);
2511 
2512 		flip_done = iir;
2513 		if (INTEL_INFO(dev_priv)->gen >= 9)
2514 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2515 		else
2516 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2517 
2518 		if (flip_done)
2519 			intel_finish_page_flip_cs(dev_priv, pipe);
2520 
2521 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2522 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2523 
2524 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2525 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2526 
2527 		fault_errors = iir;
2528 		if (INTEL_INFO(dev_priv)->gen >= 9)
2529 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2530 		else
2531 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2532 
2533 		if (fault_errors)
2534 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2535 				  pipe_name(pipe),
2536 				  fault_errors);
2537 	}
2538 
2539 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2540 	    master_ctl & GEN8_DE_PCH_IRQ) {
2541 		/*
2542 		 * FIXME(BDW): Assume for now that the new interrupt handling
2543 		 * scheme also closed the SDE interrupt handling race we've seen
2544 		 * on older pch-split platforms. But this needs testing.
2545 		 */
2546 		iir = I915_READ(SDEIIR);
2547 		if (iir) {
2548 			I915_WRITE(SDEIIR, iir);
2549 			ret = IRQ_HANDLED;
2550 
2551 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2552 			    HAS_PCH_CNP(dev_priv))
2553 				spt_irq_handler(dev_priv, iir);
2554 			else
2555 				cpt_irq_handler(dev_priv, iir);
2556 		} else {
2557 			/*
2558 			 * Like on previous PCH there seems to be something
2559 			 * fishy going on with forwarding PCH interrupts.
2560 			 */
2561 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2562 		}
2563 	}
2564 
2565 	return ret;
2566 }
2567 
2568 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2569 {
2570 	struct drm_device *dev = arg;
2571 	struct drm_i915_private *dev_priv = to_i915(dev);
2572 	u32 master_ctl;
2573 	u32 gt_iir[4] = {};
2574 	irqreturn_t ret;
2575 
2576 	if (!intel_irqs_enabled(dev_priv))
2577 		return IRQ_NONE;
2578 
2579 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2580 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2581 	if (!master_ctl)
2582 		return IRQ_NONE;
2583 
2584 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2585 
2586 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2587 	disable_rpm_wakeref_asserts(dev_priv);
2588 
2589 	/* Find, clear, then process each source of interrupt */
2590 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2591 	gen8_gt_irq_handler(dev_priv, gt_iir);
2592 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2593 
2594 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2595 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2596 
2597 	enable_rpm_wakeref_asserts(dev_priv);
2598 
2599 	return ret;
2600 }
2601 
2602 /**
2603  * i915_reset_and_wakeup - do process context error handling work
2604  * @dev_priv: i915 device private
2605  *
2606  * Fire an error uevent so userspace can see that a hang or error
2607  * was detected.
2608  */
2609 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2610 {
2611 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2612 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2613 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2614 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2615 
2616 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2617 
2618 	DRM_DEBUG_DRIVER("resetting chip\n");
2619 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2620 
2621 	intel_prepare_reset(dev_priv);
2622 
2623 	set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2624 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2625 
2626 	do {
2627 		/*
2628 		 * All state reset _must_ be completed before we update the
2629 		 * reset counter, for otherwise waiters might miss the reset
2630 		 * pending state and not properly drop locks, resulting in
2631 		 * deadlocks with the reset work.
2632 		 */
2633 		if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2634 			i915_reset(dev_priv);
2635 			mutex_unlock(&dev_priv->drm.struct_mutex);
2636 		}
2637 
2638 		/* We need to wait for anyone holding the lock to wakeup */
2639 	} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2640 				     I915_RESET_HANDOFF,
2641 				     TASK_UNINTERRUPTIBLE,
2642 				     HZ));
2643 
2644 	intel_finish_reset(dev_priv);
2645 
2646 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2647 		kobject_uevent_env(kobj,
2648 				   KOBJ_CHANGE, reset_done_event);
2649 
2650 	/*
2651 	 * Note: The wake_up also serves as a memory barrier so that
2652 	 * waiters see the updated value of the dev_priv->gpu_error.
2653 	 */
2654 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2655 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2656 }
2657 
2658 static inline void
2659 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2660 			struct intel_instdone *instdone)
2661 {
2662 	int slice;
2663 	int subslice;
2664 
2665 	pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2666 
2667 	if (INTEL_GEN(dev_priv) <= 3)
2668 		return;
2669 
2670 	pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2671 
2672 	if (INTEL_GEN(dev_priv) <= 6)
2673 		return;
2674 
2675 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2676 		pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2677 		       slice, subslice, instdone->sampler[slice][subslice]);
2678 
2679 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2680 		pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2681 		       slice, subslice, instdone->row[slice][subslice]);
2682 }
2683 
2684 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2685 {
2686 	u32 eir;
2687 
2688 	if (!IS_GEN2(dev_priv))
2689 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2690 
2691 	if (INTEL_GEN(dev_priv) < 4)
2692 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2693 	else
2694 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2695 
2696 	I915_WRITE(EIR, I915_READ(EIR));
2697 	eir = I915_READ(EIR);
2698 	if (eir) {
2699 		/*
2700 		 * some errors might have become stuck,
2701 		 * mask them.
2702 		 */
2703 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2704 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2705 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2706 	}
2707 }
2708 
2709 /**
2710  * i915_handle_error - handle a gpu error
2711  * @dev_priv: i915 device private
2712  * @engine_mask: mask representing engines that are hung
2713  * @fmt: Error message format string
2714  *
2715  * Do some basic checking of register state at error time and
2716  * dump it to the syslog.  Also call i915_capture_error_state() to make
2717  * sure we get a record and make it available in debugfs.  Fire a uevent
2718  * so userspace knows something bad happened (should trigger collection
2719  * of a ring dump etc.).
2720  */
2721 void i915_handle_error(struct drm_i915_private *dev_priv,
2722 		       u32 engine_mask,
2723 		       const char *fmt, ...)
2724 {
2725 	va_list args;
2726 	char error_msg[80];
2727 
2728 	va_start(args, fmt);
2729 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2730 	va_end(args);
2731 
2732 	/*
2733 	 * In most cases it's guaranteed that we get here with an RPM
2734 	 * reference held, for example because there is a pending GPU
2735 	 * request that won't finish until the reset is done. This
2736 	 * isn't the case at least when we get here by doing a
2737 	 * simulated reset via debugfs, so get an RPM reference.
2738 	 */
2739 	intel_runtime_pm_get(dev_priv);
2740 
2741 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2742 	i915_clear_error_registers(dev_priv);
2743 
2744 	if (!engine_mask)
2745 		goto out;
2746 
2747 	if (test_and_set_bit(I915_RESET_BACKOFF,
2748 			     &dev_priv->gpu_error.flags))
2749 		goto out;
2750 
2751 	i915_reset_and_wakeup(dev_priv);
2752 
2753 out:
2754 	intel_runtime_pm_put(dev_priv);
2755 }
2756 
2757 /* Called from drm generic code, passed 'crtc' which
2758  * we use as a pipe index
2759  */
2760 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762 	struct drm_i915_private *dev_priv = to_i915(dev);
2763 	unsigned long irqflags;
2764 
2765 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2767 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2768 
2769 	return 0;
2770 }
2771 
2772 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2773 {
2774 	struct drm_i915_private *dev_priv = to_i915(dev);
2775 	unsigned long irqflags;
2776 
2777 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2778 	i915_enable_pipestat(dev_priv, pipe,
2779 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2780 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2781 
2782 	return 0;
2783 }
2784 
2785 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787 	struct drm_i915_private *dev_priv = to_i915(dev);
2788 	unsigned long irqflags;
2789 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2790 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2791 
2792 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2793 	ilk_enable_display_irq(dev_priv, bit);
2794 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795 
2796 	return 0;
2797 }
2798 
2799 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2800 {
2801 	struct drm_i915_private *dev_priv = to_i915(dev);
2802 	unsigned long irqflags;
2803 
2804 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2805 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2806 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2807 
2808 	return 0;
2809 }
2810 
2811 /* Called from drm generic code, passed 'crtc' which
2812  * we use as a pipe index
2813  */
2814 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2815 {
2816 	struct drm_i915_private *dev_priv = to_i915(dev);
2817 	unsigned long irqflags;
2818 
2819 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2820 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2821 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2822 }
2823 
2824 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2825 {
2826 	struct drm_i915_private *dev_priv = to_i915(dev);
2827 	unsigned long irqflags;
2828 
2829 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830 	i915_disable_pipestat(dev_priv, pipe,
2831 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2832 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2833 }
2834 
2835 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2836 {
2837 	struct drm_i915_private *dev_priv = to_i915(dev);
2838 	unsigned long irqflags;
2839 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2840 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2841 
2842 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2843 	ilk_disable_display_irq(dev_priv, bit);
2844 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2845 }
2846 
2847 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2848 {
2849 	struct drm_i915_private *dev_priv = to_i915(dev);
2850 	unsigned long irqflags;
2851 
2852 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2854 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855 }
2856 
2857 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2858 {
2859 	if (HAS_PCH_NOP(dev_priv))
2860 		return;
2861 
2862 	GEN5_IRQ_RESET(SDE);
2863 
2864 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2865 		I915_WRITE(SERR_INT, 0xffffffff);
2866 }
2867 
2868 /*
2869  * SDEIER is also touched by the interrupt handler to work around missed PCH
2870  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2871  * instead we unconditionally enable all PCH interrupt sources here, but then
2872  * only unmask them as needed with SDEIMR.
2873  *
2874  * This function needs to be called before interrupts are enabled.
2875  */
2876 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2877 {
2878 	struct drm_i915_private *dev_priv = to_i915(dev);
2879 
2880 	if (HAS_PCH_NOP(dev_priv))
2881 		return;
2882 
2883 	WARN_ON(I915_READ(SDEIER) != 0);
2884 	I915_WRITE(SDEIER, 0xffffffff);
2885 	POSTING_READ(SDEIER);
2886 }
2887 
2888 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2889 {
2890 	GEN5_IRQ_RESET(GT);
2891 	if (INTEL_GEN(dev_priv) >= 6)
2892 		GEN5_IRQ_RESET(GEN6_PM);
2893 }
2894 
2895 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2896 {
2897 	enum pipe pipe;
2898 
2899 	if (IS_CHERRYVIEW(dev_priv))
2900 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2901 	else
2902 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2903 
2904 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2905 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2906 
2907 	for_each_pipe(dev_priv, pipe) {
2908 		I915_WRITE(PIPESTAT(pipe),
2909 			   PIPE_FIFO_UNDERRUN_STATUS |
2910 			   PIPESTAT_INT_STATUS_MASK);
2911 		dev_priv->pipestat_irq_mask[pipe] = 0;
2912 	}
2913 
2914 	GEN5_IRQ_RESET(VLV_);
2915 	dev_priv->irq_mask = ~0;
2916 }
2917 
2918 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2919 {
2920 	u32 pipestat_mask;
2921 	u32 enable_mask;
2922 	enum pipe pipe;
2923 
2924 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2925 			PIPE_CRC_DONE_INTERRUPT_STATUS;
2926 
2927 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2928 	for_each_pipe(dev_priv, pipe)
2929 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2930 
2931 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2932 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2933 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2934 		I915_LPE_PIPE_A_INTERRUPT |
2935 		I915_LPE_PIPE_B_INTERRUPT;
2936 
2937 	if (IS_CHERRYVIEW(dev_priv))
2938 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2939 			I915_LPE_PIPE_C_INTERRUPT;
2940 
2941 	WARN_ON(dev_priv->irq_mask != ~0);
2942 
2943 	dev_priv->irq_mask = ~enable_mask;
2944 
2945 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2946 }
2947 
2948 /* drm_dma.h hooks
2949 */
2950 static void ironlake_irq_reset(struct drm_device *dev)
2951 {
2952 	struct drm_i915_private *dev_priv = to_i915(dev);
2953 
2954 	I915_WRITE(HWSTAM, 0xffffffff);
2955 
2956 	GEN5_IRQ_RESET(DE);
2957 	if (IS_GEN7(dev_priv))
2958 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2959 
2960 	gen5_gt_irq_reset(dev_priv);
2961 
2962 	ibx_irq_reset(dev_priv);
2963 }
2964 
2965 static void valleyview_irq_preinstall(struct drm_device *dev)
2966 {
2967 	struct drm_i915_private *dev_priv = to_i915(dev);
2968 
2969 	I915_WRITE(VLV_MASTER_IER, 0);
2970 	POSTING_READ(VLV_MASTER_IER);
2971 
2972 	gen5_gt_irq_reset(dev_priv);
2973 
2974 	spin_lock_irq(&dev_priv->irq_lock);
2975 	if (dev_priv->display_irqs_enabled)
2976 		vlv_display_irq_reset(dev_priv);
2977 	spin_unlock_irq(&dev_priv->irq_lock);
2978 }
2979 
2980 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2981 {
2982 	GEN8_IRQ_RESET_NDX(GT, 0);
2983 	GEN8_IRQ_RESET_NDX(GT, 1);
2984 	GEN8_IRQ_RESET_NDX(GT, 2);
2985 	GEN8_IRQ_RESET_NDX(GT, 3);
2986 }
2987 
2988 static void gen8_irq_reset(struct drm_device *dev)
2989 {
2990 	struct drm_i915_private *dev_priv = to_i915(dev);
2991 	int pipe;
2992 
2993 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2994 	POSTING_READ(GEN8_MASTER_IRQ);
2995 
2996 	gen8_gt_irq_reset(dev_priv);
2997 
2998 	for_each_pipe(dev_priv, pipe)
2999 		if (intel_display_power_is_enabled(dev_priv,
3000 						   POWER_DOMAIN_PIPE(pipe)))
3001 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3002 
3003 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3004 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3005 	GEN5_IRQ_RESET(GEN8_PCU_);
3006 
3007 	if (HAS_PCH_SPLIT(dev_priv))
3008 		ibx_irq_reset(dev_priv);
3009 }
3010 
3011 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3012 				     unsigned int pipe_mask)
3013 {
3014 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3015 	enum pipe pipe;
3016 
3017 	spin_lock_irq(&dev_priv->irq_lock);
3018 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3019 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3020 				  dev_priv->de_irq_mask[pipe],
3021 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3022 	spin_unlock_irq(&dev_priv->irq_lock);
3023 }
3024 
3025 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3026 				     unsigned int pipe_mask)
3027 {
3028 	enum pipe pipe;
3029 
3030 	spin_lock_irq(&dev_priv->irq_lock);
3031 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3032 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3033 	spin_unlock_irq(&dev_priv->irq_lock);
3034 
3035 	/* make sure we're done processing display irqs */
3036 	synchronize_irq(dev_priv->drm.irq);
3037 }
3038 
3039 static void cherryview_irq_preinstall(struct drm_device *dev)
3040 {
3041 	struct drm_i915_private *dev_priv = to_i915(dev);
3042 
3043 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3044 	POSTING_READ(GEN8_MASTER_IRQ);
3045 
3046 	gen8_gt_irq_reset(dev_priv);
3047 
3048 	GEN5_IRQ_RESET(GEN8_PCU_);
3049 
3050 	spin_lock_irq(&dev_priv->irq_lock);
3051 	if (dev_priv->display_irqs_enabled)
3052 		vlv_display_irq_reset(dev_priv);
3053 	spin_unlock_irq(&dev_priv->irq_lock);
3054 }
3055 
3056 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3057 				  const u32 hpd[HPD_NUM_PINS])
3058 {
3059 	struct intel_encoder *encoder;
3060 	u32 enabled_irqs = 0;
3061 
3062 	for_each_intel_encoder(&dev_priv->drm, encoder)
3063 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3064 			enabled_irqs |= hpd[encoder->hpd_pin];
3065 
3066 	return enabled_irqs;
3067 }
3068 
3069 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3070 {
3071 	u32 hotplug;
3072 
3073 	/*
3074 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3075 	 * duration to 2ms (which is the minimum in the Display Port spec).
3076 	 * The pulse duration bits are reserved on LPT+.
3077 	 */
3078 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3079 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3080 		     PORTC_PULSE_DURATION_MASK |
3081 		     PORTD_PULSE_DURATION_MASK);
3082 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3083 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3084 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3085 	/*
3086 	 * When CPU and PCH are on the same package, port A
3087 	 * HPD must be enabled in both north and south.
3088 	 */
3089 	if (HAS_PCH_LPT_LP(dev_priv))
3090 		hotplug |= PORTA_HOTPLUG_ENABLE;
3091 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3092 }
3093 
3094 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3095 {
3096 	u32 hotplug_irqs, enabled_irqs;
3097 
3098 	if (HAS_PCH_IBX(dev_priv)) {
3099 		hotplug_irqs = SDE_HOTPLUG_MASK;
3100 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3101 	} else {
3102 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3103 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3104 	}
3105 
3106 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3107 
3108 	ibx_hpd_detection_setup(dev_priv);
3109 }
3110 
3111 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3112 {
3113 	u32 hotplug;
3114 
3115 	/* Enable digital hotplug on the PCH */
3116 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3117 	hotplug |= PORTA_HOTPLUG_ENABLE |
3118 		   PORTB_HOTPLUG_ENABLE |
3119 		   PORTC_HOTPLUG_ENABLE |
3120 		   PORTD_HOTPLUG_ENABLE;
3121 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3122 
3123 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3124 	hotplug |= PORTE_HOTPLUG_ENABLE;
3125 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3126 }
3127 
3128 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3129 {
3130 	u32 hotplug_irqs, enabled_irqs;
3131 
3132 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3133 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3134 
3135 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3136 
3137 	spt_hpd_detection_setup(dev_priv);
3138 }
3139 
3140 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3141 {
3142 	u32 hotplug;
3143 
3144 	/*
3145 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3146 	 * duration to 2ms (which is the minimum in the Display Port spec)
3147 	 * The pulse duration bits are reserved on HSW+.
3148 	 */
3149 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3150 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3151 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3152 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3153 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3154 }
3155 
3156 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3157 {
3158 	u32 hotplug_irqs, enabled_irqs;
3159 
3160 	if (INTEL_GEN(dev_priv) >= 8) {
3161 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3162 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3163 
3164 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3165 	} else if (INTEL_GEN(dev_priv) >= 7) {
3166 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3167 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3168 
3169 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3170 	} else {
3171 		hotplug_irqs = DE_DP_A_HOTPLUG;
3172 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3173 
3174 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3175 	}
3176 
3177 	ilk_hpd_detection_setup(dev_priv);
3178 
3179 	ibx_hpd_irq_setup(dev_priv);
3180 }
3181 
3182 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3183 				      u32 enabled_irqs)
3184 {
3185 	u32 hotplug;
3186 
3187 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3188 	hotplug |= PORTA_HOTPLUG_ENABLE |
3189 		   PORTB_HOTPLUG_ENABLE |
3190 		   PORTC_HOTPLUG_ENABLE;
3191 
3192 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3193 		      hotplug, enabled_irqs);
3194 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3195 
3196 	/*
3197 	 * For BXT invert bit has to be set based on AOB design
3198 	 * for HPD detection logic, update it based on VBT fields.
3199 	 */
3200 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3201 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3202 		hotplug |= BXT_DDIA_HPD_INVERT;
3203 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3204 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3205 		hotplug |= BXT_DDIB_HPD_INVERT;
3206 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3207 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3208 		hotplug |= BXT_DDIC_HPD_INVERT;
3209 
3210 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3211 }
3212 
3213 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3214 {
3215 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3216 }
3217 
3218 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3219 {
3220 	u32 hotplug_irqs, enabled_irqs;
3221 
3222 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3223 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3224 
3225 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3226 
3227 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3228 }
3229 
3230 static void ibx_irq_postinstall(struct drm_device *dev)
3231 {
3232 	struct drm_i915_private *dev_priv = to_i915(dev);
3233 	u32 mask;
3234 
3235 	if (HAS_PCH_NOP(dev_priv))
3236 		return;
3237 
3238 	if (HAS_PCH_IBX(dev_priv))
3239 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3240 	else
3241 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3242 
3243 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3244 	I915_WRITE(SDEIMR, ~mask);
3245 
3246 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3247 	    HAS_PCH_LPT(dev_priv))
3248 		ibx_hpd_detection_setup(dev_priv);
3249 	else
3250 		spt_hpd_detection_setup(dev_priv);
3251 }
3252 
3253 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3254 {
3255 	struct drm_i915_private *dev_priv = to_i915(dev);
3256 	u32 pm_irqs, gt_irqs;
3257 
3258 	pm_irqs = gt_irqs = 0;
3259 
3260 	dev_priv->gt_irq_mask = ~0;
3261 	if (HAS_L3_DPF(dev_priv)) {
3262 		/* L3 parity interrupt is always unmasked. */
3263 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3264 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3265 	}
3266 
3267 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3268 	if (IS_GEN5(dev_priv)) {
3269 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3270 	} else {
3271 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3272 	}
3273 
3274 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3275 
3276 	if (INTEL_GEN(dev_priv) >= 6) {
3277 		/*
3278 		 * RPS interrupts will get enabled/disabled on demand when RPS
3279 		 * itself is enabled/disabled.
3280 		 */
3281 		if (HAS_VEBOX(dev_priv)) {
3282 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3283 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3284 		}
3285 
3286 		dev_priv->pm_imr = 0xffffffff;
3287 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3288 	}
3289 }
3290 
3291 static int ironlake_irq_postinstall(struct drm_device *dev)
3292 {
3293 	struct drm_i915_private *dev_priv = to_i915(dev);
3294 	u32 display_mask, extra_mask;
3295 
3296 	if (INTEL_GEN(dev_priv) >= 7) {
3297 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3298 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3299 				DE_PLANEB_FLIP_DONE_IVB |
3300 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3301 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3302 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3303 			      DE_DP_A_HOTPLUG_IVB);
3304 	} else {
3305 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3306 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3307 				DE_AUX_CHANNEL_A |
3308 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3309 				DE_POISON);
3310 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3311 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3312 			      DE_DP_A_HOTPLUG);
3313 	}
3314 
3315 	dev_priv->irq_mask = ~display_mask;
3316 
3317 	I915_WRITE(HWSTAM, 0xeffe);
3318 
3319 	ibx_irq_pre_postinstall(dev);
3320 
3321 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3322 
3323 	gen5_gt_irq_postinstall(dev);
3324 
3325 	ilk_hpd_detection_setup(dev_priv);
3326 
3327 	ibx_irq_postinstall(dev);
3328 
3329 	if (IS_IRONLAKE_M(dev_priv)) {
3330 		/* Enable PCU event interrupts
3331 		 *
3332 		 * spinlocking not required here for correctness since interrupt
3333 		 * setup is guaranteed to run in single-threaded context. But we
3334 		 * need it to make the assert_spin_locked happy. */
3335 		spin_lock_irq(&dev_priv->irq_lock);
3336 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3337 		spin_unlock_irq(&dev_priv->irq_lock);
3338 	}
3339 
3340 	return 0;
3341 }
3342 
3343 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3344 {
3345 	lockdep_assert_held(&dev_priv->irq_lock);
3346 
3347 	if (dev_priv->display_irqs_enabled)
3348 		return;
3349 
3350 	dev_priv->display_irqs_enabled = true;
3351 
3352 	if (intel_irqs_enabled(dev_priv)) {
3353 		vlv_display_irq_reset(dev_priv);
3354 		vlv_display_irq_postinstall(dev_priv);
3355 	}
3356 }
3357 
3358 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3359 {
3360 	lockdep_assert_held(&dev_priv->irq_lock);
3361 
3362 	if (!dev_priv->display_irqs_enabled)
3363 		return;
3364 
3365 	dev_priv->display_irqs_enabled = false;
3366 
3367 	if (intel_irqs_enabled(dev_priv))
3368 		vlv_display_irq_reset(dev_priv);
3369 }
3370 
3371 
3372 static int valleyview_irq_postinstall(struct drm_device *dev)
3373 {
3374 	struct drm_i915_private *dev_priv = to_i915(dev);
3375 
3376 	gen5_gt_irq_postinstall(dev);
3377 
3378 	spin_lock_irq(&dev_priv->irq_lock);
3379 	if (dev_priv->display_irqs_enabled)
3380 		vlv_display_irq_postinstall(dev_priv);
3381 	spin_unlock_irq(&dev_priv->irq_lock);
3382 
3383 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3384 	POSTING_READ(VLV_MASTER_IER);
3385 
3386 	return 0;
3387 }
3388 
3389 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3390 {
3391 	/* These are interrupts we'll toggle with the ring mask register */
3392 	uint32_t gt_interrupts[] = {
3393 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3394 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3395 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3396 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3397 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3398 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3399 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3400 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3401 		0,
3402 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3403 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3404 		};
3405 
3406 	if (HAS_L3_DPF(dev_priv))
3407 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3408 
3409 	dev_priv->pm_ier = 0x0;
3410 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3411 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3412 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3413 	/*
3414 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3415 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3416 	 */
3417 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3418 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3419 }
3420 
3421 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3422 {
3423 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3424 	uint32_t de_pipe_enables;
3425 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3426 	u32 de_port_enables;
3427 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3428 	enum pipe pipe;
3429 
3430 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3431 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3432 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3433 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3434 				  GEN9_AUX_CHANNEL_D;
3435 		if (IS_GEN9_LP(dev_priv))
3436 			de_port_masked |= BXT_DE_PORT_GMBUS;
3437 	} else {
3438 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3439 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3440 	}
3441 
3442 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3443 					   GEN8_PIPE_FIFO_UNDERRUN;
3444 
3445 	de_port_enables = de_port_masked;
3446 	if (IS_GEN9_LP(dev_priv))
3447 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3448 	else if (IS_BROADWELL(dev_priv))
3449 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3450 
3451 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3452 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3453 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3454 
3455 	for_each_pipe(dev_priv, pipe)
3456 		if (intel_display_power_is_enabled(dev_priv,
3457 				POWER_DOMAIN_PIPE(pipe)))
3458 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3459 					  dev_priv->de_irq_mask[pipe],
3460 					  de_pipe_enables);
3461 
3462 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3463 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3464 
3465 	if (IS_GEN9_LP(dev_priv))
3466 		bxt_hpd_detection_setup(dev_priv);
3467 	else if (IS_BROADWELL(dev_priv))
3468 		ilk_hpd_detection_setup(dev_priv);
3469 }
3470 
3471 static int gen8_irq_postinstall(struct drm_device *dev)
3472 {
3473 	struct drm_i915_private *dev_priv = to_i915(dev);
3474 
3475 	if (HAS_PCH_SPLIT(dev_priv))
3476 		ibx_irq_pre_postinstall(dev);
3477 
3478 	gen8_gt_irq_postinstall(dev_priv);
3479 	gen8_de_irq_postinstall(dev_priv);
3480 
3481 	if (HAS_PCH_SPLIT(dev_priv))
3482 		ibx_irq_postinstall(dev);
3483 
3484 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3485 	POSTING_READ(GEN8_MASTER_IRQ);
3486 
3487 	return 0;
3488 }
3489 
3490 static int cherryview_irq_postinstall(struct drm_device *dev)
3491 {
3492 	struct drm_i915_private *dev_priv = to_i915(dev);
3493 
3494 	gen8_gt_irq_postinstall(dev_priv);
3495 
3496 	spin_lock_irq(&dev_priv->irq_lock);
3497 	if (dev_priv->display_irqs_enabled)
3498 		vlv_display_irq_postinstall(dev_priv);
3499 	spin_unlock_irq(&dev_priv->irq_lock);
3500 
3501 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3502 	POSTING_READ(GEN8_MASTER_IRQ);
3503 
3504 	return 0;
3505 }
3506 
3507 static void gen8_irq_uninstall(struct drm_device *dev)
3508 {
3509 	struct drm_i915_private *dev_priv = to_i915(dev);
3510 
3511 	if (!dev_priv)
3512 		return;
3513 
3514 	gen8_irq_reset(dev);
3515 }
3516 
3517 static void valleyview_irq_uninstall(struct drm_device *dev)
3518 {
3519 	struct drm_i915_private *dev_priv = to_i915(dev);
3520 
3521 	if (!dev_priv)
3522 		return;
3523 
3524 	I915_WRITE(VLV_MASTER_IER, 0);
3525 	POSTING_READ(VLV_MASTER_IER);
3526 
3527 	gen5_gt_irq_reset(dev_priv);
3528 
3529 	I915_WRITE(HWSTAM, 0xffffffff);
3530 
3531 	spin_lock_irq(&dev_priv->irq_lock);
3532 	if (dev_priv->display_irqs_enabled)
3533 		vlv_display_irq_reset(dev_priv);
3534 	spin_unlock_irq(&dev_priv->irq_lock);
3535 }
3536 
3537 static void cherryview_irq_uninstall(struct drm_device *dev)
3538 {
3539 	struct drm_i915_private *dev_priv = to_i915(dev);
3540 
3541 	if (!dev_priv)
3542 		return;
3543 
3544 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3545 	POSTING_READ(GEN8_MASTER_IRQ);
3546 
3547 	gen8_gt_irq_reset(dev_priv);
3548 
3549 	GEN5_IRQ_RESET(GEN8_PCU_);
3550 
3551 	spin_lock_irq(&dev_priv->irq_lock);
3552 	if (dev_priv->display_irqs_enabled)
3553 		vlv_display_irq_reset(dev_priv);
3554 	spin_unlock_irq(&dev_priv->irq_lock);
3555 }
3556 
3557 static void ironlake_irq_uninstall(struct drm_device *dev)
3558 {
3559 	struct drm_i915_private *dev_priv = to_i915(dev);
3560 
3561 	if (!dev_priv)
3562 		return;
3563 
3564 	ironlake_irq_reset(dev);
3565 }
3566 
3567 static void i8xx_irq_preinstall(struct drm_device * dev)
3568 {
3569 	struct drm_i915_private *dev_priv = to_i915(dev);
3570 	int pipe;
3571 
3572 	for_each_pipe(dev_priv, pipe)
3573 		I915_WRITE(PIPESTAT(pipe), 0);
3574 	I915_WRITE16(IMR, 0xffff);
3575 	I915_WRITE16(IER, 0x0);
3576 	POSTING_READ16(IER);
3577 }
3578 
3579 static int i8xx_irq_postinstall(struct drm_device *dev)
3580 {
3581 	struct drm_i915_private *dev_priv = to_i915(dev);
3582 
3583 	I915_WRITE16(EMR,
3584 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3585 
3586 	/* Unmask the interrupts that we always want on. */
3587 	dev_priv->irq_mask =
3588 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3589 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3590 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3591 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3592 	I915_WRITE16(IMR, dev_priv->irq_mask);
3593 
3594 	I915_WRITE16(IER,
3595 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3596 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3597 		     I915_USER_INTERRUPT);
3598 	POSTING_READ16(IER);
3599 
3600 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3601 	 * just to make the assert_spin_locked check happy. */
3602 	spin_lock_irq(&dev_priv->irq_lock);
3603 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3604 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3605 	spin_unlock_irq(&dev_priv->irq_lock);
3606 
3607 	return 0;
3608 }
3609 
3610 /*
3611  * Returns true when a page flip has completed.
3612  */
3613 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3614 			       int plane, int pipe, u32 iir)
3615 {
3616 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3617 
3618 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3619 		return false;
3620 
3621 	if ((iir & flip_pending) == 0)
3622 		goto check_page_flip;
3623 
3624 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3625 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3626 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3627 	 * the flip is completed (no longer pending). Since this doesn't raise
3628 	 * an interrupt per se, we watch for the change at vblank.
3629 	 */
3630 	if (I915_READ16(ISR) & flip_pending)
3631 		goto check_page_flip;
3632 
3633 	intel_finish_page_flip_cs(dev_priv, pipe);
3634 	return true;
3635 
3636 check_page_flip:
3637 	intel_check_page_flip(dev_priv, pipe);
3638 	return false;
3639 }
3640 
3641 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3642 {
3643 	struct drm_device *dev = arg;
3644 	struct drm_i915_private *dev_priv = to_i915(dev);
3645 	u16 iir, new_iir;
3646 	u32 pipe_stats[2];
3647 	int pipe;
3648 	u16 flip_mask =
3649 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3650 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3651 	irqreturn_t ret;
3652 
3653 	if (!intel_irqs_enabled(dev_priv))
3654 		return IRQ_NONE;
3655 
3656 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3657 	disable_rpm_wakeref_asserts(dev_priv);
3658 
3659 	ret = IRQ_NONE;
3660 	iir = I915_READ16(IIR);
3661 	if (iir == 0)
3662 		goto out;
3663 
3664 	while (iir & ~flip_mask) {
3665 		/* Can't rely on pipestat interrupt bit in iir as it might
3666 		 * have been cleared after the pipestat interrupt was received.
3667 		 * It doesn't set the bit in iir again, but it still produces
3668 		 * interrupts (for non-MSI).
3669 		 */
3670 		spin_lock(&dev_priv->irq_lock);
3671 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3672 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3673 
3674 		for_each_pipe(dev_priv, pipe) {
3675 			i915_reg_t reg = PIPESTAT(pipe);
3676 			pipe_stats[pipe] = I915_READ(reg);
3677 
3678 			/*
3679 			 * Clear the PIPE*STAT regs before the IIR
3680 			 */
3681 			if (pipe_stats[pipe] & 0x8000ffff)
3682 				I915_WRITE(reg, pipe_stats[pipe]);
3683 		}
3684 		spin_unlock(&dev_priv->irq_lock);
3685 
3686 		I915_WRITE16(IIR, iir & ~flip_mask);
3687 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3688 
3689 		if (iir & I915_USER_INTERRUPT)
3690 			notify_ring(dev_priv->engine[RCS]);
3691 
3692 		for_each_pipe(dev_priv, pipe) {
3693 			int plane = pipe;
3694 			if (HAS_FBC(dev_priv))
3695 				plane = !plane;
3696 
3697 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3698 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3699 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3700 
3701 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3702 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3703 
3704 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3705 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3706 								    pipe);
3707 		}
3708 
3709 		iir = new_iir;
3710 	}
3711 	ret = IRQ_HANDLED;
3712 
3713 out:
3714 	enable_rpm_wakeref_asserts(dev_priv);
3715 
3716 	return ret;
3717 }
3718 
3719 static void i8xx_irq_uninstall(struct drm_device * dev)
3720 {
3721 	struct drm_i915_private *dev_priv = to_i915(dev);
3722 	int pipe;
3723 
3724 	for_each_pipe(dev_priv, pipe) {
3725 		/* Clear enable bits; then clear status bits */
3726 		I915_WRITE(PIPESTAT(pipe), 0);
3727 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3728 	}
3729 	I915_WRITE16(IMR, 0xffff);
3730 	I915_WRITE16(IER, 0x0);
3731 	I915_WRITE16(IIR, I915_READ16(IIR));
3732 }
3733 
3734 static void i915_irq_preinstall(struct drm_device * dev)
3735 {
3736 	struct drm_i915_private *dev_priv = to_i915(dev);
3737 	int pipe;
3738 
3739 	if (I915_HAS_HOTPLUG(dev_priv)) {
3740 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3741 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3742 	}
3743 
3744 	I915_WRITE16(HWSTAM, 0xeffe);
3745 	for_each_pipe(dev_priv, pipe)
3746 		I915_WRITE(PIPESTAT(pipe), 0);
3747 	I915_WRITE(IMR, 0xffffffff);
3748 	I915_WRITE(IER, 0x0);
3749 	POSTING_READ(IER);
3750 }
3751 
3752 static int i915_irq_postinstall(struct drm_device *dev)
3753 {
3754 	struct drm_i915_private *dev_priv = to_i915(dev);
3755 	u32 enable_mask;
3756 
3757 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3758 
3759 	/* Unmask the interrupts that we always want on. */
3760 	dev_priv->irq_mask =
3761 		~(I915_ASLE_INTERRUPT |
3762 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3763 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3764 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3765 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3766 
3767 	enable_mask =
3768 		I915_ASLE_INTERRUPT |
3769 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3770 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3771 		I915_USER_INTERRUPT;
3772 
3773 	if (I915_HAS_HOTPLUG(dev_priv)) {
3774 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3775 		POSTING_READ(PORT_HOTPLUG_EN);
3776 
3777 		/* Enable in IER... */
3778 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3779 		/* and unmask in IMR */
3780 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3781 	}
3782 
3783 	I915_WRITE(IMR, dev_priv->irq_mask);
3784 	I915_WRITE(IER, enable_mask);
3785 	POSTING_READ(IER);
3786 
3787 	i915_enable_asle_pipestat(dev_priv);
3788 
3789 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3790 	 * just to make the assert_spin_locked check happy. */
3791 	spin_lock_irq(&dev_priv->irq_lock);
3792 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3793 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3794 	spin_unlock_irq(&dev_priv->irq_lock);
3795 
3796 	return 0;
3797 }
3798 
3799 /*
3800  * Returns true when a page flip has completed.
3801  */
3802 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3803 			       int plane, int pipe, u32 iir)
3804 {
3805 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3806 
3807 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3808 		return false;
3809 
3810 	if ((iir & flip_pending) == 0)
3811 		goto check_page_flip;
3812 
3813 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3814 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3815 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3816 	 * the flip is completed (no longer pending). Since this doesn't raise
3817 	 * an interrupt per se, we watch for the change at vblank.
3818 	 */
3819 	if (I915_READ(ISR) & flip_pending)
3820 		goto check_page_flip;
3821 
3822 	intel_finish_page_flip_cs(dev_priv, pipe);
3823 	return true;
3824 
3825 check_page_flip:
3826 	intel_check_page_flip(dev_priv, pipe);
3827 	return false;
3828 }
3829 
3830 static irqreturn_t i915_irq_handler(int irq, void *arg)
3831 {
3832 	struct drm_device *dev = arg;
3833 	struct drm_i915_private *dev_priv = to_i915(dev);
3834 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3835 	u32 flip_mask =
3836 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3837 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3838 	int pipe, ret = IRQ_NONE;
3839 
3840 	if (!intel_irqs_enabled(dev_priv))
3841 		return IRQ_NONE;
3842 
3843 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3844 	disable_rpm_wakeref_asserts(dev_priv);
3845 
3846 	iir = I915_READ(IIR);
3847 	do {
3848 		bool irq_received = (iir & ~flip_mask) != 0;
3849 		bool blc_event = false;
3850 
3851 		/* Can't rely on pipestat interrupt bit in iir as it might
3852 		 * have been cleared after the pipestat interrupt was received.
3853 		 * It doesn't set the bit in iir again, but it still produces
3854 		 * interrupts (for non-MSI).
3855 		 */
3856 		spin_lock(&dev_priv->irq_lock);
3857 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3859 
3860 		for_each_pipe(dev_priv, pipe) {
3861 			i915_reg_t reg = PIPESTAT(pipe);
3862 			pipe_stats[pipe] = I915_READ(reg);
3863 
3864 			/* Clear the PIPE*STAT regs before the IIR */
3865 			if (pipe_stats[pipe] & 0x8000ffff) {
3866 				I915_WRITE(reg, pipe_stats[pipe]);
3867 				irq_received = true;
3868 			}
3869 		}
3870 		spin_unlock(&dev_priv->irq_lock);
3871 
3872 		if (!irq_received)
3873 			break;
3874 
3875 		/* Consume port.  Then clear IIR or we'll miss events */
3876 		if (I915_HAS_HOTPLUG(dev_priv) &&
3877 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
3878 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3879 			if (hotplug_status)
3880 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3881 		}
3882 
3883 		I915_WRITE(IIR, iir & ~flip_mask);
3884 		new_iir = I915_READ(IIR); /* Flush posted writes */
3885 
3886 		if (iir & I915_USER_INTERRUPT)
3887 			notify_ring(dev_priv->engine[RCS]);
3888 
3889 		for_each_pipe(dev_priv, pipe) {
3890 			int plane = pipe;
3891 			if (HAS_FBC(dev_priv))
3892 				plane = !plane;
3893 
3894 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3895 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
3896 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3897 
3898 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3899 				blc_event = true;
3900 
3901 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3902 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3903 
3904 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3905 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3906 								    pipe);
3907 		}
3908 
3909 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3910 			intel_opregion_asle_intr(dev_priv);
3911 
3912 		/* With MSI, interrupts are only generated when iir
3913 		 * transitions from zero to nonzero.  If another bit got
3914 		 * set while we were handling the existing iir bits, then
3915 		 * we would never get another interrupt.
3916 		 *
3917 		 * This is fine on non-MSI as well, as if we hit this path
3918 		 * we avoid exiting the interrupt handler only to generate
3919 		 * another one.
3920 		 *
3921 		 * Note that for MSI this could cause a stray interrupt report
3922 		 * if an interrupt landed in the time between writing IIR and
3923 		 * the posting read.  This should be rare enough to never
3924 		 * trigger the 99% of 100,000 interrupts test for disabling
3925 		 * stray interrupts.
3926 		 */
3927 		ret = IRQ_HANDLED;
3928 		iir = new_iir;
3929 	} while (iir & ~flip_mask);
3930 
3931 	enable_rpm_wakeref_asserts(dev_priv);
3932 
3933 	return ret;
3934 }
3935 
3936 static void i915_irq_uninstall(struct drm_device * dev)
3937 {
3938 	struct drm_i915_private *dev_priv = to_i915(dev);
3939 	int pipe;
3940 
3941 	if (I915_HAS_HOTPLUG(dev_priv)) {
3942 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3943 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3944 	}
3945 
3946 	I915_WRITE16(HWSTAM, 0xffff);
3947 	for_each_pipe(dev_priv, pipe) {
3948 		/* Clear enable bits; then clear status bits */
3949 		I915_WRITE(PIPESTAT(pipe), 0);
3950 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3951 	}
3952 	I915_WRITE(IMR, 0xffffffff);
3953 	I915_WRITE(IER, 0x0);
3954 
3955 	I915_WRITE(IIR, I915_READ(IIR));
3956 }
3957 
3958 static void i965_irq_preinstall(struct drm_device * dev)
3959 {
3960 	struct drm_i915_private *dev_priv = to_i915(dev);
3961 	int pipe;
3962 
3963 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3964 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3965 
3966 	I915_WRITE(HWSTAM, 0xeffe);
3967 	for_each_pipe(dev_priv, pipe)
3968 		I915_WRITE(PIPESTAT(pipe), 0);
3969 	I915_WRITE(IMR, 0xffffffff);
3970 	I915_WRITE(IER, 0x0);
3971 	POSTING_READ(IER);
3972 }
3973 
3974 static int i965_irq_postinstall(struct drm_device *dev)
3975 {
3976 	struct drm_i915_private *dev_priv = to_i915(dev);
3977 	u32 enable_mask;
3978 	u32 error_mask;
3979 
3980 	/* Unmask the interrupts that we always want on. */
3981 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3982 			       I915_DISPLAY_PORT_INTERRUPT |
3983 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3984 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3985 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3986 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3987 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3988 
3989 	enable_mask = ~dev_priv->irq_mask;
3990 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3991 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3992 	enable_mask |= I915_USER_INTERRUPT;
3993 
3994 	if (IS_G4X(dev_priv))
3995 		enable_mask |= I915_BSD_USER_INTERRUPT;
3996 
3997 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3998 	 * just to make the assert_spin_locked check happy. */
3999 	spin_lock_irq(&dev_priv->irq_lock);
4000 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4001 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4002 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4003 	spin_unlock_irq(&dev_priv->irq_lock);
4004 
4005 	/*
4006 	 * Enable some error detection, note the instruction error mask
4007 	 * bit is reserved, so we leave it masked.
4008 	 */
4009 	if (IS_G4X(dev_priv)) {
4010 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4011 			       GM45_ERROR_MEM_PRIV |
4012 			       GM45_ERROR_CP_PRIV |
4013 			       I915_ERROR_MEMORY_REFRESH);
4014 	} else {
4015 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4016 			       I915_ERROR_MEMORY_REFRESH);
4017 	}
4018 	I915_WRITE(EMR, error_mask);
4019 
4020 	I915_WRITE(IMR, dev_priv->irq_mask);
4021 	I915_WRITE(IER, enable_mask);
4022 	POSTING_READ(IER);
4023 
4024 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4025 	POSTING_READ(PORT_HOTPLUG_EN);
4026 
4027 	i915_enable_asle_pipestat(dev_priv);
4028 
4029 	return 0;
4030 }
4031 
4032 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4033 {
4034 	u32 hotplug_en;
4035 
4036 	lockdep_assert_held(&dev_priv->irq_lock);
4037 
4038 	/* Note HDMI and DP share hotplug bits */
4039 	/* enable bits are the same for all generations */
4040 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4041 	/* Programming the CRT detection parameters tends
4042 	   to generate a spurious hotplug event about three
4043 	   seconds later.  So just do it once.
4044 	*/
4045 	if (IS_G4X(dev_priv))
4046 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4047 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4048 
4049 	/* Ignore TV since it's buggy */
4050 	i915_hotplug_interrupt_update_locked(dev_priv,
4051 					     HOTPLUG_INT_EN_MASK |
4052 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4053 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4054 					     hotplug_en);
4055 }
4056 
4057 static irqreturn_t i965_irq_handler(int irq, void *arg)
4058 {
4059 	struct drm_device *dev = arg;
4060 	struct drm_i915_private *dev_priv = to_i915(dev);
4061 	u32 iir, new_iir;
4062 	u32 pipe_stats[I915_MAX_PIPES];
4063 	int ret = IRQ_NONE, pipe;
4064 	u32 flip_mask =
4065 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4066 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4067 
4068 	if (!intel_irqs_enabled(dev_priv))
4069 		return IRQ_NONE;
4070 
4071 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4072 	disable_rpm_wakeref_asserts(dev_priv);
4073 
4074 	iir = I915_READ(IIR);
4075 
4076 	for (;;) {
4077 		bool irq_received = (iir & ~flip_mask) != 0;
4078 		bool blc_event = false;
4079 
4080 		/* Can't rely on pipestat interrupt bit in iir as it might
4081 		 * have been cleared after the pipestat interrupt was received.
4082 		 * It doesn't set the bit in iir again, but it still produces
4083 		 * interrupts (for non-MSI).
4084 		 */
4085 		spin_lock(&dev_priv->irq_lock);
4086 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4087 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4088 
4089 		for_each_pipe(dev_priv, pipe) {
4090 			i915_reg_t reg = PIPESTAT(pipe);
4091 			pipe_stats[pipe] = I915_READ(reg);
4092 
4093 			/*
4094 			 * Clear the PIPE*STAT regs before the IIR
4095 			 */
4096 			if (pipe_stats[pipe] & 0x8000ffff) {
4097 				I915_WRITE(reg, pipe_stats[pipe]);
4098 				irq_received = true;
4099 			}
4100 		}
4101 		spin_unlock(&dev_priv->irq_lock);
4102 
4103 		if (!irq_received)
4104 			break;
4105 
4106 		ret = IRQ_HANDLED;
4107 
4108 		/* Consume port.  Then clear IIR or we'll miss events */
4109 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4110 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4111 			if (hotplug_status)
4112 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4113 		}
4114 
4115 		I915_WRITE(IIR, iir & ~flip_mask);
4116 		new_iir = I915_READ(IIR); /* Flush posted writes */
4117 
4118 		if (iir & I915_USER_INTERRUPT)
4119 			notify_ring(dev_priv->engine[RCS]);
4120 		if (iir & I915_BSD_USER_INTERRUPT)
4121 			notify_ring(dev_priv->engine[VCS]);
4122 
4123 		for_each_pipe(dev_priv, pipe) {
4124 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4125 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4126 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4127 
4128 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4129 				blc_event = true;
4130 
4131 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4132 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4133 
4134 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4135 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4136 		}
4137 
4138 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4139 			intel_opregion_asle_intr(dev_priv);
4140 
4141 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4142 			gmbus_irq_handler(dev_priv);
4143 
4144 		/* With MSI, interrupts are only generated when iir
4145 		 * transitions from zero to nonzero.  If another bit got
4146 		 * set while we were handling the existing iir bits, then
4147 		 * we would never get another interrupt.
4148 		 *
4149 		 * This is fine on non-MSI as well, as if we hit this path
4150 		 * we avoid exiting the interrupt handler only to generate
4151 		 * another one.
4152 		 *
4153 		 * Note that for MSI this could cause a stray interrupt report
4154 		 * if an interrupt landed in the time between writing IIR and
4155 		 * the posting read.  This should be rare enough to never
4156 		 * trigger the 99% of 100,000 interrupts test for disabling
4157 		 * stray interrupts.
4158 		 */
4159 		iir = new_iir;
4160 	}
4161 
4162 	enable_rpm_wakeref_asserts(dev_priv);
4163 
4164 	return ret;
4165 }
4166 
4167 static void i965_irq_uninstall(struct drm_device * dev)
4168 {
4169 	struct drm_i915_private *dev_priv = to_i915(dev);
4170 	int pipe;
4171 
4172 	if (!dev_priv)
4173 		return;
4174 
4175 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4176 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4177 
4178 	I915_WRITE(HWSTAM, 0xffffffff);
4179 	for_each_pipe(dev_priv, pipe)
4180 		I915_WRITE(PIPESTAT(pipe), 0);
4181 	I915_WRITE(IMR, 0xffffffff);
4182 	I915_WRITE(IER, 0x0);
4183 
4184 	for_each_pipe(dev_priv, pipe)
4185 		I915_WRITE(PIPESTAT(pipe),
4186 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4187 	I915_WRITE(IIR, I915_READ(IIR));
4188 }
4189 
4190 /**
4191  * intel_irq_init - initializes irq support
4192  * @dev_priv: i915 device instance
4193  *
4194  * This function initializes all the irq support including work items, timers
4195  * and all the vtables. It does not setup the interrupt itself though.
4196  */
4197 void intel_irq_init(struct drm_i915_private *dev_priv)
4198 {
4199 	struct drm_device *dev = &dev_priv->drm;
4200 	int i;
4201 
4202 	intel_hpd_init_work(dev_priv);
4203 
4204 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4205 
4206 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4207 	for (i = 0; i < MAX_L3_SLICES; ++i)
4208 		dev_priv->l3_parity.remap_info[i] = NULL;
4209 
4210 	if (HAS_GUC_SCHED(dev_priv))
4211 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4212 
4213 	/* Let's track the enabled rps events */
4214 	if (IS_VALLEYVIEW(dev_priv))
4215 		/* WaGsvRC0ResidencyMethod:vlv */
4216 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4217 	else
4218 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4219 
4220 	dev_priv->rps.pm_intrmsk_mbz = 0;
4221 
4222 	/*
4223 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4224 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4225 	 *
4226 	 * TODO: verify if this can be reproduced on VLV,CHV.
4227 	 */
4228 	if (INTEL_INFO(dev_priv)->gen <= 7)
4229 		dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4230 
4231 	if (INTEL_INFO(dev_priv)->gen >= 8)
4232 		dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4233 
4234 	if (IS_GEN2(dev_priv)) {
4235 		/* Gen2 doesn't have a hardware frame counter */
4236 		dev->max_vblank_count = 0;
4237 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4238 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4239 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4240 	} else {
4241 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4242 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4243 	}
4244 
4245 	/*
4246 	 * Opt out of the vblank disable timer on everything except gen2.
4247 	 * Gen2 doesn't have a hardware frame counter and so depends on
4248 	 * vblank interrupts to produce sane vblank seuquence numbers.
4249 	 */
4250 	if (!IS_GEN2(dev_priv))
4251 		dev->vblank_disable_immediate = true;
4252 
4253 	/* Most platforms treat the display irq block as an always-on
4254 	 * power domain. vlv/chv can disable it at runtime and need
4255 	 * special care to avoid writing any of the display block registers
4256 	 * outside of the power domain. We defer setting up the display irqs
4257 	 * in this case to the runtime pm.
4258 	 */
4259 	dev_priv->display_irqs_enabled = true;
4260 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4261 		dev_priv->display_irqs_enabled = false;
4262 
4263 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4264 
4265 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4266 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4267 
4268 	if (IS_CHERRYVIEW(dev_priv)) {
4269 		dev->driver->irq_handler = cherryview_irq_handler;
4270 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4271 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4272 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4273 		dev->driver->enable_vblank = i965_enable_vblank;
4274 		dev->driver->disable_vblank = i965_disable_vblank;
4275 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4276 	} else if (IS_VALLEYVIEW(dev_priv)) {
4277 		dev->driver->irq_handler = valleyview_irq_handler;
4278 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4279 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4280 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4281 		dev->driver->enable_vblank = i965_enable_vblank;
4282 		dev->driver->disable_vblank = i965_disable_vblank;
4283 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4284 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4285 		dev->driver->irq_handler = gen8_irq_handler;
4286 		dev->driver->irq_preinstall = gen8_irq_reset;
4287 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4288 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4289 		dev->driver->enable_vblank = gen8_enable_vblank;
4290 		dev->driver->disable_vblank = gen8_disable_vblank;
4291 		if (IS_GEN9_LP(dev_priv))
4292 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4293 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4294 			 HAS_PCH_CNP(dev_priv))
4295 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4296 		else
4297 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4298 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4299 		dev->driver->irq_handler = ironlake_irq_handler;
4300 		dev->driver->irq_preinstall = ironlake_irq_reset;
4301 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4302 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4303 		dev->driver->enable_vblank = ironlake_enable_vblank;
4304 		dev->driver->disable_vblank = ironlake_disable_vblank;
4305 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4306 	} else {
4307 		if (IS_GEN2(dev_priv)) {
4308 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4309 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4310 			dev->driver->irq_handler = i8xx_irq_handler;
4311 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4312 			dev->driver->enable_vblank = i8xx_enable_vblank;
4313 			dev->driver->disable_vblank = i8xx_disable_vblank;
4314 		} else if (IS_GEN3(dev_priv)) {
4315 			dev->driver->irq_preinstall = i915_irq_preinstall;
4316 			dev->driver->irq_postinstall = i915_irq_postinstall;
4317 			dev->driver->irq_uninstall = i915_irq_uninstall;
4318 			dev->driver->irq_handler = i915_irq_handler;
4319 			dev->driver->enable_vblank = i8xx_enable_vblank;
4320 			dev->driver->disable_vblank = i8xx_disable_vblank;
4321 		} else {
4322 			dev->driver->irq_preinstall = i965_irq_preinstall;
4323 			dev->driver->irq_postinstall = i965_irq_postinstall;
4324 			dev->driver->irq_uninstall = i965_irq_uninstall;
4325 			dev->driver->irq_handler = i965_irq_handler;
4326 			dev->driver->enable_vblank = i965_enable_vblank;
4327 			dev->driver->disable_vblank = i965_disable_vblank;
4328 		}
4329 		if (I915_HAS_HOTPLUG(dev_priv))
4330 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4331 	}
4332 }
4333 
4334 /**
4335  * intel_irq_fini - deinitializes IRQ support
4336  * @i915: i915 device instance
4337  *
4338  * This function deinitializes all the IRQ support.
4339  */
4340 void intel_irq_fini(struct drm_i915_private *i915)
4341 {
4342 	int i;
4343 
4344 	for (i = 0; i < MAX_L3_SLICES; ++i)
4345 		kfree(i915->l3_parity.remap_info[i]);
4346 }
4347 
4348 /**
4349  * intel_irq_install - enables the hardware interrupt
4350  * @dev_priv: i915 device instance
4351  *
4352  * This function enables the hardware interrupt handling, but leaves the hotplug
4353  * handling still disabled. It is called after intel_irq_init().
4354  *
4355  * In the driver load and resume code we need working interrupts in a few places
4356  * but don't want to deal with the hassle of concurrent probe and hotplug
4357  * workers. Hence the split into this two-stage approach.
4358  */
4359 int intel_irq_install(struct drm_i915_private *dev_priv)
4360 {
4361 	/*
4362 	 * We enable some interrupt sources in our postinstall hooks, so mark
4363 	 * interrupts as enabled _before_ actually enabling them to avoid
4364 	 * special cases in our ordering checks.
4365 	 */
4366 	dev_priv->pm.irqs_enabled = true;
4367 
4368 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4369 }
4370 
4371 /**
4372  * intel_irq_uninstall - finilizes all irq handling
4373  * @dev_priv: i915 device instance
4374  *
4375  * This stops interrupt and hotplug handling and unregisters and frees all
4376  * resources acquired in the init functions.
4377  */
4378 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4379 {
4380 	drm_irq_uninstall(&dev_priv->drm);
4381 	intel_hpd_cancel_work(dev_priv);
4382 	dev_priv->pm.irqs_enabled = false;
4383 }
4384 
4385 /**
4386  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4387  * @dev_priv: i915 device instance
4388  *
4389  * This function is used to disable interrupts at runtime, both in the runtime
4390  * pm and the system suspend/resume code.
4391  */
4392 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4393 {
4394 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4395 	dev_priv->pm.irqs_enabled = false;
4396 	synchronize_irq(dev_priv->drm.irq);
4397 }
4398 
4399 /**
4400  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4401  * @dev_priv: i915 device instance
4402  *
4403  * This function is used to enable interrupts at runtime, both in the runtime
4404  * pm and the system suspend/resume code.
4405  */
4406 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4407 {
4408 	dev_priv->pm.irqs_enabled = true;
4409 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4410 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4411 }
4412