xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124 
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133 
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 	POSTING_READ(GEN8_##type##_IMR(which)); \
138 	I915_WRITE(GEN8_##type##_IER(which), 0); \
139 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 	POSTING_READ(GEN8_##type##_IIR(which)); \
141 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 	POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144 
145 #define GEN3_IRQ_RESET(type) do { \
146 	I915_WRITE(type##IMR, 0xffffffff); \
147 	POSTING_READ(type##IMR); \
148 	I915_WRITE(type##IER, 0); \
149 	I915_WRITE(type##IIR, 0xffffffff); \
150 	POSTING_READ(type##IIR); \
151 	I915_WRITE(type##IIR, 0xffffffff); \
152 	POSTING_READ(type##IIR); \
153 } while (0)
154 
155 #define GEN2_IRQ_RESET(type) do { \
156 	I915_WRITE16(type##IMR, 0xffff); \
157 	POSTING_READ16(type##IMR); \
158 	I915_WRITE16(type##IER, 0); \
159 	I915_WRITE16(type##IIR, 0xffff); \
160 	POSTING_READ16(type##IIR); \
161 	I915_WRITE16(type##IIR, 0xffff); \
162 	POSTING_READ16(type##IIR); \
163 } while (0)
164 
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 				    i915_reg_t reg)
170 {
171 	u32 val = I915_READ(reg);
172 
173 	if (val == 0)
174 		return;
175 
176 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 	     i915_mmio_reg_offset(reg), val);
178 	I915_WRITE(reg, 0xffffffff);
179 	POSTING_READ(reg);
180 	I915_WRITE(reg, 0xffffffff);
181 	POSTING_READ(reg);
182 }
183 
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185 				    i915_reg_t reg)
186 {
187 	u16 val = I915_READ16(reg);
188 
189 	if (val == 0)
190 		return;
191 
192 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 	     i915_mmio_reg_offset(reg), val);
194 	I915_WRITE16(reg, 0xffff);
195 	POSTING_READ16(reg);
196 	I915_WRITE16(reg, 0xffff);
197 	POSTING_READ16(reg);
198 }
199 
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 	POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206 
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 	I915_WRITE(type##IER, (ier_val)); \
210 	I915_WRITE(type##IMR, (imr_val)); \
211 	POSTING_READ(type##IMR); \
212 } while (0)
213 
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 	I915_WRITE16(type##IER, (ier_val)); \
217 	I915_WRITE16(type##IMR, (imr_val)); \
218 	POSTING_READ16(type##IMR); \
219 } while (0)
220 
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223 
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227 				     uint32_t mask,
228 				     uint32_t bits)
229 {
230 	uint32_t val;
231 
232 	lockdep_assert_held(&dev_priv->irq_lock);
233 	WARN_ON(bits & ~mask);
234 
235 	val = I915_READ(PORT_HOTPLUG_EN);
236 	val &= ~mask;
237 	val |= bits;
238 	I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240 
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254 				   uint32_t mask,
255 				   uint32_t bits)
256 {
257 	spin_lock_irq(&dev_priv->irq_lock);
258 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 	spin_unlock_irq(&dev_priv->irq_lock);
260 }
261 
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 			 const unsigned int bank, const unsigned int bit);
265 
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 				const unsigned int bank,
268 				const unsigned int bit)
269 {
270 	void __iomem * const regs = i915->regs;
271 	u32 dw;
272 
273 	lockdep_assert_held(&i915->irq_lock);
274 
275 	dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276 	if (dw & BIT(bit)) {
277 		/*
278 		 * According to the BSpec, DW_IIR bits cannot be cleared without
279 		 * first servicing the Selector & Shared IIR registers.
280 		 */
281 		gen11_gt_engine_identity(i915, bank, bit);
282 
283 		/*
284 		 * We locked GT INT DW by reading it. If we want to (try
285 		 * to) recover from this succesfully, we need to clear
286 		 * our bit, otherwise we are locking the register for
287 		 * everybody.
288 		 */
289 		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290 
291 		return true;
292 	}
293 
294 	return false;
295 }
296 
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 			    uint32_t interrupt_mask,
305 			    uint32_t enabled_irq_mask)
306 {
307 	uint32_t new_val;
308 
309 	lockdep_assert_held(&dev_priv->irq_lock);
310 
311 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
312 
313 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314 		return;
315 
316 	new_val = dev_priv->irq_mask;
317 	new_val &= ~interrupt_mask;
318 	new_val |= (~enabled_irq_mask & interrupt_mask);
319 
320 	if (new_val != dev_priv->irq_mask) {
321 		dev_priv->irq_mask = new_val;
322 		I915_WRITE(DEIMR, dev_priv->irq_mask);
323 		POSTING_READ(DEIMR);
324 	}
325 }
326 
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 			      uint32_t interrupt_mask,
335 			      uint32_t enabled_irq_mask)
336 {
337 	lockdep_assert_held(&dev_priv->irq_lock);
338 
339 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
340 
341 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342 		return;
343 
344 	dev_priv->gt_irq_mask &= ~interrupt_mask;
345 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348 
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351 	ilk_update_gt_irq(dev_priv, mask, mask);
352 	POSTING_READ_FW(GTIMR);
353 }
354 
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357 	ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359 
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362 	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363 
364 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366 
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369 	if (INTEL_GEN(dev_priv) >= 11)
370 		return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 	else if (INTEL_GEN(dev_priv) >= 8)
372 		return GEN8_GT_IMR(2);
373 	else
374 		return GEN6_PMIMR;
375 }
376 
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379 	if (INTEL_GEN(dev_priv) >= 11)
380 		return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 	else if (INTEL_GEN(dev_priv) >= 8)
382 		return GEN8_GT_IER(2);
383 	else
384 		return GEN6_PMIER;
385 }
386 
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 			      uint32_t interrupt_mask,
395 			      uint32_t enabled_irq_mask)
396 {
397 	uint32_t new_val;
398 
399 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
400 
401 	lockdep_assert_held(&dev_priv->irq_lock);
402 
403 	new_val = dev_priv->pm_imr;
404 	new_val &= ~interrupt_mask;
405 	new_val |= (~enabled_irq_mask & interrupt_mask);
406 
407 	if (new_val != dev_priv->pm_imr) {
408 		dev_priv->pm_imr = new_val;
409 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 		POSTING_READ(gen6_pm_imr(dev_priv));
411 	}
412 }
413 
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417 		return;
418 
419 	snb_update_pm_irq(dev_priv, mask, mask);
420 }
421 
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424 	snb_update_pm_irq(dev_priv, mask, 0);
425 }
426 
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430 		return;
431 
432 	__gen6_mask_pm_irq(dev_priv, mask);
433 }
434 
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437 	i915_reg_t reg = gen6_pm_iir(dev_priv);
438 
439 	lockdep_assert_held(&dev_priv->irq_lock);
440 
441 	I915_WRITE(reg, reset_mask);
442 	I915_WRITE(reg, reset_mask);
443 	POSTING_READ(reg);
444 }
445 
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448 	lockdep_assert_held(&dev_priv->irq_lock);
449 
450 	dev_priv->pm_ier |= enable_mask;
451 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 	gen6_unmask_pm_irq(dev_priv, enable_mask);
453 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455 
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458 	lockdep_assert_held(&dev_priv->irq_lock);
459 
460 	dev_priv->pm_ier &= ~disable_mask;
461 	__gen6_mask_pm_irq(dev_priv, disable_mask);
462 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 	/* though a barrier is missing here, but don't really need a one */
464 }
465 
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468 	spin_lock_irq(&dev_priv->irq_lock);
469 
470 	while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471 		;
472 
473 	dev_priv->gt_pm.rps.pm_iir = 0;
474 
475 	spin_unlock_irq(&dev_priv->irq_lock);
476 }
477 
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480 	spin_lock_irq(&dev_priv->irq_lock);
481 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
482 	dev_priv->gt_pm.rps.pm_iir = 0;
483 	spin_unlock_irq(&dev_priv->irq_lock);
484 }
485 
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
489 
490 	if (READ_ONCE(rps->interrupts_enabled))
491 		return;
492 
493 	spin_lock_irq(&dev_priv->irq_lock);
494 	WARN_ON_ONCE(rps->pm_iir);
495 
496 	if (INTEL_GEN(dev_priv) >= 11)
497 		WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498 	else
499 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500 
501 	rps->interrupts_enabled = true;
502 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503 
504 	spin_unlock_irq(&dev_priv->irq_lock);
505 }
506 
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
510 
511 	if (!READ_ONCE(rps->interrupts_enabled))
512 		return;
513 
514 	spin_lock_irq(&dev_priv->irq_lock);
515 	rps->interrupts_enabled = false;
516 
517 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518 
519 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
520 
521 	spin_unlock_irq(&dev_priv->irq_lock);
522 	synchronize_irq(dev_priv->drm.irq);
523 
524 	/* Now that we will not be generating any more work, flush any
525 	 * outstanding tasks. As we are called on the RPS idle path,
526 	 * we will reset the GPU to minimum frequencies, so the current
527 	 * state of the worker can be discarded.
528 	 */
529 	cancel_work_sync(&rps->work);
530 	if (INTEL_GEN(dev_priv) >= 11)
531 		gen11_reset_rps_interrupts(dev_priv);
532 	else
533 		gen6_reset_rps_interrupts(dev_priv);
534 }
535 
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538 	assert_rpm_wakelock_held(dev_priv);
539 
540 	spin_lock_irq(&dev_priv->irq_lock);
541 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 	spin_unlock_irq(&dev_priv->irq_lock);
543 }
544 
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547 	assert_rpm_wakelock_held(dev_priv);
548 
549 	spin_lock_irq(&dev_priv->irq_lock);
550 	if (!dev_priv->guc.interrupts_enabled) {
551 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 				       dev_priv->pm_guc_events);
553 		dev_priv->guc.interrupts_enabled = true;
554 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555 	}
556 	spin_unlock_irq(&dev_priv->irq_lock);
557 }
558 
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561 	assert_rpm_wakelock_held(dev_priv);
562 
563 	spin_lock_irq(&dev_priv->irq_lock);
564 	dev_priv->guc.interrupts_enabled = false;
565 
566 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567 
568 	spin_unlock_irq(&dev_priv->irq_lock);
569 	synchronize_irq(dev_priv->drm.irq);
570 
571 	gen9_reset_guc_interrupts(dev_priv);
572 }
573 
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 				uint32_t interrupt_mask,
582 				uint32_t enabled_irq_mask)
583 {
584 	uint32_t new_val;
585 	uint32_t old_val;
586 
587 	lockdep_assert_held(&dev_priv->irq_lock);
588 
589 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
590 
591 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592 		return;
593 
594 	old_val = I915_READ(GEN8_DE_PORT_IMR);
595 
596 	new_val = old_val;
597 	new_val &= ~interrupt_mask;
598 	new_val |= (~enabled_irq_mask & interrupt_mask);
599 
600 	if (new_val != old_val) {
601 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 		POSTING_READ(GEN8_DE_PORT_IMR);
603 	}
604 }
605 
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614 			 enum pipe pipe,
615 			 uint32_t interrupt_mask,
616 			 uint32_t enabled_irq_mask)
617 {
618 	uint32_t new_val;
619 
620 	lockdep_assert_held(&dev_priv->irq_lock);
621 
622 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
623 
624 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625 		return;
626 
627 	new_val = dev_priv->de_irq_mask[pipe];
628 	new_val &= ~interrupt_mask;
629 	new_val |= (~enabled_irq_mask & interrupt_mask);
630 
631 	if (new_val != dev_priv->de_irq_mask[pipe]) {
632 		dev_priv->de_irq_mask[pipe] = new_val;
633 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635 	}
636 }
637 
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 				  uint32_t interrupt_mask,
646 				  uint32_t enabled_irq_mask)
647 {
648 	uint32_t sdeimr = I915_READ(SDEIMR);
649 	sdeimr &= ~interrupt_mask;
650 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
651 
652 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
653 
654 	lockdep_assert_held(&dev_priv->irq_lock);
655 
656 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657 		return;
658 
659 	I915_WRITE(SDEIMR, sdeimr);
660 	POSTING_READ(SDEIMR);
661 }
662 
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664 			      enum pipe pipe)
665 {
666 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 	u32 enable_mask = status_mask << 16;
668 
669 	lockdep_assert_held(&dev_priv->irq_lock);
670 
671 	if (INTEL_GEN(dev_priv) < 5)
672 		goto out;
673 
674 	/*
675 	 * On pipe A we don't support the PSR interrupt yet,
676 	 * on pipe B and C the same bit MBZ.
677 	 */
678 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679 		return 0;
680 	/*
681 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 	 * A the same bit is for perf counters which we don't use either.
683 	 */
684 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685 		return 0;
686 
687 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694 
695 out:
696 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 		  pipe_name(pipe), enable_mask, status_mask);
700 
701 	return enable_mask;
702 }
703 
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 			  enum pipe pipe, u32 status_mask)
706 {
707 	i915_reg_t reg = PIPESTAT(pipe);
708 	u32 enable_mask;
709 
710 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 		  "pipe %c: status_mask=0x%x\n",
712 		  pipe_name(pipe), status_mask);
713 
714 	lockdep_assert_held(&dev_priv->irq_lock);
715 	WARN_ON(!intel_irqs_enabled(dev_priv));
716 
717 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718 		return;
719 
720 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722 
723 	I915_WRITE(reg, enable_mask | status_mask);
724 	POSTING_READ(reg);
725 }
726 
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 			   enum pipe pipe, u32 status_mask)
729 {
730 	i915_reg_t reg = PIPESTAT(pipe);
731 	u32 enable_mask;
732 
733 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 		  "pipe %c: status_mask=0x%x\n",
735 		  pipe_name(pipe), status_mask);
736 
737 	lockdep_assert_held(&dev_priv->irq_lock);
738 	WARN_ON(!intel_irqs_enabled(dev_priv));
739 
740 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741 		return;
742 
743 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745 
746 	I915_WRITE(reg, enable_mask | status_mask);
747 	POSTING_READ(reg);
748 }
749 
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757 		return;
758 
759 	spin_lock_irq(&dev_priv->irq_lock);
760 
761 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 	if (INTEL_GEN(dev_priv) >= 4)
763 		i915_enable_pipestat(dev_priv, PIPE_A,
764 				     PIPE_LEGACY_BLC_EVENT_STATUS);
765 
766 	spin_unlock_irq(&dev_priv->irq_lock);
767 }
768 
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818 
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(dev);
825 	i915_reg_t high_frame, low_frame;
826 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 	unsigned long irqflags;
829 
830 	htotal = mode->crtc_htotal;
831 	hsync_start = mode->crtc_hsync_start;
832 	vbl_start = mode->crtc_vblank_start;
833 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
835 
836 	/* Convert to pixel count */
837 	vbl_start *= htotal;
838 
839 	/* Start of vblank event occurs at start of hsync */
840 	vbl_start -= htotal - hsync_start;
841 
842 	high_frame = PIPEFRAME(pipe);
843 	low_frame = PIPEFRAMEPIXEL(pipe);
844 
845 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846 
847 	/*
848 	 * High & low register fields aren't synchronized, so make sure
849 	 * we get a low value that's stable across two reads of the high
850 	 * register.
851 	 */
852 	do {
853 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 		low   = I915_READ_FW(low_frame);
855 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 	} while (high1 != high2);
857 
858 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859 
860 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 	pixel = low & PIPE_PIXEL_MASK;
862 	low >>= PIPE_FRAME_LOW_SHIFT;
863 
864 	/*
865 	 * The frame counter increments at beginning of active.
866 	 * Cook up a vblank counter by also checking the pixel
867 	 * counter against vblank start.
868 	 */
869 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871 
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874 	struct drm_i915_private *dev_priv = to_i915(dev);
875 
876 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878 
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 	struct drm_vblank_crtc *vblank =
891 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 	const struct drm_display_mode *mode = &vblank->hwmode;
893 	u32 vblank_start = mode->crtc_vblank_start;
894 	u32 vtotal = mode->crtc_vtotal;
895 	u32 htotal = mode->crtc_htotal;
896 	u32 clock = mode->crtc_clock;
897 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898 
899 	/*
900 	 * To avoid the race condition where we might cross into the
901 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 	 * during the same frame.
904 	 */
905 	do {
906 		/*
907 		 * This field provides read back of the display
908 		 * pipe frame time stamp. The time stamp value
909 		 * is sampled at every start of vertical blank.
910 		 */
911 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912 
913 		/*
914 		 * The TIMESTAMP_CTR register has the current
915 		 * time stamp value.
916 		 */
917 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918 
919 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 	} while (scan_post_time != scan_prev_time);
921 
922 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 					clock), 1000 * htotal);
924 	scanline = min(scanline, vtotal - 1);
925 	scanline = (scanline + vblank_start) % vtotal;
926 
927 	return scanline;
928 }
929 
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933 	struct drm_device *dev = crtc->base.dev;
934 	struct drm_i915_private *dev_priv = to_i915(dev);
935 	const struct drm_display_mode *mode;
936 	struct drm_vblank_crtc *vblank;
937 	enum pipe pipe = crtc->pipe;
938 	int position, vtotal;
939 
940 	if (!crtc->active)
941 		return -1;
942 
943 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 	mode = &vblank->hwmode;
945 
946 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 		return __intel_get_crtc_scanline_from_timestamp(crtc);
948 
949 	vtotal = mode->crtc_vtotal;
950 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951 		vtotal /= 2;
952 
953 	if (IS_GEN2(dev_priv))
954 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955 	else
956 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957 
958 	/*
959 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 	 * read it just before the start of vblank.  So try it again
961 	 * so we don't accidentally end up spanning a vblank frame
962 	 * increment, causing the pipe_update_end() code to squak at us.
963 	 *
964 	 * The nature of this problem means we can't simply check the ISR
965 	 * bit and return the vblank start value; nor can we use the scanline
966 	 * debug register in the transcoder as it appears to have the same
967 	 * problem.  We may need to extend this to include other platforms,
968 	 * but so far testing only shows the problem on HSW.
969 	 */
970 	if (HAS_DDI(dev_priv) && !position) {
971 		int i, temp;
972 
973 		for (i = 0; i < 100; i++) {
974 			udelay(1);
975 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 			if (temp != position) {
977 				position = temp;
978 				break;
979 			}
980 		}
981 	}
982 
983 	/*
984 	 * See update_scanline_offset() for the details on the
985 	 * scanline_offset adjustment.
986 	 */
987 	return (position + crtc->scanline_offset) % vtotal;
988 }
989 
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 				     bool in_vblank_irq, int *vpos, int *hpos,
992 				     ktime_t *stime, ktime_t *etime,
993 				     const struct drm_display_mode *mode)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(dev);
996 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997 								pipe);
998 	int position;
999 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 	unsigned long irqflags;
1001 
1002 	if (WARN_ON(!mode->crtc_clock)) {
1003 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 				 "pipe %c\n", pipe_name(pipe));
1005 		return false;
1006 	}
1007 
1008 	htotal = mode->crtc_htotal;
1009 	hsync_start = mode->crtc_hsync_start;
1010 	vtotal = mode->crtc_vtotal;
1011 	vbl_start = mode->crtc_vblank_start;
1012 	vbl_end = mode->crtc_vblank_end;
1013 
1014 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016 		vbl_end /= 2;
1017 		vtotal /= 2;
1018 	}
1019 
1020 	/*
1021 	 * Lock uncore.lock, as we will do multiple timing critical raw
1022 	 * register reads, potentially with preemption disabled, so the
1023 	 * following code must not block on uncore.lock.
1024 	 */
1025 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026 
1027 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028 
1029 	/* Get optional system timestamp before query. */
1030 	if (stime)
1031 		*stime = ktime_get();
1032 
1033 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 		/* No obvious pixelcount register. Only query vertical
1035 		 * scanout position from Display scan line register.
1036 		 */
1037 		position = __intel_get_crtc_scanline(intel_crtc);
1038 	} else {
1039 		/* Have access to pixelcount since start of frame.
1040 		 * We can split this into vertical and horizontal
1041 		 * scanout position.
1042 		 */
1043 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044 
1045 		/* convert to pixel counts */
1046 		vbl_start *= htotal;
1047 		vbl_end *= htotal;
1048 		vtotal *= htotal;
1049 
1050 		/*
1051 		 * In interlaced modes, the pixel counter counts all pixels,
1052 		 * so one field will have htotal more pixels. In order to avoid
1053 		 * the reported position from jumping backwards when the pixel
1054 		 * counter is beyond the length of the shorter field, just
1055 		 * clamp the position the length of the shorter field. This
1056 		 * matches how the scanline counter based position works since
1057 		 * the scanline counter doesn't count the two half lines.
1058 		 */
1059 		if (position >= vtotal)
1060 			position = vtotal - 1;
1061 
1062 		/*
1063 		 * Start of vblank interrupt is triggered at start of hsync,
1064 		 * just prior to the first active line of vblank. However we
1065 		 * consider lines to start at the leading edge of horizontal
1066 		 * active. So, should we get here before we've crossed into
1067 		 * the horizontal active of the first line in vblank, we would
1068 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 		 * always add htotal-hsync_start to the current pixel position.
1070 		 */
1071 		position = (position + htotal - hsync_start) % vtotal;
1072 	}
1073 
1074 	/* Get optional system timestamp after query. */
1075 	if (etime)
1076 		*etime = ktime_get();
1077 
1078 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079 
1080 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081 
1082 	/*
1083 	 * While in vblank, position will be negative
1084 	 * counting up towards 0 at vbl_end. And outside
1085 	 * vblank, position will be positive counting
1086 	 * up since vbl_end.
1087 	 */
1088 	if (position >= vbl_start)
1089 		position -= vbl_end;
1090 	else
1091 		position += vtotal - vbl_end;
1092 
1093 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094 		*vpos = position;
1095 		*hpos = 0;
1096 	} else {
1097 		*vpos = position / htotal;
1098 		*hpos = position - (*vpos * htotal);
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 	unsigned long irqflags;
1108 	int position;
1109 
1110 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 	position = __intel_get_crtc_scanline(crtc);
1112 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113 
1114 	return position;
1115 }
1116 
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119 	u32 busy_up, busy_down, max_avg, min_avg;
1120 	u8 new_delay;
1121 
1122 	spin_lock(&mchdev_lock);
1123 
1124 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125 
1126 	new_delay = dev_priv->ips.cur_delay;
1127 
1128 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 	max_avg = I915_READ(RCBMAXAVG);
1132 	min_avg = I915_READ(RCBMINAVG);
1133 
1134 	/* Handle RCS change request from hw */
1135 	if (busy_up > max_avg) {
1136 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 			new_delay = dev_priv->ips.cur_delay - 1;
1138 		if (new_delay < dev_priv->ips.max_delay)
1139 			new_delay = dev_priv->ips.max_delay;
1140 	} else if (busy_down < min_avg) {
1141 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 			new_delay = dev_priv->ips.cur_delay + 1;
1143 		if (new_delay > dev_priv->ips.min_delay)
1144 			new_delay = dev_priv->ips.min_delay;
1145 	}
1146 
1147 	if (ironlake_set_drps(dev_priv, new_delay))
1148 		dev_priv->ips.cur_delay = new_delay;
1149 
1150 	spin_unlock(&mchdev_lock);
1151 
1152 	return;
1153 }
1154 
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157 	const u32 seqno = intel_engine_get_seqno(engine);
1158 	struct i915_request *rq = NULL;
1159 	struct task_struct *tsk = NULL;
1160 	struct intel_wait *wait;
1161 
1162 	if (unlikely(!engine->breadcrumbs.irq_armed))
1163 		return;
1164 
1165 	rcu_read_lock();
1166 
1167 	spin_lock(&engine->breadcrumbs.irq_lock);
1168 	wait = engine->breadcrumbs.irq_wait;
1169 	if (wait) {
1170 		/*
1171 		 * We use a callback from the dma-fence to submit
1172 		 * requests after waiting on our own requests. To
1173 		 * ensure minimum delay in queuing the next request to
1174 		 * hardware, signal the fence now rather than wait for
1175 		 * the signaler to be woken up. We still wake up the
1176 		 * waiter in order to handle the irq-seqno coherency
1177 		 * issues (we may receive the interrupt before the
1178 		 * seqno is written, see __i915_request_irq_complete())
1179 		 * and to handle coalescing of multiple seqno updates
1180 		 * and many waiters.
1181 		 */
1182 		if (i915_seqno_passed(seqno, wait->seqno)) {
1183 			struct i915_request *waiter = wait->request;
1184 
1185 			if (waiter &&
1186 			    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 				      &waiter->fence.flags) &&
1188 			    intel_wait_check_request(wait, waiter))
1189 				rq = i915_request_get(waiter);
1190 
1191 			tsk = wait->tsk;
1192 		} else {
1193 			if (engine->irq_seqno_barrier &&
1194 			    i915_seqno_passed(seqno, wait->seqno - 1)) {
1195 				set_bit(ENGINE_IRQ_BREADCRUMB,
1196 					&engine->irq_posted);
1197 				tsk = wait->tsk;
1198 			}
1199 		}
1200 
1201 		engine->breadcrumbs.irq_count++;
1202 	} else {
1203 		if (engine->breadcrumbs.irq_armed)
1204 			__intel_engine_disarm_breadcrumbs(engine);
1205 	}
1206 	spin_unlock(&engine->breadcrumbs.irq_lock);
1207 
1208 	if (rq) {
1209 		spin_lock(&rq->lock);
1210 		dma_fence_signal_locked(&rq->fence);
1211 		GEM_BUG_ON(!i915_request_completed(rq));
1212 		spin_unlock(&rq->lock);
1213 
1214 		i915_request_put(rq);
1215 	}
1216 
1217 	if (tsk && tsk->state & TASK_NORMAL)
1218 		wake_up_process(tsk);
1219 
1220 	rcu_read_unlock();
1221 
1222 	trace_intel_engine_notify(engine, wait);
1223 }
1224 
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226 			struct intel_rps_ei *ei)
1227 {
1228 	ei->ktime = ktime_get_raw();
1229 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1231 }
1232 
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1234 {
1235 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1236 }
1237 
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1239 {
1240 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241 	const struct intel_rps_ei *prev = &rps->ei;
1242 	struct intel_rps_ei now;
1243 	u32 events = 0;
1244 
1245 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246 		return 0;
1247 
1248 	vlv_c0_read(dev_priv, &now);
1249 
1250 	if (prev->ktime) {
1251 		u64 time, c0;
1252 		u32 render, media;
1253 
1254 		time = ktime_us_delta(now.ktime, prev->ktime);
1255 
1256 		time *= dev_priv->czclk_freq;
1257 
1258 		/* Workload can be split between render + media,
1259 		 * e.g. SwapBuffers being blitted in X after being rendered in
1260 		 * mesa. To account for this we need to combine both engines
1261 		 * into our activity counter.
1262 		 */
1263 		render = now.render_c0 - prev->render_c0;
1264 		media = now.media_c0 - prev->media_c0;
1265 		c0 = max(render, media);
1266 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1267 
1268 		if (c0 > time * rps->power.up_threshold)
1269 			events = GEN6_PM_RP_UP_THRESHOLD;
1270 		else if (c0 < time * rps->power.down_threshold)
1271 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1272 	}
1273 
1274 	rps->ei = now;
1275 	return events;
1276 }
1277 
1278 static void gen6_pm_rps_work(struct work_struct *work)
1279 {
1280 	struct drm_i915_private *dev_priv =
1281 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283 	bool client_boost = false;
1284 	int new_delay, adj, min, max;
1285 	u32 pm_iir = 0;
1286 
1287 	spin_lock_irq(&dev_priv->irq_lock);
1288 	if (rps->interrupts_enabled) {
1289 		pm_iir = fetch_and_zero(&rps->pm_iir);
1290 		client_boost = atomic_read(&rps->num_waiters);
1291 	}
1292 	spin_unlock_irq(&dev_priv->irq_lock);
1293 
1294 	/* Make sure we didn't queue anything we're not going to process. */
1295 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297 		goto out;
1298 
1299 	mutex_lock(&dev_priv->pcu_lock);
1300 
1301 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1302 
1303 	adj = rps->last_adj;
1304 	new_delay = rps->cur_freq;
1305 	min = rps->min_freq_softlimit;
1306 	max = rps->max_freq_softlimit;
1307 	if (client_boost)
1308 		max = rps->max_freq;
1309 	if (client_boost && new_delay < rps->boost_freq) {
1310 		new_delay = rps->boost_freq;
1311 		adj = 0;
1312 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313 		if (adj > 0)
1314 			adj *= 2;
1315 		else /* CHV needs even encode values */
1316 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1317 
1318 		if (new_delay >= rps->max_freq_softlimit)
1319 			adj = 0;
1320 	} else if (client_boost) {
1321 		adj = 0;
1322 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323 		if (rps->cur_freq > rps->efficient_freq)
1324 			new_delay = rps->efficient_freq;
1325 		else if (rps->cur_freq > rps->min_freq_softlimit)
1326 			new_delay = rps->min_freq_softlimit;
1327 		adj = 0;
1328 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329 		if (adj < 0)
1330 			adj *= 2;
1331 		else /* CHV needs even encode values */
1332 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1333 
1334 		if (new_delay <= rps->min_freq_softlimit)
1335 			adj = 0;
1336 	} else { /* unknown event */
1337 		adj = 0;
1338 	}
1339 
1340 	rps->last_adj = adj;
1341 
1342 	/* sysfs frequency interfaces may have snuck in while servicing the
1343 	 * interrupt
1344 	 */
1345 	new_delay += adj;
1346 	new_delay = clamp_t(int, new_delay, min, max);
1347 
1348 	if (intel_set_rps(dev_priv, new_delay)) {
1349 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350 		rps->last_adj = 0;
1351 	}
1352 
1353 	mutex_unlock(&dev_priv->pcu_lock);
1354 
1355 out:
1356 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 	spin_lock_irq(&dev_priv->irq_lock);
1358 	if (rps->interrupts_enabled)
1359 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360 	spin_unlock_irq(&dev_priv->irq_lock);
1361 }
1362 
1363 
1364 /**
1365  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366  * occurred.
1367  * @work: workqueue struct
1368  *
1369  * Doesn't actually do anything except notify userspace. As a consequence of
1370  * this event, userspace should try to remap the bad rows since statistically
1371  * it is likely the same row is more likely to go bad again.
1372  */
1373 static void ivybridge_parity_work(struct work_struct *work)
1374 {
1375 	struct drm_i915_private *dev_priv =
1376 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377 	u32 error_status, row, bank, subbank;
1378 	char *parity_event[6];
1379 	uint32_t misccpctl;
1380 	uint8_t slice = 0;
1381 
1382 	/* We must turn off DOP level clock gating to access the L3 registers.
1383 	 * In order to prevent a get/put style interface, acquire struct mutex
1384 	 * any time we access those registers.
1385 	 */
1386 	mutex_lock(&dev_priv->drm.struct_mutex);
1387 
1388 	/* If we've screwed up tracking, just let the interrupt fire again */
1389 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390 		goto out;
1391 
1392 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1393 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394 	POSTING_READ(GEN7_MISCCPCTL);
1395 
1396 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397 		i915_reg_t reg;
1398 
1399 		slice--;
1400 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401 			break;
1402 
1403 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1404 
1405 		reg = GEN7_L3CDERRST1(slice);
1406 
1407 		error_status = I915_READ(reg);
1408 		row = GEN7_PARITY_ERROR_ROW(error_status);
1409 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1410 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1411 
1412 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413 		POSTING_READ(reg);
1414 
1415 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420 		parity_event[5] = NULL;
1421 
1422 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423 				   KOBJ_CHANGE, parity_event);
1424 
1425 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 			  slice, row, bank, subbank);
1427 
1428 		kfree(parity_event[4]);
1429 		kfree(parity_event[3]);
1430 		kfree(parity_event[2]);
1431 		kfree(parity_event[1]);
1432 	}
1433 
1434 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1435 
1436 out:
1437 	WARN_ON(dev_priv->l3_parity.which_slice);
1438 	spin_lock_irq(&dev_priv->irq_lock);
1439 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440 	spin_unlock_irq(&dev_priv->irq_lock);
1441 
1442 	mutex_unlock(&dev_priv->drm.struct_mutex);
1443 }
1444 
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446 					       u32 iir)
1447 {
1448 	if (!HAS_L3_DPF(dev_priv))
1449 		return;
1450 
1451 	spin_lock(&dev_priv->irq_lock);
1452 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 	spin_unlock(&dev_priv->irq_lock);
1454 
1455 	iir &= GT_PARITY_ERROR(dev_priv);
1456 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457 		dev_priv->l3_parity.which_slice |= 1 << 1;
1458 
1459 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460 		dev_priv->l3_parity.which_slice |= 1 << 0;
1461 
1462 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1463 }
1464 
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466 			       u32 gt_iir)
1467 {
1468 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469 		notify_ring(dev_priv->engine[RCS]);
1470 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471 		notify_ring(dev_priv->engine[VCS]);
1472 }
1473 
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475 			       u32 gt_iir)
1476 {
1477 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478 		notify_ring(dev_priv->engine[RCS]);
1479 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1480 		notify_ring(dev_priv->engine[VCS]);
1481 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1482 		notify_ring(dev_priv->engine[BCS]);
1483 
1484 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485 		      GT_BSD_CS_ERROR_INTERRUPT |
1486 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1488 
1489 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1491 }
1492 
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1495 {
1496 	bool tasklet = false;
1497 
1498 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499 		tasklet = true;
1500 
1501 	if (iir & GT_RENDER_USER_INTERRUPT) {
1502 		notify_ring(engine);
1503 		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1504 	}
1505 
1506 	if (tasklet)
1507 		tasklet_hi_schedule(&engine->execlists.tasklet);
1508 }
1509 
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511 			    u32 master_ctl, u32 gt_iir[4])
1512 {
1513 	void __iomem * const regs = i915->regs;
1514 
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516 		      GEN8_GT_BCS_IRQ | \
1517 		      GEN8_GT_VCS1_IRQ | \
1518 		      GEN8_GT_VCS2_IRQ | \
1519 		      GEN8_GT_VECS_IRQ | \
1520 		      GEN8_GT_PM_IRQ | \
1521 		      GEN8_GT_GUC_IRQ)
1522 
1523 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524 		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525 		if (likely(gt_iir[0]))
1526 			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1527 	}
1528 
1529 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530 		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531 		if (likely(gt_iir[1]))
1532 			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1533 	}
1534 
1535 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536 		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537 		if (likely(gt_iir[2] & (i915->pm_rps_events |
1538 					i915->pm_guc_events)))
1539 			raw_reg_write(regs, GEN8_GT_IIR(2),
1540 				      gt_iir[2] & (i915->pm_rps_events |
1541 						   i915->pm_guc_events));
1542 	}
1543 
1544 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1545 		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1546 		if (likely(gt_iir[3]))
1547 			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1548 	}
1549 }
1550 
1551 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1552 				u32 master_ctl, u32 gt_iir[4])
1553 {
1554 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1555 		gen8_cs_irq_handler(i915->engine[RCS],
1556 				    gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1557 		gen8_cs_irq_handler(i915->engine[BCS],
1558 				    gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1559 	}
1560 
1561 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1562 		gen8_cs_irq_handler(i915->engine[VCS],
1563 				    gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1564 		gen8_cs_irq_handler(i915->engine[VCS2],
1565 				    gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1566 	}
1567 
1568 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1569 		gen8_cs_irq_handler(i915->engine[VECS],
1570 				    gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1571 	}
1572 
1573 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1574 		gen6_rps_irq_handler(i915, gt_iir[2]);
1575 		gen9_guc_irq_handler(i915, gt_iir[2]);
1576 	}
1577 }
1578 
1579 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1580 {
1581 	switch (pin) {
1582 	case HPD_PORT_C:
1583 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1584 	case HPD_PORT_D:
1585 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1586 	case HPD_PORT_E:
1587 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1588 	case HPD_PORT_F:
1589 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1590 	default:
1591 		return false;
1592 	}
1593 }
1594 
1595 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1596 {
1597 	switch (pin) {
1598 	case HPD_PORT_A:
1599 		return val & PORTA_HOTPLUG_LONG_DETECT;
1600 	case HPD_PORT_B:
1601 		return val & PORTB_HOTPLUG_LONG_DETECT;
1602 	case HPD_PORT_C:
1603 		return val & PORTC_HOTPLUG_LONG_DETECT;
1604 	default:
1605 		return false;
1606 	}
1607 }
1608 
1609 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 {
1611 	switch (pin) {
1612 	case HPD_PORT_A:
1613 		return val & ICP_DDIA_HPD_LONG_DETECT;
1614 	case HPD_PORT_B:
1615 		return val & ICP_DDIB_HPD_LONG_DETECT;
1616 	default:
1617 		return false;
1618 	}
1619 }
1620 
1621 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1622 {
1623 	switch (pin) {
1624 	case HPD_PORT_C:
1625 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1626 	case HPD_PORT_D:
1627 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1628 	case HPD_PORT_E:
1629 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1630 	case HPD_PORT_F:
1631 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1632 	default:
1633 		return false;
1634 	}
1635 }
1636 
1637 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1638 {
1639 	switch (pin) {
1640 	case HPD_PORT_E:
1641 		return val & PORTE_HOTPLUG_LONG_DETECT;
1642 	default:
1643 		return false;
1644 	}
1645 }
1646 
1647 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1648 {
1649 	switch (pin) {
1650 	case HPD_PORT_A:
1651 		return val & PORTA_HOTPLUG_LONG_DETECT;
1652 	case HPD_PORT_B:
1653 		return val & PORTB_HOTPLUG_LONG_DETECT;
1654 	case HPD_PORT_C:
1655 		return val & PORTC_HOTPLUG_LONG_DETECT;
1656 	case HPD_PORT_D:
1657 		return val & PORTD_HOTPLUG_LONG_DETECT;
1658 	default:
1659 		return false;
1660 	}
1661 }
1662 
1663 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1664 {
1665 	switch (pin) {
1666 	case HPD_PORT_A:
1667 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1668 	default:
1669 		return false;
1670 	}
1671 }
1672 
1673 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1674 {
1675 	switch (pin) {
1676 	case HPD_PORT_B:
1677 		return val & PORTB_HOTPLUG_LONG_DETECT;
1678 	case HPD_PORT_C:
1679 		return val & PORTC_HOTPLUG_LONG_DETECT;
1680 	case HPD_PORT_D:
1681 		return val & PORTD_HOTPLUG_LONG_DETECT;
1682 	default:
1683 		return false;
1684 	}
1685 }
1686 
1687 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1688 {
1689 	switch (pin) {
1690 	case HPD_PORT_B:
1691 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1692 	case HPD_PORT_C:
1693 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1694 	case HPD_PORT_D:
1695 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1696 	default:
1697 		return false;
1698 	}
1699 }
1700 
1701 /*
1702  * Get a bit mask of pins that have triggered, and which ones may be long.
1703  * This can be called multiple times with the same masks to accumulate
1704  * hotplug detection results from several registers.
1705  *
1706  * Note that the caller is expected to zero out the masks initially.
1707  */
1708 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1709 			       u32 *pin_mask, u32 *long_mask,
1710 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1711 			       const u32 hpd[HPD_NUM_PINS],
1712 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1713 {
1714 	enum hpd_pin pin;
1715 
1716 	for_each_hpd_pin(pin) {
1717 		if ((hpd[pin] & hotplug_trigger) == 0)
1718 			continue;
1719 
1720 		*pin_mask |= BIT(pin);
1721 
1722 		if (long_pulse_detect(pin, dig_hotplug_reg))
1723 			*long_mask |= BIT(pin);
1724 	}
1725 
1726 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1727 			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1728 
1729 }
1730 
1731 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1732 {
1733 	wake_up_all(&dev_priv->gmbus_wait_queue);
1734 }
1735 
1736 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1737 {
1738 	wake_up_all(&dev_priv->gmbus_wait_queue);
1739 }
1740 
1741 #if defined(CONFIG_DEBUG_FS)
1742 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1743 					 enum pipe pipe,
1744 					 uint32_t crc0, uint32_t crc1,
1745 					 uint32_t crc2, uint32_t crc3,
1746 					 uint32_t crc4)
1747 {
1748 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1749 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1750 	uint32_t crcs[5];
1751 
1752 	spin_lock(&pipe_crc->lock);
1753 	/*
1754 	 * For some not yet identified reason, the first CRC is
1755 	 * bonkers. So let's just wait for the next vblank and read
1756 	 * out the buggy result.
1757 	 *
1758 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1759 	 * don't trust that one either.
1760 	 */
1761 	if (pipe_crc->skipped <= 0 ||
1762 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1763 		pipe_crc->skipped++;
1764 		spin_unlock(&pipe_crc->lock);
1765 		return;
1766 	}
1767 	spin_unlock(&pipe_crc->lock);
1768 
1769 	crcs[0] = crc0;
1770 	crcs[1] = crc1;
1771 	crcs[2] = crc2;
1772 	crcs[3] = crc3;
1773 	crcs[4] = crc4;
1774 	drm_crtc_add_crc_entry(&crtc->base, true,
1775 				drm_crtc_accurate_vblank_count(&crtc->base),
1776 				crcs);
1777 }
1778 #else
1779 static inline void
1780 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1781 			     enum pipe pipe,
1782 			     uint32_t crc0, uint32_t crc1,
1783 			     uint32_t crc2, uint32_t crc3,
1784 			     uint32_t crc4) {}
1785 #endif
1786 
1787 
1788 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1789 				     enum pipe pipe)
1790 {
1791 	display_pipe_crc_irq_handler(dev_priv, pipe,
1792 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1793 				     0, 0, 0, 0);
1794 }
1795 
1796 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1797 				     enum pipe pipe)
1798 {
1799 	display_pipe_crc_irq_handler(dev_priv, pipe,
1800 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1801 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1802 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1803 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1804 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1805 }
1806 
1807 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808 				      enum pipe pipe)
1809 {
1810 	uint32_t res1, res2;
1811 
1812 	if (INTEL_GEN(dev_priv) >= 3)
1813 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1814 	else
1815 		res1 = 0;
1816 
1817 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1818 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1819 	else
1820 		res2 = 0;
1821 
1822 	display_pipe_crc_irq_handler(dev_priv, pipe,
1823 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1824 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1825 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1826 				     res1, res2);
1827 }
1828 
1829 /* The RPS events need forcewake, so we add them to a work queue and mask their
1830  * IMR bits until the work is done. Other interrupts can be processed without
1831  * the work queue. */
1832 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1833 {
1834 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1835 
1836 	if (pm_iir & dev_priv->pm_rps_events) {
1837 		spin_lock(&dev_priv->irq_lock);
1838 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1839 		if (rps->interrupts_enabled) {
1840 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1841 			schedule_work(&rps->work);
1842 		}
1843 		spin_unlock(&dev_priv->irq_lock);
1844 	}
1845 
1846 	if (INTEL_GEN(dev_priv) >= 8)
1847 		return;
1848 
1849 	if (HAS_VEBOX(dev_priv)) {
1850 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1851 			notify_ring(dev_priv->engine[VECS]);
1852 
1853 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1854 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1855 	}
1856 }
1857 
1858 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1859 {
1860 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1861 		intel_guc_to_host_event_handler(&dev_priv->guc);
1862 }
1863 
1864 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1865 {
1866 	enum pipe pipe;
1867 
1868 	for_each_pipe(dev_priv, pipe) {
1869 		I915_WRITE(PIPESTAT(pipe),
1870 			   PIPESTAT_INT_STATUS_MASK |
1871 			   PIPE_FIFO_UNDERRUN_STATUS);
1872 
1873 		dev_priv->pipestat_irq_mask[pipe] = 0;
1874 	}
1875 }
1876 
1877 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1878 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1879 {
1880 	int pipe;
1881 
1882 	spin_lock(&dev_priv->irq_lock);
1883 
1884 	if (!dev_priv->display_irqs_enabled) {
1885 		spin_unlock(&dev_priv->irq_lock);
1886 		return;
1887 	}
1888 
1889 	for_each_pipe(dev_priv, pipe) {
1890 		i915_reg_t reg;
1891 		u32 status_mask, enable_mask, iir_bit = 0;
1892 
1893 		/*
1894 		 * PIPESTAT bits get signalled even when the interrupt is
1895 		 * disabled with the mask bits, and some of the status bits do
1896 		 * not generate interrupts at all (like the underrun bit). Hence
1897 		 * we need to be careful that we only handle what we want to
1898 		 * handle.
1899 		 */
1900 
1901 		/* fifo underruns are filterered in the underrun handler. */
1902 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1903 
1904 		switch (pipe) {
1905 		case PIPE_A:
1906 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1907 			break;
1908 		case PIPE_B:
1909 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1910 			break;
1911 		case PIPE_C:
1912 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1913 			break;
1914 		}
1915 		if (iir & iir_bit)
1916 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1917 
1918 		if (!status_mask)
1919 			continue;
1920 
1921 		reg = PIPESTAT(pipe);
1922 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1923 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1924 
1925 		/*
1926 		 * Clear the PIPE*STAT regs before the IIR
1927 		 *
1928 		 * Toggle the enable bits to make sure we get an
1929 		 * edge in the ISR pipe event bit if we don't clear
1930 		 * all the enabled status bits. Otherwise the edge
1931 		 * triggered IIR on i965/g4x wouldn't notice that
1932 		 * an interrupt is still pending.
1933 		 */
1934 		if (pipe_stats[pipe]) {
1935 			I915_WRITE(reg, pipe_stats[pipe]);
1936 			I915_WRITE(reg, enable_mask);
1937 		}
1938 	}
1939 	spin_unlock(&dev_priv->irq_lock);
1940 }
1941 
1942 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1943 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1944 {
1945 	enum pipe pipe;
1946 
1947 	for_each_pipe(dev_priv, pipe) {
1948 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1949 			drm_handle_vblank(&dev_priv->drm, pipe);
1950 
1951 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1952 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1953 
1954 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1955 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1956 	}
1957 }
1958 
1959 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1960 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1961 {
1962 	bool blc_event = false;
1963 	enum pipe pipe;
1964 
1965 	for_each_pipe(dev_priv, pipe) {
1966 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1967 			drm_handle_vblank(&dev_priv->drm, pipe);
1968 
1969 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1970 			blc_event = true;
1971 
1972 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1973 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1974 
1975 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1976 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1977 	}
1978 
1979 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1980 		intel_opregion_asle_intr(dev_priv);
1981 }
1982 
1983 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1984 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1985 {
1986 	bool blc_event = false;
1987 	enum pipe pipe;
1988 
1989 	for_each_pipe(dev_priv, pipe) {
1990 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1991 			drm_handle_vblank(&dev_priv->drm, pipe);
1992 
1993 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1994 			blc_event = true;
1995 
1996 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1997 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1998 
1999 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2000 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2001 	}
2002 
2003 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
2004 		intel_opregion_asle_intr(dev_priv);
2005 
2006 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2007 		gmbus_irq_handler(dev_priv);
2008 }
2009 
2010 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2011 					    u32 pipe_stats[I915_MAX_PIPES])
2012 {
2013 	enum pipe pipe;
2014 
2015 	for_each_pipe(dev_priv, pipe) {
2016 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2017 			drm_handle_vblank(&dev_priv->drm, pipe);
2018 
2019 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2020 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2021 
2022 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2023 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2024 	}
2025 
2026 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2027 		gmbus_irq_handler(dev_priv);
2028 }
2029 
2030 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2031 {
2032 	u32 hotplug_status = 0, hotplug_status_mask;
2033 	int i;
2034 
2035 	if (IS_G4X(dev_priv) ||
2036 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2037 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2038 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2039 	else
2040 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2041 
2042 	/*
2043 	 * We absolutely have to clear all the pending interrupt
2044 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2045 	 * interrupt bit won't have an edge, and the i965/g4x
2046 	 * edge triggered IIR will not notice that an interrupt
2047 	 * is still pending. We can't use PORT_HOTPLUG_EN to
2048 	 * guarantee the edge as the act of toggling the enable
2049 	 * bits can itself generate a new hotplug interrupt :(
2050 	 */
2051 	for (i = 0; i < 10; i++) {
2052 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2053 
2054 		if (tmp == 0)
2055 			return hotplug_status;
2056 
2057 		hotplug_status |= tmp;
2058 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2059 	}
2060 
2061 	WARN_ONCE(1,
2062 		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2063 		  I915_READ(PORT_HOTPLUG_STAT));
2064 
2065 	return hotplug_status;
2066 }
2067 
2068 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2069 				 u32 hotplug_status)
2070 {
2071 	u32 pin_mask = 0, long_mask = 0;
2072 
2073 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2074 	    IS_CHERRYVIEW(dev_priv)) {
2075 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2076 
2077 		if (hotplug_trigger) {
2078 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2079 					   hotplug_trigger, hotplug_trigger,
2080 					   hpd_status_g4x,
2081 					   i9xx_port_hotplug_long_detect);
2082 
2083 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2084 		}
2085 
2086 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2087 			dp_aux_irq_handler(dev_priv);
2088 	} else {
2089 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090 
2091 		if (hotplug_trigger) {
2092 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2093 					   hotplug_trigger, hotplug_trigger,
2094 					   hpd_status_i915,
2095 					   i9xx_port_hotplug_long_detect);
2096 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2097 		}
2098 	}
2099 }
2100 
2101 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2102 {
2103 	struct drm_device *dev = arg;
2104 	struct drm_i915_private *dev_priv = to_i915(dev);
2105 	irqreturn_t ret = IRQ_NONE;
2106 
2107 	if (!intel_irqs_enabled(dev_priv))
2108 		return IRQ_NONE;
2109 
2110 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2111 	disable_rpm_wakeref_asserts(dev_priv);
2112 
2113 	do {
2114 		u32 iir, gt_iir, pm_iir;
2115 		u32 pipe_stats[I915_MAX_PIPES] = {};
2116 		u32 hotplug_status = 0;
2117 		u32 ier = 0;
2118 
2119 		gt_iir = I915_READ(GTIIR);
2120 		pm_iir = I915_READ(GEN6_PMIIR);
2121 		iir = I915_READ(VLV_IIR);
2122 
2123 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2124 			break;
2125 
2126 		ret = IRQ_HANDLED;
2127 
2128 		/*
2129 		 * Theory on interrupt generation, based on empirical evidence:
2130 		 *
2131 		 * x = ((VLV_IIR & VLV_IER) ||
2132 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2133 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2134 		 *
2135 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2136 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2137 		 * guarantee the CPU interrupt will be raised again even if we
2138 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2139 		 * bits this time around.
2140 		 */
2141 		I915_WRITE(VLV_MASTER_IER, 0);
2142 		ier = I915_READ(VLV_IER);
2143 		I915_WRITE(VLV_IER, 0);
2144 
2145 		if (gt_iir)
2146 			I915_WRITE(GTIIR, gt_iir);
2147 		if (pm_iir)
2148 			I915_WRITE(GEN6_PMIIR, pm_iir);
2149 
2150 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2151 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2152 
2153 		/* Call regardless, as some status bits might not be
2154 		 * signalled in iir */
2155 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2156 
2157 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2158 			   I915_LPE_PIPE_B_INTERRUPT))
2159 			intel_lpe_audio_irq_handler(dev_priv);
2160 
2161 		/*
2162 		 * VLV_IIR is single buffered, and reflects the level
2163 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2164 		 */
2165 		if (iir)
2166 			I915_WRITE(VLV_IIR, iir);
2167 
2168 		I915_WRITE(VLV_IER, ier);
2169 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2170 
2171 		if (gt_iir)
2172 			snb_gt_irq_handler(dev_priv, gt_iir);
2173 		if (pm_iir)
2174 			gen6_rps_irq_handler(dev_priv, pm_iir);
2175 
2176 		if (hotplug_status)
2177 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2178 
2179 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2180 	} while (0);
2181 
2182 	enable_rpm_wakeref_asserts(dev_priv);
2183 
2184 	return ret;
2185 }
2186 
2187 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2188 {
2189 	struct drm_device *dev = arg;
2190 	struct drm_i915_private *dev_priv = to_i915(dev);
2191 	irqreturn_t ret = IRQ_NONE;
2192 
2193 	if (!intel_irqs_enabled(dev_priv))
2194 		return IRQ_NONE;
2195 
2196 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2197 	disable_rpm_wakeref_asserts(dev_priv);
2198 
2199 	do {
2200 		u32 master_ctl, iir;
2201 		u32 pipe_stats[I915_MAX_PIPES] = {};
2202 		u32 hotplug_status = 0;
2203 		u32 gt_iir[4];
2204 		u32 ier = 0;
2205 
2206 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2207 		iir = I915_READ(VLV_IIR);
2208 
2209 		if (master_ctl == 0 && iir == 0)
2210 			break;
2211 
2212 		ret = IRQ_HANDLED;
2213 
2214 		/*
2215 		 * Theory on interrupt generation, based on empirical evidence:
2216 		 *
2217 		 * x = ((VLV_IIR & VLV_IER) ||
2218 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2219 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2220 		 *
2221 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2222 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2223 		 * guarantee the CPU interrupt will be raised again even if we
2224 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2225 		 * bits this time around.
2226 		 */
2227 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2228 		ier = I915_READ(VLV_IER);
2229 		I915_WRITE(VLV_IER, 0);
2230 
2231 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2232 
2233 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2234 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2235 
2236 		/* Call regardless, as some status bits might not be
2237 		 * signalled in iir */
2238 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2239 
2240 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2241 			   I915_LPE_PIPE_B_INTERRUPT |
2242 			   I915_LPE_PIPE_C_INTERRUPT))
2243 			intel_lpe_audio_irq_handler(dev_priv);
2244 
2245 		/*
2246 		 * VLV_IIR is single buffered, and reflects the level
2247 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2248 		 */
2249 		if (iir)
2250 			I915_WRITE(VLV_IIR, iir);
2251 
2252 		I915_WRITE(VLV_IER, ier);
2253 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2254 
2255 		gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2256 
2257 		if (hotplug_status)
2258 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2259 
2260 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2261 	} while (0);
2262 
2263 	enable_rpm_wakeref_asserts(dev_priv);
2264 
2265 	return ret;
2266 }
2267 
2268 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2269 				u32 hotplug_trigger,
2270 				const u32 hpd[HPD_NUM_PINS])
2271 {
2272 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2273 
2274 	/*
2275 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2276 	 * unless we touch the hotplug register, even if hotplug_trigger is
2277 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2278 	 * errors.
2279 	 */
2280 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2281 	if (!hotplug_trigger) {
2282 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2283 			PORTD_HOTPLUG_STATUS_MASK |
2284 			PORTC_HOTPLUG_STATUS_MASK |
2285 			PORTB_HOTPLUG_STATUS_MASK;
2286 		dig_hotplug_reg &= ~mask;
2287 	}
2288 
2289 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2290 	if (!hotplug_trigger)
2291 		return;
2292 
2293 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2294 			   dig_hotplug_reg, hpd,
2295 			   pch_port_hotplug_long_detect);
2296 
2297 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2298 }
2299 
2300 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2301 {
2302 	int pipe;
2303 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2304 
2305 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2306 
2307 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2308 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2309 			       SDE_AUDIO_POWER_SHIFT);
2310 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2311 				 port_name(port));
2312 	}
2313 
2314 	if (pch_iir & SDE_AUX_MASK)
2315 		dp_aux_irq_handler(dev_priv);
2316 
2317 	if (pch_iir & SDE_GMBUS)
2318 		gmbus_irq_handler(dev_priv);
2319 
2320 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2321 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2322 
2323 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2324 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2325 
2326 	if (pch_iir & SDE_POISON)
2327 		DRM_ERROR("PCH poison interrupt\n");
2328 
2329 	if (pch_iir & SDE_FDI_MASK)
2330 		for_each_pipe(dev_priv, pipe)
2331 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2332 					 pipe_name(pipe),
2333 					 I915_READ(FDI_RX_IIR(pipe)));
2334 
2335 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2336 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2337 
2338 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2339 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2340 
2341 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2342 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2343 
2344 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2345 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2346 }
2347 
2348 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2349 {
2350 	u32 err_int = I915_READ(GEN7_ERR_INT);
2351 	enum pipe pipe;
2352 
2353 	if (err_int & ERR_INT_POISON)
2354 		DRM_ERROR("Poison interrupt\n");
2355 
2356 	for_each_pipe(dev_priv, pipe) {
2357 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2358 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2359 
2360 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2361 			if (IS_IVYBRIDGE(dev_priv))
2362 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2363 			else
2364 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2365 		}
2366 	}
2367 
2368 	I915_WRITE(GEN7_ERR_INT, err_int);
2369 }
2370 
2371 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2372 {
2373 	u32 serr_int = I915_READ(SERR_INT);
2374 	enum pipe pipe;
2375 
2376 	if (serr_int & SERR_INT_POISON)
2377 		DRM_ERROR("PCH poison interrupt\n");
2378 
2379 	for_each_pipe(dev_priv, pipe)
2380 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2381 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2382 
2383 	I915_WRITE(SERR_INT, serr_int);
2384 }
2385 
2386 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2387 {
2388 	int pipe;
2389 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2390 
2391 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2392 
2393 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2394 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2395 			       SDE_AUDIO_POWER_SHIFT_CPT);
2396 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2397 				 port_name(port));
2398 	}
2399 
2400 	if (pch_iir & SDE_AUX_MASK_CPT)
2401 		dp_aux_irq_handler(dev_priv);
2402 
2403 	if (pch_iir & SDE_GMBUS_CPT)
2404 		gmbus_irq_handler(dev_priv);
2405 
2406 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2407 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2408 
2409 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2410 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2411 
2412 	if (pch_iir & SDE_FDI_MASK_CPT)
2413 		for_each_pipe(dev_priv, pipe)
2414 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2415 					 pipe_name(pipe),
2416 					 I915_READ(FDI_RX_IIR(pipe)));
2417 
2418 	if (pch_iir & SDE_ERROR_CPT)
2419 		cpt_serr_int_handler(dev_priv);
2420 }
2421 
2422 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2423 {
2424 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2425 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2426 	u32 pin_mask = 0, long_mask = 0;
2427 
2428 	if (ddi_hotplug_trigger) {
2429 		u32 dig_hotplug_reg;
2430 
2431 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2432 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2433 
2434 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2435 				   ddi_hotplug_trigger,
2436 				   dig_hotplug_reg, hpd_icp,
2437 				   icp_ddi_port_hotplug_long_detect);
2438 	}
2439 
2440 	if (tc_hotplug_trigger) {
2441 		u32 dig_hotplug_reg;
2442 
2443 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2444 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2445 
2446 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2447 				   tc_hotplug_trigger,
2448 				   dig_hotplug_reg, hpd_icp,
2449 				   icp_tc_port_hotplug_long_detect);
2450 	}
2451 
2452 	if (pin_mask)
2453 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2454 
2455 	if (pch_iir & SDE_GMBUS_ICP)
2456 		gmbus_irq_handler(dev_priv);
2457 }
2458 
2459 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2460 {
2461 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2462 		~SDE_PORTE_HOTPLUG_SPT;
2463 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2464 	u32 pin_mask = 0, long_mask = 0;
2465 
2466 	if (hotplug_trigger) {
2467 		u32 dig_hotplug_reg;
2468 
2469 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2470 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2471 
2472 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2473 				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2474 				   spt_port_hotplug_long_detect);
2475 	}
2476 
2477 	if (hotplug2_trigger) {
2478 		u32 dig_hotplug_reg;
2479 
2480 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2481 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2482 
2483 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2484 				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2485 				   spt_port_hotplug2_long_detect);
2486 	}
2487 
2488 	if (pin_mask)
2489 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2490 
2491 	if (pch_iir & SDE_GMBUS_CPT)
2492 		gmbus_irq_handler(dev_priv);
2493 }
2494 
2495 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2496 				u32 hotplug_trigger,
2497 				const u32 hpd[HPD_NUM_PINS])
2498 {
2499 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2500 
2501 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2502 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2503 
2504 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2505 			   dig_hotplug_reg, hpd,
2506 			   ilk_port_hotplug_long_detect);
2507 
2508 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2509 }
2510 
2511 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2512 				    u32 de_iir)
2513 {
2514 	enum pipe pipe;
2515 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2516 
2517 	if (hotplug_trigger)
2518 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2519 
2520 	if (de_iir & DE_AUX_CHANNEL_A)
2521 		dp_aux_irq_handler(dev_priv);
2522 
2523 	if (de_iir & DE_GSE)
2524 		intel_opregion_asle_intr(dev_priv);
2525 
2526 	if (de_iir & DE_POISON)
2527 		DRM_ERROR("Poison interrupt\n");
2528 
2529 	for_each_pipe(dev_priv, pipe) {
2530 		if (de_iir & DE_PIPE_VBLANK(pipe))
2531 			drm_handle_vblank(&dev_priv->drm, pipe);
2532 
2533 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2534 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2535 
2536 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2537 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2538 	}
2539 
2540 	/* check event from PCH */
2541 	if (de_iir & DE_PCH_EVENT) {
2542 		u32 pch_iir = I915_READ(SDEIIR);
2543 
2544 		if (HAS_PCH_CPT(dev_priv))
2545 			cpt_irq_handler(dev_priv, pch_iir);
2546 		else
2547 			ibx_irq_handler(dev_priv, pch_iir);
2548 
2549 		/* should clear PCH hotplug event before clear CPU irq */
2550 		I915_WRITE(SDEIIR, pch_iir);
2551 	}
2552 
2553 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2554 		ironlake_rps_change_irq_handler(dev_priv);
2555 }
2556 
2557 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2558 				    u32 de_iir)
2559 {
2560 	enum pipe pipe;
2561 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2562 
2563 	if (hotplug_trigger)
2564 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2565 
2566 	if (de_iir & DE_ERR_INT_IVB)
2567 		ivb_err_int_handler(dev_priv);
2568 
2569 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2570 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2571 
2572 		intel_psr_irq_handler(dev_priv, psr_iir);
2573 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2574 	}
2575 
2576 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2577 		dp_aux_irq_handler(dev_priv);
2578 
2579 	if (de_iir & DE_GSE_IVB)
2580 		intel_opregion_asle_intr(dev_priv);
2581 
2582 	for_each_pipe(dev_priv, pipe) {
2583 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2584 			drm_handle_vblank(&dev_priv->drm, pipe);
2585 	}
2586 
2587 	/* check event from PCH */
2588 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2589 		u32 pch_iir = I915_READ(SDEIIR);
2590 
2591 		cpt_irq_handler(dev_priv, pch_iir);
2592 
2593 		/* clear PCH hotplug event before clear CPU irq */
2594 		I915_WRITE(SDEIIR, pch_iir);
2595 	}
2596 }
2597 
2598 /*
2599  * To handle irqs with the minimum potential races with fresh interrupts, we:
2600  * 1 - Disable Master Interrupt Control.
2601  * 2 - Find the source(s) of the interrupt.
2602  * 3 - Clear the Interrupt Identity bits (IIR).
2603  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2604  * 5 - Re-enable Master Interrupt Control.
2605  */
2606 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2607 {
2608 	struct drm_device *dev = arg;
2609 	struct drm_i915_private *dev_priv = to_i915(dev);
2610 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2611 	irqreturn_t ret = IRQ_NONE;
2612 
2613 	if (!intel_irqs_enabled(dev_priv))
2614 		return IRQ_NONE;
2615 
2616 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2617 	disable_rpm_wakeref_asserts(dev_priv);
2618 
2619 	/* disable master interrupt before clearing iir  */
2620 	de_ier = I915_READ(DEIER);
2621 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2622 
2623 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2624 	 * interrupts will will be stored on its back queue, and then we'll be
2625 	 * able to process them after we restore SDEIER (as soon as we restore
2626 	 * it, we'll get an interrupt if SDEIIR still has something to process
2627 	 * due to its back queue). */
2628 	if (!HAS_PCH_NOP(dev_priv)) {
2629 		sde_ier = I915_READ(SDEIER);
2630 		I915_WRITE(SDEIER, 0);
2631 	}
2632 
2633 	/* Find, clear, then process each source of interrupt */
2634 
2635 	gt_iir = I915_READ(GTIIR);
2636 	if (gt_iir) {
2637 		I915_WRITE(GTIIR, gt_iir);
2638 		ret = IRQ_HANDLED;
2639 		if (INTEL_GEN(dev_priv) >= 6)
2640 			snb_gt_irq_handler(dev_priv, gt_iir);
2641 		else
2642 			ilk_gt_irq_handler(dev_priv, gt_iir);
2643 	}
2644 
2645 	de_iir = I915_READ(DEIIR);
2646 	if (de_iir) {
2647 		I915_WRITE(DEIIR, de_iir);
2648 		ret = IRQ_HANDLED;
2649 		if (INTEL_GEN(dev_priv) >= 7)
2650 			ivb_display_irq_handler(dev_priv, de_iir);
2651 		else
2652 			ilk_display_irq_handler(dev_priv, de_iir);
2653 	}
2654 
2655 	if (INTEL_GEN(dev_priv) >= 6) {
2656 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2657 		if (pm_iir) {
2658 			I915_WRITE(GEN6_PMIIR, pm_iir);
2659 			ret = IRQ_HANDLED;
2660 			gen6_rps_irq_handler(dev_priv, pm_iir);
2661 		}
2662 	}
2663 
2664 	I915_WRITE(DEIER, de_ier);
2665 	if (!HAS_PCH_NOP(dev_priv))
2666 		I915_WRITE(SDEIER, sde_ier);
2667 
2668 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2669 	enable_rpm_wakeref_asserts(dev_priv);
2670 
2671 	return ret;
2672 }
2673 
2674 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2675 				u32 hotplug_trigger,
2676 				const u32 hpd[HPD_NUM_PINS])
2677 {
2678 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2679 
2680 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2681 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2682 
2683 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2684 			   dig_hotplug_reg, hpd,
2685 			   bxt_port_hotplug_long_detect);
2686 
2687 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2688 }
2689 
2690 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2691 {
2692 	u32 pin_mask = 0, long_mask = 0;
2693 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2694 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2695 
2696 	if (trigger_tc) {
2697 		u32 dig_hotplug_reg;
2698 
2699 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2700 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2701 
2702 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2703 				   dig_hotplug_reg, hpd_gen11,
2704 				   gen11_port_hotplug_long_detect);
2705 	}
2706 
2707 	if (trigger_tbt) {
2708 		u32 dig_hotplug_reg;
2709 
2710 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2711 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2712 
2713 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2714 				   dig_hotplug_reg, hpd_gen11,
2715 				   gen11_port_hotplug_long_detect);
2716 	}
2717 
2718 	if (pin_mask)
2719 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2720 	else
2721 		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2722 }
2723 
2724 static irqreturn_t
2725 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2726 {
2727 	irqreturn_t ret = IRQ_NONE;
2728 	u32 iir;
2729 	enum pipe pipe;
2730 
2731 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2732 		iir = I915_READ(GEN8_DE_MISC_IIR);
2733 		if (iir) {
2734 			bool found = false;
2735 
2736 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2737 			ret = IRQ_HANDLED;
2738 
2739 			if (iir & GEN8_DE_MISC_GSE) {
2740 				intel_opregion_asle_intr(dev_priv);
2741 				found = true;
2742 			}
2743 
2744 			if (iir & GEN8_DE_EDP_PSR) {
2745 				u32 psr_iir = I915_READ(EDP_PSR_IIR);
2746 
2747 				intel_psr_irq_handler(dev_priv, psr_iir);
2748 				I915_WRITE(EDP_PSR_IIR, psr_iir);
2749 				found = true;
2750 			}
2751 
2752 			if (!found)
2753 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2754 		}
2755 		else
2756 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2757 	}
2758 
2759 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2760 		iir = I915_READ(GEN11_DE_HPD_IIR);
2761 		if (iir) {
2762 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2763 			ret = IRQ_HANDLED;
2764 			gen11_hpd_irq_handler(dev_priv, iir);
2765 		} else {
2766 			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2767 		}
2768 	}
2769 
2770 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2771 		iir = I915_READ(GEN8_DE_PORT_IIR);
2772 		if (iir) {
2773 			u32 tmp_mask;
2774 			bool found = false;
2775 
2776 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2777 			ret = IRQ_HANDLED;
2778 
2779 			tmp_mask = GEN8_AUX_CHANNEL_A;
2780 			if (INTEL_GEN(dev_priv) >= 9)
2781 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2782 					    GEN9_AUX_CHANNEL_C |
2783 					    GEN9_AUX_CHANNEL_D;
2784 
2785 			if (INTEL_GEN(dev_priv) >= 11)
2786 				tmp_mask |= ICL_AUX_CHANNEL_E;
2787 
2788 			if (IS_CNL_WITH_PORT_F(dev_priv) ||
2789 			    INTEL_GEN(dev_priv) >= 11)
2790 				tmp_mask |= CNL_AUX_CHANNEL_F;
2791 
2792 			if (iir & tmp_mask) {
2793 				dp_aux_irq_handler(dev_priv);
2794 				found = true;
2795 			}
2796 
2797 			if (IS_GEN9_LP(dev_priv)) {
2798 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2799 				if (tmp_mask) {
2800 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2801 							    hpd_bxt);
2802 					found = true;
2803 				}
2804 			} else if (IS_BROADWELL(dev_priv)) {
2805 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2806 				if (tmp_mask) {
2807 					ilk_hpd_irq_handler(dev_priv,
2808 							    tmp_mask, hpd_bdw);
2809 					found = true;
2810 				}
2811 			}
2812 
2813 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2814 				gmbus_irq_handler(dev_priv);
2815 				found = true;
2816 			}
2817 
2818 			if (!found)
2819 				DRM_ERROR("Unexpected DE Port interrupt\n");
2820 		}
2821 		else
2822 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2823 	}
2824 
2825 	for_each_pipe(dev_priv, pipe) {
2826 		u32 fault_errors;
2827 
2828 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2829 			continue;
2830 
2831 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2832 		if (!iir) {
2833 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2834 			continue;
2835 		}
2836 
2837 		ret = IRQ_HANDLED;
2838 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2839 
2840 		if (iir & GEN8_PIPE_VBLANK)
2841 			drm_handle_vblank(&dev_priv->drm, pipe);
2842 
2843 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2844 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2845 
2846 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2847 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2848 
2849 		fault_errors = iir;
2850 		if (INTEL_GEN(dev_priv) >= 9)
2851 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2852 		else
2853 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2854 
2855 		if (fault_errors)
2856 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2857 				  pipe_name(pipe),
2858 				  fault_errors);
2859 	}
2860 
2861 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2862 	    master_ctl & GEN8_DE_PCH_IRQ) {
2863 		/*
2864 		 * FIXME(BDW): Assume for now that the new interrupt handling
2865 		 * scheme also closed the SDE interrupt handling race we've seen
2866 		 * on older pch-split platforms. But this needs testing.
2867 		 */
2868 		iir = I915_READ(SDEIIR);
2869 		if (iir) {
2870 			I915_WRITE(SDEIIR, iir);
2871 			ret = IRQ_HANDLED;
2872 
2873 			if (HAS_PCH_ICP(dev_priv))
2874 				icp_irq_handler(dev_priv, iir);
2875 			else if (HAS_PCH_SPT(dev_priv) ||
2876 				 HAS_PCH_KBP(dev_priv) ||
2877 				 HAS_PCH_CNP(dev_priv))
2878 				spt_irq_handler(dev_priv, iir);
2879 			else
2880 				cpt_irq_handler(dev_priv, iir);
2881 		} else {
2882 			/*
2883 			 * Like on previous PCH there seems to be something
2884 			 * fishy going on with forwarding PCH interrupts.
2885 			 */
2886 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2887 		}
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2894 {
2895 	struct drm_i915_private *dev_priv = to_i915(arg);
2896 	u32 master_ctl;
2897 	u32 gt_iir[4];
2898 
2899 	if (!intel_irqs_enabled(dev_priv))
2900 		return IRQ_NONE;
2901 
2902 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2903 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2904 	if (!master_ctl)
2905 		return IRQ_NONE;
2906 
2907 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2908 
2909 	/* Find, clear, then process each source of interrupt */
2910 	gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2911 
2912 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2913 	if (master_ctl & ~GEN8_GT_IRQS) {
2914 		disable_rpm_wakeref_asserts(dev_priv);
2915 		gen8_de_irq_handler(dev_priv, master_ctl);
2916 		enable_rpm_wakeref_asserts(dev_priv);
2917 	}
2918 
2919 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2920 
2921 	gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2922 
2923 	return IRQ_HANDLED;
2924 }
2925 
2926 struct wedge_me {
2927 	struct delayed_work work;
2928 	struct drm_i915_private *i915;
2929 	const char *name;
2930 };
2931 
2932 static void wedge_me(struct work_struct *work)
2933 {
2934 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2935 
2936 	dev_err(w->i915->drm.dev,
2937 		"%s timed out, cancelling all in-flight rendering.\n",
2938 		w->name);
2939 	i915_gem_set_wedged(w->i915);
2940 }
2941 
2942 static void __init_wedge(struct wedge_me *w,
2943 			 struct drm_i915_private *i915,
2944 			 long timeout,
2945 			 const char *name)
2946 {
2947 	w->i915 = i915;
2948 	w->name = name;
2949 
2950 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2951 	schedule_delayed_work(&w->work, timeout);
2952 }
2953 
2954 static void __fini_wedge(struct wedge_me *w)
2955 {
2956 	cancel_delayed_work_sync(&w->work);
2957 	destroy_delayed_work_on_stack(&w->work);
2958 	w->i915 = NULL;
2959 }
2960 
2961 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2962 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2963 	     (W)->i915;							\
2964 	     __fini_wedge((W)))
2965 
2966 static u32
2967 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2968 			 const unsigned int bank, const unsigned int bit)
2969 {
2970 	void __iomem * const regs = i915->regs;
2971 	u32 timeout_ts;
2972 	u32 ident;
2973 
2974 	lockdep_assert_held(&i915->irq_lock);
2975 
2976 	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2977 
2978 	/*
2979 	 * NB: Specs do not specify how long to spin wait,
2980 	 * so we do ~100us as an educated guess.
2981 	 */
2982 	timeout_ts = (local_clock() >> 10) + 100;
2983 	do {
2984 		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2985 	} while (!(ident & GEN11_INTR_DATA_VALID) &&
2986 		 !time_after32(local_clock() >> 10, timeout_ts));
2987 
2988 	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2989 		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2990 			  bank, bit, ident);
2991 		return 0;
2992 	}
2993 
2994 	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2995 		      GEN11_INTR_DATA_VALID);
2996 
2997 	return ident;
2998 }
2999 
3000 static void
3001 gen11_other_irq_handler(struct drm_i915_private * const i915,
3002 			const u8 instance, const u16 iir)
3003 {
3004 	if (instance == OTHER_GTPM_INSTANCE)
3005 		return gen6_rps_irq_handler(i915, iir);
3006 
3007 	WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3008 		  instance, iir);
3009 }
3010 
3011 static void
3012 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3013 			 const u8 class, const u8 instance, const u16 iir)
3014 {
3015 	struct intel_engine_cs *engine;
3016 
3017 	if (instance <= MAX_ENGINE_INSTANCE)
3018 		engine = i915->engine_class[class][instance];
3019 	else
3020 		engine = NULL;
3021 
3022 	if (likely(engine))
3023 		return gen8_cs_irq_handler(engine, iir);
3024 
3025 	WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3026 		  class, instance);
3027 }
3028 
3029 static void
3030 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3031 			  const u32 identity)
3032 {
3033 	const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3034 	const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3035 	const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3036 
3037 	if (unlikely(!intr))
3038 		return;
3039 
3040 	if (class <= COPY_ENGINE_CLASS)
3041 		return gen11_engine_irq_handler(i915, class, instance, intr);
3042 
3043 	if (class == OTHER_CLASS)
3044 		return gen11_other_irq_handler(i915, instance, intr);
3045 
3046 	WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3047 		  class, instance, intr);
3048 }
3049 
3050 static void
3051 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3052 		      const unsigned int bank)
3053 {
3054 	void __iomem * const regs = i915->regs;
3055 	unsigned long intr_dw;
3056 	unsigned int bit;
3057 
3058 	lockdep_assert_held(&i915->irq_lock);
3059 
3060 	intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3061 
3062 	if (unlikely(!intr_dw)) {
3063 		DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3064 		return;
3065 	}
3066 
3067 	for_each_set_bit(bit, &intr_dw, 32) {
3068 		const u32 ident = gen11_gt_engine_identity(i915,
3069 							   bank, bit);
3070 
3071 		gen11_gt_identity_handler(i915, ident);
3072 	}
3073 
3074 	/* Clear must be after shared has been served for engine */
3075 	raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3076 }
3077 
3078 static void
3079 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3080 		     const u32 master_ctl)
3081 {
3082 	unsigned int bank;
3083 
3084 	spin_lock(&i915->irq_lock);
3085 
3086 	for (bank = 0; bank < 2; bank++) {
3087 		if (master_ctl & GEN11_GT_DW_IRQ(bank))
3088 			gen11_gt_bank_handler(i915, bank);
3089 	}
3090 
3091 	spin_unlock(&i915->irq_lock);
3092 }
3093 
3094 static u32
3095 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3096 {
3097 	void __iomem * const regs = dev_priv->regs;
3098 	u32 iir;
3099 
3100 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
3101 		return 0;
3102 
3103 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3104 	if (likely(iir))
3105 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3106 
3107 	return iir;
3108 }
3109 
3110 static void
3111 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3112 {
3113 	if (iir & GEN11_GU_MISC_GSE)
3114 		intel_opregion_asle_intr(dev_priv);
3115 }
3116 
3117 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3118 {
3119 	struct drm_i915_private * const i915 = to_i915(arg);
3120 	void __iomem * const regs = i915->regs;
3121 	u32 master_ctl;
3122 	u32 gu_misc_iir;
3123 
3124 	if (!intel_irqs_enabled(i915))
3125 		return IRQ_NONE;
3126 
3127 	master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3128 	master_ctl &= ~GEN11_MASTER_IRQ;
3129 	if (!master_ctl)
3130 		return IRQ_NONE;
3131 
3132 	/* Disable interrupts. */
3133 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3134 
3135 	/* Find, clear, then process each source of interrupt. */
3136 	gen11_gt_irq_handler(i915, master_ctl);
3137 
3138 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3139 	if (master_ctl & GEN11_DISPLAY_IRQ) {
3140 		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3141 
3142 		disable_rpm_wakeref_asserts(i915);
3143 		/*
3144 		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3145 		 * for the display related bits.
3146 		 */
3147 		gen8_de_irq_handler(i915, disp_ctl);
3148 		enable_rpm_wakeref_asserts(i915);
3149 	}
3150 
3151 	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3152 
3153 	/* Acknowledge and enable interrupts. */
3154 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3155 
3156 	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3157 
3158 	return IRQ_HANDLED;
3159 }
3160 
3161 static void i915_reset_device(struct drm_i915_private *dev_priv,
3162 			      u32 engine_mask,
3163 			      const char *reason)
3164 {
3165 	struct i915_gpu_error *error = &dev_priv->gpu_error;
3166 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3167 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3168 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3169 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3170 	struct wedge_me w;
3171 
3172 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3173 
3174 	DRM_DEBUG_DRIVER("resetting chip\n");
3175 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3176 
3177 	/* Use a watchdog to ensure that our reset completes */
3178 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3179 		intel_prepare_reset(dev_priv);
3180 
3181 		error->reason = reason;
3182 		error->stalled_mask = engine_mask;
3183 
3184 		/* Signal that locked waiters should reset the GPU */
3185 		smp_mb__before_atomic();
3186 		set_bit(I915_RESET_HANDOFF, &error->flags);
3187 		wake_up_all(&error->wait_queue);
3188 
3189 		/* Wait for anyone holding the lock to wakeup, without
3190 		 * blocking indefinitely on struct_mutex.
3191 		 */
3192 		do {
3193 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3194 				i915_reset(dev_priv, engine_mask, reason);
3195 				mutex_unlock(&dev_priv->drm.struct_mutex);
3196 			}
3197 		} while (wait_on_bit_timeout(&error->flags,
3198 					     I915_RESET_HANDOFF,
3199 					     TASK_UNINTERRUPTIBLE,
3200 					     1));
3201 
3202 		error->stalled_mask = 0;
3203 		error->reason = NULL;
3204 
3205 		intel_finish_reset(dev_priv);
3206 	}
3207 
3208 	if (!test_bit(I915_WEDGED, &error->flags))
3209 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3210 }
3211 
3212 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3213 {
3214 	u32 eir;
3215 
3216 	if (!IS_GEN2(dev_priv))
3217 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3218 
3219 	if (INTEL_GEN(dev_priv) < 4)
3220 		I915_WRITE(IPEIR, I915_READ(IPEIR));
3221 	else
3222 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3223 
3224 	I915_WRITE(EIR, I915_READ(EIR));
3225 	eir = I915_READ(EIR);
3226 	if (eir) {
3227 		/*
3228 		 * some errors might have become stuck,
3229 		 * mask them.
3230 		 */
3231 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3232 		I915_WRITE(EMR, I915_READ(EMR) | eir);
3233 		I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3234 	}
3235 }
3236 
3237 /**
3238  * i915_handle_error - handle a gpu error
3239  * @dev_priv: i915 device private
3240  * @engine_mask: mask representing engines that are hung
3241  * @flags: control flags
3242  * @fmt: Error message format string
3243  *
3244  * Do some basic checking of register state at error time and
3245  * dump it to the syslog.  Also call i915_capture_error_state() to make
3246  * sure we get a record and make it available in debugfs.  Fire a uevent
3247  * so userspace knows something bad happened (should trigger collection
3248  * of a ring dump etc.).
3249  */
3250 void i915_handle_error(struct drm_i915_private *dev_priv,
3251 		       u32 engine_mask,
3252 		       unsigned long flags,
3253 		       const char *fmt, ...)
3254 {
3255 	struct intel_engine_cs *engine;
3256 	unsigned int tmp;
3257 	char error_msg[80];
3258 	char *msg = NULL;
3259 
3260 	if (fmt) {
3261 		va_list args;
3262 
3263 		va_start(args, fmt);
3264 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3265 		va_end(args);
3266 
3267 		msg = error_msg;
3268 	}
3269 
3270 	/*
3271 	 * In most cases it's guaranteed that we get here with an RPM
3272 	 * reference held, for example because there is a pending GPU
3273 	 * request that won't finish until the reset is done. This
3274 	 * isn't the case at least when we get here by doing a
3275 	 * simulated reset via debugfs, so get an RPM reference.
3276 	 */
3277 	intel_runtime_pm_get(dev_priv);
3278 
3279 	engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3280 
3281 	if (flags & I915_ERROR_CAPTURE) {
3282 		i915_capture_error_state(dev_priv, engine_mask, msg);
3283 		i915_clear_error_registers(dev_priv);
3284 	}
3285 
3286 	/*
3287 	 * Try engine reset when available. We fall back to full reset if
3288 	 * single reset fails.
3289 	 */
3290 	if (intel_has_reset_engine(dev_priv)) {
3291 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3292 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3293 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3294 					     &dev_priv->gpu_error.flags))
3295 				continue;
3296 
3297 			if (i915_reset_engine(engine, msg) == 0)
3298 				engine_mask &= ~intel_engine_flag(engine);
3299 
3300 			clear_bit(I915_RESET_ENGINE + engine->id,
3301 				  &dev_priv->gpu_error.flags);
3302 			wake_up_bit(&dev_priv->gpu_error.flags,
3303 				    I915_RESET_ENGINE + engine->id);
3304 		}
3305 	}
3306 
3307 	if (!engine_mask)
3308 		goto out;
3309 
3310 	/* Full reset needs the mutex, stop any other user trying to do so. */
3311 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3312 		wait_event(dev_priv->gpu_error.reset_queue,
3313 			   !test_bit(I915_RESET_BACKOFF,
3314 				     &dev_priv->gpu_error.flags));
3315 		goto out;
3316 	}
3317 
3318 	/* Prevent any other reset-engine attempt. */
3319 	for_each_engine(engine, dev_priv, tmp) {
3320 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3321 					&dev_priv->gpu_error.flags))
3322 			wait_on_bit(&dev_priv->gpu_error.flags,
3323 				    I915_RESET_ENGINE + engine->id,
3324 				    TASK_UNINTERRUPTIBLE);
3325 	}
3326 
3327 	i915_reset_device(dev_priv, engine_mask, msg);
3328 
3329 	for_each_engine(engine, dev_priv, tmp) {
3330 		clear_bit(I915_RESET_ENGINE + engine->id,
3331 			  &dev_priv->gpu_error.flags);
3332 	}
3333 
3334 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3335 	wake_up_all(&dev_priv->gpu_error.reset_queue);
3336 
3337 out:
3338 	intel_runtime_pm_put(dev_priv);
3339 }
3340 
3341 /* Called from drm generic code, passed 'crtc' which
3342  * we use as a pipe index
3343  */
3344 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3345 {
3346 	struct drm_i915_private *dev_priv = to_i915(dev);
3347 	unsigned long irqflags;
3348 
3349 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3350 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3351 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3352 
3353 	return 0;
3354 }
3355 
3356 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3357 {
3358 	struct drm_i915_private *dev_priv = to_i915(dev);
3359 	unsigned long irqflags;
3360 
3361 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3362 	i915_enable_pipestat(dev_priv, pipe,
3363 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3364 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3365 
3366 	return 0;
3367 }
3368 
3369 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3370 {
3371 	struct drm_i915_private *dev_priv = to_i915(dev);
3372 	unsigned long irqflags;
3373 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3374 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3375 
3376 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3377 	ilk_enable_display_irq(dev_priv, bit);
3378 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3379 
3380 	/* Even though there is no DMC, frame counter can get stuck when
3381 	 * PSR is active as no frames are generated.
3382 	 */
3383 	if (HAS_PSR(dev_priv))
3384 		drm_vblank_restore(dev, pipe);
3385 
3386 	return 0;
3387 }
3388 
3389 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3390 {
3391 	struct drm_i915_private *dev_priv = to_i915(dev);
3392 	unsigned long irqflags;
3393 
3394 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3395 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3396 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3397 
3398 	/* Even if there is no DMC, frame counter can get stuck when
3399 	 * PSR is active as no frames are generated, so check only for PSR.
3400 	 */
3401 	if (HAS_PSR(dev_priv))
3402 		drm_vblank_restore(dev, pipe);
3403 
3404 	return 0;
3405 }
3406 
3407 /* Called from drm generic code, passed 'crtc' which
3408  * we use as a pipe index
3409  */
3410 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3411 {
3412 	struct drm_i915_private *dev_priv = to_i915(dev);
3413 	unsigned long irqflags;
3414 
3415 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3416 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3417 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3418 }
3419 
3420 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3421 {
3422 	struct drm_i915_private *dev_priv = to_i915(dev);
3423 	unsigned long irqflags;
3424 
3425 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3426 	i915_disable_pipestat(dev_priv, pipe,
3427 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3428 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3429 }
3430 
3431 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3432 {
3433 	struct drm_i915_private *dev_priv = to_i915(dev);
3434 	unsigned long irqflags;
3435 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3436 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3437 
3438 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3439 	ilk_disable_display_irq(dev_priv, bit);
3440 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3441 }
3442 
3443 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3444 {
3445 	struct drm_i915_private *dev_priv = to_i915(dev);
3446 	unsigned long irqflags;
3447 
3448 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3449 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3450 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3451 }
3452 
3453 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3454 {
3455 	if (HAS_PCH_NOP(dev_priv))
3456 		return;
3457 
3458 	GEN3_IRQ_RESET(SDE);
3459 
3460 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3461 		I915_WRITE(SERR_INT, 0xffffffff);
3462 }
3463 
3464 /*
3465  * SDEIER is also touched by the interrupt handler to work around missed PCH
3466  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3467  * instead we unconditionally enable all PCH interrupt sources here, but then
3468  * only unmask them as needed with SDEIMR.
3469  *
3470  * This function needs to be called before interrupts are enabled.
3471  */
3472 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3473 {
3474 	struct drm_i915_private *dev_priv = to_i915(dev);
3475 
3476 	if (HAS_PCH_NOP(dev_priv))
3477 		return;
3478 
3479 	WARN_ON(I915_READ(SDEIER) != 0);
3480 	I915_WRITE(SDEIER, 0xffffffff);
3481 	POSTING_READ(SDEIER);
3482 }
3483 
3484 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3485 {
3486 	GEN3_IRQ_RESET(GT);
3487 	if (INTEL_GEN(dev_priv) >= 6)
3488 		GEN3_IRQ_RESET(GEN6_PM);
3489 }
3490 
3491 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3492 {
3493 	if (IS_CHERRYVIEW(dev_priv))
3494 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3495 	else
3496 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3497 
3498 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3499 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3500 
3501 	i9xx_pipestat_irq_reset(dev_priv);
3502 
3503 	GEN3_IRQ_RESET(VLV_);
3504 	dev_priv->irq_mask = ~0u;
3505 }
3506 
3507 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3508 {
3509 	u32 pipestat_mask;
3510 	u32 enable_mask;
3511 	enum pipe pipe;
3512 
3513 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3514 
3515 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3516 	for_each_pipe(dev_priv, pipe)
3517 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3518 
3519 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3520 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3521 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3522 		I915_LPE_PIPE_A_INTERRUPT |
3523 		I915_LPE_PIPE_B_INTERRUPT;
3524 
3525 	if (IS_CHERRYVIEW(dev_priv))
3526 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3527 			I915_LPE_PIPE_C_INTERRUPT;
3528 
3529 	WARN_ON(dev_priv->irq_mask != ~0u);
3530 
3531 	dev_priv->irq_mask = ~enable_mask;
3532 
3533 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3534 }
3535 
3536 /* drm_dma.h hooks
3537 */
3538 static void ironlake_irq_reset(struct drm_device *dev)
3539 {
3540 	struct drm_i915_private *dev_priv = to_i915(dev);
3541 
3542 	if (IS_GEN5(dev_priv))
3543 		I915_WRITE(HWSTAM, 0xffffffff);
3544 
3545 	GEN3_IRQ_RESET(DE);
3546 	if (IS_GEN7(dev_priv))
3547 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3548 
3549 	if (IS_HASWELL(dev_priv)) {
3550 		I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3551 		I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3552 	}
3553 
3554 	gen5_gt_irq_reset(dev_priv);
3555 
3556 	ibx_irq_reset(dev_priv);
3557 }
3558 
3559 static void valleyview_irq_reset(struct drm_device *dev)
3560 {
3561 	struct drm_i915_private *dev_priv = to_i915(dev);
3562 
3563 	I915_WRITE(VLV_MASTER_IER, 0);
3564 	POSTING_READ(VLV_MASTER_IER);
3565 
3566 	gen5_gt_irq_reset(dev_priv);
3567 
3568 	spin_lock_irq(&dev_priv->irq_lock);
3569 	if (dev_priv->display_irqs_enabled)
3570 		vlv_display_irq_reset(dev_priv);
3571 	spin_unlock_irq(&dev_priv->irq_lock);
3572 }
3573 
3574 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3575 {
3576 	GEN8_IRQ_RESET_NDX(GT, 0);
3577 	GEN8_IRQ_RESET_NDX(GT, 1);
3578 	GEN8_IRQ_RESET_NDX(GT, 2);
3579 	GEN8_IRQ_RESET_NDX(GT, 3);
3580 }
3581 
3582 static void gen8_irq_reset(struct drm_device *dev)
3583 {
3584 	struct drm_i915_private *dev_priv = to_i915(dev);
3585 	int pipe;
3586 
3587 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3588 	POSTING_READ(GEN8_MASTER_IRQ);
3589 
3590 	gen8_gt_irq_reset(dev_priv);
3591 
3592 	I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3593 	I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3594 
3595 	for_each_pipe(dev_priv, pipe)
3596 		if (intel_display_power_is_enabled(dev_priv,
3597 						   POWER_DOMAIN_PIPE(pipe)))
3598 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3599 
3600 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3601 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3602 	GEN3_IRQ_RESET(GEN8_PCU_);
3603 
3604 	if (HAS_PCH_SPLIT(dev_priv))
3605 		ibx_irq_reset(dev_priv);
3606 }
3607 
3608 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3609 {
3610 	/* Disable RCS, BCS, VCS and VECS class engines. */
3611 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3612 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  0);
3613 
3614 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3615 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~0);
3616 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~0);
3617 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~0);
3618 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~0);
3619 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~0);
3620 
3621 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3622 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3623 }
3624 
3625 static void gen11_irq_reset(struct drm_device *dev)
3626 {
3627 	struct drm_i915_private *dev_priv = dev->dev_private;
3628 	int pipe;
3629 
3630 	I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3631 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3632 
3633 	gen11_gt_irq_reset(dev_priv);
3634 
3635 	I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3636 
3637 	for_each_pipe(dev_priv, pipe)
3638 		if (intel_display_power_is_enabled(dev_priv,
3639 						   POWER_DOMAIN_PIPE(pipe)))
3640 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3641 
3642 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3643 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3644 	GEN3_IRQ_RESET(GEN11_DE_HPD_);
3645 	GEN3_IRQ_RESET(GEN11_GU_MISC_);
3646 	GEN3_IRQ_RESET(GEN8_PCU_);
3647 
3648 	if (HAS_PCH_ICP(dev_priv))
3649 		GEN3_IRQ_RESET(SDE);
3650 }
3651 
3652 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3653 				     u8 pipe_mask)
3654 {
3655 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3656 	enum pipe pipe;
3657 
3658 	spin_lock_irq(&dev_priv->irq_lock);
3659 
3660 	if (!intel_irqs_enabled(dev_priv)) {
3661 		spin_unlock_irq(&dev_priv->irq_lock);
3662 		return;
3663 	}
3664 
3665 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3666 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3667 				  dev_priv->de_irq_mask[pipe],
3668 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3669 
3670 	spin_unlock_irq(&dev_priv->irq_lock);
3671 }
3672 
3673 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3674 				     u8 pipe_mask)
3675 {
3676 	enum pipe pipe;
3677 
3678 	spin_lock_irq(&dev_priv->irq_lock);
3679 
3680 	if (!intel_irqs_enabled(dev_priv)) {
3681 		spin_unlock_irq(&dev_priv->irq_lock);
3682 		return;
3683 	}
3684 
3685 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3686 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3687 
3688 	spin_unlock_irq(&dev_priv->irq_lock);
3689 
3690 	/* make sure we're done processing display irqs */
3691 	synchronize_irq(dev_priv->drm.irq);
3692 }
3693 
3694 static void cherryview_irq_reset(struct drm_device *dev)
3695 {
3696 	struct drm_i915_private *dev_priv = to_i915(dev);
3697 
3698 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3699 	POSTING_READ(GEN8_MASTER_IRQ);
3700 
3701 	gen8_gt_irq_reset(dev_priv);
3702 
3703 	GEN3_IRQ_RESET(GEN8_PCU_);
3704 
3705 	spin_lock_irq(&dev_priv->irq_lock);
3706 	if (dev_priv->display_irqs_enabled)
3707 		vlv_display_irq_reset(dev_priv);
3708 	spin_unlock_irq(&dev_priv->irq_lock);
3709 }
3710 
3711 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3712 				  const u32 hpd[HPD_NUM_PINS])
3713 {
3714 	struct intel_encoder *encoder;
3715 	u32 enabled_irqs = 0;
3716 
3717 	for_each_intel_encoder(&dev_priv->drm, encoder)
3718 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3719 			enabled_irqs |= hpd[encoder->hpd_pin];
3720 
3721 	return enabled_irqs;
3722 }
3723 
3724 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3725 {
3726 	u32 hotplug;
3727 
3728 	/*
3729 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3730 	 * duration to 2ms (which is the minimum in the Display Port spec).
3731 	 * The pulse duration bits are reserved on LPT+.
3732 	 */
3733 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3734 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3735 		     PORTC_PULSE_DURATION_MASK |
3736 		     PORTD_PULSE_DURATION_MASK);
3737 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3738 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3739 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3740 	/*
3741 	 * When CPU and PCH are on the same package, port A
3742 	 * HPD must be enabled in both north and south.
3743 	 */
3744 	if (HAS_PCH_LPT_LP(dev_priv))
3745 		hotplug |= PORTA_HOTPLUG_ENABLE;
3746 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3747 }
3748 
3749 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3750 {
3751 	u32 hotplug_irqs, enabled_irqs;
3752 
3753 	if (HAS_PCH_IBX(dev_priv)) {
3754 		hotplug_irqs = SDE_HOTPLUG_MASK;
3755 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3756 	} else {
3757 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3758 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3759 	}
3760 
3761 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3762 
3763 	ibx_hpd_detection_setup(dev_priv);
3764 }
3765 
3766 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3767 {
3768 	u32 hotplug;
3769 
3770 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3771 	hotplug |= ICP_DDIA_HPD_ENABLE |
3772 		   ICP_DDIB_HPD_ENABLE;
3773 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3774 
3775 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3776 	hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3777 		   ICP_TC_HPD_ENABLE(PORT_TC2) |
3778 		   ICP_TC_HPD_ENABLE(PORT_TC3) |
3779 		   ICP_TC_HPD_ENABLE(PORT_TC4);
3780 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3781 }
3782 
3783 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3784 {
3785 	u32 hotplug_irqs, enabled_irqs;
3786 
3787 	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3788 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3789 
3790 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3791 
3792 	icp_hpd_detection_setup(dev_priv);
3793 }
3794 
3795 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3796 {
3797 	u32 hotplug;
3798 
3799 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3800 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3801 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3802 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3803 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3804 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3805 
3806 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3807 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3808 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3809 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3810 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3811 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3812 }
3813 
3814 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3815 {
3816 	u32 hotplug_irqs, enabled_irqs;
3817 	u32 val;
3818 
3819 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3820 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3821 
3822 	val = I915_READ(GEN11_DE_HPD_IMR);
3823 	val &= ~hotplug_irqs;
3824 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3825 	POSTING_READ(GEN11_DE_HPD_IMR);
3826 
3827 	gen11_hpd_detection_setup(dev_priv);
3828 
3829 	if (HAS_PCH_ICP(dev_priv))
3830 		icp_hpd_irq_setup(dev_priv);
3831 }
3832 
3833 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3834 {
3835 	u32 val, hotplug;
3836 
3837 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3838 	if (HAS_PCH_CNP(dev_priv)) {
3839 		val = I915_READ(SOUTH_CHICKEN1);
3840 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3841 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3842 		I915_WRITE(SOUTH_CHICKEN1, val);
3843 	}
3844 
3845 	/* Enable digital hotplug on the PCH */
3846 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3847 	hotplug |= PORTA_HOTPLUG_ENABLE |
3848 		   PORTB_HOTPLUG_ENABLE |
3849 		   PORTC_HOTPLUG_ENABLE |
3850 		   PORTD_HOTPLUG_ENABLE;
3851 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3852 
3853 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3854 	hotplug |= PORTE_HOTPLUG_ENABLE;
3855 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3856 }
3857 
3858 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3859 {
3860 	u32 hotplug_irqs, enabled_irqs;
3861 
3862 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3863 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3864 
3865 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3866 
3867 	spt_hpd_detection_setup(dev_priv);
3868 }
3869 
3870 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3871 {
3872 	u32 hotplug;
3873 
3874 	/*
3875 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3876 	 * duration to 2ms (which is the minimum in the Display Port spec)
3877 	 * The pulse duration bits are reserved on HSW+.
3878 	 */
3879 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3880 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3881 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3882 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3883 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3884 }
3885 
3886 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3887 {
3888 	u32 hotplug_irqs, enabled_irqs;
3889 
3890 	if (INTEL_GEN(dev_priv) >= 8) {
3891 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3892 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3893 
3894 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3895 	} else if (INTEL_GEN(dev_priv) >= 7) {
3896 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3897 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3898 
3899 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3900 	} else {
3901 		hotplug_irqs = DE_DP_A_HOTPLUG;
3902 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3903 
3904 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3905 	}
3906 
3907 	ilk_hpd_detection_setup(dev_priv);
3908 
3909 	ibx_hpd_irq_setup(dev_priv);
3910 }
3911 
3912 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3913 				      u32 enabled_irqs)
3914 {
3915 	u32 hotplug;
3916 
3917 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3918 	hotplug |= PORTA_HOTPLUG_ENABLE |
3919 		   PORTB_HOTPLUG_ENABLE |
3920 		   PORTC_HOTPLUG_ENABLE;
3921 
3922 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3923 		      hotplug, enabled_irqs);
3924 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3925 
3926 	/*
3927 	 * For BXT invert bit has to be set based on AOB design
3928 	 * for HPD detection logic, update it based on VBT fields.
3929 	 */
3930 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3931 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3932 		hotplug |= BXT_DDIA_HPD_INVERT;
3933 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3934 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3935 		hotplug |= BXT_DDIB_HPD_INVERT;
3936 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3937 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3938 		hotplug |= BXT_DDIC_HPD_INVERT;
3939 
3940 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3941 }
3942 
3943 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3944 {
3945 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3946 }
3947 
3948 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3949 {
3950 	u32 hotplug_irqs, enabled_irqs;
3951 
3952 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3953 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3954 
3955 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3956 
3957 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3958 }
3959 
3960 static void ibx_irq_postinstall(struct drm_device *dev)
3961 {
3962 	struct drm_i915_private *dev_priv = to_i915(dev);
3963 	u32 mask;
3964 
3965 	if (HAS_PCH_NOP(dev_priv))
3966 		return;
3967 
3968 	if (HAS_PCH_IBX(dev_priv))
3969 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3970 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3971 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3972 	else
3973 		mask = SDE_GMBUS_CPT;
3974 
3975 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3976 	I915_WRITE(SDEIMR, ~mask);
3977 
3978 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3979 	    HAS_PCH_LPT(dev_priv))
3980 		ibx_hpd_detection_setup(dev_priv);
3981 	else
3982 		spt_hpd_detection_setup(dev_priv);
3983 }
3984 
3985 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3986 {
3987 	struct drm_i915_private *dev_priv = to_i915(dev);
3988 	u32 pm_irqs, gt_irqs;
3989 
3990 	pm_irqs = gt_irqs = 0;
3991 
3992 	dev_priv->gt_irq_mask = ~0;
3993 	if (HAS_L3_DPF(dev_priv)) {
3994 		/* L3 parity interrupt is always unmasked. */
3995 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3996 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3997 	}
3998 
3999 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
4000 	if (IS_GEN5(dev_priv)) {
4001 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
4002 	} else {
4003 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4004 	}
4005 
4006 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4007 
4008 	if (INTEL_GEN(dev_priv) >= 6) {
4009 		/*
4010 		 * RPS interrupts will get enabled/disabled on demand when RPS
4011 		 * itself is enabled/disabled.
4012 		 */
4013 		if (HAS_VEBOX(dev_priv)) {
4014 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4015 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4016 		}
4017 
4018 		dev_priv->pm_imr = 0xffffffff;
4019 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4020 	}
4021 }
4022 
4023 static int ironlake_irq_postinstall(struct drm_device *dev)
4024 {
4025 	struct drm_i915_private *dev_priv = to_i915(dev);
4026 	u32 display_mask, extra_mask;
4027 
4028 	if (INTEL_GEN(dev_priv) >= 7) {
4029 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4030 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4031 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4032 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4033 			      DE_DP_A_HOTPLUG_IVB);
4034 	} else {
4035 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4036 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4037 				DE_PIPEA_CRC_DONE | DE_POISON);
4038 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4039 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4040 			      DE_DP_A_HOTPLUG);
4041 	}
4042 
4043 	if (IS_HASWELL(dev_priv)) {
4044 		gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4045 		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4046 		display_mask |= DE_EDP_PSR_INT_HSW;
4047 	}
4048 
4049 	dev_priv->irq_mask = ~display_mask;
4050 
4051 	ibx_irq_pre_postinstall(dev);
4052 
4053 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4054 
4055 	gen5_gt_irq_postinstall(dev);
4056 
4057 	ilk_hpd_detection_setup(dev_priv);
4058 
4059 	ibx_irq_postinstall(dev);
4060 
4061 	if (IS_IRONLAKE_M(dev_priv)) {
4062 		/* Enable PCU event interrupts
4063 		 *
4064 		 * spinlocking not required here for correctness since interrupt
4065 		 * setup is guaranteed to run in single-threaded context. But we
4066 		 * need it to make the assert_spin_locked happy. */
4067 		spin_lock_irq(&dev_priv->irq_lock);
4068 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4069 		spin_unlock_irq(&dev_priv->irq_lock);
4070 	}
4071 
4072 	return 0;
4073 }
4074 
4075 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4076 {
4077 	lockdep_assert_held(&dev_priv->irq_lock);
4078 
4079 	if (dev_priv->display_irqs_enabled)
4080 		return;
4081 
4082 	dev_priv->display_irqs_enabled = true;
4083 
4084 	if (intel_irqs_enabled(dev_priv)) {
4085 		vlv_display_irq_reset(dev_priv);
4086 		vlv_display_irq_postinstall(dev_priv);
4087 	}
4088 }
4089 
4090 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4091 {
4092 	lockdep_assert_held(&dev_priv->irq_lock);
4093 
4094 	if (!dev_priv->display_irqs_enabled)
4095 		return;
4096 
4097 	dev_priv->display_irqs_enabled = false;
4098 
4099 	if (intel_irqs_enabled(dev_priv))
4100 		vlv_display_irq_reset(dev_priv);
4101 }
4102 
4103 
4104 static int valleyview_irq_postinstall(struct drm_device *dev)
4105 {
4106 	struct drm_i915_private *dev_priv = to_i915(dev);
4107 
4108 	gen5_gt_irq_postinstall(dev);
4109 
4110 	spin_lock_irq(&dev_priv->irq_lock);
4111 	if (dev_priv->display_irqs_enabled)
4112 		vlv_display_irq_postinstall(dev_priv);
4113 	spin_unlock_irq(&dev_priv->irq_lock);
4114 
4115 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4116 	POSTING_READ(VLV_MASTER_IER);
4117 
4118 	return 0;
4119 }
4120 
4121 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4122 {
4123 	/* These are interrupts we'll toggle with the ring mask register */
4124 	uint32_t gt_interrupts[] = {
4125 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4126 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4127 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4128 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4129 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4130 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4131 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4132 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4133 		0,
4134 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4135 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4136 		};
4137 
4138 	if (HAS_L3_DPF(dev_priv))
4139 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4140 
4141 	dev_priv->pm_ier = 0x0;
4142 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4143 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4144 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4145 	/*
4146 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4147 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
4148 	 */
4149 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4150 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4151 }
4152 
4153 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4154 {
4155 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4156 	uint32_t de_pipe_enables;
4157 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4158 	u32 de_port_enables;
4159 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
4160 	enum pipe pipe;
4161 
4162 	if (INTEL_GEN(dev_priv) <= 10)
4163 		de_misc_masked |= GEN8_DE_MISC_GSE;
4164 
4165 	if (INTEL_GEN(dev_priv) >= 9) {
4166 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4167 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4168 				  GEN9_AUX_CHANNEL_D;
4169 		if (IS_GEN9_LP(dev_priv))
4170 			de_port_masked |= BXT_DE_PORT_GMBUS;
4171 	} else {
4172 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4173 	}
4174 
4175 	if (INTEL_GEN(dev_priv) >= 11)
4176 		de_port_masked |= ICL_AUX_CHANNEL_E;
4177 
4178 	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4179 		de_port_masked |= CNL_AUX_CHANNEL_F;
4180 
4181 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4182 					   GEN8_PIPE_FIFO_UNDERRUN;
4183 
4184 	de_port_enables = de_port_masked;
4185 	if (IS_GEN9_LP(dev_priv))
4186 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4187 	else if (IS_BROADWELL(dev_priv))
4188 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4189 
4190 	gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4191 	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4192 
4193 	for_each_pipe(dev_priv, pipe) {
4194 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4195 
4196 		if (intel_display_power_is_enabled(dev_priv,
4197 				POWER_DOMAIN_PIPE(pipe)))
4198 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4199 					  dev_priv->de_irq_mask[pipe],
4200 					  de_pipe_enables);
4201 	}
4202 
4203 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4204 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4205 
4206 	if (INTEL_GEN(dev_priv) >= 11) {
4207 		u32 de_hpd_masked = 0;
4208 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4209 				     GEN11_DE_TBT_HOTPLUG_MASK;
4210 
4211 		GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4212 		gen11_hpd_detection_setup(dev_priv);
4213 	} else if (IS_GEN9_LP(dev_priv)) {
4214 		bxt_hpd_detection_setup(dev_priv);
4215 	} else if (IS_BROADWELL(dev_priv)) {
4216 		ilk_hpd_detection_setup(dev_priv);
4217 	}
4218 }
4219 
4220 static int gen8_irq_postinstall(struct drm_device *dev)
4221 {
4222 	struct drm_i915_private *dev_priv = to_i915(dev);
4223 
4224 	if (HAS_PCH_SPLIT(dev_priv))
4225 		ibx_irq_pre_postinstall(dev);
4226 
4227 	gen8_gt_irq_postinstall(dev_priv);
4228 	gen8_de_irq_postinstall(dev_priv);
4229 
4230 	if (HAS_PCH_SPLIT(dev_priv))
4231 		ibx_irq_postinstall(dev);
4232 
4233 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4234 	POSTING_READ(GEN8_MASTER_IRQ);
4235 
4236 	return 0;
4237 }
4238 
4239 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4240 {
4241 	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4242 
4243 	BUILD_BUG_ON(irqs & 0xffff0000);
4244 
4245 	/* Enable RCS, BCS, VCS and VECS class interrupts. */
4246 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4247 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  irqs << 16 | irqs);
4248 
4249 	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4250 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~(irqs << 16));
4251 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~(irqs << 16));
4252 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~(irqs | irqs << 16));
4253 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~(irqs | irqs << 16));
4254 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~(irqs | irqs << 16));
4255 
4256 	/*
4257 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4258 	 * is enabled/disabled.
4259 	 */
4260 	dev_priv->pm_ier = 0x0;
4261 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4262 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4263 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4264 }
4265 
4266 static void icp_irq_postinstall(struct drm_device *dev)
4267 {
4268 	struct drm_i915_private *dev_priv = to_i915(dev);
4269 	u32 mask = SDE_GMBUS_ICP;
4270 
4271 	WARN_ON(I915_READ(SDEIER) != 0);
4272 	I915_WRITE(SDEIER, 0xffffffff);
4273 	POSTING_READ(SDEIER);
4274 
4275 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4276 	I915_WRITE(SDEIMR, ~mask);
4277 
4278 	icp_hpd_detection_setup(dev_priv);
4279 }
4280 
4281 static int gen11_irq_postinstall(struct drm_device *dev)
4282 {
4283 	struct drm_i915_private *dev_priv = dev->dev_private;
4284 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4285 
4286 	if (HAS_PCH_ICP(dev_priv))
4287 		icp_irq_postinstall(dev);
4288 
4289 	gen11_gt_irq_postinstall(dev_priv);
4290 	gen8_de_irq_postinstall(dev_priv);
4291 
4292 	GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4293 
4294 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4295 
4296 	I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4297 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
4298 
4299 	return 0;
4300 }
4301 
4302 static int cherryview_irq_postinstall(struct drm_device *dev)
4303 {
4304 	struct drm_i915_private *dev_priv = to_i915(dev);
4305 
4306 	gen8_gt_irq_postinstall(dev_priv);
4307 
4308 	spin_lock_irq(&dev_priv->irq_lock);
4309 	if (dev_priv->display_irqs_enabled)
4310 		vlv_display_irq_postinstall(dev_priv);
4311 	spin_unlock_irq(&dev_priv->irq_lock);
4312 
4313 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4314 	POSTING_READ(GEN8_MASTER_IRQ);
4315 
4316 	return 0;
4317 }
4318 
4319 static void i8xx_irq_reset(struct drm_device *dev)
4320 {
4321 	struct drm_i915_private *dev_priv = to_i915(dev);
4322 
4323 	i9xx_pipestat_irq_reset(dev_priv);
4324 
4325 	I915_WRITE16(HWSTAM, 0xffff);
4326 
4327 	GEN2_IRQ_RESET();
4328 }
4329 
4330 static int i8xx_irq_postinstall(struct drm_device *dev)
4331 {
4332 	struct drm_i915_private *dev_priv = to_i915(dev);
4333 	u16 enable_mask;
4334 
4335 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4336 			    I915_ERROR_MEMORY_REFRESH));
4337 
4338 	/* Unmask the interrupts that we always want on. */
4339 	dev_priv->irq_mask =
4340 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4341 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4342 		  I915_MASTER_ERROR_INTERRUPT);
4343 
4344 	enable_mask =
4345 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4346 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4347 		I915_MASTER_ERROR_INTERRUPT |
4348 		I915_USER_INTERRUPT;
4349 
4350 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4351 
4352 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4353 	 * just to make the assert_spin_locked check happy. */
4354 	spin_lock_irq(&dev_priv->irq_lock);
4355 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4356 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4357 	spin_unlock_irq(&dev_priv->irq_lock);
4358 
4359 	return 0;
4360 }
4361 
4362 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4363 			       u16 *eir, u16 *eir_stuck)
4364 {
4365 	u16 emr;
4366 
4367 	*eir = I915_READ16(EIR);
4368 
4369 	if (*eir)
4370 		I915_WRITE16(EIR, *eir);
4371 
4372 	*eir_stuck = I915_READ16(EIR);
4373 	if (*eir_stuck == 0)
4374 		return;
4375 
4376 	/*
4377 	 * Toggle all EMR bits to make sure we get an edge
4378 	 * in the ISR master error bit if we don't clear
4379 	 * all the EIR bits. Otherwise the edge triggered
4380 	 * IIR on i965/g4x wouldn't notice that an interrupt
4381 	 * is still pending. Also some EIR bits can't be
4382 	 * cleared except by handling the underlying error
4383 	 * (or by a GPU reset) so we mask any bit that
4384 	 * remains set.
4385 	 */
4386 	emr = I915_READ16(EMR);
4387 	I915_WRITE16(EMR, 0xffff);
4388 	I915_WRITE16(EMR, emr | *eir_stuck);
4389 }
4390 
4391 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4392 				   u16 eir, u16 eir_stuck)
4393 {
4394 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4395 
4396 	if (eir_stuck)
4397 		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4398 }
4399 
4400 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4401 			       u32 *eir, u32 *eir_stuck)
4402 {
4403 	u32 emr;
4404 
4405 	*eir = I915_READ(EIR);
4406 
4407 	I915_WRITE(EIR, *eir);
4408 
4409 	*eir_stuck = I915_READ(EIR);
4410 	if (*eir_stuck == 0)
4411 		return;
4412 
4413 	/*
4414 	 * Toggle all EMR bits to make sure we get an edge
4415 	 * in the ISR master error bit if we don't clear
4416 	 * all the EIR bits. Otherwise the edge triggered
4417 	 * IIR on i965/g4x wouldn't notice that an interrupt
4418 	 * is still pending. Also some EIR bits can't be
4419 	 * cleared except by handling the underlying error
4420 	 * (or by a GPU reset) so we mask any bit that
4421 	 * remains set.
4422 	 */
4423 	emr = I915_READ(EMR);
4424 	I915_WRITE(EMR, 0xffffffff);
4425 	I915_WRITE(EMR, emr | *eir_stuck);
4426 }
4427 
4428 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4429 				   u32 eir, u32 eir_stuck)
4430 {
4431 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4432 
4433 	if (eir_stuck)
4434 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4435 }
4436 
4437 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4438 {
4439 	struct drm_device *dev = arg;
4440 	struct drm_i915_private *dev_priv = to_i915(dev);
4441 	irqreturn_t ret = IRQ_NONE;
4442 
4443 	if (!intel_irqs_enabled(dev_priv))
4444 		return IRQ_NONE;
4445 
4446 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4447 	disable_rpm_wakeref_asserts(dev_priv);
4448 
4449 	do {
4450 		u32 pipe_stats[I915_MAX_PIPES] = {};
4451 		u16 eir = 0, eir_stuck = 0;
4452 		u16 iir;
4453 
4454 		iir = I915_READ16(IIR);
4455 		if (iir == 0)
4456 			break;
4457 
4458 		ret = IRQ_HANDLED;
4459 
4460 		/* Call regardless, as some status bits might not be
4461 		 * signalled in iir */
4462 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4463 
4464 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4465 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4466 
4467 		I915_WRITE16(IIR, iir);
4468 
4469 		if (iir & I915_USER_INTERRUPT)
4470 			notify_ring(dev_priv->engine[RCS]);
4471 
4472 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4473 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4474 
4475 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4476 	} while (0);
4477 
4478 	enable_rpm_wakeref_asserts(dev_priv);
4479 
4480 	return ret;
4481 }
4482 
4483 static void i915_irq_reset(struct drm_device *dev)
4484 {
4485 	struct drm_i915_private *dev_priv = to_i915(dev);
4486 
4487 	if (I915_HAS_HOTPLUG(dev_priv)) {
4488 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4489 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4490 	}
4491 
4492 	i9xx_pipestat_irq_reset(dev_priv);
4493 
4494 	I915_WRITE(HWSTAM, 0xffffffff);
4495 
4496 	GEN3_IRQ_RESET();
4497 }
4498 
4499 static int i915_irq_postinstall(struct drm_device *dev)
4500 {
4501 	struct drm_i915_private *dev_priv = to_i915(dev);
4502 	u32 enable_mask;
4503 
4504 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4505 			  I915_ERROR_MEMORY_REFRESH));
4506 
4507 	/* Unmask the interrupts that we always want on. */
4508 	dev_priv->irq_mask =
4509 		~(I915_ASLE_INTERRUPT |
4510 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4511 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4512 		  I915_MASTER_ERROR_INTERRUPT);
4513 
4514 	enable_mask =
4515 		I915_ASLE_INTERRUPT |
4516 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4517 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4518 		I915_MASTER_ERROR_INTERRUPT |
4519 		I915_USER_INTERRUPT;
4520 
4521 	if (I915_HAS_HOTPLUG(dev_priv)) {
4522 		/* Enable in IER... */
4523 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4524 		/* and unmask in IMR */
4525 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4526 	}
4527 
4528 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4529 
4530 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4531 	 * just to make the assert_spin_locked check happy. */
4532 	spin_lock_irq(&dev_priv->irq_lock);
4533 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4534 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4535 	spin_unlock_irq(&dev_priv->irq_lock);
4536 
4537 	i915_enable_asle_pipestat(dev_priv);
4538 
4539 	return 0;
4540 }
4541 
4542 static irqreturn_t i915_irq_handler(int irq, void *arg)
4543 {
4544 	struct drm_device *dev = arg;
4545 	struct drm_i915_private *dev_priv = to_i915(dev);
4546 	irqreturn_t ret = IRQ_NONE;
4547 
4548 	if (!intel_irqs_enabled(dev_priv))
4549 		return IRQ_NONE;
4550 
4551 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4552 	disable_rpm_wakeref_asserts(dev_priv);
4553 
4554 	do {
4555 		u32 pipe_stats[I915_MAX_PIPES] = {};
4556 		u32 eir = 0, eir_stuck = 0;
4557 		u32 hotplug_status = 0;
4558 		u32 iir;
4559 
4560 		iir = I915_READ(IIR);
4561 		if (iir == 0)
4562 			break;
4563 
4564 		ret = IRQ_HANDLED;
4565 
4566 		if (I915_HAS_HOTPLUG(dev_priv) &&
4567 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4568 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4569 
4570 		/* Call regardless, as some status bits might not be
4571 		 * signalled in iir */
4572 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4573 
4574 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4575 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4576 
4577 		I915_WRITE(IIR, iir);
4578 
4579 		if (iir & I915_USER_INTERRUPT)
4580 			notify_ring(dev_priv->engine[RCS]);
4581 
4582 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4583 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4584 
4585 		if (hotplug_status)
4586 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4587 
4588 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4589 	} while (0);
4590 
4591 	enable_rpm_wakeref_asserts(dev_priv);
4592 
4593 	return ret;
4594 }
4595 
4596 static void i965_irq_reset(struct drm_device *dev)
4597 {
4598 	struct drm_i915_private *dev_priv = to_i915(dev);
4599 
4600 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4601 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4602 
4603 	i9xx_pipestat_irq_reset(dev_priv);
4604 
4605 	I915_WRITE(HWSTAM, 0xffffffff);
4606 
4607 	GEN3_IRQ_RESET();
4608 }
4609 
4610 static int i965_irq_postinstall(struct drm_device *dev)
4611 {
4612 	struct drm_i915_private *dev_priv = to_i915(dev);
4613 	u32 enable_mask;
4614 	u32 error_mask;
4615 
4616 	/*
4617 	 * Enable some error detection, note the instruction error mask
4618 	 * bit is reserved, so we leave it masked.
4619 	 */
4620 	if (IS_G4X(dev_priv)) {
4621 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4622 			       GM45_ERROR_MEM_PRIV |
4623 			       GM45_ERROR_CP_PRIV |
4624 			       I915_ERROR_MEMORY_REFRESH);
4625 	} else {
4626 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4627 			       I915_ERROR_MEMORY_REFRESH);
4628 	}
4629 	I915_WRITE(EMR, error_mask);
4630 
4631 	/* Unmask the interrupts that we always want on. */
4632 	dev_priv->irq_mask =
4633 		~(I915_ASLE_INTERRUPT |
4634 		  I915_DISPLAY_PORT_INTERRUPT |
4635 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4636 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4637 		  I915_MASTER_ERROR_INTERRUPT);
4638 
4639 	enable_mask =
4640 		I915_ASLE_INTERRUPT |
4641 		I915_DISPLAY_PORT_INTERRUPT |
4642 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4643 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4644 		I915_MASTER_ERROR_INTERRUPT |
4645 		I915_USER_INTERRUPT;
4646 
4647 	if (IS_G4X(dev_priv))
4648 		enable_mask |= I915_BSD_USER_INTERRUPT;
4649 
4650 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4651 
4652 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4653 	 * just to make the assert_spin_locked check happy. */
4654 	spin_lock_irq(&dev_priv->irq_lock);
4655 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4656 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4657 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4658 	spin_unlock_irq(&dev_priv->irq_lock);
4659 
4660 	i915_enable_asle_pipestat(dev_priv);
4661 
4662 	return 0;
4663 }
4664 
4665 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4666 {
4667 	u32 hotplug_en;
4668 
4669 	lockdep_assert_held(&dev_priv->irq_lock);
4670 
4671 	/* Note HDMI and DP share hotplug bits */
4672 	/* enable bits are the same for all generations */
4673 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4674 	/* Programming the CRT detection parameters tends
4675 	   to generate a spurious hotplug event about three
4676 	   seconds later.  So just do it once.
4677 	*/
4678 	if (IS_G4X(dev_priv))
4679 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4680 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4681 
4682 	/* Ignore TV since it's buggy */
4683 	i915_hotplug_interrupt_update_locked(dev_priv,
4684 					     HOTPLUG_INT_EN_MASK |
4685 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4686 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4687 					     hotplug_en);
4688 }
4689 
4690 static irqreturn_t i965_irq_handler(int irq, void *arg)
4691 {
4692 	struct drm_device *dev = arg;
4693 	struct drm_i915_private *dev_priv = to_i915(dev);
4694 	irqreturn_t ret = IRQ_NONE;
4695 
4696 	if (!intel_irqs_enabled(dev_priv))
4697 		return IRQ_NONE;
4698 
4699 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4700 	disable_rpm_wakeref_asserts(dev_priv);
4701 
4702 	do {
4703 		u32 pipe_stats[I915_MAX_PIPES] = {};
4704 		u32 eir = 0, eir_stuck = 0;
4705 		u32 hotplug_status = 0;
4706 		u32 iir;
4707 
4708 		iir = I915_READ(IIR);
4709 		if (iir == 0)
4710 			break;
4711 
4712 		ret = IRQ_HANDLED;
4713 
4714 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4715 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4716 
4717 		/* Call regardless, as some status bits might not be
4718 		 * signalled in iir */
4719 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4720 
4721 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4722 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4723 
4724 		I915_WRITE(IIR, iir);
4725 
4726 		if (iir & I915_USER_INTERRUPT)
4727 			notify_ring(dev_priv->engine[RCS]);
4728 
4729 		if (iir & I915_BSD_USER_INTERRUPT)
4730 			notify_ring(dev_priv->engine[VCS]);
4731 
4732 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4733 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4734 
4735 		if (hotplug_status)
4736 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4737 
4738 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4739 	} while (0);
4740 
4741 	enable_rpm_wakeref_asserts(dev_priv);
4742 
4743 	return ret;
4744 }
4745 
4746 /**
4747  * intel_irq_init - initializes irq support
4748  * @dev_priv: i915 device instance
4749  *
4750  * This function initializes all the irq support including work items, timers
4751  * and all the vtables. It does not setup the interrupt itself though.
4752  */
4753 void intel_irq_init(struct drm_i915_private *dev_priv)
4754 {
4755 	struct drm_device *dev = &dev_priv->drm;
4756 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4757 	int i;
4758 
4759 	intel_hpd_init_work(dev_priv);
4760 
4761 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4762 
4763 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4764 	for (i = 0; i < MAX_L3_SLICES; ++i)
4765 		dev_priv->l3_parity.remap_info[i] = NULL;
4766 
4767 	if (HAS_GUC_SCHED(dev_priv))
4768 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4769 
4770 	/* Let's track the enabled rps events */
4771 	if (IS_VALLEYVIEW(dev_priv))
4772 		/* WaGsvRC0ResidencyMethod:vlv */
4773 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4774 	else
4775 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4776 
4777 	rps->pm_intrmsk_mbz = 0;
4778 
4779 	/*
4780 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4781 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4782 	 *
4783 	 * TODO: verify if this can be reproduced on VLV,CHV.
4784 	 */
4785 	if (INTEL_GEN(dev_priv) <= 7)
4786 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4787 
4788 	if (INTEL_GEN(dev_priv) >= 8)
4789 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4790 
4791 	if (IS_GEN2(dev_priv)) {
4792 		/* Gen2 doesn't have a hardware frame counter */
4793 		dev->max_vblank_count = 0;
4794 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4795 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4796 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4797 	} else {
4798 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4799 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4800 	}
4801 
4802 	/*
4803 	 * Opt out of the vblank disable timer on everything except gen2.
4804 	 * Gen2 doesn't have a hardware frame counter and so depends on
4805 	 * vblank interrupts to produce sane vblank seuquence numbers.
4806 	 */
4807 	if (!IS_GEN2(dev_priv))
4808 		dev->vblank_disable_immediate = true;
4809 
4810 	/* Most platforms treat the display irq block as an always-on
4811 	 * power domain. vlv/chv can disable it at runtime and need
4812 	 * special care to avoid writing any of the display block registers
4813 	 * outside of the power domain. We defer setting up the display irqs
4814 	 * in this case to the runtime pm.
4815 	 */
4816 	dev_priv->display_irqs_enabled = true;
4817 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4818 		dev_priv->display_irqs_enabled = false;
4819 
4820 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4821 
4822 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4823 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4824 
4825 	if (IS_CHERRYVIEW(dev_priv)) {
4826 		dev->driver->irq_handler = cherryview_irq_handler;
4827 		dev->driver->irq_preinstall = cherryview_irq_reset;
4828 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4829 		dev->driver->irq_uninstall = cherryview_irq_reset;
4830 		dev->driver->enable_vblank = i965_enable_vblank;
4831 		dev->driver->disable_vblank = i965_disable_vblank;
4832 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4833 	} else if (IS_VALLEYVIEW(dev_priv)) {
4834 		dev->driver->irq_handler = valleyview_irq_handler;
4835 		dev->driver->irq_preinstall = valleyview_irq_reset;
4836 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4837 		dev->driver->irq_uninstall = valleyview_irq_reset;
4838 		dev->driver->enable_vblank = i965_enable_vblank;
4839 		dev->driver->disable_vblank = i965_disable_vblank;
4840 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4841 	} else if (INTEL_GEN(dev_priv) >= 11) {
4842 		dev->driver->irq_handler = gen11_irq_handler;
4843 		dev->driver->irq_preinstall = gen11_irq_reset;
4844 		dev->driver->irq_postinstall = gen11_irq_postinstall;
4845 		dev->driver->irq_uninstall = gen11_irq_reset;
4846 		dev->driver->enable_vblank = gen8_enable_vblank;
4847 		dev->driver->disable_vblank = gen8_disable_vblank;
4848 		dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4849 	} else if (INTEL_GEN(dev_priv) >= 8) {
4850 		dev->driver->irq_handler = gen8_irq_handler;
4851 		dev->driver->irq_preinstall = gen8_irq_reset;
4852 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4853 		dev->driver->irq_uninstall = gen8_irq_reset;
4854 		dev->driver->enable_vblank = gen8_enable_vblank;
4855 		dev->driver->disable_vblank = gen8_disable_vblank;
4856 		if (IS_GEN9_LP(dev_priv))
4857 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4858 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4859 			 HAS_PCH_CNP(dev_priv))
4860 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4861 		else
4862 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4863 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4864 		dev->driver->irq_handler = ironlake_irq_handler;
4865 		dev->driver->irq_preinstall = ironlake_irq_reset;
4866 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4867 		dev->driver->irq_uninstall = ironlake_irq_reset;
4868 		dev->driver->enable_vblank = ironlake_enable_vblank;
4869 		dev->driver->disable_vblank = ironlake_disable_vblank;
4870 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4871 	} else {
4872 		if (IS_GEN2(dev_priv)) {
4873 			dev->driver->irq_preinstall = i8xx_irq_reset;
4874 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4875 			dev->driver->irq_handler = i8xx_irq_handler;
4876 			dev->driver->irq_uninstall = i8xx_irq_reset;
4877 			dev->driver->enable_vblank = i8xx_enable_vblank;
4878 			dev->driver->disable_vblank = i8xx_disable_vblank;
4879 		} else if (IS_GEN3(dev_priv)) {
4880 			dev->driver->irq_preinstall = i915_irq_reset;
4881 			dev->driver->irq_postinstall = i915_irq_postinstall;
4882 			dev->driver->irq_uninstall = i915_irq_reset;
4883 			dev->driver->irq_handler = i915_irq_handler;
4884 			dev->driver->enable_vblank = i8xx_enable_vblank;
4885 			dev->driver->disable_vblank = i8xx_disable_vblank;
4886 		} else {
4887 			dev->driver->irq_preinstall = i965_irq_reset;
4888 			dev->driver->irq_postinstall = i965_irq_postinstall;
4889 			dev->driver->irq_uninstall = i965_irq_reset;
4890 			dev->driver->irq_handler = i965_irq_handler;
4891 			dev->driver->enable_vblank = i965_enable_vblank;
4892 			dev->driver->disable_vblank = i965_disable_vblank;
4893 		}
4894 		if (I915_HAS_HOTPLUG(dev_priv))
4895 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4896 	}
4897 }
4898 
4899 /**
4900  * intel_irq_fini - deinitializes IRQ support
4901  * @i915: i915 device instance
4902  *
4903  * This function deinitializes all the IRQ support.
4904  */
4905 void intel_irq_fini(struct drm_i915_private *i915)
4906 {
4907 	int i;
4908 
4909 	for (i = 0; i < MAX_L3_SLICES; ++i)
4910 		kfree(i915->l3_parity.remap_info[i]);
4911 }
4912 
4913 /**
4914  * intel_irq_install - enables the hardware interrupt
4915  * @dev_priv: i915 device instance
4916  *
4917  * This function enables the hardware interrupt handling, but leaves the hotplug
4918  * handling still disabled. It is called after intel_irq_init().
4919  *
4920  * In the driver load and resume code we need working interrupts in a few places
4921  * but don't want to deal with the hassle of concurrent probe and hotplug
4922  * workers. Hence the split into this two-stage approach.
4923  */
4924 int intel_irq_install(struct drm_i915_private *dev_priv)
4925 {
4926 	/*
4927 	 * We enable some interrupt sources in our postinstall hooks, so mark
4928 	 * interrupts as enabled _before_ actually enabling them to avoid
4929 	 * special cases in our ordering checks.
4930 	 */
4931 	dev_priv->runtime_pm.irqs_enabled = true;
4932 
4933 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4934 }
4935 
4936 /**
4937  * intel_irq_uninstall - finilizes all irq handling
4938  * @dev_priv: i915 device instance
4939  *
4940  * This stops interrupt and hotplug handling and unregisters and frees all
4941  * resources acquired in the init functions.
4942  */
4943 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4944 {
4945 	drm_irq_uninstall(&dev_priv->drm);
4946 	intel_hpd_cancel_work(dev_priv);
4947 	dev_priv->runtime_pm.irqs_enabled = false;
4948 }
4949 
4950 /**
4951  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4952  * @dev_priv: i915 device instance
4953  *
4954  * This function is used to disable interrupts at runtime, both in the runtime
4955  * pm and the system suspend/resume code.
4956  */
4957 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4958 {
4959 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4960 	dev_priv->runtime_pm.irqs_enabled = false;
4961 	synchronize_irq(dev_priv->drm.irq);
4962 }
4963 
4964 /**
4965  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4966  * @dev_priv: i915 device instance
4967  *
4968  * This function is used to enable interrupts at runtime, both in the runtime
4969  * pm and the system suspend/resume code.
4970  */
4971 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4972 {
4973 	dev_priv->runtime_pm.irqs_enabled = true;
4974 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4975 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4976 }
4977