xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 3c6a73cc)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IMR(which)); \
87 	I915_WRITE(GEN8_##type##_IER(which), 0); \
88 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 	POSTING_READ(GEN8_##type##_IIR(which)); \
90 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 	POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93 
94 #define GEN5_IRQ_RESET(type) do { \
95 	I915_WRITE(type##IMR, 0xffffffff); \
96 	POSTING_READ(type##IMR); \
97 	I915_WRITE(type##IER, 0); \
98 	I915_WRITE(type##IIR, 0xffffffff); \
99 	POSTING_READ(type##IIR); \
100 	I915_WRITE(type##IIR, 0xffffffff); \
101 	POSTING_READ(type##IIR); \
102 } while (0)
103 
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 	u32 val = I915_READ(reg); \
109 	if (val) { \
110 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 		     (reg), val); \
112 		I915_WRITE((reg), 0xffffffff); \
113 		POSTING_READ(reg); \
114 		I915_WRITE((reg), 0xffffffff); \
115 		POSTING_READ(reg); \
116 	} \
117 } while (0)
118 
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 	POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125 
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 	I915_WRITE(type##IMR, (imr_val)); \
129 	I915_WRITE(type##IER, (ier_val)); \
130 	POSTING_READ(type##IER); \
131 } while (0)
132 
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 	assert_spin_locked(&dev_priv->irq_lock);
138 
139 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 		return;
141 
142 	if ((dev_priv->irq_mask & mask) != 0) {
143 		dev_priv->irq_mask &= ~mask;
144 		I915_WRITE(DEIMR, dev_priv->irq_mask);
145 		POSTING_READ(DEIMR);
146 	}
147 }
148 
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 	assert_spin_locked(&dev_priv->irq_lock);
153 
154 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155 		return;
156 
157 	if ((dev_priv->irq_mask & mask) != mask) {
158 		dev_priv->irq_mask |= mask;
159 		I915_WRITE(DEIMR, dev_priv->irq_mask);
160 		POSTING_READ(DEIMR);
161 	}
162 }
163 
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 			      uint32_t interrupt_mask,
172 			      uint32_t enabled_irq_mask)
173 {
174 	assert_spin_locked(&dev_priv->irq_lock);
175 
176 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 		return;
178 
179 	dev_priv->gt_irq_mask &= ~interrupt_mask;
180 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 	POSTING_READ(GTIMR);
183 }
184 
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189 
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 	ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194 
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 			      uint32_t interrupt_mask,
203 			      uint32_t enabled_irq_mask)
204 {
205 	uint32_t new_val;
206 
207 	assert_spin_locked(&dev_priv->irq_lock);
208 
209 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 		return;
211 
212 	new_val = dev_priv->pm_irq_mask;
213 	new_val &= ~interrupt_mask;
214 	new_val |= (~enabled_irq_mask & interrupt_mask);
215 
216 	if (new_val != dev_priv->pm_irq_mask) {
217 		dev_priv->pm_irq_mask = new_val;
218 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 		POSTING_READ(GEN6_PMIMR);
220 	}
221 }
222 
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, mask);
226 }
227 
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 	snb_update_pm_irq(dev_priv, mask, 0);
231 }
232 
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 	struct drm_i915_private *dev_priv = dev->dev_private;
236 	struct intel_crtc *crtc;
237 	enum pipe pipe;
238 
239 	assert_spin_locked(&dev_priv->irq_lock);
240 
241 	for_each_pipe(dev_priv, pipe) {
242 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243 
244 		if (crtc->cpu_fifo_underrun_disabled)
245 			return false;
246 	}
247 
248 	return true;
249 }
250 
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	uint32_t new_val;
264 
265 	assert_spin_locked(&dev_priv->irq_lock);
266 
267 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 		return;
269 
270 	new_val = dev_priv->pm_irq_mask;
271 	new_val &= ~interrupt_mask;
272 	new_val |= (~enabled_irq_mask & interrupt_mask);
273 
274 	if (new_val != dev_priv->pm_irq_mask) {
275 		dev_priv->pm_irq_mask = new_val;
276 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 		POSTING_READ(GEN8_GT_IMR(2));
278 	}
279 }
280 
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285 
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 	bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290 
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 	struct drm_i915_private *dev_priv = dev->dev_private;
294 	enum pipe pipe;
295 	struct intel_crtc *crtc;
296 
297 	assert_spin_locked(&dev_priv->irq_lock);
298 
299 	for_each_pipe(dev_priv, pipe) {
300 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301 
302 		if (crtc->pch_fifo_underrun_disabled)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 	struct drm_i915_private *dev_priv = dev->dev_private;
312 	struct intel_crtc *crtc;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
316 
317 	for_each_intel_crtc(dev, crtc) {
318 		u32 reg = PIPESTAT(crtc->pipe);
319 		u32 pipestat;
320 
321 		if (crtc->cpu_fifo_underrun_disabled)
322 			continue;
323 
324 		pipestat = I915_READ(reg) & 0xffff0000;
325 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 			continue;
327 
328 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 		POSTING_READ(reg);
330 
331 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 	}
333 
334 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336 
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 					     enum pipe pipe,
339 					     bool enable, bool old)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	u32 reg = PIPESTAT(pipe);
343 	u32 pipestat = I915_READ(reg) & 0xffff0000;
344 
345 	assert_spin_locked(&dev_priv->irq_lock);
346 
347 	if (enable) {
348 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 		POSTING_READ(reg);
350 	} else {
351 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 	}
354 }
355 
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 						 enum pipe pipe, bool enable)
358 {
359 	struct drm_i915_private *dev_priv = dev->dev_private;
360 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 					  DE_PIPEB_FIFO_UNDERRUN;
362 
363 	if (enable)
364 		ironlake_enable_display_irq(dev_priv, bit);
365 	else
366 		ironlake_disable_display_irq(dev_priv, bit);
367 }
368 
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 						  enum pipe pipe,
371 						  bool enable, bool old)
372 {
373 	struct drm_i915_private *dev_priv = dev->dev_private;
374 	if (enable) {
375 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376 
377 		if (!ivb_can_enable_err_int(dev))
378 			return;
379 
380 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 	} else {
382 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383 
384 		if (old &&
385 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 				  pipe_name(pipe));
388 		}
389 	}
390 }
391 
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 						  enum pipe pipe, bool enable)
394 {
395 	struct drm_i915_private *dev_priv = dev->dev_private;
396 
397 	assert_spin_locked(&dev_priv->irq_lock);
398 
399 	if (enable)
400 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 	else
402 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406 
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 					 uint32_t interrupt_mask,
415 					 uint32_t enabled_irq_mask)
416 {
417 	uint32_t sdeimr = I915_READ(SDEIMR);
418 	sdeimr &= ~interrupt_mask;
419 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 		return;
425 
426 	I915_WRITE(SDEIMR, sdeimr);
427 	POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 	ibx_display_interrupt_update((dev_priv), (bits), 0)
433 
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 					    enum transcoder pch_transcoder,
436 					    bool enable)
437 {
438 	struct drm_i915_private *dev_priv = dev->dev_private;
439 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441 
442 	if (enable)
443 		ibx_enable_display_interrupt(dev_priv, bit);
444 	else
445 		ibx_disable_display_interrupt(dev_priv, bit);
446 }
447 
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 					    enum transcoder pch_transcoder,
450 					    bool enable, bool old)
451 {
452 	struct drm_i915_private *dev_priv = dev->dev_private;
453 
454 	if (enable) {
455 		I915_WRITE(SERR_INT,
456 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457 
458 		if (!cpt_can_enable_serr_int(dev))
459 			return;
460 
461 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 	} else {
463 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464 
465 		if (old && I915_READ(SERR_INT) &
466 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 				  transcoder_name(pch_transcoder));
469 		}
470 	}
471 }
472 
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 						    enum pipe pipe, bool enable)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 	bool old;
494 
495 	assert_spin_locked(&dev_priv->irq_lock);
496 
497 	old = !intel_crtc->cpu_fifo_underrun_disabled;
498 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
499 
500 	if (HAS_GMCH_DISPLAY(dev))
501 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 	else if (IS_GEN5(dev) || IS_GEN6(dev))
503 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 	else if (IS_GEN7(dev))
505 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 	else if (IS_GEN8(dev))
507 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508 
509 	return old;
510 }
511 
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 					   enum pipe pipe, bool enable)
514 {
515 	struct drm_i915_private *dev_priv = dev->dev_private;
516 	unsigned long flags;
517 	bool ret;
518 
519 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522 
523 	return ret;
524 }
525 
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 						  enum pipe pipe)
528 {
529 	struct drm_i915_private *dev_priv = dev->dev_private;
530 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532 
533 	return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535 
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 					   enum transcoder pch_transcoder,
552 					   bool enable)
553 {
554 	struct drm_i915_private *dev_priv = dev->dev_private;
555 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 	unsigned long flags;
558 	bool old;
559 
560 	/*
561 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 	 * has only one pch transcoder A that all pipes can use. To avoid racy
563 	 * pch transcoder -> pipe lookups from interrupt code simply store the
564 	 * underrun statistics in crtc A. Since we never expose this anywhere
565 	 * nor use it outside of the fifo underrun code here using the "wrong"
566 	 * crtc on LPT won't cause issues.
567 	 */
568 
569 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
570 
571 	old = !intel_crtc->pch_fifo_underrun_disabled;
572 	intel_crtc->pch_fifo_underrun_disabled = !enable;
573 
574 	if (HAS_PCH_IBX(dev))
575 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 	else
577 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578 
579 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 	return old;
581 }
582 
583 
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 		       u32 enable_mask, u32 status_mask)
587 {
588 	u32 reg = PIPESTAT(pipe);
589 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590 
591 	assert_spin_locked(&dev_priv->irq_lock);
592 
593 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 		      pipe_name(pipe), enable_mask, status_mask))
597 		return;
598 
599 	if ((pipestat & enable_mask) == enable_mask)
600 		return;
601 
602 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603 
604 	/* Enable the interrupt, clear any pending status */
605 	pipestat |= enable_mask | status_mask;
606 	I915_WRITE(reg, pipestat);
607 	POSTING_READ(reg);
608 }
609 
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 		        u32 enable_mask, u32 status_mask)
613 {
614 	u32 reg = PIPESTAT(pipe);
615 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616 
617 	assert_spin_locked(&dev_priv->irq_lock);
618 
619 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 		      pipe_name(pipe), enable_mask, status_mask))
623 		return;
624 
625 	if ((pipestat & enable_mask) == 0)
626 		return;
627 
628 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629 
630 	pipestat &= ~enable_mask;
631 	I915_WRITE(reg, pipestat);
632 	POSTING_READ(reg);
633 }
634 
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 	u32 enable_mask = status_mask << 16;
638 
639 	/*
640 	 * On pipe A we don't support the PSR interrupt yet,
641 	 * on pipe B and C the same bit MBZ.
642 	 */
643 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 		return 0;
645 	/*
646 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 	 * A the same bit is for perf counters which we don't use either.
648 	 */
649 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 		return 0;
651 
652 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659 
660 	return enable_mask;
661 }
662 
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 		     u32 status_mask)
666 {
667 	u32 enable_mask;
668 
669 	if (IS_VALLEYVIEW(dev_priv->dev))
670 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 							   status_mask);
672 	else
673 		enable_mask = status_mask << 16;
674 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676 
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 		      u32 status_mask)
680 {
681 	u32 enable_mask;
682 
683 	if (IS_VALLEYVIEW(dev_priv->dev))
684 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 							   status_mask);
686 	else
687 		enable_mask = status_mask << 16;
688 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690 
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 	struct drm_i915_private *dev_priv = dev->dev_private;
697 	unsigned long irqflags;
698 
699 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 		return;
701 
702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703 
704 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 	if (INTEL_INFO(dev)->gen >= 4)
706 		i915_enable_pipestat(dev_priv, PIPE_A,
707 				     PIPE_LEGACY_BLC_EVENT_STATUS);
708 
709 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711 
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 
726 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 		/* Locking is horribly broken here, but whatever. */
728 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730 
731 		return intel_crtc->active;
732 	} else {
733 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 	}
735 }
736 
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786 
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 	/* Gen2 doesn't have a hardware frame counter */
790 	return 0;
791 }
792 
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	unsigned long high_frame;
800 	unsigned long low_frame;
801 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802 
803 	if (!i915_pipe_enabled(dev, pipe)) {
804 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 				"pipe %c\n", pipe_name(pipe));
806 		return 0;
807 	}
808 
809 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 		struct intel_crtc *intel_crtc =
811 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 		const struct drm_display_mode *mode =
813 			&intel_crtc->config.adjusted_mode;
814 
815 		htotal = mode->crtc_htotal;
816 		hsync_start = mode->crtc_hsync_start;
817 		vbl_start = mode->crtc_vblank_start;
818 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 	} else {
821 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
822 
823 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 	}
830 
831 	/* Convert to pixel count */
832 	vbl_start *= htotal;
833 
834 	/* Start of vblank event occurs at start of hsync */
835 	vbl_start -= htotal - hsync_start;
836 
837 	high_frame = PIPEFRAME(pipe);
838 	low_frame = PIPEFRAMEPIXEL(pipe);
839 
840 	/*
841 	 * High & low register fields aren't synchronized, so make sure
842 	 * we get a low value that's stable across two reads of the high
843 	 * register.
844 	 */
845 	do {
846 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 		low   = I915_READ(low_frame);
848 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 	} while (high1 != high2);
850 
851 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 	pixel = low & PIPE_PIXEL_MASK;
853 	low >>= PIPE_FRAME_LOW_SHIFT;
854 
855 	/*
856 	 * The frame counter increments at beginning of active.
857 	 * Cook up a vblank counter by also checking the pixel
858 	 * counter against vblank start.
859 	 */
860 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862 
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 	struct drm_i915_private *dev_priv = dev->dev_private;
866 	int reg = PIPE_FRMCOUNT_GM45(pipe);
867 
868 	if (!i915_pipe_enabled(dev, pipe)) {
869 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 				 "pipe %c\n", pipe_name(pipe));
871 		return 0;
872 	}
873 
874 	return I915_READ(reg);
875 }
876 
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879 
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 	struct drm_device *dev = crtc->base.dev;
883 	struct drm_i915_private *dev_priv = dev->dev_private;
884 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 	enum pipe pipe = crtc->pipe;
886 	int position, vtotal;
887 
888 	vtotal = mode->crtc_vtotal;
889 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 		vtotal /= 2;
891 
892 	if (IS_GEN2(dev))
893 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 	else
895 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896 
897 	/*
898 	 * See update_scanline_offset() for the details on the
899 	 * scanline_offset adjustment.
900 	 */
901 	return (position + crtc->scanline_offset) % vtotal;
902 }
903 
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 				    unsigned int flags, int *vpos, int *hpos,
906 				    ktime_t *stime, ktime_t *etime)
907 {
908 	struct drm_i915_private *dev_priv = dev->dev_private;
909 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 	int position;
913 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 	bool in_vbl = true;
915 	int ret = 0;
916 	unsigned long irqflags;
917 
918 	if (!intel_crtc->active) {
919 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 				 "pipe %c\n", pipe_name(pipe));
921 		return 0;
922 	}
923 
924 	htotal = mode->crtc_htotal;
925 	hsync_start = mode->crtc_hsync_start;
926 	vtotal = mode->crtc_vtotal;
927 	vbl_start = mode->crtc_vblank_start;
928 	vbl_end = mode->crtc_vblank_end;
929 
930 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 		vbl_end /= 2;
933 		vtotal /= 2;
934 	}
935 
936 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937 
938 	/*
939 	 * Lock uncore.lock, as we will do multiple timing critical raw
940 	 * register reads, potentially with preemption disabled, so the
941 	 * following code must not block on uncore.lock.
942 	 */
943 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944 
945 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946 
947 	/* Get optional system timestamp before query. */
948 	if (stime)
949 		*stime = ktime_get();
950 
951 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 		/* No obvious pixelcount register. Only query vertical
953 		 * scanout position from Display scan line register.
954 		 */
955 		position = __intel_get_crtc_scanline(intel_crtc);
956 	} else {
957 		/* Have access to pixelcount since start of frame.
958 		 * We can split this into vertical and horizontal
959 		 * scanout position.
960 		 */
961 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962 
963 		/* convert to pixel counts */
964 		vbl_start *= htotal;
965 		vbl_end *= htotal;
966 		vtotal *= htotal;
967 
968 		/*
969 		 * In interlaced modes, the pixel counter counts all pixels,
970 		 * so one field will have htotal more pixels. In order to avoid
971 		 * the reported position from jumping backwards when the pixel
972 		 * counter is beyond the length of the shorter field, just
973 		 * clamp the position the length of the shorter field. This
974 		 * matches how the scanline counter based position works since
975 		 * the scanline counter doesn't count the two half lines.
976 		 */
977 		if (position >= vtotal)
978 			position = vtotal - 1;
979 
980 		/*
981 		 * Start of vblank interrupt is triggered at start of hsync,
982 		 * just prior to the first active line of vblank. However we
983 		 * consider lines to start at the leading edge of horizontal
984 		 * active. So, should we get here before we've crossed into
985 		 * the horizontal active of the first line in vblank, we would
986 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 		 * always add htotal-hsync_start to the current pixel position.
988 		 */
989 		position = (position + htotal - hsync_start) % vtotal;
990 	}
991 
992 	/* Get optional system timestamp after query. */
993 	if (etime)
994 		*etime = ktime_get();
995 
996 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997 
998 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999 
1000 	in_vbl = position >= vbl_start && position < vbl_end;
1001 
1002 	/*
1003 	 * While in vblank, position will be negative
1004 	 * counting up towards 0 at vbl_end. And outside
1005 	 * vblank, position will be positive counting
1006 	 * up since vbl_end.
1007 	 */
1008 	if (position >= vbl_start)
1009 		position -= vbl_end;
1010 	else
1011 		position += vtotal - vbl_end;
1012 
1013 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 		*vpos = position;
1015 		*hpos = 0;
1016 	} else {
1017 		*vpos = position / htotal;
1018 		*hpos = position - (*vpos * htotal);
1019 	}
1020 
1021 	/* In vblank? */
1022 	if (in_vbl)
1023 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
1024 
1025 	return ret;
1026 }
1027 
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 	unsigned long irqflags;
1032 	int position;
1033 
1034 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 	position = __intel_get_crtc_scanline(crtc);
1036 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037 
1038 	return position;
1039 }
1040 
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 			      int *max_error,
1043 			      struct timeval *vblank_time,
1044 			      unsigned flags)
1045 {
1046 	struct drm_crtc *crtc;
1047 
1048 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 		DRM_ERROR("Invalid crtc %d\n", pipe);
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* Get drm_crtc to timestamp: */
1054 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 	if (crtc == NULL) {
1056 		DRM_ERROR("Invalid crtc %d\n", pipe);
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (!crtc->enabled) {
1061 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 		return -EBUSY;
1063 	}
1064 
1065 	/* Helper routine in DRM core does all the work: */
1066 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 						     vblank_time, flags,
1068 						     crtc,
1069 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071 
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 				struct drm_connector *connector)
1074 {
1075 	enum drm_connector_status old_status;
1076 
1077 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 	old_status = connector->status;
1079 
1080 	connector->status = connector->funcs->detect(connector, false);
1081 	if (old_status == connector->status)
1082 		return false;
1083 
1084 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 		      connector->base.id,
1086 		      connector->name,
1087 		      drm_get_connector_status_name(old_status),
1088 		      drm_get_connector_status_name(connector->status));
1089 
1090 	return true;
1091 }
1092 
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 	struct drm_i915_private *dev_priv =
1096 		container_of(work, struct drm_i915_private, dig_port_work);
1097 	unsigned long irqflags;
1098 	u32 long_port_mask, short_port_mask;
1099 	struct intel_digital_port *intel_dig_port;
1100 	int i, ret;
1101 	u32 old_bits = 0;
1102 
1103 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 	long_port_mask = dev_priv->long_hpd_port_mask;
1105 	dev_priv->long_hpd_port_mask = 0;
1106 	short_port_mask = dev_priv->short_hpd_port_mask;
1107 	dev_priv->short_hpd_port_mask = 0;
1108 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109 
1110 	for (i = 0; i < I915_MAX_PORTS; i++) {
1111 		bool valid = false;
1112 		bool long_hpd = false;
1113 		intel_dig_port = dev_priv->hpd_irq_port[i];
1114 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 			continue;
1116 
1117 		if (long_port_mask & (1 << i))  {
1118 			valid = true;
1119 			long_hpd = true;
1120 		} else if (short_port_mask & (1 << i))
1121 			valid = true;
1122 
1123 		if (valid) {
1124 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 			if (ret == true) {
1126 				/* if we get true fallback to old school hpd */
1127 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 			}
1129 		}
1130 	}
1131 
1132 	if (old_bits) {
1133 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 		dev_priv->hpd_event_bits |= old_bits;
1135 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 		schedule_work(&dev_priv->hotplug_work);
1137 	}
1138 }
1139 
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144 
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 	struct drm_i915_private *dev_priv =
1148 		container_of(work, struct drm_i915_private, hotplug_work);
1149 	struct drm_device *dev = dev_priv->dev;
1150 	struct drm_mode_config *mode_config = &dev->mode_config;
1151 	struct intel_connector *intel_connector;
1152 	struct intel_encoder *intel_encoder;
1153 	struct drm_connector *connector;
1154 	unsigned long irqflags;
1155 	bool hpd_disabled = false;
1156 	bool changed = false;
1157 	u32 hpd_event_bits;
1158 
1159 	mutex_lock(&mode_config->mutex);
1160 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161 
1162 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163 
1164 	hpd_event_bits = dev_priv->hpd_event_bits;
1165 	dev_priv->hpd_event_bits = 0;
1166 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 		intel_connector = to_intel_connector(connector);
1168 		if (!intel_connector->encoder)
1169 			continue;
1170 		intel_encoder = intel_connector->encoder;
1171 		if (intel_encoder->hpd_pin > HPD_NONE &&
1172 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 				 "switching from hotplug detection to polling\n",
1176 				connector->name);
1177 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 				| DRM_CONNECTOR_POLL_DISCONNECT;
1180 			hpd_disabled = true;
1181 		}
1182 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 				      connector->name, intel_encoder->hpd_pin);
1185 		}
1186 	}
1187 	 /* if there were no outputs to poll, poll was disabled,
1188 	  * therefore make sure it's enabled when disabling HPD on
1189 	  * some connectors */
1190 	if (hpd_disabled) {
1191 		drm_kms_helper_poll_enable(dev);
1192 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 	}
1195 
1196 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197 
1198 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 		intel_connector = to_intel_connector(connector);
1200 		if (!intel_connector->encoder)
1201 			continue;
1202 		intel_encoder = intel_connector->encoder;
1203 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 			if (intel_encoder->hot_plug)
1205 				intel_encoder->hot_plug(intel_encoder);
1206 			if (intel_hpd_irq_event(dev, connector))
1207 				changed = true;
1208 		}
1209 	}
1210 	mutex_unlock(&mode_config->mutex);
1211 
1212 	if (changed)
1213 		drm_kms_helper_hotplug_event(dev);
1214 }
1215 
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 	struct drm_i915_private *dev_priv = dev->dev_private;
1219 	u32 busy_up, busy_down, max_avg, min_avg;
1220 	u8 new_delay;
1221 
1222 	spin_lock(&mchdev_lock);
1223 
1224 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225 
1226 	new_delay = dev_priv->ips.cur_delay;
1227 
1228 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 	max_avg = I915_READ(RCBMAXAVG);
1232 	min_avg = I915_READ(RCBMINAVG);
1233 
1234 	/* Handle RCS change request from hw */
1235 	if (busy_up > max_avg) {
1236 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 			new_delay = dev_priv->ips.cur_delay - 1;
1238 		if (new_delay < dev_priv->ips.max_delay)
1239 			new_delay = dev_priv->ips.max_delay;
1240 	} else if (busy_down < min_avg) {
1241 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 			new_delay = dev_priv->ips.cur_delay + 1;
1243 		if (new_delay > dev_priv->ips.min_delay)
1244 			new_delay = dev_priv->ips.min_delay;
1245 	}
1246 
1247 	if (ironlake_set_drps(dev, new_delay))
1248 		dev_priv->ips.cur_delay = new_delay;
1249 
1250 	spin_unlock(&mchdev_lock);
1251 
1252 	return;
1253 }
1254 
1255 static void notify_ring(struct drm_device *dev,
1256 			struct intel_engine_cs *ring)
1257 {
1258 	if (!intel_ring_initialized(ring))
1259 		return;
1260 
1261 	trace_i915_gem_request_complete(ring);
1262 
1263 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 		intel_notify_mmio_flip(ring);
1265 
1266 	wake_up_all(&ring->irq_queue);
1267 	i915_queue_hangcheck(dev);
1268 }
1269 
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 			    struct intel_rps_ei *rps_ei)
1272 {
1273 	u32 cz_ts, cz_freq_khz;
1274 	u32 render_count, media_count;
1275 	u32 elapsed_render, elapsed_media, elapsed_time;
1276 	u32 residency = 0;
1277 
1278 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280 
1281 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283 
1284 	if (rps_ei->cz_clock == 0) {
1285 		rps_ei->cz_clock = cz_ts;
1286 		rps_ei->render_c0 = render_count;
1287 		rps_ei->media_c0 = media_count;
1288 
1289 		return dev_priv->rps.cur_freq;
1290 	}
1291 
1292 	elapsed_time = cz_ts - rps_ei->cz_clock;
1293 	rps_ei->cz_clock = cz_ts;
1294 
1295 	elapsed_render = render_count - rps_ei->render_c0;
1296 	rps_ei->render_c0 = render_count;
1297 
1298 	elapsed_media = media_count - rps_ei->media_c0;
1299 	rps_ei->media_c0 = media_count;
1300 
1301 	/* Convert all the counters into common unit of milli sec */
1302 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 	elapsed_render /=  cz_freq_khz;
1304 	elapsed_media /= cz_freq_khz;
1305 
1306 	/*
1307 	 * Calculate overall C0 residency percentage
1308 	 * only if elapsed time is non zero
1309 	 */
1310 	if (elapsed_time) {
1311 		residency =
1312 			((max(elapsed_render, elapsed_media) * 100)
1313 				/ elapsed_time);
1314 	}
1315 
1316 	return residency;
1317 }
1318 
1319 /**
1320  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321  * busy-ness calculated from C0 counters of render & media power wells
1322  * @dev_priv: DRM device private
1323  *
1324  */
1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 	u32 residency_C0_up = 0, residency_C0_down = 0;
1328 	int new_delay, adj;
1329 
1330 	dev_priv->rps.ei_interrupt_count++;
1331 
1332 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333 
1334 
1335 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 		return dev_priv->rps.cur_freq;
1339 	}
1340 
1341 
1342 	/*
1343 	 * To down throttle, C0 residency should be less than down threshold
1344 	 * for continous EI intervals. So calculate down EI counters
1345 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 	 */
1347 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348 
1349 		dev_priv->rps.ei_interrupt_count = 0;
1350 
1351 		residency_C0_down = vlv_c0_residency(dev_priv,
1352 						     &dev_priv->rps.down_ei);
1353 	} else {
1354 		residency_C0_up = vlv_c0_residency(dev_priv,
1355 						   &dev_priv->rps.up_ei);
1356 	}
1357 
1358 	new_delay = dev_priv->rps.cur_freq;
1359 
1360 	adj = dev_priv->rps.last_adj;
1361 	/* C0 residency is greater than UP threshold. Increase Frequency */
1362 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 		if (adj > 0)
1364 			adj *= 2;
1365 		else
1366 			adj = 1;
1367 
1368 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 			new_delay = dev_priv->rps.cur_freq + adj;
1370 
1371 		/*
1372 		 * For better performance, jump directly
1373 		 * to RPe if we're below it.
1374 		 */
1375 		if (new_delay < dev_priv->rps.efficient_freq)
1376 			new_delay = dev_priv->rps.efficient_freq;
1377 
1378 	} else if (!dev_priv->rps.ei_interrupt_count &&
1379 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 		if (adj < 0)
1381 			adj *= 2;
1382 		else
1383 			adj = -1;
1384 		/*
1385 		 * This means, C0 residency is less than down threshold over
1386 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 		 */
1388 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 			new_delay = dev_priv->rps.cur_freq + adj;
1390 	}
1391 
1392 	return new_delay;
1393 }
1394 
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 	struct drm_i915_private *dev_priv =
1398 		container_of(work, struct drm_i915_private, rps.work);
1399 	u32 pm_iir;
1400 	int new_delay, adj;
1401 
1402 	spin_lock_irq(&dev_priv->irq_lock);
1403 	pm_iir = dev_priv->rps.pm_iir;
1404 	dev_priv->rps.pm_iir = 0;
1405 	if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 		gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 	else {
1408 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 	}
1411 	spin_unlock_irq(&dev_priv->irq_lock);
1412 
1413 	/* Make sure we didn't queue anything we're not going to process. */
1414 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415 
1416 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 		return;
1418 
1419 	mutex_lock(&dev_priv->rps.hw_lock);
1420 
1421 	adj = dev_priv->rps.last_adj;
1422 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 		if (adj > 0)
1424 			adj *= 2;
1425 		else {
1426 			/* CHV needs even encode values */
1427 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 		}
1429 		new_delay = dev_priv->rps.cur_freq + adj;
1430 
1431 		/*
1432 		 * For better performance, jump directly
1433 		 * to RPe if we're below it.
1434 		 */
1435 		if (new_delay < dev_priv->rps.efficient_freq)
1436 			new_delay = dev_priv->rps.efficient_freq;
1437 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 			new_delay = dev_priv->rps.efficient_freq;
1440 		else
1441 			new_delay = dev_priv->rps.min_freq_softlimit;
1442 		adj = 0;
1443 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 		if (adj < 0)
1447 			adj *= 2;
1448 		else {
1449 			/* CHV needs even encode values */
1450 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 		}
1452 		new_delay = dev_priv->rps.cur_freq + adj;
1453 	} else { /* unknown event */
1454 		new_delay = dev_priv->rps.cur_freq;
1455 	}
1456 
1457 	/* sysfs frequency interfaces may have snuck in while servicing the
1458 	 * interrupt
1459 	 */
1460 	new_delay = clamp_t(int, new_delay,
1461 			    dev_priv->rps.min_freq_softlimit,
1462 			    dev_priv->rps.max_freq_softlimit);
1463 
1464 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465 
1466 	if (IS_VALLEYVIEW(dev_priv->dev))
1467 		valleyview_set_rps(dev_priv->dev, new_delay);
1468 	else
1469 		gen6_set_rps(dev_priv->dev, new_delay);
1470 
1471 	mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473 
1474 
1475 /**
1476  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477  * occurred.
1478  * @work: workqueue struct
1479  *
1480  * Doesn't actually do anything except notify userspace. As a consequence of
1481  * this event, userspace should try to remap the bad rows since statistically
1482  * it is likely the same row is more likely to go bad again.
1483  */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 	struct drm_i915_private *dev_priv =
1487 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 	u32 error_status, row, bank, subbank;
1489 	char *parity_event[6];
1490 	uint32_t misccpctl;
1491 	unsigned long flags;
1492 	uint8_t slice = 0;
1493 
1494 	/* We must turn off DOP level clock gating to access the L3 registers.
1495 	 * In order to prevent a get/put style interface, acquire struct mutex
1496 	 * any time we access those registers.
1497 	 */
1498 	mutex_lock(&dev_priv->dev->struct_mutex);
1499 
1500 	/* If we've screwed up tracking, just let the interrupt fire again */
1501 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 		goto out;
1503 
1504 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 	POSTING_READ(GEN7_MISCCPCTL);
1507 
1508 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 		u32 reg;
1510 
1511 		slice--;
1512 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 			break;
1514 
1515 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516 
1517 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518 
1519 		error_status = I915_READ(reg);
1520 		row = GEN7_PARITY_ERROR_ROW(error_status);
1521 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523 
1524 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 		POSTING_READ(reg);
1526 
1527 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 		parity_event[5] = NULL;
1533 
1534 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 				   KOBJ_CHANGE, parity_event);
1536 
1537 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 			  slice, row, bank, subbank);
1539 
1540 		kfree(parity_event[4]);
1541 		kfree(parity_event[3]);
1542 		kfree(parity_event[2]);
1543 		kfree(parity_event[1]);
1544 	}
1545 
1546 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547 
1548 out:
1549 	WARN_ON(dev_priv->l3_parity.which_slice);
1550 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553 
1554 	mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556 
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 	struct drm_i915_private *dev_priv = dev->dev_private;
1560 
1561 	if (!HAS_L3_DPF(dev))
1562 		return;
1563 
1564 	spin_lock(&dev_priv->irq_lock);
1565 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 	spin_unlock(&dev_priv->irq_lock);
1567 
1568 	iir &= GT_PARITY_ERROR(dev);
1569 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 		dev_priv->l3_parity.which_slice |= 1 << 1;
1571 
1572 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 		dev_priv->l3_parity.which_slice |= 1 << 0;
1574 
1575 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577 
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 			       struct drm_i915_private *dev_priv,
1580 			       u32 gt_iir)
1581 {
1582 	if (gt_iir &
1583 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 		notify_ring(dev, &dev_priv->ring[RCS]);
1585 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 		notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588 
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 			       struct drm_i915_private *dev_priv,
1591 			       u32 gt_iir)
1592 {
1593 
1594 	if (gt_iir &
1595 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 		notify_ring(dev, &dev_priv->ring[RCS]);
1597 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 		notify_ring(dev, &dev_priv->ring[VCS]);
1599 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 		notify_ring(dev, &dev_priv->ring[BCS]);
1601 
1602 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 		      GT_BSD_CS_ERROR_INTERRUPT |
1604 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 				  gt_iir);
1607 	}
1608 
1609 	if (gt_iir & GT_PARITY_ERROR(dev))
1610 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612 
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 		return;
1617 
1618 	spin_lock(&dev_priv->irq_lock);
1619 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 	gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 	spin_unlock(&dev_priv->irq_lock);
1622 
1623 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625 
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 				       struct drm_i915_private *dev_priv,
1628 				       u32 master_ctl)
1629 {
1630 	struct intel_engine_cs *ring;
1631 	u32 rcs, bcs, vcs;
1632 	uint32_t tmp = 0;
1633 	irqreturn_t ret = IRQ_NONE;
1634 
1635 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636 		tmp = I915_READ(GEN8_GT_IIR(0));
1637 		if (tmp) {
1638 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1639 			ret = IRQ_HANDLED;
1640 
1641 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642 			ring = &dev_priv->ring[RCS];
1643 			if (rcs & GT_RENDER_USER_INTERRUPT)
1644 				notify_ring(dev, ring);
1645 			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646 				intel_execlists_handle_ctx_events(ring);
1647 
1648 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649 			ring = &dev_priv->ring[BCS];
1650 			if (bcs & GT_RENDER_USER_INTERRUPT)
1651 				notify_ring(dev, ring);
1652 			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653 				intel_execlists_handle_ctx_events(ring);
1654 		} else
1655 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656 	}
1657 
1658 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659 		tmp = I915_READ(GEN8_GT_IIR(1));
1660 		if (tmp) {
1661 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1662 			ret = IRQ_HANDLED;
1663 
1664 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665 			ring = &dev_priv->ring[VCS];
1666 			if (vcs & GT_RENDER_USER_INTERRUPT)
1667 				notify_ring(dev, ring);
1668 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669 				intel_execlists_handle_ctx_events(ring);
1670 
1671 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672 			ring = &dev_priv->ring[VCS2];
1673 			if (vcs & GT_RENDER_USER_INTERRUPT)
1674 				notify_ring(dev, ring);
1675 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676 				intel_execlists_handle_ctx_events(ring);
1677 		} else
1678 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679 	}
1680 
1681 	if (master_ctl & GEN8_GT_PM_IRQ) {
1682 		tmp = I915_READ(GEN8_GT_IIR(2));
1683 		if (tmp & dev_priv->pm_rps_events) {
1684 			I915_WRITE(GEN8_GT_IIR(2),
1685 				   tmp & dev_priv->pm_rps_events);
1686 			ret = IRQ_HANDLED;
1687 			gen8_rps_irq_handler(dev_priv, tmp);
1688 		} else
1689 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1690 	}
1691 
1692 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1693 		tmp = I915_READ(GEN8_GT_IIR(3));
1694 		if (tmp) {
1695 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1696 			ret = IRQ_HANDLED;
1697 
1698 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699 			ring = &dev_priv->ring[VECS];
1700 			if (vcs & GT_RENDER_USER_INTERRUPT)
1701 				notify_ring(dev, ring);
1702 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703 				intel_execlists_handle_ctx_events(ring);
1704 		} else
1705 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706 	}
1707 
1708 	return ret;
1709 }
1710 
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713 
1714 static int ilk_port_to_hotplug_shift(enum port port)
1715 {
1716 	switch (port) {
1717 	case PORT_A:
1718 	case PORT_E:
1719 	default:
1720 		return -1;
1721 	case PORT_B:
1722 		return 0;
1723 	case PORT_C:
1724 		return 8;
1725 	case PORT_D:
1726 		return 16;
1727 	}
1728 }
1729 
1730 static int g4x_port_to_hotplug_shift(enum port port)
1731 {
1732 	switch (port) {
1733 	case PORT_A:
1734 	case PORT_E:
1735 	default:
1736 		return -1;
1737 	case PORT_B:
1738 		return 17;
1739 	case PORT_C:
1740 		return 19;
1741 	case PORT_D:
1742 		return 21;
1743 	}
1744 }
1745 
1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748 	switch (pin) {
1749 	case HPD_PORT_B:
1750 		return PORT_B;
1751 	case HPD_PORT_C:
1752 		return PORT_C;
1753 	case HPD_PORT_D:
1754 		return PORT_D;
1755 	default:
1756 		return PORT_A; /* no hpd */
1757 	}
1758 }
1759 
1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761 					 u32 hotplug_trigger,
1762 					 u32 dig_hotplug_reg,
1763 					 const u32 *hpd)
1764 {
1765 	struct drm_i915_private *dev_priv = dev->dev_private;
1766 	int i;
1767 	enum port port;
1768 	bool storm_detected = false;
1769 	bool queue_dig = false, queue_hp = false;
1770 	u32 dig_shift;
1771 	u32 dig_port_mask = 0;
1772 
1773 	if (!hotplug_trigger)
1774 		return;
1775 
1776 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777 			 hotplug_trigger, dig_hotplug_reg);
1778 
1779 	spin_lock(&dev_priv->irq_lock);
1780 	for (i = 1; i < HPD_NUM_PINS; i++) {
1781 		if (!(hpd[i] & hotplug_trigger))
1782 			continue;
1783 
1784 		port = get_port_from_pin(i);
1785 		if (port && dev_priv->hpd_irq_port[port]) {
1786 			bool long_hpd;
1787 
1788 			if (IS_G4X(dev)) {
1789 				dig_shift = g4x_port_to_hotplug_shift(port);
1790 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791 			} else {
1792 				dig_shift = ilk_port_to_hotplug_shift(port);
1793 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794 			}
1795 
1796 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797 					 port_name(port),
1798 					 long_hpd ? "long" : "short");
1799 			/* for long HPD pulses we want to have the digital queue happen,
1800 			   but we still want HPD storm detection to function. */
1801 			if (long_hpd) {
1802 				dev_priv->long_hpd_port_mask |= (1 << port);
1803 				dig_port_mask |= hpd[i];
1804 			} else {
1805 				/* for short HPD just trigger the digital queue */
1806 				dev_priv->short_hpd_port_mask |= (1 << port);
1807 				hotplug_trigger &= ~hpd[i];
1808 			}
1809 			queue_dig = true;
1810 		}
1811 	}
1812 
1813 	for (i = 1; i < HPD_NUM_PINS; i++) {
1814 		if (hpd[i] & hotplug_trigger &&
1815 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816 			/*
1817 			 * On GMCH platforms the interrupt mask bits only
1818 			 * prevent irq generation, not the setting of the
1819 			 * hotplug bits itself. So only WARN about unexpected
1820 			 * interrupts on saner platforms.
1821 			 */
1822 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824 				  hotplug_trigger, i, hpd[i]);
1825 
1826 			continue;
1827 		}
1828 
1829 		if (!(hpd[i] & hotplug_trigger) ||
1830 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831 			continue;
1832 
1833 		if (!(dig_port_mask & hpd[i])) {
1834 			dev_priv->hpd_event_bits |= (1 << i);
1835 			queue_hp = true;
1836 		}
1837 
1838 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1840 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1843 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846 			dev_priv->hpd_event_bits &= ~(1 << i);
1847 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848 			storm_detected = true;
1849 		} else {
1850 			dev_priv->hpd_stats[i].hpd_cnt++;
1851 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852 				      dev_priv->hpd_stats[i].hpd_cnt);
1853 		}
1854 	}
1855 
1856 	if (storm_detected)
1857 		dev_priv->display.hpd_irq_setup(dev);
1858 	spin_unlock(&dev_priv->irq_lock);
1859 
1860 	/*
1861 	 * Our hotplug handler can grab modeset locks (by calling down into the
1862 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863 	 * queue for otherwise the flush_work in the pageflip code will
1864 	 * deadlock.
1865 	 */
1866 	if (queue_dig)
1867 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868 	if (queue_hp)
1869 		schedule_work(&dev_priv->hotplug_work);
1870 }
1871 
1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874 	struct drm_i915_private *dev_priv = dev->dev_private;
1875 
1876 	wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878 
1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881 	struct drm_i915_private *dev_priv = dev->dev_private;
1882 
1883 	wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885 
1886 #if defined(CONFIG_DEBUG_FS)
1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888 					 uint32_t crc0, uint32_t crc1,
1889 					 uint32_t crc2, uint32_t crc3,
1890 					 uint32_t crc4)
1891 {
1892 	struct drm_i915_private *dev_priv = dev->dev_private;
1893 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894 	struct intel_pipe_crc_entry *entry;
1895 	int head, tail;
1896 
1897 	spin_lock(&pipe_crc->lock);
1898 
1899 	if (!pipe_crc->entries) {
1900 		spin_unlock(&pipe_crc->lock);
1901 		DRM_ERROR("spurious interrupt\n");
1902 		return;
1903 	}
1904 
1905 	head = pipe_crc->head;
1906 	tail = pipe_crc->tail;
1907 
1908 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909 		spin_unlock(&pipe_crc->lock);
1910 		DRM_ERROR("CRC buffer overflowing\n");
1911 		return;
1912 	}
1913 
1914 	entry = &pipe_crc->entries[head];
1915 
1916 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917 	entry->crc[0] = crc0;
1918 	entry->crc[1] = crc1;
1919 	entry->crc[2] = crc2;
1920 	entry->crc[3] = crc3;
1921 	entry->crc[4] = crc4;
1922 
1923 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924 	pipe_crc->head = head;
1925 
1926 	spin_unlock(&pipe_crc->lock);
1927 
1928 	wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933 			     uint32_t crc0, uint32_t crc1,
1934 			     uint32_t crc2, uint32_t crc3,
1935 			     uint32_t crc4) {}
1936 #endif
1937 
1938 
1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941 	struct drm_i915_private *dev_priv = dev->dev_private;
1942 
1943 	display_pipe_crc_irq_handler(dev, pipe,
1944 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945 				     0, 0, 0, 0);
1946 }
1947 
1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950 	struct drm_i915_private *dev_priv = dev->dev_private;
1951 
1952 	display_pipe_crc_irq_handler(dev, pipe,
1953 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959 
1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962 	struct drm_i915_private *dev_priv = dev->dev_private;
1963 	uint32_t res1, res2;
1964 
1965 	if (INTEL_INFO(dev)->gen >= 3)
1966 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967 	else
1968 		res1 = 0;
1969 
1970 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972 	else
1973 		res2 = 0;
1974 
1975 	display_pipe_crc_irq_handler(dev, pipe,
1976 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1977 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979 				     res1, res2);
1980 }
1981 
1982 /* The RPS events need forcewake, so we add them to a work queue and mask their
1983  * IMR bits until the work is done. Other interrupts can be processed without
1984  * the work queue. */
1985 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1986 {
1987 	if (pm_iir & dev_priv->pm_rps_events) {
1988 		spin_lock(&dev_priv->irq_lock);
1989 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1990 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1991 		spin_unlock(&dev_priv->irq_lock);
1992 
1993 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1994 	}
1995 
1996 	if (HAS_VEBOX(dev_priv->dev)) {
1997 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1998 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1999 
2000 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2001 			i915_handle_error(dev_priv->dev, false,
2002 					  "VEBOX CS error interrupt 0x%08x",
2003 					  pm_iir);
2004 		}
2005 	}
2006 }
2007 
2008 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2009 {
2010 	if (!drm_handle_vblank(dev, pipe))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
2016 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2017 {
2018 	struct drm_i915_private *dev_priv = dev->dev_private;
2019 	u32 pipe_stats[I915_MAX_PIPES] = { };
2020 	int pipe;
2021 
2022 	spin_lock(&dev_priv->irq_lock);
2023 	for_each_pipe(dev_priv, pipe) {
2024 		int reg;
2025 		u32 mask, iir_bit = 0;
2026 
2027 		/*
2028 		 * PIPESTAT bits get signalled even when the interrupt is
2029 		 * disabled with the mask bits, and some of the status bits do
2030 		 * not generate interrupts at all (like the underrun bit). Hence
2031 		 * we need to be careful that we only handle what we want to
2032 		 * handle.
2033 		 */
2034 		mask = 0;
2035 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2036 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
2037 
2038 		switch (pipe) {
2039 		case PIPE_A:
2040 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2041 			break;
2042 		case PIPE_B:
2043 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2044 			break;
2045 		case PIPE_C:
2046 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2047 			break;
2048 		}
2049 		if (iir & iir_bit)
2050 			mask |= dev_priv->pipestat_irq_mask[pipe];
2051 
2052 		if (!mask)
2053 			continue;
2054 
2055 		reg = PIPESTAT(pipe);
2056 		mask |= PIPESTAT_INT_ENABLE_MASK;
2057 		pipe_stats[pipe] = I915_READ(reg) & mask;
2058 
2059 		/*
2060 		 * Clear the PIPE*STAT regs before the IIR
2061 		 */
2062 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2063 					PIPESTAT_INT_STATUS_MASK))
2064 			I915_WRITE(reg, pipe_stats[pipe]);
2065 	}
2066 	spin_unlock(&dev_priv->irq_lock);
2067 
2068 	for_each_pipe(dev_priv, pipe) {
2069 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2070 		    intel_pipe_handle_vblank(dev, pipe))
2071 			intel_check_page_flip(dev, pipe);
2072 
2073 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2074 			intel_prepare_page_flip(dev, pipe);
2075 			intel_finish_page_flip(dev, pipe);
2076 		}
2077 
2078 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2079 			i9xx_pipe_crc_irq_handler(dev, pipe);
2080 
2081 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2082 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2083 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2084 	}
2085 
2086 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2087 		gmbus_irq_handler(dev);
2088 }
2089 
2090 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2091 {
2092 	struct drm_i915_private *dev_priv = dev->dev_private;
2093 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2094 
2095 	if (hotplug_status) {
2096 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2097 		/*
2098 		 * Make sure hotplug status is cleared before we clear IIR, or else we
2099 		 * may miss hotplug events.
2100 		 */
2101 		POSTING_READ(PORT_HOTPLUG_STAT);
2102 
2103 		if (IS_G4X(dev)) {
2104 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2105 
2106 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2107 		} else {
2108 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2109 
2110 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2111 		}
2112 
2113 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2114 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2115 			dp_aux_irq_handler(dev);
2116 	}
2117 }
2118 
2119 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2120 {
2121 	struct drm_device *dev = arg;
2122 	struct drm_i915_private *dev_priv = dev->dev_private;
2123 	u32 iir, gt_iir, pm_iir;
2124 	irqreturn_t ret = IRQ_NONE;
2125 
2126 	while (true) {
2127 		/* Find, clear, then process each source of interrupt */
2128 
2129 		gt_iir = I915_READ(GTIIR);
2130 		if (gt_iir)
2131 			I915_WRITE(GTIIR, gt_iir);
2132 
2133 		pm_iir = I915_READ(GEN6_PMIIR);
2134 		if (pm_iir)
2135 			I915_WRITE(GEN6_PMIIR, pm_iir);
2136 
2137 		iir = I915_READ(VLV_IIR);
2138 		if (iir) {
2139 			/* Consume port before clearing IIR or we'll miss events */
2140 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2141 				i9xx_hpd_irq_handler(dev);
2142 			I915_WRITE(VLV_IIR, iir);
2143 		}
2144 
2145 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2146 			goto out;
2147 
2148 		ret = IRQ_HANDLED;
2149 
2150 		if (gt_iir)
2151 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2152 		if (pm_iir)
2153 			gen6_rps_irq_handler(dev_priv, pm_iir);
2154 		/* Call regardless, as some status bits might not be
2155 		 * signalled in iir */
2156 		valleyview_pipestat_irq_handler(dev, iir);
2157 	}
2158 
2159 out:
2160 	return ret;
2161 }
2162 
2163 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2164 {
2165 	struct drm_device *dev = arg;
2166 	struct drm_i915_private *dev_priv = dev->dev_private;
2167 	u32 master_ctl, iir;
2168 	irqreturn_t ret = IRQ_NONE;
2169 
2170 	for (;;) {
2171 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2172 		iir = I915_READ(VLV_IIR);
2173 
2174 		if (master_ctl == 0 && iir == 0)
2175 			break;
2176 
2177 		ret = IRQ_HANDLED;
2178 
2179 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2180 
2181 		/* Find, clear, then process each source of interrupt */
2182 
2183 		if (iir) {
2184 			/* Consume port before clearing IIR or we'll miss events */
2185 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2186 				i9xx_hpd_irq_handler(dev);
2187 			I915_WRITE(VLV_IIR, iir);
2188 		}
2189 
2190 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2191 
2192 		/* Call regardless, as some status bits might not be
2193 		 * signalled in iir */
2194 		valleyview_pipestat_irq_handler(dev, iir);
2195 
2196 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2197 		POSTING_READ(GEN8_MASTER_IRQ);
2198 	}
2199 
2200 	return ret;
2201 }
2202 
2203 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2204 {
2205 	struct drm_i915_private *dev_priv = dev->dev_private;
2206 	int pipe;
2207 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2208 	u32 dig_hotplug_reg;
2209 
2210 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2211 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2212 
2213 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2214 
2215 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2216 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2217 			       SDE_AUDIO_POWER_SHIFT);
2218 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2219 				 port_name(port));
2220 	}
2221 
2222 	if (pch_iir & SDE_AUX_MASK)
2223 		dp_aux_irq_handler(dev);
2224 
2225 	if (pch_iir & SDE_GMBUS)
2226 		gmbus_irq_handler(dev);
2227 
2228 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2229 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2230 
2231 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2232 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2233 
2234 	if (pch_iir & SDE_POISON)
2235 		DRM_ERROR("PCH poison interrupt\n");
2236 
2237 	if (pch_iir & SDE_FDI_MASK)
2238 		for_each_pipe(dev_priv, pipe)
2239 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2240 					 pipe_name(pipe),
2241 					 I915_READ(FDI_RX_IIR(pipe)));
2242 
2243 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2244 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2245 
2246 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2247 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2248 
2249 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2250 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2251 							  false))
2252 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2253 
2254 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2255 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2256 							  false))
2257 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2258 }
2259 
2260 static void ivb_err_int_handler(struct drm_device *dev)
2261 {
2262 	struct drm_i915_private *dev_priv = dev->dev_private;
2263 	u32 err_int = I915_READ(GEN7_ERR_INT);
2264 	enum pipe pipe;
2265 
2266 	if (err_int & ERR_INT_POISON)
2267 		DRM_ERROR("Poison interrupt\n");
2268 
2269 	for_each_pipe(dev_priv, pipe) {
2270 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2271 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2272 								  false))
2273 				DRM_ERROR("Pipe %c FIFO underrun\n",
2274 					  pipe_name(pipe));
2275 		}
2276 
2277 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2278 			if (IS_IVYBRIDGE(dev))
2279 				ivb_pipe_crc_irq_handler(dev, pipe);
2280 			else
2281 				hsw_pipe_crc_irq_handler(dev, pipe);
2282 		}
2283 	}
2284 
2285 	I915_WRITE(GEN7_ERR_INT, err_int);
2286 }
2287 
2288 static void cpt_serr_int_handler(struct drm_device *dev)
2289 {
2290 	struct drm_i915_private *dev_priv = dev->dev_private;
2291 	u32 serr_int = I915_READ(SERR_INT);
2292 
2293 	if (serr_int & SERR_INT_POISON)
2294 		DRM_ERROR("PCH poison interrupt\n");
2295 
2296 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2297 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2298 							  false))
2299 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2300 
2301 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2302 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2303 							  false))
2304 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2305 
2306 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2307 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2308 							  false))
2309 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2310 
2311 	I915_WRITE(SERR_INT, serr_int);
2312 }
2313 
2314 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2315 {
2316 	struct drm_i915_private *dev_priv = dev->dev_private;
2317 	int pipe;
2318 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2319 	u32 dig_hotplug_reg;
2320 
2321 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2322 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2323 
2324 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2325 
2326 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2327 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2328 			       SDE_AUDIO_POWER_SHIFT_CPT);
2329 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2330 				 port_name(port));
2331 	}
2332 
2333 	if (pch_iir & SDE_AUX_MASK_CPT)
2334 		dp_aux_irq_handler(dev);
2335 
2336 	if (pch_iir & SDE_GMBUS_CPT)
2337 		gmbus_irq_handler(dev);
2338 
2339 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2340 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2341 
2342 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2343 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2344 
2345 	if (pch_iir & SDE_FDI_MASK_CPT)
2346 		for_each_pipe(dev_priv, pipe)
2347 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2348 					 pipe_name(pipe),
2349 					 I915_READ(FDI_RX_IIR(pipe)));
2350 
2351 	if (pch_iir & SDE_ERROR_CPT)
2352 		cpt_serr_int_handler(dev);
2353 }
2354 
2355 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2356 {
2357 	struct drm_i915_private *dev_priv = dev->dev_private;
2358 	enum pipe pipe;
2359 
2360 	if (de_iir & DE_AUX_CHANNEL_A)
2361 		dp_aux_irq_handler(dev);
2362 
2363 	if (de_iir & DE_GSE)
2364 		intel_opregion_asle_intr(dev);
2365 
2366 	if (de_iir & DE_POISON)
2367 		DRM_ERROR("Poison interrupt\n");
2368 
2369 	for_each_pipe(dev_priv, pipe) {
2370 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2371 		    intel_pipe_handle_vblank(dev, pipe))
2372 			intel_check_page_flip(dev, pipe);
2373 
2374 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2375 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2376 				DRM_ERROR("Pipe %c FIFO underrun\n",
2377 					  pipe_name(pipe));
2378 
2379 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2380 			i9xx_pipe_crc_irq_handler(dev, pipe);
2381 
2382 		/* plane/pipes map 1:1 on ilk+ */
2383 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2384 			intel_prepare_page_flip(dev, pipe);
2385 			intel_finish_page_flip_plane(dev, pipe);
2386 		}
2387 	}
2388 
2389 	/* check event from PCH */
2390 	if (de_iir & DE_PCH_EVENT) {
2391 		u32 pch_iir = I915_READ(SDEIIR);
2392 
2393 		if (HAS_PCH_CPT(dev))
2394 			cpt_irq_handler(dev, pch_iir);
2395 		else
2396 			ibx_irq_handler(dev, pch_iir);
2397 
2398 		/* should clear PCH hotplug event before clear CPU irq */
2399 		I915_WRITE(SDEIIR, pch_iir);
2400 	}
2401 
2402 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2403 		ironlake_rps_change_irq_handler(dev);
2404 }
2405 
2406 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2407 {
2408 	struct drm_i915_private *dev_priv = dev->dev_private;
2409 	enum pipe pipe;
2410 
2411 	if (de_iir & DE_ERR_INT_IVB)
2412 		ivb_err_int_handler(dev);
2413 
2414 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2415 		dp_aux_irq_handler(dev);
2416 
2417 	if (de_iir & DE_GSE_IVB)
2418 		intel_opregion_asle_intr(dev);
2419 
2420 	for_each_pipe(dev_priv, pipe) {
2421 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2422 		    intel_pipe_handle_vblank(dev, pipe))
2423 			intel_check_page_flip(dev, pipe);
2424 
2425 		/* plane/pipes map 1:1 on ilk+ */
2426 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2427 			intel_prepare_page_flip(dev, pipe);
2428 			intel_finish_page_flip_plane(dev, pipe);
2429 		}
2430 	}
2431 
2432 	/* check event from PCH */
2433 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2434 		u32 pch_iir = I915_READ(SDEIIR);
2435 
2436 		cpt_irq_handler(dev, pch_iir);
2437 
2438 		/* clear PCH hotplug event before clear CPU irq */
2439 		I915_WRITE(SDEIIR, pch_iir);
2440 	}
2441 }
2442 
2443 /*
2444  * To handle irqs with the minimum potential races with fresh interrupts, we:
2445  * 1 - Disable Master Interrupt Control.
2446  * 2 - Find the source(s) of the interrupt.
2447  * 3 - Clear the Interrupt Identity bits (IIR).
2448  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2449  * 5 - Re-enable Master Interrupt Control.
2450  */
2451 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2452 {
2453 	struct drm_device *dev = arg;
2454 	struct drm_i915_private *dev_priv = dev->dev_private;
2455 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2456 	irqreturn_t ret = IRQ_NONE;
2457 
2458 	/* We get interrupts on unclaimed registers, so check for this before we
2459 	 * do any I915_{READ,WRITE}. */
2460 	intel_uncore_check_errors(dev);
2461 
2462 	/* disable master interrupt before clearing iir  */
2463 	de_ier = I915_READ(DEIER);
2464 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2465 	POSTING_READ(DEIER);
2466 
2467 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2468 	 * interrupts will will be stored on its back queue, and then we'll be
2469 	 * able to process them after we restore SDEIER (as soon as we restore
2470 	 * it, we'll get an interrupt if SDEIIR still has something to process
2471 	 * due to its back queue). */
2472 	if (!HAS_PCH_NOP(dev)) {
2473 		sde_ier = I915_READ(SDEIER);
2474 		I915_WRITE(SDEIER, 0);
2475 		POSTING_READ(SDEIER);
2476 	}
2477 
2478 	/* Find, clear, then process each source of interrupt */
2479 
2480 	gt_iir = I915_READ(GTIIR);
2481 	if (gt_iir) {
2482 		I915_WRITE(GTIIR, gt_iir);
2483 		ret = IRQ_HANDLED;
2484 		if (INTEL_INFO(dev)->gen >= 6)
2485 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2486 		else
2487 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2488 	}
2489 
2490 	de_iir = I915_READ(DEIIR);
2491 	if (de_iir) {
2492 		I915_WRITE(DEIIR, de_iir);
2493 		ret = IRQ_HANDLED;
2494 		if (INTEL_INFO(dev)->gen >= 7)
2495 			ivb_display_irq_handler(dev, de_iir);
2496 		else
2497 			ilk_display_irq_handler(dev, de_iir);
2498 	}
2499 
2500 	if (INTEL_INFO(dev)->gen >= 6) {
2501 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2502 		if (pm_iir) {
2503 			I915_WRITE(GEN6_PMIIR, pm_iir);
2504 			ret = IRQ_HANDLED;
2505 			gen6_rps_irq_handler(dev_priv, pm_iir);
2506 		}
2507 	}
2508 
2509 	I915_WRITE(DEIER, de_ier);
2510 	POSTING_READ(DEIER);
2511 	if (!HAS_PCH_NOP(dev)) {
2512 		I915_WRITE(SDEIER, sde_ier);
2513 		POSTING_READ(SDEIER);
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2520 {
2521 	struct drm_device *dev = arg;
2522 	struct drm_i915_private *dev_priv = dev->dev_private;
2523 	u32 master_ctl;
2524 	irqreturn_t ret = IRQ_NONE;
2525 	uint32_t tmp = 0;
2526 	enum pipe pipe;
2527 
2528 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2529 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2530 	if (!master_ctl)
2531 		return IRQ_NONE;
2532 
2533 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2534 	POSTING_READ(GEN8_MASTER_IRQ);
2535 
2536 	/* Find, clear, then process each source of interrupt */
2537 
2538 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2539 
2540 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2541 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2542 		if (tmp) {
2543 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2544 			ret = IRQ_HANDLED;
2545 			if (tmp & GEN8_DE_MISC_GSE)
2546 				intel_opregion_asle_intr(dev);
2547 			else
2548 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2549 		}
2550 		else
2551 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2552 	}
2553 
2554 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2555 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2556 		if (tmp) {
2557 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2558 			ret = IRQ_HANDLED;
2559 			if (tmp & GEN8_AUX_CHANNEL_A)
2560 				dp_aux_irq_handler(dev);
2561 			else
2562 				DRM_ERROR("Unexpected DE Port interrupt\n");
2563 		}
2564 		else
2565 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2566 	}
2567 
2568 	for_each_pipe(dev_priv, pipe) {
2569 		uint32_t pipe_iir;
2570 
2571 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2572 			continue;
2573 
2574 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2575 		if (pipe_iir) {
2576 			ret = IRQ_HANDLED;
2577 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2578 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2579 			    intel_pipe_handle_vblank(dev, pipe))
2580 				intel_check_page_flip(dev, pipe);
2581 
2582 			if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2583 				intel_prepare_page_flip(dev, pipe);
2584 				intel_finish_page_flip_plane(dev, pipe);
2585 			}
2586 
2587 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2588 				hsw_pipe_crc_irq_handler(dev, pipe);
2589 
2590 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2591 				if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2592 									  false))
2593 					DRM_ERROR("Pipe %c FIFO underrun\n",
2594 						  pipe_name(pipe));
2595 			}
2596 
2597 			if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2598 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2599 					  pipe_name(pipe),
2600 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2601 			}
2602 		} else
2603 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2604 	}
2605 
2606 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2607 		/*
2608 		 * FIXME(BDW): Assume for now that the new interrupt handling
2609 		 * scheme also closed the SDE interrupt handling race we've seen
2610 		 * on older pch-split platforms. But this needs testing.
2611 		 */
2612 		u32 pch_iir = I915_READ(SDEIIR);
2613 		if (pch_iir) {
2614 			I915_WRITE(SDEIIR, pch_iir);
2615 			ret = IRQ_HANDLED;
2616 			cpt_irq_handler(dev, pch_iir);
2617 		} else
2618 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2619 
2620 	}
2621 
2622 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2623 	POSTING_READ(GEN8_MASTER_IRQ);
2624 
2625 	return ret;
2626 }
2627 
2628 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2629 			       bool reset_completed)
2630 {
2631 	struct intel_engine_cs *ring;
2632 	int i;
2633 
2634 	/*
2635 	 * Notify all waiters for GPU completion events that reset state has
2636 	 * been changed, and that they need to restart their wait after
2637 	 * checking for potential errors (and bail out to drop locks if there is
2638 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2639 	 */
2640 
2641 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2642 	for_each_ring(ring, dev_priv, i)
2643 		wake_up_all(&ring->irq_queue);
2644 
2645 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2646 	wake_up_all(&dev_priv->pending_flip_queue);
2647 
2648 	/*
2649 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2650 	 * reset state is cleared.
2651 	 */
2652 	if (reset_completed)
2653 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2654 }
2655 
2656 /**
2657  * i915_error_work_func - do process context error handling work
2658  * @work: work struct
2659  *
2660  * Fire an error uevent so userspace can see that a hang or error
2661  * was detected.
2662  */
2663 static void i915_error_work_func(struct work_struct *work)
2664 {
2665 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2666 						    work);
2667 	struct drm_i915_private *dev_priv =
2668 		container_of(error, struct drm_i915_private, gpu_error);
2669 	struct drm_device *dev = dev_priv->dev;
2670 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2671 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2672 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2673 	int ret;
2674 
2675 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2676 
2677 	/*
2678 	 * Note that there's only one work item which does gpu resets, so we
2679 	 * need not worry about concurrent gpu resets potentially incrementing
2680 	 * error->reset_counter twice. We only need to take care of another
2681 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2682 	 * quick check for that is good enough: schedule_work ensures the
2683 	 * correct ordering between hang detection and this work item, and since
2684 	 * the reset in-progress bit is only ever set by code outside of this
2685 	 * work we don't need to worry about any other races.
2686 	 */
2687 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2688 		DRM_DEBUG_DRIVER("resetting chip\n");
2689 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2690 				   reset_event);
2691 
2692 		/*
2693 		 * In most cases it's guaranteed that we get here with an RPM
2694 		 * reference held, for example because there is a pending GPU
2695 		 * request that won't finish until the reset is done. This
2696 		 * isn't the case at least when we get here by doing a
2697 		 * simulated reset via debugs, so get an RPM reference.
2698 		 */
2699 		intel_runtime_pm_get(dev_priv);
2700 		/*
2701 		 * All state reset _must_ be completed before we update the
2702 		 * reset counter, for otherwise waiters might miss the reset
2703 		 * pending state and not properly drop locks, resulting in
2704 		 * deadlocks with the reset work.
2705 		 */
2706 		ret = i915_reset(dev);
2707 
2708 		intel_display_handle_reset(dev);
2709 
2710 		intel_runtime_pm_put(dev_priv);
2711 
2712 		if (ret == 0) {
2713 			/*
2714 			 * After all the gem state is reset, increment the reset
2715 			 * counter and wake up everyone waiting for the reset to
2716 			 * complete.
2717 			 *
2718 			 * Since unlock operations are a one-sided barrier only,
2719 			 * we need to insert a barrier here to order any seqno
2720 			 * updates before
2721 			 * the counter increment.
2722 			 */
2723 			smp_mb__before_atomic();
2724 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2725 
2726 			kobject_uevent_env(&dev->primary->kdev->kobj,
2727 					   KOBJ_CHANGE, reset_done_event);
2728 		} else {
2729 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2730 		}
2731 
2732 		/*
2733 		 * Note: The wake_up also serves as a memory barrier so that
2734 		 * waiters see the update value of the reset counter atomic_t.
2735 		 */
2736 		i915_error_wake_up(dev_priv, true);
2737 	}
2738 }
2739 
2740 static void i915_report_and_clear_eir(struct drm_device *dev)
2741 {
2742 	struct drm_i915_private *dev_priv = dev->dev_private;
2743 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2744 	u32 eir = I915_READ(EIR);
2745 	int pipe, i;
2746 
2747 	if (!eir)
2748 		return;
2749 
2750 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2751 
2752 	i915_get_extra_instdone(dev, instdone);
2753 
2754 	if (IS_G4X(dev)) {
2755 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2756 			u32 ipeir = I915_READ(IPEIR_I965);
2757 
2758 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2759 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2760 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2761 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2762 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2763 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2764 			I915_WRITE(IPEIR_I965, ipeir);
2765 			POSTING_READ(IPEIR_I965);
2766 		}
2767 		if (eir & GM45_ERROR_PAGE_TABLE) {
2768 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2769 			pr_err("page table error\n");
2770 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2771 			I915_WRITE(PGTBL_ER, pgtbl_err);
2772 			POSTING_READ(PGTBL_ER);
2773 		}
2774 	}
2775 
2776 	if (!IS_GEN2(dev)) {
2777 		if (eir & I915_ERROR_PAGE_TABLE) {
2778 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2779 			pr_err("page table error\n");
2780 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2781 			I915_WRITE(PGTBL_ER, pgtbl_err);
2782 			POSTING_READ(PGTBL_ER);
2783 		}
2784 	}
2785 
2786 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2787 		pr_err("memory refresh error:\n");
2788 		for_each_pipe(dev_priv, pipe)
2789 			pr_err("pipe %c stat: 0x%08x\n",
2790 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2791 		/* pipestat has already been acked */
2792 	}
2793 	if (eir & I915_ERROR_INSTRUCTION) {
2794 		pr_err("instruction error\n");
2795 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2796 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2797 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2798 		if (INTEL_INFO(dev)->gen < 4) {
2799 			u32 ipeir = I915_READ(IPEIR);
2800 
2801 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2802 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2803 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2804 			I915_WRITE(IPEIR, ipeir);
2805 			POSTING_READ(IPEIR);
2806 		} else {
2807 			u32 ipeir = I915_READ(IPEIR_I965);
2808 
2809 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2810 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2811 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2812 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2813 			I915_WRITE(IPEIR_I965, ipeir);
2814 			POSTING_READ(IPEIR_I965);
2815 		}
2816 	}
2817 
2818 	I915_WRITE(EIR, eir);
2819 	POSTING_READ(EIR);
2820 	eir = I915_READ(EIR);
2821 	if (eir) {
2822 		/*
2823 		 * some errors might have become stuck,
2824 		 * mask them.
2825 		 */
2826 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2827 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2828 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2829 	}
2830 }
2831 
2832 /**
2833  * i915_handle_error - handle an error interrupt
2834  * @dev: drm device
2835  *
2836  * Do some basic checking of regsiter state at error interrupt time and
2837  * dump it to the syslog.  Also call i915_capture_error_state() to make
2838  * sure we get a record and make it available in debugfs.  Fire a uevent
2839  * so userspace knows something bad happened (should trigger collection
2840  * of a ring dump etc.).
2841  */
2842 void i915_handle_error(struct drm_device *dev, bool wedged,
2843 		       const char *fmt, ...)
2844 {
2845 	struct drm_i915_private *dev_priv = dev->dev_private;
2846 	va_list args;
2847 	char error_msg[80];
2848 
2849 	va_start(args, fmt);
2850 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2851 	va_end(args);
2852 
2853 	i915_capture_error_state(dev, wedged, error_msg);
2854 	i915_report_and_clear_eir(dev);
2855 
2856 	if (wedged) {
2857 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2858 				&dev_priv->gpu_error.reset_counter);
2859 
2860 		/*
2861 		 * Wakeup waiting processes so that the reset work function
2862 		 * i915_error_work_func doesn't deadlock trying to grab various
2863 		 * locks. By bumping the reset counter first, the woken
2864 		 * processes will see a reset in progress and back off,
2865 		 * releasing their locks and then wait for the reset completion.
2866 		 * We must do this for _all_ gpu waiters that might hold locks
2867 		 * that the reset work needs to acquire.
2868 		 *
2869 		 * Note: The wake_up serves as the required memory barrier to
2870 		 * ensure that the waiters see the updated value of the reset
2871 		 * counter atomic_t.
2872 		 */
2873 		i915_error_wake_up(dev_priv, false);
2874 	}
2875 
2876 	/*
2877 	 * Our reset work can grab modeset locks (since it needs to reset the
2878 	 * state of outstanding pagelips). Hence it must not be run on our own
2879 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2880 	 * code will deadlock.
2881 	 */
2882 	schedule_work(&dev_priv->gpu_error.work);
2883 }
2884 
2885 /* Called from drm generic code, passed 'crtc' which
2886  * we use as a pipe index
2887  */
2888 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2889 {
2890 	struct drm_i915_private *dev_priv = dev->dev_private;
2891 	unsigned long irqflags;
2892 
2893 	if (!i915_pipe_enabled(dev, pipe))
2894 		return -EINVAL;
2895 
2896 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2897 	if (INTEL_INFO(dev)->gen >= 4)
2898 		i915_enable_pipestat(dev_priv, pipe,
2899 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2900 	else
2901 		i915_enable_pipestat(dev_priv, pipe,
2902 				     PIPE_VBLANK_INTERRUPT_STATUS);
2903 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2904 
2905 	return 0;
2906 }
2907 
2908 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2909 {
2910 	struct drm_i915_private *dev_priv = dev->dev_private;
2911 	unsigned long irqflags;
2912 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2913 						     DE_PIPE_VBLANK(pipe);
2914 
2915 	if (!i915_pipe_enabled(dev, pipe))
2916 		return -EINVAL;
2917 
2918 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2919 	ironlake_enable_display_irq(dev_priv, bit);
2920 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2921 
2922 	return 0;
2923 }
2924 
2925 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2926 {
2927 	struct drm_i915_private *dev_priv = dev->dev_private;
2928 	unsigned long irqflags;
2929 
2930 	if (!i915_pipe_enabled(dev, pipe))
2931 		return -EINVAL;
2932 
2933 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2934 	i915_enable_pipestat(dev_priv, pipe,
2935 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2936 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2937 
2938 	return 0;
2939 }
2940 
2941 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2942 {
2943 	struct drm_i915_private *dev_priv = dev->dev_private;
2944 	unsigned long irqflags;
2945 
2946 	if (!i915_pipe_enabled(dev, pipe))
2947 		return -EINVAL;
2948 
2949 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2950 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2951 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2952 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2953 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2954 	return 0;
2955 }
2956 
2957 /* Called from drm generic code, passed 'crtc' which
2958  * we use as a pipe index
2959  */
2960 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2961 {
2962 	struct drm_i915_private *dev_priv = dev->dev_private;
2963 	unsigned long irqflags;
2964 
2965 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2966 	i915_disable_pipestat(dev_priv, pipe,
2967 			      PIPE_VBLANK_INTERRUPT_STATUS |
2968 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2969 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2970 }
2971 
2972 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2973 {
2974 	struct drm_i915_private *dev_priv = dev->dev_private;
2975 	unsigned long irqflags;
2976 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2977 						     DE_PIPE_VBLANK(pipe);
2978 
2979 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2980 	ironlake_disable_display_irq(dev_priv, bit);
2981 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2982 }
2983 
2984 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986 	struct drm_i915_private *dev_priv = dev->dev_private;
2987 	unsigned long irqflags;
2988 
2989 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2990 	i915_disable_pipestat(dev_priv, pipe,
2991 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2992 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2993 }
2994 
2995 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2996 {
2997 	struct drm_i915_private *dev_priv = dev->dev_private;
2998 	unsigned long irqflags;
2999 
3000 	if (!i915_pipe_enabled(dev, pipe))
3001 		return;
3002 
3003 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3004 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3005 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3006 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3007 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3008 }
3009 
3010 static u32
3011 ring_last_seqno(struct intel_engine_cs *ring)
3012 {
3013 	return list_entry(ring->request_list.prev,
3014 			  struct drm_i915_gem_request, list)->seqno;
3015 }
3016 
3017 static bool
3018 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3019 {
3020 	return (list_empty(&ring->request_list) ||
3021 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
3022 }
3023 
3024 static bool
3025 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3026 {
3027 	if (INTEL_INFO(dev)->gen >= 8) {
3028 		return (ipehr >> 23) == 0x1c;
3029 	} else {
3030 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3031 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3032 				 MI_SEMAPHORE_REGISTER);
3033 	}
3034 }
3035 
3036 static struct intel_engine_cs *
3037 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3038 {
3039 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3040 	struct intel_engine_cs *signaller;
3041 	int i;
3042 
3043 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3044 		for_each_ring(signaller, dev_priv, i) {
3045 			if (ring == signaller)
3046 				continue;
3047 
3048 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
3049 				return signaller;
3050 		}
3051 	} else {
3052 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3053 
3054 		for_each_ring(signaller, dev_priv, i) {
3055 			if(ring == signaller)
3056 				continue;
3057 
3058 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3059 				return signaller;
3060 		}
3061 	}
3062 
3063 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3064 		  ring->id, ipehr, offset);
3065 
3066 	return NULL;
3067 }
3068 
3069 static struct intel_engine_cs *
3070 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3071 {
3072 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3073 	u32 cmd, ipehr, head;
3074 	u64 offset = 0;
3075 	int i, backwards;
3076 
3077 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3078 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3079 		return NULL;
3080 
3081 	/*
3082 	 * HEAD is likely pointing to the dword after the actual command,
3083 	 * so scan backwards until we find the MBOX. But limit it to just 3
3084 	 * or 4 dwords depending on the semaphore wait command size.
3085 	 * Note that we don't care about ACTHD here since that might
3086 	 * point at at batch, and semaphores are always emitted into the
3087 	 * ringbuffer itself.
3088 	 */
3089 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
3090 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3091 
3092 	for (i = backwards; i; --i) {
3093 		/*
3094 		 * Be paranoid and presume the hw has gone off into the wild -
3095 		 * our ring is smaller than what the hardware (and hence
3096 		 * HEAD_ADDR) allows. Also handles wrap-around.
3097 		 */
3098 		head &= ring->buffer->size - 1;
3099 
3100 		/* This here seems to blow up */
3101 		cmd = ioread32(ring->buffer->virtual_start + head);
3102 		if (cmd == ipehr)
3103 			break;
3104 
3105 		head -= 4;
3106 	}
3107 
3108 	if (!i)
3109 		return NULL;
3110 
3111 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3112 	if (INTEL_INFO(ring->dev)->gen >= 8) {
3113 		offset = ioread32(ring->buffer->virtual_start + head + 12);
3114 		offset <<= 32;
3115 		offset = ioread32(ring->buffer->virtual_start + head + 8);
3116 	}
3117 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3118 }
3119 
3120 static int semaphore_passed(struct intel_engine_cs *ring)
3121 {
3122 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3123 	struct intel_engine_cs *signaller;
3124 	u32 seqno;
3125 
3126 	ring->hangcheck.deadlock++;
3127 
3128 	signaller = semaphore_waits_for(ring, &seqno);
3129 	if (signaller == NULL)
3130 		return -1;
3131 
3132 	/* Prevent pathological recursion due to driver bugs */
3133 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3134 		return -1;
3135 
3136 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3137 		return 1;
3138 
3139 	/* cursory check for an unkickable deadlock */
3140 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3141 	    semaphore_passed(signaller) < 0)
3142 		return -1;
3143 
3144 	return 0;
3145 }
3146 
3147 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3148 {
3149 	struct intel_engine_cs *ring;
3150 	int i;
3151 
3152 	for_each_ring(ring, dev_priv, i)
3153 		ring->hangcheck.deadlock = 0;
3154 }
3155 
3156 static enum intel_ring_hangcheck_action
3157 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3158 {
3159 	struct drm_device *dev = ring->dev;
3160 	struct drm_i915_private *dev_priv = dev->dev_private;
3161 	u32 tmp;
3162 
3163 	if (acthd != ring->hangcheck.acthd) {
3164 		if (acthd > ring->hangcheck.max_acthd) {
3165 			ring->hangcheck.max_acthd = acthd;
3166 			return HANGCHECK_ACTIVE;
3167 		}
3168 
3169 		return HANGCHECK_ACTIVE_LOOP;
3170 	}
3171 
3172 	if (IS_GEN2(dev))
3173 		return HANGCHECK_HUNG;
3174 
3175 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3176 	 * If so we can simply poke the RB_WAIT bit
3177 	 * and break the hang. This should work on
3178 	 * all but the second generation chipsets.
3179 	 */
3180 	tmp = I915_READ_CTL(ring);
3181 	if (tmp & RING_WAIT) {
3182 		i915_handle_error(dev, false,
3183 				  "Kicking stuck wait on %s",
3184 				  ring->name);
3185 		I915_WRITE_CTL(ring, tmp);
3186 		return HANGCHECK_KICK;
3187 	}
3188 
3189 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3190 		switch (semaphore_passed(ring)) {
3191 		default:
3192 			return HANGCHECK_HUNG;
3193 		case 1:
3194 			i915_handle_error(dev, false,
3195 					  "Kicking stuck semaphore on %s",
3196 					  ring->name);
3197 			I915_WRITE_CTL(ring, tmp);
3198 			return HANGCHECK_KICK;
3199 		case 0:
3200 			return HANGCHECK_WAIT;
3201 		}
3202 	}
3203 
3204 	return HANGCHECK_HUNG;
3205 }
3206 
3207 /**
3208  * This is called when the chip hasn't reported back with completed
3209  * batchbuffers in a long time. We keep track per ring seqno progress and
3210  * if there are no progress, hangcheck score for that ring is increased.
3211  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3212  * we kick the ring. If we see no progress on three subsequent calls
3213  * we assume chip is wedged and try to fix it by resetting the chip.
3214  */
3215 static void i915_hangcheck_elapsed(unsigned long data)
3216 {
3217 	struct drm_device *dev = (struct drm_device *)data;
3218 	struct drm_i915_private *dev_priv = dev->dev_private;
3219 	struct intel_engine_cs *ring;
3220 	int i;
3221 	int busy_count = 0, rings_hung = 0;
3222 	bool stuck[I915_NUM_RINGS] = { 0 };
3223 #define BUSY 1
3224 #define KICK 5
3225 #define HUNG 20
3226 
3227 	if (!i915.enable_hangcheck)
3228 		return;
3229 
3230 	for_each_ring(ring, dev_priv, i) {
3231 		u64 acthd;
3232 		u32 seqno;
3233 		bool busy = true;
3234 
3235 		semaphore_clear_deadlocks(dev_priv);
3236 
3237 		seqno = ring->get_seqno(ring, false);
3238 		acthd = intel_ring_get_active_head(ring);
3239 
3240 		if (ring->hangcheck.seqno == seqno) {
3241 			if (ring_idle(ring, seqno)) {
3242 				ring->hangcheck.action = HANGCHECK_IDLE;
3243 
3244 				if (waitqueue_active(&ring->irq_queue)) {
3245 					/* Issue a wake-up to catch stuck h/w. */
3246 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3247 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3248 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3249 								  ring->name);
3250 						else
3251 							DRM_INFO("Fake missed irq on %s\n",
3252 								 ring->name);
3253 						wake_up_all(&ring->irq_queue);
3254 					}
3255 					/* Safeguard against driver failure */
3256 					ring->hangcheck.score += BUSY;
3257 				} else
3258 					busy = false;
3259 			} else {
3260 				/* We always increment the hangcheck score
3261 				 * if the ring is busy and still processing
3262 				 * the same request, so that no single request
3263 				 * can run indefinitely (such as a chain of
3264 				 * batches). The only time we do not increment
3265 				 * the hangcheck score on this ring, if this
3266 				 * ring is in a legitimate wait for another
3267 				 * ring. In that case the waiting ring is a
3268 				 * victim and we want to be sure we catch the
3269 				 * right culprit. Then every time we do kick
3270 				 * the ring, add a small increment to the
3271 				 * score so that we can catch a batch that is
3272 				 * being repeatedly kicked and so responsible
3273 				 * for stalling the machine.
3274 				 */
3275 				ring->hangcheck.action = ring_stuck(ring,
3276 								    acthd);
3277 
3278 				switch (ring->hangcheck.action) {
3279 				case HANGCHECK_IDLE:
3280 				case HANGCHECK_WAIT:
3281 				case HANGCHECK_ACTIVE:
3282 					break;
3283 				case HANGCHECK_ACTIVE_LOOP:
3284 					ring->hangcheck.score += BUSY;
3285 					break;
3286 				case HANGCHECK_KICK:
3287 					ring->hangcheck.score += KICK;
3288 					break;
3289 				case HANGCHECK_HUNG:
3290 					ring->hangcheck.score += HUNG;
3291 					stuck[i] = true;
3292 					break;
3293 				}
3294 			}
3295 		} else {
3296 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3297 
3298 			/* Gradually reduce the count so that we catch DoS
3299 			 * attempts across multiple batches.
3300 			 */
3301 			if (ring->hangcheck.score > 0)
3302 				ring->hangcheck.score--;
3303 
3304 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3305 		}
3306 
3307 		ring->hangcheck.seqno = seqno;
3308 		ring->hangcheck.acthd = acthd;
3309 		busy_count += busy;
3310 	}
3311 
3312 	for_each_ring(ring, dev_priv, i) {
3313 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3314 			DRM_INFO("%s on %s\n",
3315 				 stuck[i] ? "stuck" : "no progress",
3316 				 ring->name);
3317 			rings_hung++;
3318 		}
3319 	}
3320 
3321 	if (rings_hung)
3322 		return i915_handle_error(dev, true, "Ring hung");
3323 
3324 	if (busy_count)
3325 		/* Reset timer case chip hangs without another request
3326 		 * being added */
3327 		i915_queue_hangcheck(dev);
3328 }
3329 
3330 void i915_queue_hangcheck(struct drm_device *dev)
3331 {
3332 	struct drm_i915_private *dev_priv = dev->dev_private;
3333 	if (!i915.enable_hangcheck)
3334 		return;
3335 
3336 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3337 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3338 }
3339 
3340 static void ibx_irq_reset(struct drm_device *dev)
3341 {
3342 	struct drm_i915_private *dev_priv = dev->dev_private;
3343 
3344 	if (HAS_PCH_NOP(dev))
3345 		return;
3346 
3347 	GEN5_IRQ_RESET(SDE);
3348 
3349 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3350 		I915_WRITE(SERR_INT, 0xffffffff);
3351 }
3352 
3353 /*
3354  * SDEIER is also touched by the interrupt handler to work around missed PCH
3355  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3356  * instead we unconditionally enable all PCH interrupt sources here, but then
3357  * only unmask them as needed with SDEIMR.
3358  *
3359  * This function needs to be called before interrupts are enabled.
3360  */
3361 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3362 {
3363 	struct drm_i915_private *dev_priv = dev->dev_private;
3364 
3365 	if (HAS_PCH_NOP(dev))
3366 		return;
3367 
3368 	WARN_ON(I915_READ(SDEIER) != 0);
3369 	I915_WRITE(SDEIER, 0xffffffff);
3370 	POSTING_READ(SDEIER);
3371 }
3372 
3373 static void gen5_gt_irq_reset(struct drm_device *dev)
3374 {
3375 	struct drm_i915_private *dev_priv = dev->dev_private;
3376 
3377 	GEN5_IRQ_RESET(GT);
3378 	if (INTEL_INFO(dev)->gen >= 6)
3379 		GEN5_IRQ_RESET(GEN6_PM);
3380 }
3381 
3382 /* drm_dma.h hooks
3383 */
3384 static void ironlake_irq_reset(struct drm_device *dev)
3385 {
3386 	struct drm_i915_private *dev_priv = dev->dev_private;
3387 
3388 	I915_WRITE(HWSTAM, 0xffffffff);
3389 
3390 	GEN5_IRQ_RESET(DE);
3391 	if (IS_GEN7(dev))
3392 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3393 
3394 	gen5_gt_irq_reset(dev);
3395 
3396 	ibx_irq_reset(dev);
3397 }
3398 
3399 static void valleyview_irq_preinstall(struct drm_device *dev)
3400 {
3401 	struct drm_i915_private *dev_priv = dev->dev_private;
3402 	int pipe;
3403 
3404 	/* VLV magic */
3405 	I915_WRITE(VLV_IMR, 0);
3406 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3407 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3408 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3409 
3410 	/* and GT */
3411 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3412 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3413 
3414 	gen5_gt_irq_reset(dev);
3415 
3416 	I915_WRITE(DPINVGTT, 0xff);
3417 
3418 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3419 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3420 	for_each_pipe(dev_priv, pipe)
3421 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3422 	I915_WRITE(VLV_IIR, 0xffffffff);
3423 	I915_WRITE(VLV_IMR, 0xffffffff);
3424 	I915_WRITE(VLV_IER, 0x0);
3425 	POSTING_READ(VLV_IER);
3426 }
3427 
3428 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3429 {
3430 	GEN8_IRQ_RESET_NDX(GT, 0);
3431 	GEN8_IRQ_RESET_NDX(GT, 1);
3432 	GEN8_IRQ_RESET_NDX(GT, 2);
3433 	GEN8_IRQ_RESET_NDX(GT, 3);
3434 }
3435 
3436 static void gen8_irq_reset(struct drm_device *dev)
3437 {
3438 	struct drm_i915_private *dev_priv = dev->dev_private;
3439 	int pipe;
3440 
3441 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3442 	POSTING_READ(GEN8_MASTER_IRQ);
3443 
3444 	gen8_gt_irq_reset(dev_priv);
3445 
3446 	for_each_pipe(dev_priv, pipe)
3447 		if (intel_display_power_enabled(dev_priv,
3448 						POWER_DOMAIN_PIPE(pipe)))
3449 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3450 
3451 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3452 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3453 	GEN5_IRQ_RESET(GEN8_PCU_);
3454 
3455 	ibx_irq_reset(dev);
3456 }
3457 
3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3459 {
3460 	unsigned long irqflags;
3461 
3462 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3463 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3464 			  ~dev_priv->de_irq_mask[PIPE_B]);
3465 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3466 			  ~dev_priv->de_irq_mask[PIPE_C]);
3467 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3468 }
3469 
3470 static void cherryview_irq_preinstall(struct drm_device *dev)
3471 {
3472 	struct drm_i915_private *dev_priv = dev->dev_private;
3473 	int pipe;
3474 
3475 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3476 	POSTING_READ(GEN8_MASTER_IRQ);
3477 
3478 	gen8_gt_irq_reset(dev_priv);
3479 
3480 	GEN5_IRQ_RESET(GEN8_PCU_);
3481 
3482 	POSTING_READ(GEN8_PCU_IIR);
3483 
3484 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3485 
3486 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3487 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3488 
3489 	for_each_pipe(dev_priv, pipe)
3490 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3491 
3492 	I915_WRITE(VLV_IMR, 0xffffffff);
3493 	I915_WRITE(VLV_IER, 0x0);
3494 	I915_WRITE(VLV_IIR, 0xffffffff);
3495 	POSTING_READ(VLV_IIR);
3496 }
3497 
3498 static void ibx_hpd_irq_setup(struct drm_device *dev)
3499 {
3500 	struct drm_i915_private *dev_priv = dev->dev_private;
3501 	struct intel_encoder *intel_encoder;
3502 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3503 
3504 	if (HAS_PCH_IBX(dev)) {
3505 		hotplug_irqs = SDE_HOTPLUG_MASK;
3506 		for_each_intel_encoder(dev, intel_encoder)
3507 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3508 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3509 	} else {
3510 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3511 		for_each_intel_encoder(dev, intel_encoder)
3512 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3513 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3514 	}
3515 
3516 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3517 
3518 	/*
3519 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3520 	 * duration to 2ms (which is the minimum in the Display Port spec)
3521 	 *
3522 	 * This register is the same on all known PCH chips.
3523 	 */
3524 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3525 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3526 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3527 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3528 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3529 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3530 }
3531 
3532 static void ibx_irq_postinstall(struct drm_device *dev)
3533 {
3534 	struct drm_i915_private *dev_priv = dev->dev_private;
3535 	u32 mask;
3536 
3537 	if (HAS_PCH_NOP(dev))
3538 		return;
3539 
3540 	if (HAS_PCH_IBX(dev))
3541 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3542 	else
3543 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3544 
3545 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3546 	I915_WRITE(SDEIMR, ~mask);
3547 }
3548 
3549 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3550 {
3551 	struct drm_i915_private *dev_priv = dev->dev_private;
3552 	u32 pm_irqs, gt_irqs;
3553 
3554 	pm_irqs = gt_irqs = 0;
3555 
3556 	dev_priv->gt_irq_mask = ~0;
3557 	if (HAS_L3_DPF(dev)) {
3558 		/* L3 parity interrupt is always unmasked. */
3559 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3560 		gt_irqs |= GT_PARITY_ERROR(dev);
3561 	}
3562 
3563 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3564 	if (IS_GEN5(dev)) {
3565 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3566 			   ILK_BSD_USER_INTERRUPT;
3567 	} else {
3568 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3569 	}
3570 
3571 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3572 
3573 	if (INTEL_INFO(dev)->gen >= 6) {
3574 		pm_irqs |= dev_priv->pm_rps_events;
3575 
3576 		if (HAS_VEBOX(dev))
3577 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3578 
3579 		dev_priv->pm_irq_mask = 0xffffffff;
3580 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3581 	}
3582 }
3583 
3584 static int ironlake_irq_postinstall(struct drm_device *dev)
3585 {
3586 	unsigned long irqflags;
3587 	struct drm_i915_private *dev_priv = dev->dev_private;
3588 	u32 display_mask, extra_mask;
3589 
3590 	if (INTEL_INFO(dev)->gen >= 7) {
3591 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3592 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3593 				DE_PLANEB_FLIP_DONE_IVB |
3594 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3595 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3596 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3597 	} else {
3598 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3599 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3600 				DE_AUX_CHANNEL_A |
3601 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3602 				DE_POISON);
3603 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3604 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3605 	}
3606 
3607 	dev_priv->irq_mask = ~display_mask;
3608 
3609 	I915_WRITE(HWSTAM, 0xeffe);
3610 
3611 	ibx_irq_pre_postinstall(dev);
3612 
3613 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3614 
3615 	gen5_gt_irq_postinstall(dev);
3616 
3617 	ibx_irq_postinstall(dev);
3618 
3619 	if (IS_IRONLAKE_M(dev)) {
3620 		/* Enable PCU event interrupts
3621 		 *
3622 		 * spinlocking not required here for correctness since interrupt
3623 		 * setup is guaranteed to run in single-threaded context. But we
3624 		 * need it to make the assert_spin_locked happy. */
3625 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3626 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3627 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3628 	}
3629 
3630 	return 0;
3631 }
3632 
3633 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3634 {
3635 	u32 pipestat_mask;
3636 	u32 iir_mask;
3637 
3638 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3639 			PIPE_FIFO_UNDERRUN_STATUS;
3640 
3641 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3642 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3643 	POSTING_READ(PIPESTAT(PIPE_A));
3644 
3645 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3646 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3647 
3648 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3649 					       PIPE_GMBUS_INTERRUPT_STATUS);
3650 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3651 
3652 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3653 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3654 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3655 	dev_priv->irq_mask &= ~iir_mask;
3656 
3657 	I915_WRITE(VLV_IIR, iir_mask);
3658 	I915_WRITE(VLV_IIR, iir_mask);
3659 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3660 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3661 	POSTING_READ(VLV_IER);
3662 }
3663 
3664 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3665 {
3666 	u32 pipestat_mask;
3667 	u32 iir_mask;
3668 
3669 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3670 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3671 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3672 
3673 	dev_priv->irq_mask |= iir_mask;
3674 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3675 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3676 	I915_WRITE(VLV_IIR, iir_mask);
3677 	I915_WRITE(VLV_IIR, iir_mask);
3678 	POSTING_READ(VLV_IIR);
3679 
3680 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3681 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3682 
3683 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3684 					        PIPE_GMBUS_INTERRUPT_STATUS);
3685 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3686 
3687 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3688 			PIPE_FIFO_UNDERRUN_STATUS;
3689 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3690 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3691 	POSTING_READ(PIPESTAT(PIPE_A));
3692 }
3693 
3694 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3695 {
3696 	assert_spin_locked(&dev_priv->irq_lock);
3697 
3698 	if (dev_priv->display_irqs_enabled)
3699 		return;
3700 
3701 	dev_priv->display_irqs_enabled = true;
3702 
3703 	if (dev_priv->dev->irq_enabled)
3704 		valleyview_display_irqs_install(dev_priv);
3705 }
3706 
3707 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3708 {
3709 	assert_spin_locked(&dev_priv->irq_lock);
3710 
3711 	if (!dev_priv->display_irqs_enabled)
3712 		return;
3713 
3714 	dev_priv->display_irqs_enabled = false;
3715 
3716 	if (dev_priv->dev->irq_enabled)
3717 		valleyview_display_irqs_uninstall(dev_priv);
3718 }
3719 
3720 static int valleyview_irq_postinstall(struct drm_device *dev)
3721 {
3722 	struct drm_i915_private *dev_priv = dev->dev_private;
3723 	unsigned long irqflags;
3724 
3725 	dev_priv->irq_mask = ~0;
3726 
3727 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3728 	POSTING_READ(PORT_HOTPLUG_EN);
3729 
3730 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3731 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3732 	I915_WRITE(VLV_IIR, 0xffffffff);
3733 	POSTING_READ(VLV_IER);
3734 
3735 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3736 	 * just to make the assert_spin_locked check happy. */
3737 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3738 	if (dev_priv->display_irqs_enabled)
3739 		valleyview_display_irqs_install(dev_priv);
3740 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3741 
3742 	I915_WRITE(VLV_IIR, 0xffffffff);
3743 	I915_WRITE(VLV_IIR, 0xffffffff);
3744 
3745 	gen5_gt_irq_postinstall(dev);
3746 
3747 	/* ack & enable invalid PTE error interrupts */
3748 #if 0 /* FIXME: add support to irq handler for checking these bits */
3749 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3750 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3751 #endif
3752 
3753 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3754 
3755 	return 0;
3756 }
3757 
3758 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3759 {
3760 	/* These are interrupts we'll toggle with the ring mask register */
3761 	uint32_t gt_interrupts[] = {
3762 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3763 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3764 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3765 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3766 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3767 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3768 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3769 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3770 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3771 		0,
3772 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3773 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3774 		};
3775 
3776 	dev_priv->pm_irq_mask = 0xffffffff;
3777 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3778 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3779 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3780 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3781 }
3782 
3783 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3784 {
3785 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3786 		GEN8_PIPE_CDCLK_CRC_DONE |
3787 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3788 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789 		GEN8_PIPE_FIFO_UNDERRUN;
3790 	int pipe;
3791 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3792 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3793 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3794 
3795 	for_each_pipe(dev_priv, pipe)
3796 		if (intel_display_power_enabled(dev_priv,
3797 				POWER_DOMAIN_PIPE(pipe)))
3798 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3799 					  dev_priv->de_irq_mask[pipe],
3800 					  de_pipe_enables);
3801 
3802 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3803 }
3804 
3805 static int gen8_irq_postinstall(struct drm_device *dev)
3806 {
3807 	struct drm_i915_private *dev_priv = dev->dev_private;
3808 
3809 	ibx_irq_pre_postinstall(dev);
3810 
3811 	gen8_gt_irq_postinstall(dev_priv);
3812 	gen8_de_irq_postinstall(dev_priv);
3813 
3814 	ibx_irq_postinstall(dev);
3815 
3816 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3817 	POSTING_READ(GEN8_MASTER_IRQ);
3818 
3819 	return 0;
3820 }
3821 
3822 static int cherryview_irq_postinstall(struct drm_device *dev)
3823 {
3824 	struct drm_i915_private *dev_priv = dev->dev_private;
3825 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3826 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3827 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3828 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3829 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3830 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3831 	unsigned long irqflags;
3832 	int pipe;
3833 
3834 	/*
3835 	 * Leave vblank interrupts masked initially.  enable/disable will
3836 	 * toggle them based on usage.
3837 	 */
3838 	dev_priv->irq_mask = ~enable_mask;
3839 
3840 	for_each_pipe(dev_priv, pipe)
3841 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3842 
3843 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3844 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3845 	for_each_pipe(dev_priv, pipe)
3846 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3847 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3848 
3849 	I915_WRITE(VLV_IIR, 0xffffffff);
3850 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3851 	I915_WRITE(VLV_IER, enable_mask);
3852 
3853 	gen8_gt_irq_postinstall(dev_priv);
3854 
3855 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3856 	POSTING_READ(GEN8_MASTER_IRQ);
3857 
3858 	return 0;
3859 }
3860 
3861 static void gen8_irq_uninstall(struct drm_device *dev)
3862 {
3863 	struct drm_i915_private *dev_priv = dev->dev_private;
3864 
3865 	if (!dev_priv)
3866 		return;
3867 
3868 	gen8_irq_reset(dev);
3869 }
3870 
3871 static void valleyview_irq_uninstall(struct drm_device *dev)
3872 {
3873 	struct drm_i915_private *dev_priv = dev->dev_private;
3874 	unsigned long irqflags;
3875 	int pipe;
3876 
3877 	if (!dev_priv)
3878 		return;
3879 
3880 	I915_WRITE(VLV_MASTER_IER, 0);
3881 
3882 	for_each_pipe(dev_priv, pipe)
3883 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3884 
3885 	I915_WRITE(HWSTAM, 0xffffffff);
3886 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3887 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3888 
3889 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3890 	if (dev_priv->display_irqs_enabled)
3891 		valleyview_display_irqs_uninstall(dev_priv);
3892 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3893 
3894 	dev_priv->irq_mask = 0;
3895 
3896 	I915_WRITE(VLV_IIR, 0xffffffff);
3897 	I915_WRITE(VLV_IMR, 0xffffffff);
3898 	I915_WRITE(VLV_IER, 0x0);
3899 	POSTING_READ(VLV_IER);
3900 }
3901 
3902 static void cherryview_irq_uninstall(struct drm_device *dev)
3903 {
3904 	struct drm_i915_private *dev_priv = dev->dev_private;
3905 	int pipe;
3906 
3907 	if (!dev_priv)
3908 		return;
3909 
3910 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3911 	POSTING_READ(GEN8_MASTER_IRQ);
3912 
3913 #define GEN8_IRQ_FINI_NDX(type, which)				\
3914 do {								\
3915 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3916 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3917 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3918 	POSTING_READ(GEN8_##type##_IIR(which));			\
3919 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3920 } while (0)
3921 
3922 #define GEN8_IRQ_FINI(type)				\
3923 do {							\
3924 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3925 	I915_WRITE(GEN8_##type##_IER, 0);		\
3926 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3927 	POSTING_READ(GEN8_##type##_IIR);		\
3928 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3929 } while (0)
3930 
3931 	GEN8_IRQ_FINI_NDX(GT, 0);
3932 	GEN8_IRQ_FINI_NDX(GT, 1);
3933 	GEN8_IRQ_FINI_NDX(GT, 2);
3934 	GEN8_IRQ_FINI_NDX(GT, 3);
3935 
3936 	GEN8_IRQ_FINI(PCU);
3937 
3938 #undef GEN8_IRQ_FINI
3939 #undef GEN8_IRQ_FINI_NDX
3940 
3941 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3942 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3943 
3944 	for_each_pipe(dev_priv, pipe)
3945 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3946 
3947 	I915_WRITE(VLV_IMR, 0xffffffff);
3948 	I915_WRITE(VLV_IER, 0x0);
3949 	I915_WRITE(VLV_IIR, 0xffffffff);
3950 	POSTING_READ(VLV_IIR);
3951 }
3952 
3953 static void ironlake_irq_uninstall(struct drm_device *dev)
3954 {
3955 	struct drm_i915_private *dev_priv = dev->dev_private;
3956 
3957 	if (!dev_priv)
3958 		return;
3959 
3960 	ironlake_irq_reset(dev);
3961 }
3962 
3963 static void i8xx_irq_preinstall(struct drm_device * dev)
3964 {
3965 	struct drm_i915_private *dev_priv = dev->dev_private;
3966 	int pipe;
3967 
3968 	for_each_pipe(dev_priv, pipe)
3969 		I915_WRITE(PIPESTAT(pipe), 0);
3970 	I915_WRITE16(IMR, 0xffff);
3971 	I915_WRITE16(IER, 0x0);
3972 	POSTING_READ16(IER);
3973 }
3974 
3975 static int i8xx_irq_postinstall(struct drm_device *dev)
3976 {
3977 	struct drm_i915_private *dev_priv = dev->dev_private;
3978 	unsigned long irqflags;
3979 
3980 	I915_WRITE16(EMR,
3981 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3982 
3983 	/* Unmask the interrupts that we always want on. */
3984 	dev_priv->irq_mask =
3985 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3986 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3987 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3989 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3990 	I915_WRITE16(IMR, dev_priv->irq_mask);
3991 
3992 	I915_WRITE16(IER,
3993 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3994 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3995 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3996 		     I915_USER_INTERRUPT);
3997 	POSTING_READ16(IER);
3998 
3999 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4000 	 * just to make the assert_spin_locked check happy. */
4001 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4002 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4003 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4004 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4005 
4006 	return 0;
4007 }
4008 
4009 /*
4010  * Returns true when a page flip has completed.
4011  */
4012 static bool i8xx_handle_vblank(struct drm_device *dev,
4013 			       int plane, int pipe, u32 iir)
4014 {
4015 	struct drm_i915_private *dev_priv = dev->dev_private;
4016 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4017 
4018 	if (!intel_pipe_handle_vblank(dev, pipe))
4019 		return false;
4020 
4021 	if ((iir & flip_pending) == 0)
4022 		goto check_page_flip;
4023 
4024 	intel_prepare_page_flip(dev, plane);
4025 
4026 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4027 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4028 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4029 	 * the flip is completed (no longer pending). Since this doesn't raise
4030 	 * an interrupt per se, we watch for the change at vblank.
4031 	 */
4032 	if (I915_READ16(ISR) & flip_pending)
4033 		goto check_page_flip;
4034 
4035 	intel_finish_page_flip(dev, pipe);
4036 	return true;
4037 
4038 check_page_flip:
4039 	intel_check_page_flip(dev, pipe);
4040 	return false;
4041 }
4042 
4043 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4044 {
4045 	struct drm_device *dev = arg;
4046 	struct drm_i915_private *dev_priv = dev->dev_private;
4047 	u16 iir, new_iir;
4048 	u32 pipe_stats[2];
4049 	unsigned long irqflags;
4050 	int pipe;
4051 	u16 flip_mask =
4052 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4053 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4054 
4055 	iir = I915_READ16(IIR);
4056 	if (iir == 0)
4057 		return IRQ_NONE;
4058 
4059 	while (iir & ~flip_mask) {
4060 		/* Can't rely on pipestat interrupt bit in iir as it might
4061 		 * have been cleared after the pipestat interrupt was received.
4062 		 * It doesn't set the bit in iir again, but it still produces
4063 		 * interrupts (for non-MSI).
4064 		 */
4065 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4066 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4067 			i915_handle_error(dev, false,
4068 					  "Command parser error, iir 0x%08x",
4069 					  iir);
4070 
4071 		for_each_pipe(dev_priv, pipe) {
4072 			int reg = PIPESTAT(pipe);
4073 			pipe_stats[pipe] = I915_READ(reg);
4074 
4075 			/*
4076 			 * Clear the PIPE*STAT regs before the IIR
4077 			 */
4078 			if (pipe_stats[pipe] & 0x8000ffff)
4079 				I915_WRITE(reg, pipe_stats[pipe]);
4080 		}
4081 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4082 
4083 		I915_WRITE16(IIR, iir & ~flip_mask);
4084 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4085 
4086 		i915_update_dri1_breadcrumb(dev);
4087 
4088 		if (iir & I915_USER_INTERRUPT)
4089 			notify_ring(dev, &dev_priv->ring[RCS]);
4090 
4091 		for_each_pipe(dev_priv, pipe) {
4092 			int plane = pipe;
4093 			if (HAS_FBC(dev))
4094 				plane = !plane;
4095 
4096 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4097 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4098 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4099 
4100 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4101 				i9xx_pipe_crc_irq_handler(dev, pipe);
4102 
4103 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4104 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4105 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4106 		}
4107 
4108 		iir = new_iir;
4109 	}
4110 
4111 	return IRQ_HANDLED;
4112 }
4113 
4114 static void i8xx_irq_uninstall(struct drm_device * dev)
4115 {
4116 	struct drm_i915_private *dev_priv = dev->dev_private;
4117 	int pipe;
4118 
4119 	for_each_pipe(dev_priv, pipe) {
4120 		/* Clear enable bits; then clear status bits */
4121 		I915_WRITE(PIPESTAT(pipe), 0);
4122 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4123 	}
4124 	I915_WRITE16(IMR, 0xffff);
4125 	I915_WRITE16(IER, 0x0);
4126 	I915_WRITE16(IIR, I915_READ16(IIR));
4127 }
4128 
4129 static void i915_irq_preinstall(struct drm_device * dev)
4130 {
4131 	struct drm_i915_private *dev_priv = dev->dev_private;
4132 	int pipe;
4133 
4134 	if (I915_HAS_HOTPLUG(dev)) {
4135 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4136 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4137 	}
4138 
4139 	I915_WRITE16(HWSTAM, 0xeffe);
4140 	for_each_pipe(dev_priv, pipe)
4141 		I915_WRITE(PIPESTAT(pipe), 0);
4142 	I915_WRITE(IMR, 0xffffffff);
4143 	I915_WRITE(IER, 0x0);
4144 	POSTING_READ(IER);
4145 }
4146 
4147 static int i915_irq_postinstall(struct drm_device *dev)
4148 {
4149 	struct drm_i915_private *dev_priv = dev->dev_private;
4150 	u32 enable_mask;
4151 	unsigned long irqflags;
4152 
4153 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4154 
4155 	/* Unmask the interrupts that we always want on. */
4156 	dev_priv->irq_mask =
4157 		~(I915_ASLE_INTERRUPT |
4158 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4159 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4160 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4161 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4162 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4163 
4164 	enable_mask =
4165 		I915_ASLE_INTERRUPT |
4166 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4167 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4168 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4169 		I915_USER_INTERRUPT;
4170 
4171 	if (I915_HAS_HOTPLUG(dev)) {
4172 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4173 		POSTING_READ(PORT_HOTPLUG_EN);
4174 
4175 		/* Enable in IER... */
4176 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4177 		/* and unmask in IMR */
4178 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4179 	}
4180 
4181 	I915_WRITE(IMR, dev_priv->irq_mask);
4182 	I915_WRITE(IER, enable_mask);
4183 	POSTING_READ(IER);
4184 
4185 	i915_enable_asle_pipestat(dev);
4186 
4187 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4188 	 * just to make the assert_spin_locked check happy. */
4189 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4190 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4191 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4192 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4193 
4194 	return 0;
4195 }
4196 
4197 /*
4198  * Returns true when a page flip has completed.
4199  */
4200 static bool i915_handle_vblank(struct drm_device *dev,
4201 			       int plane, int pipe, u32 iir)
4202 {
4203 	struct drm_i915_private *dev_priv = dev->dev_private;
4204 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4205 
4206 	if (!intel_pipe_handle_vblank(dev, pipe))
4207 		return false;
4208 
4209 	if ((iir & flip_pending) == 0)
4210 		goto check_page_flip;
4211 
4212 	intel_prepare_page_flip(dev, plane);
4213 
4214 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4215 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4216 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4217 	 * the flip is completed (no longer pending). Since this doesn't raise
4218 	 * an interrupt per se, we watch for the change at vblank.
4219 	 */
4220 	if (I915_READ(ISR) & flip_pending)
4221 		goto check_page_flip;
4222 
4223 	intel_finish_page_flip(dev, pipe);
4224 	return true;
4225 
4226 check_page_flip:
4227 	intel_check_page_flip(dev, pipe);
4228 	return false;
4229 }
4230 
4231 static irqreturn_t i915_irq_handler(int irq, void *arg)
4232 {
4233 	struct drm_device *dev = arg;
4234 	struct drm_i915_private *dev_priv = dev->dev_private;
4235 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4236 	unsigned long irqflags;
4237 	u32 flip_mask =
4238 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4239 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4240 	int pipe, ret = IRQ_NONE;
4241 
4242 	iir = I915_READ(IIR);
4243 	do {
4244 		bool irq_received = (iir & ~flip_mask) != 0;
4245 		bool blc_event = false;
4246 
4247 		/* Can't rely on pipestat interrupt bit in iir as it might
4248 		 * have been cleared after the pipestat interrupt was received.
4249 		 * It doesn't set the bit in iir again, but it still produces
4250 		 * interrupts (for non-MSI).
4251 		 */
4252 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4253 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4254 			i915_handle_error(dev, false,
4255 					  "Command parser error, iir 0x%08x",
4256 					  iir);
4257 
4258 		for_each_pipe(dev_priv, pipe) {
4259 			int reg = PIPESTAT(pipe);
4260 			pipe_stats[pipe] = I915_READ(reg);
4261 
4262 			/* Clear the PIPE*STAT regs before the IIR */
4263 			if (pipe_stats[pipe] & 0x8000ffff) {
4264 				I915_WRITE(reg, pipe_stats[pipe]);
4265 				irq_received = true;
4266 			}
4267 		}
4268 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4269 
4270 		if (!irq_received)
4271 			break;
4272 
4273 		/* Consume port.  Then clear IIR or we'll miss events */
4274 		if (I915_HAS_HOTPLUG(dev) &&
4275 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4276 			i9xx_hpd_irq_handler(dev);
4277 
4278 		I915_WRITE(IIR, iir & ~flip_mask);
4279 		new_iir = I915_READ(IIR); /* Flush posted writes */
4280 
4281 		if (iir & I915_USER_INTERRUPT)
4282 			notify_ring(dev, &dev_priv->ring[RCS]);
4283 
4284 		for_each_pipe(dev_priv, pipe) {
4285 			int plane = pipe;
4286 			if (HAS_FBC(dev))
4287 				plane = !plane;
4288 
4289 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4290 			    i915_handle_vblank(dev, plane, pipe, iir))
4291 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4292 
4293 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4294 				blc_event = true;
4295 
4296 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4297 				i9xx_pipe_crc_irq_handler(dev, pipe);
4298 
4299 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4300 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4301 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4302 		}
4303 
4304 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4305 			intel_opregion_asle_intr(dev);
4306 
4307 		/* With MSI, interrupts are only generated when iir
4308 		 * transitions from zero to nonzero.  If another bit got
4309 		 * set while we were handling the existing iir bits, then
4310 		 * we would never get another interrupt.
4311 		 *
4312 		 * This is fine on non-MSI as well, as if we hit this path
4313 		 * we avoid exiting the interrupt handler only to generate
4314 		 * another one.
4315 		 *
4316 		 * Note that for MSI this could cause a stray interrupt report
4317 		 * if an interrupt landed in the time between writing IIR and
4318 		 * the posting read.  This should be rare enough to never
4319 		 * trigger the 99% of 100,000 interrupts test for disabling
4320 		 * stray interrupts.
4321 		 */
4322 		ret = IRQ_HANDLED;
4323 		iir = new_iir;
4324 	} while (iir & ~flip_mask);
4325 
4326 	i915_update_dri1_breadcrumb(dev);
4327 
4328 	return ret;
4329 }
4330 
4331 static void i915_irq_uninstall(struct drm_device * dev)
4332 {
4333 	struct drm_i915_private *dev_priv = dev->dev_private;
4334 	int pipe;
4335 
4336 	if (I915_HAS_HOTPLUG(dev)) {
4337 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4338 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4339 	}
4340 
4341 	I915_WRITE16(HWSTAM, 0xffff);
4342 	for_each_pipe(dev_priv, pipe) {
4343 		/* Clear enable bits; then clear status bits */
4344 		I915_WRITE(PIPESTAT(pipe), 0);
4345 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4346 	}
4347 	I915_WRITE(IMR, 0xffffffff);
4348 	I915_WRITE(IER, 0x0);
4349 
4350 	I915_WRITE(IIR, I915_READ(IIR));
4351 }
4352 
4353 static void i965_irq_preinstall(struct drm_device * dev)
4354 {
4355 	struct drm_i915_private *dev_priv = dev->dev_private;
4356 	int pipe;
4357 
4358 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4359 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4360 
4361 	I915_WRITE(HWSTAM, 0xeffe);
4362 	for_each_pipe(dev_priv, pipe)
4363 		I915_WRITE(PIPESTAT(pipe), 0);
4364 	I915_WRITE(IMR, 0xffffffff);
4365 	I915_WRITE(IER, 0x0);
4366 	POSTING_READ(IER);
4367 }
4368 
4369 static int i965_irq_postinstall(struct drm_device *dev)
4370 {
4371 	struct drm_i915_private *dev_priv = dev->dev_private;
4372 	u32 enable_mask;
4373 	u32 error_mask;
4374 	unsigned long irqflags;
4375 
4376 	/* Unmask the interrupts that we always want on. */
4377 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4378 			       I915_DISPLAY_PORT_INTERRUPT |
4379 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4380 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4381 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4382 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4383 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4384 
4385 	enable_mask = ~dev_priv->irq_mask;
4386 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4387 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4388 	enable_mask |= I915_USER_INTERRUPT;
4389 
4390 	if (IS_G4X(dev))
4391 		enable_mask |= I915_BSD_USER_INTERRUPT;
4392 
4393 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4394 	 * just to make the assert_spin_locked check happy. */
4395 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4396 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4397 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4398 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4399 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4400 
4401 	/*
4402 	 * Enable some error detection, note the instruction error mask
4403 	 * bit is reserved, so we leave it masked.
4404 	 */
4405 	if (IS_G4X(dev)) {
4406 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4407 			       GM45_ERROR_MEM_PRIV |
4408 			       GM45_ERROR_CP_PRIV |
4409 			       I915_ERROR_MEMORY_REFRESH);
4410 	} else {
4411 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4412 			       I915_ERROR_MEMORY_REFRESH);
4413 	}
4414 	I915_WRITE(EMR, error_mask);
4415 
4416 	I915_WRITE(IMR, dev_priv->irq_mask);
4417 	I915_WRITE(IER, enable_mask);
4418 	POSTING_READ(IER);
4419 
4420 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4421 	POSTING_READ(PORT_HOTPLUG_EN);
4422 
4423 	i915_enable_asle_pipestat(dev);
4424 
4425 	return 0;
4426 }
4427 
4428 static void i915_hpd_irq_setup(struct drm_device *dev)
4429 {
4430 	struct drm_i915_private *dev_priv = dev->dev_private;
4431 	struct intel_encoder *intel_encoder;
4432 	u32 hotplug_en;
4433 
4434 	assert_spin_locked(&dev_priv->irq_lock);
4435 
4436 	if (I915_HAS_HOTPLUG(dev)) {
4437 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4438 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4439 		/* Note HDMI and DP share hotplug bits */
4440 		/* enable bits are the same for all generations */
4441 		for_each_intel_encoder(dev, intel_encoder)
4442 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4443 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4444 		/* Programming the CRT detection parameters tends
4445 		   to generate a spurious hotplug event about three
4446 		   seconds later.  So just do it once.
4447 		*/
4448 		if (IS_G4X(dev))
4449 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4450 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4451 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4452 
4453 		/* Ignore TV since it's buggy */
4454 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4455 	}
4456 }
4457 
4458 static irqreturn_t i965_irq_handler(int irq, void *arg)
4459 {
4460 	struct drm_device *dev = arg;
4461 	struct drm_i915_private *dev_priv = dev->dev_private;
4462 	u32 iir, new_iir;
4463 	u32 pipe_stats[I915_MAX_PIPES];
4464 	unsigned long irqflags;
4465 	int ret = IRQ_NONE, pipe;
4466 	u32 flip_mask =
4467 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4468 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4469 
4470 	iir = I915_READ(IIR);
4471 
4472 	for (;;) {
4473 		bool irq_received = (iir & ~flip_mask) != 0;
4474 		bool blc_event = false;
4475 
4476 		/* Can't rely on pipestat interrupt bit in iir as it might
4477 		 * have been cleared after the pipestat interrupt was received.
4478 		 * It doesn't set the bit in iir again, but it still produces
4479 		 * interrupts (for non-MSI).
4480 		 */
4481 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4482 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4483 			i915_handle_error(dev, false,
4484 					  "Command parser error, iir 0x%08x",
4485 					  iir);
4486 
4487 		for_each_pipe(dev_priv, pipe) {
4488 			int reg = PIPESTAT(pipe);
4489 			pipe_stats[pipe] = I915_READ(reg);
4490 
4491 			/*
4492 			 * Clear the PIPE*STAT regs before the IIR
4493 			 */
4494 			if (pipe_stats[pipe] & 0x8000ffff) {
4495 				I915_WRITE(reg, pipe_stats[pipe]);
4496 				irq_received = true;
4497 			}
4498 		}
4499 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4500 
4501 		if (!irq_received)
4502 			break;
4503 
4504 		ret = IRQ_HANDLED;
4505 
4506 		/* Consume port.  Then clear IIR or we'll miss events */
4507 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4508 			i9xx_hpd_irq_handler(dev);
4509 
4510 		I915_WRITE(IIR, iir & ~flip_mask);
4511 		new_iir = I915_READ(IIR); /* Flush posted writes */
4512 
4513 		if (iir & I915_USER_INTERRUPT)
4514 			notify_ring(dev, &dev_priv->ring[RCS]);
4515 		if (iir & I915_BSD_USER_INTERRUPT)
4516 			notify_ring(dev, &dev_priv->ring[VCS]);
4517 
4518 		for_each_pipe(dev_priv, pipe) {
4519 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4520 			    i915_handle_vblank(dev, pipe, pipe, iir))
4521 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4522 
4523 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4524 				blc_event = true;
4525 
4526 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4527 				i9xx_pipe_crc_irq_handler(dev, pipe);
4528 
4529 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4530 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4531 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4532 		}
4533 
4534 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4535 			intel_opregion_asle_intr(dev);
4536 
4537 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4538 			gmbus_irq_handler(dev);
4539 
4540 		/* With MSI, interrupts are only generated when iir
4541 		 * transitions from zero to nonzero.  If another bit got
4542 		 * set while we were handling the existing iir bits, then
4543 		 * we would never get another interrupt.
4544 		 *
4545 		 * This is fine on non-MSI as well, as if we hit this path
4546 		 * we avoid exiting the interrupt handler only to generate
4547 		 * another one.
4548 		 *
4549 		 * Note that for MSI this could cause a stray interrupt report
4550 		 * if an interrupt landed in the time between writing IIR and
4551 		 * the posting read.  This should be rare enough to never
4552 		 * trigger the 99% of 100,000 interrupts test for disabling
4553 		 * stray interrupts.
4554 		 */
4555 		iir = new_iir;
4556 	}
4557 
4558 	i915_update_dri1_breadcrumb(dev);
4559 
4560 	return ret;
4561 }
4562 
4563 static void i965_irq_uninstall(struct drm_device * dev)
4564 {
4565 	struct drm_i915_private *dev_priv = dev->dev_private;
4566 	int pipe;
4567 
4568 	if (!dev_priv)
4569 		return;
4570 
4571 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4572 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4573 
4574 	I915_WRITE(HWSTAM, 0xffffffff);
4575 	for_each_pipe(dev_priv, pipe)
4576 		I915_WRITE(PIPESTAT(pipe), 0);
4577 	I915_WRITE(IMR, 0xffffffff);
4578 	I915_WRITE(IER, 0x0);
4579 
4580 	for_each_pipe(dev_priv, pipe)
4581 		I915_WRITE(PIPESTAT(pipe),
4582 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4583 	I915_WRITE(IIR, I915_READ(IIR));
4584 }
4585 
4586 static void intel_hpd_irq_reenable(struct work_struct *work)
4587 {
4588 	struct drm_i915_private *dev_priv =
4589 		container_of(work, typeof(*dev_priv),
4590 			     hotplug_reenable_work.work);
4591 	struct drm_device *dev = dev_priv->dev;
4592 	struct drm_mode_config *mode_config = &dev->mode_config;
4593 	unsigned long irqflags;
4594 	int i;
4595 
4596 	intel_runtime_pm_get(dev_priv);
4597 
4598 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4599 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4600 		struct drm_connector *connector;
4601 
4602 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4603 			continue;
4604 
4605 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4606 
4607 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4608 			struct intel_connector *intel_connector = to_intel_connector(connector);
4609 
4610 			if (intel_connector->encoder->hpd_pin == i) {
4611 				if (connector->polled != intel_connector->polled)
4612 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4613 							 connector->name);
4614 				connector->polled = intel_connector->polled;
4615 				if (!connector->polled)
4616 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4617 			}
4618 		}
4619 	}
4620 	if (dev_priv->display.hpd_irq_setup)
4621 		dev_priv->display.hpd_irq_setup(dev);
4622 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4623 
4624 	intel_runtime_pm_put(dev_priv);
4625 }
4626 
4627 void intel_irq_init(struct drm_device *dev)
4628 {
4629 	struct drm_i915_private *dev_priv = dev->dev_private;
4630 
4631 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4632 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4633 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4634 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4635 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4636 
4637 	/* Let's track the enabled rps events */
4638 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4639 		/* WaGsvRC0ResidencyMethod:vlv */
4640 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4641 	else
4642 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4643 
4644 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4645 		    i915_hangcheck_elapsed,
4646 		    (unsigned long) dev);
4647 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4648 			  intel_hpd_irq_reenable);
4649 
4650 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4651 
4652 	/* Haven't installed the IRQ handler yet */
4653 	dev_priv->pm._irqs_disabled = true;
4654 
4655 	if (IS_GEN2(dev)) {
4656 		dev->max_vblank_count = 0;
4657 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4658 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4659 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4660 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4661 	} else {
4662 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4663 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4664 	}
4665 
4666 	/*
4667 	 * Opt out of the vblank disable timer on everything except gen2.
4668 	 * Gen2 doesn't have a hardware frame counter and so depends on
4669 	 * vblank interrupts to produce sane vblank seuquence numbers.
4670 	 */
4671 	if (!IS_GEN2(dev))
4672 		dev->vblank_disable_immediate = true;
4673 
4674 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4675 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4676 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4677 	}
4678 
4679 	if (IS_CHERRYVIEW(dev)) {
4680 		dev->driver->irq_handler = cherryview_irq_handler;
4681 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4682 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4683 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4684 		dev->driver->enable_vblank = valleyview_enable_vblank;
4685 		dev->driver->disable_vblank = valleyview_disable_vblank;
4686 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4687 	} else if (IS_VALLEYVIEW(dev)) {
4688 		dev->driver->irq_handler = valleyview_irq_handler;
4689 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4690 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4691 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4692 		dev->driver->enable_vblank = valleyview_enable_vblank;
4693 		dev->driver->disable_vblank = valleyview_disable_vblank;
4694 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4695 	} else if (IS_GEN8(dev)) {
4696 		dev->driver->irq_handler = gen8_irq_handler;
4697 		dev->driver->irq_preinstall = gen8_irq_reset;
4698 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4699 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4700 		dev->driver->enable_vblank = gen8_enable_vblank;
4701 		dev->driver->disable_vblank = gen8_disable_vblank;
4702 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4703 	} else if (HAS_PCH_SPLIT(dev)) {
4704 		dev->driver->irq_handler = ironlake_irq_handler;
4705 		dev->driver->irq_preinstall = ironlake_irq_reset;
4706 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4707 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4708 		dev->driver->enable_vblank = ironlake_enable_vblank;
4709 		dev->driver->disable_vblank = ironlake_disable_vblank;
4710 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4711 	} else {
4712 		if (INTEL_INFO(dev)->gen == 2) {
4713 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4714 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4715 			dev->driver->irq_handler = i8xx_irq_handler;
4716 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4717 		} else if (INTEL_INFO(dev)->gen == 3) {
4718 			dev->driver->irq_preinstall = i915_irq_preinstall;
4719 			dev->driver->irq_postinstall = i915_irq_postinstall;
4720 			dev->driver->irq_uninstall = i915_irq_uninstall;
4721 			dev->driver->irq_handler = i915_irq_handler;
4722 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4723 		} else {
4724 			dev->driver->irq_preinstall = i965_irq_preinstall;
4725 			dev->driver->irq_postinstall = i965_irq_postinstall;
4726 			dev->driver->irq_uninstall = i965_irq_uninstall;
4727 			dev->driver->irq_handler = i965_irq_handler;
4728 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4729 		}
4730 		dev->driver->enable_vblank = i915_enable_vblank;
4731 		dev->driver->disable_vblank = i915_disable_vblank;
4732 	}
4733 }
4734 
4735 void intel_hpd_init(struct drm_device *dev)
4736 {
4737 	struct drm_i915_private *dev_priv = dev->dev_private;
4738 	struct drm_mode_config *mode_config = &dev->mode_config;
4739 	struct drm_connector *connector;
4740 	unsigned long irqflags;
4741 	int i;
4742 
4743 	for (i = 1; i < HPD_NUM_PINS; i++) {
4744 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4745 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4746 	}
4747 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4748 		struct intel_connector *intel_connector = to_intel_connector(connector);
4749 		connector->polled = intel_connector->polled;
4750 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4751 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4752 		if (intel_connector->mst_port)
4753 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4754 	}
4755 
4756 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4757 	 * just to make the assert_spin_locked checks happy. */
4758 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4759 	if (dev_priv->display.hpd_irq_setup)
4760 		dev_priv->display.hpd_irq_setup(dev);
4761 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4762 }
4763 
4764 /* Disable interrupts so we can allow runtime PM. */
4765 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4766 {
4767 	struct drm_i915_private *dev_priv = dev->dev_private;
4768 
4769 	dev->driver->irq_uninstall(dev);
4770 	dev_priv->pm._irqs_disabled = true;
4771 }
4772 
4773 /* Restore interrupts so we can recover from runtime PM. */
4774 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4775 {
4776 	struct drm_i915_private *dev_priv = dev->dev_private;
4777 
4778 	dev_priv->pm._irqs_disabled = false;
4779 	dev->driver->irq_preinstall(dev);
4780 	dev->driver->irq_postinstall(dev);
4781 }
4782