1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/sysrq.h> 32 #include <linux/slab.h> 33 #include <linux/circ_buf.h> 34 #include <drm/drmP.h> 35 #include <drm/i915_drm.h> 36 #include "i915_drv.h" 37 #include "i915_trace.h" 38 #include "intel_drv.h" 39 40 static const u32 hpd_ibx[] = { 41 [HPD_CRT] = SDE_CRT_HOTPLUG, 42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 46 }; 47 48 static const u32 hpd_cpt[] = { 49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 54 }; 55 56 static const u32 hpd_mask_i915[] = { 57 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 63 }; 64 65 static const u32 hpd_status_g4x[] = { 66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 72 }; 73 74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */ 75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 81 }; 82 83 /* IIR can theoretically queue up two events. Be paranoid. */ 84 #define GEN8_IRQ_RESET_NDX(type, which) do { \ 85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ 86 POSTING_READ(GEN8_##type##_IMR(which)); \ 87 I915_WRITE(GEN8_##type##_IER(which), 0); \ 88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 89 POSTING_READ(GEN8_##type##_IIR(which)); \ 90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 91 POSTING_READ(GEN8_##type##_IIR(which)); \ 92 } while (0) 93 94 #define GEN5_IRQ_RESET(type) do { \ 95 I915_WRITE(type##IMR, 0xffffffff); \ 96 POSTING_READ(type##IMR); \ 97 I915_WRITE(type##IER, 0); \ 98 I915_WRITE(type##IIR, 0xffffffff); \ 99 POSTING_READ(type##IIR); \ 100 I915_WRITE(type##IIR, 0xffffffff); \ 101 POSTING_READ(type##IIR); \ 102 } while (0) 103 104 /* 105 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 106 */ 107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \ 108 u32 val = I915_READ(reg); \ 109 if (val) { \ 110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \ 111 (reg), val); \ 112 I915_WRITE((reg), 0xffffffff); \ 113 POSTING_READ(reg); \ 114 I915_WRITE((reg), 0xffffffff); \ 115 POSTING_READ(reg); \ 116 } \ 117 } while (0) 118 119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ 120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \ 121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ 122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ 123 POSTING_READ(GEN8_##type##_IER(which)); \ 124 } while (0) 125 126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \ 127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \ 128 I915_WRITE(type##IMR, (imr_val)); \ 129 I915_WRITE(type##IER, (ier_val)); \ 130 POSTING_READ(type##IER); \ 131 } while (0) 132 133 /* For display hotplug interrupt */ 134 static void 135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask) 136 { 137 assert_spin_locked(&dev_priv->irq_lock); 138 139 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 140 return; 141 142 if ((dev_priv->irq_mask & mask) != 0) { 143 dev_priv->irq_mask &= ~mask; 144 I915_WRITE(DEIMR, dev_priv->irq_mask); 145 POSTING_READ(DEIMR); 146 } 147 } 148 149 static void 150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask) 151 { 152 assert_spin_locked(&dev_priv->irq_lock); 153 154 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 155 return; 156 157 if ((dev_priv->irq_mask & mask) != mask) { 158 dev_priv->irq_mask |= mask; 159 I915_WRITE(DEIMR, dev_priv->irq_mask); 160 POSTING_READ(DEIMR); 161 } 162 } 163 164 /** 165 * ilk_update_gt_irq - update GTIMR 166 * @dev_priv: driver private 167 * @interrupt_mask: mask of interrupt bits to update 168 * @enabled_irq_mask: mask of interrupt bits to enable 169 */ 170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 171 uint32_t interrupt_mask, 172 uint32_t enabled_irq_mask) 173 { 174 assert_spin_locked(&dev_priv->irq_lock); 175 176 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 177 return; 178 179 dev_priv->gt_irq_mask &= ~interrupt_mask; 180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 182 POSTING_READ(GTIMR); 183 } 184 185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 186 { 187 ilk_update_gt_irq(dev_priv, mask, mask); 188 } 189 190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) 191 { 192 ilk_update_gt_irq(dev_priv, mask, 0); 193 } 194 195 /** 196 * snb_update_pm_irq - update GEN6_PMIMR 197 * @dev_priv: driver private 198 * @interrupt_mask: mask of interrupt bits to update 199 * @enabled_irq_mask: mask of interrupt bits to enable 200 */ 201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 202 uint32_t interrupt_mask, 203 uint32_t enabled_irq_mask) 204 { 205 uint32_t new_val; 206 207 assert_spin_locked(&dev_priv->irq_lock); 208 209 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 210 return; 211 212 new_val = dev_priv->pm_irq_mask; 213 new_val &= ~interrupt_mask; 214 new_val |= (~enabled_irq_mask & interrupt_mask); 215 216 if (new_val != dev_priv->pm_irq_mask) { 217 dev_priv->pm_irq_mask = new_val; 218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask); 219 POSTING_READ(GEN6_PMIMR); 220 } 221 } 222 223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) 224 { 225 snb_update_pm_irq(dev_priv, mask, mask); 226 } 227 228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) 229 { 230 snb_update_pm_irq(dev_priv, mask, 0); 231 } 232 233 static bool ivb_can_enable_err_int(struct drm_device *dev) 234 { 235 struct drm_i915_private *dev_priv = dev->dev_private; 236 struct intel_crtc *crtc; 237 enum pipe pipe; 238 239 assert_spin_locked(&dev_priv->irq_lock); 240 241 for_each_pipe(dev_priv, pipe) { 242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 243 244 if (crtc->cpu_fifo_underrun_disabled) 245 return false; 246 } 247 248 return true; 249 } 250 251 /** 252 * bdw_update_pm_irq - update GT interrupt 2 253 * @dev_priv: driver private 254 * @interrupt_mask: mask of interrupt bits to update 255 * @enabled_irq_mask: mask of interrupt bits to enable 256 * 257 * Copied from the snb function, updated with relevant register offsets 258 */ 259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv, 260 uint32_t interrupt_mask, 261 uint32_t enabled_irq_mask) 262 { 263 uint32_t new_val; 264 265 assert_spin_locked(&dev_priv->irq_lock); 266 267 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 268 return; 269 270 new_val = dev_priv->pm_irq_mask; 271 new_val &= ~interrupt_mask; 272 new_val |= (~enabled_irq_mask & interrupt_mask); 273 274 if (new_val != dev_priv->pm_irq_mask) { 275 dev_priv->pm_irq_mask = new_val; 276 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask); 277 POSTING_READ(GEN8_GT_IMR(2)); 278 } 279 } 280 281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) 282 { 283 bdw_update_pm_irq(dev_priv, mask, mask); 284 } 285 286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) 287 { 288 bdw_update_pm_irq(dev_priv, mask, 0); 289 } 290 291 static bool cpt_can_enable_serr_int(struct drm_device *dev) 292 { 293 struct drm_i915_private *dev_priv = dev->dev_private; 294 enum pipe pipe; 295 struct intel_crtc *crtc; 296 297 assert_spin_locked(&dev_priv->irq_lock); 298 299 for_each_pipe(dev_priv, pipe) { 300 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 301 302 if (crtc->pch_fifo_underrun_disabled) 303 return false; 304 } 305 306 return true; 307 } 308 309 void i9xx_check_fifo_underruns(struct drm_device *dev) 310 { 311 struct drm_i915_private *dev_priv = dev->dev_private; 312 struct intel_crtc *crtc; 313 unsigned long flags; 314 315 spin_lock_irqsave(&dev_priv->irq_lock, flags); 316 317 for_each_intel_crtc(dev, crtc) { 318 u32 reg = PIPESTAT(crtc->pipe); 319 u32 pipestat; 320 321 if (crtc->cpu_fifo_underrun_disabled) 322 continue; 323 324 pipestat = I915_READ(reg) & 0xffff0000; 325 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0) 326 continue; 327 328 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS); 329 POSTING_READ(reg); 330 331 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe)); 332 } 333 334 spin_unlock_irqrestore(&dev_priv->irq_lock, flags); 335 } 336 337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev, 338 enum pipe pipe, 339 bool enable, bool old) 340 { 341 struct drm_i915_private *dev_priv = dev->dev_private; 342 u32 reg = PIPESTAT(pipe); 343 u32 pipestat = I915_READ(reg) & 0xffff0000; 344 345 assert_spin_locked(&dev_priv->irq_lock); 346 347 if (enable) { 348 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS); 349 POSTING_READ(reg); 350 } else { 351 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS) 352 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe)); 353 } 354 } 355 356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev, 357 enum pipe pipe, bool enable) 358 { 359 struct drm_i915_private *dev_priv = dev->dev_private; 360 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN : 361 DE_PIPEB_FIFO_UNDERRUN; 362 363 if (enable) 364 ironlake_enable_display_irq(dev_priv, bit); 365 else 366 ironlake_disable_display_irq(dev_priv, bit); 367 } 368 369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev, 370 enum pipe pipe, 371 bool enable, bool old) 372 { 373 struct drm_i915_private *dev_priv = dev->dev_private; 374 if (enable) { 375 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe)); 376 377 if (!ivb_can_enable_err_int(dev)) 378 return; 379 380 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB); 381 } else { 382 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB); 383 384 if (old && 385 I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) { 386 DRM_ERROR("uncleared fifo underrun on pipe %c\n", 387 pipe_name(pipe)); 388 } 389 } 390 } 391 392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev, 393 enum pipe pipe, bool enable) 394 { 395 struct drm_i915_private *dev_priv = dev->dev_private; 396 397 assert_spin_locked(&dev_priv->irq_lock); 398 399 if (enable) 400 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN; 401 else 402 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN; 403 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 404 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 405 } 406 407 /** 408 * ibx_display_interrupt_update - update SDEIMR 409 * @dev_priv: driver private 410 * @interrupt_mask: mask of interrupt bits to update 411 * @enabled_irq_mask: mask of interrupt bits to enable 412 */ 413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 414 uint32_t interrupt_mask, 415 uint32_t enabled_irq_mask) 416 { 417 uint32_t sdeimr = I915_READ(SDEIMR); 418 sdeimr &= ~interrupt_mask; 419 sdeimr |= (~enabled_irq_mask & interrupt_mask); 420 421 assert_spin_locked(&dev_priv->irq_lock); 422 423 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 424 return; 425 426 I915_WRITE(SDEIMR, sdeimr); 427 POSTING_READ(SDEIMR); 428 } 429 #define ibx_enable_display_interrupt(dev_priv, bits) \ 430 ibx_display_interrupt_update((dev_priv), (bits), (bits)) 431 #define ibx_disable_display_interrupt(dev_priv, bits) \ 432 ibx_display_interrupt_update((dev_priv), (bits), 0) 433 434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev, 435 enum transcoder pch_transcoder, 436 bool enable) 437 { 438 struct drm_i915_private *dev_priv = dev->dev_private; 439 uint32_t bit = (pch_transcoder == TRANSCODER_A) ? 440 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER; 441 442 if (enable) 443 ibx_enable_display_interrupt(dev_priv, bit); 444 else 445 ibx_disable_display_interrupt(dev_priv, bit); 446 } 447 448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev, 449 enum transcoder pch_transcoder, 450 bool enable, bool old) 451 { 452 struct drm_i915_private *dev_priv = dev->dev_private; 453 454 if (enable) { 455 I915_WRITE(SERR_INT, 456 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)); 457 458 if (!cpt_can_enable_serr_int(dev)) 459 return; 460 461 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT); 462 } else { 463 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT); 464 465 if (old && I915_READ(SERR_INT) & 466 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) { 467 DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n", 468 transcoder_name(pch_transcoder)); 469 } 470 } 471 } 472 473 /** 474 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages 475 * @dev: drm device 476 * @pipe: pipe 477 * @enable: true if we want to report FIFO underrun errors, false otherwise 478 * 479 * This function makes us disable or enable CPU fifo underruns for a specific 480 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun 481 * reporting for one pipe may also disable all the other CPU error interruts for 482 * the other pipes, due to the fact that there's just one interrupt mask/enable 483 * bit for all the pipes. 484 * 485 * Returns the previous state of underrun reporting. 486 */ 487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev, 488 enum pipe pipe, bool enable) 489 { 490 struct drm_i915_private *dev_priv = dev->dev_private; 491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 493 bool old; 494 495 assert_spin_locked(&dev_priv->irq_lock); 496 497 old = !intel_crtc->cpu_fifo_underrun_disabled; 498 intel_crtc->cpu_fifo_underrun_disabled = !enable; 499 500 if (HAS_GMCH_DISPLAY(dev)) 501 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old); 502 else if (IS_GEN5(dev) || IS_GEN6(dev)) 503 ironlake_set_fifo_underrun_reporting(dev, pipe, enable); 504 else if (IS_GEN7(dev)) 505 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old); 506 else if (IS_GEN8(dev)) 507 broadwell_set_fifo_underrun_reporting(dev, pipe, enable); 508 509 return old; 510 } 511 512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev, 513 enum pipe pipe, bool enable) 514 { 515 struct drm_i915_private *dev_priv = dev->dev_private; 516 unsigned long flags; 517 bool ret; 518 519 spin_lock_irqsave(&dev_priv->irq_lock, flags); 520 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable); 521 spin_unlock_irqrestore(&dev_priv->irq_lock, flags); 522 523 return ret; 524 } 525 526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev, 527 enum pipe pipe) 528 { 529 struct drm_i915_private *dev_priv = dev->dev_private; 530 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 532 533 return !intel_crtc->cpu_fifo_underrun_disabled; 534 } 535 536 /** 537 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages 538 * @dev: drm device 539 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older) 540 * @enable: true if we want to report FIFO underrun errors, false otherwise 541 * 542 * This function makes us disable or enable PCH fifo underruns for a specific 543 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO 544 * underrun reporting for one transcoder may also disable all the other PCH 545 * error interruts for the other transcoders, due to the fact that there's just 546 * one interrupt mask/enable bit for all the transcoders. 547 * 548 * Returns the previous state of underrun reporting. 549 */ 550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev, 551 enum transcoder pch_transcoder, 552 bool enable) 553 { 554 struct drm_i915_private *dev_priv = dev->dev_private; 555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder]; 556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 557 unsigned long flags; 558 bool old; 559 560 /* 561 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT 562 * has only one pch transcoder A that all pipes can use. To avoid racy 563 * pch transcoder -> pipe lookups from interrupt code simply store the 564 * underrun statistics in crtc A. Since we never expose this anywhere 565 * nor use it outside of the fifo underrun code here using the "wrong" 566 * crtc on LPT won't cause issues. 567 */ 568 569 spin_lock_irqsave(&dev_priv->irq_lock, flags); 570 571 old = !intel_crtc->pch_fifo_underrun_disabled; 572 intel_crtc->pch_fifo_underrun_disabled = !enable; 573 574 if (HAS_PCH_IBX(dev)) 575 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable); 576 else 577 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old); 578 579 spin_unlock_irqrestore(&dev_priv->irq_lock, flags); 580 return old; 581 } 582 583 584 static void 585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 586 u32 enable_mask, u32 status_mask) 587 { 588 u32 reg = PIPESTAT(pipe); 589 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; 590 591 assert_spin_locked(&dev_priv->irq_lock); 592 593 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 594 status_mask & ~PIPESTAT_INT_STATUS_MASK, 595 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 596 pipe_name(pipe), enable_mask, status_mask)) 597 return; 598 599 if ((pipestat & enable_mask) == enable_mask) 600 return; 601 602 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 603 604 /* Enable the interrupt, clear any pending status */ 605 pipestat |= enable_mask | status_mask; 606 I915_WRITE(reg, pipestat); 607 POSTING_READ(reg); 608 } 609 610 static void 611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 612 u32 enable_mask, u32 status_mask) 613 { 614 u32 reg = PIPESTAT(pipe); 615 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; 616 617 assert_spin_locked(&dev_priv->irq_lock); 618 619 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 620 status_mask & ~PIPESTAT_INT_STATUS_MASK, 621 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 622 pipe_name(pipe), enable_mask, status_mask)) 623 return; 624 625 if ((pipestat & enable_mask) == 0) 626 return; 627 628 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 629 630 pipestat &= ~enable_mask; 631 I915_WRITE(reg, pipestat); 632 POSTING_READ(reg); 633 } 634 635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask) 636 { 637 u32 enable_mask = status_mask << 16; 638 639 /* 640 * On pipe A we don't support the PSR interrupt yet, 641 * on pipe B and C the same bit MBZ. 642 */ 643 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 644 return 0; 645 /* 646 * On pipe B and C we don't support the PSR interrupt yet, on pipe 647 * A the same bit is for perf counters which we don't use either. 648 */ 649 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 650 return 0; 651 652 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 653 SPRITE0_FLIP_DONE_INT_EN_VLV | 654 SPRITE1_FLIP_DONE_INT_EN_VLV); 655 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 656 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 657 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 658 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 659 660 return enable_mask; 661 } 662 663 void 664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 665 u32 status_mask) 666 { 667 u32 enable_mask; 668 669 if (IS_VALLEYVIEW(dev_priv->dev)) 670 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev, 671 status_mask); 672 else 673 enable_mask = status_mask << 16; 674 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask); 675 } 676 677 void 678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 679 u32 status_mask) 680 { 681 u32 enable_mask; 682 683 if (IS_VALLEYVIEW(dev_priv->dev)) 684 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev, 685 status_mask); 686 else 687 enable_mask = status_mask << 16; 688 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask); 689 } 690 691 /** 692 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 693 */ 694 static void i915_enable_asle_pipestat(struct drm_device *dev) 695 { 696 struct drm_i915_private *dev_priv = dev->dev_private; 697 unsigned long irqflags; 698 699 if (!dev_priv->opregion.asle || !IS_MOBILE(dev)) 700 return; 701 702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 703 704 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 705 if (INTEL_INFO(dev)->gen >= 4) 706 i915_enable_pipestat(dev_priv, PIPE_A, 707 PIPE_LEGACY_BLC_EVENT_STATUS); 708 709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 710 } 711 712 /** 713 * i915_pipe_enabled - check if a pipe is enabled 714 * @dev: DRM device 715 * @pipe: pipe to check 716 * 717 * Reading certain registers when the pipe is disabled can hang the chip. 718 * Use this routine to make sure the PLL is running and the pipe is active 719 * before reading such registers if unsure. 720 */ 721 static int 722 i915_pipe_enabled(struct drm_device *dev, int pipe) 723 { 724 struct drm_i915_private *dev_priv = dev->dev_private; 725 726 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 727 /* Locking is horribly broken here, but whatever. */ 728 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 730 731 return intel_crtc->active; 732 } else { 733 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE; 734 } 735 } 736 737 /* 738 * This timing diagram depicts the video signal in and 739 * around the vertical blanking period. 740 * 741 * Assumptions about the fictitious mode used in this example: 742 * vblank_start >= 3 743 * vsync_start = vblank_start + 1 744 * vsync_end = vblank_start + 2 745 * vtotal = vblank_start + 3 746 * 747 * start of vblank: 748 * latch double buffered registers 749 * increment frame counter (ctg+) 750 * generate start of vblank interrupt (gen4+) 751 * | 752 * | frame start: 753 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 754 * | may be shifted forward 1-3 extra lines via PIPECONF 755 * | | 756 * | | start of vsync: 757 * | | generate vsync interrupt 758 * | | | 759 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 760 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 761 * ----va---> <-----------------vb--------------------> <--------va------------- 762 * | | <----vs-----> | 763 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 764 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 765 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 766 * | | | 767 * last visible pixel first visible pixel 768 * | increment frame counter (gen3/4) 769 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 770 * 771 * x = horizontal active 772 * _ = horizontal blanking 773 * hs = horizontal sync 774 * va = vertical active 775 * vb = vertical blanking 776 * vs = vertical sync 777 * vbs = vblank_start (number) 778 * 779 * Summary: 780 * - most events happen at the start of horizontal sync 781 * - frame start happens at the start of horizontal blank, 1-4 lines 782 * (depending on PIPECONF settings) after the start of vblank 783 * - gen3/4 pixel and frame counter are synchronized with the start 784 * of horizontal active on the first line of vertical active 785 */ 786 787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe) 788 { 789 /* Gen2 doesn't have a hardware frame counter */ 790 return 0; 791 } 792 793 /* Called from drm generic code, passed a 'crtc', which 794 * we use as a pipe index 795 */ 796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe) 797 { 798 struct drm_i915_private *dev_priv = dev->dev_private; 799 unsigned long high_frame; 800 unsigned long low_frame; 801 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 802 803 if (!i915_pipe_enabled(dev, pipe)) { 804 DRM_DEBUG_DRIVER("trying to get vblank count for disabled " 805 "pipe %c\n", pipe_name(pipe)); 806 return 0; 807 } 808 809 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 810 struct intel_crtc *intel_crtc = 811 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 812 const struct drm_display_mode *mode = 813 &intel_crtc->config.adjusted_mode; 814 815 htotal = mode->crtc_htotal; 816 hsync_start = mode->crtc_hsync_start; 817 vbl_start = mode->crtc_vblank_start; 818 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 819 vbl_start = DIV_ROUND_UP(vbl_start, 2); 820 } else { 821 enum transcoder cpu_transcoder = (enum transcoder) pipe; 822 823 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1; 824 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1; 825 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1; 826 if ((I915_READ(PIPECONF(cpu_transcoder)) & 827 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE) 828 vbl_start = DIV_ROUND_UP(vbl_start, 2); 829 } 830 831 /* Convert to pixel count */ 832 vbl_start *= htotal; 833 834 /* Start of vblank event occurs at start of hsync */ 835 vbl_start -= htotal - hsync_start; 836 837 high_frame = PIPEFRAME(pipe); 838 low_frame = PIPEFRAMEPIXEL(pipe); 839 840 /* 841 * High & low register fields aren't synchronized, so make sure 842 * we get a low value that's stable across two reads of the high 843 * register. 844 */ 845 do { 846 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; 847 low = I915_READ(low_frame); 848 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; 849 } while (high1 != high2); 850 851 high1 >>= PIPE_FRAME_HIGH_SHIFT; 852 pixel = low & PIPE_PIXEL_MASK; 853 low >>= PIPE_FRAME_LOW_SHIFT; 854 855 /* 856 * The frame counter increments at beginning of active. 857 * Cook up a vblank counter by also checking the pixel 858 * counter against vblank start. 859 */ 860 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 861 } 862 863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe) 864 { 865 struct drm_i915_private *dev_priv = dev->dev_private; 866 int reg = PIPE_FRMCOUNT_GM45(pipe); 867 868 if (!i915_pipe_enabled(dev, pipe)) { 869 DRM_DEBUG_DRIVER("trying to get vblank count for disabled " 870 "pipe %c\n", pipe_name(pipe)); 871 return 0; 872 } 873 874 return I915_READ(reg); 875 } 876 877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */ 878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__)) 879 880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 881 { 882 struct drm_device *dev = crtc->base.dev; 883 struct drm_i915_private *dev_priv = dev->dev_private; 884 const struct drm_display_mode *mode = &crtc->config.adjusted_mode; 885 enum pipe pipe = crtc->pipe; 886 int position, vtotal; 887 888 vtotal = mode->crtc_vtotal; 889 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 890 vtotal /= 2; 891 892 if (IS_GEN2(dev)) 893 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 894 else 895 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 896 897 /* 898 * See update_scanline_offset() for the details on the 899 * scanline_offset adjustment. 900 */ 901 return (position + crtc->scanline_offset) % vtotal; 902 } 903 904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe, 905 unsigned int flags, int *vpos, int *hpos, 906 ktime_t *stime, ktime_t *etime) 907 { 908 struct drm_i915_private *dev_priv = dev->dev_private; 909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 911 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode; 912 int position; 913 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 914 bool in_vbl = true; 915 int ret = 0; 916 unsigned long irqflags; 917 918 if (!intel_crtc->active) { 919 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 920 "pipe %c\n", pipe_name(pipe)); 921 return 0; 922 } 923 924 htotal = mode->crtc_htotal; 925 hsync_start = mode->crtc_hsync_start; 926 vtotal = mode->crtc_vtotal; 927 vbl_start = mode->crtc_vblank_start; 928 vbl_end = mode->crtc_vblank_end; 929 930 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 931 vbl_start = DIV_ROUND_UP(vbl_start, 2); 932 vbl_end /= 2; 933 vtotal /= 2; 934 } 935 936 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; 937 938 /* 939 * Lock uncore.lock, as we will do multiple timing critical raw 940 * register reads, potentially with preemption disabled, so the 941 * following code must not block on uncore.lock. 942 */ 943 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 944 945 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 946 947 /* Get optional system timestamp before query. */ 948 if (stime) 949 *stime = ktime_get(); 950 951 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { 952 /* No obvious pixelcount register. Only query vertical 953 * scanout position from Display scan line register. 954 */ 955 position = __intel_get_crtc_scanline(intel_crtc); 956 } else { 957 /* Have access to pixelcount since start of frame. 958 * We can split this into vertical and horizontal 959 * scanout position. 960 */ 961 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 962 963 /* convert to pixel counts */ 964 vbl_start *= htotal; 965 vbl_end *= htotal; 966 vtotal *= htotal; 967 968 /* 969 * In interlaced modes, the pixel counter counts all pixels, 970 * so one field will have htotal more pixels. In order to avoid 971 * the reported position from jumping backwards when the pixel 972 * counter is beyond the length of the shorter field, just 973 * clamp the position the length of the shorter field. This 974 * matches how the scanline counter based position works since 975 * the scanline counter doesn't count the two half lines. 976 */ 977 if (position >= vtotal) 978 position = vtotal - 1; 979 980 /* 981 * Start of vblank interrupt is triggered at start of hsync, 982 * just prior to the first active line of vblank. However we 983 * consider lines to start at the leading edge of horizontal 984 * active. So, should we get here before we've crossed into 985 * the horizontal active of the first line in vblank, we would 986 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 987 * always add htotal-hsync_start to the current pixel position. 988 */ 989 position = (position + htotal - hsync_start) % vtotal; 990 } 991 992 /* Get optional system timestamp after query. */ 993 if (etime) 994 *etime = ktime_get(); 995 996 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 997 998 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 999 1000 in_vbl = position >= vbl_start && position < vbl_end; 1001 1002 /* 1003 * While in vblank, position will be negative 1004 * counting up towards 0 at vbl_end. And outside 1005 * vblank, position will be positive counting 1006 * up since vbl_end. 1007 */ 1008 if (position >= vbl_start) 1009 position -= vbl_end; 1010 else 1011 position += vtotal - vbl_end; 1012 1013 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { 1014 *vpos = position; 1015 *hpos = 0; 1016 } else { 1017 *vpos = position / htotal; 1018 *hpos = position - (*vpos * htotal); 1019 } 1020 1021 /* In vblank? */ 1022 if (in_vbl) 1023 ret |= DRM_SCANOUTPOS_IN_VBLANK; 1024 1025 return ret; 1026 } 1027 1028 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1029 { 1030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; 1031 unsigned long irqflags; 1032 int position; 1033 1034 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1035 position = __intel_get_crtc_scanline(crtc); 1036 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1037 1038 return position; 1039 } 1040 1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe, 1042 int *max_error, 1043 struct timeval *vblank_time, 1044 unsigned flags) 1045 { 1046 struct drm_crtc *crtc; 1047 1048 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) { 1049 DRM_ERROR("Invalid crtc %d\n", pipe); 1050 return -EINVAL; 1051 } 1052 1053 /* Get drm_crtc to timestamp: */ 1054 crtc = intel_get_crtc_for_pipe(dev, pipe); 1055 if (crtc == NULL) { 1056 DRM_ERROR("Invalid crtc %d\n", pipe); 1057 return -EINVAL; 1058 } 1059 1060 if (!crtc->enabled) { 1061 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe); 1062 return -EBUSY; 1063 } 1064 1065 /* Helper routine in DRM core does all the work: */ 1066 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, 1067 vblank_time, flags, 1068 crtc, 1069 &to_intel_crtc(crtc)->config.adjusted_mode); 1070 } 1071 1072 static bool intel_hpd_irq_event(struct drm_device *dev, 1073 struct drm_connector *connector) 1074 { 1075 enum drm_connector_status old_status; 1076 1077 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex)); 1078 old_status = connector->status; 1079 1080 connector->status = connector->funcs->detect(connector, false); 1081 if (old_status == connector->status) 1082 return false; 1083 1084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n", 1085 connector->base.id, 1086 connector->name, 1087 drm_get_connector_status_name(old_status), 1088 drm_get_connector_status_name(connector->status)); 1089 1090 return true; 1091 } 1092 1093 static void i915_digport_work_func(struct work_struct *work) 1094 { 1095 struct drm_i915_private *dev_priv = 1096 container_of(work, struct drm_i915_private, dig_port_work); 1097 unsigned long irqflags; 1098 u32 long_port_mask, short_port_mask; 1099 struct intel_digital_port *intel_dig_port; 1100 int i, ret; 1101 u32 old_bits = 0; 1102 1103 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 1104 long_port_mask = dev_priv->long_hpd_port_mask; 1105 dev_priv->long_hpd_port_mask = 0; 1106 short_port_mask = dev_priv->short_hpd_port_mask; 1107 dev_priv->short_hpd_port_mask = 0; 1108 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 1109 1110 for (i = 0; i < I915_MAX_PORTS; i++) { 1111 bool valid = false; 1112 bool long_hpd = false; 1113 intel_dig_port = dev_priv->hpd_irq_port[i]; 1114 if (!intel_dig_port || !intel_dig_port->hpd_pulse) 1115 continue; 1116 1117 if (long_port_mask & (1 << i)) { 1118 valid = true; 1119 long_hpd = true; 1120 } else if (short_port_mask & (1 << i)) 1121 valid = true; 1122 1123 if (valid) { 1124 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd); 1125 if (ret == true) { 1126 /* if we get true fallback to old school hpd */ 1127 old_bits |= (1 << intel_dig_port->base.hpd_pin); 1128 } 1129 } 1130 } 1131 1132 if (old_bits) { 1133 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 1134 dev_priv->hpd_event_bits |= old_bits; 1135 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 1136 schedule_work(&dev_priv->hotplug_work); 1137 } 1138 } 1139 1140 /* 1141 * Handle hotplug events outside the interrupt handler proper. 1142 */ 1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000) 1144 1145 static void i915_hotplug_work_func(struct work_struct *work) 1146 { 1147 struct drm_i915_private *dev_priv = 1148 container_of(work, struct drm_i915_private, hotplug_work); 1149 struct drm_device *dev = dev_priv->dev; 1150 struct drm_mode_config *mode_config = &dev->mode_config; 1151 struct intel_connector *intel_connector; 1152 struct intel_encoder *intel_encoder; 1153 struct drm_connector *connector; 1154 unsigned long irqflags; 1155 bool hpd_disabled = false; 1156 bool changed = false; 1157 u32 hpd_event_bits; 1158 1159 mutex_lock(&mode_config->mutex); 1160 DRM_DEBUG_KMS("running encoder hotplug functions\n"); 1161 1162 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 1163 1164 hpd_event_bits = dev_priv->hpd_event_bits; 1165 dev_priv->hpd_event_bits = 0; 1166 list_for_each_entry(connector, &mode_config->connector_list, head) { 1167 intel_connector = to_intel_connector(connector); 1168 if (!intel_connector->encoder) 1169 continue; 1170 intel_encoder = intel_connector->encoder; 1171 if (intel_encoder->hpd_pin > HPD_NONE && 1172 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED && 1173 connector->polled == DRM_CONNECTOR_POLL_HPD) { 1174 DRM_INFO("HPD interrupt storm detected on connector %s: " 1175 "switching from hotplug detection to polling\n", 1176 connector->name); 1177 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED; 1178 connector->polled = DRM_CONNECTOR_POLL_CONNECT 1179 | DRM_CONNECTOR_POLL_DISCONNECT; 1180 hpd_disabled = true; 1181 } 1182 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { 1183 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n", 1184 connector->name, intel_encoder->hpd_pin); 1185 } 1186 } 1187 /* if there were no outputs to poll, poll was disabled, 1188 * therefore make sure it's enabled when disabling HPD on 1189 * some connectors */ 1190 if (hpd_disabled) { 1191 drm_kms_helper_poll_enable(dev); 1192 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work, 1193 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY)); 1194 } 1195 1196 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 1197 1198 list_for_each_entry(connector, &mode_config->connector_list, head) { 1199 intel_connector = to_intel_connector(connector); 1200 if (!intel_connector->encoder) 1201 continue; 1202 intel_encoder = intel_connector->encoder; 1203 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { 1204 if (intel_encoder->hot_plug) 1205 intel_encoder->hot_plug(intel_encoder); 1206 if (intel_hpd_irq_event(dev, connector)) 1207 changed = true; 1208 } 1209 } 1210 mutex_unlock(&mode_config->mutex); 1211 1212 if (changed) 1213 drm_kms_helper_hotplug_event(dev); 1214 } 1215 1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev) 1217 { 1218 struct drm_i915_private *dev_priv = dev->dev_private; 1219 u32 busy_up, busy_down, max_avg, min_avg; 1220 u8 new_delay; 1221 1222 spin_lock(&mchdev_lock); 1223 1224 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); 1225 1226 new_delay = dev_priv->ips.cur_delay; 1227 1228 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); 1229 busy_up = I915_READ(RCPREVBSYTUPAVG); 1230 busy_down = I915_READ(RCPREVBSYTDNAVG); 1231 max_avg = I915_READ(RCBMAXAVG); 1232 min_avg = I915_READ(RCBMINAVG); 1233 1234 /* Handle RCS change request from hw */ 1235 if (busy_up > max_avg) { 1236 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1237 new_delay = dev_priv->ips.cur_delay - 1; 1238 if (new_delay < dev_priv->ips.max_delay) 1239 new_delay = dev_priv->ips.max_delay; 1240 } else if (busy_down < min_avg) { 1241 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1242 new_delay = dev_priv->ips.cur_delay + 1; 1243 if (new_delay > dev_priv->ips.min_delay) 1244 new_delay = dev_priv->ips.min_delay; 1245 } 1246 1247 if (ironlake_set_drps(dev, new_delay)) 1248 dev_priv->ips.cur_delay = new_delay; 1249 1250 spin_unlock(&mchdev_lock); 1251 1252 return; 1253 } 1254 1255 static void notify_ring(struct drm_device *dev, 1256 struct intel_engine_cs *ring) 1257 { 1258 if (!intel_ring_initialized(ring)) 1259 return; 1260 1261 trace_i915_gem_request_complete(ring); 1262 1263 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1264 intel_notify_mmio_flip(ring); 1265 1266 wake_up_all(&ring->irq_queue); 1267 i915_queue_hangcheck(dev); 1268 } 1269 1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv, 1271 struct intel_rps_ei *rps_ei) 1272 { 1273 u32 cz_ts, cz_freq_khz; 1274 u32 render_count, media_count; 1275 u32 elapsed_render, elapsed_media, elapsed_time; 1276 u32 residency = 0; 1277 1278 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP); 1279 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4); 1280 1281 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG); 1282 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG); 1283 1284 if (rps_ei->cz_clock == 0) { 1285 rps_ei->cz_clock = cz_ts; 1286 rps_ei->render_c0 = render_count; 1287 rps_ei->media_c0 = media_count; 1288 1289 return dev_priv->rps.cur_freq; 1290 } 1291 1292 elapsed_time = cz_ts - rps_ei->cz_clock; 1293 rps_ei->cz_clock = cz_ts; 1294 1295 elapsed_render = render_count - rps_ei->render_c0; 1296 rps_ei->render_c0 = render_count; 1297 1298 elapsed_media = media_count - rps_ei->media_c0; 1299 rps_ei->media_c0 = media_count; 1300 1301 /* Convert all the counters into common unit of milli sec */ 1302 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC; 1303 elapsed_render /= cz_freq_khz; 1304 elapsed_media /= cz_freq_khz; 1305 1306 /* 1307 * Calculate overall C0 residency percentage 1308 * only if elapsed time is non zero 1309 */ 1310 if (elapsed_time) { 1311 residency = 1312 ((max(elapsed_render, elapsed_media) * 100) 1313 / elapsed_time); 1314 } 1315 1316 return residency; 1317 } 1318 1319 /** 1320 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU 1321 * busy-ness calculated from C0 counters of render & media power wells 1322 * @dev_priv: DRM device private 1323 * 1324 */ 1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv) 1326 { 1327 u32 residency_C0_up = 0, residency_C0_down = 0; 1328 int new_delay, adj; 1329 1330 dev_priv->rps.ei_interrupt_count++; 1331 1332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); 1333 1334 1335 if (dev_priv->rps.up_ei.cz_clock == 0) { 1336 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei); 1337 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei); 1338 return dev_priv->rps.cur_freq; 1339 } 1340 1341 1342 /* 1343 * To down throttle, C0 residency should be less than down threshold 1344 * for continous EI intervals. So calculate down EI counters 1345 * once in VLV_INT_COUNT_FOR_DOWN_EI 1346 */ 1347 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) { 1348 1349 dev_priv->rps.ei_interrupt_count = 0; 1350 1351 residency_C0_down = vlv_c0_residency(dev_priv, 1352 &dev_priv->rps.down_ei); 1353 } else { 1354 residency_C0_up = vlv_c0_residency(dev_priv, 1355 &dev_priv->rps.up_ei); 1356 } 1357 1358 new_delay = dev_priv->rps.cur_freq; 1359 1360 adj = dev_priv->rps.last_adj; 1361 /* C0 residency is greater than UP threshold. Increase Frequency */ 1362 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) { 1363 if (adj > 0) 1364 adj *= 2; 1365 else 1366 adj = 1; 1367 1368 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit) 1369 new_delay = dev_priv->rps.cur_freq + adj; 1370 1371 /* 1372 * For better performance, jump directly 1373 * to RPe if we're below it. 1374 */ 1375 if (new_delay < dev_priv->rps.efficient_freq) 1376 new_delay = dev_priv->rps.efficient_freq; 1377 1378 } else if (!dev_priv->rps.ei_interrupt_count && 1379 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) { 1380 if (adj < 0) 1381 adj *= 2; 1382 else 1383 adj = -1; 1384 /* 1385 * This means, C0 residency is less than down threshold over 1386 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq 1387 */ 1388 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit) 1389 new_delay = dev_priv->rps.cur_freq + adj; 1390 } 1391 1392 return new_delay; 1393 } 1394 1395 static void gen6_pm_rps_work(struct work_struct *work) 1396 { 1397 struct drm_i915_private *dev_priv = 1398 container_of(work, struct drm_i915_private, rps.work); 1399 u32 pm_iir; 1400 int new_delay, adj; 1401 1402 spin_lock_irq(&dev_priv->irq_lock); 1403 pm_iir = dev_priv->rps.pm_iir; 1404 dev_priv->rps.pm_iir = 0; 1405 if (INTEL_INFO(dev_priv->dev)->gen >= 8) 1406 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 1407 else { 1408 /* Make sure not to corrupt PMIMR state used by ringbuffer */ 1409 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 1410 } 1411 spin_unlock_irq(&dev_priv->irq_lock); 1412 1413 /* Make sure we didn't queue anything we're not going to process. */ 1414 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1415 1416 if ((pm_iir & dev_priv->pm_rps_events) == 0) 1417 return; 1418 1419 mutex_lock(&dev_priv->rps.hw_lock); 1420 1421 adj = dev_priv->rps.last_adj; 1422 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1423 if (adj > 0) 1424 adj *= 2; 1425 else { 1426 /* CHV needs even encode values */ 1427 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1; 1428 } 1429 new_delay = dev_priv->rps.cur_freq + adj; 1430 1431 /* 1432 * For better performance, jump directly 1433 * to RPe if we're below it. 1434 */ 1435 if (new_delay < dev_priv->rps.efficient_freq) 1436 new_delay = dev_priv->rps.efficient_freq; 1437 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1438 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq) 1439 new_delay = dev_priv->rps.efficient_freq; 1440 else 1441 new_delay = dev_priv->rps.min_freq_softlimit; 1442 adj = 0; 1443 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) { 1444 new_delay = vlv_calc_delay_from_C0_counters(dev_priv); 1445 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1446 if (adj < 0) 1447 adj *= 2; 1448 else { 1449 /* CHV needs even encode values */ 1450 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1; 1451 } 1452 new_delay = dev_priv->rps.cur_freq + adj; 1453 } else { /* unknown event */ 1454 new_delay = dev_priv->rps.cur_freq; 1455 } 1456 1457 /* sysfs frequency interfaces may have snuck in while servicing the 1458 * interrupt 1459 */ 1460 new_delay = clamp_t(int, new_delay, 1461 dev_priv->rps.min_freq_softlimit, 1462 dev_priv->rps.max_freq_softlimit); 1463 1464 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq; 1465 1466 if (IS_VALLEYVIEW(dev_priv->dev)) 1467 valleyview_set_rps(dev_priv->dev, new_delay); 1468 else 1469 gen6_set_rps(dev_priv->dev, new_delay); 1470 1471 mutex_unlock(&dev_priv->rps.hw_lock); 1472 } 1473 1474 1475 /** 1476 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1477 * occurred. 1478 * @work: workqueue struct 1479 * 1480 * Doesn't actually do anything except notify userspace. As a consequence of 1481 * this event, userspace should try to remap the bad rows since statistically 1482 * it is likely the same row is more likely to go bad again. 1483 */ 1484 static void ivybridge_parity_work(struct work_struct *work) 1485 { 1486 struct drm_i915_private *dev_priv = 1487 container_of(work, struct drm_i915_private, l3_parity.error_work); 1488 u32 error_status, row, bank, subbank; 1489 char *parity_event[6]; 1490 uint32_t misccpctl; 1491 unsigned long flags; 1492 uint8_t slice = 0; 1493 1494 /* We must turn off DOP level clock gating to access the L3 registers. 1495 * In order to prevent a get/put style interface, acquire struct mutex 1496 * any time we access those registers. 1497 */ 1498 mutex_lock(&dev_priv->dev->struct_mutex); 1499 1500 /* If we've screwed up tracking, just let the interrupt fire again */ 1501 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1502 goto out; 1503 1504 misccpctl = I915_READ(GEN7_MISCCPCTL); 1505 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1506 POSTING_READ(GEN7_MISCCPCTL); 1507 1508 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1509 u32 reg; 1510 1511 slice--; 1512 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev))) 1513 break; 1514 1515 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1516 1517 reg = GEN7_L3CDERRST1 + (slice * 0x200); 1518 1519 error_status = I915_READ(reg); 1520 row = GEN7_PARITY_ERROR_ROW(error_status); 1521 bank = GEN7_PARITY_ERROR_BANK(error_status); 1522 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1523 1524 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1525 POSTING_READ(reg); 1526 1527 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1528 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1529 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1530 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1531 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1532 parity_event[5] = NULL; 1533 1534 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj, 1535 KOBJ_CHANGE, parity_event); 1536 1537 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1538 slice, row, bank, subbank); 1539 1540 kfree(parity_event[4]); 1541 kfree(parity_event[3]); 1542 kfree(parity_event[2]); 1543 kfree(parity_event[1]); 1544 } 1545 1546 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1547 1548 out: 1549 WARN_ON(dev_priv->l3_parity.which_slice); 1550 spin_lock_irqsave(&dev_priv->irq_lock, flags); 1551 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev)); 1552 spin_unlock_irqrestore(&dev_priv->irq_lock, flags); 1553 1554 mutex_unlock(&dev_priv->dev->struct_mutex); 1555 } 1556 1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir) 1558 { 1559 struct drm_i915_private *dev_priv = dev->dev_private; 1560 1561 if (!HAS_L3_DPF(dev)) 1562 return; 1563 1564 spin_lock(&dev_priv->irq_lock); 1565 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev)); 1566 spin_unlock(&dev_priv->irq_lock); 1567 1568 iir &= GT_PARITY_ERROR(dev); 1569 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1570 dev_priv->l3_parity.which_slice |= 1 << 1; 1571 1572 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1573 dev_priv->l3_parity.which_slice |= 1 << 0; 1574 1575 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1576 } 1577 1578 static void ilk_gt_irq_handler(struct drm_device *dev, 1579 struct drm_i915_private *dev_priv, 1580 u32 gt_iir) 1581 { 1582 if (gt_iir & 1583 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) 1584 notify_ring(dev, &dev_priv->ring[RCS]); 1585 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1586 notify_ring(dev, &dev_priv->ring[VCS]); 1587 } 1588 1589 static void snb_gt_irq_handler(struct drm_device *dev, 1590 struct drm_i915_private *dev_priv, 1591 u32 gt_iir) 1592 { 1593 1594 if (gt_iir & 1595 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) 1596 notify_ring(dev, &dev_priv->ring[RCS]); 1597 if (gt_iir & GT_BSD_USER_INTERRUPT) 1598 notify_ring(dev, &dev_priv->ring[VCS]); 1599 if (gt_iir & GT_BLT_USER_INTERRUPT) 1600 notify_ring(dev, &dev_priv->ring[BCS]); 1601 1602 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1603 GT_BSD_CS_ERROR_INTERRUPT | 1604 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) { 1605 i915_handle_error(dev, false, "GT error interrupt 0x%08x", 1606 gt_iir); 1607 } 1608 1609 if (gt_iir & GT_PARITY_ERROR(dev)) 1610 ivybridge_parity_error_irq_handler(dev, gt_iir); 1611 } 1612 1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1614 { 1615 if ((pm_iir & dev_priv->pm_rps_events) == 0) 1616 return; 1617 1618 spin_lock(&dev_priv->irq_lock); 1619 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events; 1620 gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1621 spin_unlock(&dev_priv->irq_lock); 1622 1623 queue_work(dev_priv->wq, &dev_priv->rps.work); 1624 } 1625 1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev, 1627 struct drm_i915_private *dev_priv, 1628 u32 master_ctl) 1629 { 1630 struct intel_engine_cs *ring; 1631 u32 rcs, bcs, vcs; 1632 uint32_t tmp = 0; 1633 irqreturn_t ret = IRQ_NONE; 1634 1635 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1636 tmp = I915_READ(GEN8_GT_IIR(0)); 1637 if (tmp) { 1638 I915_WRITE(GEN8_GT_IIR(0), tmp); 1639 ret = IRQ_HANDLED; 1640 1641 rcs = tmp >> GEN8_RCS_IRQ_SHIFT; 1642 ring = &dev_priv->ring[RCS]; 1643 if (rcs & GT_RENDER_USER_INTERRUPT) 1644 notify_ring(dev, ring); 1645 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT) 1646 intel_execlists_handle_ctx_events(ring); 1647 1648 bcs = tmp >> GEN8_BCS_IRQ_SHIFT; 1649 ring = &dev_priv->ring[BCS]; 1650 if (bcs & GT_RENDER_USER_INTERRUPT) 1651 notify_ring(dev, ring); 1652 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT) 1653 intel_execlists_handle_ctx_events(ring); 1654 } else 1655 DRM_ERROR("The master control interrupt lied (GT0)!\n"); 1656 } 1657 1658 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { 1659 tmp = I915_READ(GEN8_GT_IIR(1)); 1660 if (tmp) { 1661 I915_WRITE(GEN8_GT_IIR(1), tmp); 1662 ret = IRQ_HANDLED; 1663 1664 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT; 1665 ring = &dev_priv->ring[VCS]; 1666 if (vcs & GT_RENDER_USER_INTERRUPT) 1667 notify_ring(dev, ring); 1668 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT) 1669 intel_execlists_handle_ctx_events(ring); 1670 1671 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT; 1672 ring = &dev_priv->ring[VCS2]; 1673 if (vcs & GT_RENDER_USER_INTERRUPT) 1674 notify_ring(dev, ring); 1675 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT) 1676 intel_execlists_handle_ctx_events(ring); 1677 } else 1678 DRM_ERROR("The master control interrupt lied (GT1)!\n"); 1679 } 1680 1681 if (master_ctl & GEN8_GT_PM_IRQ) { 1682 tmp = I915_READ(GEN8_GT_IIR(2)); 1683 if (tmp & dev_priv->pm_rps_events) { 1684 I915_WRITE(GEN8_GT_IIR(2), 1685 tmp & dev_priv->pm_rps_events); 1686 ret = IRQ_HANDLED; 1687 gen8_rps_irq_handler(dev_priv, tmp); 1688 } else 1689 DRM_ERROR("The master control interrupt lied (PM)!\n"); 1690 } 1691 1692 if (master_ctl & GEN8_GT_VECS_IRQ) { 1693 tmp = I915_READ(GEN8_GT_IIR(3)); 1694 if (tmp) { 1695 I915_WRITE(GEN8_GT_IIR(3), tmp); 1696 ret = IRQ_HANDLED; 1697 1698 vcs = tmp >> GEN8_VECS_IRQ_SHIFT; 1699 ring = &dev_priv->ring[VECS]; 1700 if (vcs & GT_RENDER_USER_INTERRUPT) 1701 notify_ring(dev, ring); 1702 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT) 1703 intel_execlists_handle_ctx_events(ring); 1704 } else 1705 DRM_ERROR("The master control interrupt lied (GT3)!\n"); 1706 } 1707 1708 return ret; 1709 } 1710 1711 #define HPD_STORM_DETECT_PERIOD 1000 1712 #define HPD_STORM_THRESHOLD 5 1713 1714 static int ilk_port_to_hotplug_shift(enum port port) 1715 { 1716 switch (port) { 1717 case PORT_A: 1718 case PORT_E: 1719 default: 1720 return -1; 1721 case PORT_B: 1722 return 0; 1723 case PORT_C: 1724 return 8; 1725 case PORT_D: 1726 return 16; 1727 } 1728 } 1729 1730 static int g4x_port_to_hotplug_shift(enum port port) 1731 { 1732 switch (port) { 1733 case PORT_A: 1734 case PORT_E: 1735 default: 1736 return -1; 1737 case PORT_B: 1738 return 17; 1739 case PORT_C: 1740 return 19; 1741 case PORT_D: 1742 return 21; 1743 } 1744 } 1745 1746 static inline enum port get_port_from_pin(enum hpd_pin pin) 1747 { 1748 switch (pin) { 1749 case HPD_PORT_B: 1750 return PORT_B; 1751 case HPD_PORT_C: 1752 return PORT_C; 1753 case HPD_PORT_D: 1754 return PORT_D; 1755 default: 1756 return PORT_A; /* no hpd */ 1757 } 1758 } 1759 1760 static inline void intel_hpd_irq_handler(struct drm_device *dev, 1761 u32 hotplug_trigger, 1762 u32 dig_hotplug_reg, 1763 const u32 *hpd) 1764 { 1765 struct drm_i915_private *dev_priv = dev->dev_private; 1766 int i; 1767 enum port port; 1768 bool storm_detected = false; 1769 bool queue_dig = false, queue_hp = false; 1770 u32 dig_shift; 1771 u32 dig_port_mask = 0; 1772 1773 if (!hotplug_trigger) 1774 return; 1775 1776 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n", 1777 hotplug_trigger, dig_hotplug_reg); 1778 1779 spin_lock(&dev_priv->irq_lock); 1780 for (i = 1; i < HPD_NUM_PINS; i++) { 1781 if (!(hpd[i] & hotplug_trigger)) 1782 continue; 1783 1784 port = get_port_from_pin(i); 1785 if (port && dev_priv->hpd_irq_port[port]) { 1786 bool long_hpd; 1787 1788 if (IS_G4X(dev)) { 1789 dig_shift = g4x_port_to_hotplug_shift(port); 1790 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT; 1791 } else { 1792 dig_shift = ilk_port_to_hotplug_shift(port); 1793 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT; 1794 } 1795 1796 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n", 1797 port_name(port), 1798 long_hpd ? "long" : "short"); 1799 /* for long HPD pulses we want to have the digital queue happen, 1800 but we still want HPD storm detection to function. */ 1801 if (long_hpd) { 1802 dev_priv->long_hpd_port_mask |= (1 << port); 1803 dig_port_mask |= hpd[i]; 1804 } else { 1805 /* for short HPD just trigger the digital queue */ 1806 dev_priv->short_hpd_port_mask |= (1 << port); 1807 hotplug_trigger &= ~hpd[i]; 1808 } 1809 queue_dig = true; 1810 } 1811 } 1812 1813 for (i = 1; i < HPD_NUM_PINS; i++) { 1814 if (hpd[i] & hotplug_trigger && 1815 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) { 1816 /* 1817 * On GMCH platforms the interrupt mask bits only 1818 * prevent irq generation, not the setting of the 1819 * hotplug bits itself. So only WARN about unexpected 1820 * interrupts on saner platforms. 1821 */ 1822 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev), 1823 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n", 1824 hotplug_trigger, i, hpd[i]); 1825 1826 continue; 1827 } 1828 1829 if (!(hpd[i] & hotplug_trigger) || 1830 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED) 1831 continue; 1832 1833 if (!(dig_port_mask & hpd[i])) { 1834 dev_priv->hpd_event_bits |= (1 << i); 1835 queue_hp = true; 1836 } 1837 1838 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies, 1839 dev_priv->hpd_stats[i].hpd_last_jiffies 1840 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) { 1841 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies; 1842 dev_priv->hpd_stats[i].hpd_cnt = 0; 1843 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i); 1844 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) { 1845 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED; 1846 dev_priv->hpd_event_bits &= ~(1 << i); 1847 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i); 1848 storm_detected = true; 1849 } else { 1850 dev_priv->hpd_stats[i].hpd_cnt++; 1851 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i, 1852 dev_priv->hpd_stats[i].hpd_cnt); 1853 } 1854 } 1855 1856 if (storm_detected) 1857 dev_priv->display.hpd_irq_setup(dev); 1858 spin_unlock(&dev_priv->irq_lock); 1859 1860 /* 1861 * Our hotplug handler can grab modeset locks (by calling down into the 1862 * fb helpers). Hence it must not be run on our own dev-priv->wq work 1863 * queue for otherwise the flush_work in the pageflip code will 1864 * deadlock. 1865 */ 1866 if (queue_dig) 1867 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work); 1868 if (queue_hp) 1869 schedule_work(&dev_priv->hotplug_work); 1870 } 1871 1872 static void gmbus_irq_handler(struct drm_device *dev) 1873 { 1874 struct drm_i915_private *dev_priv = dev->dev_private; 1875 1876 wake_up_all(&dev_priv->gmbus_wait_queue); 1877 } 1878 1879 static void dp_aux_irq_handler(struct drm_device *dev) 1880 { 1881 struct drm_i915_private *dev_priv = dev->dev_private; 1882 1883 wake_up_all(&dev_priv->gmbus_wait_queue); 1884 } 1885 1886 #if defined(CONFIG_DEBUG_FS) 1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe, 1888 uint32_t crc0, uint32_t crc1, 1889 uint32_t crc2, uint32_t crc3, 1890 uint32_t crc4) 1891 { 1892 struct drm_i915_private *dev_priv = dev->dev_private; 1893 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1894 struct intel_pipe_crc_entry *entry; 1895 int head, tail; 1896 1897 spin_lock(&pipe_crc->lock); 1898 1899 if (!pipe_crc->entries) { 1900 spin_unlock(&pipe_crc->lock); 1901 DRM_ERROR("spurious interrupt\n"); 1902 return; 1903 } 1904 1905 head = pipe_crc->head; 1906 tail = pipe_crc->tail; 1907 1908 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { 1909 spin_unlock(&pipe_crc->lock); 1910 DRM_ERROR("CRC buffer overflowing\n"); 1911 return; 1912 } 1913 1914 entry = &pipe_crc->entries[head]; 1915 1916 entry->frame = dev->driver->get_vblank_counter(dev, pipe); 1917 entry->crc[0] = crc0; 1918 entry->crc[1] = crc1; 1919 entry->crc[2] = crc2; 1920 entry->crc[3] = crc3; 1921 entry->crc[4] = crc4; 1922 1923 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 1924 pipe_crc->head = head; 1925 1926 spin_unlock(&pipe_crc->lock); 1927 1928 wake_up_interruptible(&pipe_crc->wq); 1929 } 1930 #else 1931 static inline void 1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe, 1933 uint32_t crc0, uint32_t crc1, 1934 uint32_t crc2, uint32_t crc3, 1935 uint32_t crc4) {} 1936 #endif 1937 1938 1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) 1940 { 1941 struct drm_i915_private *dev_priv = dev->dev_private; 1942 1943 display_pipe_crc_irq_handler(dev, pipe, 1944 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1945 0, 0, 0, 0); 1946 } 1947 1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) 1949 { 1950 struct drm_i915_private *dev_priv = dev->dev_private; 1951 1952 display_pipe_crc_irq_handler(dev, pipe, 1953 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1954 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1955 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1956 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1957 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1958 } 1959 1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) 1961 { 1962 struct drm_i915_private *dev_priv = dev->dev_private; 1963 uint32_t res1, res2; 1964 1965 if (INTEL_INFO(dev)->gen >= 3) 1966 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1967 else 1968 res1 = 0; 1969 1970 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) 1971 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1972 else 1973 res2 = 0; 1974 1975 display_pipe_crc_irq_handler(dev, pipe, 1976 I915_READ(PIPE_CRC_RES_RED(pipe)), 1977 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1978 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1979 res1, res2); 1980 } 1981 1982 /* The RPS events need forcewake, so we add them to a work queue and mask their 1983 * IMR bits until the work is done. Other interrupts can be processed without 1984 * the work queue. */ 1985 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1986 { 1987 if (pm_iir & dev_priv->pm_rps_events) { 1988 spin_lock(&dev_priv->irq_lock); 1989 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events; 1990 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1991 spin_unlock(&dev_priv->irq_lock); 1992 1993 queue_work(dev_priv->wq, &dev_priv->rps.work); 1994 } 1995 1996 if (HAS_VEBOX(dev_priv->dev)) { 1997 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1998 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]); 1999 2000 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) { 2001 i915_handle_error(dev_priv->dev, false, 2002 "VEBOX CS error interrupt 0x%08x", 2003 pm_iir); 2004 } 2005 } 2006 } 2007 2008 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe) 2009 { 2010 if (!drm_handle_vblank(dev, pipe)) 2011 return false; 2012 2013 return true; 2014 } 2015 2016 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir) 2017 { 2018 struct drm_i915_private *dev_priv = dev->dev_private; 2019 u32 pipe_stats[I915_MAX_PIPES] = { }; 2020 int pipe; 2021 2022 spin_lock(&dev_priv->irq_lock); 2023 for_each_pipe(dev_priv, pipe) { 2024 int reg; 2025 u32 mask, iir_bit = 0; 2026 2027 /* 2028 * PIPESTAT bits get signalled even when the interrupt is 2029 * disabled with the mask bits, and some of the status bits do 2030 * not generate interrupts at all (like the underrun bit). Hence 2031 * we need to be careful that we only handle what we want to 2032 * handle. 2033 */ 2034 mask = 0; 2035 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe)) 2036 mask |= PIPE_FIFO_UNDERRUN_STATUS; 2037 2038 switch (pipe) { 2039 case PIPE_A: 2040 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 2041 break; 2042 case PIPE_B: 2043 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 2044 break; 2045 case PIPE_C: 2046 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 2047 break; 2048 } 2049 if (iir & iir_bit) 2050 mask |= dev_priv->pipestat_irq_mask[pipe]; 2051 2052 if (!mask) 2053 continue; 2054 2055 reg = PIPESTAT(pipe); 2056 mask |= PIPESTAT_INT_ENABLE_MASK; 2057 pipe_stats[pipe] = I915_READ(reg) & mask; 2058 2059 /* 2060 * Clear the PIPE*STAT regs before the IIR 2061 */ 2062 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS | 2063 PIPESTAT_INT_STATUS_MASK)) 2064 I915_WRITE(reg, pipe_stats[pipe]); 2065 } 2066 spin_unlock(&dev_priv->irq_lock); 2067 2068 for_each_pipe(dev_priv, pipe) { 2069 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && 2070 intel_pipe_handle_vblank(dev, pipe)) 2071 intel_check_page_flip(dev, pipe); 2072 2073 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) { 2074 intel_prepare_page_flip(dev, pipe); 2075 intel_finish_page_flip(dev, pipe); 2076 } 2077 2078 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2079 i9xx_pipe_crc_irq_handler(dev, pipe); 2080 2081 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS && 2082 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) 2083 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe)); 2084 } 2085 2086 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 2087 gmbus_irq_handler(dev); 2088 } 2089 2090 static void i9xx_hpd_irq_handler(struct drm_device *dev) 2091 { 2092 struct drm_i915_private *dev_priv = dev->dev_private; 2093 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); 2094 2095 if (hotplug_status) { 2096 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 2097 /* 2098 * Make sure hotplug status is cleared before we clear IIR, or else we 2099 * may miss hotplug events. 2100 */ 2101 POSTING_READ(PORT_HOTPLUG_STAT); 2102 2103 if (IS_G4X(dev)) { 2104 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 2105 2106 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x); 2107 } else { 2108 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 2109 2110 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915); 2111 } 2112 2113 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && 2114 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 2115 dp_aux_irq_handler(dev); 2116 } 2117 } 2118 2119 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 2120 { 2121 struct drm_device *dev = arg; 2122 struct drm_i915_private *dev_priv = dev->dev_private; 2123 u32 iir, gt_iir, pm_iir; 2124 irqreturn_t ret = IRQ_NONE; 2125 2126 while (true) { 2127 /* Find, clear, then process each source of interrupt */ 2128 2129 gt_iir = I915_READ(GTIIR); 2130 if (gt_iir) 2131 I915_WRITE(GTIIR, gt_iir); 2132 2133 pm_iir = I915_READ(GEN6_PMIIR); 2134 if (pm_iir) 2135 I915_WRITE(GEN6_PMIIR, pm_iir); 2136 2137 iir = I915_READ(VLV_IIR); 2138 if (iir) { 2139 /* Consume port before clearing IIR or we'll miss events */ 2140 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2141 i9xx_hpd_irq_handler(dev); 2142 I915_WRITE(VLV_IIR, iir); 2143 } 2144 2145 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 2146 goto out; 2147 2148 ret = IRQ_HANDLED; 2149 2150 if (gt_iir) 2151 snb_gt_irq_handler(dev, dev_priv, gt_iir); 2152 if (pm_iir) 2153 gen6_rps_irq_handler(dev_priv, pm_iir); 2154 /* Call regardless, as some status bits might not be 2155 * signalled in iir */ 2156 valleyview_pipestat_irq_handler(dev, iir); 2157 } 2158 2159 out: 2160 return ret; 2161 } 2162 2163 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 2164 { 2165 struct drm_device *dev = arg; 2166 struct drm_i915_private *dev_priv = dev->dev_private; 2167 u32 master_ctl, iir; 2168 irqreturn_t ret = IRQ_NONE; 2169 2170 for (;;) { 2171 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 2172 iir = I915_READ(VLV_IIR); 2173 2174 if (master_ctl == 0 && iir == 0) 2175 break; 2176 2177 ret = IRQ_HANDLED; 2178 2179 I915_WRITE(GEN8_MASTER_IRQ, 0); 2180 2181 /* Find, clear, then process each source of interrupt */ 2182 2183 if (iir) { 2184 /* Consume port before clearing IIR or we'll miss events */ 2185 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2186 i9xx_hpd_irq_handler(dev); 2187 I915_WRITE(VLV_IIR, iir); 2188 } 2189 2190 gen8_gt_irq_handler(dev, dev_priv, master_ctl); 2191 2192 /* Call regardless, as some status bits might not be 2193 * signalled in iir */ 2194 valleyview_pipestat_irq_handler(dev, iir); 2195 2196 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL); 2197 POSTING_READ(GEN8_MASTER_IRQ); 2198 } 2199 2200 return ret; 2201 } 2202 2203 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir) 2204 { 2205 struct drm_i915_private *dev_priv = dev->dev_private; 2206 int pipe; 2207 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2208 u32 dig_hotplug_reg; 2209 2210 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2211 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2212 2213 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx); 2214 2215 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2216 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2217 SDE_AUDIO_POWER_SHIFT); 2218 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2219 port_name(port)); 2220 } 2221 2222 if (pch_iir & SDE_AUX_MASK) 2223 dp_aux_irq_handler(dev); 2224 2225 if (pch_iir & SDE_GMBUS) 2226 gmbus_irq_handler(dev); 2227 2228 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2229 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2230 2231 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2232 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2233 2234 if (pch_iir & SDE_POISON) 2235 DRM_ERROR("PCH poison interrupt\n"); 2236 2237 if (pch_iir & SDE_FDI_MASK) 2238 for_each_pipe(dev_priv, pipe) 2239 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2240 pipe_name(pipe), 2241 I915_READ(FDI_RX_IIR(pipe))); 2242 2243 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2244 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2245 2246 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2247 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2248 2249 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2250 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, 2251 false)) 2252 DRM_ERROR("PCH transcoder A FIFO underrun\n"); 2253 2254 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2255 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B, 2256 false)) 2257 DRM_ERROR("PCH transcoder B FIFO underrun\n"); 2258 } 2259 2260 static void ivb_err_int_handler(struct drm_device *dev) 2261 { 2262 struct drm_i915_private *dev_priv = dev->dev_private; 2263 u32 err_int = I915_READ(GEN7_ERR_INT); 2264 enum pipe pipe; 2265 2266 if (err_int & ERR_INT_POISON) 2267 DRM_ERROR("Poison interrupt\n"); 2268 2269 for_each_pipe(dev_priv, pipe) { 2270 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) { 2271 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, 2272 false)) 2273 DRM_ERROR("Pipe %c FIFO underrun\n", 2274 pipe_name(pipe)); 2275 } 2276 2277 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2278 if (IS_IVYBRIDGE(dev)) 2279 ivb_pipe_crc_irq_handler(dev, pipe); 2280 else 2281 hsw_pipe_crc_irq_handler(dev, pipe); 2282 } 2283 } 2284 2285 I915_WRITE(GEN7_ERR_INT, err_int); 2286 } 2287 2288 static void cpt_serr_int_handler(struct drm_device *dev) 2289 { 2290 struct drm_i915_private *dev_priv = dev->dev_private; 2291 u32 serr_int = I915_READ(SERR_INT); 2292 2293 if (serr_int & SERR_INT_POISON) 2294 DRM_ERROR("PCH poison interrupt\n"); 2295 2296 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) 2297 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, 2298 false)) 2299 DRM_ERROR("PCH transcoder A FIFO underrun\n"); 2300 2301 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) 2302 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B, 2303 false)) 2304 DRM_ERROR("PCH transcoder B FIFO underrun\n"); 2305 2306 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) 2307 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C, 2308 false)) 2309 DRM_ERROR("PCH transcoder C FIFO underrun\n"); 2310 2311 I915_WRITE(SERR_INT, serr_int); 2312 } 2313 2314 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir) 2315 { 2316 struct drm_i915_private *dev_priv = dev->dev_private; 2317 int pipe; 2318 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2319 u32 dig_hotplug_reg; 2320 2321 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2322 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2323 2324 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt); 2325 2326 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2327 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2328 SDE_AUDIO_POWER_SHIFT_CPT); 2329 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2330 port_name(port)); 2331 } 2332 2333 if (pch_iir & SDE_AUX_MASK_CPT) 2334 dp_aux_irq_handler(dev); 2335 2336 if (pch_iir & SDE_GMBUS_CPT) 2337 gmbus_irq_handler(dev); 2338 2339 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2340 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2341 2342 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2343 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2344 2345 if (pch_iir & SDE_FDI_MASK_CPT) 2346 for_each_pipe(dev_priv, pipe) 2347 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2348 pipe_name(pipe), 2349 I915_READ(FDI_RX_IIR(pipe))); 2350 2351 if (pch_iir & SDE_ERROR_CPT) 2352 cpt_serr_int_handler(dev); 2353 } 2354 2355 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir) 2356 { 2357 struct drm_i915_private *dev_priv = dev->dev_private; 2358 enum pipe pipe; 2359 2360 if (de_iir & DE_AUX_CHANNEL_A) 2361 dp_aux_irq_handler(dev); 2362 2363 if (de_iir & DE_GSE) 2364 intel_opregion_asle_intr(dev); 2365 2366 if (de_iir & DE_POISON) 2367 DRM_ERROR("Poison interrupt\n"); 2368 2369 for_each_pipe(dev_priv, pipe) { 2370 if (de_iir & DE_PIPE_VBLANK(pipe) && 2371 intel_pipe_handle_vblank(dev, pipe)) 2372 intel_check_page_flip(dev, pipe); 2373 2374 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2375 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) 2376 DRM_ERROR("Pipe %c FIFO underrun\n", 2377 pipe_name(pipe)); 2378 2379 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2380 i9xx_pipe_crc_irq_handler(dev, pipe); 2381 2382 /* plane/pipes map 1:1 on ilk+ */ 2383 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) { 2384 intel_prepare_page_flip(dev, pipe); 2385 intel_finish_page_flip_plane(dev, pipe); 2386 } 2387 } 2388 2389 /* check event from PCH */ 2390 if (de_iir & DE_PCH_EVENT) { 2391 u32 pch_iir = I915_READ(SDEIIR); 2392 2393 if (HAS_PCH_CPT(dev)) 2394 cpt_irq_handler(dev, pch_iir); 2395 else 2396 ibx_irq_handler(dev, pch_iir); 2397 2398 /* should clear PCH hotplug event before clear CPU irq */ 2399 I915_WRITE(SDEIIR, pch_iir); 2400 } 2401 2402 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT) 2403 ironlake_rps_change_irq_handler(dev); 2404 } 2405 2406 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir) 2407 { 2408 struct drm_i915_private *dev_priv = dev->dev_private; 2409 enum pipe pipe; 2410 2411 if (de_iir & DE_ERR_INT_IVB) 2412 ivb_err_int_handler(dev); 2413 2414 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2415 dp_aux_irq_handler(dev); 2416 2417 if (de_iir & DE_GSE_IVB) 2418 intel_opregion_asle_intr(dev); 2419 2420 for_each_pipe(dev_priv, pipe) { 2421 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) && 2422 intel_pipe_handle_vblank(dev, pipe)) 2423 intel_check_page_flip(dev, pipe); 2424 2425 /* plane/pipes map 1:1 on ilk+ */ 2426 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) { 2427 intel_prepare_page_flip(dev, pipe); 2428 intel_finish_page_flip_plane(dev, pipe); 2429 } 2430 } 2431 2432 /* check event from PCH */ 2433 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) { 2434 u32 pch_iir = I915_READ(SDEIIR); 2435 2436 cpt_irq_handler(dev, pch_iir); 2437 2438 /* clear PCH hotplug event before clear CPU irq */ 2439 I915_WRITE(SDEIIR, pch_iir); 2440 } 2441 } 2442 2443 /* 2444 * To handle irqs with the minimum potential races with fresh interrupts, we: 2445 * 1 - Disable Master Interrupt Control. 2446 * 2 - Find the source(s) of the interrupt. 2447 * 3 - Clear the Interrupt Identity bits (IIR). 2448 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2449 * 5 - Re-enable Master Interrupt Control. 2450 */ 2451 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2452 { 2453 struct drm_device *dev = arg; 2454 struct drm_i915_private *dev_priv = dev->dev_private; 2455 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2456 irqreturn_t ret = IRQ_NONE; 2457 2458 /* We get interrupts on unclaimed registers, so check for this before we 2459 * do any I915_{READ,WRITE}. */ 2460 intel_uncore_check_errors(dev); 2461 2462 /* disable master interrupt before clearing iir */ 2463 de_ier = I915_READ(DEIER); 2464 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2465 POSTING_READ(DEIER); 2466 2467 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2468 * interrupts will will be stored on its back queue, and then we'll be 2469 * able to process them after we restore SDEIER (as soon as we restore 2470 * it, we'll get an interrupt if SDEIIR still has something to process 2471 * due to its back queue). */ 2472 if (!HAS_PCH_NOP(dev)) { 2473 sde_ier = I915_READ(SDEIER); 2474 I915_WRITE(SDEIER, 0); 2475 POSTING_READ(SDEIER); 2476 } 2477 2478 /* Find, clear, then process each source of interrupt */ 2479 2480 gt_iir = I915_READ(GTIIR); 2481 if (gt_iir) { 2482 I915_WRITE(GTIIR, gt_iir); 2483 ret = IRQ_HANDLED; 2484 if (INTEL_INFO(dev)->gen >= 6) 2485 snb_gt_irq_handler(dev, dev_priv, gt_iir); 2486 else 2487 ilk_gt_irq_handler(dev, dev_priv, gt_iir); 2488 } 2489 2490 de_iir = I915_READ(DEIIR); 2491 if (de_iir) { 2492 I915_WRITE(DEIIR, de_iir); 2493 ret = IRQ_HANDLED; 2494 if (INTEL_INFO(dev)->gen >= 7) 2495 ivb_display_irq_handler(dev, de_iir); 2496 else 2497 ilk_display_irq_handler(dev, de_iir); 2498 } 2499 2500 if (INTEL_INFO(dev)->gen >= 6) { 2501 u32 pm_iir = I915_READ(GEN6_PMIIR); 2502 if (pm_iir) { 2503 I915_WRITE(GEN6_PMIIR, pm_iir); 2504 ret = IRQ_HANDLED; 2505 gen6_rps_irq_handler(dev_priv, pm_iir); 2506 } 2507 } 2508 2509 I915_WRITE(DEIER, de_ier); 2510 POSTING_READ(DEIER); 2511 if (!HAS_PCH_NOP(dev)) { 2512 I915_WRITE(SDEIER, sde_ier); 2513 POSTING_READ(SDEIER); 2514 } 2515 2516 return ret; 2517 } 2518 2519 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2520 { 2521 struct drm_device *dev = arg; 2522 struct drm_i915_private *dev_priv = dev->dev_private; 2523 u32 master_ctl; 2524 irqreturn_t ret = IRQ_NONE; 2525 uint32_t tmp = 0; 2526 enum pipe pipe; 2527 2528 master_ctl = I915_READ(GEN8_MASTER_IRQ); 2529 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; 2530 if (!master_ctl) 2531 return IRQ_NONE; 2532 2533 I915_WRITE(GEN8_MASTER_IRQ, 0); 2534 POSTING_READ(GEN8_MASTER_IRQ); 2535 2536 /* Find, clear, then process each source of interrupt */ 2537 2538 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl); 2539 2540 if (master_ctl & GEN8_DE_MISC_IRQ) { 2541 tmp = I915_READ(GEN8_DE_MISC_IIR); 2542 if (tmp) { 2543 I915_WRITE(GEN8_DE_MISC_IIR, tmp); 2544 ret = IRQ_HANDLED; 2545 if (tmp & GEN8_DE_MISC_GSE) 2546 intel_opregion_asle_intr(dev); 2547 else 2548 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2549 } 2550 else 2551 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2552 } 2553 2554 if (master_ctl & GEN8_DE_PORT_IRQ) { 2555 tmp = I915_READ(GEN8_DE_PORT_IIR); 2556 if (tmp) { 2557 I915_WRITE(GEN8_DE_PORT_IIR, tmp); 2558 ret = IRQ_HANDLED; 2559 if (tmp & GEN8_AUX_CHANNEL_A) 2560 dp_aux_irq_handler(dev); 2561 else 2562 DRM_ERROR("Unexpected DE Port interrupt\n"); 2563 } 2564 else 2565 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2566 } 2567 2568 for_each_pipe(dev_priv, pipe) { 2569 uint32_t pipe_iir; 2570 2571 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2572 continue; 2573 2574 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2575 if (pipe_iir) { 2576 ret = IRQ_HANDLED; 2577 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir); 2578 if (pipe_iir & GEN8_PIPE_VBLANK && 2579 intel_pipe_handle_vblank(dev, pipe)) 2580 intel_check_page_flip(dev, pipe); 2581 2582 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) { 2583 intel_prepare_page_flip(dev, pipe); 2584 intel_finish_page_flip_plane(dev, pipe); 2585 } 2586 2587 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE) 2588 hsw_pipe_crc_irq_handler(dev, pipe); 2589 2590 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) { 2591 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, 2592 false)) 2593 DRM_ERROR("Pipe %c FIFO underrun\n", 2594 pipe_name(pipe)); 2595 } 2596 2597 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) { 2598 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x", 2599 pipe_name(pipe), 2600 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS); 2601 } 2602 } else 2603 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2604 } 2605 2606 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) { 2607 /* 2608 * FIXME(BDW): Assume for now that the new interrupt handling 2609 * scheme also closed the SDE interrupt handling race we've seen 2610 * on older pch-split platforms. But this needs testing. 2611 */ 2612 u32 pch_iir = I915_READ(SDEIIR); 2613 if (pch_iir) { 2614 I915_WRITE(SDEIIR, pch_iir); 2615 ret = IRQ_HANDLED; 2616 cpt_irq_handler(dev, pch_iir); 2617 } else 2618 DRM_ERROR("The master control interrupt lied (SDE)!\n"); 2619 2620 } 2621 2622 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2623 POSTING_READ(GEN8_MASTER_IRQ); 2624 2625 return ret; 2626 } 2627 2628 static void i915_error_wake_up(struct drm_i915_private *dev_priv, 2629 bool reset_completed) 2630 { 2631 struct intel_engine_cs *ring; 2632 int i; 2633 2634 /* 2635 * Notify all waiters for GPU completion events that reset state has 2636 * been changed, and that they need to restart their wait after 2637 * checking for potential errors (and bail out to drop locks if there is 2638 * a gpu reset pending so that i915_error_work_func can acquire them). 2639 */ 2640 2641 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */ 2642 for_each_ring(ring, dev_priv, i) 2643 wake_up_all(&ring->irq_queue); 2644 2645 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */ 2646 wake_up_all(&dev_priv->pending_flip_queue); 2647 2648 /* 2649 * Signal tasks blocked in i915_gem_wait_for_error that the pending 2650 * reset state is cleared. 2651 */ 2652 if (reset_completed) 2653 wake_up_all(&dev_priv->gpu_error.reset_queue); 2654 } 2655 2656 /** 2657 * i915_error_work_func - do process context error handling work 2658 * @work: work struct 2659 * 2660 * Fire an error uevent so userspace can see that a hang or error 2661 * was detected. 2662 */ 2663 static void i915_error_work_func(struct work_struct *work) 2664 { 2665 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error, 2666 work); 2667 struct drm_i915_private *dev_priv = 2668 container_of(error, struct drm_i915_private, gpu_error); 2669 struct drm_device *dev = dev_priv->dev; 2670 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 2671 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 2672 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 2673 int ret; 2674 2675 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event); 2676 2677 /* 2678 * Note that there's only one work item which does gpu resets, so we 2679 * need not worry about concurrent gpu resets potentially incrementing 2680 * error->reset_counter twice. We only need to take care of another 2681 * racing irq/hangcheck declaring the gpu dead for a second time. A 2682 * quick check for that is good enough: schedule_work ensures the 2683 * correct ordering between hang detection and this work item, and since 2684 * the reset in-progress bit is only ever set by code outside of this 2685 * work we don't need to worry about any other races. 2686 */ 2687 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) { 2688 DRM_DEBUG_DRIVER("resetting chip\n"); 2689 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, 2690 reset_event); 2691 2692 /* 2693 * In most cases it's guaranteed that we get here with an RPM 2694 * reference held, for example because there is a pending GPU 2695 * request that won't finish until the reset is done. This 2696 * isn't the case at least when we get here by doing a 2697 * simulated reset via debugs, so get an RPM reference. 2698 */ 2699 intel_runtime_pm_get(dev_priv); 2700 /* 2701 * All state reset _must_ be completed before we update the 2702 * reset counter, for otherwise waiters might miss the reset 2703 * pending state and not properly drop locks, resulting in 2704 * deadlocks with the reset work. 2705 */ 2706 ret = i915_reset(dev); 2707 2708 intel_display_handle_reset(dev); 2709 2710 intel_runtime_pm_put(dev_priv); 2711 2712 if (ret == 0) { 2713 /* 2714 * After all the gem state is reset, increment the reset 2715 * counter and wake up everyone waiting for the reset to 2716 * complete. 2717 * 2718 * Since unlock operations are a one-sided barrier only, 2719 * we need to insert a barrier here to order any seqno 2720 * updates before 2721 * the counter increment. 2722 */ 2723 smp_mb__before_atomic(); 2724 atomic_inc(&dev_priv->gpu_error.reset_counter); 2725 2726 kobject_uevent_env(&dev->primary->kdev->kobj, 2727 KOBJ_CHANGE, reset_done_event); 2728 } else { 2729 atomic_set_mask(I915_WEDGED, &error->reset_counter); 2730 } 2731 2732 /* 2733 * Note: The wake_up also serves as a memory barrier so that 2734 * waiters see the update value of the reset counter atomic_t. 2735 */ 2736 i915_error_wake_up(dev_priv, true); 2737 } 2738 } 2739 2740 static void i915_report_and_clear_eir(struct drm_device *dev) 2741 { 2742 struct drm_i915_private *dev_priv = dev->dev_private; 2743 uint32_t instdone[I915_NUM_INSTDONE_REG]; 2744 u32 eir = I915_READ(EIR); 2745 int pipe, i; 2746 2747 if (!eir) 2748 return; 2749 2750 pr_err("render error detected, EIR: 0x%08x\n", eir); 2751 2752 i915_get_extra_instdone(dev, instdone); 2753 2754 if (IS_G4X(dev)) { 2755 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) { 2756 u32 ipeir = I915_READ(IPEIR_I965); 2757 2758 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); 2759 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); 2760 for (i = 0; i < ARRAY_SIZE(instdone); i++) 2761 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); 2762 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); 2763 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); 2764 I915_WRITE(IPEIR_I965, ipeir); 2765 POSTING_READ(IPEIR_I965); 2766 } 2767 if (eir & GM45_ERROR_PAGE_TABLE) { 2768 u32 pgtbl_err = I915_READ(PGTBL_ER); 2769 pr_err("page table error\n"); 2770 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); 2771 I915_WRITE(PGTBL_ER, pgtbl_err); 2772 POSTING_READ(PGTBL_ER); 2773 } 2774 } 2775 2776 if (!IS_GEN2(dev)) { 2777 if (eir & I915_ERROR_PAGE_TABLE) { 2778 u32 pgtbl_err = I915_READ(PGTBL_ER); 2779 pr_err("page table error\n"); 2780 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); 2781 I915_WRITE(PGTBL_ER, pgtbl_err); 2782 POSTING_READ(PGTBL_ER); 2783 } 2784 } 2785 2786 if (eir & I915_ERROR_MEMORY_REFRESH) { 2787 pr_err("memory refresh error:\n"); 2788 for_each_pipe(dev_priv, pipe) 2789 pr_err("pipe %c stat: 0x%08x\n", 2790 pipe_name(pipe), I915_READ(PIPESTAT(pipe))); 2791 /* pipestat has already been acked */ 2792 } 2793 if (eir & I915_ERROR_INSTRUCTION) { 2794 pr_err("instruction error\n"); 2795 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM)); 2796 for (i = 0; i < ARRAY_SIZE(instdone); i++) 2797 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); 2798 if (INTEL_INFO(dev)->gen < 4) { 2799 u32 ipeir = I915_READ(IPEIR); 2800 2801 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR)); 2802 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR)); 2803 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD)); 2804 I915_WRITE(IPEIR, ipeir); 2805 POSTING_READ(IPEIR); 2806 } else { 2807 u32 ipeir = I915_READ(IPEIR_I965); 2808 2809 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); 2810 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); 2811 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); 2812 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); 2813 I915_WRITE(IPEIR_I965, ipeir); 2814 POSTING_READ(IPEIR_I965); 2815 } 2816 } 2817 2818 I915_WRITE(EIR, eir); 2819 POSTING_READ(EIR); 2820 eir = I915_READ(EIR); 2821 if (eir) { 2822 /* 2823 * some errors might have become stuck, 2824 * mask them. 2825 */ 2826 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir); 2827 I915_WRITE(EMR, I915_READ(EMR) | eir); 2828 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 2829 } 2830 } 2831 2832 /** 2833 * i915_handle_error - handle an error interrupt 2834 * @dev: drm device 2835 * 2836 * Do some basic checking of regsiter state at error interrupt time and 2837 * dump it to the syslog. Also call i915_capture_error_state() to make 2838 * sure we get a record and make it available in debugfs. Fire a uevent 2839 * so userspace knows something bad happened (should trigger collection 2840 * of a ring dump etc.). 2841 */ 2842 void i915_handle_error(struct drm_device *dev, bool wedged, 2843 const char *fmt, ...) 2844 { 2845 struct drm_i915_private *dev_priv = dev->dev_private; 2846 va_list args; 2847 char error_msg[80]; 2848 2849 va_start(args, fmt); 2850 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 2851 va_end(args); 2852 2853 i915_capture_error_state(dev, wedged, error_msg); 2854 i915_report_and_clear_eir(dev); 2855 2856 if (wedged) { 2857 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG, 2858 &dev_priv->gpu_error.reset_counter); 2859 2860 /* 2861 * Wakeup waiting processes so that the reset work function 2862 * i915_error_work_func doesn't deadlock trying to grab various 2863 * locks. By bumping the reset counter first, the woken 2864 * processes will see a reset in progress and back off, 2865 * releasing their locks and then wait for the reset completion. 2866 * We must do this for _all_ gpu waiters that might hold locks 2867 * that the reset work needs to acquire. 2868 * 2869 * Note: The wake_up serves as the required memory barrier to 2870 * ensure that the waiters see the updated value of the reset 2871 * counter atomic_t. 2872 */ 2873 i915_error_wake_up(dev_priv, false); 2874 } 2875 2876 /* 2877 * Our reset work can grab modeset locks (since it needs to reset the 2878 * state of outstanding pagelips). Hence it must not be run on our own 2879 * dev-priv->wq work queue for otherwise the flush_work in the pageflip 2880 * code will deadlock. 2881 */ 2882 schedule_work(&dev_priv->gpu_error.work); 2883 } 2884 2885 /* Called from drm generic code, passed 'crtc' which 2886 * we use as a pipe index 2887 */ 2888 static int i915_enable_vblank(struct drm_device *dev, int pipe) 2889 { 2890 struct drm_i915_private *dev_priv = dev->dev_private; 2891 unsigned long irqflags; 2892 2893 if (!i915_pipe_enabled(dev, pipe)) 2894 return -EINVAL; 2895 2896 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2897 if (INTEL_INFO(dev)->gen >= 4) 2898 i915_enable_pipestat(dev_priv, pipe, 2899 PIPE_START_VBLANK_INTERRUPT_STATUS); 2900 else 2901 i915_enable_pipestat(dev_priv, pipe, 2902 PIPE_VBLANK_INTERRUPT_STATUS); 2903 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2904 2905 return 0; 2906 } 2907 2908 static int ironlake_enable_vblank(struct drm_device *dev, int pipe) 2909 { 2910 struct drm_i915_private *dev_priv = dev->dev_private; 2911 unsigned long irqflags; 2912 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) : 2913 DE_PIPE_VBLANK(pipe); 2914 2915 if (!i915_pipe_enabled(dev, pipe)) 2916 return -EINVAL; 2917 2918 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2919 ironlake_enable_display_irq(dev_priv, bit); 2920 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2921 2922 return 0; 2923 } 2924 2925 static int valleyview_enable_vblank(struct drm_device *dev, int pipe) 2926 { 2927 struct drm_i915_private *dev_priv = dev->dev_private; 2928 unsigned long irqflags; 2929 2930 if (!i915_pipe_enabled(dev, pipe)) 2931 return -EINVAL; 2932 2933 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2934 i915_enable_pipestat(dev_priv, pipe, 2935 PIPE_START_VBLANK_INTERRUPT_STATUS); 2936 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2937 2938 return 0; 2939 } 2940 2941 static int gen8_enable_vblank(struct drm_device *dev, int pipe) 2942 { 2943 struct drm_i915_private *dev_priv = dev->dev_private; 2944 unsigned long irqflags; 2945 2946 if (!i915_pipe_enabled(dev, pipe)) 2947 return -EINVAL; 2948 2949 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2950 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK; 2951 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 2952 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 2953 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2954 return 0; 2955 } 2956 2957 /* Called from drm generic code, passed 'crtc' which 2958 * we use as a pipe index 2959 */ 2960 static void i915_disable_vblank(struct drm_device *dev, int pipe) 2961 { 2962 struct drm_i915_private *dev_priv = dev->dev_private; 2963 unsigned long irqflags; 2964 2965 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2966 i915_disable_pipestat(dev_priv, pipe, 2967 PIPE_VBLANK_INTERRUPT_STATUS | 2968 PIPE_START_VBLANK_INTERRUPT_STATUS); 2969 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2970 } 2971 2972 static void ironlake_disable_vblank(struct drm_device *dev, int pipe) 2973 { 2974 struct drm_i915_private *dev_priv = dev->dev_private; 2975 unsigned long irqflags; 2976 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) : 2977 DE_PIPE_VBLANK(pipe); 2978 2979 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2980 ironlake_disable_display_irq(dev_priv, bit); 2981 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2982 } 2983 2984 static void valleyview_disable_vblank(struct drm_device *dev, int pipe) 2985 { 2986 struct drm_i915_private *dev_priv = dev->dev_private; 2987 unsigned long irqflags; 2988 2989 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2990 i915_disable_pipestat(dev_priv, pipe, 2991 PIPE_START_VBLANK_INTERRUPT_STATUS); 2992 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2993 } 2994 2995 static void gen8_disable_vblank(struct drm_device *dev, int pipe) 2996 { 2997 struct drm_i915_private *dev_priv = dev->dev_private; 2998 unsigned long irqflags; 2999 3000 if (!i915_pipe_enabled(dev, pipe)) 3001 return; 3002 3003 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3004 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK; 3005 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 3006 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 3007 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3008 } 3009 3010 static u32 3011 ring_last_seqno(struct intel_engine_cs *ring) 3012 { 3013 return list_entry(ring->request_list.prev, 3014 struct drm_i915_gem_request, list)->seqno; 3015 } 3016 3017 static bool 3018 ring_idle(struct intel_engine_cs *ring, u32 seqno) 3019 { 3020 return (list_empty(&ring->request_list) || 3021 i915_seqno_passed(seqno, ring_last_seqno(ring))); 3022 } 3023 3024 static bool 3025 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr) 3026 { 3027 if (INTEL_INFO(dev)->gen >= 8) { 3028 return (ipehr >> 23) == 0x1c; 3029 } else { 3030 ipehr &= ~MI_SEMAPHORE_SYNC_MASK; 3031 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | 3032 MI_SEMAPHORE_REGISTER); 3033 } 3034 } 3035 3036 static struct intel_engine_cs * 3037 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset) 3038 { 3039 struct drm_i915_private *dev_priv = ring->dev->dev_private; 3040 struct intel_engine_cs *signaller; 3041 int i; 3042 3043 if (INTEL_INFO(dev_priv->dev)->gen >= 8) { 3044 for_each_ring(signaller, dev_priv, i) { 3045 if (ring == signaller) 3046 continue; 3047 3048 if (offset == signaller->semaphore.signal_ggtt[ring->id]) 3049 return signaller; 3050 } 3051 } else { 3052 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK; 3053 3054 for_each_ring(signaller, dev_priv, i) { 3055 if(ring == signaller) 3056 continue; 3057 3058 if (sync_bits == signaller->semaphore.mbox.wait[ring->id]) 3059 return signaller; 3060 } 3061 } 3062 3063 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n", 3064 ring->id, ipehr, offset); 3065 3066 return NULL; 3067 } 3068 3069 static struct intel_engine_cs * 3070 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno) 3071 { 3072 struct drm_i915_private *dev_priv = ring->dev->dev_private; 3073 u32 cmd, ipehr, head; 3074 u64 offset = 0; 3075 int i, backwards; 3076 3077 ipehr = I915_READ(RING_IPEHR(ring->mmio_base)); 3078 if (!ipehr_is_semaphore_wait(ring->dev, ipehr)) 3079 return NULL; 3080 3081 /* 3082 * HEAD is likely pointing to the dword after the actual command, 3083 * so scan backwards until we find the MBOX. But limit it to just 3 3084 * or 4 dwords depending on the semaphore wait command size. 3085 * Note that we don't care about ACTHD here since that might 3086 * point at at batch, and semaphores are always emitted into the 3087 * ringbuffer itself. 3088 */ 3089 head = I915_READ_HEAD(ring) & HEAD_ADDR; 3090 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4; 3091 3092 for (i = backwards; i; --i) { 3093 /* 3094 * Be paranoid and presume the hw has gone off into the wild - 3095 * our ring is smaller than what the hardware (and hence 3096 * HEAD_ADDR) allows. Also handles wrap-around. 3097 */ 3098 head &= ring->buffer->size - 1; 3099 3100 /* This here seems to blow up */ 3101 cmd = ioread32(ring->buffer->virtual_start + head); 3102 if (cmd == ipehr) 3103 break; 3104 3105 head -= 4; 3106 } 3107 3108 if (!i) 3109 return NULL; 3110 3111 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1; 3112 if (INTEL_INFO(ring->dev)->gen >= 8) { 3113 offset = ioread32(ring->buffer->virtual_start + head + 12); 3114 offset <<= 32; 3115 offset = ioread32(ring->buffer->virtual_start + head + 8); 3116 } 3117 return semaphore_wait_to_signaller_ring(ring, ipehr, offset); 3118 } 3119 3120 static int semaphore_passed(struct intel_engine_cs *ring) 3121 { 3122 struct drm_i915_private *dev_priv = ring->dev->dev_private; 3123 struct intel_engine_cs *signaller; 3124 u32 seqno; 3125 3126 ring->hangcheck.deadlock++; 3127 3128 signaller = semaphore_waits_for(ring, &seqno); 3129 if (signaller == NULL) 3130 return -1; 3131 3132 /* Prevent pathological recursion due to driver bugs */ 3133 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS) 3134 return -1; 3135 3136 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno)) 3137 return 1; 3138 3139 /* cursory check for an unkickable deadlock */ 3140 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE && 3141 semaphore_passed(signaller) < 0) 3142 return -1; 3143 3144 return 0; 3145 } 3146 3147 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv) 3148 { 3149 struct intel_engine_cs *ring; 3150 int i; 3151 3152 for_each_ring(ring, dev_priv, i) 3153 ring->hangcheck.deadlock = 0; 3154 } 3155 3156 static enum intel_ring_hangcheck_action 3157 ring_stuck(struct intel_engine_cs *ring, u64 acthd) 3158 { 3159 struct drm_device *dev = ring->dev; 3160 struct drm_i915_private *dev_priv = dev->dev_private; 3161 u32 tmp; 3162 3163 if (acthd != ring->hangcheck.acthd) { 3164 if (acthd > ring->hangcheck.max_acthd) { 3165 ring->hangcheck.max_acthd = acthd; 3166 return HANGCHECK_ACTIVE; 3167 } 3168 3169 return HANGCHECK_ACTIVE_LOOP; 3170 } 3171 3172 if (IS_GEN2(dev)) 3173 return HANGCHECK_HUNG; 3174 3175 /* Is the chip hanging on a WAIT_FOR_EVENT? 3176 * If so we can simply poke the RB_WAIT bit 3177 * and break the hang. This should work on 3178 * all but the second generation chipsets. 3179 */ 3180 tmp = I915_READ_CTL(ring); 3181 if (tmp & RING_WAIT) { 3182 i915_handle_error(dev, false, 3183 "Kicking stuck wait on %s", 3184 ring->name); 3185 I915_WRITE_CTL(ring, tmp); 3186 return HANGCHECK_KICK; 3187 } 3188 3189 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) { 3190 switch (semaphore_passed(ring)) { 3191 default: 3192 return HANGCHECK_HUNG; 3193 case 1: 3194 i915_handle_error(dev, false, 3195 "Kicking stuck semaphore on %s", 3196 ring->name); 3197 I915_WRITE_CTL(ring, tmp); 3198 return HANGCHECK_KICK; 3199 case 0: 3200 return HANGCHECK_WAIT; 3201 } 3202 } 3203 3204 return HANGCHECK_HUNG; 3205 } 3206 3207 /** 3208 * This is called when the chip hasn't reported back with completed 3209 * batchbuffers in a long time. We keep track per ring seqno progress and 3210 * if there are no progress, hangcheck score for that ring is increased. 3211 * Further, acthd is inspected to see if the ring is stuck. On stuck case 3212 * we kick the ring. If we see no progress on three subsequent calls 3213 * we assume chip is wedged and try to fix it by resetting the chip. 3214 */ 3215 static void i915_hangcheck_elapsed(unsigned long data) 3216 { 3217 struct drm_device *dev = (struct drm_device *)data; 3218 struct drm_i915_private *dev_priv = dev->dev_private; 3219 struct intel_engine_cs *ring; 3220 int i; 3221 int busy_count = 0, rings_hung = 0; 3222 bool stuck[I915_NUM_RINGS] = { 0 }; 3223 #define BUSY 1 3224 #define KICK 5 3225 #define HUNG 20 3226 3227 if (!i915.enable_hangcheck) 3228 return; 3229 3230 for_each_ring(ring, dev_priv, i) { 3231 u64 acthd; 3232 u32 seqno; 3233 bool busy = true; 3234 3235 semaphore_clear_deadlocks(dev_priv); 3236 3237 seqno = ring->get_seqno(ring, false); 3238 acthd = intel_ring_get_active_head(ring); 3239 3240 if (ring->hangcheck.seqno == seqno) { 3241 if (ring_idle(ring, seqno)) { 3242 ring->hangcheck.action = HANGCHECK_IDLE; 3243 3244 if (waitqueue_active(&ring->irq_queue)) { 3245 /* Issue a wake-up to catch stuck h/w. */ 3246 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) { 3247 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring))) 3248 DRM_ERROR("Hangcheck timer elapsed... %s idle\n", 3249 ring->name); 3250 else 3251 DRM_INFO("Fake missed irq on %s\n", 3252 ring->name); 3253 wake_up_all(&ring->irq_queue); 3254 } 3255 /* Safeguard against driver failure */ 3256 ring->hangcheck.score += BUSY; 3257 } else 3258 busy = false; 3259 } else { 3260 /* We always increment the hangcheck score 3261 * if the ring is busy and still processing 3262 * the same request, so that no single request 3263 * can run indefinitely (such as a chain of 3264 * batches). The only time we do not increment 3265 * the hangcheck score on this ring, if this 3266 * ring is in a legitimate wait for another 3267 * ring. In that case the waiting ring is a 3268 * victim and we want to be sure we catch the 3269 * right culprit. Then every time we do kick 3270 * the ring, add a small increment to the 3271 * score so that we can catch a batch that is 3272 * being repeatedly kicked and so responsible 3273 * for stalling the machine. 3274 */ 3275 ring->hangcheck.action = ring_stuck(ring, 3276 acthd); 3277 3278 switch (ring->hangcheck.action) { 3279 case HANGCHECK_IDLE: 3280 case HANGCHECK_WAIT: 3281 case HANGCHECK_ACTIVE: 3282 break; 3283 case HANGCHECK_ACTIVE_LOOP: 3284 ring->hangcheck.score += BUSY; 3285 break; 3286 case HANGCHECK_KICK: 3287 ring->hangcheck.score += KICK; 3288 break; 3289 case HANGCHECK_HUNG: 3290 ring->hangcheck.score += HUNG; 3291 stuck[i] = true; 3292 break; 3293 } 3294 } 3295 } else { 3296 ring->hangcheck.action = HANGCHECK_ACTIVE; 3297 3298 /* Gradually reduce the count so that we catch DoS 3299 * attempts across multiple batches. 3300 */ 3301 if (ring->hangcheck.score > 0) 3302 ring->hangcheck.score--; 3303 3304 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0; 3305 } 3306 3307 ring->hangcheck.seqno = seqno; 3308 ring->hangcheck.acthd = acthd; 3309 busy_count += busy; 3310 } 3311 3312 for_each_ring(ring, dev_priv, i) { 3313 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) { 3314 DRM_INFO("%s on %s\n", 3315 stuck[i] ? "stuck" : "no progress", 3316 ring->name); 3317 rings_hung++; 3318 } 3319 } 3320 3321 if (rings_hung) 3322 return i915_handle_error(dev, true, "Ring hung"); 3323 3324 if (busy_count) 3325 /* Reset timer case chip hangs without another request 3326 * being added */ 3327 i915_queue_hangcheck(dev); 3328 } 3329 3330 void i915_queue_hangcheck(struct drm_device *dev) 3331 { 3332 struct drm_i915_private *dev_priv = dev->dev_private; 3333 if (!i915.enable_hangcheck) 3334 return; 3335 3336 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 3337 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 3338 } 3339 3340 static void ibx_irq_reset(struct drm_device *dev) 3341 { 3342 struct drm_i915_private *dev_priv = dev->dev_private; 3343 3344 if (HAS_PCH_NOP(dev)) 3345 return; 3346 3347 GEN5_IRQ_RESET(SDE); 3348 3349 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev)) 3350 I915_WRITE(SERR_INT, 0xffffffff); 3351 } 3352 3353 /* 3354 * SDEIER is also touched by the interrupt handler to work around missed PCH 3355 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3356 * instead we unconditionally enable all PCH interrupt sources here, but then 3357 * only unmask them as needed with SDEIMR. 3358 * 3359 * This function needs to be called before interrupts are enabled. 3360 */ 3361 static void ibx_irq_pre_postinstall(struct drm_device *dev) 3362 { 3363 struct drm_i915_private *dev_priv = dev->dev_private; 3364 3365 if (HAS_PCH_NOP(dev)) 3366 return; 3367 3368 WARN_ON(I915_READ(SDEIER) != 0); 3369 I915_WRITE(SDEIER, 0xffffffff); 3370 POSTING_READ(SDEIER); 3371 } 3372 3373 static void gen5_gt_irq_reset(struct drm_device *dev) 3374 { 3375 struct drm_i915_private *dev_priv = dev->dev_private; 3376 3377 GEN5_IRQ_RESET(GT); 3378 if (INTEL_INFO(dev)->gen >= 6) 3379 GEN5_IRQ_RESET(GEN6_PM); 3380 } 3381 3382 /* drm_dma.h hooks 3383 */ 3384 static void ironlake_irq_reset(struct drm_device *dev) 3385 { 3386 struct drm_i915_private *dev_priv = dev->dev_private; 3387 3388 I915_WRITE(HWSTAM, 0xffffffff); 3389 3390 GEN5_IRQ_RESET(DE); 3391 if (IS_GEN7(dev)) 3392 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 3393 3394 gen5_gt_irq_reset(dev); 3395 3396 ibx_irq_reset(dev); 3397 } 3398 3399 static void valleyview_irq_preinstall(struct drm_device *dev) 3400 { 3401 struct drm_i915_private *dev_priv = dev->dev_private; 3402 int pipe; 3403 3404 /* VLV magic */ 3405 I915_WRITE(VLV_IMR, 0); 3406 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0); 3407 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0); 3408 I915_WRITE(RING_IMR(BLT_RING_BASE), 0); 3409 3410 /* and GT */ 3411 I915_WRITE(GTIIR, I915_READ(GTIIR)); 3412 I915_WRITE(GTIIR, I915_READ(GTIIR)); 3413 3414 gen5_gt_irq_reset(dev); 3415 3416 I915_WRITE(DPINVGTT, 0xff); 3417 3418 I915_WRITE(PORT_HOTPLUG_EN, 0); 3419 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3420 for_each_pipe(dev_priv, pipe) 3421 I915_WRITE(PIPESTAT(pipe), 0xffff); 3422 I915_WRITE(VLV_IIR, 0xffffffff); 3423 I915_WRITE(VLV_IMR, 0xffffffff); 3424 I915_WRITE(VLV_IER, 0x0); 3425 POSTING_READ(VLV_IER); 3426 } 3427 3428 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 3429 { 3430 GEN8_IRQ_RESET_NDX(GT, 0); 3431 GEN8_IRQ_RESET_NDX(GT, 1); 3432 GEN8_IRQ_RESET_NDX(GT, 2); 3433 GEN8_IRQ_RESET_NDX(GT, 3); 3434 } 3435 3436 static void gen8_irq_reset(struct drm_device *dev) 3437 { 3438 struct drm_i915_private *dev_priv = dev->dev_private; 3439 int pipe; 3440 3441 I915_WRITE(GEN8_MASTER_IRQ, 0); 3442 POSTING_READ(GEN8_MASTER_IRQ); 3443 3444 gen8_gt_irq_reset(dev_priv); 3445 3446 for_each_pipe(dev_priv, pipe) 3447 if (intel_display_power_enabled(dev_priv, 3448 POWER_DOMAIN_PIPE(pipe))) 3449 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); 3450 3451 GEN5_IRQ_RESET(GEN8_DE_PORT_); 3452 GEN5_IRQ_RESET(GEN8_DE_MISC_); 3453 GEN5_IRQ_RESET(GEN8_PCU_); 3454 3455 ibx_irq_reset(dev); 3456 } 3457 3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv) 3459 { 3460 unsigned long irqflags; 3461 3462 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3463 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B], 3464 ~dev_priv->de_irq_mask[PIPE_B]); 3465 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C], 3466 ~dev_priv->de_irq_mask[PIPE_C]); 3467 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3468 } 3469 3470 static void cherryview_irq_preinstall(struct drm_device *dev) 3471 { 3472 struct drm_i915_private *dev_priv = dev->dev_private; 3473 int pipe; 3474 3475 I915_WRITE(GEN8_MASTER_IRQ, 0); 3476 POSTING_READ(GEN8_MASTER_IRQ); 3477 3478 gen8_gt_irq_reset(dev_priv); 3479 3480 GEN5_IRQ_RESET(GEN8_PCU_); 3481 3482 POSTING_READ(GEN8_PCU_IIR); 3483 3484 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 3485 3486 I915_WRITE(PORT_HOTPLUG_EN, 0); 3487 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3488 3489 for_each_pipe(dev_priv, pipe) 3490 I915_WRITE(PIPESTAT(pipe), 0xffff); 3491 3492 I915_WRITE(VLV_IMR, 0xffffffff); 3493 I915_WRITE(VLV_IER, 0x0); 3494 I915_WRITE(VLV_IIR, 0xffffffff); 3495 POSTING_READ(VLV_IIR); 3496 } 3497 3498 static void ibx_hpd_irq_setup(struct drm_device *dev) 3499 { 3500 struct drm_i915_private *dev_priv = dev->dev_private; 3501 struct intel_encoder *intel_encoder; 3502 u32 hotplug_irqs, hotplug, enabled_irqs = 0; 3503 3504 if (HAS_PCH_IBX(dev)) { 3505 hotplug_irqs = SDE_HOTPLUG_MASK; 3506 for_each_intel_encoder(dev, intel_encoder) 3507 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) 3508 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin]; 3509 } else { 3510 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3511 for_each_intel_encoder(dev, intel_encoder) 3512 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) 3513 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin]; 3514 } 3515 3516 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3517 3518 /* 3519 * Enable digital hotplug on the PCH, and configure the DP short pulse 3520 * duration to 2ms (which is the minimum in the Display Port spec) 3521 * 3522 * This register is the same on all known PCH chips. 3523 */ 3524 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3525 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); 3526 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3527 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3528 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3529 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3530 } 3531 3532 static void ibx_irq_postinstall(struct drm_device *dev) 3533 { 3534 struct drm_i915_private *dev_priv = dev->dev_private; 3535 u32 mask; 3536 3537 if (HAS_PCH_NOP(dev)) 3538 return; 3539 3540 if (HAS_PCH_IBX(dev)) 3541 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3542 else 3543 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3544 3545 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR); 3546 I915_WRITE(SDEIMR, ~mask); 3547 } 3548 3549 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3550 { 3551 struct drm_i915_private *dev_priv = dev->dev_private; 3552 u32 pm_irqs, gt_irqs; 3553 3554 pm_irqs = gt_irqs = 0; 3555 3556 dev_priv->gt_irq_mask = ~0; 3557 if (HAS_L3_DPF(dev)) { 3558 /* L3 parity interrupt is always unmasked. */ 3559 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev); 3560 gt_irqs |= GT_PARITY_ERROR(dev); 3561 } 3562 3563 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3564 if (IS_GEN5(dev)) { 3565 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT | 3566 ILK_BSD_USER_INTERRUPT; 3567 } else { 3568 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3569 } 3570 3571 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); 3572 3573 if (INTEL_INFO(dev)->gen >= 6) { 3574 pm_irqs |= dev_priv->pm_rps_events; 3575 3576 if (HAS_VEBOX(dev)) 3577 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 3578 3579 dev_priv->pm_irq_mask = 0xffffffff; 3580 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs); 3581 } 3582 } 3583 3584 static int ironlake_irq_postinstall(struct drm_device *dev) 3585 { 3586 unsigned long irqflags; 3587 struct drm_i915_private *dev_priv = dev->dev_private; 3588 u32 display_mask, extra_mask; 3589 3590 if (INTEL_INFO(dev)->gen >= 7) { 3591 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3592 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | 3593 DE_PLANEB_FLIP_DONE_IVB | 3594 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB); 3595 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3596 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB); 3597 } else { 3598 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3599 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | 3600 DE_AUX_CHANNEL_A | 3601 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | 3602 DE_POISON); 3603 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3604 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN; 3605 } 3606 3607 dev_priv->irq_mask = ~display_mask; 3608 3609 I915_WRITE(HWSTAM, 0xeffe); 3610 3611 ibx_irq_pre_postinstall(dev); 3612 3613 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); 3614 3615 gen5_gt_irq_postinstall(dev); 3616 3617 ibx_irq_postinstall(dev); 3618 3619 if (IS_IRONLAKE_M(dev)) { 3620 /* Enable PCU event interrupts 3621 * 3622 * spinlocking not required here for correctness since interrupt 3623 * setup is guaranteed to run in single-threaded context. But we 3624 * need it to make the assert_spin_locked happy. */ 3625 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3626 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT); 3627 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3628 } 3629 3630 return 0; 3631 } 3632 3633 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv) 3634 { 3635 u32 pipestat_mask; 3636 u32 iir_mask; 3637 3638 pipestat_mask = PIPESTAT_INT_STATUS_MASK | 3639 PIPE_FIFO_UNDERRUN_STATUS; 3640 3641 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask); 3642 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask); 3643 POSTING_READ(PIPESTAT(PIPE_A)); 3644 3645 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | 3646 PIPE_CRC_DONE_INTERRUPT_STATUS; 3647 3648 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask | 3649 PIPE_GMBUS_INTERRUPT_STATUS); 3650 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask); 3651 3652 iir_mask = I915_DISPLAY_PORT_INTERRUPT | 3653 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3654 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 3655 dev_priv->irq_mask &= ~iir_mask; 3656 3657 I915_WRITE(VLV_IIR, iir_mask); 3658 I915_WRITE(VLV_IIR, iir_mask); 3659 I915_WRITE(VLV_IMR, dev_priv->irq_mask); 3660 I915_WRITE(VLV_IER, ~dev_priv->irq_mask); 3661 POSTING_READ(VLV_IER); 3662 } 3663 3664 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv) 3665 { 3666 u32 pipestat_mask; 3667 u32 iir_mask; 3668 3669 iir_mask = I915_DISPLAY_PORT_INTERRUPT | 3670 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3671 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 3672 3673 dev_priv->irq_mask |= iir_mask; 3674 I915_WRITE(VLV_IER, ~dev_priv->irq_mask); 3675 I915_WRITE(VLV_IMR, dev_priv->irq_mask); 3676 I915_WRITE(VLV_IIR, iir_mask); 3677 I915_WRITE(VLV_IIR, iir_mask); 3678 POSTING_READ(VLV_IIR); 3679 3680 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | 3681 PIPE_CRC_DONE_INTERRUPT_STATUS; 3682 3683 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask | 3684 PIPE_GMBUS_INTERRUPT_STATUS); 3685 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask); 3686 3687 pipestat_mask = PIPESTAT_INT_STATUS_MASK | 3688 PIPE_FIFO_UNDERRUN_STATUS; 3689 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask); 3690 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask); 3691 POSTING_READ(PIPESTAT(PIPE_A)); 3692 } 3693 3694 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3695 { 3696 assert_spin_locked(&dev_priv->irq_lock); 3697 3698 if (dev_priv->display_irqs_enabled) 3699 return; 3700 3701 dev_priv->display_irqs_enabled = true; 3702 3703 if (dev_priv->dev->irq_enabled) 3704 valleyview_display_irqs_install(dev_priv); 3705 } 3706 3707 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3708 { 3709 assert_spin_locked(&dev_priv->irq_lock); 3710 3711 if (!dev_priv->display_irqs_enabled) 3712 return; 3713 3714 dev_priv->display_irqs_enabled = false; 3715 3716 if (dev_priv->dev->irq_enabled) 3717 valleyview_display_irqs_uninstall(dev_priv); 3718 } 3719 3720 static int valleyview_irq_postinstall(struct drm_device *dev) 3721 { 3722 struct drm_i915_private *dev_priv = dev->dev_private; 3723 unsigned long irqflags; 3724 3725 dev_priv->irq_mask = ~0; 3726 3727 I915_WRITE(PORT_HOTPLUG_EN, 0); 3728 POSTING_READ(PORT_HOTPLUG_EN); 3729 3730 I915_WRITE(VLV_IMR, dev_priv->irq_mask); 3731 I915_WRITE(VLV_IER, ~dev_priv->irq_mask); 3732 I915_WRITE(VLV_IIR, 0xffffffff); 3733 POSTING_READ(VLV_IER); 3734 3735 /* Interrupt setup is already guaranteed to be single-threaded, this is 3736 * just to make the assert_spin_locked check happy. */ 3737 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3738 if (dev_priv->display_irqs_enabled) 3739 valleyview_display_irqs_install(dev_priv); 3740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3741 3742 I915_WRITE(VLV_IIR, 0xffffffff); 3743 I915_WRITE(VLV_IIR, 0xffffffff); 3744 3745 gen5_gt_irq_postinstall(dev); 3746 3747 /* ack & enable invalid PTE error interrupts */ 3748 #if 0 /* FIXME: add support to irq handler for checking these bits */ 3749 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 3750 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK); 3751 #endif 3752 3753 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3754 3755 return 0; 3756 } 3757 3758 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 3759 { 3760 /* These are interrupts we'll toggle with the ring mask register */ 3761 uint32_t gt_interrupts[] = { 3762 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3763 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 3764 GT_RENDER_L3_PARITY_ERROR_INTERRUPT | 3765 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 3766 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, 3767 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3768 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 3769 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | 3770 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 3771 0, 3772 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 3773 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT 3774 }; 3775 3776 dev_priv->pm_irq_mask = 0xffffffff; 3777 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 3778 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 3779 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events); 3780 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 3781 } 3782 3783 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3784 { 3785 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE | 3786 GEN8_PIPE_CDCLK_CRC_DONE | 3787 GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 3788 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3789 GEN8_PIPE_FIFO_UNDERRUN; 3790 int pipe; 3791 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked; 3792 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked; 3793 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked; 3794 3795 for_each_pipe(dev_priv, pipe) 3796 if (intel_display_power_enabled(dev_priv, 3797 POWER_DOMAIN_PIPE(pipe))) 3798 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, 3799 dev_priv->de_irq_mask[pipe], 3800 de_pipe_enables); 3801 3802 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A); 3803 } 3804 3805 static int gen8_irq_postinstall(struct drm_device *dev) 3806 { 3807 struct drm_i915_private *dev_priv = dev->dev_private; 3808 3809 ibx_irq_pre_postinstall(dev); 3810 3811 gen8_gt_irq_postinstall(dev_priv); 3812 gen8_de_irq_postinstall(dev_priv); 3813 3814 ibx_irq_postinstall(dev); 3815 3816 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL); 3817 POSTING_READ(GEN8_MASTER_IRQ); 3818 3819 return 0; 3820 } 3821 3822 static int cherryview_irq_postinstall(struct drm_device *dev) 3823 { 3824 struct drm_i915_private *dev_priv = dev->dev_private; 3825 u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3826 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3827 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3828 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 3829 u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV | 3830 PIPE_CRC_DONE_INTERRUPT_STATUS; 3831 unsigned long irqflags; 3832 int pipe; 3833 3834 /* 3835 * Leave vblank interrupts masked initially. enable/disable will 3836 * toggle them based on usage. 3837 */ 3838 dev_priv->irq_mask = ~enable_mask; 3839 3840 for_each_pipe(dev_priv, pipe) 3841 I915_WRITE(PIPESTAT(pipe), 0xffff); 3842 3843 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3844 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3845 for_each_pipe(dev_priv, pipe) 3846 i915_enable_pipestat(dev_priv, pipe, pipestat_enable); 3847 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3848 3849 I915_WRITE(VLV_IIR, 0xffffffff); 3850 I915_WRITE(VLV_IMR, dev_priv->irq_mask); 3851 I915_WRITE(VLV_IER, enable_mask); 3852 3853 gen8_gt_irq_postinstall(dev_priv); 3854 3855 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE); 3856 POSTING_READ(GEN8_MASTER_IRQ); 3857 3858 return 0; 3859 } 3860 3861 static void gen8_irq_uninstall(struct drm_device *dev) 3862 { 3863 struct drm_i915_private *dev_priv = dev->dev_private; 3864 3865 if (!dev_priv) 3866 return; 3867 3868 gen8_irq_reset(dev); 3869 } 3870 3871 static void valleyview_irq_uninstall(struct drm_device *dev) 3872 { 3873 struct drm_i915_private *dev_priv = dev->dev_private; 3874 unsigned long irqflags; 3875 int pipe; 3876 3877 if (!dev_priv) 3878 return; 3879 3880 I915_WRITE(VLV_MASTER_IER, 0); 3881 3882 for_each_pipe(dev_priv, pipe) 3883 I915_WRITE(PIPESTAT(pipe), 0xffff); 3884 3885 I915_WRITE(HWSTAM, 0xffffffff); 3886 I915_WRITE(PORT_HOTPLUG_EN, 0); 3887 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3888 3889 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3890 if (dev_priv->display_irqs_enabled) 3891 valleyview_display_irqs_uninstall(dev_priv); 3892 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3893 3894 dev_priv->irq_mask = 0; 3895 3896 I915_WRITE(VLV_IIR, 0xffffffff); 3897 I915_WRITE(VLV_IMR, 0xffffffff); 3898 I915_WRITE(VLV_IER, 0x0); 3899 POSTING_READ(VLV_IER); 3900 } 3901 3902 static void cherryview_irq_uninstall(struct drm_device *dev) 3903 { 3904 struct drm_i915_private *dev_priv = dev->dev_private; 3905 int pipe; 3906 3907 if (!dev_priv) 3908 return; 3909 3910 I915_WRITE(GEN8_MASTER_IRQ, 0); 3911 POSTING_READ(GEN8_MASTER_IRQ); 3912 3913 #define GEN8_IRQ_FINI_NDX(type, which) \ 3914 do { \ 3915 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ 3916 I915_WRITE(GEN8_##type##_IER(which), 0); \ 3917 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 3918 POSTING_READ(GEN8_##type##_IIR(which)); \ 3919 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ 3920 } while (0) 3921 3922 #define GEN8_IRQ_FINI(type) \ 3923 do { \ 3924 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \ 3925 I915_WRITE(GEN8_##type##_IER, 0); \ 3926 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \ 3927 POSTING_READ(GEN8_##type##_IIR); \ 3928 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \ 3929 } while (0) 3930 3931 GEN8_IRQ_FINI_NDX(GT, 0); 3932 GEN8_IRQ_FINI_NDX(GT, 1); 3933 GEN8_IRQ_FINI_NDX(GT, 2); 3934 GEN8_IRQ_FINI_NDX(GT, 3); 3935 3936 GEN8_IRQ_FINI(PCU); 3937 3938 #undef GEN8_IRQ_FINI 3939 #undef GEN8_IRQ_FINI_NDX 3940 3941 I915_WRITE(PORT_HOTPLUG_EN, 0); 3942 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3943 3944 for_each_pipe(dev_priv, pipe) 3945 I915_WRITE(PIPESTAT(pipe), 0xffff); 3946 3947 I915_WRITE(VLV_IMR, 0xffffffff); 3948 I915_WRITE(VLV_IER, 0x0); 3949 I915_WRITE(VLV_IIR, 0xffffffff); 3950 POSTING_READ(VLV_IIR); 3951 } 3952 3953 static void ironlake_irq_uninstall(struct drm_device *dev) 3954 { 3955 struct drm_i915_private *dev_priv = dev->dev_private; 3956 3957 if (!dev_priv) 3958 return; 3959 3960 ironlake_irq_reset(dev); 3961 } 3962 3963 static void i8xx_irq_preinstall(struct drm_device * dev) 3964 { 3965 struct drm_i915_private *dev_priv = dev->dev_private; 3966 int pipe; 3967 3968 for_each_pipe(dev_priv, pipe) 3969 I915_WRITE(PIPESTAT(pipe), 0); 3970 I915_WRITE16(IMR, 0xffff); 3971 I915_WRITE16(IER, 0x0); 3972 POSTING_READ16(IER); 3973 } 3974 3975 static int i8xx_irq_postinstall(struct drm_device *dev) 3976 { 3977 struct drm_i915_private *dev_priv = dev->dev_private; 3978 unsigned long irqflags; 3979 3980 I915_WRITE16(EMR, 3981 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); 3982 3983 /* Unmask the interrupts that we always want on. */ 3984 dev_priv->irq_mask = 3985 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3986 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3987 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 3988 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | 3989 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 3990 I915_WRITE16(IMR, dev_priv->irq_mask); 3991 3992 I915_WRITE16(IER, 3993 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3994 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3995 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | 3996 I915_USER_INTERRUPT); 3997 POSTING_READ16(IER); 3998 3999 /* Interrupt setup is already guaranteed to be single-threaded, this is 4000 * just to make the assert_spin_locked check happy. */ 4001 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4002 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4003 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4004 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4005 4006 return 0; 4007 } 4008 4009 /* 4010 * Returns true when a page flip has completed. 4011 */ 4012 static bool i8xx_handle_vblank(struct drm_device *dev, 4013 int plane, int pipe, u32 iir) 4014 { 4015 struct drm_i915_private *dev_priv = dev->dev_private; 4016 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); 4017 4018 if (!intel_pipe_handle_vblank(dev, pipe)) 4019 return false; 4020 4021 if ((iir & flip_pending) == 0) 4022 goto check_page_flip; 4023 4024 intel_prepare_page_flip(dev, plane); 4025 4026 /* We detect FlipDone by looking for the change in PendingFlip from '1' 4027 * to '0' on the following vblank, i.e. IIR has the Pendingflip 4028 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence 4029 * the flip is completed (no longer pending). Since this doesn't raise 4030 * an interrupt per se, we watch for the change at vblank. 4031 */ 4032 if (I915_READ16(ISR) & flip_pending) 4033 goto check_page_flip; 4034 4035 intel_finish_page_flip(dev, pipe); 4036 return true; 4037 4038 check_page_flip: 4039 intel_check_page_flip(dev, pipe); 4040 return false; 4041 } 4042 4043 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 4044 { 4045 struct drm_device *dev = arg; 4046 struct drm_i915_private *dev_priv = dev->dev_private; 4047 u16 iir, new_iir; 4048 u32 pipe_stats[2]; 4049 unsigned long irqflags; 4050 int pipe; 4051 u16 flip_mask = 4052 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4053 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 4054 4055 iir = I915_READ16(IIR); 4056 if (iir == 0) 4057 return IRQ_NONE; 4058 4059 while (iir & ~flip_mask) { 4060 /* Can't rely on pipestat interrupt bit in iir as it might 4061 * have been cleared after the pipestat interrupt was received. 4062 * It doesn't set the bit in iir again, but it still produces 4063 * interrupts (for non-MSI). 4064 */ 4065 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4066 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4067 i915_handle_error(dev, false, 4068 "Command parser error, iir 0x%08x", 4069 iir); 4070 4071 for_each_pipe(dev_priv, pipe) { 4072 int reg = PIPESTAT(pipe); 4073 pipe_stats[pipe] = I915_READ(reg); 4074 4075 /* 4076 * Clear the PIPE*STAT regs before the IIR 4077 */ 4078 if (pipe_stats[pipe] & 0x8000ffff) 4079 I915_WRITE(reg, pipe_stats[pipe]); 4080 } 4081 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4082 4083 I915_WRITE16(IIR, iir & ~flip_mask); 4084 new_iir = I915_READ16(IIR); /* Flush posted writes */ 4085 4086 i915_update_dri1_breadcrumb(dev); 4087 4088 if (iir & I915_USER_INTERRUPT) 4089 notify_ring(dev, &dev_priv->ring[RCS]); 4090 4091 for_each_pipe(dev_priv, pipe) { 4092 int plane = pipe; 4093 if (HAS_FBC(dev)) 4094 plane = !plane; 4095 4096 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && 4097 i8xx_handle_vblank(dev, plane, pipe, iir)) 4098 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); 4099 4100 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 4101 i9xx_pipe_crc_irq_handler(dev, pipe); 4102 4103 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS && 4104 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) 4105 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe)); 4106 } 4107 4108 iir = new_iir; 4109 } 4110 4111 return IRQ_HANDLED; 4112 } 4113 4114 static void i8xx_irq_uninstall(struct drm_device * dev) 4115 { 4116 struct drm_i915_private *dev_priv = dev->dev_private; 4117 int pipe; 4118 4119 for_each_pipe(dev_priv, pipe) { 4120 /* Clear enable bits; then clear status bits */ 4121 I915_WRITE(PIPESTAT(pipe), 0); 4122 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); 4123 } 4124 I915_WRITE16(IMR, 0xffff); 4125 I915_WRITE16(IER, 0x0); 4126 I915_WRITE16(IIR, I915_READ16(IIR)); 4127 } 4128 4129 static void i915_irq_preinstall(struct drm_device * dev) 4130 { 4131 struct drm_i915_private *dev_priv = dev->dev_private; 4132 int pipe; 4133 4134 if (I915_HAS_HOTPLUG(dev)) { 4135 I915_WRITE(PORT_HOTPLUG_EN, 0); 4136 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4137 } 4138 4139 I915_WRITE16(HWSTAM, 0xeffe); 4140 for_each_pipe(dev_priv, pipe) 4141 I915_WRITE(PIPESTAT(pipe), 0); 4142 I915_WRITE(IMR, 0xffffffff); 4143 I915_WRITE(IER, 0x0); 4144 POSTING_READ(IER); 4145 } 4146 4147 static int i915_irq_postinstall(struct drm_device *dev) 4148 { 4149 struct drm_i915_private *dev_priv = dev->dev_private; 4150 u32 enable_mask; 4151 unsigned long irqflags; 4152 4153 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); 4154 4155 /* Unmask the interrupts that we always want on. */ 4156 dev_priv->irq_mask = 4157 ~(I915_ASLE_INTERRUPT | 4158 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4159 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4160 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4161 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | 4162 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 4163 4164 enable_mask = 4165 I915_ASLE_INTERRUPT | 4166 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4167 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4168 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | 4169 I915_USER_INTERRUPT; 4170 4171 if (I915_HAS_HOTPLUG(dev)) { 4172 I915_WRITE(PORT_HOTPLUG_EN, 0); 4173 POSTING_READ(PORT_HOTPLUG_EN); 4174 4175 /* Enable in IER... */ 4176 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4177 /* and unmask in IMR */ 4178 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4179 } 4180 4181 I915_WRITE(IMR, dev_priv->irq_mask); 4182 I915_WRITE(IER, enable_mask); 4183 POSTING_READ(IER); 4184 4185 i915_enable_asle_pipestat(dev); 4186 4187 /* Interrupt setup is already guaranteed to be single-threaded, this is 4188 * just to make the assert_spin_locked check happy. */ 4189 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4190 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4191 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4192 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4193 4194 return 0; 4195 } 4196 4197 /* 4198 * Returns true when a page flip has completed. 4199 */ 4200 static bool i915_handle_vblank(struct drm_device *dev, 4201 int plane, int pipe, u32 iir) 4202 { 4203 struct drm_i915_private *dev_priv = dev->dev_private; 4204 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); 4205 4206 if (!intel_pipe_handle_vblank(dev, pipe)) 4207 return false; 4208 4209 if ((iir & flip_pending) == 0) 4210 goto check_page_flip; 4211 4212 intel_prepare_page_flip(dev, plane); 4213 4214 /* We detect FlipDone by looking for the change in PendingFlip from '1' 4215 * to '0' on the following vblank, i.e. IIR has the Pendingflip 4216 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence 4217 * the flip is completed (no longer pending). Since this doesn't raise 4218 * an interrupt per se, we watch for the change at vblank. 4219 */ 4220 if (I915_READ(ISR) & flip_pending) 4221 goto check_page_flip; 4222 4223 intel_finish_page_flip(dev, pipe); 4224 return true; 4225 4226 check_page_flip: 4227 intel_check_page_flip(dev, pipe); 4228 return false; 4229 } 4230 4231 static irqreturn_t i915_irq_handler(int irq, void *arg) 4232 { 4233 struct drm_device *dev = arg; 4234 struct drm_i915_private *dev_priv = dev->dev_private; 4235 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; 4236 unsigned long irqflags; 4237 u32 flip_mask = 4238 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4239 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 4240 int pipe, ret = IRQ_NONE; 4241 4242 iir = I915_READ(IIR); 4243 do { 4244 bool irq_received = (iir & ~flip_mask) != 0; 4245 bool blc_event = false; 4246 4247 /* Can't rely on pipestat interrupt bit in iir as it might 4248 * have been cleared after the pipestat interrupt was received. 4249 * It doesn't set the bit in iir again, but it still produces 4250 * interrupts (for non-MSI). 4251 */ 4252 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4253 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4254 i915_handle_error(dev, false, 4255 "Command parser error, iir 0x%08x", 4256 iir); 4257 4258 for_each_pipe(dev_priv, pipe) { 4259 int reg = PIPESTAT(pipe); 4260 pipe_stats[pipe] = I915_READ(reg); 4261 4262 /* Clear the PIPE*STAT regs before the IIR */ 4263 if (pipe_stats[pipe] & 0x8000ffff) { 4264 I915_WRITE(reg, pipe_stats[pipe]); 4265 irq_received = true; 4266 } 4267 } 4268 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4269 4270 if (!irq_received) 4271 break; 4272 4273 /* Consume port. Then clear IIR or we'll miss events */ 4274 if (I915_HAS_HOTPLUG(dev) && 4275 iir & I915_DISPLAY_PORT_INTERRUPT) 4276 i9xx_hpd_irq_handler(dev); 4277 4278 I915_WRITE(IIR, iir & ~flip_mask); 4279 new_iir = I915_READ(IIR); /* Flush posted writes */ 4280 4281 if (iir & I915_USER_INTERRUPT) 4282 notify_ring(dev, &dev_priv->ring[RCS]); 4283 4284 for_each_pipe(dev_priv, pipe) { 4285 int plane = pipe; 4286 if (HAS_FBC(dev)) 4287 plane = !plane; 4288 4289 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && 4290 i915_handle_vblank(dev, plane, pipe, iir)) 4291 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); 4292 4293 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 4294 blc_event = true; 4295 4296 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 4297 i9xx_pipe_crc_irq_handler(dev, pipe); 4298 4299 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS && 4300 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) 4301 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe)); 4302 } 4303 4304 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 4305 intel_opregion_asle_intr(dev); 4306 4307 /* With MSI, interrupts are only generated when iir 4308 * transitions from zero to nonzero. If another bit got 4309 * set while we were handling the existing iir bits, then 4310 * we would never get another interrupt. 4311 * 4312 * This is fine on non-MSI as well, as if we hit this path 4313 * we avoid exiting the interrupt handler only to generate 4314 * another one. 4315 * 4316 * Note that for MSI this could cause a stray interrupt report 4317 * if an interrupt landed in the time between writing IIR and 4318 * the posting read. This should be rare enough to never 4319 * trigger the 99% of 100,000 interrupts test for disabling 4320 * stray interrupts. 4321 */ 4322 ret = IRQ_HANDLED; 4323 iir = new_iir; 4324 } while (iir & ~flip_mask); 4325 4326 i915_update_dri1_breadcrumb(dev); 4327 4328 return ret; 4329 } 4330 4331 static void i915_irq_uninstall(struct drm_device * dev) 4332 { 4333 struct drm_i915_private *dev_priv = dev->dev_private; 4334 int pipe; 4335 4336 if (I915_HAS_HOTPLUG(dev)) { 4337 I915_WRITE(PORT_HOTPLUG_EN, 0); 4338 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4339 } 4340 4341 I915_WRITE16(HWSTAM, 0xffff); 4342 for_each_pipe(dev_priv, pipe) { 4343 /* Clear enable bits; then clear status bits */ 4344 I915_WRITE(PIPESTAT(pipe), 0); 4345 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); 4346 } 4347 I915_WRITE(IMR, 0xffffffff); 4348 I915_WRITE(IER, 0x0); 4349 4350 I915_WRITE(IIR, I915_READ(IIR)); 4351 } 4352 4353 static void i965_irq_preinstall(struct drm_device * dev) 4354 { 4355 struct drm_i915_private *dev_priv = dev->dev_private; 4356 int pipe; 4357 4358 I915_WRITE(PORT_HOTPLUG_EN, 0); 4359 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4360 4361 I915_WRITE(HWSTAM, 0xeffe); 4362 for_each_pipe(dev_priv, pipe) 4363 I915_WRITE(PIPESTAT(pipe), 0); 4364 I915_WRITE(IMR, 0xffffffff); 4365 I915_WRITE(IER, 0x0); 4366 POSTING_READ(IER); 4367 } 4368 4369 static int i965_irq_postinstall(struct drm_device *dev) 4370 { 4371 struct drm_i915_private *dev_priv = dev->dev_private; 4372 u32 enable_mask; 4373 u32 error_mask; 4374 unsigned long irqflags; 4375 4376 /* Unmask the interrupts that we always want on. */ 4377 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | 4378 I915_DISPLAY_PORT_INTERRUPT | 4379 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4380 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4381 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4382 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | 4383 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); 4384 4385 enable_mask = ~dev_priv->irq_mask; 4386 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4387 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); 4388 enable_mask |= I915_USER_INTERRUPT; 4389 4390 if (IS_G4X(dev)) 4391 enable_mask |= I915_BSD_USER_INTERRUPT; 4392 4393 /* Interrupt setup is already guaranteed to be single-threaded, this is 4394 * just to make the assert_spin_locked check happy. */ 4395 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4396 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4397 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4398 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4399 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4400 4401 /* 4402 * Enable some error detection, note the instruction error mask 4403 * bit is reserved, so we leave it masked. 4404 */ 4405 if (IS_G4X(dev)) { 4406 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4407 GM45_ERROR_MEM_PRIV | 4408 GM45_ERROR_CP_PRIV | 4409 I915_ERROR_MEMORY_REFRESH); 4410 } else { 4411 error_mask = ~(I915_ERROR_PAGE_TABLE | 4412 I915_ERROR_MEMORY_REFRESH); 4413 } 4414 I915_WRITE(EMR, error_mask); 4415 4416 I915_WRITE(IMR, dev_priv->irq_mask); 4417 I915_WRITE(IER, enable_mask); 4418 POSTING_READ(IER); 4419 4420 I915_WRITE(PORT_HOTPLUG_EN, 0); 4421 POSTING_READ(PORT_HOTPLUG_EN); 4422 4423 i915_enable_asle_pipestat(dev); 4424 4425 return 0; 4426 } 4427 4428 static void i915_hpd_irq_setup(struct drm_device *dev) 4429 { 4430 struct drm_i915_private *dev_priv = dev->dev_private; 4431 struct intel_encoder *intel_encoder; 4432 u32 hotplug_en; 4433 4434 assert_spin_locked(&dev_priv->irq_lock); 4435 4436 if (I915_HAS_HOTPLUG(dev)) { 4437 hotplug_en = I915_READ(PORT_HOTPLUG_EN); 4438 hotplug_en &= ~HOTPLUG_INT_EN_MASK; 4439 /* Note HDMI and DP share hotplug bits */ 4440 /* enable bits are the same for all generations */ 4441 for_each_intel_encoder(dev, intel_encoder) 4442 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) 4443 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin]; 4444 /* Programming the CRT detection parameters tends 4445 to generate a spurious hotplug event about three 4446 seconds later. So just do it once. 4447 */ 4448 if (IS_G4X(dev)) 4449 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4450 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK; 4451 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4452 4453 /* Ignore TV since it's buggy */ 4454 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en); 4455 } 4456 } 4457 4458 static irqreturn_t i965_irq_handler(int irq, void *arg) 4459 { 4460 struct drm_device *dev = arg; 4461 struct drm_i915_private *dev_priv = dev->dev_private; 4462 u32 iir, new_iir; 4463 u32 pipe_stats[I915_MAX_PIPES]; 4464 unsigned long irqflags; 4465 int ret = IRQ_NONE, pipe; 4466 u32 flip_mask = 4467 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | 4468 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; 4469 4470 iir = I915_READ(IIR); 4471 4472 for (;;) { 4473 bool irq_received = (iir & ~flip_mask) != 0; 4474 bool blc_event = false; 4475 4476 /* Can't rely on pipestat interrupt bit in iir as it might 4477 * have been cleared after the pipestat interrupt was received. 4478 * It doesn't set the bit in iir again, but it still produces 4479 * interrupts (for non-MSI). 4480 */ 4481 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4482 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) 4483 i915_handle_error(dev, false, 4484 "Command parser error, iir 0x%08x", 4485 iir); 4486 4487 for_each_pipe(dev_priv, pipe) { 4488 int reg = PIPESTAT(pipe); 4489 pipe_stats[pipe] = I915_READ(reg); 4490 4491 /* 4492 * Clear the PIPE*STAT regs before the IIR 4493 */ 4494 if (pipe_stats[pipe] & 0x8000ffff) { 4495 I915_WRITE(reg, pipe_stats[pipe]); 4496 irq_received = true; 4497 } 4498 } 4499 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4500 4501 if (!irq_received) 4502 break; 4503 4504 ret = IRQ_HANDLED; 4505 4506 /* Consume port. Then clear IIR or we'll miss events */ 4507 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4508 i9xx_hpd_irq_handler(dev); 4509 4510 I915_WRITE(IIR, iir & ~flip_mask); 4511 new_iir = I915_READ(IIR); /* Flush posted writes */ 4512 4513 if (iir & I915_USER_INTERRUPT) 4514 notify_ring(dev, &dev_priv->ring[RCS]); 4515 if (iir & I915_BSD_USER_INTERRUPT) 4516 notify_ring(dev, &dev_priv->ring[VCS]); 4517 4518 for_each_pipe(dev_priv, pipe) { 4519 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && 4520 i915_handle_vblank(dev, pipe, pipe, iir)) 4521 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); 4522 4523 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 4524 blc_event = true; 4525 4526 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 4527 i9xx_pipe_crc_irq_handler(dev, pipe); 4528 4529 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS && 4530 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) 4531 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe)); 4532 } 4533 4534 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 4535 intel_opregion_asle_intr(dev); 4536 4537 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 4538 gmbus_irq_handler(dev); 4539 4540 /* With MSI, interrupts are only generated when iir 4541 * transitions from zero to nonzero. If another bit got 4542 * set while we were handling the existing iir bits, then 4543 * we would never get another interrupt. 4544 * 4545 * This is fine on non-MSI as well, as if we hit this path 4546 * we avoid exiting the interrupt handler only to generate 4547 * another one. 4548 * 4549 * Note that for MSI this could cause a stray interrupt report 4550 * if an interrupt landed in the time between writing IIR and 4551 * the posting read. This should be rare enough to never 4552 * trigger the 99% of 100,000 interrupts test for disabling 4553 * stray interrupts. 4554 */ 4555 iir = new_iir; 4556 } 4557 4558 i915_update_dri1_breadcrumb(dev); 4559 4560 return ret; 4561 } 4562 4563 static void i965_irq_uninstall(struct drm_device * dev) 4564 { 4565 struct drm_i915_private *dev_priv = dev->dev_private; 4566 int pipe; 4567 4568 if (!dev_priv) 4569 return; 4570 4571 I915_WRITE(PORT_HOTPLUG_EN, 0); 4572 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4573 4574 I915_WRITE(HWSTAM, 0xffffffff); 4575 for_each_pipe(dev_priv, pipe) 4576 I915_WRITE(PIPESTAT(pipe), 0); 4577 I915_WRITE(IMR, 0xffffffff); 4578 I915_WRITE(IER, 0x0); 4579 4580 for_each_pipe(dev_priv, pipe) 4581 I915_WRITE(PIPESTAT(pipe), 4582 I915_READ(PIPESTAT(pipe)) & 0x8000ffff); 4583 I915_WRITE(IIR, I915_READ(IIR)); 4584 } 4585 4586 static void intel_hpd_irq_reenable(struct work_struct *work) 4587 { 4588 struct drm_i915_private *dev_priv = 4589 container_of(work, typeof(*dev_priv), 4590 hotplug_reenable_work.work); 4591 struct drm_device *dev = dev_priv->dev; 4592 struct drm_mode_config *mode_config = &dev->mode_config; 4593 unsigned long irqflags; 4594 int i; 4595 4596 intel_runtime_pm_get(dev_priv); 4597 4598 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4599 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) { 4600 struct drm_connector *connector; 4601 4602 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED) 4603 continue; 4604 4605 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; 4606 4607 list_for_each_entry(connector, &mode_config->connector_list, head) { 4608 struct intel_connector *intel_connector = to_intel_connector(connector); 4609 4610 if (intel_connector->encoder->hpd_pin == i) { 4611 if (connector->polled != intel_connector->polled) 4612 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n", 4613 connector->name); 4614 connector->polled = intel_connector->polled; 4615 if (!connector->polled) 4616 connector->polled = DRM_CONNECTOR_POLL_HPD; 4617 } 4618 } 4619 } 4620 if (dev_priv->display.hpd_irq_setup) 4621 dev_priv->display.hpd_irq_setup(dev); 4622 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4623 4624 intel_runtime_pm_put(dev_priv); 4625 } 4626 4627 void intel_irq_init(struct drm_device *dev) 4628 { 4629 struct drm_i915_private *dev_priv = dev->dev_private; 4630 4631 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func); 4632 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func); 4633 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func); 4634 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); 4635 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4636 4637 /* Let's track the enabled rps events */ 4638 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) 4639 /* WaGsvRC0ResidencyMethod:vlv */ 4640 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; 4641 else 4642 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; 4643 4644 setup_timer(&dev_priv->gpu_error.hangcheck_timer, 4645 i915_hangcheck_elapsed, 4646 (unsigned long) dev); 4647 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work, 4648 intel_hpd_irq_reenable); 4649 4650 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); 4651 4652 /* Haven't installed the IRQ handler yet */ 4653 dev_priv->pm._irqs_disabled = true; 4654 4655 if (IS_GEN2(dev)) { 4656 dev->max_vblank_count = 0; 4657 dev->driver->get_vblank_counter = i8xx_get_vblank_counter; 4658 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { 4659 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ 4660 dev->driver->get_vblank_counter = gm45_get_vblank_counter; 4661 } else { 4662 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4663 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ 4664 } 4665 4666 /* 4667 * Opt out of the vblank disable timer on everything except gen2. 4668 * Gen2 doesn't have a hardware frame counter and so depends on 4669 * vblank interrupts to produce sane vblank seuquence numbers. 4670 */ 4671 if (!IS_GEN2(dev)) 4672 dev->vblank_disable_immediate = true; 4673 4674 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 4675 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; 4676 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4677 } 4678 4679 if (IS_CHERRYVIEW(dev)) { 4680 dev->driver->irq_handler = cherryview_irq_handler; 4681 dev->driver->irq_preinstall = cherryview_irq_preinstall; 4682 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4683 dev->driver->irq_uninstall = cherryview_irq_uninstall; 4684 dev->driver->enable_vblank = valleyview_enable_vblank; 4685 dev->driver->disable_vblank = valleyview_disable_vblank; 4686 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4687 } else if (IS_VALLEYVIEW(dev)) { 4688 dev->driver->irq_handler = valleyview_irq_handler; 4689 dev->driver->irq_preinstall = valleyview_irq_preinstall; 4690 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4691 dev->driver->irq_uninstall = valleyview_irq_uninstall; 4692 dev->driver->enable_vblank = valleyview_enable_vblank; 4693 dev->driver->disable_vblank = valleyview_disable_vblank; 4694 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4695 } else if (IS_GEN8(dev)) { 4696 dev->driver->irq_handler = gen8_irq_handler; 4697 dev->driver->irq_preinstall = gen8_irq_reset; 4698 dev->driver->irq_postinstall = gen8_irq_postinstall; 4699 dev->driver->irq_uninstall = gen8_irq_uninstall; 4700 dev->driver->enable_vblank = gen8_enable_vblank; 4701 dev->driver->disable_vblank = gen8_disable_vblank; 4702 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; 4703 } else if (HAS_PCH_SPLIT(dev)) { 4704 dev->driver->irq_handler = ironlake_irq_handler; 4705 dev->driver->irq_preinstall = ironlake_irq_reset; 4706 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4707 dev->driver->irq_uninstall = ironlake_irq_uninstall; 4708 dev->driver->enable_vblank = ironlake_enable_vblank; 4709 dev->driver->disable_vblank = ironlake_disable_vblank; 4710 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; 4711 } else { 4712 if (INTEL_INFO(dev)->gen == 2) { 4713 dev->driver->irq_preinstall = i8xx_irq_preinstall; 4714 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4715 dev->driver->irq_handler = i8xx_irq_handler; 4716 dev->driver->irq_uninstall = i8xx_irq_uninstall; 4717 } else if (INTEL_INFO(dev)->gen == 3) { 4718 dev->driver->irq_preinstall = i915_irq_preinstall; 4719 dev->driver->irq_postinstall = i915_irq_postinstall; 4720 dev->driver->irq_uninstall = i915_irq_uninstall; 4721 dev->driver->irq_handler = i915_irq_handler; 4722 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4723 } else { 4724 dev->driver->irq_preinstall = i965_irq_preinstall; 4725 dev->driver->irq_postinstall = i965_irq_postinstall; 4726 dev->driver->irq_uninstall = i965_irq_uninstall; 4727 dev->driver->irq_handler = i965_irq_handler; 4728 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4729 } 4730 dev->driver->enable_vblank = i915_enable_vblank; 4731 dev->driver->disable_vblank = i915_disable_vblank; 4732 } 4733 } 4734 4735 void intel_hpd_init(struct drm_device *dev) 4736 { 4737 struct drm_i915_private *dev_priv = dev->dev_private; 4738 struct drm_mode_config *mode_config = &dev->mode_config; 4739 struct drm_connector *connector; 4740 unsigned long irqflags; 4741 int i; 4742 4743 for (i = 1; i < HPD_NUM_PINS; i++) { 4744 dev_priv->hpd_stats[i].hpd_cnt = 0; 4745 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; 4746 } 4747 list_for_each_entry(connector, &mode_config->connector_list, head) { 4748 struct intel_connector *intel_connector = to_intel_connector(connector); 4749 connector->polled = intel_connector->polled; 4750 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE) 4751 connector->polled = DRM_CONNECTOR_POLL_HPD; 4752 if (intel_connector->mst_port) 4753 connector->polled = DRM_CONNECTOR_POLL_HPD; 4754 } 4755 4756 /* Interrupt setup is already guaranteed to be single-threaded, this is 4757 * just to make the assert_spin_locked checks happy. */ 4758 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 4759 if (dev_priv->display.hpd_irq_setup) 4760 dev_priv->display.hpd_irq_setup(dev); 4761 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 4762 } 4763 4764 /* Disable interrupts so we can allow runtime PM. */ 4765 void intel_runtime_pm_disable_interrupts(struct drm_device *dev) 4766 { 4767 struct drm_i915_private *dev_priv = dev->dev_private; 4768 4769 dev->driver->irq_uninstall(dev); 4770 dev_priv->pm._irqs_disabled = true; 4771 } 4772 4773 /* Restore interrupts so we can recover from runtime PM. */ 4774 void intel_runtime_pm_restore_interrupts(struct drm_device *dev) 4775 { 4776 struct drm_i915_private *dev_priv = dev->dev_private; 4777 4778 dev_priv->pm._irqs_disabled = false; 4779 dev->driver->irq_preinstall(dev); 4780 dev->driver->irq_postinstall(dev); 4781 } 4782